Science.gov

Sample records for magnetic field configurations

  1. Modelling the magnetic field configuration of neutron stars

    NASA Astrophysics Data System (ADS)

    Ciolfi, R.

    2014-09-01

    The properties of the extremely strong magnetic fields of neutron stars affect in a unique way their evolution and the associated phenomenology. Due to the lack of constraints from direct observations, our understanding of the magnetic field configuration in neutron star interiors depends on the progress in theoretical modelling. Here we discuss the effort in building models of magnetized neutron stars focussing on some of the recent results. In particular, we comment on the instability of purely poloidal and purely toroidal magnetic field configurations and on the evidence in favour of the so-called twisted-torus solutions. We conclude with an outlook on the present status of the field and future directions.

  2. Steady state magnetic field configurations for the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  3. A filament supported by different magnetic field configurations

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.

    2011-08-01

    A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.

  4. Hamiltonian description of closed configurations of the vacuum magnetic field

    NASA Astrophysics Data System (ADS)

    Skovoroda, A. A.

    2015-05-01

    Methods of obtaining and using the Hamiltonians of closed vacuum magnetic configurations of fusion research systems are reviewed. Various approaches to calculate the flux functions determining the Hamiltonian are discussed. It is shown that the Hamiltonian description allows one not only to reproduce all traditional results, but also to study the behavior of magnetic field lines by using the theory of dynamic systems. The potentialities of the Hamiltonian formalism and its close relation to traditional methods are demonstrated using a large number of classical examples adopted from the fundamental works by A.I. Morozov, L.S. Solov'ev, and V.D. Shafranov.

  5. Hamiltonian description of closed configurations of the vacuum magnetic field

    SciTech Connect

    Skovoroda, A. A.

    2015-05-15

    Methods of obtaining and using the Hamiltonians of closed vacuum magnetic configurations of fusion research systems are reviewed. Various approaches to calculate the flux functions determining the Hamiltonian are discussed. It is shown that the Hamiltonian description allows one not only to reproduce all traditional results, but also to study the behavior of magnetic field lines by using the theory of dynamic systems. The potentialities of the Hamiltonian formalism and its close relation to traditional methods are demonstrated using a large number of classical examples adopted from the fundamental works by A.I. Morozov, L.S. Solov’ev, and V.D. Shafranov.

  6. Analytical study of the magnetic field generated by multipolar magnetic configuration

    NASA Astrophysics Data System (ADS)

    Murillo Acevedo, M. T.; Dugar-Zhabon, V. D.; Otero, O.

    2016-02-01

    The magneto-statics field from a parallelepiped magnet which can turn around an axis, is the first step to find the whole magnetic field in a multipolar configuration. This configuration is present in the ion sources, which are heated by electron cyclotron resonance. We present the analytic formulas to calculate this magnetic field outside the volume of the magnet. To model the magnet, we considered a constant magnetization vector inside of magnet volume. Therefore, the magnetic scalar potential method can be used. We present the results by a hexapolar system. Their magnetic field components are calculated on confinement region, several graphics are shown with directions and magnitude's gradients of the magnetic field to help understand better the confinement system. Our results are confronted with experimental ones. These formulas are very useful in research of plasma magnetic confinement in ion sources through computational simulations.

  7. Magnetic field configuration in the magnetotail near 60 earth radii

    NASA Technical Reports Server (NTRS)

    Meng, C.-I.; Anderson, K. A.

    1974-01-01

    The magnetic field line configuration in the geomagnetic tail near 60 earth radii is examined on the basis of nearly 3 years of magnetometer data from the lunar-orbiting Explorer 35 satellite. The magnetotail field line characteristics inside the plasma sheet and in the high-latitude tail, i.e., outside the plasma sheet, are separately examined. In the high-latitude tail the magnetic field lines systematically diverge in both longitudinal (east-west) and latitudinal (north-south) directions; the divergence angle between field lines near the dusk flank and those near the dawn flank is about 14 deg, but the divergence along the Z direction is only about 8 deg. The degree of divergence is found to be greater in the evening side than in the morning side and greater in the northern tail than in the southern tail. Inside the plasma sheet the field lines deviate by about 19 deg from the sun-earth line, and the spatial distribution of the field line deviation does not have any systematic tendency.

  8. Field Reversed Configuration Translation and the Magnetized Target Fusion Collaboration

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Wurden, G. A.; Sieck, P. E.; Waganaar, W. J.; Dorf, L.; Kostora, M.; Cortez, R. J.; Degnan, J. H.; Ruden, E. L.; Domonkos, M.; Adamson, P.; Grabowski, C.; Gale, D. G.; Kostora, M.; Sommars, W.; Frese, M.; Frese, S.; Camacho, J. F.; Parks, P.; Siemon, R. E.; Awe, T.; Lynn, A. G.; Gribble, R.

    2009-06-01

    After considerable design and construction, we describe the status of a physics exploration of magnetized target fusion (MTF) that will be carried out with the first flux conserving compression of a high pressure field-reversed configuration (FRC). The upgraded Los Alamos (LANL) high density FRC experiment FRXL has demonstrated that an appropriate FRC plasma target can be created and translated on a time scale fast enough to be useful for MTF. Compression to kilovolt temperature is expected to form a Mbar pressure, high energy density laboratory plasma (HEDLP). Integrated hardware on the new Field Reversed Compression and Heating Experiment (FRCHX) at the Air Force Research Laboratory Shiva Star facility, has formed initial FRC's and will radially compress them within a cylindrically symmetric aluminum "liner". FRXL has shown that time scales for FRC translation to the target region are significantly shorter than the typical FRC lifetime. The hardware, diagnostics, and design rationales are presented. Pre-compression plasma formation and trapping experimental data from FRXL and FRCHX are shown.

  9. Spin valve with non-collinear magnetization configuration imprinted by a static magnetic field

    NASA Astrophysics Data System (ADS)

    Lapa, Pavel N.; Khaire, Trupti; Ding, Junjia; Pearson, John E.; Novosad, Valentyn; Hoffmann, Axel; Jiang, J. S.

    2016-05-01

    To control the angle between magnetizations in two adjacent ferromagnetic layers without using a rotator, a novel spin valve was designed and fabricated. A key element of the design is a replacement of a pinned ferromagnetic layer by a synthetic antiferromagnet (SAF). The predefined non-collinear magnetization configurations are produced by cooling the valve in different magnetic fields. Giant magnetoresistance (GMR) measurements allowed mapping of the angle between the magnetizations in the SAF and the free layer depending on the magnitude of the cooling field.

  10. Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration

    SciTech Connect

    A.S. Landsman; S.A. Cohen; M. Edelman; G.M. Zaslavsky

    2005-04-13

    The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar{copyright} surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics.

  11. Evaluation of magnetic refocusing in linear-beam microwave tubes. [using optimal magnetic field configuration

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1974-01-01

    Magnetic field configurations in which the axial component of the field decays linearly to a constant plateau field are evaluated for use in refocusing the output beam of linear beam microwave tubes. The slope of the decay and the value of the plateau field are parameters in this study. A uniform beam with a space charge force only in the radial direction is assumed, and the electron trajectories are computed for various classes. For a given magnetic configuration (slope and plateau value) the plateau length is calculated for a specified class and the rms deviation of the output angles for all classes is computed at the end of this plateau length. A minimum condition for a refocused beam is defined to be one in which the rms value of the output angles is less than the rms input. Many of the configurations satisfied this criteria and successfully reduced the rms value by half.

  12. The magnetic field and magnetospheric configuration of Uranus

    NASA Technical Reports Server (NTRS)

    Ness, Norman F.; Connerney, John E. P.; Lepping, Ronald P.; Schulz, Michael; Voigt, Gerd-Hannes

    1991-01-01

    A significant and unique planetary magnetic field discovered by Voyager 2 is presented. A large tilt of 58.6 deg of the magnetic-dipole axis from the rotation axis was found. Combined with a large offset of 0.3 RU of the magnetic dipole from the center of the planet, the moment of 0.23 gauss-RU3 leads to field magnitudes at the surface which vary widely between 0.1 and 1.0 gauss. A simple diagram illustrating the offset tilted dipole of Uranus and some field lines is shown. A more exact and accurate spherical-harmonic model of the planetary field, which includes both dipole and quadrupole moments, is derived. There exists a well-developed bipolar magnetic tail on the night side of the planet which rotates daily about the extended planet-sunline with Uranus because of the large obliquity of the Uranian rotation axis.

  13. Large Solar Flares and Sheared Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad

    2001-01-01

    This Comment gives additional information about the nature of flaring locations on the Sun described in the article "Sun unleashes Halloween storm", by R. E. Lopez, et al. What causes the large explosions from solar active regions that unleash huge magnetic storms and adverse space weather? It is now beyond doubt that the magnetic field in solar active regions harbors free energy that is released during these events. Direct measurements of the longitudinal and transverse components of active region magnetic fields with the vector magnetograph at NASA Marshall Space Flight Center (MSFC), taken on a regular basis for the last 30 years, have found key signatures of the locations of powerful flares. A vector magnetograph detects and measures the magnetic shear, which is the deviation of the observed transverse magnetic field direction from the potential field. The sheared locations possess abundant free magnetic energy for solar flares. In addition to active region NOAA 10486, the one that produced the largest flares last October, the NASA/MSFC vector magnetograph has observed several other such complex super active regions, including NOAA 6555 and 6659.

  14. Internal magnetic field measurement on C-2 field-reversed configuration plasmas.

    PubMed

    Gota, H; Thompson, M C; Knapp, K; Van Drie, A D; Deng, B H; Mendoza, R; Guo, H Y; Tuszewski, M

    2012-10-01

    A long-lived field-reversed configuration (FRC) plasma has been produced in the C-2 device by dynamically colliding and merging two oppositely directed, highly supersonic compact toroids (CTs). The reversed-field structure of the translated CTs and final merged-FRC state have been directly verified by probing the internal magnetic field structure using a multi-channel magnetic probe array near the midplane of the C-2 confinement chamber. Each of the two translated CTs exhibits significant toroidal fields (B(t)) with opposite helicity, and a relatively large B(t) remains inside the separatrix after merging. PMID:23126880

  15. Magnetic field configuration in a flaring active region

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Balmaceda, L. A.; Vieira, L. E.

    2015-10-01

    The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides continuous monitoring of the Sun's vector magnetic field through full-disk photospheric data with both high cadence and high spatial resolution. Here we investigate the evolution of AR 11249 from March 6 to March 7, 2012. We make use of HMI Stokes imaging, SDO/SHARPs, the HMI magnetic field line-of-sight (LOS) maps and the transverse components of the magnetic field as well as LOS velocity maps in order to detect regions with significant flux emergence and/or cancellation. In addition, we apply the Local Correlation Tracking (LCT) technique to the total and signed magnetic flux data and derive maps of horizontal velocity. From this analysis, we were able to pinpoint localized shear regions (and a shear channel) where penumbrae and pore formation areas, with strong linear polarization signals, are stretched and squeezed, showing also important downflows and upflows. We have also utilized Hinode/SP data and compared them to the HMI-SHARPs and the HMI-Stokes spectrograms. The aforementioned shear channel seems to correspond well with the X-class flare main channel of March 7 2012, as observed in AIA/SDO 171, 304 and 1600 Å.

  16. Unbalanced magnetic field configuration: plasma and film properties.

    PubMed

    Rodil, S E; Olaya, J J

    2006-08-16

    Coatings of CrN, TiN, ZrN, TaN and NbN were deposited using an unbalanced magnetron sputtering system with two different degrees of unbalancing to investigate the effect of the degree of unbalancing on both plasma characteristics and film properties. The degree of unbalancing was determined by an extensive characterization of the magnetic field fluxes in the X-Z plane perpendicular to the target. Then, the plasma parameters, such as electron temperature, plasma potential, plasma density and ion current density, were obtained for each target and as a function of the unbalance coefficient. The film microstructure, hardness, corrosion and wear resistant were measured to determine the effect of the degree of unbalancing on these properties. The results suggested that the degree of unbalancing, through the variations induced in the ion bombardment and plasma ionization, had a strong influence on the film hardness, microstructure and preferred orientation. PMID:21690858

  17. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    SciTech Connect

    Velas, K. M.; Milroy, R. D.

    2014-01-15

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub θ}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.

  18. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    SciTech Connect

    Shimizu, T.

    2015-10-15

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.

  19. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    NASA Astrophysics Data System (ADS)

    Shimizu, T.

    2015-10-01

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.

  20. Study on Axially Distributed Divertor Magnetic Field Configuration in a Mirror Cell

    SciTech Connect

    Islam, M.K.; Nakashima, Y.; Higashizono, Y.; Katanuma, I.; Cho, T

    2005-01-15

    A mirror magnetic field configuration (MFC) is studied in which a divertor is distributed axially using multipole coils. Both configurations of divertor and minimum-B are obtained in a mirror cell. Magnetohydrodynamic (MHD) instability of a mirror cell can be eliminated in this way. Concept of the design and properties of the MFC are discussed.

  1. Effects of magnetic field configuration on thrust performance in a miniature microwave discharge ion thruster

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoji; Kondo, Shinya; Chikaoka, Takayuki; Nakashima, Hideki; Masui, Hirokazu

    2007-12-01

    The effects of magnetic field configuration on thrust performance in a miniature microwave discharge ion thruster were investigated in order to improve thrust performance. First, the extracted ion beam current was measured for various levels of strength of the magnetic field. It was found that there is an optimum magnitude of the magnetic field. That this is due to the tradeoff between magnetic mirror confinement and microwave-plasma coupling was confirmed by measurement of the ion saturation current into the antenna of the ion thruster. The ion saturation current was found to decrease with an increase in magnetic field strength, due to the improvement in magnetic mirror confinement. The estimated electron temperature also decreases with an increase in magnetic field strength. This result shows that the increase in magnetic field strength leads to a decrease in microwave-plasma coupling. Next, the ion beam current for three magnetic field shapes was measured by changing the length of the central yoke. The results show that the optimum magnetic field shape depends on the mass flow rate because of the tradeoff between magnetic confinement and ionization probability. For the configurations tested, the 3 mm length central yoke is optimal for low mass flow, whereas 7 mm is the best for high mass flow. Overall, the extracted ion beam current is 21.4 mA, at a xenon mass flow rate of 0.036 mg/s, beam voltage of 1500 V, and incident microwave power of 16 W.

  2. Convective Power Loss Measurements in a Field Reversed Configuration with Rotating Magnetic Field Current Drive

    NASA Astrophysics Data System (ADS)

    Melnik, Paul

    The Translation, Confinement, and Sustainment Upgrade (TCSU) experiment achieves direct formation and sustainment of a field reversed configuration (FRC) plasma through rotating magnetic fields (RMF). The pre-ionized gas necessary for FRC formation is supplied by a magnetized cascade arc source that has been developed for TCSU. To ensure ideal FRC performance, the condition of the vacuum chamber prior to RMF start-up has been characterized with the use of a fast response ion gauge. A circuit capable of gating the puff valves with initial high voltage for quick response and then indefinite operational voltage was also designed. A fully translatable combination Langmuir / Mach probe was also built to measure the electron temperature, electron density, and ion velocity of the FRC. These measurements were also successfully completed in the FRC exhaust jets allowing for an accurate analysis of the FRC power loss through convection.

  3. Flux generation and sustainment of a field reversed configuration with rotating magnetic field current drive

    SciTech Connect

    Slough, J. T.; Miller, K. E.

    2000-05-01

    A new experimental device has been constructed to study the flux build-up and sustainment of a field reversed configuration (FRC) with a rotating magnetic field (RMF). Even though complete penetration was expected from RMF theory, the RMF field was observed to penetrate only a few centimeters inside the FRC separatrix. Despite the limited penetration, significantly larger toroidal currents (40 kA) were driven than in previous experiments ({approx}2 kA) with the same RMF field. The high currents and lack of deep penetration allowed the axial field to be the dominant field throughout the FRC. The radially inward pondermotive force arising from axial screening currents at the FRC edge had a significant influence on energy and particle confinement, reducing convective losses to the limit of observability. With only ohmic heating, the measured low ion temperatures (2 eV) left the ions unmagnetized while the electrons ({approx}40 eV) were well magnetized. No destructive instability was observed for the RMF driven FRC despite the lack of a strong kinetic ion component. (c) 2000 American Institute of Physics.

  4. Radial current density effects on rotating magnetic field current drive in field-reversed configurations

    SciTech Connect

    Clemente, R. A.; Gilli, M.; Farengo, R.

    2008-10-15

    Steady state solutions, suitable for field-reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs) are obtained by properly including three-dimensional effects, in the limit of large FRC elongation, and the radial component of Ohm's law. The steady electrostatic potential, necessary to satisfy Ohm's law, is considered to be a surface function. The problem is analyzed at the midplane of the configuration and it is reduced to the solution of two coupled nonlinear differential equations for the real and imaginary parts of the phasor associated to the longitudinal component of the vector potential. Additional constraints are obtained by requesting that the steady radial current density and poloidal magnetic flux vanish at the plasma boundary which is set at the time-averaged separatrix. The results are presented in terms of the degree of synchronism of the electrons with the RMF and compared with those obtained when radial current effects are neglected. Three important differences are observed when compared with the case without radial current density. First, at low penetration of the RMF into the plasma there is a significant increase in the driven azimuthal current. Second, the RMF amplitude necessary to access the high synchronism regime, starting from low synchronism, is larger and the difference appears to increase as the separatrix to classical skin depth ratio increases. Third, the minimum RMF amplitude necessary to sustain almost full synchronism is reduced.

  5. Rotating magnetic field current drive of high-temperature field reversed configurations with high {zeta} scaling

    SciTech Connect

    Guo, H. Y.; Hoffman, A. L.; Milroy, R. D.

    2007-11-15

    Greatly reduced recycling and impurity ingestion in the Translation, Confinement, and Sustainment--Upgrade (TCSU) device has allowed much higher plasma temperatures to be achieved in the field reversed configurations (FRC) under rotating magnetic field (RMF) formation and sustainment. The hotter plasmas have higher magnetic fields and much higher diamagnetic electron rotation rates so that the important ratio of average electron rotation frequency to RMF frequency, called {zeta}, approaches unity, for the first time, in TCSU. A large fraction of the RMF power is absorbed by an as yet unexplained (anomalous) mechanism directly proportional to the square of the RMF magnitude. It becomes of relatively lesser significance as the FRC current increases, and simple resistive heating begins to dominate, but the anomalous absorption is useful for initial plasma heating. Measurements of total absorbed power, and comparisons of applied RMF torque to torque on the electrons due to electron-ion friction under high-{zeta} operation, over a range of temperatures and fields, have allowed the separation of the classical Ohmic and anomalous heating to be inferred, and cross-field plasma resistivities to be calculated.

  6. Power deposition and field penetration in a field-reversed configuration generated by rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kuthi, A.; Zwi, H.; Wells, B.; Wong, A. Y.

    1989-07-01

    Power deposition profiles derived from measured equlibrium and field-penetration profiles in the RACETRACK rotating magnetic field drived FRC are presented. It is found, that significantly higher RF power can be deposited in the plasma than what is necessary to maintain the diamagnetic current. The Klima relations are reconciled with the higher power input because the excess power is delivered by waves possessing zero net angular momentum. Only the right-hand rotating component of the RF field penetrates fully, and this results in correct circular polarization of the fields on axis regardless of the imposed polarization by the antennas.

  7. Magnetic field configurations associated with fast solar wind

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Wang, Y.-M.

    1991-01-01

    The implications are considered of the observed inverse correlation between solar wind speed at earth and the expansion rate of the sun-earth flux tube as it passes through the corona. It is found that the coronal expansion rate depends critically on the large-scale photospheric field distribution around the footpoint of the flux tube. The smallest expansions occur in tubes that are rooted near a local minimum in the field. This suggests that the fastest wind streams originate from regions where large coronal holes are about to break apart and from the facing edges of adjacent like-polarity holes, whose field lines converge as they transit the corona. Predictions are made which follow from the above ideas.

  8. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    SciTech Connect

    Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A.; Cohen, S. A.

    2011-01-05

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  9. Stochastic Ion Heating in a Field-reversed Configuration Geometry by Rotating Magnetic Fields

    SciTech Connect

    S.A. Cohen, A.S. Landsman, and A.H. Glasser

    2007-06-25

    Ion heating by application of rotating magnetic fields (RMF) to a prolate field-reversed configuration(FRC) is explored by analytical and numerical techniques. For odd-parity RMF (RMFo), perturbation analysis shows ions in figure-8 orbits gain energy at resonances of the RMFo frequency, ωR, with the figure-8 orbital frequency, ω. Since figure-8 orbits tend to gain the most energy from the RMF and are unlikely to escape in the cusp region (where most losses occur), they are optimal candidates for rapid stochastic heating, as compared to cyclotron and betatron orbits. Comparisons are made between heating caused by even- and odd-parity RMFs and between heating in currently operating and in reactor-scale FRC devices.

  10. A MAGNETOHYDRODYNAMIC MODEL FOCUSED ON THE CONFIGURATION OF MAGNETIC FIELD RESPONSIBLE FOR A SOLAR PENUMBRAL MICROJET

    SciTech Connect

    Magara, T.

    2010-05-20

    In order to understand the configuration of magnetic field producing a solar penumbral microjet that was recently discovered by Hinode, we performed a magnetohydrodynamic simulation reproducing a dynamic process of how that configuration is formed in a modeled solar penumbral region. A horizontal magnetic flux tube representing a penumbral filament is placed in a stratified atmosphere containing the background magnetic field that is directed in a relatively vertical direction. Between the flux tube and the background field there forms the intermediate region in which the magnetic field has a transitional configuration, and the simulation shows that in the intermediate region magnetic reconnection occurs to produce a clear jet-like structure as suggested by observations. The result that a continuous distribution of magnetic field in three-dimensional space gives birth to the intermediate region producing a jet presents a new view about the mechanism of a penumbral microjet, compared to a simplistic view that two field lines, one of which represents a penumbral filament and the other the background field, interact together to produce a jet. We also discuss the role of the intermediate region in protecting the structure of a penumbral filament subject to microjets.

  11. Observations of improved confinement in field reversed configurations sustained by antisymmetric rotating magnetic fields

    SciTech Connect

    Guo, H.Y.; Hoffman, A.L.; Steinhauer, L.C.

    2005-06-15

    Rotating magnetic fields (RMF) have been employed to both form and sustain currents in field reversed configurations (FRC). A major concern about this method has been the fear of opening up magnetic field lines with even small ratios of vacuum RMF B{sub {omega}} to external confinement field B{sub e}. A recently proposed innovation was to use an antisymmetric arrangement of RMF, but vacuum calculations with full RMF penetration showed that very low values of B{sub {omega}}/B{sub e} would still be required to provide field-line closure. Recent comparisons of symmetric and antisymmetric RMF drive on the translation, confinement, and sustainment (TCS) facility [A. L. Hoffman, H. Y. Guo, J. T. Slough et al., Fusion Sci. Technol. 41, 92 (2002)] have shown strong improvements in the basic confinement properties of the FRCs when using antisymmetric drive, even with ratios of B{sub {omega}}/B{sub e} as high as 0.3. This is due to normal standard operation with only partial penetration of the RMF beyond the FRC separatrix. The uniform transverse RMF in vacuum is shielded by the conducting plasma, resulting in a mostly azimuthal field near the FRC separatrix with a very small radial component. Simple numerical calculations using analytical solutions for the partially penetrated antisymmetric RMF, superimposed on Grad-Shafranov solutions for the poloidal FRC fields, show good field-line closure for the TCS experimental conditions. The antisymmetric arrangement also leads to more efficient current drive and improved stabilization of rotational modes.

  12. Applied magnetic field design for the field reversed configuration compression heating experiment

    NASA Astrophysics Data System (ADS)

    Domonkos, M. T.; Amdahl, D.; Camacho, J. F.; Coffey, S. K.; Degnan, J. H.; Delaney, R.; Frese, M.; Gale, D.; Grabowski, T. C.; Gribble, R.; Intrator, T. P.; McCullough, J.; Montano, N.; Robinson, P. R.; Wurden, G.

    2013-04-01

    Detailed calculations of the formation, guide, and mirror applied magnetic fields in the FRC compression-heating experiment (FRCHX) were conducted using a commercially available generalized finite element solver, COMSOL Multiphysics®. In FRCHX, an applied magnetic field forms, translates, and finally captures the FRC in the liner region sufficiently long to enable compression. Large single turn coils generate the fast magnetic fields necessary for FRC formation. Solenoidal coils produce the magnetic field for translation and capture of the FRC prior to liner implosion. Due to the limited FRC lifetime, liner implosion is initiated before the FRC is injected, and the magnetic flux that diffuses into the liner is compressed. Two-dimensional axisymmetric magnetohydrodynamic simulations using MACH2 were used to specify optimal magnetic field characteristics, and this paper describes the simulations conducted to design magnetic field coils and compression hardware for FRCHX. This paper presents the vacuum solution for the magnetic field.

  13. Analysis of payload bay magnetic fields due to dc power multipoint and single point ground configurations

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1976-01-01

    An analysis of magnetic fields in the Orbiter Payload Bay resulting from the present grounding configuration (structure return) was presented and the amount of improvement that would result from installing wire returns for the three dc power buses was determined. Ac and dc magnetic fields at five points in a cross-section of the bay are calculated for both grounding configurations. Y and Z components of the field at each point are derived in terms of a constant coefficient and the current amplitude of each bus. The dc loads assumed are 100 Amperes for each bus. The ac noise current used is a spectrum 6 db higher than the Orbiter equipment limit for narrowband conducted emissions. It was concluded that installing return wiring to provide a single point ground for the dc Buses in the Payload Bay would reduce the ac and dc magnetic field intensity by approximately 30 db.

  14. Ion heating in the field-reversed configuration by rotating magnetic fields near the ion-cyclotron resonance

    PubMed

    Cohen; Glasser

    2000-12-11

    The trajectories of ions confined in a field-reversed configuration (FRC) equilibrium magnetic geometry and heated with a small-amplitude, odd-parity rotating magnetic field (RMF) have been studied with a Hamiltonian computer code. When the RMF frequency is in the ion-cyclotron range, explosive heating occurs. Higher-energy ions are found to have betatron-type orbits, preferentially localized near the FRC's midplane. These results are relevant to a compact magnetic-fusion-reactor design. PMID:11102199

  15. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2007-02-20

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  16. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-02-07

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  17. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  18. Particle Diffusion in Chaotic Magnetic Fields Generated by Asymmetric Current Configurations

    NASA Astrophysics Data System (ADS)

    Ram, A. K.; Dasgupta, B.

    2008-12-01

    The observed cross-field diffusion of charged particles in cosmic rays is assumed to be due to the chaotic nature of the interplanetary/intergalactic magnetic fields. Among the classic works on this subject have been those of Parker [1] and Jokipii [2]. Parker considered the passage of cosmic ray particles and energetic solar particles in a large scale magnetic field containing small scale irregularities. In the context of cosmic ray propagation, Jokipii considered a small fluctuating component, added on to a uniform magnetic field, to study the spatial transport of particles. In these studies the irregular component of the magnetic field is prescribed in an ad hoc fashion. In contrast, we consider asymmetric, nonlinear, steady-state magnetic fields, in three spatial dimensions, generated by currents flowing in circular loops and straight lines [3]. These magnetic fields are completely deterministic and, for certain range of parameters, chaotic. We will present analytical and numerical studies on the spatial characteristics of these fields. The motion of charged particles in the nonlinear and chaotic magnetic fields is determined using the Lorentz equation. A particle moving in a deterministic chaotic magnetic field superposed on a uniform background magnetic field is found to undergo spatial transport. This shows that chaotic magnetic fields generated by simple current configurations can produce cross-field diffusion. A detailed analysis of particle motion and diffusion along with application to space plasmas will be presented. [1] E.N. Parker, Planet. Space Sci. 13, 9 (1965). [2] J.R. Jokipii, Astrophys. J. 146, 480 (1966), and J.R. Jokipii, Astrophys. J. 149, 405 (1967). [3] A.K. Ram and B. Dasgupta, Eos Trans. AGU 87 (52), Fall Meet. Suppl. Abstract NG31B-1593 (2006); and Eos Trans. AGU 88 (52), Fall Meet. Suppl. Abstract NG21B-0522 (2007).

  19. Transport of Positrons in Arbitrary Configurations of Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran; Dujko, Sasa; Bankovic, Ana; Marjanovic, Srdjan; White, Ron

    2015-05-01

    In realistic geometries in gas filled positron traps electric and magnetic fields may not be always along the same axis or perpendicular. It has been shown for electrons that for arbitrary angles a wide variety of effects may occur. Most importantly controlling the angle may control diffusion and thus affect strongly the losses. We have performed calculations of transport coefficients for molecular hydrogen and carbon-tetra-fluoride. Monte Carlo technique was supplemented by novel development of solution of Boltzmann equation for arbitrary configuration of electric and magnetic fields. Both flux and bulk variants of transport coefficients were considered. It was found that it is possible to control diffusion and hence diffusion losses in a wide range of values by varying the angle of magnetic field. In addition it was found that the configuration will affect the mean energy and hence the losses due to Ps formation. The magnitude of effects depends strongly on shapes of the cross sections for positron scattering.

  20. Thermally induced magnetization switching in Fe/MnAs/GaAs(001): selectable magnetic configurations by temperature and field control

    PubMed Central

    Spezzani, Carlo; Vidal, Franck; Delaunay, Renaud; Eddrief, Mahmoud; Marangolo, Massimiliano; Etgens, Victor H.; Popescu, Horia; Sacchi, Maurizio

    2015-01-01

    Spintronic devices currently rely on magnetization control by external magnetic fields or spin-polarized currents. Developing temperature-driven magnetization control has potential for achieving enhanced device functionalities. Recently, there has been much interest in thermally induced magnetisation switching (TIMS), where the temperature control of intrinsic material properties drives a deterministic switching without applying external fields. TIMS, mainly investigated in rare-earth–transition-metal ferrimagnets, has also been observed in epitaxial Fe/MnAs/GaAs(001), where it stems from a completely different physical mechanism. In Fe/MnAs temperature actually modifies the surface dipolar fields associated with the MnAs magnetic microstructure. This in turn determines the effective magnetic field acting on the Fe overlayer. In this way one can reverse the Fe magnetization direction by performing thermal cycles at ambient temperatures. Here we use element selective magnetization measurements to demonstrate that various magnetic configurations of the Fe/MnAs/GaAs(001) system are stabilized predictably by acting on the thermal cycle parameters and on the presence of a bias field. We show in particular that the maximum temperature reached during the cycle affects the final magnetic configuration. Our findings show that applications are possible for fast magnetization switching, where local temperature changes are induced by laser excitations. PMID:25631753

  1. Experimental results with an optimized magnetic field configuration for JET breakdown

    NASA Astrophysics Data System (ADS)

    Albanese, R.; Maviglia, F.; Lomas, P. J.; Manzanares, A.; Mattei, M.; Neto, A.; Rimini, F. G.; de Vries, P. C.; EFDA Contributors, JET

    2012-12-01

    Experiments and modelling have been carried out to optimize the magnetic field null during breakdown at JET. Such optimization may prove to be essential for reliable plasma initiation at low voltages, e.g. in ITER where the value of the electric field available will be limited to 0.33 V m-1. A two-dimensional FEM electromagnetic model has been employed to predict the stray field configuration during JET breakdown. This model includes the active poloidal field circuits, a description of the passive structure and the JET magnetic circuit. In particular, the model includes the gap at the top of the iron circuit (but not at the bottom), which introduces a perturbing field, with radial and vertical components, not previously considered. A number of experiments were run using the optimized magnetic null configuration, allowing one to achieve a more robust breakdown at a low electric field. The model calculation to adjust the magnetic null position was validated using the recordings from a fast visible camera. The optimized position and dynamics of the plasma start lead to a smoother behaviour of the JET radial field control system, far from the amplifier limits. Finally, an important indication was obtained on the precision needed for the active current measurements during the low electric field breakdown relevant from the perspective of the ITER real-time acquisition system.

  2. Particle Confinement in Axisymmetric Poloidal Magnetic Field Configurations with Zeros of B: Methodological Note

    SciTech Connect

    Arsenin, V.V.; Skovoroda, A.A.

    2005-12-15

    Collisionless particle confinement in axisymmetric configurations with magnetic field nulls is analyzed. The existence of an invariant of motion--the generalized azimuthal momentum--makes it possible to determine in which of the spatial regions separated by magnetic separatrices passing through the magnetic null lines the particle occurs after it leaves the vicinity of a magnetic null line. In particular, it is possible to formulate a sufficient condition for the particle not to escape through the separatrix from the confinement region to the external region. In the configuration under analysis, the particles can be lost from a separatrix layer with a thickness on the order of the Larmor radius because of the nonconservation of the magnetic moment {mu}. In this case, the variations in {mu} are easier to describe in a coordinate system associated with the magnetic surfaces. An analysis is made of the applicability of expressions for the single-pass change {delta}{mu} in the magnetic moment that were obtained in different magnetic field models for a confinement system with a divertor (such that there is a circular null line)

  3. Radial expansion of an ideal MHD configuration and the temporal development of the magnetic field. [in magnetic cloud velocity profiles

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Osherovich, V. A.; Burlaga, L. F.; Lepping, R. P.; Freeman, M. P.

    1992-01-01

    We study the free radial expansion of a 3-component magnetic configuration. The emphasis of this paper is on the behavior of a field undergoing non-self-similar expansion. Comparing our results with the evolution of a magnetic configuration expanding self-similarly, we find that self-similar expansion appears as the asymptotic limit (with time) of the general case. Using a model field we show that a non-self-similar velocity profile need not have a strict monotonic decrease with time.

  4. 3D Magnetic Field Configuration of the 2006 December 13 Flare Extrapolated with the Optimization Method

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ding, M. D.; Wiegelmann, T.; Li, H.

    2008-06-01

    The photospheric vector magnetic field of the active region NOAA 10930 was obtained with the Solar Optical Telescope (SOT) on board the Hinode satellite with a very high spatial resolution (about 0.3''). Observations of the two-ribbon flare on 2006 December 13 in this active region provide us a good sample to study the magnetic field configuration related to the occurrence of the flare. Using the optimization method for nonlinear force-free field (NLFFF) extrapolation proposed by Wheatland et al. and recently developed by Wiegelmann, we derive the three-dimensional (3D) vector magnetic field configuration associated with this flare. The general topology can be described as a highly sheared core field and a quasi-potential envelope arch field. The core field clearly shows some dips supposed to sustain a filament. Free energy release in the flare, calculated by subtracting the energy contained in the NLFFF and the corresponding potential field, is 2.4 × 1031 ergs, which is ~2% of the preflare potential field energy. We also calculate the shear angles, defined as the angles between the NLFFF and potential field, and find that they become larger at some particular sites in the lower atmosphere, while they become significantly smaller in most places, implying that the whole configuration gets closer to the potential field after the flare. The Ca II H line images obtained with the Broadband Filter Imager (BFI) of the SOT and the 1600 Å images with the Transition Region and Coronal Explorer (TRACE) show that the preflare heating occurs mainly in the core field. These results provide evidence in support of the tether-cutting model of solar flares.

  5. Magnetic shielding properties of high- Tc superconducting hollow cylinders: model combining experimental data for axial and transverse magnetic field configurations

    NASA Astrophysics Data System (ADS)

    Fagnard, J.-F.; Dirickx, M.; Ausloos, M.; Lousberg, G.; Vanderheyden, B.; Vanderbemden, Ph

    2009-10-01

    Magnetic shielding efficiency was measured on high- Tc superconducting hollow cylinders subjected to either an axial or a transverse magnetic field in a large range of field sweep rates, dBapp/dt. The behaviour of the superconductor was modelled in order to reproduce the main features of the field penetration curves by using a minimum number of free parameters suitable for both magnetic field orientations. The field penetration measurements were carried out on Pb-doped Bi-2223 tubes at 77 K by applying linearly increasing magnetic fields with a constant sweep rate ranging between 10 µT s-1 and 10 mT s-1 for both directions of the applied magnetic field. The experimental curves of the internal field versus the applied field, Bin(Bapp), show that, at a given sweep rate, the magnetic field for which the penetration occurs, Blim, is lower for the transverse configuration than for the axial configuration. A power law dependence with large exponent, n', is found between Blim and dBapp/dt. The values of n' are nearly the same for both configurations. We show that the main features of the curves Bin(Bapp) can be reproduced using a simple 2D model, based on the method of Brandt, involving a E(J) power law with an n-exponent and a field-dependent critical current density, Jc(B), (following the Kim model: Jc = Jc0(1+B/B1)-1). In particular, a linear relationship between the measured n'-exponents and the n-exponent of the E(J) power law is suggested by taking into account the field dependence of the critical current density. Differences between the axial and the transverse shielding properties can be simply attributed to demagnetizing fields.

  6. Investigating Tx coils and magnetic field Rx sensor configurations for underwater geo-location

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; Bijamov, Alex; Schultz, Gregory; Miller, Jon; Shamatava, Irma

    2011-06-01

    In this work, new configurations of magnetic field transmitter coils (Tx) and receiver sensors (Rx) are studied for underwater (UW) geo-locations. The geo-location system, based on low frequency magnetic fields, uses measured vector magnetic fields at a given set of points in space. It contains an active pulsed direct current transmitter, tri-axial field receivers, and a global positioning system unit (GPS). The GPS is coupled with the EMI system and provides continuous geo-referencing of the UW system's position. UW geolocations are estimated using a) closed form solution, that uses the total vector magnetic field tensor's gradient, and b) nonlinear optimization technique based of the differential evolution (DE) algorithm. In this work we first investigated the advantages and disadvantages of the proposed UW low frequency magnetic field geo-location system. Namely, we present systematic studies on: a) magnetic field transmitter configurations to determine the best compromise between size, shape and practical implementation to achieve maximum transmitter range in the UW environment, b) the placements of tri-axial receiver sensors with respect to the Tx to accurately estimate the UW geo-location from the measured magnetic fields; c) different sources of noise (such as the air-water interface, coupling between targets' EMI responses and the geo-location system's signals, water conductivity), to estimate how these noises influence the system's performance and localization precision. Finally, we assessed the capabilities of the closed-form solution and the DE technique to predict the location of an underwater interrogation system by comparing their corresponding estimated results to the true value. We found that for realistic water conductivities, the frequency should be less than 100 Hz. We showed that when the primary magnetic field is contaminated with random noises due to the presence of underwater metallic targets, water conductivity/frequency changes, and finite size of the transmitter, the performance of the full vector magnetic field tensor gradient approach degrades significantly compared to that of the DE method. In addition, the number of receivers required by the vector magnetic field tensor gradient technique and its sensitivity with respect to the sensor separation prevented us from further considering this technique for UW geo-location, leaving the non-linear approach, that uses only three vector Rx, as our technique of choice for tracking the location of underwater interrogation sensors with centimeter-level accuracy.

  7. Investigation and optimization of the magnetic field configuration in high-power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yu, He; Meng, Liang; Szott, Matthew M.; McLain, Jake T.; Cho, Tae S.; Ruzic, David N.

    2013-08-01

    An effort to optimize the magnetic field configuration specifically for high-power impulse magnetron sputtering (HiPIMS) was made. Magnetic field configurations with different field strengths, race track widths and race track patterns were designed using COMSOL. Their influence on HiPIMS plasma properties was investigated using a 36 cm diameter copper target. The I-V discharge characteristics were measured. The temporal evolution of electron temperature (Te) and density (ne) was studied employing a triple Langmuir probe, which was also scanned in the whole discharge region to characterize the plasma distribution and transport. Based on the studies, a closed path for electrons to drift along was still essential in HiPIMS in order to efficiently confine electrons and achieve a high pulse current. Very dense plasmas (1019-1020 m-3) were generated in front of the race tracks during the pulse, and expanded downstream afterwards. As the magnetic field strength increased from 200 to 800 G, the expansion became faster and less isotropic, i.e. more directional toward the substrate. The electric potential distribution accounted for these effects. Varied race track widths and patterns altered the plasma distribution from the target to the substrate. A spiral-shaped magnetic field design was able to produce superior plasma uniformity on the substrate in addition to improved target utilization.

  8. A high density Field Reversed Configuration plasma target for Magnetized Target Fusion: First internal profile measurements

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas

    2003-10-01

    Los Alamos National Laboratory leads a program to demonstrate the scientific basis of Magnetized Target Fusion (MTF). MTF is a potentially low cost path to fusion intermediate in plasma regime between magnetic and inertial fusion energy, requiring compression of a magnetized target plasma and PdV heating to fusion relevant conditions inside a converging flux conserver. We have chosen a Field Reversed Configuration (FRC) target plasma compressed within an imploding metal liner. FRX-L (FRC-Liner) experimental data with high density (2-5x10^22m-3), temperature (T ≈ 200-400eV), and configuration lifetime (τN ≈ 8-12 μ sec) are within a factor of 2-3 of that required for a full performance MTF target. To reduce losses of initial bias magnetic flux during FRC formation, we are improving our formation strategy to trap and retain magnetic flux, so that its dissipation can heat particles. Internal plasma profile measurements enhance our understanding of the physics basis of the magnetic and particle partition of energy, and guide experimental tactics. The Lundquist number is 2000-10000, while ion-ion collisionality remains significant for this dense FRC. Anomalous resistivity presumably mediates flux dissipation at the field null resulting in plasma heating and possibly plasma flow. Resistivity at the O-point and at the separatrix radius may be inferred from radial gradients of the magnetic field and flux decay rate. Radial pressure balance relates plasma pressure to the local magnetic field, so resistivity depends on β (r) profiles, which we determine with interferometery and Thomson scattering. We summarize four years of technical and physics progress, and identify the near term path to optimize the FRC formation for later injection into a liner.

  9. A configurable component-based software system for magnetic field measurements

    SciTech Connect

    Nogiec, J.M.; DiMarco, J.; Kotelnikov, S.; Trombly-Freytag, K.; Walbridge, D.; Tartaglia, M.; /Fermilab

    2005-09-01

    A new software system to test accelerator magnets has been developed at Fermilab. The magnetic measurement technique involved employs a single stretched wire to measure alignment parameters and magnetic field strength. The software for the system is built on top of a flexible component-based framework, which allows for easy reconfiguration and runtime modification. Various user interface, data acquisition, analysis, and data persistence components can be configured to form different measurement systems that are tailored to specific requirements (e.g., involving magnet type or test stand). The system can also be configured with various measurement sequences or tests, each of them controlled by a dedicated script. It is capable of working interactively as well as executing a preselected sequence of tests. Each test can be parameterized to fit the specific magnet type or test stand requirements. The system has been designed with portability in mind and is capable of working on various platforms, such as Linux, Solaris, and Windows. It can be configured to use a local data acquisition subsystem or a remote data acquisition computer, such as a VME processor running VxWorks. All hardware-oriented components have been developed with a simulation option that allows for running and testing measurements in the absence of data acquisition hardware.

  10. Design of magnetic field configuration for controlled discharge properties in highly ionized plasma

    NASA Astrophysics Data System (ADS)

    Alami, Jones; Stranak, Vitezslav; Herrendorf, Ann-Pierra; Hubicka, Zdenek; Hippler, Rainer

    2015-08-01

    In the present article, the effect of magnetic field design on electron and ion properties in both a metallic Ti/Ar and a reactive Ti/Ar + O2 high power impulse magnetron sputtering (HiPIMS) discharges is investigated. For the purpose, a variable magnetron with defined imbalance and geometrical coefficients K and {{K}\\text{G}} , respectively, was utilized. The electron density, the mean electron energy, the plasma potential, and the floating potential were determined by employing time-resolved Langmuir probe measurements, for four specified magnetic field configurations. Mass spectroscopy was used in order to determine the energy distribution function of metal (Ti+ , Ti2+) and gaseous (Ar+ , Ar2+ , O+ , O2+ ) ions. Analysis of the measured data shows that the magnetic field design dramatically affects the charged particles energy- and spatial-distribution, causing a change in the plasma properties. It is concluded that a well-determined configuration of the magnetic field is necessary in order to insure discharge stability and reproducibility.

  11. Non-thermal Plasmas Around Massive Black Holes: Collective Modes, Ring Configurations and Magnetic Field Generation

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2013-10-01

    The discovered gamma-ray bubbles emanating from the center of Our Galaxy are a new motivation to develop theories for large scale structures in the Universe in terms of plasmas for which electromagnetic interactions are no less important than the relevant (e.g. density wave theory of spirals) gravitational interactions. Moreover, considering the observed emission spectra, the particle distributions in phase space cannot be represented by isotropic Maxwellian in significant cases. The consequent theory of plasmas surrounding rotating massive black holes has led to identify new stationary plasma and field configurations (in particular Solitary Rings) and modes, emerging from conventional (currentless) disks, that depend on the existence of temperature anisotropies. These modes, which produce outward transport of angular momentum at a significant rate, involve large amplifications of a seed magnetic field. In the related (by the envisioned non-linear mode evolution) stationary configurations, without a seed magnetic field, the field energy densities are of the order of the particle thermal energy densities. Thus a clear sequence of processes for the generation of magnetic fields in the Universe is identified. US DOE partly sponsored.

  12. Magnetic flux trapping during field reversal in the formation of a field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.

    1985-11-01

    The flow of plasma and magnetic flux toward a wall is examined in a slab geometry where the magnetic field is parallel to the wall. Magnetohydrodynamic (MHD) flow with a quasisteady approximation is assumed that reduces the problem to three coupled ordinary differential equations. The calculated behavior shows that a thin current sheath is established at the wall in which a variety of phenomena appear, including significant resistive heating and rapid deceleration of the plasma flow. The sheath physics determines the speed at which flux and plasma flow toward the wall. The model has been applied to the field-reversal phase of a field-reversed theta pinch, during which the reduced magnetic field near the wall drives an outward flow of plasma and magnetic flux. The analysis leads to approximate expressions for the instantaneous flow speed, the loss of magnetic flux during the field reversal phase, the integrated heat flow to the wall, and the highest possible magnetic flux retained after reversal. Predictions from this model are compared with previous time-dependent MHD calculations and with experimental results from the TRX-1 [Proceedings of the 4th Symposium on the Physics and Technology of Compact Toroids, 27-29 October 1981 (Lawrence Livermore National Laboratory, Livermore, CA, 1982), p. 61] and TRX-2 [Proceedings of the 6th U.S. Symposium on Compact Toroid Research, 20-23 February, 1984 (Princeton Plasma Physics Laboratory, Princeton, NJ, 1984), p. 154] experiments.

  13. Plasma-dominated magnetic field configurations for the magnetosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Ip, A. K.; Voigt, G.-H.

    1985-01-01

    There is significant indirect evidence that the planet Uranus possesses a magnetic field. This evidence is based on the observation of hydrogen Lyman alpha emission from Uranus with the aid of the International Ultraviolet Explorer (IUE) spacecraft. The detection of water ice on the Uranian moons led Cheng (1984) to suggest that charged particle sputtering of the icy satellites could provide a significant internal source of oxygen ions and protons to the Uranian magnetosphere. Cheng concluded that this mechanism would predict aurorae around both magnetic poles of Uranus. Cheng's idea of the presence of a continuous internal plasma supply to the Uranian magnetosphere is further pursued in the present investigation. Questions are considered regarding the evolution of Uranus' magnetosphere from a vacuum configuration toward a plasma pressure dominated equilibrium configuration, taking into account the amount of the thermal plasma pressure as a free parameter.

  14. MAGNETIC FIELD CONFIGURATION AT THE GALACTIC CENTER INVESTIGATED BY WIDE-FIELD NEAR-INFRARED POLARIMETRY: TRANSITION FROM A TOROIDAL TO A POLOIDAL MAGNETIC FIELD

    SciTech Connect

    Nishiyama, Shogo; Yoshikawa, Tatsuhito; Nagata, Tetsuya; Hatano, Hirofumi; Nagayama, Takahiro; Tamura, Motohide; Matsunaga, Noriyuki; Suenaga, Takuya; Hough, James H.; Sugitani, Koji; Kato, Daisuke

    2010-10-10

    We present a large-scale view of the magnetic field (MF) in the central 2{sup 0} x 2{sup 0} region of our Galaxy. The polarization of point sources has been measured in the J, H, and K{sub S} bands using the near-infrared polarimetric camera SIRPOL on the 1.4 m Infrared Survey Facility telescope. Comparing the Stokes parameters between high extinction stars and relatively low extinction ones, we obtain polarization originating from magnetically aligned dust grains in the central few hundred parsecs of our Galaxy. We find that near the Galactic plane, the MF is almost parallel to the Galactic plane (i.e., toroidal configuration), but at high Galactic latitudes (|b | >0.{sup 0}4) the field is nearly perpendicular to the plane (i.e., poloidal configuration). This is the first detection of a smooth transition of the large-scale MF configuration in this region.

  15. The Relationship Among Magnetic Field Configuration, Penumbral Size, and Evershed Flow Speed

    NASA Astrophysics Data System (ADS)

    Deng, Na; Shimizu, T.; Choudhary, D.

    2010-05-01

    Recent observations (e.g., Wang et al. 2004; Deng et al. 2005) have shown that there is a sudden penumbral decay associated with major flares during which the overall magnetic field inclination in penumbra changes due to magnetic reconnection. We propose that the size (i.e., length) of sunspot penumbra is related to the localized magnetic field configuration. In order to test this hypothesis, we study 11 sunspots close to disk center with different sizes, which were observed by Hinode/SOT at the late phase of solar cycle 23. We notice that even for typical alpha sunspots near the disc center, the penumbral length is different in different sectors in the same spot. Since the Evershed flow is coupled with penumbra, we also study the properties of Evershed flow, such as its speed, at different location of a sunspot. The SP data is used to study the magnetic field parameters (e.g., strength, inclination) in different penumbral sectors that show distinct penumbral length. The Evershed flow is measured both by Doppler shift from SP observation and by Local Correlation Tracking based on time series of BFI data. We aim to find the relationship among magnetic field topology, penumbral size, and Evershed flow speed.

  16. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-12-16

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  17. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-10-14

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  18. Magnetic field configuration and field-aligned acceleration of energetic ions during substorm onsets

    NASA Astrophysics Data System (ADS)

    Korth, A.; Pu, Z. Y.

    2001-09-01

    In this paper, we present an interpretation of the observed field-aligned acceleration events measured by GEOS-2 near the night-side synchronous orbit at substorm onsets (Chen et al., 2000). We show that field-aligned acceleration of ions (with pitch angle asymmetry) is closely related to strong short-lived electric fields in the Ey direction. The acceleration is associated with either rapid dipolarization or further stretching of local magnetic field lines. Theoretical analysis suggests that a centrifugal mechanism is a likely candidate for the parallel energization. Equatorward or anti-equatorward energization occurs when the tail current sheet is thinner tailward or earthward of the spacecraft, respectively. The magnetic field topology leading to anti-equatorward energization corresponds to a situation where the near-Earth tail undergoes further compression and the inner edge of the plasma sheet extends inwards as close as the night-side geosynchronous altitudes.

  19. Ion and electron cyclotron wall conditioning in stellarator and tokamak magnetic field configuration on WEGA

    SciTech Connect

    Wauters, T.; Louche, F.; Urlings, P.

    2014-02-12

    Discharge wall conditioning is an effective tool to improve plasma performance in tokamaks and stellarators. RF Discharge Conditioning (RFDC) techniques are envisaged for use during operational campaigns on superconducting devices like the ITER tokamak and W7-X stellarator, as alternative to DC Glow Discharge Conditioning which is inefficient in presence of magnetic fields. This contribution investigates RFDC in both the ion and electron cyclotron range of frequencies (ICRF and ECRF) on the WEGA device (Max-Planck-Institute for Plasma Physics, Greifswald, Germany) as preparation for W7-X operation. ECRF discharges produced by localised absorption of RF power at EC resonance layers suffer from poor radial discharge homogeneity in the tokamak vacuum magnetic field configuration, severely limiting the plasma wetted wall areas and consequently the conditioning efficiency. The non-localised production of ICRF discharges by collisional RF power absorption features much improved discharge homogeneity making Ion Cyclotron Wall Conditioning (ICWC) the favoured RFDC technique for superconducting tokamaks. RFDC with the stellarator vacuum magnetic field needs to aim at sufficient plasma densities at and outside the last closed flux surface (LCFS), maximising the convective plasma flux along the open field lines to the wall. Whereas for ICRF discharges this condition is easily fulfilled, on WEGA for He-ECRF discharges this could be achieved as well by off axis heating close to the LCFS. In stellarator magnetic field configuration it is found that He-ICWC for wall desaturation is at least one order of magnitude more efficient than He-ECWC. Novel ECWC methods are proposed that can decrease this efficiency gap with ICWC to a factor 2-3. The efficiency difference is less pronounced in case of H{sub 2}-ICWC and ECWC for isotopic exchange.

  20. Magnetized Target Fusion using a Field Reversed Configuration at Los Alamos

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas; Zhang, Shouyin; Lynn, Alan; Siemon, Richard; Degnan, James; Miller, Ronald

    2005-10-01

    We present an overview of the Magnetized Target Fusion (MTF) project at Los Alamos National Laboratory. MTF could be a low cost path to fusion, in a regime that is intermediate between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. We hope to demonstrate the physics basis for MTF by translating a Field Reversed Configuration (FRC) target plasma into a compression region. FRX-L is a FRC that has shown substantial recent progress towards high pressure and density (>20-30 atmospheres, 5 x10^22 m-3). Part of our FRC physics investigations of the collisional FRX-L include VUV spectroscopy diagnostics to measure plasma flow. Substantial progress towards implementation of the integrated liner compressed plasma experiment at AFRL include test implosions of a deformable liner, and a second generation engineering design.

  1. Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations

    NASA Astrophysics Data System (ADS)

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2011-06-01

    A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ``kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.

  2. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    SciTech Connect

    Kim, Holak; Lim, Youbong; Choe, Wonho Park, Sanghoo; Seon, Jongho

    2015-04-13

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effect in the co-current magnetic field configuration.

  3. Onset and Saturation of Ion Heating by Odd-parity Rotating-magnetic-fields in a Field-reversed Configuration

    SciTech Connect

    A.S. Landsman, S.A. Cohen, A.H. Glasser

    2005-11-01

    Heating of figure-8 ions by odd-parity rotating magnetic fields (RMFο) applied to an elongated field-reversed configuration (FRC) is investigated. The largest energy gain occurs at resonances (s ≡ ω(sub)R/ω) of the RMFο frequency, ω(sub)R, with the figure-8 orbital frequency, ω, and is proportional to s^2 for s – even resonances and to s for s – odd resonances. The threshold for the transition from regular to stochastic orbits explains both the onset and saturation of heating. The FRC magnetic geometry lowers the threshold for heating below that in the tokamak by an order of magnitude.

  4. Configuration of the magnetic field and reconstruction of Pangaea in the Permian period.

    PubMed

    Westphal, M

    1977-05-12

    The virtual geomagnetic poles of Laurasia and Gondwanaland in the Carboniferous and Permian periods diverge significantly when these continents are reassembled according to the fit calculated by Bullard et al. Two interpretations have been offered: Briden et al. explain these divergences by a magnetic field configuration very different from that of a geocentric axial dipole; Irving (and private communication), Van der Voo and French(4) suggest a different reconstruction and it is shown here that these two interpretations are not incompatible and that the first may help the second. PMID:16073416

  5. Spatial configuration of a flux rope observed downstream from the Martian crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Hara, T.; Seki, K.; Hasegawa, H.; Brain, D. A.; Saito, M. H.

    2012-12-01

    Mars is a unique planet since it locally possesses strong crustal magnetic fields mainly located in the southern hemisphere [e.g., Acuna et al., 1999]. The Martian electromagnetic environment can thus become highly complicated and variable, since the interplanetary magnetic field (IMF) embedded in the solar wind interacts with the Martian crustal magnetic field. Whereas it is known that the Martian upper atmosphere is escaping to interplanetary space due to the interaction with the solar wind [e.g., Lundin et al., 1989; Barabash et al., 2007], the contribution of crustal magnetic fields to atmospheric escape from Mars has not yet been well understood. Flux ropes are characteristic magnetic field structures seen throughout the solar system, e.g., at the Sun, in the interplanetary space, and at the Earth often in association with substorms. Flux ropes are also observed at planets such as at Venus and Mars [e.g., Russell and Elphic, 1979; Vignes et al., 2004], which do not possess a global magnetic field. Recently, Brain et al. [2010] found a large-scale isolated flux rope filled with Martian atmospheric plasma located downstream from the crustal magnetic fields with respect to the solar wind flow based on their analyses of the magnetic field and suprathermal electron measurements from the Mars Global Surveyor (MGS) spacecraft. They suggested that the flux rope can intermittently carry significant amounts of atmosphere away from Mars by a bulk removal process such as magnetic reconnection between the IMF and the crustal magnetic fields. They supposed that this process occurs frequently and may account for as much as 10 % of the total present-day ion escape from Mars. We here attempt to reconstruct the spatial configuration of the reported flux rope using the Grad-Shafranov (GS) reconstruction technique, assuming that it has a magnetohydrostatic, two-dimensional magnetic field structure [Hu and Sonnerup, 2002]. The GS reconstruction technique is capable of recovering a two-dimensional field structure from single spacecraft data. Since there is no ion detector onboard MGS, we assumed a typical density and temperature of the Martian ionosphere at the spacecraft altitude in order to calculate the input thermal pressure for the model. It is also assumed that the spacecraft velocity is the dominant component causing apparent movement of the flux rope relative to the MGS spacecraft. The reconstructed structure of the flux rope indicates stretching in the anti-sunward direction, which is consistent with Brain et al. [2010]. We also find that the stretching of the reconstructed structure has a significant component in the dawn-dusk direction in the Mars-centered, Solar Orbital (MSO) coordinate system. The result provides a reliable observational restriction on the spatial scales of the flux rope. In the presentation, we will also discuss the effects of the flux rope on the atmospheric escape from Mars.

  6. Translation and Capture of High-Density Field Reversed Configurations for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Intrator, T. P.; Wurden, G. A.; Waganaar, W. J.; Cortez, R. J.; Oberto, R. J.

    2009-11-01

    A physics demonstration of Magnetized Target Fusion (MTF) is being pursued by a collaborative team from Los Alamos National Laboratory and Air Force Research Laboratory. The LANL facility, known as the Field Reversed eXperiment --- Liner (FRX-L), focuses on the physics of producing high-density Field Reversed Configurations (FRCs), translating them, and capturing them in a static flux conserver. Observations of FRCs in translation and capture will be presented. The data suggest FRCs are formed at density above 10^22/m^3, translate over the one meter chamber at 97 km/s, and a captured portion having radius 4 cm lives for 10μs. The repeatability of FRC capture will be discussed in context of that necessary for MTF. This work is supported by the Office of Fusion Energy Sciences, and DOE/LANL contract DE-AC52-06NA25396.

  7. Development of Field-Reversed Configuration Plasma Gun Formation Techniques for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Lynn, Alan; Gilmore, Mark; Wynkoop, Tyler; Intrator, Thomas; Weber, Thomas

    2012-10-01

    Magnetized Target Fusion (MTF) is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. Los Alamos National Laboratory (LANL) is currently pursing demonstration of the MTF concept via compression of an FRC (field-reversed configuration) plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC as an MTF target lies in the initial pre-ionization (PI) stage. The PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. This trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties. It also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we plan to test and characterize a new system to improve the initial PI plasma formation. This system will use an array of plasma guns to form the initial plasma. Initial characterization of the plasma gun behavior will be presented.

  8. Measurements accounting for the impediment of ion spin-up in rotating magnetic field driven field reversed configurations

    SciTech Connect

    Deards, C. L.; Hoffman, A. L.; Steinhauer, L. C.

    2011-11-15

    Improved vacuum hygiene, wall conditioning, and reduced recycling in the rotating magnetic field (RMF) driven translation, confinement, and sustainment-upgrade (TCSU) field reversed configuration experiment have made possible a more accurate assessment of the forces affecting ion spin-up. This issue is critical in plasmas sustained by RMFs, such as TCSU since ion spin-up can substantially reduce or cancel the RMF current drive effect. Several diagnostics are brought to bear, including a 3-axis translatable magnetic probe allowing the first experimental measurement of the end shorting effect. These results show that the ion rotation is determined by a balance between electron-ion friction, the end shorting effect, and ion drag against neutrals.

  9. Global non-axisymmetric perturbation configurations in a composite disc system with an isopedic magnetic field: relation between dark matter halo and magnetic field

    NASA Astrophysics Data System (ADS)

    Xiang-Gruess, Meng; Lou, Yu-Qing; Duschl, Wolfgang J.

    2009-08-01

    We study global non-axisymmetric stationary perturbations of aligned and unaligned logarithmic spiral configurations in an axisymmetric composite differentially rotating disc system of scale-free stellar and isopedically magnetized gas discs coupled by gravity. The infinitely thin gas disc is threaded across by a vertical magnetic field Bz with a constant dimensionless isopedic ratio of surface gas mass density Σ(g) to Bz with G being the gravitational constant. Our exploration focuses on the relation between the isopedic ratio λ and the dark matter amount represented by a gravitational potential ratio in order to sustain stationary perturbation configurations, where is the gravitational potential of a presumed axisymmetric halo of dark matter and Φ is the gravitational potential of the composite disc matter. For typical disc galaxies, we explore relevant parameter ranges numerically. High and low λ values correspond to relatively weak and strong magnetic fields given the same gas surface mass density, respectively. The main goal of our model analysis is to reveal the relation between isopedic magnetic fields and dark matter halo in spiral galaxies with globally stationary perturbation configurations. Our results show that for stationary perturbation configurations, fairly strong yet realistic magnetic fields require a considerably larger amount of dark matter in aligned and unaligned cases than weak or moderate magnetic field strengths. We discuss astrophysical and cosmological implications of our findings. For examples, patterns and pattern speeds of galaxies may change during the course of galactic evolution. Multiple-armed galaxies may be more numerous in the early Universe. Flocculent galaxies may represent the transitional phase of pattern variations in galaxies.

  10. Comparison of different analytic heliospheric magnetic field configurations and their significance for the particle injection at the termination shock

    NASA Astrophysics Data System (ADS)

    Scherer, K.; Fichtner, H.; Effenberger, F.; Burger, R. A.; Wiengarten, T.

    2010-10-01

    Context. Heliospheric magnetic field configurations are relevant on a large scale for the transport of cosmic rays, especially for injecting possibly pre-accelerated particles into the Fermi-I acceleration process of cosmic rays. Aims: We compare four analytically described fields by calculating the scalar product between their vectors and the corresponding vectors of the Parker spiral field. Because the injection efficiency at the termination shock is highly sensitive to the local inclination of the upstream magnetic fields with respect to the shock normal, we discuss the probability that pick-up ions are injected into the Fermi-I process. Methods: We extend the previous work comparing different analytically described heliospheric magnetic fields: the Parker and hybrid Fisk field and modifications of both. Because the Fisk-like configurations are only present during periods of low to moderate solar activity, we restrict ourselves to this case by including high-speed streams over the ecliptic and low-speed flow in the latter. In addition, we extend the analysis from an analytic approximation to a numerically computed termination shock surface. Results: We find that no strong differences in the injection efficiency can be expected for the four field configurations despite significant structural differences inside the termination. Conclusions: Consequently, the injection efficiency is largely insensitive to the large-scale heliospheric magnetic field configuration.

  11. Formation of target Field-Reversed Configuration plasma for Magnetized Target Fusion in FRX-L

    NASA Astrophysics Data System (ADS)

    Zhang, Shouyin; Wurden, G. A.; Intrator, T. P.; Waganaar, W. J.; Renneke, Richard; Taccetti, J. M.; Furno, I.; Hsu, S.; Tejero, E. M.; Grabowski, Chris; Ruden, E.

    2004-11-01

    An Field-Reversed Configuration plasma is chosen as a candidate target to be translated into a metal liner for implosion using Magnetized Target Fusion scenario. The scheme naturally requires the target FRC plasma to be reliably formed on every shot. Field reversed theta pinch method with programmed end cusp coils to help realize non-tearing reconnection techniques is employed to form the FRC plasma in the desired density regime. In FRX-L(θ-coil L=36cm, quartz tube I.D. 10.6cm, B_e ˜30kG, net B_i ˜2kG, and static D2 fill P0 ˜50 mTorr), it is found that the timing of the main bank reversed field with respect to the ringing cycles of preionization phases plays a crucial role in forming highly reproducible FRC plasmas, when other factors such as end cusp locations, impurities in the preionization plasma are suitably controlled. The well formed FRC plasma has volume-averaged density of ˜2.5*10^22m-3, T_e+T_i ˜300eV, average β ˜0.90, x_s ˜0.45, r_s ˜3.0cm during equilibrium phase, and plasma lifetime is ˜15-20 μs. Supported by DOE-OFES Contract No. W-7405-ENG-36.

  12. Three-Dimensional MHD Simulation of FTEs Produced by Merging at an Isolated Point in a Sheared Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Santos, J. C.; Sibeck, D. G.; Buchner, J.; Gonzalez, W. D.; Ferreira, J. L.

    2014-01-01

    We present predictions for the evolution of FTEs generated by localized bursts of reconnection on a planar magnetopause that separates a magnetosheath region of high densities and weak magnetic field from a magnetospheric region of low densities and strong magnetic field. The magnetic fields present a shear angle of 105 degrees. Reconnection forms a pair of FTEs each crossing the magnetopause in the field reversal region and bulging into the magnetosphere and magnetosheath. At their initial stage they can be characterized as flux tubes since the newly reconnected magnetic field lines are not twisted. Reconnection launches Alfvenic perturbations that propagate along the FTEs generating high-speed jets, which move the pair of FTEs in opposite directions. As the FTE moves, it displaces the ambient magnetic field and plasma producing bipolar magnetic field and plasma velocity signatures normal to the nominal magnetopause in the regions surrounding the FTE. The combination of the ambient plasma with the FTE flows generates a vortical velocity pattern around the reconnected field lines. During its evolution the FTE evolves to a flux rope configuration due to the twist of the magnetic field lines. The alfvenic perturbations propagate faster along the part of the FTE bulging into the magnetosphere than in the magnetosheath, and due to the differences between the plasma and magnetic field properties the perturbations have slightly different signatures in the two regions. As a consequence, the FTEs have different signatures depending on whether the satellite encounters the part bulging into the magnetosphere or into the magnetosheath.

  13. Magneto-optical mapping of elementary topological configurations of inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Ivanov, V. E.

    2016-03-01

    Magneto-optical images (MO) of projections of an inhomogeneous magnetic field on a magnetic indicator films plane were studied experimentally and by means of modeling. Inhomogeneity of the field clearly displays itself in the planar component distribution of this vector field by the presence of singular points and is clearly revealed by the MO-images in longitudinal sensitivity. The topological structure of the singular points of the field (Poincare Index) manifests itself in the peculiarities of the intensity distribution of the magneto-optical images. These peculiarities can serve as identifiers of "sink", "source" and "saddle"-type singular points. The influence of a homogenous bias field on the change in topological properties is demonstrated. Changes in the geometry of the magnetic system also change the topology of the magnetic field; this is reflected in the number and the properties of the singular points of the MO-images.

  14. Analysis of the magnetic field configuration of a filament-associated flare from X-ray, UV, and optical observations

    NASA Technical Reports Server (NTRS)

    Cheng, C.-C.; Pallavicini, R.

    1984-01-01

    X-ray and ultraviolet observations from SMM of a filament-associated event on November 22, 1980 are examined in conjunction with ground-based optical observations, in order to determine the magnetic field configuration involved in the flaring process. Evidence that the flare was produced by gradual energy release in a large sheared magnetic loop which interacted with another smaller loop is found. Nonthermal processes, as indicated by hard X-ray emission and impulsive UV kernels, were produced in the interaction of the two loops. Although this flare shared some of the characteristics of Long Duration (class II) Events, no indication of a helmet-type configuration, as generally envisaged for class II events, was found. On the contrary, the magnetic configuration of the November 22, 1980 event was more similar to that of a compact (class I) flare, although on a much larger spatial scale and longer time scale.

  15. Transition from drift to interchange instabilities in an open magnetic field line configuration

    SciTech Connect

    Poli, F. M.; Ricci, P.; Fasoli, A.; Podesta, M.

    2008-03-15

    The transition from a regime dominated by drift instabilities to a regime dominated by pure interchange instabilities is investigated and characterized in the simple magnetized toroidal device TORPEX [TORoidal Plasma EXperiment, A. Fasoli et al., Phys. of Plasmas 13, 055906 (2006)]. The magnetic field lines are helical, with a dominant toroidal component and a smaller vertical component. Instabilities with a drift character are observed in the favorable curvature region, on the high field side with respect to the maximum of the background density profile. For a limited range of values of the vertical field they coexist with interchange instabilities in the unfavorable curvature region, on the plasma low field side. With increasing vertical magnetic field magnitude, a gradual transition between the two regimes is observed on the low field side, controlled by the value of the field line connection length. The observed transition follows the predictions of a two-fluid linear model.

  16. On the Magnetic Field of Pulsars with Realistic Neutron Star Configurations

    NASA Astrophysics Data System (ADS)

    Belvedere, R.; Rueda, Jorge A.; Ruffini, R.

    2015-01-01

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M ?, radius R = 10 km, and moment of inertia I = 1045 g cm2. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.

  17. ON THE MAGNETIC FIELD OF PULSARS WITH REALISTIC NEUTRON STAR CONFIGURATIONS

    SciTech Connect

    Belvedere, R.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it

    2015-01-20

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M {sub ☉}, radius R = 10 km, and moment of inertia I = 10{sup 45} g cm{sup 2}. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.

  18. Point sensitive NMR imaging system using a magnetic field configuration with a spatial minimum

    DOEpatents

    Eberhard, P.H.

    A point-sensitive NMR imaging system in which a main solenoid coil produces a relatively strong and substantially uniform magnetic field and a pair of perturbing coils powered by current in the same direction superimposes a pair of relatively weak perturbing fields on the main field to produce a resultant point of minimum field strength at a desired location in a direction along the Z-axis. Two other pairs of perturbing coils superimpose relatively weak field gradients on the main field in directions along the X- and Y-axes to locate the minimum field point at a desired location in a plane normal to the Z-axes. An rf generator irradiates a tissue specimen in the field with radio frequency energy so that desired nuclei in a small volume at the point of minimum field strength will resonate.

  19. Point sensitive NMR imaging system using a magnetic field configuration with a spatial minimum

    DOEpatents

    Eberhard, Philippe H.

    1985-01-01

    A point-sensitive NMR imaging system (10) in which a main solenoid coil (11) produces a relatively strong and substantially uniform magnetic field and a pair of perturbing coils (PZ1 and PZ2) powered by current in the same direction superimposes a pair of relatively weak perturbing fields on the main field to produce a resultant point of minimum field strength at a desired location in a direction along the Z-axis. Two other pairs of perturbing coils (PX1, PX2; PY1, PY2) superimpose relatively weak field gradients on the main field in directions along the X- and Y-axes to locate the minimum field point at a desired location in a plane normal to the Z-axes. An RF generator (22) irradiates a tissue specimen in the field with radio frequency energy so that desired nuclei in a small volume at the point of minimum field strength will resonate.

  20. Impact of rotation on the geometrical configurations of fossil magnetic fields

    NASA Astrophysics Data System (ADS)

    Emeriau, C.; Mathis, S.

    2015-01-01

    The MiMeS project demonstrated that a small fraction of massive stars (around 7%) presents large-scale, stable, generally dipolar magnetic fields at their surface. These fields that do not present any evident correlations with stellar mass or rotation are supposed to be fossil remnants of the initial phases of stellar evolution. They result from the relaxation to MHD equilibrium states, during the formation of stable radiation zones, of initial fields resulting from a previous convective phase. In this work, we present new theoretical results, where we generalize previous studies by taking rotation into account. The properties of relaxed fossil fields are compared to those obtained when rotation is ignored. Consequences for magnetic fields in the radiative envelope of rotating early-type stars and their stability are finally discussed.

  1. Global power balance on high density field reversed configurations for use in magnetized target fusion

    NASA Astrophysics Data System (ADS)

    Renneke, Richard M.

    Field Reversed Configuration plasmas (FRCs) have been created in the Field Reversed Experiment-Liner (FRX-L) with density 2--6 x 10 22 m-3, total temperature 300--400 eV, and lifetime on the order of 10 micros. This thesis investigates global energy balance on high-density FRCs for the first time. The zero-dimensional approach to global energy balance developed by Rej and Tuszewski (Phys. Fluids 27, p. 1514, 1984) is utilized here. From the shots analyzed with this method, it is clear that energy loss from these FRCs is dominated by particle and thermal (collisional) losses. The percentage of radiative losses versus total loss is an order of magnitude lower than previous FRC experiments. This is reasonable for high density based on empirical scaling from the extensive database of tokamak plasma experiments. Ohmic dissipation, which heats plasma when trapped magnetic field decays to create electric field, is an important source of heating for the plasma. Ohmic heating shows a correlation with increasing the effective Lundquist number (S*). Empirical evidence suggest S* can be increased by lowering the density, which does not achieve the goals of FRX-L. A better way to improve ohmic heating is to trap more poloidal flux. This dissertation shows that FRX-L follows a semi-empirical scaling law which predicts plasma temperature gains for larger poloidal flux. Flux (tauφ) and particle (tauN) lifetimes for these FRCs were typically shorter than 10 micros. Approximately 1/3 of the particle and flux lifetimes for these FRCs did not scale with the usual tauN ≈ tauφ scaling of low-density FRCs, but instead showed tauN ≥ tau φ. However, scatter in the data indicates that the average performance of FRCs on FRX-L yields the typical (for FRCs) relationship tau N ≈ tauφ. Fusion energy gain Q was extrapolated for the shots analyzed in this study using a zero-dimensional scaling code with liner effects. The predicted Q is below the desired value of 0.1 (Schoenberg et al., LA-UR-98-2413, 1998). The situation predicted to lead to Q = 0.1 requires a larger plasma pressure than shown in the present data. This can be accomplished by increasing the plasma density (through larger fill pressure) and maintaining temperature with increased flux trapping. Larger Q and other benefits could be realized by raising the plasma pressure for future FRX-L shots. The innovation inherent in this work performed by the author is the extension of the global power balance model to include a time history of the plasma discharge. This extension required rigorous checking of the power balance model using internal density profiles provided by the multichord interferometer. Typical orders of the parameters calculated by the model are ˜500 MW total loss power, ˜100 MW ohmic heating power, and ˜200 MW total compression (input) power. Radiation was never measured above 5 MW, which is why it was deemed insignificant. It should be noted that these numbers are merely estimates and vary widely between shots.

  2. The effect of large-scale magnetic field on outflow in ADAFs: an odd symmetry configuration

    NASA Astrophysics Data System (ADS)

    Samadi, Maryam; Abbassi, Shahram

    2016-01-01

    We construct self-similar inflow-outflow solutions for a hot viscous-resistive accretion flow with large-scale magnetic fields that have odd symmetry with respect to the equatorial plane in Bθ and even symmetry in Br and Bφ. Following previous authors, we also assume that the polar velocity vθ is non-zero. We focus on four parameters: βr0, βφ0 (the plasma beta parameters associated with magnetic field components at the equatorial plane), the magnetic resistivity η0 and the density index n = -dln ρ/dln r. The resulting flow solutions are divided into two parts, consisting of an inflow region with a negative radial velocity (vr < 0) and an outflow region with vr > 0. Our results show that stronger outflows emerge for smaller βr0 (≤10-2 for n > 1) and larger values of βφ0, η0 and n.

  3. The field and plasma configuration of a filament overlying a solar bipolar magnetic region

    NASA Technical Reports Server (NTRS)

    Low, B. C.

    1981-01-01

    This paper presents an analytic model for a finite-size straight filament suspended horizontally in a steady state over a bipolar magnetic region. The equations of magnetostatic equilibrium are integrated exactly. The solution obtained illustrates the roles played by the electric current, magnetic field, pressure, and plasma weight in the balance of force everywhere in space. A specific example of a filament of diameter 50,000 km, with a density two orders of magnitude over the corona and supported by a magnetic field of about 4 gauss is included. The filament temperature can take values ranging from a small fraction to a few times the coronal temperature, depending on the internal electric current of the filament. To produce a cool filament, such as the quiescent prominence, the solution is required to have an internal field with a strong component along the filament, giving rise to helical structures. A hot filament such as the X-ray coronal loop can be produced as a twisted magnetic flux tube embedded in a strong background field aligned parallel to the filament and having lower density and temperature. The basic steps of construction can be used to develop models more realistic than the ones presented for their analytic simplicity.

  4. Influence of demagnetization coil configuration on residual field in an extremely magnetically shielded room: Model and measurements

    NASA Astrophysics Data System (ADS)

    Knappe-Grueneberg, Silvia; Schnabel, Allard; Wuebbeler, Gerd; Burghoff, Martin

    2008-04-01

    The Berlin magnetically shielded room 2 (BMSR-2) features a magnetic residual field below 500pT and a field gradient level less than 0.5pT/mm, which are needed for very sensitive human biomagnetic recordings or low field NMR. Nevertheless, below 15Hz, signals are compromised by an additional noise contribution due to vibration forced sensor movements in the field gradient. Due to extreme shielding, the residual field and its homogeneity are determined mainly by the demagnetization results of the mumetal shells. Eight different demagnetization coil configurations can be realized, each results in a characteristic field pattern. The spatial dc flux density inside BMSR-2 is measured with a movable superconducting quantum interference device system with an accuracy better than 50pT. Residual field and field distribution of the current-driven coils fit well to an air-core coil model, if the high permeable core and the return lines outside of the shells are neglected. Finally, we homogenize the residual field by selecting a proper coil configuration.

  5. Analysis of magnetic probe signals including effect of cylindrical conducting wall for field-reversed configuration experiment

    NASA Astrophysics Data System (ADS)

    Ikeyama, Taeko; Hiroi, Masanori; Nemoto, Yuuichi; Nogi, Yasuyuki

    2008-06-01

    A confinement field is disturbed by magnetohydrodynamic (MHD) motions of a field-reversed configuration (FRC) plasma in a cylindrical conductor. The effect of the conductor should be included to obtain a spatial structure of the disturbed field with a good precision. For this purpose, a toroidal current in the plasma and an eddy current on a conducting wall are replaced by magnetic dipole and image magnetic dipole moments, respectively. Typical spatial structures of the disturbed field are calculated by using the dipole moments for such MHD motions as radial shift, internal tilt, external tilt, and n =2 mode deformation. Then, analytic formulas for estimating the shift distance, tilt angle, and deformation rate of the MHD motions from magnetic probe signals are derived. It is estimated from the calculations by using the dipole moments that the analytic formulas include an approximately 40% error. Two kinds of experiment are carried out to investigate the reliability of the calculations. First, a magnetic field produced by a circular current is measured in an aluminum pipe to confirm the replacement of the eddy current with the image magnetic dipole moments. The measured fields coincide well with the calculated values including the image magnetic dipole moments. Second, magnetic probe signals measured from the FRC plasma are substituted into the analytic formulas to obtain shift distance and deformation rate. The experimental results are compared to the MHD motions measured by using a radiation from the plasma. If the error included in the analytic formulas and the difference between the magnetic and optical structures in the plasma are considered, the results of the radiation measurement support well those of the magnetic analysis.

  6. Investigation of different magnetic field configurations using an electrical, modular Zeeman slower

    SciTech Connect

    Ohayon, Ben; Ron, Guy

    2015-10-15

    We present a method of constructing an automatically reconfigurable, modular, electronic Zeeman slower, which is remotely controlled. This setup is used to investigate the ability of different magnetic field profiles to slow thermal atoms to the capture velocity of a magneto-optical-trap. We show that a simple numerical optimization process yields better results than the commonly used approach for deciding on the appropriate field and comes close to the optimum field, found by utilizing a fast feedback loop which uses a genetic algorithm. Our new numerical method is easily adaptable to a variety of existing slower designs and may be beneficial where feedback is unavailable.

  7. Stable anisotropic plasma confinement in magnetic configurations with convex-concave field lines

    NASA Astrophysics Data System (ADS)

    Tsventoukh, M. M.

    2014-02-01

    It is shown that a combination of the convex and the concave part of a field line provides a strong stabilizing action against convective (flute-interchange) plasma instability (Tsventoukh 2011 Nucl. Fusion 51 112002). This results in internal peaking of the stable plasma pressure profile that is calculated from the collisionless kinetic stability criterion for any magnetic confinement system with combination of mirrors and cusps. Connection of the convex and concave field line parts results in a reduction of the space charge that drives the unstable E × B motion, as there is an opposite direction of the particle drift in a non-uniform field at convex and concave field lines. The pressure peaking arises at the minimum of the second adiabatic invariant J that takes place at the ‘middle’ of a tandem mirror-cusp transverse cross-section. The position of the minimum in J varies with the particle pitch angle that results in a shift of the peaking position depending on plasma anisotropy. This allows one to improve a stable peaked pressure profile at a convex-concave field by changing the plasma anisotropy over the trap cross-section. Examples of such anisotropic distribution functions are found that give an additional substantial enhancement in the maximal central pressure. Furthermore, the shape of new calculated stable profiles has a wide central plasma layer instead of a narrow peak.

  8. Plasma equilibrium in axisymmetric poloidal magnetic field configurations in flux coordinates

    SciTech Connect

    Arsenin, V. V.; Terekhin, P. N.

    2011-08-15

    A simple derivation is given of equilibrium equations in flux coordinates in the general case of an anisotropic-pressure plasma. The issue of how to formulate the boundary conditions for these equations is discussed for two types of configurations-a straight system and a system with an internal conductor. Examples of numerical solutions to the equilibrium problem for these configurations are presented.

  9. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  10. Field Reversed Configuration Target Design for a Magnetized Target Fusion Experiment

    NASA Astrophysics Data System (ADS)

    Wurden, G. A.; Schoenberg, K. F.; Siemon, R. E.; Tuszewski, M.; Wysocki, F. J.; Milroy, R. D.

    1998-11-01

    We are designing a compact (r=5 cm, l=30 cm), high density (n=10^18 cm-3) FRC using theta pinch formation techniques, which will be translated into an aluminum liner for implosion to fusion relevant parameters. Stored plasma energy will be modest (7.5 kJ), with average beta of 1, and external magnetic field strength of 5.4 T. MOQUI code calculations show that the required plasma can be formed using conical theta pinch coils and our existing Colt 0.25 MJ capacitor bank, and then translated in a few microseconds into the aluminum liner, where it is trapped. After the plasma is suitably diagnosed (Thomson scattering, interferometry, spectroscopy), the experiment will be attached to a pulsed-power driver (Shiva Star or Atlas, for example), where it will be destructively imploded. Modularity and compatibility with an actual liner assembly are important elements of this FRC target plasma design. On the Web, click http://fusionenergy.lanl.gov for more details.

  11. Skyrmionic magnetization configurations at chiral magnet/ferromagnet heterostructures

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yuki; Tanaka, Yukio; Nagaosa, Naoto

    2016-02-01

    We consider magnetization configurations at chiral magnet (CM)/ferromagnet (FM) heterostructures. In the CM, magnetic skyrmions and spin helices emerge due to the Dzyaloshinskii-Moriya interaction, which then penetrate into the adjacent FM. However, because the nonuniform magnetization structures are energetically unfavorable in the FM, the penetrated magnetization structures are deformed, resulting in exotic three-dimensional configurations, such as skyrmion cones, sideways skyrmions, and twisted helices and skyrmions. We discuss the stability of possible magnetization configurations at the CM/FM and CM/FM/CM hybrid structures within the framework of the variational method, and find that various magnetization configurations appear in the ground state, some of which cause nontrivial emergent magnetic field.

  12. Application of a solar wind model driven by turbulence dissipation to a 2D magnetic field configuration

    SciTech Connect

    Lionello, Roberto; Downs, Cooper; Linker, Jon A.; Mikić, Zoran; Velli, Marco E-mail: cdowns@predsci.com E-mail: mikic@predsci.com

    2014-12-01

    Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. developed a sophisticated, one-dimensional (1D), time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al., which incorporates turbulent dissipation of Alfvén waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional MHD simulations by the requirement of transverse force balance.

  13. Three-dimensional instability of thermal convection in a vertical Bridgman growth configuration under traveling magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Fu; Li, Yan-Hui; Zhou, Lin; Deng, An-Li; Ma, Dong-Jun; Sun, De-Jun; Jiang, Jin

    2015-06-01

    Thermal convection in a vertical Bridgman growth configuration under the effect of a traveling magnetic field (TMF) is investigated numerically. The vertical Bridgman growth configuration is approximated by convection in a cylinder with a parabolic heated sidewall and isothermal-cooled end walls. The TMF effect is introduced as a usual approximation under low frequency and a low induction assumption to use the analytical expression for the Lorentz force applied in the fluid volume. The strength of the TMF force is measured by the parameter Ft. The cylinder aspect ratio (height/radius) is fixed to Γ =1, and the Prandtl number considered is fixed to Pr = 0.02. The base flow simultaneously excited by buoyancy and TMF is axisymmetric. Our primary goal is to determine how the flow loses stability to three-dimensional flow. An extremely multiple valued stability curve in the (Ft,Ra) plane is revealed by linear stability analysis. Three distinct flow regimes are classified, i.e., buoyancy dominated regime, buoyancy and TMF-counterbalanced regime, and TMF-dominated regime. Typical steady and unsteady three-dimensional flows are illustrated.

  14. Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 single-crystal lamellae

    PubMed Central

    Evans, D. M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Katiyar, R. S.; Scott, J. F.; Gregg, J. M.

    2014-01-01

    Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching. PMID:24421376

  15. Elucidation of Ground-State Spin Configurations of Ising Models in a Magnetic Field with Frustration on a Diamond Hierarchical Lattice

    NASA Astrophysics Data System (ADS)

    Hirose, Yuhei; Oguchi, Akihide; Fukumoto, Yoshiyuki

    2015-10-01

    To study the ground-state spin configuration as a function of magnetic field, the spin configurations at each stage lattice are determined by analyzing recursion equations. The exact calculation of the magnetization curve by Hirose et al. [J. Phys. Soc. Jpn. 83, 074716 (2014)] shows that an infinitely small applied magnetic field on the zero-field classical spin-liquid phase can induce an infinitely small magnetization, which is as if this Ising system has a gapless spectrum. In this study, we reveal that an infinitely small applied field makes a large number of spins flip upwards with the exchange-energy loss remaining finite. This exotic behavior originates from the frustration effect of diamond structures and an inherent long-range nature of hierarchical lattices.

  16. High Performance Field Reversed Configurations

    NASA Astrophysics Data System (ADS)

    Binderbauer, Michl

    2014-10-01

    The field-reversed configuration (FRC) is a prolate compact toroid with poloidal magnetic fields. FRCs could lead to economic fusion reactors with high power density, simple geometry, natural divertor, ease of translation, and possibly capable of burning aneutronic fuels. However, as in other high-beta plasmas, there are stability and confinement concerns. These concerns can be addressed by introducing and maintaining a significant fast ion population in the system. This is the approach adopted by TAE and implemented for the first time in the C-2 device. Studying the physics of FRCs driven by Neutral Beam (NB) injection, significant improvements were made in confinement and stability. Early C-2 discharges had relatively good confinement, but global power losses exceeded the available NB input power. The addition of axially streaming plasma guns, magnetic end plugs as well as advanced surface conditioning leads to dramatic reductions in turbulence driven losses and greatly improved stability. As a result, fast ion confinement significantly improved and allowed for build-up of a dominant fast particle population. Under such appropriate conditions we achieved highly reproducible, long-lived, macroscopically stable FRCs with record lifetimes. This demonstrated many beneficial effects of large orbit particles and their performance impact on FRCs Together these achievements point to the prospect of beam-driven FRCs as a path toward fusion reactors. This presentation will review and expand on key results and present context for their interpretation.

  17. Development of a Thomson scattering system and its use in a rotating magnetic field driven field-reversed configurations plasma

    NASA Astrophysics Data System (ADS)

    Lee, Kiyong

    The Thomson scattering system has been utilized on the Translation Confinement & Sustainment Upgrade (TCSU) experiment to measure the electron temperature and density. The system uses five polychromators from General Atomics attached with three pre-amplifier modules from Princeton Plasma Physics Laboratory to measure five spatial points during a single plasma discharge. The diagnostic consisting of various mechanical and optical components is introduced, followed by the calibration procedure of the system. For validating measurements, the electron temperature and the relative density obtained from Thomson scattering are compared with measurements from the Langmuir probe. Both measurements are in good agreement. A power scan was conducted by applying different voltages to the rotating magnetic field (RMF) current drive to observe the scaling properties of temperature and density for even-parity and odd-parity RMF operations. Also, a discrepancy is observed when comparing the density based on pressure-balance with localized measurements. Further analysis indicates a possibility of an ion-temperature-gradient, presumably due to ion cyclotron heating, present during steady-state operation.

  18. Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion

    SciTech Connect

    Lynn, Alan

    2013-11-01

    The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap #24;50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would design the microwave optics and oversee the fabrication and assembly of all components and assist with integration into the FRX-L machine control system. LANL would provide a preexisting 65 kW X-band microwave source and some associated waveguide hardware. Once constructed and installed, UNM would take the lead in operating the microwave breakdown system and conducting studies to optimize its use in FRC PI formation in close cooperation with the needs of the LANL MTF team. In conjunction with our LANL collaborators, we decided after starting the project to switch from a microwave plasma breakdown approach to a plasma gun technology to use for enhanced plasma formation in the FRX-L field-reversed configuration experiment at LANL. Plasma guns would be able to provide significantly higher density plasma with greater control over its distribution in time and space within the experiment. This would allow greater control and #12;ne-tuning of the PI plasma formed in the experiment. Multiple plasma guns would be employed to fill a Pyrex glass test chamber (built at UNM) with plasma which would then be characterized and optimized for the MTF effort.

  19. Upgraded coil configuration for ISABELLE magnets

    SciTech Connect

    Hahn, H.; Dahl, P.F.; Kaugerts, J.E.; Prodell, A.G.

    1981-01-01

    Achievement of the design field of 5 T in the ISABELLE dipole magnets is turning out to be more arduous than expected and several avenues of improvement are being pursued. One possibility for improving training and peak field performance is discussed in this paper. It has been recognized that the inert spacers with their adjacent active turns in the cosine magnet windings can be replaced by a double thickness braid operating at approximately half-current density in 46 of the 190 turns. Since the high-field region occurs in the low current density turns near the poles, a performance improvement can be expected. It has been verified that the proposed coil configuration satisfies the field requirements and details thereof are given. Results from an experimental magnet in which superconducting spacer turns are used to simulate half-current density windings are presented. Construction of thick braid coils is being planned and the status of these magnets is reviewed.

  20. 3D effects of edge magnetic field configuration on divertor/scrape-off layer transport and optimization possibilities for a future reactor

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Xu, Y.; Ida, K.; Corre, Y.; Feng, Y.; Schmitz, O.; Frerichs, H.; Tabares, F. L.; Evans, T. E.; Coenen, J. W.; Liang, Y.; Bader, A.; Itoh, K.; Yamada, H.; Ghendrih, Ph.; Ciraolo, G.; Tafalla, D.; Lopez-Fraguas, A.; Guo, H. Y.; Cui, Z. Y.; Reiter, D.; Asakura, N.; Wenzel, U.; Morita, S.; Ohno, N.; Peterson, B. J.; Masuzaki, S.

    2015-10-01

    This paper assesses the three-dimensional (3D) effects of the edge magnetic field structure on divertor/scrape-off layer transport, based on an inter-machine comparison of experimental data and on the recent progress of 3D edge transport simulation. The 3D effects are elucidated as a consequence of competition between transports parallel (\\parallel ) and perpendicular (\\bot ) to the magnetic field, in open field lines cut by divertor plates, or in magnetic islands. The competition has strong impacts on divertor functions, such as determination of the divertor density regime, impurity screening and detachment control. The effects of magnetic perturbation on the edge electric field and turbulent transport are also discussed. Parameterization to measure the 3D effects on the edge transport is attempted for the individual divertor functions. Based on the suggested key parameters, an operation domain of the 3D divertor configuration is discussed for future devices.

  1. Inductive sustainment of oblate field-reversed configurations with the assistance of magnetic diffusion, shaping, and finite-Larmor radius stabilization

    SciTech Connect

    Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Jacobson, C. M.; McGeehan, B.; Ren, Y.; Inomoto, M.; Maqueda, R.

    2008-02-15

    Oblate field-reversed configurations (FRCs) have been sustained for >300 {mu}s, or >15 magnetic diffusion times, through the use of an inductive solenoid. These argon FRCs can have their poloidal flux sustained or increased, depending on the timing and strength of the induction. An inward pinch is observed during sustainment, leading to a peaking of the pressure profile and maintenance of the FRC equilibrium. The good stability observed in argon (and krypton) does not transfer to lighter gases, which develop terminal co-interchange instabilities. The stability in argon and krypton is attributed to a combination of external field shaping, magnetic diffusion, and finite-Larmor radius effects.

  2. Average configuration of the distant (less than 220-earth-radii) magnetotail - Initial ISEE-3 magnetic field results

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.

    1983-01-01

    Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.

  3. Review of field-reversed configurations

    SciTech Connect

    Steinhauer, Loren C.

    2011-07-15

    This review addresses field-reversed configurations (FRCs), which are compact-toroidal magnetic systems with little or no toroidal field and very high {beta} (ratio of plasma pressure to magnetic pressure). Although enthusiasm for the FRC has primarily been driven by its potential for an attractive fusion reactor, this review focuses on the physics rather than on technological or engineering aspects. Major advances in both theory and experiment have taken place since the previous comprehensive FRC review in 1988. Even so many questions remain. In particular, even though FRC experiments have exhibited remarkable stability, how well this extrapolates to larger systems remains unresolved. The review considers FRCs under familiar topical categories: equilibrium, global stability, self-organization, transport, formation, and sustainment.

  4. An automated approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Dekeyser, W.; Baelmans, M.; Gauger, N. R.; Reiter, D.

    2015-01-01

    Automated methods based on optimization can greatly assist computational engineering design in many areas. In this paper an optimization approach to the magnetic design of a nuclear fusion reactor divertor is proposed and applied to a tokamak edge magnetic configuration in a first feasibility study. The approach is based on reduced models for magnetic field and plasma edge, which are integrated with a grid generator into one sensitivity code. The design objective chosen here for demonstrative purposes is to spread the divertor target heat load as much as possible over the entire target area. Constraints on the separatrix position are introduced to eliminate physically irrelevant magnetic field configurations during the optimization cycle. A gradient projection method is used to ensure stable cost function evaluations during optimization. The concept is applied to a configuration with typical Joint European Torus (JET) parameters and it automatically provides plausible configurations with reduced heat load.

  5. Radial magnetic field in magnetic confinement device

    NASA Astrophysics Data System (ADS)

    Xiong, Hao; Liu, Ming-Hai; Chen, Ming; Rao, Bo; Chen, Jie; Chen, Zhao-Quan; Xiao, Jin-Shui; Hu, Xi-Wei

    2015-09-01

    The intrinsic radial magnetic field (Br) in a tokamak is explored by the solution of the Grad-Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak should possess a three-dimensional magnetic field configuration, which could be reduced to a two-dimensional one when the radial position is greater than 0.6a. The radial magnetic field and the amzimuthal magnetic field have the same order of magnitude at the core of the device. These results can offer a reference for the analysis of the plasma instability, the property of the core plasma, and the magnetic field measurement. Project supported by the Special Domestic Program of ITER, China (Grant No. 2009GB105003).

  6. Rigid-rotor, field-reversed configuration

    SciTech Connect

    Conti, F. Giammanco, F.; Plasma Diagnostics and Technologies Ltd., Via Giuntini 63, 56023 Navacchio ; Wessel, F. J.; Binderbauer, M. W.; Bolte, N.; Morehouse, M.; Qerushi, A.; Rahman, H. U.; Roche, T.; Slepchenkov, M.

    2014-02-15

    The radial profiles, n(r), B{sub z}(r), and E{sub r}(r), for a Flux-Coil (“inductively driven”), Field-Reversed Configuration (FC-FRC) are measured and compared to the predictions of the Rigid-Rotor Model (RRM), which is an analytic, one-dimensional, time-independent, equilibrium description for the FRC. Injectors mounted on both ends of the confinement vessel provide a pre-fill plasma. Coaxial coils mounted outside the vacuum boundaries of the annular-confinement vessel accelerate the plasma and produce the FRC. The density profile is measured by laser interferometry, the magnetic-field profile using an in-situ probe array, and the electric-field profile using an in-situ, floating-probe array. Free parameters for each profile are measured, which also allow other intrinsic-plasma parameters to be determined, using computer-fit algorithms: null radius, radial thickness, plasma temperature, rotation frequencies, the latter of which are independently verified by spectroscopy. All radial profiles agree with the RRM predictions, for the experimental configuration, parameter regime, and specified-time interval studied here.

  7. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  8. Global Stability of the Field Reversed Configuration

    SciTech Connect

    E.V. Belova; S.C. Jardin; H. Ji; R.M. Kulsrud; W. Park; M. Yamada

    2000-11-15

    New computational results are presented which provide a theoretical basis for the stability of the Field Reversed Configuration (FRC). The FRC is a compact toroid with negligible toroidal field in which the plasma is confined by a poloidal magnetic field associated with toroidal diamagnetic current. Although many MHD modes are predicted to be unstable, FRCs have been produced successfully by several formation techniques and show surprising macroscopic resilience. In order to understand this discrepancy, we have developed a new 3D nonlinear hybrid code (kinetic ions and fluid electrons), M3D-B, which is used to study the role of kinetic effects on the n = 1 tilt and higher n modes in the FRC. Our simulations show that there is a reduction in the tilt mode growth rate in the kinetic regime, but no absolute stabilization has been found for s bar less than or approximately equal to 1, where s bar is the approximate number of ion gyroradii between the field null and the separatrix. However, at low values of s bar, the instabilities saturate nonlinearly through a combination of a lengthening of the initial equilibrium and a modification of the ion distribution function. These saturated states persist for many Alfven times, maintaining field reversal.

  9. A high performance field-reversed configuration

    SciTech Connect

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; and others

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  10. The influence of elevated 50 Hz electric and magnetic fields on implanted cardiac pacemakers: the role of the lead configuration and programming of the sensitivity.

    PubMed

    Toivonen, L; Valjus, J; Hongisto, M; Metso, R

    1991-12-01

    The influence of the electromagnetic interference (EMI) on performance of 15 implanted cardiac pacemakers (12 generator models) was tested during exposure at a high voltage substation. All patients had an adequate spontaneous heart rate during the study. Tests were performed in the ventricular inhibited mode with unipolar sensing in all pacemakers and repeated with bipolar sensing in four pacemakers. The sensitivity was set to a regular, functionally proper level and then to the highest available level. Exposure was done to moderate (1.2-1.7 kV/m) and strong (7.0-8.0 kV/m) electric fields, which correspond to the immediate vicinity of 110 and 400 kV power lines, respectively. In moderate electric fields the output was inhibited in one pacemaker at regular sensitivity (1.7-3.0 mV) and in five pacemakers at the highest sensitivity (0.5-1.25 mV). In strong electric fields the output was inhibited in five pacemakers at regular sensitivity and several pacemakers converted to noise reversion mode at the highest sensitivity. In bipolar mode only one of four pacemakers at high sensitivity (0.5-1.0 mV) was inhibited in the strongest electric field, whereas all four did so in the unipolar mode. One pacemaker with unipolar sensitivity at 0.5 mV was interfered by 63 microT magnetic field. The results confirm that the programmed sensitivity level and the lead configuration markedly influence pacemakers' vulnerability to EMI. Bipolar sensing mode is rather safe in the presence of EMI, which is encountered in public environments. The programmable features of today's pacemakers permit individualized, less stringent safety measures to avoid electromagnetic hazards. PMID:1723194

  11. Evaluation of heliostat field/receiver configurations

    SciTech Connect

    Faas, S.E.; Winters, W.S.

    1986-03-01

    This report evaluates and compares north heliostat field/cavity receiver configurations and surround heliostat field/external receiver configurations. The receiver coolants are molten nitrate salts and liquid sodium. Both field/receiver configurations use molten salt thermal storage; the sodium receiver is thermally connected to thermal storage by a sodium-to-salt heat exchanger. The heliostat filed size is fixed at 1,000,000 square meters of reflective area, and the delivered molten salt temperature is fixed at 566/sup 0/C. The delivered thermal power varies from 500 to 600 MW/sub t/, depending on the overall system efficiency. The generic north heliostat field/cavity receiver configurations were found to be 6 to 10 percent efficient than a generic surround field/external receiver configuration. There was little or no difference found in the transient performance of a molten salt receiver compared to a sodium receiver connected to a sodium-to-salt heat exchanger. Four configurations were of particular interest: (1) a north heliostat field/single cavity molten salt receiver, (2) a surround heliostat field/external cylinder molten salt receiver, (3) a surround heliostat field/external cylinder liquid sodium receiver, and (4) a north heliostat field/single cavity liquid sodium receiver. It was found that the surround field/liquid sodium external receiver configuration may provide energy at a 14 percent lower levelized energy cost than a north field/molten salt cavity receiver configuration. However, the cost advantage of the surround field/liquid sodium external receiver is not conclusive because of uncertainties in system component costs.

  12. Eruptive solar magnetic fields

    NASA Technical Reports Server (NTRS)

    Low, B. C.

    1981-01-01

    The quasi-steady evolution of solar magnetic fields in response to gradual photospheric changes is considered, with particular attention given to the threshold of a sudden eruption in the solar atmosphere. The formal model of an evolving, force-free field dependent on two Cartesian coordinates is extended to a field which is not force free but in static equilibrium with plasma pressure and gravity. The basic physics is illustrated through the evolution of a loop-shaped electric current sheet enclosing a potential bipolar field with footpoints rooted in the photosphere. A free-boundary problem is posed and then solved for the equilibrium configuration of the current sheet in a hydrostatically supported isothermal atmosphere. As the footpoints move apart to spread a constant photospheric magnetic flux over a larger region, the equilibria available extend the field to increasing heights.

  13. The magnetic field of the Milky Way

    NASA Astrophysics Data System (ADS)

    Reid, Mark J.

    Models of the magnetic field configuration of the Milky Way are reviewed. Current analyses of rotation measure data suggest that the Milky Way possesses a bisymmetric-like spiral magnetic field, that field reversals among spiral arms exist, and that the magnetic spiral may not closely match the mass spiral structure. Zeeman measurements of OH masers may provide alternative magnetic field information.

  14. Alternative poloidal field configurations for ITER

    SciTech Connect

    Bulmer, R.H.; Neilson, G.H.

    1997-09-02

    The US Home Team has investigated the physics and engineering issues for two alternate poloidal field coil configurations for ITER. The first is called the Segmented CS configuration, where all of the solenoid modules are pancake-wound. The second option, termed the Hybrid CS configuration, utilizes a layer-wound central module and pancake-wound end modules. Performance comparisons are presented for the baseline design and the two alternate PF configurations, characterizing the 21 MA reference scenario. Alternate operating modes such as reverse-shear operation and a 17 MA driven mode were evaluated, but are not reported here.

  15. Configurational analysis of an EBT reactor in various magnetic geometries

    SciTech Connect

    Owen, L.W.; Uckan, N.A.

    1980-01-01

    Optimization of vacuum field particle confinement in an ELMO Bumpy Torus (EBT) reactor has been considered. Several methods of improving the efficient utilization of magnetic fields and the particle confinement characteristics of a reactor have been analyzed. These include the use of (1) magnets with a large mirror ratio, (2) high field Nb/sub 3/Sn or Nb/sub 3/Sn/NbTi hybrid mirror coils, (3) split-wedge mirror coils, (4) aspect ratio enhancement (ARE) coils, and (5) recently developed field symmetrizing (SYM) coils. Of these, particle drift orbits and three-dimensional tensor pressure equilibrium calculations have shown that the ARE and SYM coils used in conjunction with high field magnets offer the most promise of good plasma performance in a smaller size (up to 50%) EBT reactor. The relative merits of each magnetic configuration are discussed, and the design characteristics are given.

  16. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Krall, Nicholas A.; Sieck, Paul E.; Offermann, Dustin T.; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

    2015-04-01

    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure) is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad's work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β . This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  17. Chaotic motion of charged particles in toroidal magnetic configurations.

    PubMed

    Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; Dumont, Rmi; Garbet, Xavier

    2014-09-01

    We study the motion of a charged particle in a tokamak magnetic field and discuss its chaotic nature. Contrary to most of recent studies, we do not make any assumption on any constant of the motion and solve numerically the cyclotron gyration using Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to make long-time simulations. First considering an idealized magnetic configuration, we add a nongeneric perturbation corresponding to a magnetic ripple, breaking one of the invariant of the motion. Chaotic motion is then observed and opens questions about the link between chaos of magnetic field lines and chaos of particle trajectories. Second, we return to an axisymmetric configuration and tune the safety factor (magnetic configuration) in order to recover chaotic motion. In this last setting with two constants of the motion, the presence of chaos implies that no third global constant exists, we highlight this fact by looking at variations of the first order of the magnetic moment in this chaotic setting. We are facing a mixed phase space with both regular and chaotic regions and point out the difficulties in performing a global reduction such as gyrokinetics. PMID:25273181

  18. Chaotic motion of charged particles in toroidal magnetic configurations

    SciTech Connect

    Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; Dumont, Rémi; Garbet, Xavier

    2014-09-01

    We study the motion of a charged particle in a tokamak magnetic field and discuss its chaotic nature. Contrary to most of recent studies, we do not make any assumption on any constant of the motion and solve numerically the cyclotron gyration using Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to make long-time simulations. First considering an idealized magnetic configuration, we add a nongeneric perturbation corresponding to a magnetic ripple, breaking one of the invariant of the motion. Chaotic motion is then observed and opens questions about the link between chaos of magnetic field lines and chaos of particle trajectories. Second, we return to an axisymmetric configuration and tune the safety factor (magnetic configuration) in order to recover chaotic motion. In this last setting with two constants of the motion, the presence of chaos implies that no third global constant exists, we highlight this fact by looking at variations of the first order of the magnetic moment in this chaotic setting. We are facing a mixed phase space with both regular and chaotic regions and point out the difficulties in performing a global reduction such as gyrokinetics.

  19. Magnetic fields at neptune.

    PubMed

    Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1989-12-15

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an "oblique" rotator. PMID:17756002

  20. Effect of variations of the magnetic field on the analytical signal of a magneto-optic rotation spectrometer employing a Faraday configuration

    NASA Astrophysics Data System (ADS)

    Ince, Ahmet T.; Ince, Rabia

    2000-07-01

    In this work, residual ripple on the 50 Hz mains smoothed power supply of an electromagnet was found to cause incidental magnetic field modulation of atomic magneto-optic rotation (AMOR) signals of analytes. The modulation occurs at 100 Hz, twice the 50 Hz mains frequency, and is observed on AMOR noise power spectra of copper, silver and magnesium as an interference peak at 100 Hz. A theoretical model is developed to explain the amplitude dependence of this 100 Hz interference on magnetic field strength. Experimental findings indicate that at low magnetic field strength dichroic effects mainly generate the interference peak, as the magnetic field strength increases birefringent effects perpetuate the interference peak frequency. The magnetic field used in this work was composed of a mainly DC component with a small superimposed AC ripple. The absorption profile of the analyte is split into two sigma absorption profile components. The effect of the AC magnetic field causes the sigma profiles to oscillate their overlap with the source emission profile at 100 Hz, giving rise to the peak frequency signal. This will lead to background-free signal measurements if a lock-in technique is additionally employed. The resulting improvement in signal-to-noise ratio will make the study of hyperfine structures feasible in AMOR spectrometer systems.

  1. The effects of magnetic nozzle configurations on plasma thrusters

    NASA Technical Reports Server (NTRS)

    York, Thomas M.

    1990-01-01

    Plasma thrusters have been operated at power levels from 10 kw to 0.1 MW. When these devices have had magnetic fields applied to them which form a nozzle configuration for the expanding plasma, they have shown marked increases in exhaust velocity which is in direct proportion to the magnitude of the applied field. Further, recent results have shown that electrode erosion may be influenced by applied magnetic fields. This research effort is directed to the experimental and computational study of the effects of applied magnetic field nozzles in the acceleration of plasma flows. Plasma source devices which eliminate the plasma interaction in normal thrusters are studied as most basic. Normal thruster configurations were studied without applied fields and with applied magnetic nozzle fields. Unique computational studies utilize existing codes which accurately include transport processes. Unique diagnostic studies supported the experimental studies to generate new data. Both computation and diagnostics were combined to indicate the physical mechanisms and transport properties that are operative in order to allow scaling and accurate prediction of thruster performance.

  2. The effects of magnetic nozzle configurations on plasma thrusters

    NASA Technical Reports Server (NTRS)

    York, Thomas M.

    1989-01-01

    Plasma thrusters have been operated at power levels from 10kW to 0.1MW. When these devices have had magnetic fields applied to them which form a nozzle configuration for the expanding plasma, they have shown marked increases in exhaust velocity which is in direct proportion to the magnitude of the applied field. Further, recent results have shown that electrode erosion may be influenced by applied magnetic fields. This research is directed to the experimental and computational study of the effects of applied magnetic field nozzles in the acceleration of plasma flows. Plasma source devices which eliminate the plasma interaction in normal thrusters are studied as most basic. Normal thruster configurations will be studied without applied fields and with applied magnetic nozzle fields. Unique computational studies will utilize existing codes which accurately include transport processes. Unique diagnostic studies will support the experimental studies to generate new data. Both computation and diagnostics will be combined to indicate the physical mechanisms and transport properties that are operative in order to allow scaling and accurate prediction of thruster performance.

  3. Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    SciTech Connect

    Silva, R. M. da; Domínguez, D.; Aguiar, J. Albino

    2014-12-08

    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.

  4. Dynamic responses of sunspots to their ambient magnetic configuration

    NASA Astrophysics Data System (ADS)

    Bagare, S. P.

    2011-08-01

    In our earlier study of a revisit of the classic Wilson Effect, it was found that a large proportion of sunspots do not display the geometric effect which is ascribed to a depression of the umbra. It was shown that the presence or absence of the effect, observed close to the limb, depends upon the ambient magnetic configuration of the sunspot. In this follow up study, we look for the impact of changes in ambient magnetic configuration on the measurable properties of sunspots during their disk passage, using observations obtained at the Kodaikanal observatory during 1978-80. Digitized photoheliogram data were used to examine and measure areas of spots and their umbrae for 101 cases. Magnetic field measures published by the Academy of sciences, Leningrad were used to evaluate the ambient magnetic configuration. The results indicate that the extent of magnetic bipolarity is associated with changes in the proportion of the area of the penumbra to that of the umbra. In regular spots, the relative area of penumbra reduces with reduction in the strength of ambient opposite polarity spots and pores. However, in the presence of pore sized blob(s) in penumbra, and with associated emerging fluxes, the penumbra is significantly enlarged. But in the presence of a light bridge or a split umbra, the relative area of penumbra is considerably reduced.

  5. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  6. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  7. Magnetic refrigeration: recent developments and alternative configurations

    NASA Astrophysics Data System (ADS)

    Almanza, Morgan; Kedous-Lebouc, Afef; Yonnet, Jean-Paul; Legait, Ulrich; Roudaut, Julien

    2015-07-01

    Magnetic refrigeration, based on magnetocaloric effect, is an upcoming environmentaly friendly technology with a high potential to improve energy efficiency and to reduce greenhouse gas emission. It is a multidisciplinary research theme and its real emergence requires, to overcome scientific and technical issues related to both material and system. This paper presents the state of the art in magnetic cooling, the main recent works achieved and discusses in more details the thermodynamic phenomenon according to the G2Elab experience in the field. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  8. Linewidth-modulated motional Stark effect measurements of internal field structure in low-field configurations

    SciTech Connect

    Reinecke, E. A.; Fonck, R. J.; Thorson, T. A.

    2001-01-01

    Motional Stark effect measurements of internal field structure in low-field magnetic confinement configurations are considered for both magnitude and direction of the local magnetic field. The amplitude and phase delay of an oscillating spectral linewidth driven by a rotating polarizer provides a means of determining the magnitude and direction of the total field simultaneously while avoiding difficulties of neutral beam energy drift. Photon-noise limit estimates for a diagnostic beam on the low-field PEGASUS toroidal experiment indicate sensitivities of roughly 20 G and 0.2{sup o} for the magnitude and direction angle. These values are sufficient to provide significant constraints on magnetic equilibrium reconstructions.

  9. WE-G-17A-08: Electron Gun Operation for in Line MRI-Linac Configurations: An Assessment of Beam Fidelity and Recovery Techniques for Different SIDs and Magnetic Field Strengths

    SciTech Connect

    Whelan, B; Keall, P; Constantin, D; Holloway, L; Kolling, S; Oborn, B; Fahrig, R

    2014-06-15

    Purpose: To test the functionality of medical electron guns within the fringe field of a purpose built superconducting MRI magnet, and to test different recovery techniques for a variety of imaging field strengths and SIDs. Methods: Three different electron guns were simulated using Finite Element Modelling; a standard diode gun, a standard triode gun, and a novel diode gun designed to operate within parallel magnetic fields. The approximate working regime of each gun was established by assessing exit current in constant magnetic fields of varying strength and defining ‘working’ as less than 10% change in injection current. Next, the 1.0T MRI magnet was simulated within Comsol Multiphysics. The coil currents in this model were also scaled to produce field strengths of .5, 1, 1.5 and 3T. Various magnetic shield configurations were simulated, varying the SID from 800 to 1300mm. The average magnetic field within the gun region was assessed together with the distortion in the imaging volume - greater than 150uT distortion was considered unacceptable. Results: The conventional guns functioned in fields of less than 7.5mT. Conversely, the redesigned diode required fields greater than .1T to function correctly. Magnetic shielding was feasible for SIDS of greater than 1000mm for field strengths of .5T and 1T, and 1100mm for 1.5 and 3.0T. Beyond these limits shielding resulted in unacceptable MRI distortion. In contrast, the redesigned diode could perform acceptably for SIDs of less than 812, 896, 931, and 974mm for imaging strengths of 0.5, 1.0, 1.5, 3.0T. Conclusions: For in-line MRIlinac configurations where the electron gun is operating in low field regions, shielding is a straight forward option. However, as magnetic field strength increases and the SID is reduced, shielding results in too great a distortion in the MRI and redesigning the electron optics is the preferable solution. The authors would like to acknowledge funding from the National Health and Research Council (AUS), National Institute of Health (NIH), and Cancer Institute NSW.

  10. Confinement of translated field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.; Armstrong, W. T.; Chrien, R. E.; Klingner, P. L.; McKenna, K. F.; Rej, D. J.; Sherwood, E. G.; Siemon, R. E.

    1986-03-01

    The confinement properties of translating field-reversed configurations (FRC) in the FRX-C/T device [Phys. Fluids 29, (1986)] are analyzed and compared to previous data without translation and to available theory. Translation dynamics do not appear to appreciably modify the FRC confinement. Some empirical scaling laws with respect to various plasma parameters are extracted from the data. These are qualitatively similar to those obtained in the TRX-1 device [Phys. Fluids 28, 888 (1985)] without translation and with a different formation method. Translation with a static gas fill offers new opportunities such as improved particle confinement or refueling of the FRC particle inventory.

  11. Kinetic Stability of the Field Reversed Configuration

    SciTech Connect

    E.V. Belova; R.C. Davidson; H. Ji; and M. Yamada

    2002-07-09

    New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). The FRC is an innovative confinement approach that offers a unique fusion reactor potential because of its compact and simple geometry, translation properties, and high plasma beta. One of the most important issues is FRC stability with respect to low-n (toroidal mode number) MHD modes. There is a clear discrepancy between the predictions of standard MHD theory that many modes should be unstable on the MHD time scale, and the observed macroscopic resilience of FRCs in experiments.

  12. Improved critical current in confined superconductors in parallel field configuration

    NASA Astrophysics Data System (ADS)

    Glatz, Andreas; Aronson, Igor; Wang, Yonglei; Xiao, Zhili

    2015-03-01

    We present results on the re-entrance of the superconducting state in systems placed into a magnetic field parallel to the applied current. In experiments it was observed that the magneto-resistance first increases with magnetic field, but at higher field drops again such that superconductivity is recovered. This effect is strongly temperature dependent and can lead to a suppression of resistance below the measurable threshold over a range of a few kG. We study the vortex dynamics and magneto-resistance in this situation in the framework of a large-scale time-dependent Ginzburg Landau simulation. A small external current as well as the magnetic field are applied in the x-direction, the latter is then ramped up. Our simulations reproduce this effect and reveal the mechanism for the observed behavior: the intermediate resistive state is due to a vortex instability leading to an unwinding of twisted vortex configurations. This leads to a periodic dynamic resistive state. When the field increases these instabilities get stabilized due to a higher vortex density and the resistance drops upon increasing the magnetic field. Work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences, and by the Office of Science, Materials Sc.

  13. Sensitivity of detachment extent to magnetic configuration and external parameters

    NASA Astrophysics Data System (ADS)

    Lipschultz, Bruce; Parra, Felix I.; Hutchinson, Ian H.

    2016-05-01

    Divertor detachment may be essential to reduce heat loads to magnetic fusion tokamak reactor divertor surfaces. Yet in experiments it is difficult to control the extent of the detached, low pressure, plasma region. At maximum extent the front edge of the detached region reaches the X-point and can lead to degradation of core plasma properties. We define the ‘detachment window’ in a given position control variable C (for example, the upstream plasma density) as the range in C within which the front location can be stably held at any position from the target to the X-point; increased detachment window corresponds to better control. We extend a 1D analytic model [1] to determine the detachment window for the following control variables: the upstream plasma density, the impurity concentration and the power entering the scrape-off layer (SOL). We find that variations in magnetic configuration can have strong effects; increasing the ratio of the total magnetic field at the X-point to that at the target, {{B}×}/{{B}t} , (total flux expansion, as in the super-x divertor configuration) strongly increases the detachment window for all control variables studied, thus strongly improving detachment front control and the capability of the divertor plasma to passively accommodate transients while still staying detached. Increasing flux tube length and thus volume in the divertor, through poloidal flux expansion (as in the snowflake or x-divertor configurations) or length of the divertor, also increases the detachment window, but less than the total flux expansion does. The sensitivity of the detachment front location, z h , to each control variable, C, defined as \\partial {{z}h}/\\partial C , depends on the magnetic configuration. The size of the radiating volume and the total divertor radiation increase \\propto {{≤ft({{B}×}/{{B}t}\\right)}2} and \\propto {{B}×}/{{B}t} , respectively, but not by increasing divertor poloidal flux expansion or field line length. We believe this model is applicable more generally to any thermal fronts in flux tubes with varying magnetic field, and similar sources and sinks, such as detachment fronts in stellarator divertors and solar prominences in coronal loops.

  14. The configuration of the Brazilian scientific field.

    PubMed

    Barata, Rita B; Aragão, Erika; de Sousa, Luis E P Fernandes; Santana, Taris M; Barreto, Mauricio L

    2014-03-01

    This article describes the configuration of the scientific field in Brazil, characterizing the scientific communities in every major area of knowledge in terms of installed capacity, ability to train new researchers, and capacity for academic production. Empirical data from several sources of information are used to characterize the different communities. Articulating the theoretical contributions of Pierre Bourdieu, Ludwik Fleck, and Thomas Kuhn, the following types of capital are analyzed for each community: social capital (scientific prestige), symbolic capital (dominant paradigm), political capital (leadership in S & T policy), and economic capital (resources). Scientific prestige is analyzed by taking into account the volume of production, activity index, citations, and other indicators. To characterize symbolic capital, the dominant paradigms that distinguish the natural sciences, the humanities, applied sciences, and technology development are analyzed theoretically. Political capital is measured by presidency in one of the main agencies in the S & T national system, and research resources and fellowships define the economic capital. The article discusses the composition of these different types of capital and their correspondence to structural capacities in various communities with the aim of describing the configuration of the Brazilian scientific field. PMID:24676181

  15. Simultaneous effects of radial magnetic field and wall properties on peristaltic flow of Carreau-Yasuda fluid in curved flow configuration

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Tanveer, A.; Alsaadi, F.

    2015-12-01

    The objective of present article is to address the magnetohydrodynamic (MHD) peristaltic flow of Carreau-Yasuda fluid in a curved geometry. The channel boundaries satisfy wall slip and compliant properties. The fluid is electrically conducting through an applied magnetic field in the radial direction. Heat transfer is also studied. Governing equation comprised the viscous dissipation effects. The non-linear expressions are first obtained and then approximated using long wavelength and low Reynolds number considerations. The resulting systems are solved for the series solutions. The expressions of velocity, temperature, heat transfer coefficient and stream function are obtained and analyzed via graphical illustrations.

  16. Magnetosphere of Uranus: plasma sources, convection, and field configuration

    SciTech Connect

    Voigt, G.; Hill, T.W.; Dessler, A.J.

    1983-03-01

    At the time of the Voyager 2 flyby of Uranus, the planetary rotational axis will be roughly antiparallel to the solar wind flow. If Uranus has a magnetic dipole moment that is approximately aligned with its spin axis, and if the heliospheric shock has not been encountered, we will have the rare opportunity to observe a ''pole-on'' magnetosphere as discussed qualitatively by Siscoe. Qualitative arguments based on analogy with Earth, Jupiter, and Saturn suggest that the magnetosphere of Uranus may lack a source of plasma adequate to produce significant internal currents, internal convection, and associated effects. In order to provide a test of this hypothesis with the forthcoming Voyager measurements, we have constructed a class of approximately self-consistent quantitative magnetohydrostatic equilibrium configurations for a pole-on magnetosphere with variable plasma pressure parameters. Given a few simplifying assumptions, the geometries of the magnetic field and of the tail current sheet can be computed for a given distribution of trapped plasma pressure. The configurations have a single funnel-shaped polar cusp that points directly into the solar wind and a cylindrical tail plasma sheet whose currents close within the tail rather than on the tail magnetopause, and whose length depends on the rate of decrease of thermal plasma pressure down the tail. Interconnection between magnetospheric and interplanetary fields results in a highly asymmetric tail-field configuration. These features were predicted qualtitatively by Siscoe; the quantitative models presented here may be useful in the interpretation of Voyager encounter results.

  17. The role of the crystal orientation (c-axis) on switching field distribution and the magnetic domain configuration in electrodeposited hcp Co–Pt nanowires

    NASA Astrophysics Data System (ADS)

    Shahid Arshad, Muhammad; Proenca, Mariana P.; Trafela, Spela; Neu, Volker; Wolff, Ulrike; Stienen, Sven; Vazquez, Manuel; Kobe, Spomenka; Žužek Rožman, Kristina

    2016-05-01

    In this report, Co–Pt nanowires (NWs) were produced via potentiostatic electrodeposition into commonly used commercial ordered-alumina and disordered-polycarbonate membranes with similar pore diameters (≈200 nm). The pore diameter of the membranes and the deposition conditions were chosen such that the Co–Pt NWs fabricated into both membranes had a hexagonal close packed (hcp) crystal structure with a crystallographic texturing of the c-axis in the direction perpendicular to the NWs’ long axis; this effect was more pronounced in the alumina membranes. Due to the local fluctuation in electrodeposition conditions (pore diameter, pore shape), we have found a small variation in the c-axis orientations in the plane perpendicular to the NWs’ long axis. Magnetic characterizations suggested that there is uniaxial anisotropy perpendicular to the Co–Pt NWs’ long axis and the small variation in the orientation of the hcp c-axis plays an important role in the switching-field distribution and the magnetic domain structure of the Co–Pt NWs. First order reversal curves (FORCs) revealed week magnetostatic interactions between Co–Pt NWs, thus suggesting that the different pore alignments are not influencing much the magnetic properties in both membranes. The micromagnetic simulation revealed that the transverse-stripe (TS) and longitudinal stripe (LS) domains are energetically most favorable structures in such NWs. This study accentuates the influence of the crystal orientation (c-axis) of the high-anisotropy materials on their functional magnetic properties and thus is of great importance for the fabrication of nanodevices based on such NWs.

  18. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  19. Intense magnetic field phenomena

    SciTech Connect

    Weisheit, J.

    1994-12-31

    This article surveys three of the many challenging problems involving quantum phenomena in plasmas with magnetic fields B in the range 10{sup 8}--10{sup 10} Gauss: magnetic white dwarf stars, spectroscopic effects of motional (v {times} B) electric fields, and statistical models of many-electron atoms in strong B fields. It has proved difficult to make progress in this regime of field strengths, where Coulomb and magnetic interactions are comparable.

  20. Magnetic configuration dependence of magnetoresistance in a Fe-porphyrin-like carbon nanotube spintronic device

    SciTech Connect

    Zeng, Jing; Chen, Ke-Qiu

    2014-01-20

    By using nonequilibrium Green's functions in combination with the density functional theory, we investigate the spin-dependent transport properties in a Fe-porphyrin-like carbon nanotube spintronic device. The results show that magnetoresistance ratio is strongly dependent on the magnetic configuration of the Fe-porphyrin-like carbon nanotube. Under the application of the external magnetic field, the magnetoresistance ratio of the device can be increased from about 19% to about 1020% by tuning the magnetic configuration in the device. Our results confirm that the magnetic configuration is a key factor for obtaining a high-performance spintronic device.

  1. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  2. Theory of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Steinhauer, L. C.

    1993-01-01

    This report summarizes results from the theoretical program on field reversed configurations (FRC) at STI Optronics. The program, which has spanned the last 13 years, has included analytical as well as computational components. It has led to published papers on every major topic of FRC theory. The report is outlined to summarize results from each of these topic areas: formation, equilibrium, stability, and confinement. Also briefly described are Steinhauer's activities as Compact Toroid Theory Listening Post. Appendix A is a brief listing of the major advances achieved in this program. Attached at the back of this report is a collection of technical papers in archival journals that resulted from work in this program. The discussion within each subsection is given chronologically in order to give a historical sense of the evolution of understanding of FRC physics.

  3. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Zweibel, Ellen G.

    2011-08-01

    The origin and evolution of magnetic fields in the Universe is a cosmological problem. Although exotic mechanisms for magneotgenesis cannot be ruled out, galactic magnetic fields could have been seeded by magnetic fields from stars and accretion disks, and must be continuously regenerated due to the ongoing replacement of the interstellar medium. Unlike stellar dynamos, galactic dynamos operate in a multicomponent gas at low collisionality and high magnetic Prandtl number. Their background turbulence is highly compressible, the plasma β ~ 1, and there has been time for only a few large exponentiation times at large scale over cosmic time. Points of similarity include the importance of magnetic buoyancy, the large range of turbulent scales and tiny microscopic scales, and the coupling between the magnetic field and certain properties of the flow. Understanding the origin and maintenance of the large scale galactic magnetic field is the most challenging aspect of the problem.

  4. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  5. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Fulton, Daniel

    2015-11-01

    Following the recent remarkable progress in MHD stability control in the C-2U advanced beam driven field-reversed configuration (FRC)[M. Binderbauer et al 2015], turbulent transport has become the foremost obstacle on the path towards an FRC-based fusion reactor. Significant effort has been put into expanding kinetic simulation capabilities in FRC magnetic geometry. The Gyrokinetic Toroidal Code (GTC) has been upgraded to accommodate realistic magnetic geometry from the C-2U experiment and to optimize the field solver for the FRC's field line orientation. Initial linear electrostatic GTC simulations find ion-scale instabilities are not present in the FRC core due to the large gyroradius of thermal ions, while electron drift-interchange modes are driven by the electron temperature gradient and bad magnetic curvature. Simulation in the FRC scrape-off layer finds density gradient driven ion scale fluctuations. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, a new kinetic code has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately provide boundary conditions for the plasma confinement. Initial results and future development targets are discussed.

  6. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    SciTech Connect

    Welch, D. R.; Cohen, S. A.; Genoni, T. C.; Glasser, A. H.

    2010-06-28

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments. __________________________________________________

  7. Optimized configurations of autostable superconducting magnetic bearings for practical applications

    SciTech Connect

    Schoechlin, A.; Ritter, T.; Bornemann, H.J.

    1995-11-01

    In order to establish an optimized bearing design for a flywheel for energy storage, the authors have studied model bearing configurations involving bulk YBCO pellets and double-dipole magnet configurations. They were interested to see what is the correlation between the maximum attainable levitation force, measured for a typical bearing gap of 3 mm, and the separation between the magnetic poles. Equal polarity (north-north) and alternate polarity (north-south) configurations were investigated. The maximum levitation force was obtained with the alternate polarity arrangement for a separation between the magnetic poles of 6 mm. It represents an increase of 19% compared to a non-optimized configuration. The experiments demonstrate that configurations of superconducting magnetic bearings can be optimized to obtain better levitation properties.

  8. Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope

    SciTech Connect

    Xia, C.; Keppens, R.; Guo, Y.

    2014-01-10

    The magnetic configuration hosting prominences and their surrounding coronal structure is a key research topic in solar physics. Recent theoretical and observational studies strongly suggest that a helical magnetic flux rope is an essential ingredient to fulfill most of the theoretical and observational requirements for hosting prominences. To understand flux rope formation details and obtain magnetic configurations suitable for future prominence formation studies, we here report on three-dimensional isothermal magnetohydrodynamic simulations including finite gas pressure and gravity. Starting from a magnetohydrostatic corona with a linear force-free bipolar magnetic field, we follow its evolution when introducing vortex flows around the main polarities and converging flows toward the polarity inversion line near the bottom of the corona. The converging flows bring the feet of different loops together at the polarity inversion line, where magnetic reconnection and flux cancellation happen. Inflow and outflow signatures of the magnetic reconnection process are identified, and thereby the newly formed helical loops wind around preexisting ones so that a complete flux rope grows and ascends. When a macroscopic flux rope is formed, we switch off the driving flows and find that the system relaxes to a stable state containing a helical magnetic flux rope embedded in an overlying arcade structure. A major part of the formed flux rope is threaded by dipped field lines that can stably support prominence matter, while the total mass of the flux rope is in the order of 4-5 10{sup 14} g.

  9. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.

    2016-05-01

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.

  10. Helical quadrupole field stabilization of field-reversed configuration plasma

    SciTech Connect

    Shimamura, S.; Nogi, Y.

    1986-01-01

    The n = 2 mode rotational instability, which appears on a field-reversed configuration plasma produced by a theta pinch, is stabilized by a helical quadrupole field. The critical strength of the field to stabilize the instability is obtained as a function of pitch angle of the helical coil ..cap alpha.. rad/m. Typically, the plasma in the ..cap alpha.. = 6 winding field is stabilized by about one-fifth of ..cap alpha.. = 0 field strength. To physically explain such a good effectiveness of the helical field, the rotation speed of the plasma is measured by a Doppler shift of a carbon V 2270.9-A line. However, the clear explanation to the helical effect is not yet given.

  11. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  12. On Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Florido, E.; Battaner, E.

    2010-12-01

    Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.

  13. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  14. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  15. Polar magnetic field reversal.

    NASA Astrophysics Data System (ADS)

    Benevolenskaya, E. E.

    2006-08-01

    The polar magnetic fields on the Sun have been an attractive subject for solar researches since Babcocks measured them in solar cycle 19 (Babcock and Babcock, 1955). One of the remarkable features of the polar magnetic fields is their reversal during the maxima of 11-year sunspot cycles (Babcock and Livingston, 1958; Babcock, 1959). I have present results of the investigations of the polar magnetic field using MDI data. It is found, that the polar magnetic field reversal is detected with SOHO/MDI data for polar region within 78deg - 88deg. The North Pole has changed polarity in CR1975 (April 2001). The South reversed later in CR1980 (September 2001). The total unsigned magnetic flux does not show the dramatic decreasing during the polar reversals due to omnipresent bi-polar small-scale magnetic elements (Severnyi 1965, Lin et al. 1994, Benevolenskaya 2004). The observational and theoretical aspects of the polar magnetic field reversals are discussed. References Babcock, H. W., and Babcock, H. D. 1955, ApJ, 121, 349 Babcock, H. W., Livingston W. C., 1958, Science, 127, 1058 Babcock, H. D., 1959, ApJ, 130, 364 Benevolenskaya, E. E. 2004, Astron. Astrophys., 428, L5 Lin, H., Varsik, J., Zirin, H., 1994, Solar Phys., 155, 243 Severnyi A. B., 1965, Soviet Astron. Letters, 9, 171

  16. Dynamic Magnetic Field Applications for Materials Processing

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

  17. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  18. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  19. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  20. Rotational stability of a long field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.; Steinhauer, L. C.

    2014-02-01

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ =1 and ℓ =2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ =2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ =1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ =1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.

  1. Field errors in superconducting magnets

    SciTech Connect

    Barton, M.Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  2. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  3. A novel approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Baelmans, M.; Dekeyser, W.; Gauger, N. R.; Reiter, D.

    2015-08-01

    Divertor exhaust system design and analysis tools are crucial to evolve from experimental fusion reactors towards commercial power plants. In addition to material research and dedicated vessel geometry design, improved magnetic configurations can contribute to sustaining the diverted heat loads. Yet, computational design of the magnetic divertor is a challenging process involving a magnetic equilibrium solver, a plasma edge grid generator and a computationally demanding plasma edge simulation. In this paper, an integrated approach to efficient sensitivity calculations is discussed and applied to a set of slightly reduced divertor models. Sensitivities of target heat load performance to the shaping coil currents are directly evaluated. Using adjoint methods, the cost for a sensitivity evaluation is reduced to about two times the simulation cost of one specific configuration. Further, the use of these sensitivities in an optimal design framework is illustrated by a case with realistic Joint European Torus (JET) configurational parameters.

  4. Adiabatic model and design of a translating field reversed configuration

    SciTech Connect

    Intrator, T. P.; Siemon, R. E.; Sieck, P. E.

    2008-04-15

    We apply an adiabatic evolution model to predict the behavior of a field reversed configuration (FRC) during decompression and translation, as well as during boundary compression. Semi-empirical scaling laws, which were developed and benchmarked primarily for collisionless FRCs, are expected to remain valid even for the collisional regime of FRX-L experiment. We use this approach to outline the design implications for FRX-L, the high density translated FRC experiment at Los Alamos National Laboratory. A conical theta coil is used to accelerate the FRC to the largest practical velocity so it can enter a mirror bounded compression region, where it must be a suitable target for a magnetized target fusion (MTF) implosion. FRX-L provides the physics basis for the integrated MTF plasma compression experiment at the Shiva-Star pulsed power facility at Kirtland Air Force Research Laboratory, where the FRC will be compressed inside a flux conserving cylindrical shell.

  5. Adiabatic model and design of a translating field reversed configuration

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Siemon, R. E.; Sieck, P. E.

    2008-04-01

    We apply an adiabatic evolution model to predict the behavior of a field reversed configuration (FRC) during decompression and translation, as well as during boundary compression. Semi-empirical scaling laws, which were developed and benchmarked primarily for collisionless FRCs, are expected to remain valid even for the collisional regime of FRX-L experiment. We use this approach to outline the design implications for FRX-L, the high density translated FRC experiment at Los Alamos National Laboratory. A conical theta coil is used to accelerate the FRC to the largest practical velocity so it can enter a mirror bounded compression region, where it must be a suitable target for a magnetized target fusion (MTF) implosion. FRX-L provides the physics basis for the integrated MTF plasma compression experiment at the Shiva-Star pulsed power facility at Kirtland Air Force Research Laboratory, where the FRC will be compressed inside a flux conserving cylindrical shell.

  6. Stable and unstable invariant manifolds in a partially chaotic magnetic configuration generated by nonlinear reconnection

    SciTech Connect

    Borgogno, D.; Grasso, D.; Pegoraro, F.; Schep, T. J.

    2008-10-15

    A numerical contour dynamics code has been employed to calculate the stable and unstable manifolds related to two interacting magnetic island chains. The magnetic configuration is generated by a nonlinear reconnection process described in D. Borgogno et al. [Phys. Plasmas. 12, 032309 (2005)]. The appearance of the first homoclinic and heteroclinic intersections of the dominant manifolds are shown and one of the associated uniformly hyperbolic orbits is given. The stickiness of the field lines around the island and the eventual development of global stochasticity are discussed. The basic geometry of the magnetic configuration is periodic so that the structure of the manifolds may be compared with the one obtained with Poincare plots.

  7. Intermediate regime of charged particle scattering in the field-reversal configuration

    NASA Astrophysics Data System (ADS)

    Shustov, P. I.; Artemyev, A. V.; Yushkov, E. V.

    2015-12-01

    In this paper, we investigate the charged particle scattering in the magnetic field configuration with stretched magnetic field lines. This scattering results from the violation of the adiabaticity of charged particle motion in the region with the strong gradient of the magnetic field. We consider the intermediate regime of charged particle dynamics, when the violation of the adiabaticity is significant enough, but particle motion is not chaotic. We demonstrate and describe the significant scattering of particles with large adiabatic invariants (magnetic moment). We discuss a possible application of obtained results for description of the peculiarities of pitch-angle diffusion of relativistic electrons in the Earth radiation belts.

  8. Intermediate regime of charged particle scattering in the field-reversal configuration.

    PubMed

    Shustov, P I; Artemyev, A V; Yushkov, E V

    2015-12-01

    In this paper, we investigate the charged particle scattering in the magnetic field configuration with stretched magnetic field lines. This scattering results from the violation of the adiabaticity of charged particle motion in the region with the strong gradient of the magnetic field. We consider the intermediate regime of charged particle dynamics, when the violation of the adiabaticity is significant enough, but particle motion is not chaotic. We demonstrate and describe the significant scattering of particles with large adiabatic invariants (magnetic moment). We discuss a possible application of obtained results for description of the peculiarities of pitch-angle diffusion of relativistic electrons in the Earth radiation belts. PMID:26723157

  9. Mercury's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.

    2014-12-01

    Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal sources cannot be distinguished from core fields, nor cleanly separated from external fields. I will report on recent data acquired at altitudes as low as 25 km that have the potential to resolve these issues. The presence of remanent crustal fields would have profound implications for Mercury's thermal and dynamical histories.

  10. Configuration and temperature dependence of magnetic damping in spin valves

    NASA Astrophysics Data System (ADS)

    Joyeux, X.; Devolder, T.; Kim, Joo-Von; Gomez de la Torre, Y.; Eimer, S.; Chappert, C.

    2011-09-01

    Using vector-analyzer ferromagnetic resonance, we have studied the microwave susceptibility of a Py/Co/Cu/Co/MnIr spin valve over a large temperature range (5-450 K) and as a function of the magnetic configuration. An effective magnetization and Gilbert damping constant of 1.1 T and 0.021, respectively, are found for the permalloy free layer, with no discernible variation in temperature observed for either quantities. In contrast, the pinned layer magnetization is reduced by heating, and the exchange bias collapses near a temperature of 450 K. The ferromagnetic resonance linewidth of the free layer increases by 500 MHz when the layer magnetizations are aligned in antiparallel, which is attributed to a configuration-dependent contribution to the damping from spin pumping effects.

  11. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our Newtonian results are excellent approximations for slowly spinning black holes. We proceed to address the issue of the spin dependence of the Blandford & Znajek power. The result we choose to highlight is our finding that given the validity of our assumption for the dynamical behavior of the so-called plunge region in black hole accretors, rotating black holes produce maximum Poynting flux via the Blandford & Znajek process for a black hole spin parameter of about a [approximate] 0.8. This is contrary to the conventional claim that the maximum electromagnetic flux is achieved for highest black hole spin.

  12. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    The origin and evolution of cosmic magnetic fields, their strength and structure in intergalactic space, their first occurrence in young galaxies, and their dynamical importance for galaxy evolution remain widely unknown. Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized radio synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 μG) and in central starburst regions (50-100 μG). Such fields are dynamically important; they can affect gas flows and drive gas inflows in central regions. Polarized radio emission traces ordered fields which can be regular or anisotropic turbulent, generated from isotropic turbulent fields by compression or shear. The strongest ordered fields of 10-15 μG strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. In galaxies with strong density waves, ordered (anisotropic turbulent) fields are also observed at the inner edges of the spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Irregular galaxies host isotropic turbulent fields often of similar strength as in spiral galaxies, but only weak ordered fields. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several galaxies reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by a mean-field α -Ω dynamo. So far no indications were found in external galaxies of large-scale field reversals, like the one in the Milky Way. Ordered magnetic fields are also observed in radio halos around edge-on galaxies out to large distances from the plane, with X-shaped patterns. In the outflow cone above a starburst region of NGC 253, RM data indicate a helical magnetic field.

  13. Formation of field-reversed configuration by use of two merging spheromaks with opposing toroidal field

    NASA Astrophysics Data System (ADS)

    Ono, Yasushi

    2016-03-01

    In 1986, we, U. Tokyo group first reported the new formation of the field-reversed configuration (FRC) by two merging spheromaks with opposing toroidal field. This unique formation has been developed mainly in our TS-3 and TS- 4 merging experiments, leading us to a new scenario of FRC slow-formation, heating and current-amplification. Its formation efficiency is much higher than the conventional field-reversed theta-pinch method. The relaxation from the force-free (β˜0.05-0.1) spheromaks to the high-β (β˜0.7-1) FRC is caused by conversion of the toroidal (partly poloidal) magnetic energy of the spheromaks to the ion thermal energy of the FRC through the reconnection outflow. The reconnection heating energy scales with square of the reconnecting magnetic field, suggesting direct access to the alpha heating without using any additional heating. A central solenoid (CS) coil was installed successfully to amplify the FRC plasma current by factor 2. Our toroidal mode observations suggest that the tilting stability of the oblate FRC is provided by ion kinetic effect. As another important extension, fast application of external toroidal magnetic field transformed this oblate FRC into an ultra-high-β spherical tokamak (ST) with diamagnetic toroidal magnetic field, suggesting close relationship between FRCs and high-β STs in the second stable region for ballooning mode.

  14. Strangeness spin, magnetic moment, and strangeness configurations of the proton

    SciTech Connect

    An, C.S.; Riska, D.O.; Zou, B.S.

    2006-03-15

    The implications of the empirical signatures for the positivity of the strangeness magnetic moment {mu}{sub s} and the negativity of the strangeness contribution to the proton spin {delta}{sub s} on the possible uudss configurations of five quarks in the proton are analyzed. The empirical signs for the values for these two observables can only be obtained in configurations where the uuds subsystem is orbitally excited and the s antiquark is in the ground state. The configurations in which the s is orbitally excited, including the conventional K{sup +}{lambda}{sup 0} configuration, with the exception of that in which the uuds component has spin 2, yield negative values for {mu}{sub s}. Here, the strangeness spin {delta}{sub s}, strangeness magnetic moment {mu}{sub s}, and axial coupling constant G{sub A}{sup s} are calculated for all possible configurations of the uudss component of the proton. In the configuration with [4]{sub FS}[22]{sub F}[22]{sub S} flavor-spin symmetry, which is likely to have the lowest energy, {mu}{sub s} is positive and {delta}{sub s}{approx_equal}G{sub A}{sup s}{approx_equal}-1/3{mu}{sub s}.

  15. Suprathermal plasma flows in current sheets formed in two- and three-dimensional magnetic configurations

    SciTech Connect

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.

    2010-04-15

    Dynamics of the thermal and directed motions of argon plasma ions in current sheets formed in various magnetic configurations was investigated experimentally Measurements in three-dimensional magnetic configurations with an X line were carried out for the first time. The results of these measurements were compared with the data obtained in experiments with two-dimensional magnetic configurations. The ion temperature and the energies and velocities of directed plasma flows within the current sheet were determined by analyzing the shapes of argon ion spectral lines broadened due to the Doppler effect. It is found that, under the given experimental conditions, the axial magnetic field does not affect the ion temperature and plasma acceleration in the sheet.

  16. Stability of a pinned magnetic domain wall as a function of its internal configuration

    SciTech Connect

    Montaigne, F.; Duluard, A.; Briones, J.; Lacour, D.; Hehn, M.; Childress, J. R.

    2015-01-14

    It is shown that there are many stable configurations for a domain wall pinned by a notch along a magnetic stripe. The stability of several of these configurations is investigated numerically as a function of the thickness of the magnetic film. The depinning mechanism depends on the structure of the domain wall and on the thickness of the magnetic film. In the case of a spin-valve structure, it appears that the stray fields emerging from the hard layer at the notch location influence the stability of the micromagnetic configuration. Different depinning mechanisms are thus observed for the same film thickness depending on the magnetization orientation of the propagating domain. This conclusion qualitatively explains experimental magnetoresistance measurements.

  17. Multichord optical interferometry of FRX-L's field reversed configuration

    NASA Astrophysics Data System (ADS)

    Ruden, E. L.; Zhang, Shouyin; Wurden, G. A.; Intrator, T. P.; Renneke, R.; Waganaar, W. J.; Analla, F. T.; Grabowski, T. C.

    2006-10-01

    A 0.633μm laser interferometer provides detailed time resolved information about the spatial distribution of the plasma density of field reversed configurations (FRC's) produced by the FRX-L experiment at Los Alamos National Laboratory. This experiment is an effort to produce a magnetized plasma with closed field lines suitable for compression by a solid metal liner imploded by the Shiva Star capacitor bank at the Air Force Research Laboratory. The interferometer probes a fanned array of eight chords through the FRC midplane, measuring the line integrated free electron density via its effect on optical phase shift relative to eight reference beams as a function of time. The reference beams are given nominally identical optical paths, except that they are folded for compactness and given an 80MHz higher optical frequency by use of a Bragg cell beam splitter. After the beams are recombined, interference results in 80MHz electromagnetic beat waves with dynamic phase shifts equal to those of the corresponding optical probes. Quadrature mixing of the electronically monitored light is then performed with rf components. Noteworthy features of the interferometer's design are the unique compact folding scheme of the reference paths, inclusion of a fused quartz tube in the reference path similar to that of the FRC's vacuum vessel to compensate for cylindrical lensing, and transmission of the interfering light via optical fibers to a rf shielded room for processing. Extraneous contributions to the phase shift due to vibration resulting from the system's pulsed magnetic field, and dynamic refractive changes in or near the fused quartz tube wall (possibly due to radiation heating) are corrected for.

  18. MHD waves and instabilities for gravitating, magnetized configurations in motion

    NASA Astrophysics Data System (ADS)

    Keppens, Rony; Goedbloed, Hans J. P.

    Seismic probing of equilibrium configurations is of course well-known from geophysics, but has also been succesfully used to determine the internal structure of the Sun to an amazing accuracy. The results of helioseismology are quite impressive, although they only exploit an equilibrium structure where inward gravity is balanced by a pressure gradient in a 1D radial fashion. In principle, one can do the same for stationary, gravitating, magnetized plasma equilibria, as needed to perform MHD seismology in astrophysical jets or accretion disks. The introduction of (sheared) differential rotation does require the important switch from diagnosing static to stationary equilibrium configurations. The theory to describe all linear waves and instabilities in ideal MHD, given an exact stationary, gravitating, magnetized plasma equilibrium, in any dimensionality (1D, 2D, 3D) has been known since 1960, and is governed by the Frieman-Rotenberg equation. The full (mathematical) power of spectral theory governing physical eigenmode determination comes into play when using the Frieman-Rotenberg equation for moving equilibria, as applicable to astrophysical jets, accretion disks, but also solar flux ropes with stationary flow patterns. I will review exemplary seismic studies of flowing equilibrium configurations, covering solar to astrophysical configurations in motion. In that case, even essentially 1D configurations require quantification of the spectral web of eigenmodes, organizing the complex eigenfrequency plane.

  19. The Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Balogh, André; Erdõs, Géza

    2013-06-01

    The Heliospheric Magnetic Field (HMF) is the physical framework in which energetic particles and cosmic rays propagate. Changes in the large scale structure of the magnetic field lead to short- and long term changes in cosmic ray intensities, in particular in anti-phase with solar activity. The origin of the HMF in the corona is well understood and inner heliospheric observations can generally be linked to their coronal sources. The structure of heliospheric magnetic polarities and the heliospheric current sheet separating the dominant solar polarities are reviewed here over longer than a solar cycle, using the three dimensional heliospheric observations by Ulysses. The dynamics of the HMF around solar minimum activity is reviewed and the development of stream interaction regions following the stable flow patterns of fast and slow solar wind in the inner heliosphere is described. The complex dynamics that affects the evolution of the stream interaction regions leads to a more chaotic structure of the HMF in the outer heliosphere is described and discussed on the basis of the Voyager observations. Around solar maximum, solar activity is dominated by frequent transients, resulting in the interplanetary counterparts of Coronal Mass Ejections (ICMEs). These produce a complex aperiodic pattern of structures in the inner heliosphere, at all heliolatitudes. These structures continue to interact and evolve as they travel to the outer heliosphere. However, linking the observations in the inner and outer heliospheres is possible in the case of the largest solar transients that, despite their evolutions, remain recognizably large structures and lead to the formation of Merged Interaction Regions (MIRs) that may well form a quasi-spherical, "global" shell of enhanced magnetic fields around the Sun at large distances. For the transport of energetic particles and cosmic rays, the fluctuations in the magnetic field and their description in alternative turbulent models remains a very important research topic. These are also briefly reviewed in this paper.

  20. Field-reversed configuration (FRC) experiments

    NASA Astrophysics Data System (ADS)

    Siemon, R. E.; Chrien, R. E.; Hugrass, W. N.; Okada, S.; Rej, D. J.; Taggart, D. P.; Tuszewski, M.; Webster, R. B.; Wright, B. L.; Slough, J. T.

    FRCs with equilibrium separatrix radii up to 0.18 m have been formed and studied in FRX-C/LSM. For best formation conditions at low fill pressure, the particle confinement exceeds the predictions of LHD transport calculations by up to a factor of two; however, the inferred flux confinement is more anomalous than in smaller FRCs. Higher bias field produces axial shocks and degradation in confinement, while higher fill pressure results in gross fluting during formation. FRCs have been formed in TRX with s from 2 to 6. These relatively collisional FRCs exhibit flux lifetimes of 10 yields 20 kinetic growth times for the internal tilt mode. The coaxial slow source has produced annular FRCs in a coaxial coil geometry on slow time scales using low voltages.

  1. Classical field configurations and infrared slavery

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    1987-09-01

    The problem of determining the energy of two spinor particles interacting through massless-particle exchange is analyzed using the path-integral method. A form for the long-range interaction energy is obtained by analyzing an abridged vertex derived from the parent theory. This abridged vertex describes the radiation of zero-momentum particles by pointlike sources. A path-integral formalism for calculating the energy of the radiation field associated with this abridged vertex is developed and applications are made to determine the energy necessary for adiabatic separation of two sources in quantum electrodynamics and for an SU(2) Yang-Mills theory. The latter theory is shown to be consistent with confinement via infrared slavery.

  2. Hidden Magnetic Configuration in Epitaxial La1-x SrxMnO3 Films

    SciTech Connect

    Lee, J.S.; Arena, D.A.; Yu, P.; Nelson, C.S.; Fan, R.; Kinane, C.J.; Langridge, S.; Rossell, M.D.; Ramesh, R.; Kao, C.C.

    2010-12-17

    We present an unreported magnetic configuration in epitaxial La{sub 1-x}Sr{sub x}MnO{sub 3} (x {approx} 0.3) (LSMO) films grown on strontium titanate (STO). X-ray magnetic circular dichroism indicates that the remanent magnetic state of thick LSMO films is opposite to the direction of the applied magnetic field. Spectroscopic and scattering measurements reveal that the average Mn valence varies from mixed Mn{sup 3+}/Mn{sup 4+} to an enriched Mn{sup 3+} region near the STO interface, resulting in a compressive lattice along the a, b axis and a possible electronic reconstruction in the Mn e{sub g} orbital (d{sub 3z{sup 2}-r{sup 2}}). This reconstruction may provide a mechanism for coupling the Mn{sup 3+} moments antiferromagnetically along the surface normal direction, and in turn may lead to the observed reversed magnetic configuration.

  3. Hidden magnetic configuration in epitaxial La1-rSrzMnO3 films

    SciTech Connect

    Kao, Chi-Chang

    2011-05-23

    We present an unreported magnetic configuration in epitaxial La{sub 1-x}Sr{sub x}MnO{sub 3} (x {approx} 0.3) (LSMO) films grown on strontium titanate (STO). X-ray magnetic circular dichroism indicates that the remanent magnetic state of thick LSMO films is opposite to the direction of applied magnetic field. Spectroscopic and scattering measurements reveal that the average Mn valence varies from mixed Mn{sup 3+}/Mn{sup 4+} to an enriched Mn{sup 3+} region near the STO interface, resulting in a compressive lattice along a, b-axis and a possible electronic reconstruction in the Mn e{sub g} orbital (d{sub 3z{sup 2}-r{sup 2}}). This reconstruction may provide a mechanism for coupling the Mn{sup 3+} moments antiferromagnetically along the surface normal direction, and in turn may lead to the observed reversed magnetic configuration.

  4. The role of geomagnetic field configuration in EMIC wave generation

    NASA Astrophysics Data System (ADS)

    McCollough, J. P.

    Global configuration of the geomagnetic field plays an important role in magnetospheric dynamics. We study the effect of field configuration on electromagnetic ion-cyclotron (EMIC) wave growth with test particle simulations. As an initial study, we quantitatively examine the accuracy of several empirical geomagnetic field models widely in use. We study two years characterized by very different space weather conditions: 1996 and 2003. The year 1996, at solar minimum, exhibited many high-speed streams and a few co-rotating interaction regions, but was generally quiet. In contrast, 2003 included the "Halloween storm," one of the most intense geomagnetic storms on record caused by a coronal mass ejection. The performance of each model, as measured by prediction efficiency and skill score, is evaluated as a function of magnetospheric conditions (reflected by the geomagnetic index, Kp) and magnetic local time. We subsequently developed a new MHD/particle method to study electromagnetic ion-cyclotron (EMIC) wave growth in a realistic and dynamic magnetosphere. We simulate the phase space density dynamics of warm plasma particles in magnetospheric electromagnetic fields from the global Lyon-Fedder-Mobarry (LFM) MHD code and 3D test-particle trajectories. We use these results to compute temperature anisotropies and plasma densities. We then compute the convective EMIC wave growth rate using these macroscopic plasma quantities, and thus generate a spatiotemporal picture of the growth of these waves. We use our new MHD/particle method for studying EMIC wave growth to simulate a compression event observed on 29 June 2007 and compare the results with observations from ground observatories and spacecraft measurements. We then study the time evolution of various quantities to discern physical mechanisms leading to simulated wave growth. A fairly at simulated temperature profile in time suggested an absence of energizing processes during this event. This can be explained by two possible mechanisms: temperature anisotropy induced by drift shell splitting (DSS), and the bulk execution of unusual particle trajectories called Shabansky orbits. Finally, we used test particle simulations in a static analytic model field to study the two non-energizing processes. We show that Shabansky orbits executed in bulk provide a temperature anisotropy distinct from DSS-induced temperature anisotropy, and we discuss the two origins of this new physical mechanism for anisotropy generation.

  5. Time Window for Magnetic Reconnection in Plasma Configurations with Velocity Shear

    SciTech Connect

    Faganello, M.; Califano, F.; Pegoraro, F.

    2008-10-24

    It is shown that the rate of magnetic field line reconnection can be clocked by the evolution of the large-scale processes that are responsible for the formation of the current layers where reconnection can take place. In unsteady plasma configurations, such as those produced by the onset of the Kelvin-Helmholtz instability in a plasma with a velocity shear, qualitatively different magnetic structures are produced depending on how fast the reconnection process develops on the external clock set by the evolving large-scale configuration.

  6. Refocusing properties of periodic magnetic fields

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1976-01-01

    The use of depressed collectors for the efficient collection of spent beams from linear-beam microwave tubes depends on a refocusing procedure in which the space charge forces and transverse velocity components are reduced. The refocusing properties are evaluated of permanent magnet configurations whose axial fields are approximated by constant plateaus or linearly varying fields. The results provide design criteria and show that the refocusing properties can be determined from the plateau fields alone.

  7. Magnetization dynamics using ultrashort magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Tudosa, Ioan

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic field.

  8. Preliminary investigation of force-reduced superconducting magnet configurations for advanced technology applications

    SciTech Connect

    Bouillard, J.X.

    1992-12-01

    The feasibility of new high-field low specific weight superconducting magnet designs using force-free fields is being explored analytically and numerically. This report attempts to assess the technical viability of force-free field concepts to produce high-field, low specific weight and large bore volume magnets, which could promote the use of high temperature superconductors. Several force-free/force-reduced magnet configurations are first reviewed, then discussed and assessed. Force-free magnetic fields, fields for which the current flows parallel to the field, have well-known mathematical solutions extending upon infinite domains. These solutions, however, are no longer force-free everywhere for finite geometries. In this preliminary study, force-free solutions such as the Lundquist solutions truncated to a size where the internal field of the coil matches an externally cylindrical magnetic field (also called a Lundquist coil) are numerically modeled and explored. Significant force-reduction for such coils was calculated, which may have some importance for the design of lighter toroidal magnets used in thermonuclear fusion power generation, superconducting magnetic energy storage (SMES), and mobile MHD power generation and propulsion.

  9. Explaining Mercury's peculiar magnetic field

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.

    2014-05-01

    MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken and we explore two scenarios. Increasing the heat flux through the northern hemisphere of the core-mantle boundary is an obvious choice but is not supported by current models for Mercury's mantle. We find that a combination of internal rather than bottom driving and an increased heat flux through the equatorial region of the core-mantle boundary also promotes the required symmetry breaking and results in very Mercury like fields. The reason is that the imposed heat flux pattern, though being equatorially symmetric, lowers the critical Rayleigh number for the onset of equatorially anti-symmetric convection modes. In both scenarios, a stably stratified layer or a feedback coupling to the magnetospheric field is required for lowering the field strength to Mercury-like values.

  10. Normal glow discharge in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Surzhikov, S.; Shang, J.

    2014-10-01

    Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

  11. Dynamics of charged particles in spatially chaotic magnetic fields

    SciTech Connect

    Ram, Abhay K.; Dasgupta, Brahmananda

    2010-12-15

    The spatial topology of magnetic field lines can be chaotic for fields generated by simple current configurations. This is illustrated for a system consisting of a circular current loop and a straight current wire. An asymmetric configuration of the current system leads to three-dimensional spatially chaotic magnetic fields. The motion of charged particles in these fields is not necessarily chaotic and exhibits intriguing dynamical properties. Particles having initial velocities closely aligned with the direction of the local magnetic field are likely to follow chaotic orbits in phase space. Other particles follow coherent and periodic orbits; these orbits being the same as in the symmetric current configuration for which the field lines are not chaotic. An important feature of particles with chaotic motion is that they undergo spatial transport across magnetic field lines. The cross-field diffusion is of interest in a variety of magnetized plasmas including laboratory and astrophysical plasmas.

  12. Chaotic magnetic fields: Particle motion and energization

    SciTech Connect

    Dasgupta, Brahmananda; Ram, Abhay K.; Li, Gang; Li, Xiaocan

    2014-02-11

    Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

  13. The Primordial Origin Model of Magnetic Fields in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro

    2010-10-01

    We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.

  14. THE GALACTIC MAGNETIC FIELD

    SciTech Connect

    Jansson, Ronnie; Farrar, Glennys R.

    2012-12-10

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  15. Probing Magnetic Configurations in Buried Cobalt/Copper Multilayered Nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Kai

    2009-03-01

    Multilayered magnetic nanowires have been a model system for heterostructured junctions that exhibit a host of fascinating perpendicular spin transport phenomena, such as giant and tunneling magnetoresistance (MR), and spin-transfer torque effects. Due to the extremely small physical dimensions the magnetic components in these nanowires or junctions often exhibit complex magnetization reversal behaviors, which are difficult to probe by magnetic imaging since the entities are buried deep inside a matrix. Conventional hysteresis loop measurement alone cannot reliably distinguish the reversal mechanisms either. In this work we have captured magnetic and MR ``fingerprints'' of Co nanodiscs in Co/Cu multilayered nanowires as they undergo a single domain to vortex state transition, using a first-order reversal curve (FORC) method [1]. The nanowires have been electrochemically deposited into nanoporous polycarbonate membranes. In 50 nm diameter [Co(5nm)/Cu(8nm)]400 nanowires, a 10% MR effect is observed at 300 K. In 200 nm diameter nanowires, the magnetic configurations can be tuned by adjusting the Co nanodisc aspect ratio. Nanowires with thinnest Co exhibit single domain behavior. Those with thicker Co exhibit vortex states, where the irreversible nucleation and annihilation of the vortices are manifested as butterfly-like features in the FORC distributions, similar to those observed in arrays of Fe nanodots [2]. They also show a superposition of giant and anisotropic magnetoresistance, which corresponds to the specific magnetic configurations of the Co nanodiscs. [4pt] [1] J. E. Davies, et al, Phys. Rev. B 70, 224434 (2004); Appl. Phys. Lett. 86, 262503 (2005); Phys. Rev. B 77, 014421 (2008).[0pt] [2] R. K. Dumas, et al, Phys. Rev. B 75, 134405 (2007); Appl. Phys. Lett. 91, 202501 (2007).

  16. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  17. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  18. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  19. Two-dimensional interpreter for field-reversed configurations

    SciTech Connect

    Steinhauer, Loren

    2014-08-15

    An interpretive method is developed for extracting details of the fully two-dimensional (2D) “internal” structure of field-reversed configurations (FRC) from common diagnostics. The challenge is that only external and “gross” diagnostics are routinely available in FRC experiments. Inferring such critical quantities as the poloidal flux and the particle inventory has commonly relied on a theoretical construct based on a quasi-one-dimensional approximation. Such inferences sometimes differ markedly from the more accurate, fully 2D reconstructions of equilibria. An interpreter based on a fully 2D reconstruction is needed to enable realistic within-the-shot tracking of evolving equilibrium properties. Presented here is a flexible equilibrium reconstruction with which an extensive data base of equilibria was constructed. An automated interpreter then uses this data base as a look-up table to extract evolving properties. This tool is applied to data from the FRC facility at Tri Alpha Energy. It yields surprising results at several points, such as the inferences that the local β (plasma pressure/external magnetic pressure) of the plasma climbs well above unity and the poloidal flux loss time is somewhat longer than previously thought, both of which arise from full two-dimensionality of FRCs.

  20. Electrostatic Drift-Wave Instability in Field-Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Lau, Calvin; Fulton, Daniel; Holod, Ihor; Lin, Zhihong; Binderbauer, Michl; Tajima, Toshiki; Schmitz, Lothar

    2015-11-01

    Recent progress in the C-2 advanced beam-driven field-reversed configuration (FRC) experiment [Binderbauer 2015] at Tri Alpha Energy has led to consistently reproducible plasma lifetimes of 5+ ms, ie. transport regimes. To understand the mechanisms, gyrokinetic particle-in-cell simulations of drift-wave instabilities have been carried out for the FRC [Fulton 2015]. The realistic magnetic geometry is represented in Boozer coordinates in the upgraded gyrokinetic toroidal code (GTC) [Lin 1998]. Radially local simulations find that, in the FRC core, ion scale modes are stable for realistic pressure gradients while the electron scale modes are unstable. On the other hand, in the scrape-off layer (SOL) outside of the separatrix, both ion and electron scale modes are unstable. These findings and linear instability thresholds found in simulation are consistent with the C-2 experimental measurements of density fluctuations [Schmitz 2015]. Collisional effects and instability drive mechanism will be clarified. Nonlocal and nonlinear simulation results will also be reported. supported by TAE.

  1. A flexible and configurable system to test accelerator magnets

    SciTech Connect

    Jerzy M. Nogiec et al.

    2001-07-20

    Fermilab's accelerator magnet R and D programs, including production of superconducting high gradient quadrupoles for the LHC insertion regions, require rigorous yet flexible magnetic measurement systems. Measurement systems must be capable of handling various types of hardware and extensible to all measurement technologies and analysis algorithms. A tailorable software system that satisfies these requirements is discussed. This single system, capable of distributed parallel signal processing, is built on top of a flexible component-based framework that allows for easy reconfiguration and run-time modification. Both core and domain-specific components can be assembled into various magnet test or analysis systems. The system configured to comprise a rotating coil harmonics measurement is presented. Technologies as Java, OODB, XML, JavaBeans, software bus and component-based architectures are used.

  2. Electronic configurations and magnetic anisotropy in organometallic metallocenes

    SciTech Connect

    Nawa, Kenji Kitaoka, Yukie; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori

    2015-05-07

    Electronic configurations and magnetic anisotropy of organometallic metallocenes (MCp{sub 2}s) were investigated by means of first principles calculations based on the constraint density functional theory. The results predict that the ground states for M = Cr, Mn, Fe, Co, and Ni are the {sup 3}E{sub 2g}, {sup 2}E{sub 2g}, {sup 1}A{sub 1g}, {sup 2}E{sub 1g}, and {sup 3}A{sub 2g} states, respectively. The magnetizations of the CoCp{sub 2} and NiCp{sub 2} energetically favor highly orienting along the perpendicular and parallel directions to the cyclopentadienyl (Cp) plane, respectively, and the others show almost no preference for the magnetic easy axis.

  3. Diffusion of magnetic field via turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar.

  4. The effect of picket-fence surface magnetic fields at the end of a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Hershkowitz, N.; Dekock, J. R.; Chan, C.

    1980-06-01

    The use of picket-fence magnetic fields to reduce plasma leaks at the end of a magnetized plasma column is investigated. It is shown that the magnetic and self-consistent electric fields associated with such a configuration may be suitable for suppressing secondary electron emission at plasma boundaries.

  5. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  6. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  7. Electric field induced by dynamical change of dipolar configurations in ferromagnets.

    PubMed

    Prosandeev, S; Bellaiche, L

    2009-03-01

    An analytical expression for the electric field, Eint, induced by any dynamical change of dipolar configuration is derived for ferromagnets. Effective Hamiltonian simulations are further conducted to realistically compute such field in an asymmetric permalloy ring. It is found that Eint mostly consists of short pulses that are correlated with the rapid temporal change of the magnetic toroidal moment in this low-dimensional ferromagnet, thus providing macroscopic information about the dynamical change of magnetic vortices. Discussion about the connection between Eint and some electric fields recently mentioned in the literature is also provided. PMID:19392561

  8. Plasma Equilibria With Stochastic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Krommes, J. A.; Reiman, A. H.

    2009-05-01

    Plasma equilibria that include regions of stochastic magnetic fields are of interest in a variety of applications, including tokamaks with ergodic limiters and high-pressure stellarators. Such equilibria are examined theoretically, and a numerical algorithm for their construction is described.^2,3 % The balance between stochastic diffusion of magnetic lines and small effects^2 omitted from the simplest MHD description can support pressure and current profiles that need not be flattened in stochastic regions. The diffusion can be described analytically by renormalizing stochastic Langevin equations for pressure and parallel current j, with particular attention being paid to the satisfaction of the periodicity constraints in toroidal configurations with sheared magnetic fields. The equilibrium field configuration can then be constructed by coupling the prediction for j to Amp'ere's law, which is solved numerically. A. Reiman et al., Pressure-induced breaking of equilibrium flux surfaces in the W7AS stellarator, Nucl. Fusion 47, 572--8 (2007). J. A. Krommes and A. H. Reiman, Plasma equilibrium in a magnetic field with stochastic regions, submitted to Phys. Plasmas. J. A. Krommes, Fundamental statistical theories of plasma turbulence in magnetic fields, Phys. Reports 360, 1--351.

  9. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  10. Potential micrometeoroid and orbital debris protection system using a gradient magnetic field and magnetic flux compression

    NASA Astrophysics Data System (ADS)

    Giffin, A.; Shneider, M. N.; Miles, R. B.

    2010-08-01

    A system for using a magnetic field in conjunction with conventional shielding configurations to protect against micrometeoroid and orbital debris is presented. Analytical, numerical, and experimental studies of a conductor moving through a gradient magnetic field have been performed. The results show that in the high magnetic Reynolds number regime a conducting object will experience large forces that tend to deform it while moving through the gradient field. Additionally a configuration using magnetic flux compression is introduced to act as a magnetic shock absorber. Separately or together, this technology may augment or replace current protection designs for space systems.

  11. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  12. Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors

    PubMed Central

    Henriksen, Anders Dahl; Ley, Mikkel Wennemoes Hvitfeld; Flyvbjerg, Henrik; Hansen, Mikkel Fougt

    2015-01-01

    Magnetic biosensors detect magnetic beads that, mediated by a target, have bound to a functionalized area. This area is often larger than the area of the sensor. Both the sign and magnitude of the average magnetic field experienced by the sensor from a magnetic bead depends on the location of the bead relative to the sensor. Consequently, the signal from multiple beads also depends on their locations. Thus, a given coverage of the functionalized area with magnetic beads does not result in a given detector response, except on the average, over many realizations of the same coverage. We present a systematic theoretical analysis of how this location-dependence affects the sensor response. The analysis is done for beads magnetized by a homogeneous in-plane magnetic field. We determine the expected value and standard deviation of the sensor response for a given coverage, as well as the accuracy and precision with which the coverage can be determined from a single sensor measurement. We show that statistical fluctuations between samples may reduce the sensitivity and dynamic range of a sensor significantly when the functionalized area is larger than the sensor area. Hence, the statistics of sampling is essential to sensor design. For illustration, we analyze three important published cases for which statistical fluctuations are dominant, significant, and insignificant, respectively. PMID:26496495

  13. Plasma transport in a simulated magnetic-divertor configuration

    SciTech Connect

    Strawitch, C. M.

    1981-03-01

    The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.

  14. Reconnection of Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Birn, J.; Priest, E. R.

    2007-01-01

    Preface; Part I. Introduction: 1.1 The Sun E. R. Priest; 1.2 Earth's magnetosphere J. Birn; Part II. Basic Theory of MHD Reconnection: 2.1 Classical theory of two-dimensional reconnection T. G. Forbes; 2.2 Fundamental concepts G. Hornig; 2.3 Three-dimensional reconnection in the absence of magnetic null points G. Hornig; 2.4 Three-dimensional reconnection at magnetic null points D. Pontin; 2.5 Three-dimensional flux tube reconnection M. Linton; Part III. Basic Theory of Collisionless Reconnection: 3.1 Fundamentals of collisionless reconnection J. Drake; 3.2 Diffusion region physics M. Hesse; 3.3 Onset of magnetic reconnection P. Pritchett; 3.4 Hall-MHD reconnection A. Bhattacharjee and J. Dorelli; 3.5 Role of current-aligned instabilities J. Büchner and W. Daughton; 3.6 Nonthermal particle acceleration M. Hoshino; Part IV. Reconnection in the Magnetosphere: 4.1 Reconnection at the magnetopause: concepts and models J. G. Dorelli and A. Bhattacharjee; 4.2 Observations of magnetopause reconnection K.-H. Trattner; 4.3 On the stability of the magnetotail K. Schindler; 4.4 Simulations of reconnection in the magnetotail J. Birn; 4.5 Observations of tail reconnection W. Baumjohann and R. Nakamura; 4.6 Remote sensing of reconnection M. Freeman; Part V. Reconnection in the Sun's Atmosphere: 5.1 Coronal heating E. R. Priest; 5.2 Separator reconnection D. Longcope; 5.3 Pinching of coronal fields V. Titov; 5.4 Numerical experiments on coronal heating K. Galsgaard; 5.5 Solar flares K. Kusano; 5.6 Particle acceleration in flares: theory T. Neukirch; 5.7 Fast particles in flares: observations L. Fletcher; 6. Open problems J. Birn and E. R. Priest; Bibliography; Index.

  15. Leptogenesis and primordial magnetic fields

    SciTech Connect

    Long, Andrew J.; Sabancilar, Eray; Vachaspati, Tanmay E-mail: eray.sabancilar@asu.edu

    2014-02-01

    The anomalous conversion of leptons into baryons during leptogenesis is shown to produce a right-handed helical magnetic field; in contrast, the magnetic field produced during electroweak baryogenesis is known to be left-handed. If the cosmological medium is turbulent, the magnetic field evolves to have a present day coherence scale ∼ 10 pc and field strength ∼ 10{sup −18} Gauss. This result is insensitive to the energy scale at which leptogenesis took place. Observations of the amplitude, coherence scale, and helicity of the intergalactic magnetic field promise to provide a powerful probe of physics beyond the Standard Model and the very early universe.

  16. Observations of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.

  17. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  18. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  19. Magnetic fields in superconducting neutron stars.

    PubMed

    Lander, S K

    2013-02-15

    The interior of a neutron star is likely to be predominantly a mixture of superfluid neutrons and superconducting protons. This results in the quantization of the star's magnetic field into an array of thin flux tubes, producing a macroscopic force very different from the Lorentz force of normal matter. We show that in an axisymmetric superconducting equilibrium the behavior of a magnetic field is governed by a single differential equation. Solving this, we present the first self-consistent superconducting neutron star equilibria with poloidal and mixed poloidal-toroidal fields and also give the first quantitative results for the corresponding magnetically induced distortions to the star. The poloidal component is dominant in all our configurations. We suggest that the transition from normal to superconducting matter in a young neutron star may cause a large-scale field rearrangement. PMID:25166363

  20. Evolution of twisted magnetic fields

    SciTech Connect

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  1. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  2. Effects of Satellite Sampling Configurations on Derived Gridded Fields

    NASA Technical Reports Server (NTRS)

    Lait, Leslie R.

    1998-01-01

    Various configurations of a scanning satellite instrument are simulated by sampling realistic fields of nitrous oxide. Synoptic grids are computed from the resulting simulated orbital data and compared to the original sampled data fields. Results are compared with those obtained by flying a simulated satellite over low-resolution fields and fields that are static in time. Although increasing the number of instrument scan positions does provide more information along an orbital swath, using more than three to five scan positions does not significantly increase the accuracy of global synoptic grids using the gridding techniques described here.

  3. The magnetic fields of young stars

    NASA Astrophysics Data System (ADS)

    Yang, Hao

    2009-06-01

    The T Tauri stars (TTSs) are young, solar-type stars which display many spectral pecularities. Understanding the magnetic properties of TTSs is a key to make sense of their curious behaviors. First, high resolution optical and infrared (IR) echelle spectra are analyzed to measure the surface magnetic field of the classical T Tauri star (CTTS) TW Hydrae. Key stellar parameters are determined from detailed spectrum synthesis of atomic and molecular absorption features in the optical, and then modeling the line profiles of the four magnetically sensitive Ti I lires in the K band yields the average magnetic field on TW Hydrae. Extensive Monté Carlo tests are performed to quantify systematic errors in the analysis technique, finding that reasonable errors in the effective temperature or surface gravity produce around 10% uncertainty in the magnetic field measurements. Then a similar analysis technique is applied to detect strong magnetic fields on 5 additional stars in the TW Hydrae Association (TWA) as well as 14 TTSs in the Orion Nebula Cluster (ONC). We combine these measurements with previous measurements of 14 stars in Taurus to study the potential evolution of magnetic field properties during the first 10 million years of stellar evolution. In addition, to probe the magnetic geometry on the surface of TW Hydrae, high resolution circular spectropolarimetry of this star is analyzed to measure the net longitudinal magnetic field. Significant polarization is detected on the final night of six consecutive nights of observing, but no net polarization is seen on other nights. This longitudinal field detection is still much lower than that which would be consistent with a dipole geometry on the stellar suface. On the other hand, strong circular polarization is detected in the He I l5876 and Ca II l8498 emission lines, indicating a strong field in the line forming regions of these features. Overall, strong magnetic fields of kG level are commonly found among TTSs and the magnetic configuration is probably not a simple dipole as current magnetospheric accretion theories assume. With magnetic pressure likely dominating over gas pressure in the stellar photospheres, the entire stellar surfaces could be covered with magnetic fields, and this might be responsible for the underproduction of the X-ray emission of TTSs. It is also suggested that these large-scale magnetic fields could be of a primordial origin.

  4. Double ferromagnetic resonance and configuration-dependent dipolar coupling in unsaturated arrays of bistable magnetic nanowires

    NASA Astrophysics Data System (ADS)

    de La Torre Medina, J.; Piraux, L.; Olais Govea, J. M.; Encinas, A.

    2010-04-01

    The ferromagnetic resonance properties in arrays of low diameter bistable nanowires have been studied. Measurements performed in the frequency swept mode show that in nonsaturated states, wires magnetized in the positive and negative direction absorb at different frequencies giving place to spectra with two absorption peaks. Moreover, the positive and negative wires obey different dispersion relations, which allow interpreting their different frequency-field dependence in terms of the uniform precession mode. Measurements along sets of first-order reversal curves allow to determine the dipolar interaction field as a function of the magnetic state. The configuration dependence of the interaction field is found to be proportional to the value of the dipolar interaction field of the saturated state. An analytical mean-field expression, which explicitly incorporates the dependence of the interaction field with the magnetic configuration, is proposed and used to obtain a general expression for both the effective field and the dispersion relation, which describes with remarkable agreement the ferromagnetic resonance measurements in saturated and nonsaturated states.

  5. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  6. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  7. Whistler Modes with Wave Magnetic Fields Exceeding the Ambient Field

    SciTech Connect

    Stenzel, R.L.; Urrutia, J.M.; Strohmaier, K.D.

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  8. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  9. An evaluation of Tsyganenko magnetic field model

    SciTech Connect

    Fairfield, D.H. )

    1991-02-01

    A long-standing goal of magnetospheric physics has been to produce a model of the Earth's magnetic field that can accurately predict the field vector at all locations within the magnetosphere for all dipole tilt angles and for various solar wind or magnetic activity conditions. A number of models make such predictions, but some only for limited spatial regions, some only for zero tilt angle, and some only for arbitrary conditions. No models depend explicitly on solar wind conditions. A data set of more than 22,000 vector averages of the magnetosphere magnetic field over 0.5 R{sub E} regions is used to evaluate Tsyganenko's 1982 and 1987 magnetospheric magnetic field models. The magnetic field predicted by the model in various regions is compared to observations to find systematic discrepancies which future models might address. While agreement is generally good, discrepancies are noted which include: (1) a lack of adequate field line stretching in the tail and ring current regions; (2) an inability to predict weak enough fields in the polar cusps; and (3) a deficiency of Kp as a predictor of the field configuration.

  10. The Astromag Superconducting Magnet Facility Configured for a FreeFlying Satellite

    SciTech Connect

    Green, M.A.; Smoot, George F.

    1991-06-01

    ASTROMAG is a particle astrophysics facility that was originally configured for the Space Station. The heart of the ASTROMAG facility is a large superconducting magnet which is cooled using superfluid helium. The task of resizing the facility so that it will fly in a satellite in. a high angle of inclination orbit is driven by the launch weight capability of the launch rocket and the desire to be able to do nearly the same physics as the Space Station version of ASTROMAG. In order to reduce the launch weight, the magnet and its cryogenic system had to be downsized, yet the integrated field generated by the magnet in the particle detectors has to match the Space Station version of the magnet. The use of aluminum matrix superconductor and oriented composite materials in the magnet insulation permits one to achieve this goal. The net magnetic dipole moment from the ASTROMAG magnet must be small to minimize the torque due to interaction with the earth's magnetic field. The ASTROMAG magnet consists of identical two coils 1.67 meters apart. The two coils are connected in series in persistent mode. Each coil is designed to carry 2.34 million ampere turns. Both coils are mounted on the same magnetic axis and they operate at opposite polarity. This reduces the dipole moment by a factor of more than 1000. This is tolerable for the Space Station version of the magnet. A magnet operating on a free flying satellite requires additional compensation. This report presents the magnet parameters of a free flying version of ASTROMAG and the parameters of the space cryogenic system for the magnet.

  11. Field line reconstruction for edge transport modeling in non-axisymmetric tokamaks configurations

    NASA Astrophysics Data System (ADS)

    Frerichs, Heinke; Schmitz, Oliver; Waters, Ian; Evans, Todd; Feng, Yuhe; Soukhanovskii, Vlad

    2015-11-01

    Symmetry breaking effects such as resonant magnetic perturbations (RMPs) present a challenge for the numerical analysis of divertor operation, because they require three dimensional models. One such model is provided by the EMC3-EIRENE code, which is based on a finite flux tube grid for field line reconstruction that allows to account for realistic, three dimensional configurations. We present the Field Line Analysis and Reconstruction Environment (FLARE) - a collection of tools for the analysis of the magnetic field structure. It includes a flexible grid generator which allows to set up plasma transport simulations for single and double null configurations (both disconnected and connected). This includes the ``snowflake minus'' topology, and we present an application for a ``near-exact snowflake'' configuration at NSTX-U. Recent edge plasma simulations for DIII-D and ITER include plasma response effects as calculated by the M3D-C1 code, and it is found that these configurations require a local adjustment of radial/poloidal resolution in order to maintain a reasonable level of magnetic flux conservation. This work is supported in part by the U.S. Department of Energy under DE-SC0012315 and DE-FC02-04ER54698, and by Start-Up Funds of the University of Wisconsin - Madison.

  12. Detection of magnetic barriers in a chaotic domain: first application of finite time Lyapunov exponent method to a magnetic confinement configuration

    NASA Astrophysics Data System (ADS)

    Rubino, G.; Borgogno, D.; Veranda, M.; Bonfiglio, D.; Cappello, S.; Grasso, D.

    2015-08-01

    Magnetic field lines embedded in a plasma confinement system are often characterized by a chaotic motion. This weakens the confinement properties of any magnetic configuration. However, even in case of chaotic domains, magnetic barriers can emerge and limit the field line motion itself. In the context of the numerical simulation of a Reversed-Field Pinch configuration a new magnetic topology analysis, borrowed from previous fluid dynamic studies, is discussed. This methodology relies on the behavior of the Finite Time Lyapunov Exponent (FTLE) associated with the magnetic field. By referring to a previous work in which the magnetic field is given in terms of analytical function (Borgogno et al 2011 Phys. Plasmas 18 102307) the FTLE field shows the presence of ridges, special gradient lines normal to the direction of minimum curvature, forming magnetic barriers. These ridges can be recognized as Lagrangian Coherent Structures (LCSs) for the system, actually opposing the penetration of magnetic field lines across them. In this article a more general numerical scheme for the detection of the LCSs has been adopted that allows analysis of realistic cases in which the magnetic fields are numerically known on a discrete mesh. After a validation test performed on the analytical case, a first application to a numerical magnetohydrodynamics simulation of the RFP, characterized by a broad chaotic region, has been performed. A strong magnetic barrier has been observed that effectively limits the field lines motion inside the chaotic sea.

  13. Constraints on the magnetic field geometry of magnetars

    NASA Astrophysics Data System (ADS)

    Sotani, H.; Colaiuda, A.; Kokkotas, K. D.

    2008-04-01

    We study the effect of the magnetic field geometry on the oscillation spectra of strongly magnetized stars. We construct a configuration of magnetic field where a toroidal component is added to the standard poloidal one. We consider a star with a type I superconductor core so that both components of the magnetic field are expelled from the core and confined in the crust. Our results show that the toroidal contribution does not influence significantly the torsional oscillations of the crust. On the contrary, the confinement of the magnetic field in the crust drastically affects the torsional oscillation spectrum. A comparison with estimations for the magnetic field strength, from observations, excludes the possibility that magnetars will have a magnetic field solely confined in the crust, that is, our results suggest that the magnetic field in whatever geometry has to permeate the whole star.

  14. Magnetic Fields in Early Protostellar Disk Formation

    NASA Astrophysics Data System (ADS)

    González-Casanova, Diego F.; Lazarian, Alexander; Santos-Lima, Reinaldo

    2016-03-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called “magnetic braking catastrophe.” In particular, we provide a detailed study of the dynamics of a 0.5 M⊙ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, “reconnection diffusion,” removes the magnetic flux from the disk; the other involves the change of the magnetic field's topology, but does not change the absolute value of the magnetic flux through the disk. We demonstrate that for the first mechanism, turbulence causes a magnetic flux transport outward from the inner disk to the ambient medium, thus decreasing the coupling of the disk to the ambient material. A similar effect is achieved through the change of the magnetic field's topology from a split monopole configuration to a dipole configuration. We explore how both mechanisms prevent the catastrophic loss of disk angular momentum and compare both above turbulent reconnection mechanisms with alternative mechanisms from the literature.

  15. Experimental evidence of skyrmion-like configurations in bilayer nanodisks with perpendicular magnetic anisotropy

    SciTech Connect

    Stebliy, Maxim E. Kolesnikov, Alexander G.; Davydenko, Alexander V.; Ognev, Alexey V.; Samardak, Alexander S.; Chebotkevich, Ludmila A.

    2015-05-07

    Formation and existence of magnetic skyrmion-like configurations in bilayer nanodisks (Ta(3 nm)/[Co(0.37 nm)/Ni(0.58 nm)]{sub 10}){sub 2} with perpendicular magnetic anisotropy are shown experimentally at room temperature. Magnetization reversal through the skyrmion state is studied using magnetic hysteresis measurements. An evolution of skyrmion configurations in the nanodisk structure is analyzed. Experimental methods and micromagnetic simulations help to understand the magnetization reversal processes occurring through the stable skyrmion-like configurations. Formation of the intermediate C-states during magnetization reversal is demonstrated. The skyrmion number for all possible spin configurations is calculated.

  16. Domain configuration and magnetization switching in arrays of permalloy nanostripes

    NASA Astrophysics Data System (ADS)

    Iglesias-Freire, Ó.; Jaafar, M.; Pérez, L.; de Abril, O.; Vázquez, M.; Asenjo, A.

    2014-04-01

    The proximity effect in the collective behavior of arrays of magnetic nanostripes is currently a subject of intensive research. The imperative of reducing the size and distances between elements in order to achieve higher storage capacity, faster access to the information as well as low energy consumption, brings consequences about the isolated behavior of the elements and devices. Parallel to each other permalloy nanostripes with high aspect ratio have been prepared by the nanolithography technique. The evolution of the closure domains and the magnetization direction in individual nanostructures has been imaged under applied magnetic fields using Variable Field Magnetic Force Microscopy. Moreover, the magnetostatic interactions between neighboring elements and the proximity effects in arrays of such nanostructures have been quantitatively analyzed by Magnetic Force Microscopy and micromagnetic simulations. The agreement between simulations and the experimental results allows us to conclude the relevance of those interactions depending on the geometry characteristics. In particular, results suggest that the magnetostatic coupling between adjacent nanostripes vanishes for separation distances higher than 500 nm.

  17. The Sun's global magnetic field.

    PubMed

    Mackay, Duncan H

    2012-07-13

    Our present-day understanding of solar and stellar magnetic fields is discussed from both an observational and theoretical viewpoint. To begin with, observations of the Sun's large-scale magnetic field are described, along with recent advances in measuring the spatial distribution of magnetic fields on other stars. Following this, magnetic flux transport models used to simulate photospheric magnetic fields and the wide variety of techniques used to deduce global coronal magnetic fields are considered. The application and comparison of these models to the Sun's open flux, hemispheric pattern of solar filaments and coronal mass ejections are then discussed. Finally, recent developments in the construction of steady-state global magnetohydrodynamic models are considered, along with key areas of future research. PMID:22665897

  18. Vestibular stimulation by magnetic fields.

    PubMed

    Ward, Bryan K; Roberts, Dale C; Della Santina, Charles C; Carey, John P; Zee, David S

    2015-04-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging studies, these reports have become more common. It was recently learned that humans, mice, and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  19. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  20. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  1. System and method for magnetic current density imaging at ultra low magnetic fields

    DOEpatents

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  2. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  3. Magnetic Fields and Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Zhang, Qizhou; Qiu, Keping; Girart, Josep M.; (Baobab Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Li, Zhi-Yun; Keto, Eric; Ho, Paul T. P.; Rao, Ramprasad; Lai, Shih-Ping; Ching, Tao-Chung; Frau, Pau; Chen, How-Huan; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain; Csengeri, Timea; Juárez, Carmen

    2014-09-01

    Massive stars (M > 8 M ⊙) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of lsim0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (lsim 103 AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  4. Magnetic response to applied electrostatic field in external magnetic field

    NASA Astrophysics Data System (ADS)

    Adorno, T. C.; Gitman, D. M.; Shabad, A. E.

    2014-04-01

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

  5. Transport in a stochastic magnetic field

    SciTech Connect

    White, R.B.; Wu, Yanlin; Rax, J.M.

    1992-09-01

    Collisional heat transport in a stochastic magnetic field configuration is investigated. Well above stochastic threshold, a numerical solution of a Chirikov-Taylor model shows a short-time nonlocal regime, but at large time the Rechester-Rosenbluth effective diffusion is confirmed. Near stochastic threshold, subdiffusive behavior is observed for short mean free paths. The nature of this subdiffusive behavior is understood in terms of the spectrum of islands in the stochastic sea.

  6. Theory of fossil magnetic field

    NASA Astrophysics Data System (ADS)

    Dudorov, Alexander E.; Khaibrakhmanov, Sergey A.

    2015-02-01

    Theory of fossil magnetic field is based on the observations, analytical estimations and numerical simulations of magnetic flux evolution during star formation in the magnetized cores of molecular clouds. Basic goals, main features of the theory and manifestations of MHD effects in young stellar objects are discussed.

  7. Magnetic structure of current sheets in magnetic fields with a singular X line

    SciTech Connect

    Bogdanov, S. Yu.; Bugrov, S. G.; Gritsyna, V. P.; Zverev, O. V.; Karpov, G. V.; Markov, V. S.; Repin, D. V.; Frank, A. G.

    2007-06-15

    Direct measurements of magnetic fields in a plasma show that current sheets can form in magnetic configurations with an X line in the presence of a longitudinal magnetic field. It is found that, in a plane perpendicular to the X line and to the direction of the main current, the current sheet has two very different dimensions. The tangential and normal components of the magnetic field and current density in the sheet are determined. The influence of the initial conditions (such as the strength of the longitudinal magnetic field, the gradient of the transverse field, and the plasma ion mass) on the current sheet parameters is investigated.

  8. The Effects of Magnetic Nozzle Configurations on Plasma Thrusters

    NASA Technical Reports Server (NTRS)

    Turchi, P. J.

    1997-01-01

    Over the course of eight years, the Ohio State University has performed research in support of electric propulsion development efforts at the NASA Lewis Research Center, Cleveland, OH. This research has been largely devoted to plasma propulsion systems including MagnetoPlasmaDynamic (MPD) thrusters with externally-applied, solenoidal magnetic fields, hollow cathodes, and Pulsed Plasma Microthrusters (PPT's). Both experimental and theoretical work has been performed, as documented in four master's theses, two doctoral dissertations, and numerous technical papers. The present document is the final report for the grant period 5 December 1987 to 31 December 1995, and summarizes all activities. Detailed discussions of each area of activity are provided in appendices: Appendix 1 - Experimental studies of magnetic nozzle effects on plasma thrusters; Appendix 2 - Numerical modeling of applied-field MPD thrusters; Appendix 3 - Theoretical and experimental studies of hollow cathodes; and Appendix 4 -Theoretical, numerical and experimental studies of pulsed plasma thrusters. Especially notable results include the efficacy of using a solenoidal magnetic field downstream of a plasma thruster to collimate the exhaust flow, the development of a new understanding of applied-field MPD thrusters (based on experimentally-validated results from state-of-the art, numerical simulation) leading to predictions of improved performance, an experimentally-validated, first-principles model for orificed, hollow-cathode behavior, and the first time-dependent, two-dimensional calculations of ablation-fed, pulsed plasma thrusters.

  9. Quasilinear theory of interchange modes in a closed field line configuration

    SciTech Connect

    Kouznetsov, A.; Freidberg, J. P.; Kesner, J.

    2007-10-15

    Two important issues for any magnetic fusion configuration are the maximum achievable values of {beta} and energy confinement time when ideal magnetohydrodynamic (MHD) modes are excited. It is well known that the excitation of the MHD unstable modes typically can lead to violent restructuring of the plasma profiles. The particle and energy transport associated with these modes normally dominates all other transport mechanisms and can lead to plasma disruptions and a rapid loss of energy. This paper analytically investigates the transport of particle density, energy, and magnetic field due to the ideal MHD interchange mode in a closed-line system using the quasilinear approximation. The transport equations are derived for a static plasma in a hardcore Z-pinch configuration and generalized to an arbitrary axisymmetric toroidal closed poloidal field line configuration. It is shown that violation of the marginal stability criterion leads to rapid quasilinear transport that drives the pressure profile back to its marginal profile and forces the particle density to be inversely proportional to {integral}dl/B. The applicability of the quasilinear approximation is numerically tested for the hardcore Z-pinch magnetic configuration using a full nonlinear code.

  10. Quasilinear theory of interchange modes in a closed field line configuration

    NASA Astrophysics Data System (ADS)

    Kouznetsov, A.; Freidberg, J. P.; Kesner, J.

    2007-10-01

    Two important issues for any magnetic fusion configuration are the maximum achievable values of β and energy confinement time when ideal magnetohydrodynamic (MHD) modes are excited. It is well known that the excitation of the MHD unstable modes typically can lead to violent restructuring of the plasma profiles. The particle and energy transport associated with these modes normally dominates all other transport mechanisms and can lead to plasma disruptions and a rapid loss of energy. This paper analytically investigates the transport of particle density, energy, and magnetic field due to the ideal MHD interchange mode in a closed-line system using the quasilinear approximation. The transport equations are derived for a static plasma in a hardcore Z-pinch configuration and generalized to an arbitrary axisymmetric toroidal closed poloidal field line configuration. It is shown that violation of the marginal stability criterion leads to rapid quasilinear transport that drives the pressure profile back to its marginal profile and forces the particle density to be inversely proportional to ∮dl/B. The applicability of the quasilinear approximation is numerically tested for the hardcore Z-pinch magnetic configuration using a full nonlinear code.

  11. Physics and Engineering Assessmetns of the K-DEMO Magnet Configuration

    SciTech Connect

    Neilson, George H.; Brown, Thomas

    2014-09-01

    Increased attention is being given now to studies of next-step fusion facilities with nuclear missions. Among these, South Korea's K DEMO is unique in its focus on a high toroidal magnetic field, large major radius, steady-state tokamak design for the core of a facility to test fusion nuclear components in Phase I and, after upgrades, produce 500 MW of electricity in a Phase II. Innovative features of the K DEMO magnet set include the use of two toroidal field (TF) coil winding packs with conductor grading and a machine configuration designed for vertical maintenance. The magnet arrangement features large TF coils and widely spaced poloidal field (PF) coils to accommodate removal of in-vessel components as large modules. Physics and engineering assessments of the pre-conceptual K-DEMO magnet configuration are reported, including: 1) design point and operating space assessment, 2) conductor assessment, and 3) structural assessment. It is found that a reference design point at 6.8 m major radius and 7.4 T toroidal field provides sufficient operating margins for the 500 MWe Phase II mission. Analyses of candidate cable-in-conduit conductors provide predictions of critical current degradation, both in the initial load cycle and an additionally with cyclic loading. A first-pass global analysis of the magnet system found minimal out-of-plane deformations of the TF coil, but an overstress condition in the inner leg of the TF coil. However an analysis taking into account elastic-plastic behavior, frictional sliding, and displacement shows that the structure can safely carry the load. Although the design evolution is still at an early stage, these assessments support the design point choices to date and the expectation that a feasible solution for the high-field K DEMO magnet system can be found.

  12. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)  G if the energy scale of inflation is few×10(16)  GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

  13. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  14. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  15. Analytic, two fluid, field reversed configuration equilibrium with sheared rotation

    SciTech Connect

    Sobe-hacekhart, J.R.

    1989-02-01

    A two fluid model is used to derive an analytical equilibrium for elongated field reversed configurations containing shear in both the electron and ion velocity profiles. Like some semiempirical models used previously, the analytical expressions obtained provide a satisfactory fit to the experimental results for all radii with a few key parameters. The present results reduce to the rigid rotor model and the infinite conductivity case for a specific choice of the parameters.

  16. Magnetic Field Relaxation and Current Sheets in an Ideal Plasma

    NASA Astrophysics Data System (ADS)

    Candelaresi, S.; Pontin, D. I.; Hornig, G.

    2015-08-01

    We investigate the existence of magnetohydrostatic equilibria for topologically complex magnetic fields. The approach employed is to perform ideal numerical relaxation experiments. We use a newly developed Lagrangian relaxation scheme that exactly preserves the magnetic field topology during the relaxation. Our configurations include both twisted and sheared fields, of which some fall into the category for which Parker predicted no force-free equilibrium. The first class of field considered contains no magnetic null points, and field lines connect between two perfectly conducting plates. In these cases, we observe only resolved current layers of finite thickness. In further numerical experiments, we confirm that magnetic null points are loci of singular currents.

  17. Magnetic fields in young galaxies

    NASA Astrophysics Data System (ADS)

    Nordlund, Åke; Rögnvaldsson, Örnólfur

    We have studied the fate of initial magnetic fields in the hot halo gas out of which the visible parts of galaxies form, using three-dimensional numerical MHD-experiments. The halo gas undergoes compression by several orders of magnitude in the subsonic cooling flow that forms the cold disk. The magnetic field is carried along and is amplified considerably in the process, reaching μG levels for reasonable values of the initial ratio of magnetic to thermal energy density.

  18. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  19. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  20. Measuring interfacial magnetic configurations with Polarized Neutron Reflectometry

    NASA Astrophysics Data System (ADS)

    Hauet, Thomas

    2009-03-01

    Polarized neutron reflectivity (PNR) is ideally suited for imaging both vertical structural and magnetic variations in the complex magnetic multilayers [1]. During the talk will be described particularly how this technique allows obtaining the magnetic depth-profile of exchange-coupled bilayer. For instance, Gd40Fe60/ Tb12Fe88 is a model system to study exchange-bias phenomena origin in anti-ferromagnetically coupled AF/FM system, like FeF2/Fe. In these systems, unusual properties are observed such as a transition from positive to negative exchange bias field HE as the cooling field Hcf is swept from small to large positive value [2]. Combining complementary techniques that are macroscopic magnetization measurements and PNR, we have demonstrated that the above properties, e.g. the cooling field dependence of HE, come from an interfacial domain wall (iDW) frozen in the TbFe as the sample is cooled down under a field [3, 4]. Moreover, PNR measurements have recently revealed that the frozen iDW is metastable and that the exchange bias training effect in TbFe/GdFe results from the thermally assisted relaxation of the iDW, with field cycling [4, 5]. Overall, PNR studies concerning the TbFe/GdFe have brought strong insights into the exchange bias mechanisms in exchange coupled hard/soft systems with in-plane anisotropy. However we have demonstrated as well that this powerful technique can be applied to systems with perpendicular magnetic anisotropy (PMA). Although, in that case, the perpendicular moments are parallel to the scattering vector and do not give rise to scattering via the neutron selection rules, we have used a unconventional geometry to obtain a depth-dependent magnetic profile of a PMA exchange-coupled system. Specifically, we have characterized antiferromagnetically-coupled, TbFeCo/[Co/Pd] multilayers [6]. [4pt] [1] K.V. O'Donovan et al., Phys. Rev. Lett. 88, 067201 (2002). [0pt] [2] J. Nogues and al. Phys. Rev. Lett. 76, 4624 (1996) [0pt] [3] Y. Henry et al., Phys. Rev. B 73, 134420 (2006) [0pt] [4] T. Hauet et al., Phys. Rev. Lett. 96, 067207 (2006) [0pt] [5] T. Hauet et al., Appl. Phys. Lett. 91, 022505 (2007) [0pt] [6] S. Watson et al., Appl. Phys. Lett. 92, 202507 (2008)

  1. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  2. Novel technologies and configurations of superconducting magnets for MRI

    NASA Astrophysics Data System (ADS)

    Lvovsky, Yuri; Stautner, Ernst Wolfgang; Zhang, Tao

    2013-09-01

    A review of non-traditional approaches and emerging trends in superconducting magnets for MRI is presented. Novel technologies and concepts have arisen in response to new clinical imaging needs, changes in market cost structure, and the realities of newly developing markets. Among key trends are an increasing emphasis on patient comfort and the need for ‘greener’ magnets with reduced helium usage. The paper starts with a brief overview of the well-optimized conventional MR magnet technology that presently firmly occupies the dominant position in the imaging market up to 9.4 T. Non-traditional magnet geometries, with an emphasis on openness, are reviewed. The prospects of MgB2 and high-temperature superconductors for MRI applications are discussed. In many cases the introduction of novel technologies into a cost-conscious commercial market will be stimulated by growing needs for advanced customized procedures, and specialty scanners such as orthopedic or head imagers can lead the way due to the intrinsic advantages in their design. A review of ultrahigh-field MR is presented, including the largest 11.7 T Iseult magnet. Advanced cryogenics approaches with an emphasis on low-volume helium systems, including hermetically sealed self-contained cryostats requiring no user intervention, as well as future non-traditional non-helium cryogenics, are presented.

  3. Electric current variations and 3D magnetic configuration of coronal jets

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Harra, Louise K.; Aulanier, Guillaume; Guo, Yang; Demoulin, Pascal; Moreno-Insertis, Fernando, , Prof

    Coronal jets (EUV) were observed by SDO/AIA on September 17, 2010. HMI and THEMIS measured the vector magnetic field from which we derived the magnetic flux, the phostospheric velocity and the vertical electric current. The magnetic configuration was computed with a non linear force-free approach. The phostospheric current pattern of the recurrent jets were associated with the quasi-separatrix layers deduced from the magnetic extrapolation. The large twisted near-by Eiffel-tower-shape jet was also caused by reconnection in current layers containing a null point. This jet cannot be classified precisely within either the quiescent or the blowout jet types. We will show the importance of the existence of bald patches in the low atmosphere

  4. Heat pipes for use in a magnetic field

    DOEpatents

    Werner, Richard W.; Hoffman, Myron A.

    1983-01-01

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area.

  5. Heat pipes for use in a magnetic field

    DOEpatents

    Werner, R.W.; Hoffman, M.A.

    1983-07-19

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

  6. Plasma Expansion in Presence of Electric and Magnetic Fields

    SciTech Connect

    Colonna, Gianpiero; Capitelli, Mario

    2005-05-16

    The presence of electric and magnetic fields in high enthalpy nozzle flows can produce strong effects. In particular, non equilibrium conditions can be observed when this field are present. In this work we have investigated two different field configurations in supersonic nozzle: first of all we have studied the cooperative effect of electric and magnetic field applied inside the nozzle and secondly we have investigated the role of non equilibrium distribution produced in the reservoir by electric discharge (plasma jet)

  7. Field reversed configuration confinement enhancement through edge biasing and neutral beam injection.

    PubMed

    Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D

    2012-06-22

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms. PMID:23004613

  8. PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

    SciTech Connect

    Yamamoto, Tetsuya T.; Kusano, K.

    2012-06-20

    Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

  9. Preface: Cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander

    2015-02-01

    Recent advances in observations and modeling have opened new perspectives for the understanding of fundamental dynamical processes of cosmic magnetism, and associated magnetic activity on the Sun, stars and galaxies. The goal of the Special Issue is to discuss the progress in solar physics and astrophysics, similarities and differences in phenomenology and physics of magnetic phenomena on the Sun and other stars. Space observatories, ground-based telescopes, and new observational methods have provided tremendous amount of data that need to be analyzed and understood. The solar observations discovered multi-scale organization of solar activity, dramatically changing current paradigms of solar variability. On the other side, stellar observations discovered new regimes of dynamics and magnetism that are different from the corresponding solar phenomena, but described by the same physics. Stars represent an astrophysical laboratory for studying the dynamical, magnetic and radiation processes across a broad range of stellar masses and ages. These studies allow us to look at the origin and evolution of our Sun, whereas detailed investigations of the solar magnetism give us a fundamental basis for interpretation and understanding of unresolved stellar data.

  10. Heat pulse propagation in chaotic three-dimensional magnetic fields

    SciTech Connect

    Del-Castillo-Negrete, Diego; Blazevski, Daniel

    2014-06-01

    Heat pulse propagation in three-dimensional chaotic magnetic fields is studied by numerically solving the parallel heat transport equation using a Lagrangian Green's function (LG) method. The main two problems addressed are: the dependence of the radial transport of heat pulses on the level of magnetic field stochasticity (controlled by the amplitude of the magnetic field perturbation, ε), and the role of reversed shear magnetic field configurations on heat pulse propagation. The role of separatrix reconnection of resonant modes in the shear reversal region, and the role of shearless Cantori in the observed phenomena are also discussed.

  11. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  12. The magnetic field of Neptune

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.

    1992-01-01

    A model is given of the planetary magnetic field of Neptune based on a spherical harmonic analysis of the observations obtained by the Voyager 2. Generalized inverse techniques are used to partially solve a severely underdetermined inverse problem, and the resulting model is nonunique since the observations are limited in spatial distribution. Dipole, quadrupole, and octupole coefficients are estimated independently of other terms, and the parameters are shown to be well constrained by the measurement data. The large-scale features of the magnetic field including dipole tilt, offset, and harmonic content are found to characterize a magnetic field that is similar to that of Uranus. The traits of Neptune's magnetic field are theorized to relate to the 'ice' interior of the planet, and the dynamo-field generation reflects this poorly conducting planet.

  13. Low-Magnetic-Field Magnetars

    NASA Astrophysics Data System (ADS)

    Turolla, Roberto; Esposito, Paolo

    2013-11-01

    It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these "magnetar candidates" exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (≃ 4.4×1013 G). The recent discovery of fully qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, with dipole magnetic field well in the range of ordinary radio pulsars posed a challenge to the standard picture, showing that a very strong field is not necessary for the onset of magnetar activity (chiefly bursts and outbursts). Here we summarize the observational status of the low-magnetic-field magnetars and discuss their properties in the context of the mainstream magnetar model and its main alternatives.

  14. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  15. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  16. Topology, Magnetic Field, and Strongly Interacting Matter

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.

    2015-10-01

    Gauge theories with compact symmetry groups possess topologically nontrivial configurations of gauge field. This characteristic has dramatic implications for the vacuum structure of quantum chromodynamics (QCD) and for the behavior of QCD plasma, as well as for condensed matter systems with chiral quasi-particles. I review the current status of this problem with an emphasis both on the interplay between chirality and a background magnetic field and on the observable manifestations of topology in heavy-ion collisions, Dirac semimetals, neutron stars, and the early Universe.

  17. Gyrokinetic particle simulation of a field reversed configuration

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Holod, I.; Lin, Z.; Dettrick, S.

    2016-01-01

    Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively. A field-aligned mesh is constructed for solving self-consistent electric fields using a semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been successfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simulation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is stabilized by the large ion gyroradius. In the SOL, the driftwave is unstable on both ion and electron scales.

  18. Torsional oscillations of neutron stars with highly tangled magnetic fields

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime

    2015-11-01

    To determine the frequencies of magnetic oscillations in neutron stars with highly tangled magnetic fields, we derive the perturbation equations. We assume that the field strength of the global magnetic structure is so small that such fields are negligible compared with tangled fields, which may still be far from a realistic configuration. Then, we systematically examine the spectra of the magnetic oscillations, as varying the magnetic field strength and stellar mass. The frequencies without crust elasticity are completely proportional to the strength of the magnetic field, whose proportionality constant depends strongly on the stellar mass. On the other hand, the oscillation spectra with crust elasticity become more complicated, where the frequencies even for weak magnetic fields are different from the crustal torsional oscillations without magnetic fields. For discussing spectra, the critical field strength can play an important role, and it is determined in such a way that the shear velocity is equivalent to the Alfvén velocity at the crust basis. Additionally, we find that the effect of the crust elasticity can be seen strongly in the fundamental oscillations with a lower harmonic index, ℓ. Unlike the stellar models with a pure dipole magnetic field, we also find that the spectra with highly tangled magnetic fields become discrete, where one can expect many of the eigenfrequencies. Maybe these frequencies could be detected after the violent phenomena breaking the global magnetic field structure.

  19. Magnetic Field Generation in Stars

    NASA Astrophysics Data System (ADS)

    Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

    2015-10-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.

  20. Configuration factors of various elements of a shielded collector field

    SciTech Connect

    Elsayed, M.M.; Al-Beirutty, M.H. )

    1992-01-01

    A shielded collector model is developed to predict the solar irradiance received by a tilted flat collector in a field of solar collectors. The model has the same form as the conventional model commonly used, but with the use of several correction factors to account for the effect of shielding by adjacent collectors. For this purpose analysis is given to derive the expressions of the configuration factors between a flat collector, shielded by one or more collectors in the preceding row, and the ground and the sky. The analytical expressions of these configuration factors are found to depend on the dimensions of each collector (width and length), tilt angle, a spacing between collector rows, and the relative position of the collector with respect to the shielding collectors in the preceding row. In a first level of calculation accuracy, the use of these configuration factors in the shielded collector model showed that the conventional model overestimates both the solar irradiance and the monthly-averaged daily solar radiation received by the collector. the use of the shielded collector model is thus recommended as a more accurate model than the conventional model.

  1. Tilting mode in rigidly rotating field-reversed configurations

    SciTech Connect

    Clemente, R.A.; Milovich, J.L.

    1983-07-01

    The tilting-mode stability of field-reversed configurations is analyzed taking into account plasma rotational effects that had not been included in previous theoretical treatments. It is shown that for a rigidly rotating plasma in stationary equilibrium, stability can be attained if the plasma rotational energy is of the same order as the thermal energy. Since presently available values of the rotational velocities are quite lower than required by the stabilization mechanism considered here, the contribution of this effect to the overall stability of the mode does not appear to be significant.

  2. Instability of the current sheet in the Earth's magnetotail with normal magnetic field

    SciTech Connect

    Bessho, N.; Bhattacharjee, A.

    2014-10-15

    Instability of a current sheet in the Earth's magnetotail has been investigated by two-dimensional fully kinetic simulations. Two types of magnetic configuration have been studied; those with uniform normal magnetic field along the current sheet and those in which the normal magnetic field has a spatial hump. The latter configuration has been proposed by Sitnov and Schindler [Geophys. Res. Lett. 37, L08102 (2010)] as one in which ion tearing modes might grow. The first type of configuration exhibits electron tearing modes when the normal magnetic field is small. The second type of configuration exhibits an instability which does not tear or change the topology of magnetic field lines. The hump in the initial configuration can propagate Earthward in the nonlinear regime, leading to the formation of a dipolarization front. Secondary magnetic islands can form in regions where the normal magnetic field is very weak. Under no conditions do we find the ion tearing instability.

  3. Magnetic Field Effects on Plasma Plumes

    NASA Technical Reports Server (NTRS)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  4. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  5. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, M.L.; Mueller, F.M.; Smith, J.L.

    1991-04-09

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency. 15 figures.

  6. The polar heliospheric magnetic field

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Kota, J.

    1989-01-01

    It is suggested that the polar heliospheric magnetic field, at large heliocentric distances, may deviate considerably from the generally accepted Archimedean spiral. Instead, it is suggested that the large-scale field near the poles may be dominated by randomly-oriented transverse magnetic fields with magnitude much larger than the average spiral. The average vector field is still the spiral, but the average magnitude may be much larger. In addition, the field direction is transverse to the radial direction most of the time instead of being nearly radial. This magnetic-field structure has important consequences for the transport of cosmic rays. Preliminary model calculations suggest changes in the radial gradient of galactic cosmic rays which may improve agreement with observations.

  7. Broad Ion Beam Extraction from Large Bore ECR Ion Source with Cylindrically Comb-Shaped Magnetic Fields Configuration by Feeding Simultaneously 11 to 13 GHz and 2.45 GHz Microwaves

    SciTech Connect

    Kato, Y.; Satani, T.; Matsui, Y.; Watanabe, T.; Sato, F.; Iida, T.; Muramatsu, M.; Kitagawa, A.; Tanaka, K.; Asaji, T.

    2008-11-03

    We tried to enlarge the operation window of an electron cyclotron resonance (ECR) ion source for producing the ECR plasma confined by cylindrically comb-shaped magnetic field, and for extracting the broad ion beam under the low pressures and low microwave powers. The magnetic field by permanent magnets constructs ECR zones at different positions for 2.45 GHz and 11 to 13 GHz microwaves, respectively. According to probe measurements, profiles of plasma density and temperature are different for using each single microwave. We conduct production of ECR plasma by launching simultaneously these two frequency microwaves, and obtain flat profiles of the electron density and the electron temperature. These profiles are not achieved by feeding single frequency microwave. It is found that plasma can be controllable on spatial profiles beyond wide operation window of plasma parameters. We conducted preliminary extracting and forming large bore ion beam from this source. We will make this source a part of tandem type ion source for the first stage. We investigated feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams as like to universal source based on ECR ion source.

  8. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  9. Analysis of Magnetic Plucking Configurations for Frequency Up-Converting Harvesters

    NASA Astrophysics Data System (ADS)

    Xue, T.; Roundy, S.

    2015-12-01

    Magnetic plucking applies the strategy of frequency up-conversion in inertial energy harvesting when the energy source, such as human motion, only provides excitations with very low and irregular frequencies. This paper presents an analysis of three different magnet configurations to achieve magnetic plucking based on a three-dimensional analytical cube permanent magnet model: direct repulsive configuration, orthogonal configuration and indirect repulsive configuration. Simulation and experimental results indicate that the indirect repulsive configuration generates the largest tip displacement given the pratical constraints in designing a wearable energy harvester. We have implemented this configuration in a wrist-worn rotational energy harvester to pluck multiple piezoelectric beams. Other configurations, however, can potentially be advantageous in applications with alternative constraints.

  10. Configuration of Jupiter's magnetic tail and equatorial current sheet

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Burlaga, L. F.

    1981-01-01

    Recent research reports by Behannon et al. (1981) and Connerney et al. (1981) are summarized. It is noted that the analysis made of the detailed neutral sheet crossings by the minimum variance method shows a consistent result with regard to the orientation of the neutral sheet in the magnetic tail as a two-dimensional surface rocking back and forth about the Jupiter sun-line as the rotation of the planet leads to a precession of the tilted dipole magnetic axis. The occurrence of neutral sheet crossings is found not to be consistent with any of the axially symmetric theoretical models proposed earlier on the basis of the 1974 Pioneer 10 observations. It is noted that a simple nonaxially symmetric model has been developed on the basis of the Voyager results which indicates the strong control upon orientation by the interaction of the solar wind with the Jovian magnetosphere. The model is described as simple because it improves the fit of theory to observation but uses fewer parameters. A quantitative model of the magnetodisc equatorial current sheet has been developed for the inner magnetosphere region which matches well the in-situ magnetic field observations.

  11. Heat flow control in thermo-magnetic convective systems using engineered magnetic fields

    NASA Astrophysics Data System (ADS)

    Lee, Jaewook; Nomura, Tsuyoshi; Dede, Ercan M.

    2012-09-01

    We present the design of a magnetically controlled convective heat transfer system. The underlying thermo-magnetic instability phenomenon is described, and enhanced convective fluid flow patterns are determined using non-linear programming techniques plus a design sensitivity analysis. Specifically, the magnetic fluid body force is computed by finding the optimal distribution and magnetization direction of a magnetic field source, where the objective is to minimize the maximum temperature of a closed loop heat transfer system. Sizeable fluid recirculation zones are induced by arranging magnetic field generation elements in configurations similar to Halbach arrays. Applications include improved heat flow control for electromechanical systems.

  12. A Field-Reversed Configuration Plasma Translated into a Neutral Gas Atmosphere

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Jun'ichi; Asai, Tomohiko; Takahashi, Tsutomu; Ando, Hirotoshi; Arai, Mamiko; Katayama, Seri; Takahashi, Toshiki

    2014-10-01

    A field-reversed configuration (FRC) is a compact toroid dominantly with poloidal magnetic field. Because of its simply-connected configuration, an FRC can be translated axially along a gradient of guide magnetic field, and trapped in a confinement region with quasi-static external magnetic field. FRC translation experiments have been performed several facilities. Translation speed of those translated FRCs is comparable with super-Alfvenic speed of approximately 200 km/s. In this experiments, FRC translation has been performed on the FAT (FRC Amplification via Translation) facility. Achieved translation speed in the case of translation into a confinement chamber maintained as the vacuum state is in the range from 130 to 210 km/s. On the other hand, FRC translation into a statically filled deuterium gas atmosphere has also been performed. In the case of translation into filled neutral gas, FRC translation speed is approximately 80 km/s and the separatrix volume has extremely expanded compared with the case of a vacuum state. The phenomenon suggests the presence of regeneration process of translation kinetic energy back into the internal plasma energy during the translation process. This work was partially supported by ``Nihon University Symbolic Project.'' The authors gratefully acknowledge contributions from Nac Image Technology Inc. on the fast camera measurements.

  13. The white light corona and photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Mccabe, Marie K.

    1986-01-01

    Some results are presented from a continuing investigation of the coronal structure vs. the photospheric magnetic field relationship. Two approaches to the problem are considered. First, the individual coronal features recorded at each limb were located on a chart of the magnetic field measured with low spatial resolution, depicting the large scale or global field configuration. Second, the characteristics of neutral line segments, defined by the presence of H alpha line filament, with no associated coronal structure were investigated. Preliminary results are discussed.

  14. Magnetic fields on the Sun

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1981-01-01

    Synoptic observations of solar magnetic fields are discussed. Seen in long-term averages, the magnetic fields of the Sun show distinctive behavior. The active-region latitudes are characterized by magnetic fields of preceding polarity. The flow of following polarity fields to make up the polar fields is episodic, not continuous. This field motion is a directed poleward flow and is not due to diffusion. The total magnetic flux on the solar surface, which is related linearly to the calcium emission in integrated sunlight, varies from activity minimum to maximum by a factor of 2 or 3. Nearly all this flux is seen at active-region latitudes-only about 1% is at the poles. The total flux of the Sun disappears from the surface at a very rapid rate and is replaced by new flux. All the field and flux patterns that we see originate in active-region latitudes. The polar magnetic fields of the Sun were observed to change polarity recently. The variations of the full-disk solar flux are shown to lead to the proper rotation rate of the Sun, but the phase of the variations is constant for only a year or two at most.

  15. Electric and magnetic microfields inside and outside space-limited configurations of ions and ionic currents

    NASA Astrophysics Data System (ADS)

    Romanovsky, M. Yu; Ebeling, W.; Schimansky-Geier, L.

    2005-01-01

    The problem of electric and magnetic microfields inside finite spherical systems of stochastically moving ions and outside them is studied. The first possible field of applications is high temperature ion clusters created by laser fields [1]. Other possible applications are nearly spherical liquid systems at room-temperature containing electrolytes. Looking for biological applications we may also think about a cell which is a complicated electrolytic system or even a brain which is a still more complicated system of electrolytic currents. The essential model assumption is the random character of charges motion. We assume in our basic model that we have a finite nearly spherical system of randomly moving charges. Even taking into account that this is at best a caricature of any real system, it might be of interest as a limiting case, which admits a full theoretical treatment. For symmetry reasons, a random configuration of moving charges cannot generate a macroscopic magnetic field, but there will be microscopic fluctuating magnetic fields. Distributions for electric and magnetic microfields inside and outside such space- limited systems are calculated. Spherical systems of randomly distributed moving charges are investigated. Starting from earlier results for infinitely large systems, which lead to Holtsmark- type distributions, we show that the fluctuations in finite charge distributions are larger (in comparison to infinite systems of the same charge density).

  16. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  17. Magnetic field induced dynamical chaos

    SciTech Connect

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-15

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  18. Magnetic field induced dynamical chaos.

    PubMed

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples. PMID:24387560

  19. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with forthcoming radio telescopes like the Square Kilometre Array.

  20. Magnetic fields in quiescent prominences

    NASA Technical Reports Server (NTRS)

    Van Ballegooijen, A. A.; Martens, P. C. H.

    1990-01-01

    The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.

  1. Space charge, plasma potential and electric field distributions in HiPIMS discharges of varying configuration

    NASA Astrophysics Data System (ADS)

    Liebig, B.; Bradley, J. W.

    2013-08-01

    An electron-emitting (emissive) probe has been used to study the temporal and spatial distribution of the plasma potential during high-power impulse magnetron sputtering (HiPIMS) discharges with various substrate and magnetic field configurations. The average power was 700 W, with a repetition frequency of 100 Hz and pulse duration of 100 µs. Strongly negative plasma potentials exceeding -300 V and electric fields up to 10 kV m-1, caused by strong separation of charges with net charge carrier densities Δn of about 1014 m-3, were observed during the ignition of the discharge. The spatial distribution of the plasma potential in the stable stage of the discharge showed values consistently 5 V more negative for a floating substrate compared with a grounded one, so enhancing electron transport around the insulated substrate to grounded walls. However, this change in the electrical configuration of the plasma does not alter significantly the fraction of ionized sputtered particles (of about 30%) that can potentially reach the substrate. By changing the degree of unbalance of the sputtering source, we find a strong correlation between the electric field strength in the magnetic trap (created through charge separation) and the absolute value (and shape) of the magnetic field. For the more unbalanced magnetron, a flattening of the plasma potential structure (decrease in the axial electric field) was observed close to the target. Our findings show in principle that manipulation of the potential barrier close to the target through changing the magnetic field can regulate the proportion of sputtered and ionized species reaching the substrate.

  2. NUMERICAL SIMULATION OF SOLAR MICROFLARES IN A CANOPY-TYPE MAGNETIC CONFIGURATION

    SciTech Connect

    Jiang, R.-L.; Fang, C.; Chen, P.-F.

    2012-06-01

    Microflares are small activities in the solar low atmosphere; some are in the low corona while others are in the chromosphere. Observations show that some of the microflares are triggered by magnetic reconnection between the emerging flux and a pre-existing background magnetic field. We perform 2.5-dimensional, compressible, resistive magnetohydrodynamic simulations of the magnetic reconnection with gravity considered. The background magnetic field is a canopy-type configuration that is rooted at the boundary of the solar supergranule. By changing the bottom boundary conditions in the simulation, a new magnetic flux emerges at the center of the supergranule and reconnects with the canopy-type magnetic field. We successfully simulate the coronal and chromospheric microflares whose current sheets are located at the corona and the chromosphere, respectively. The microflare with a coronal origin has a larger size and a higher temperature enhancement than the microflare with a chromospheric origin. In the microflares with coronal origins, we also found a hot jet ({approx}1.8 Multiplication-Sign 10{sup 6} K), which is probably related to the observational extreme ultraviolet or soft X-ray jets, and a cold jet ({approx}10{sup 4} K), which is similar to the observational H{alpha}/Ca surges. However, there is only a H{alpha}/Ca bright point in the microflares that have chromospheric origins. The study of parameter dependence shows that the size and strength of the emerging magnetic flux are the key parameters that determine the height of the reconnection location, and they further determine the different observational features of the microflares.

  3. The magnetic configuration of the high-latitude cusp and dayside magnetopause under strong magnetic shears

    NASA Astrophysics Data System (ADS)

    Shen, C.; Dunlop, M.; Ma, Y. H.; Chen, Z. Q.; Yan, G. Q.; Liu, Z. X.; Bogdanova, Y. V.; Sibeck, D. G.; Carr, C. M.; Zhang, Q. H.; Lucek, E.

    2011-09-01

    This paper investigates the structure of the magnetic field near the magnetopause (MP) by analyzing the multiple-point magnetic measurements from the Cluster mission. In this paper, the spatial distribution of the curvature radius of the MP surface at the noon-midnight meridian and for situations with moderate dynamical pressure of solar wind is implied from direct measurements of magnetic field curvature for the first time. The investigation focused on conditions of strong magnetic shear and in which a clear boundary layer is present at the MP. It has been confirmed that the magnetic field lines surrounding the cusp bend sunward at the precusp region and tailward at the postcusp region, implying the existence of a cusp field indentation. The minimum curvature radius of the near-MP field at both precusp and postcusp regions is about 2 RE. As the latitude decreases, the curvature radius at the MP increases gradually, so that, as the subsolar point is approached, the curvature radius of the MP is nearly equal to the geocentric distance. These results compare well with existing MP models but reveal the limitations inherent in such statistical estimates of local MP curvature, particularly surrounding the cusp regions. The analysis of the magnetic measurements has also verified the existence of the magnetic bottles at both precusp and postcusp regions, which may play a role for the trapping of the charged particles of magnetosphere.

  4. The magnetic field of Mercury

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1979-01-01

    The paper examines the magnetic field observations and their analyses relating to the determination of the Mercury magnetic field. Methods of analyzing data included: (1) comparison of bow shock and magnetopause relative positions at Mercury to the earth, (2) direct spherical harmonic analysis, (3) magnetosphere modeling by an image dipole, and (4) scaling of a mathematical model for the terrestrial magnetosphere. Dipole moments were determined using partial quadrupole and octupole terms to improve the least-square fit of models to observations; analyses by method (2) yield a convergent series of dipole moments values considered to best represent the intrinsic planetary field. Finally, it is suggested that the origin of the magnetic field of Mercury cannot be uniquely determined, but the sources of convective energy may be radiogenic decay and heat release, gravitational settling, and differentiation of processional torques.

  5. Effects of magnetic configuration on divertor power and particle deposition for long pulse operation in EAST

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Xia, T. Y.; Liu, S. C.; Wang, H. Q.; Wang, L.; Xu, X. Q.

    2015-08-01

    The magnetic configuration exhibits a strong influence on the dynamics of Edge Localized Modes (ELMs), as demonstrated in the EAST superconducting tokamak. We find that poloidal drifts play an important role in particle deposition during the ELMs, leading to a strong up/down asymmetry in the double null divertor configuration, favoring the upper divertor for normal toroidal field, Bt, i.e., with the ion ∇B drift towards the bottom, while the heat flux distribution appears to be rather uniform during ELMs. These observations are well reproduced by the boundary plasma turbulence code, BOUT++. As divertor pumping was only available at the bottom, the preferential particle flow towards the bottom divertor associated with reverse Bt led to a preferred scenario for long pulse operation in EAST.

  6. The Electronic Configuration and Magnetic Hyperfine Interaction of FeNO^7 Complexes.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jorge H.

    1996-03-01

    Several non-heme iron enzymes react with NO to form FeNO^7 complexes with an intermediate spin S=3 \\over 2. In order to understand the physical origin of this intermediate spin state, I have developed a simple molecular orbital model which mixes the valence orbital angular momentum wavefunctions of Fe^2+ with the singly occupied π orbital of NO, in the presence of a crystal field of distorted octahedral symmetry. The resultant molecular orbitals contain paired and unpaired electrons with a configuration that leads to the intermediate S=3\\over2 state. This scheme assumes that the octahedral field at the iron ion is strongly perturbed by the bent geometry of the strong field NO ligand. Here, the covalent Fe-NO bond dominates the electronic configuration of the FeNO^7 group which is not significantly affected by the other five, more ionic, ligands. Knowledge of the valence molecular orbitals has allowed me to model the magnetic hyperfine S dotp tilde A dotp I interaction at the iron site of a FeNO^7 complex. Explicit expressions have been found for the magnetic hyperfine tilde A and Zeeman tilde g tensors, which can be measured by Mössbauer spectroscopy and EPR, respectively.

  7. Capture of a high density field reversed configuration in a flux conserver

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Intrator, T. P.; Wurden, G. A.; Sun, X.; Cortez, R. J.; Waganaar, W. J.

    2008-11-01

    A physics demonstration of Magnetized Target Fusion (MTF) is being pursued by a collaborative team from Los Alamos National Laboratory and Air Force Research Laboratory. The approach is to form a high density Field Reversed Configuration (FRC), translate it into a liner, and adiabatically compress the FRC by imploding the liner. Capture of the FRC in the liner is critical to the success of the experiment. Several interesting phenomena are possible. The FRC can undergo heating when it bounces off the end mirror. Also, partial capture of the FRC can occur such that a smaller FRC remains captured while some plasma and magnetic energy ejects from the liner. Magnetic mirrors at both the upstream and downstream ends of the capture section help to determine the prominence of these behaviors. The translation and capture regions of the experiment are instrumented with flux loops and surface magnetic field diagnostics. Plans will be presented for internal magnetic field probes in these regions. Implications for optimum capture geometry for compression experiments will be discussed. This work is supported by the Office of Fusion Energy Sciences, and DOE/LANL contract DE-AC52-06NA25396.

  8. Superconductive magnetic energy storage (SMES) external fields and safety considerations

    SciTech Connect

    Polk, C. . Dept. of Electrical Engineering); Boom, R.W.; Eyssa, Y.M. . Applied Superconductivity Center)

    1992-01-01

    This paper addresses preferred SMES configurations and the external magnetic fields which they generate. Possible biological effects of fields are reviewed briefly. It is proposed that SMES units be fenced at the 10 gauss (1 mT) level to keep unrestricted areas safe, even for persons with cardiac pacemakers. For a full size 5000 MWh (1.8 {times} 10 {sup 13} J) SMES the magnetic field decreases to 10 gauss at a radial distance of 2 km from the center of the coil. Other considerations related to the environmental impact of large SMES magnetic fields are discussed briefly.

  9. Intrinsic trapping of stochastic sheared magnetic field lines

    SciTech Connect

    Negrea, M.; Petrisor, I.; Balescu, R.

    2004-10-01

    The decorrelation trajectory method is applied to the diffusion of magnetic field lines in a perturbed sheared slab magnetic configuration. Some interesting decorrelation trajectories for several values of the magnetic Kubo number and of the shear parameter are exhibited. The asymmetry of the decorrelation trajectories appears in comparison with those obtained in the purely electrostatic case studied in earlier work. The running and asymptotic diffusion tensor components are calculated and displayed.

  10. Profile stabilization of tilt mode in a Field Reversed Configuration

    SciTech Connect

    Cobb, J.W.; Tajima, T.; Barnes, D.C.

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.

  11. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2016-04-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications.

  12. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.

    PubMed

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W T

    2016-12-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications. PMID:27067737

  13. Hall effect on a Merging Formation Process of a Field-Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Kaminou, Yasuhiro; Guo, Xuehan; Inomoto, Michiaki; Ono, Yasushi; Horiuchi, Ritoku

    2015-11-01

    Counter-helicity spheromak merging is one of the formation methods of a Field-Reversed Configuration (FRC). In counter-helicity spheromak merging, two spheromaks with opposing toroidal fields merge together, through magnetic reconnection events and relax into a FRC, which has no or little toroidal field. This process contains magnetic reconnection and a relaxation phenomena, and the Hall effect has some essential effects on these process because the X-point in the magnetic reconnection or the O-point of the FRC has no or little magnetic field. However, the Hall effect as both global and local effect on counter-helicity spheromak merging has not been elucidated. In this poster, we conducted 2D/3D Hall-MHD simulations and experiments of counter-helicity spheromak merging. We find that the Hall effect enhances the reconnection rate, and reduces the generation of toroidal sheared-flow. The suppression of the ``slingshot effect'' affects the relaxation process. We will discuss details in the poster.

  14. Flux Transport and the Sun's Global Magnetic Field

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2010-01-01

    The Sun s global magnetic field is produced and evolved through the emergence of magnetic flux in active regions and its transport across the solar surface by the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective flows of granulation, supergranulation, and giant cell convection. Maps of the global magnetic field serve as the inner boundary condition for space weather. The photospheric magnetic field and its evolution determine the coronal and solar wind structures through which CMEs must propagate and in which solar energetic particles are accelerated and propagate. Producing magnetic maps which best represent the actual field configuration at any instant requires knowing the magnetic field over the observed hemisphere as well as knowing the flows that transport flux. From our Earth-based vantage point we only observe the front-side hemisphere and each pole is observable for only six months of the year at best. Models for the surface magnetic flux transport can be used to provide updates to the magnetic field configuration in those unseen regions. In this presentation I will describe successes and failures of surface flux transport and present new observations on the structure, the solar cycle variability, and the evolution of the flows involved in magnetic flux transport. I find that supergranules play the dominant role due to their strong flow velocities and long lifetimes. Flux is transported by differential rotation and meridional flow only to the extent that the supergranules participate in those two flows.

  15. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.

  16. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws of electromagnetism. According to a rule of the left hand: if the magnetic field in a kernel is directed to drawing, electric current are directed to an axis of rotation of the Earth, - a action of force clockwise (to West). Definition of the force causing drift a kernel according to the law of Ampere F = IBlsin. Powerful force 3,5 × 1012 Nyton, what makes drift of the central part of a kernel of the Earth on 0,2 the longitude in year to West, and also it is engine of the mechanism of movement of slabs together with continents. Movement of a core of the Earth carry out around of a terrestrial axis one circulation in the western direction in 2000 of years. Linear speed of rotation of a kernel concerning a mantle on border the mantle a kernel: V = × 3,471 × 10 = 3,818 × 10 m/s = 33 m/day = 12 km/years. Considering greater viscosity of a mantle, the powerful energy at rotation of a kernel seize a mantle and lithospheric slabs and makes their collisions as a result of which there are earthquakes and volcano. Continents Northern and Southern America every year separate from the Europe and Africa on several centimeters. Atlantic ocean as a result of movement of these slabs with such speed was formed for 200 million years, that in comparison with the age of the Earth - several billions years, not so long time. Drift of a kernel in the western direction is a principal cause of delay of speed of rotation of the Earth. Flow of radial electric currents allot according to the law of Joule - Lenz, the quantity of warmth : Q = I2Rt = IUt, of thermal energy 6,92 × 1017 calories/year. This defines heating of a kernel and the Earth as a whole. In the valley of the median-Atlantic ridge having numerous volcanos, the lava flow constantly thus warm up waters of Atlantic ocean. It is a fact the warm current Gulf Stream. Thawing of a permafrost and ices of Arctic ocean, of glaciers of Greenland and Antarctica is acknowledgement: the warmth of earth defines character of thawing of glaciers and a permafrost. This is a global warming. The version of the author: the periods of inversion of a magnetic field of the Earth determine cycles of the Ice Age. At inversions of a magnetic field when B=0, radial electric currents are small or are absent, excretion of thermal energy minimally or an equal to zero,it is the beginning of the cooling the Earth and offensive of the Ice Age. Disappearance warm current Gulf Stream warming the north of the Europe and Canada. Drift of a magnetic dipole of the Earth in a rotation the opposite to rotation of the Earth, is acknowledgement of drift of a kernel of the Earth in a rotation the opposite to rotation of the Earth and is acknowledgement of the theory « the Magnetic field of the Earth ». The author continues to develop the theory « the Magnetic field of the Earth » and invites geophysicists to accept in it participation in it.

  17. Comparison of the field configurations of the magnetotails of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.

    1994-01-01

    The magnetic field configuration-states of the magnetotails of the planets Uranus and Neptune are compared. Earth's case is also briefly treated, as well as some related aspects of the other three magnetic planets. In Uranus' case, due to the large tilt (59 deg) of the planet's magnetic dipole with respect to its spin axis and the unusual obliquity of that axis, the angle of attack (alpha) of the solar wind with respect to dipole alignment goes through all possible angles, 0 deg to 180 deg, yielding a very broad spectrum of configuration-states of its tail. Cases are discussed where the planetary magnetic dipole is either aligned with the Sun-planet-line ('pole-on' state) or perpendicular to it and some intermediate states, for both Uranus and Neptune. Only Uranus experiences the pole-on state, which next occurs in November 1999 (+/- 2 months); last year (1993.2) it had the first 'perpendicular' state since Voyager encounter which resembles Earth's case. Neptune never has a pole-on configuration, but it gets as close as alpha = 14 deg from it; the next occurrence is early in 2003. At Voyager encounter Neptune's magnetotail apparently rapidly migrated through a broad spectrum of field structures with near extreme states resembling an Earth-like case on the one hand and a cylindrically symmetric one on the other. Magnetopause 'openness' should dramatically change in terms of the rapidly changing angle of attack throughout a planetary day for these two planets, and this has important implications for their magnetotails. Any future manetospheric mission plans for Uranus or Neptune should take in to consideration the allowed range of values for alpha for the epoch of interest; this is especially of concern for Uranus which has a pole-on state, and all possible alphas, around the middle of 2014, 20 years from now.

  18. Observations of Mercury's magnetic field

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  19. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  20. Mars Crustal Magnetic Field Remnants

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.

    This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.

    The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.

    These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.

  1. Dynamo generated magnetic configurations in accretion discs and the nature of quasi-periodic oscillations in accreting binary systems

    NASA Astrophysics Data System (ADS)

    Moss, D.; Sokoloff, D.; Suleimanov, V.

    2016-04-01

    Context. Magnetic fields are important for accretion disc structure. Magnetic fields in a disc system may be transported with the accreted matter. They can be associated with either the central body and/or jet, and be fossil or dynamo excited in situ. Aims: We consider dynamo excitation of magnetic fields in accretion discs of accreting binary systems in an attempt to clarify possible configurations of dynamo generated magnetic fields. We first model the entire disc with realistic radial extent and thickness using an alpha-quenching non-linearity. We then study the simultaneous effect of feedback from the Lorentz force from the dynamo-generated field. Methods: We perform numerical simulations in the framework of a relatively simple mean-field model which allows the generation of global magnetic configurations. Results: We explore a range of possibilities for the dynamo number, and find quadrupolar-type solutions with irregular temporal oscillations that might be compared to observed rapid luminosity fluctuations. The dipolar symmetry models with Rα< 0 have lobes of strong toroidal field adjacent to the rotation axis that could be relevant to jet launching phenomena. Conclusions: We have explored and extended the solutions known for thin accretion discs.

  2. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  3. Reynolds stress flow shear and turbulent energy transfer in reversed field pinch configuration

    NASA Astrophysics Data System (ADS)

    Vianello, Nicola; Spolaore, Monica; Serianni, Gianluigi; Regnoli, Giorgio; Spada, Emanuele; Antoni, Vanni; Bergsåker, Henric; Drake, James R.

    2003-10-01

    The role of Reynolds Stress tensor on flow generation in turbulent fluids and plasmas is still an open question and the comprehension of its behavior may assist the understanding of improved confinement scenario. It is generally believed that shear flow generation may occur by an interaction of the turbulent Reynolds stress with the shear flow. It is also generally believed that this mechanism may influence the generation of zonal flow shears. The evaluation of the complete Reynolds Stress tensor requires contemporary measurements of its electrostatic and magnetic part: this requirement is more restrictive for Reversed Field Pinch configuration where magnetic fluctuations are larger than in tokamak . A new diagnostic system which combines electrostatic and magnetic probes has been installed in the edge region of Extrap-T2R reversed field pinch. With this new probe the Reynolds stress tensor has been deduced and its radial profile has been reconstructed on a shot to shot basis exploring differen plasma conditions. These profiles have been compared with the naturally occurring velocity flow profile, in particular during Pulsed Poloidal Current Drive experiment, where a strong variation of ExB flow radial profile has been registered. The study of the temporal evolution of Reynolds stress reveals the appearance of strong localized bursts: these are considered in relation with global MHD relaxation phenomena, which naturally occur in the core of an RFP plasma sustaining its configuration.

  4. Field-Reversed Configuration (FRC) as a Minimum-Dissipative Relaxed State with Flow

    NASA Astrophysics Data System (ADS)

    Dasgupta, Brahmananda; Bhattacharyya, Ramit; Mylavarapu, Janaki

    2000-10-01

    Field-reversed configuration (FRC) is a device where plasma is solely confined by a poloidal magnetic field. FRC shows remarkable stability on the MHD time scale, but not many attempts have been made to see FRC as a relaxed state. Since presence of pressure in FRC shows that it is not a force-free state, this state cannot be attained through a Taylor type relaxation. In this work, we attempt establish, that FRC can be viewed as a relaxed state with minimum dissipation under the constraint of constant total energy. The Euler-Lagrange equation describing such relaxed states contains the effects of flow. The solution of this equation is obtained as a superposition of the eigenfunctions of the curl operator. The boundary conditions are chosen to be consistent with the continuity of field components across the plasma vacuum interface. The solutions are shown to lead to a FRC, with a null toroidal field and high plasma beta.

  5. A new high performance field reversed configuration operating regime in the C-2 device

    SciTech Connect

    Tuszewski, M.; Smirnov, A.; Thompson, M. C.; Barnes, D.; Binderbauer, M. W.; Brown, R.; Bui, D. Q.; Clary, R.; Conroy, K. D.; Deng, B. H.; Dettrick, S. A.; Douglass, J. D.; Garate, E.; Glass, F. J.; Gota, H.; Guo, H.Y.; Gupta, D.; Gupta, S.; Kinley, J. S.; Knapp, K.; and others

    2012-05-15

    Large field reversed configurations (FRCs) are produced in the C-2 device by combining dynamic formation and merging processes. The good confinement of these FRCs must be further improved to achieve sustainment with neutral beam (NB) injection and pellet fuelling. A plasma gun is installed at one end of the C-2 device to attempt electric field control of the FRC edge layer. The gun inward radial electric field counters the usual FRC spin-up and mitigates the n = 2 rotational instability without applying quadrupole magnetic fields. Better plasma centering is also obtained, presumably from line-tying to the gun electrodes. The combined effects of the plasma gun and of neutral beam injection lead to the high performance FRC operating regime, with FRC lifetimes up to 3 ms and with FRC confinement times improved by factors 2 to 4.

  6. On the magnetic configuration near Venus: EOF modeling and statistical analyses based on Venus Express measurements

    NASA Astrophysics Data System (ADS)

    He, M.; Vogt, J.; Zhang, T.; Rong, Z.

    2015-10-01

    More than 2000 orbits of Venus Express magnetic field measurementsare used for Orthogonal Function (EOF) analysis to study and model the magnetic environment over the Venus northern polar cap. The modeling results extract the dominant coherent variations, separate the known physical phenomenaon different EOFs and identify the most important driving factors. EOF1 represents the magnetic draping configuration of IMF Bz component whereas EOF2 is controlled by IMF By component and presents the draping and piling-up of IMF By. Besides, our analysis illustrates an asymmetric response of magnetic By component to IMF between the ±E hemispheres,constricted over the terminator (about 90-93° Solar Zeniths Angle) below 300km altitude. The magnetic By component increases as the increase of the parallel IMF component in the +E hemisphere but antiparallel IMF component the -E. To detail the asymmetry, we define a new coordinate system referring to the Sun-Venus-VEX plane which is more robust in comparison with the SVE or VSO coordinate system, and develop a new data averaging method which balances the significance and resolution of data representation.Our result suggests the asymmetry is neither resulting from a large plane of current nor a line of current.

  7. Mathematical modeling of transformation process of structurally unstable magnetic configurations into structurally stable ones in two-dimensional and three-dimensional geometry

    NASA Astrophysics Data System (ADS)

    Inovenkov, Igor; Echkina, Eugenia; Ponomarenko, Loubov

    Magnetic reconnection is a fundamental process in astrophysical, space and laboratory plasma. In essence, it represents a change of topology of the magnetic field caused by readjustment of the structure of the magnetic field lines. This change leads to release of energy accumulated in the field. We consider transformation process of structurally unstable magnetic configurations into the structurally steady ones from the point of view of the сatastrophe theory. Special attention is paid to modeling of evolution of the structurally unstable three-dimensional magnetic fields.

  8. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    SciTech Connect

    Coffey, H.T.

    1992-12-31

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  9. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  10. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, Howard T.

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  11. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  12. Tearing relaxation and the globalization of transport in field-reversed configurations

    SciTech Connect

    Steinhauer, Loren; Barnes, D. C.

    2009-09-15

    Tearing instability of field-reversed configurations (FRC) is investigated using the method of neighboring equilibria. It is shown that the conducting wall position in experiment lies very close to the location needed for tearing stability. This strongly suggests that vigorous but benign tearing modes, acting globally, are the engine of continual self-organization in FRCs, i.e., tearing relaxation. It also explains the ''profile consistency'' and anomalous loss rate of magnetic flux. In effect, tearing globalizes the effect of edge-driven transport.

  13. Finite Beta Boundary Magnetic Fields of NCSX

    NASA Astrophysics Data System (ADS)

    Grossman, A.; Kaiser, T.; Mioduszewski, P.

    2004-11-01

    The magnetic field between the plasma surface and wall of the National Compact Stellarator (NCSX), which uses quasi-symmetry to combine the best features of the tokamak and stellarator in a configuration of low aspect ratio is mapped via field line tracing in a range of finite beta in which part of the rotational transform is generated by the bootstrap current. We adopt the methodology developed for W7-X, in which an equilibrium solution is computed by an inverse equilibrium solver based on an energy minimizing variational moments code, VMEC2000[1], which solves directly for the shape of the flux surfaces given the external coils and their currents as well as a bootstrap current provided by a separate transport calculation. The VMEC solution and the Biot-Savart vacuum fields are coupled to the magnetic field solver for finite-beta equilibrium (MFBE2001)[2] code to determine the magnetic field on a 3D grid over a computational domain. It is found that the edge plasma is more stellarator-like, with a complex 3D structure, and less like the ordered 2D symmetric structure of a tokamak. The field lines make a transition from ergodically covering a surface to ergodically covering a volume, as the distance from the last closed magnetic surface is increased. The results are compared with the PIES[3] calculations. [1] S.P. Hirshman et al. Comput. Phys. Commun. 43 (1986) 143. [2] E. Strumberger, et al. Nucl. Fusion 42 (2002) 827. [3] A.H. Reiman and H.S. Greenside, Comput. Phys. Commun. 43, 157 (1986).

  14. Apparatus having reduced mechanical forces for supporting high magnetic fields

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of supporting extremely high magnetic fields suitable for plasma confinement, wherein forces experienced by the conducting elements are significantly reduced over those which are present as a result of the generation of such high fields by conventional techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  15. Shear-induced inflation of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    1989-01-01

    Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z)squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes.

  16. Shear-induced inflation of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    1990-01-01

    Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z) squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes.

  17. Magnetic Resonance Imaging at Ultrahigh Fields

    PubMed Central

    Uğurbil, Kamil

    2014-01-01

    Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultra-high fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. PMID:24686229

  18. Magnetic field studies at Jupiter by Voyager 1 - Preliminary results

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Acuna, M. H.; Lepping, R. P.; Burlaga, L. F.; Behannon, K. W.; Neubauer, F. M.

    1979-01-01

    Results obtained by the Goddard Space Flight Center magnetometers on Voyager 1 are described. These results concern the large-scale configuration of the Jovian bow shock and magnetopause, and the magnetic field in both the inner and outer magnetosphere. There is evidence that a magnetic tail extending away from the planet on the nightside is formed by the solar wind-Jovian field interaction. This is much like earth's magnetosphere but is a new configuration for Jupiter's magnetosphere not previously considered from earlier Pioneer data. The analysis and interpretation of magnetic field perturbations associated with intense electrical currents (approximately 5 million amperes) flowing near or in the magnetic flux tube linking Jupiter with the satellite Io and induced by the relative motion between Io and the corotating Jovian magnetosphere are reported. These currents may be an important source of heating the ionosphere and interior of Io through Joule dissipation.

  19. Magnetic field studies at Jupiter by Voyager 1: Preliminary results

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Acuna, M. H.; Lepping, R. P.; Burlaga, L. F.; Behannon, K. W.; Neubauer, F. M.

    1979-01-01

    Results obtained by the Goddard Space Flight Center magnetometers on Voyager 1 concerning the large scale configuration of the Jovian bow shock and magnetopause, and the magnetic field in both the inner and outer magnetosphere are highlighted. There is evidence that a magnetic tail extending away from the planet on the nightside is formed by the solar wind-Jovian field interaction. This is much like Earth's magnetosphere but is a new configuration for Jupiter's magnetosphere not previously considered from earlier Pioneer data. Magnetic field perturbations associated with intense electrical currents (approximately 5 x 10 to the 6th power amps) flowing near or in the magnetic flux tube linking Jupiter with the satellite Io and induced by the relative motion between Io and the co-rotating Jovian magnetosphere are analyzed and interpreted. These currents may be an important source of heating the ionosphere and interior of Io through Joule dissipation.

  20. A long-lived coronal X-ray arcade. [force-free magnetic field analysis

    NASA Technical Reports Server (NTRS)

    Mcguire, J. P.; Tandberg-Hanssen, E.; Krall, K. R.; Wu, S. T.; Smith, J. B., Jr.; Speich, D. M.

    1977-01-01

    A large, long-lived, soft X-ray emitting arch system observed during a Skylab mission is analyzed. The supposition is that these arches owe their stability to the stable coronal magnetic-field configuration. A global constant alpha force-free magnetic field analysis, is used to describe the arches which stayed in the same approximate position for several solar rotations. A marked resemblance is noted between the theoretical magnetic field configuration and the observed X-ray emmitting feature.

  1. Classical and quantum mechanical motion in magnetic fields

    NASA Astrophysics Data System (ADS)

    Franklin, J.; Cole Newton, K.

    2016-04-01

    We study the motion of a particle in a particular magnetic field configuration both classically and quantum mechanically. For flux-free radially symmetric magnetic fields defined on circular regions, we establish that particle escape speeds depend, classically, on a gauge-fixed magnetic vector potential, and we demonstrate some trajectories associated with this special type of magnetic field. Then we show that some of the geometric features of the classical trajectory (perpendicular exit from the field region, trapped and escape behavior) are reproduced quantum mechanically, using a numerical method that extends the norm-preserving Crank-Nicolson method to problems involving magnetic fields. While there are similarities between the classical trajectory and the position expectation value of the quantum-mechanical solution, there are also differences, and we demonstrate some of these.

  2. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  3. Jupiter's magnetic field and magnetosphere

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Behannon, K. W.; Connerney, J. E. P.

    1983-01-01

    Among the planets of the solar system, Jupiter is unique in connection with its size and its large magnetic moment, second only to the sun's. The Jovian magnetic field was first detected indirectly by radio astronomers who postulated its existence to explain observations of nonthermal radio emissions from Jupiter at decimetric and decametric wavelengths. Since the early radio astronomical studies of the Jovian magnetosphere, four spacecraft have flown by the planet at close distances and have provided in situ information about the geometry of the magnetic field and its strength. The Jovian magnetosphere is described in terms of three principal regions. The inner magnetosphere is the region where the magnetic field created by sources internal to the planet dominates. The region in which the equatorial currents flow is denoted as the middle magnetosphere. In the outer magnetosphere, the field has a large southward component and exhibits large temporal and/or spatial variations in magnitude and direction in response to changes in solar wind pressure.

  4. Separation of magnetic field lines

    SciTech Connect

    Boozer, Allen H.

    2012-11-15

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

  5. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  6. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  7. Numerical analyses of trapped field magnet and stable levitation region of HTSC

    SciTech Connect

    Tsuchimoto, M.; Kojima, T.; Waki, H.; Honma, T.

    1995-05-01

    Stable levitation with a permanent magnet and a bulk high {Tc} superconductor (HTSC) is examined numerically by using the critical state model and the frozen field model. Differences between a permanent magnet and a trapped field magnet are first discussed from property of levitation force. Stable levitation region of the HTSC on a ring magnet and on a solenoid coil are calculated with the numerical methods. Obtained results are discussed from difference of the magnetic field configuration.

  8. Fusion proton diagnostic for the C-2 field reversed configuration

    SciTech Connect

    Magee, R. M. Clary, R.; Korepanov, S.; Smirnov, A.; Garate, E.; Knapp, K.; Tkachev, A.

    2014-11-15

    Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50?cm{sup 2}), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (?100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber.

  9. The magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.

  10. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  11. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.

    2015-04-01

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  12. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    SciTech Connect

    Weber, T. E. Intrator, T. P.; Smith, R. J.

    2015-04-15

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  13. Basement configuration of KG offshore basin from magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, V.; Swamy, K. V.; Raj, Neetha

    2016-04-01

    Marine magnetic anomalies along three representative profiles falling between shelf break and continent-ocean boundary in the offshore Krishna-Godavari basin were quantitatively interpreted for understanding the nature and structure of the magnetic basement using inversion technique. The interpretation of the anomalies shows that the magnetic basement lies deeper than the base of the sediments, i.e., acoustic basement identified by the seismic studies. This interpretation also shows that the magnetic basement is faulted along the NW-SE direction with the upthrown side lying to the north of the anomaly trend of this region. The coincidence of magnetizations observed through the present interpretation with that of charnockites of neighbouring EGMB and onshore K-G basin areas indicates that EGMB geology (charnockites, granitic gneiss, etc.) extends up to COB in the offshore K-G basin.

  14. A method to measure specific absorption rate of nanoparticles in colloidal suspension using different configurations of radio-frequency fields

    NASA Astrophysics Data System (ADS)

    Ketharnath, Dhivya; Pande, Rohit; Xie, Leiming; Srinivasan, Srimeenakshi; Godin, Biana; Wosik, Jarek

    2012-08-01

    We report a method for characterization of the efficiency of radio-frequency (rf) heating of nanoparticles (NPs) suspended in an aqueous medium. Measurements were carried out for water suspended 5 nm superparamagnetic iron-oxide NPs with 30 nm dextran matrix for three different configurations of rf electric and magnetic fields. A 30 MHz high-Q resonator was designed to measure samples placed inside a parallel plate capacitor and solenoid coil with or without an rf electric field shield. All components of rf losses were analyzed and rf electric and magnetic field induced heating of NPs and the dispersion medium was determined and discussed.

  15. Erbium doped optical fiber lasers for magnetic field sensing

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Baptista, J. M.; Jorge, P. A. S.; Cruz, J. L.; Andrs, M. V.

    2015-09-01

    In this work two erbium doped optical fiber laser configurations for magnetic field measurement are implemented and compared. The first laser is set-up in a loop configuration and requires only a single FBG (Fiber Bragg Grating), acting as mirror. A second laser employs a simpler linear cavity configuration but requires two FBGs with spectral overlap to form the laser cavity. A bulk magnetostrictive material made of Terfenol-D is attached to the laser FBGs enabling modulation of its operation wavelength by the magnetic field. Moreover, a passive interferometer was developed to demodulate the AC magnetic field information where the corresponding demodulation algorithms were software based. Both configurations are tested and compared with the results showing different sensitivities and resolutions. Better performance was accomplished with the double FBGs linear cavity configuration with a resolution of 0.05 mTRMS in the range of 8 to 16 mTRMS. For the same range the loop configuration attained a resolution of 0.48 mTRMS.

  16. Force-free magnetic fields - Generating functions and footpoint displacements

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard; Verma, Ritu

    1991-01-01

    This paper presents analytic and numerical calculations that explore equilibrium sequences of bipolar force-free magnetic fields in relation to displacments of their magnetic footpoints. It is shown that the appearance of magnetic islands - sometimes interpreted as marking the loss of equilibrium in models of the solar atmosphere - is likely associated only with physically unrealistic footpoint displacements such as infinite separation or 'tearing' of the model photosphere. The work suggests that the loss of equilibrium in bipolar configurations, sometimes proposed as a mechanism for eruptive solar events, probably requires either fully three-dimensional field configurations or nonzero plasma pressure. The results apply only to fields that are strictly bipolar, and do not rule out equilibrium loss in more complex structures such as quadrupolar fields.

  17. Field-aligned accelerations by plasma shocks propagating through interstellar magnetic fields

    SciTech Connect

    Takeuchi, Satoshi

    2012-07-15

    A kinetic model of particle acceleration by plasma shocks is analyzed theoretically and with numerical calculations. The shocks are propagating through weakly magnetized background plasmas, namely interstellar magnetic fields (IMFs). Particles located at the shock front are accelerated parallel to the magnetic field of the shock; this is defined as the field-aligned acceleration (FAA). The cross angle between IMF and the magnetic field of the shock plays an important role in creating the magnetic neutral sheet at the shock front. A test particle trapped by the neutral sheet obtains enormous energy due to the FAA. A reasonable formula for the highest energy gain is derived from theoretical analysis of the relativistic equations of motion. A possible configuration of the electric and magnetic fields in supernova remnants is also proposed by way of example.

  18. Field-aligned accelerations by plasma shocks propagating through interstellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Takeuchi, Satoshi

    2012-07-01

    A kinetic model of particle acceleration by plasma shocks is analyzed theoretically and with numerical calculations. The shocks are propagating through weakly magnetized background plasmas, namely interstellar magnetic fields (IMFs). Particles located at the shock front are accelerated parallel to the magnetic field of the shock; this is defined as the field-aligned acceleration (FAA). The cross angle between IMF and the magnetic field of the shock plays an important role in creating the magnetic neutral sheet at the shock front. A test particle trapped by the neutral sheet obtains enormous energy due to the FAA. A reasonable formula for the highest energy gain is derived from theoretical analysis of the relativistic equations of motion. A possible configuration of the electric and magnetic fields in supernova remnants is also proposed by way of example.

  19. A model for inferring transport rates from observed confinement times in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.; Milroy, Richard D.; Slough, John T.

    1985-03-01

    A one-dimensional transport model is developed to simulate the confinement of plasma and magnetic flux in a field-reversed configuration. Given the resistivity, the confinement times can be calculated. Approximate expressions are found which yield the magnitude and gross profile of the resistivity if the confinement times are known. These results are applied to experimental data from experiments, primarily TRX-1, to uncover trends in the transport properties. Several important conclusions emerge. The transport depends profoundly, and inexplicably, on the plasma formation mode. The inferred transport differs in several ways from the predictions of local lower-hybrid-drift turbulence theory. Finally, the gross resistivity exhibits an unusual trend with xs (separatrix radius rs divided by the conducting wall radius rc ), and is peaked near the magnetic axis for certain predictable conditions.

  20. Magnetic Fields above the Surface of aSuperconductor with Internal Magnetism

    SciTech Connect

    Bluhm, Hendrik; /Stanford U., Phys. Dept. /SLAC, SSRl

    2007-06-26

    The author presents a method for calculating the magnetic fields near a planar surface of a superconductor with a given intrinsic magnetization in the London limit. He computes solutions for various magnetic domain boundary configurations and derives relations between the spectral densities of the magnetization and the resulting field in the vacuum half space, which are useful if the magnetization can be considered as a statistical quantity and its features are too small to be resolved individually. The results are useful for analyzing and designing magnetic scanning experiments. Application to existing data from such experiments on Sr{sub 2}RuO{sub 4} show that a domain wall would have been detectable, but the magnetic field of randomly oriented small domains and small defects may have been smaller than the experimental noise level.

  1. Bounce averaged diffusion coefficients in a physics based magnetic field geometry from RAM-SCB

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2014-10-01

    In this work we explore wave-particle interaction in the radiation belt. By applying quasilinear theory, we obtain the particle diffusion coefficients in both pitch angle and energy for different configurations of the Earth's magnetic field. We consider the Earth's magnetic dipole field as a reference, and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with RAM-SCB, a code that models the Earth's ring current and provide a realistic modeling of the Earth's magnetic field. The bounce averaged electron pitch angle diffusion coefficients are calculated for each magnetic field configuration. The equatorial pitch angle, wave frequency and spectral distribution of whistler waves are shown to affect the bounce averaged diffusion coefficients. In addition, wave-particle resonance is significantly influenced by the magnetic field configuration: in storm conditions, diffusion is strongly reduced for some equatorial pitch angles.

  2. Diagnostics of vector magnetic fields

    NASA Technical Reports Server (NTRS)

    Stenflo, J. O.

    1985-01-01

    It is shown that the vector magnetic fields derived from observations with a filter magnetograph will be severely distorted if the spatially unresolved magnetic structure is not properly accounted for. Thus the apparent vector field will appear much more horizontal than it really is, but this distortion is strongly dependent on the area factor and the temperature line weakenings. As the available fluxtube models are not sufficiently well determined, it is not possible to correct the filter magnetograph observations for these effects in a reliable way, although a crude correction is of course much better than no correction at all. The solution to this diagnostic problem is to observe simultaneously in suitable combinations of spectral lines, and/or use Stokes line profiles recorded with very high spectral resolution. The diagnostic power of using a Fourier transform spectrometer for polarimetry is shown and some results from I and V spectra are illustrated. The line asymmetries caused by mass motions inside the fluxtubes adds an extra complication to the diagnostic problem, in particular as there are indications that the motions are nonstationary in nature. The temperature structure appears to be a function of fluxtube diameter, as a clear difference between plage and network fluxtubes was revealed. The divergence of the magnetic field with height plays an essential role in the explanation of the Stokes V asymmetries (in combination with the mass motions). A self consistent treatment of the subarcsec field geometry may be required to allow an accurate derivation of the spatially averaged vector magnetic field from spectrally resolved data.

  3. Bacterial Growth in Weak Magnetic Field

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    2015-03-01

    We study the growth of bacteria in a weak magnetic field. Computational analysis of experimental data shows that the growth rate of bacteria is affected by the magnetic field. The effect of magnetic field depends on the strength and type of magnetic field. It also depends on the type of bacteria. We mainly study gram positive and gram negative bacteria of rod type as well as spherical bacteria. Preliminary results show that the weak magnetic field enhances the growth of rod shape gram negative bacteria. Gram positive bacteria can be even killed in the inhomogeneous magnetic field.

  4. Dependence of effective internal field of congruent lithium niobate on its domain configuration and stability

    SciTech Connect

    Das, Ranjit E-mail: souvik2cat@gmail.com Ghosh, Souvik E-mail: souvik2cat@gmail.com Chakraborty, Rajib E-mail: souvik2cat@gmail.com

    2014-06-28

    Congruent lithium niobate is characterized by its internal field, which arises due to defect clusters within the crystal. Here, it is shown experimentally that this internal field is a function of the molecular configuration in a particular domain and also on the stability of that particular configuration. The measurements of internal field are done using interferometric technique, while the variation of domain configuration is brought about by room temperature high voltage electric field poling.

  5. Far infrared laser polarimetry and far forward scattering diagnostics for the C-2 field reversed configuration plasmas.

    PubMed

    Deng, B H; Kinley, J S; Knapp, K; Feng, P; Martinez, R; Weixel, C; Armstrong, S; Hayashi, R; Longman, A; Mendoza, R; Gota, H; Tuszewski, M

    2014-11-01

    A two-chord far infrared (FIR) laser polarimeter for high speed sub-degree Faraday rotation measurements in the C-2 field reversed configuration experiment is described. It is based on high power proprietary FIR lasers with line width of about 330 Hz. The exceptionally low intrinsic instrument phase error is characterized with figures of merit. Significant toroidal magnetic field with rich dynamics is observed. Simultaneously obtained density fluctuation spectra by far forward scattering are presented. PMID:25430164

  6. Magnetic fields in irregular galaxies

    NASA Astrophysics Data System (ADS)

    Chyzy, Krzysztof T.

    Radio data of large irregular galaxies reveal some extended synchrotron emission with a substantial degree of polarization. In the case of NGC 4449 strong galaxy-scale regular magnetic fields were found, in spite of the lack of ordered rotation required for the conventional dynamo action. The rigidly rotating large irregular NGC 55 shows vertical polarized spurs connected with a network of ionized gas filaments. Small dwarf irregulars show only isolated polarized spots.

  7. High Steady Magnetic Field Processing of Functional Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Rivoirard, Sophie

    2013-07-01

    The materials science community has been enriched for some decades now by the "magneto-science" approach, which consists of applying a magnetic field during material processing. The development of anisotropic properties by applying a steady magnetic field is now a well-established effect in the material processing of magnetic substances, which benefits from the unidirectional and static nature of the field delivered by superconducting magnets. Among other effects, magnetic anisotropy in functional magnetic materials, which arises from the alignment of magnetic moments under external field, can be developed at various structural scales. Magnetic ordering, magnetic patterning, and texturation are at the origin of this anisotropy development. Texture is developed in materials from magnetic orientation due to magnetic forces and torques or from stored energy. In metals and alloys, for instance, this effect can occur either in their liquid state or during solid-state thermomagnetic treatments and can thus impact significantly the material functional magnetic properties. Today's improved superconducting magnet technology allows higher field intensities to be delivered more easily (1 T up to several tens of Teslas) and enables researchers to gather evidence on magnetic field effects that were formerly thought to be negligible. The magneto-thermodynamic effect is one of them and involves the magnetization energy as an additional parameter to tailor microstructures. Control of functional properties can thus result from magnetic monitoring of the phase transformation, and kinetics can be impacted by the magnetic energy contribution.

  8. Experimental and numerical understanding of localized spin wave mode behavior in broadly tunable spatially complex magnetic configurations

    NASA Astrophysics Data System (ADS)

    Du, Chunhui; Adur, Rohan; Wang, Hailong; Manuilov, Sergei A.; Yang, Fengyuan; Pelekhov, Denis V.; Hammel, P. Chris

    2014-12-01

    Spin wave modes confined in a ferromagnetic film by the spatially inhomogeneous magnetic field generated by a scanned micromagnetic tip of a ferromagnetic resonance force microscope (FMRFM) enable microscopic imaging of the internal fields and spin dynamics in nanoscale magnetic devices. Here we report a detailed study of spin wave modes in a thin ferromagnetic film localized by magnetic field configurations frequently encountered in FMRFM experiments, including geometries in which the probe magnetic moment is both parallel and antiparallel to the applied uniform magnetic field. We demonstrate that characteristics of the localized modes, such as resonance field and confinement radius, can be broadly tuned by controlling the orientation of the applied field relative to the film plane. Micromagnetic simulations accurately reproduce our FMRFM spectra allowing quantitative understanding of the localized modes. Our results reveal a general method of generating tightly confined spin wave modes in various geometries with excellent spatial resolution that significantly facilitates the broad application of FMRFM. This paves the way to imaging of magnetic properties and spin wave dynamics in a variety of contexts for uncovering new physics of nanoscale spin excitations.

  9. Magnetic Fields and Vacuum Polarization at the Planck Era

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    The one-loop effective action describing polarization of the vacuum due to virtual electron-positron pairs in the Maxwell theory of electromagnetism was obtained by Heisenberg and Euler, in the limit of a background field that is constant on the scale of the electron Compton-wavelength. The case of vanishing electric field and constant, ultra-strong magnetic field B≫Bc, where Bc= m2e c3/eℎ ≈ 4.414x 1013G, yields a configuration whose energy density is less than that of the equivalent radiation field, suggesting why a magnetic field may be present in the early Universe back to the Planck era. For there is a similar but larger effect, allowing a "ferromagnetic" Yang Mills vacuum state, in the grand-unified theory at temperatures T >=slant MX, analyzed by Skalozub. Some further aspects of ultra-strong magnetic fields are discussed vis-à-vis the origin of the Galactic field Bg.

  10. The origin of magnetic fields in hot stars

    NASA Astrophysics Data System (ADS)

    Neiner, Coralie; Mathis, Stéphane; Alecian, Evelyne; Emeriau, Constance; Grunhut, Jason; BinaMIcS; MiMeS Collaborations

    2015-10-01

    Observations of stable mainly dipolar magnetic fields at the surface of ~7% of single hot stars indicate that these fields are of fossil origin, i.e. they descend from the seed field in the molecular clouds from which the stars were formed. The recent results confirm this theory. First, theoretical work and numerical simulations confirm that the properties of the observed fields correspond to those expected from fossil fields. They also showed that rapid rotation does not modify the surface dipolar magnetic configurations, but hinders the stability of fossil fields. This explains the lack of correlation between the magnetic field properties and stellar properties in massive stars. It may also explain the lack of detections of magnetic fields in Be stars, which rotate close to their break-up velocity. In addition, observations by the BinaMIcS collaboration of hot stars in binary systems show that the fraction of those hosting detectable magnetic fields is much smaller than for single hot stars. This could be related to results obtained in simulations of massive star formation, which show that the stronger the magnetic field in the original molecular cloud, the more difficult it is to fragment massive cores to form several stars. Therefore, more and more arguments support the fossil field theory.

  11. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  12. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  13. Variability in Martian Magnetic Field Topology

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Halekas, J. S.; Eastwood, J. P.; Ulusen, D.; Lillis, R. J.

    2014-07-01

    We have determined the locations of open and closed magnetic field lines at Mars as a function of four different controlling influences: solar wind magnetic field direction, solar wind pressure, martian season, and solar EUV flux.

  14. Two-fluid simulation of field-reversed configuration and application to conical implosion

    NASA Astrophysics Data System (ADS)

    Yang, Zhengquan; Li, Cheng

    2015-11-01

    Field-reversed configurations (FRC) compression is one candidate for conical imploding magnetic target fusion (MTF). In the scenario, the density of initial plasma is much higher (1020~21 cc) than that of liner imploding FRC compression. As the characteristic spatial scales are in the order of ion gyroradius, two-fluid effects become important. In two-fluid MHD simulation, we use full sets of Euler equations for both ions and electrons, and a full set of Maxwell's equations for electromagnetic field. The fluid and field are coupled. Simulation starts with a uniform plasma and a set of 3 current coils. Field of current coils is solved by Maxwell's equations. The current in the middle coil is reversed, and results in magnetic reconnection and FRC formation. The simulation is then applied to a conical implosion, with a liquid metal drive. During the compression, the coil fires to form a FRC which is compressed at high ratio within several microseconds. The final pressure and temperature achieved are significantly improved comparing with compressions with no FRC.

  15. Control of translating velocity using pulse field on field-reversed configuration plasmas

    SciTech Connect

    Fujino, T.; Gota, H.; Hasegawa, Y.; Kanamaru, Y.; Fujimoto, K.; Asai, T.; Takahashi, T.; Nogi, Y.

    2006-01-15

    The translating velocity of a field-reversed configuration plasma is controlled using a pulse mirror field. Numerical calculations are carried out, using a flux-conserving moving mirror coil, to simulate the motion of the plasma subject to the pulse field. The calculations suggest that it is possible to stop the plasma smoothly without reflection under the pulse mirror coil when the strength of the mirror is changed depending on the velocity of the plasma. In the experiment, the pulse field is produced by a current flowing in a one-turn coil installed inside a theta-pinch coil. It is demonstrated that the translating plasma passing under the one-turn coil is reflected and stops depending on the strength of the pulse field. The optimum strength of the field to stop the plasma without reflection is in good agreement with the estimation of the calculations.

  16. Configurations and magnetic properties of Mn-B binary clusters

    NASA Astrophysics Data System (ADS)

    Cui-Ju, FENG; Bin-Zhou, MI

    2016-05-01

    We investigate the structures and magnetic properties of boron-doped manganese clusters using first-principle density functional theory. We arrive at the lowest energy structures for clusters by simultaneously optimizing the cluster geometries, total spins, and relative orientations of individual atomic moments. For MnnB (n=2-12) clusters, the theoretical results indicate that the B atom prefers the surface site for all the lowest-energy structures except Mn10B cluster. The doped B atom enhances the stability of pure Mnn cluster. We also have studied the magnetic behavior of Mn-B clusters in the size range. Based on the analysis of the different magnetic behavior of boron-doped manganese clusters, we have further studied Mn9B2 and Mn8B3 clusters and it indicates that the doping of non-magnetism B element can induce all the Mn atoms align ferromagnetic coupling. Furthermore, a stable pearl necklace nanowire ([Mn8B3]n→∞) which retains the ferromagnetic ordering of all the manganese atoms has been predicted.

  17. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  18. Fast Global Imaging of the C-2 Field-Reversed Configuration and Divertor Plasmas

    NASA Astrophysics Data System (ADS)

    Granstedt, Erik; Roquemore, A. L.; Longman, A.; Hayashi, R.; Yankoski, E.; TAE Team

    2014-10-01

    Two high-speed, filtered cameras have been used to view the dynamics of the C-2. Field-Reversed Configuration (FRC) and divertor plasmas. The first used a re-entrant viewport to achieve a global, quasi-axial view of the FRC plasma in order to examine macroscopic plasma evolution, rotation, and non-axisymmetric perturbations. This instrument consisted of a Phantom v7.3 camera coupled to imaging optics via a 15-ft, 1000 ×800 pixel coherent fiber bundle. A filter wheel was set between shots to view edge-dominated emission from neutral D, C III, or Li I-II, or core-dominated emission from O III-V. Perturbations rotating in the ion diamagnetic direction were observed both during the FRC and after the transition to an open field-line plasma. The divertor instrument consisted of a Phantom v5.2 camera with Dα filter and was used to examine divertor neutral density under various gas puffing, magnetic field, and electrode biasing configurations. Both instruments were photometrically calibrated to measure absolute emissivity in order to obtain estimates of neutral and impurity density.

  19. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  20. Uniform rotating field network structure to efficiently package a magnetic bubble domain memory

    NASA Technical Reports Server (NTRS)

    Wolfshagen, Ronald G. (Inventor); Ypma, John E. (Inventor); Murray, Glen W. (Inventor); Chen, Thomas T. (Inventor)

    1978-01-01

    A unique and compact open coil rotating magnetic field network structure to efficiently package an array of bubble domain devices is disclosed. The field network has a configuration which effectively enables selected bubble domain devices from the array to be driven in a vertical magnetic field and in an independent and uniform horizontal rotating magnetic field. The field network is suitably adapted to minimize undesirable inductance effects, improve capabilities of heat dissipation, and facilitate repair or replacement of a bubble device.

  1. Penetration of plasma across a magnetic field

    NASA Astrophysics Data System (ADS)

    Plechaty, C.; Presura, R.; Wright, S.; Neff, S.; Haboub, A.

    2009-08-01

    Experiments were performed at the Nevada Terawatt Facility to investigate the plasma penetration across an externally applied magnetic field. In experiment, a short-pulse laser ablates a polyethylene laser target, producing a plasma which interacts with an external magnetic field. The mechanism which allows the plasma to penetrate the applied magnetic field in experiment will be discussed.

  2. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  3. Magnetic field gradient measurement on magnetic cards using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Lo, C. C. H.; Leib, J.; Jiles, D. C.; Chedister, W. C.

    2002-05-01

    The magnetic field gradients of magnetic stripe cards, which are developed for classifying magnetic particles used in magnetic particle inspections, have been measured using a magnetic force microscope (MFM). The magnetic force exerted on a MFM probe by the stray field emanating from the card was measured to determine the field gradients. The results are in good agreement with the field gradients estimated from the magnetizing field strengths used in the encoding process.

  4. Binary stellar winds. [flow and magnetic field geometry

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Heinemann, M. A.

    1974-01-01

    Stellar winds from a binary star pair will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters is discussed.

  5. Binary stellar winds. [flow and magnetic field interactions

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Heinemann, M. A.

    1974-01-01

    Stellar winds from a binary star will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters are discussed.

  6. Comparison between planar magnetocrystaline and shape anisotropies in the magnetic vortex configuration of nanostructured particles

    NASA Astrophysics Data System (ADS)

    Parreiras, Sofia; Souza, Rafael; Martins, Maximiliano

    2015-03-01

    Soft ferromagnetic dots with sub-micrometer size can exhibit in the ground state a curling spin configuration known as magnetic vortex. In the case of soft ferromagnetic materials in micron and submicron scales, small changes in shape, size and material's anisotropy can modify the energy equilibrium that defines the stable spin structure. In this work, we investigated the magnetic configuration of micron-sized Co60Fe40 and Permalloy disks and elipses, prepared by lift-off lithography process, by comparing the results of micromagnetic simulations and magnetic force microscopy (MFM) measurements. By comparing the results for Co60Fe40 and Permalloy it is possible to elucidate the effect of the planar magnetocrystaline anisotropy in the stability of the magnetic vortex configuration and this effect is compared with the effect of the shape anisotropy induced by the elliptical shape. The results for disks with diameters between 0.5 and 8 μm showed that the anisotropy favors spins alignment and domains division, reducing vortex stability. The results showed different magnetic configurations for each disk diameter. Additionally, a statistical analysis of the magnetic configuration distribution observed in MFM experiments was performed and compared with the simulation results. Acknowledgements: CAPES, CNPq and FAPEMIG.

  7. Cancellation of the ion deflection due to electron-suppression magnetic field in a negative-ion accelerator

    SciTech Connect

    Chitarin, G.; Agostinetti, P.; Aprile, D.; Marconato, N.; Veltri, P.

    2014-02-15

    A new magnetic configuration is proposed for the suppression of co-extracted electrons in a negative-ion accelerator. This configuration is produced by an arrangement of permanent magnets embedded in one accelerator grid and creates an asymmetric local magnetic field on the upstream and downstream sides of this grid. Thanks to the “concentration” of the magnetic field on the upstream side of the grid, the resulting deflection of the ions due to magnetic field can be “intrinsically” cancelled by calibrating the configuration of permanent magnets. At the same time, the suppression of co-extracted electrons can be improved.

  8. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  9. The Giotto magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.

    1983-01-01

    The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.

  10. Bats respond to very weak magnetic fields.

    PubMed

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  11. Magnetic field response sensor for conductive media

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2009-01-01

    A magnetic field response sensor comprises an inductor placed at a fixed separation distance from a conductive surface to address the low RF transmissivity of conductive surfaces. The minimum distance for separation is determined by the sensor response. The inductor should be separated from the conductive surface so that the response amplitude exceeds noise level by a recommended 10 dB. An embodiment for closed cavity measurements comprises a capacitor internal to said cavity and an inductor mounted external to the cavity and at a fixed distance from the cavity's wall. An additional embodiment includes a closed cavity configuration wherein multiple sensors and corresponding antenna are positioned inside the cavity, with the antenna and inductors maintained at a fixed distance from the cavity's wall.

  12. Magnetic field response sensor for conductive media

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2010-01-01

    A magnetic field response sensor comprises an inductor placed at a fixed separation distance from a conductive surface to address the low RF transmissivity of conductive surfaces. The minimum distance for separation is determined by the sensor response. The inductor should be separated from the conductive surface so that the response amplitude exceeds noise level by a recommended 10 dB. An embodiment for closed cavity measurements comprises a capacitor internal to said cavity and an inductor mounted external to the cavity and at a fixed distance from the cavity's wall. An additional embodiment includes a closed cavity configuration wherein multiple sensors and corresponding antenna are positioned inside the cavity, with the antenna and inductors maintained at a fixed distance from the cavity's wall.

  13. Magnetic Field Response Sensor For Conductive Media

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2006-01-01

    A magnetic field response sensor comprises an inductor placed at a fixed separation distance from a conductive surface to address the low RF transmissivity of conductive surfaces. The minimum distance for separation is determined by the sensor response. The inductor should be separated from the conductive surface so that the response amplitude exceeds noise level by a recommended 10 dB. An embodiment for closed cavity measurements comprises a capacitor internal to said cavity and an inductor mounted external to the cavity and at a fixed distance from the cavity s wall. An additional embodiment includes a closed cavity configuration wherein multiple sensors and corresponding antenna are positioned inside the cavity, with the antenna and inductors maintained at a fixed distance from the cavity s wall.

  14. Safety concerns related to magnetic field exposure.

    PubMed

    Silva, Amanda K Andriola; Silva, Erica L; Egito, E Sócrates T; Carriço, Artur S

    2006-11-01

    The recent development of superconducting magnets has resulted in a huge increase in human exposure to very large static magnetic fields of up to several teslas (T). Considering the rapid advances in applications and the great increases in the strength of magnetic fields used, especially in magnetic resonance imaging, safety concerns about magnetic field exposure have become a key issue. This paper points out some of these safety concerns and gives an overview of the findings about this theme, focusing mainly on mechanisms of magnetic field interaction with living organisms and the consequent effects. PMID:17021785

  15. Analysis of the vector magnetic fields of complex sunspots

    NASA Technical Reports Server (NTRS)

    Patty, S. R.

    1981-01-01

    An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.

  16. Levitation performance of the magnetized bulk high- Tc superconducting magnet with different trapped fields

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, J. S.; Liao, X. L.; Zheng, S. J.; Ma, G. T.; Zheng, J.; Wang, S. Y.

    2011-03-01

    To a high- Tc superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high- Tc superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  17. Interaction between two magnetic dipoles in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Ku, J. G.; Liu, X. Y.; Chen, H. H.; Deng, R. D.; Yan, Q. X.

    2016-02-01

    A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  18. Magnetic field sources and their threat to magnetic media

    NASA Technical Reports Server (NTRS)

    Jewell, Steve

    1993-01-01

    Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

  19. Suppression of magnetic relaxation by a transverse alternating magnetic field

    SciTech Connect

    Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. Yampol'skii, V. A.

    2007-07-15

    The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.

  20. Energy buildup in sheared force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  1. Nuclear magnetic resonance apparatus for pulsed high magnetic fields.

    PubMed

    Meier, Benno; Kohlrautz, Jonas; Haase, Jürgen; Braun, Marco; Wolff-Fabris, Frederik; Kampert, Erik; Herrmannsdörfer, Thomas; Wosnitza, Joachim

    2012-08-01

    A nuclear magnetic resonance apparatus for experiments in pulsed high magnetic fields is described. The magnetic field pulses created together with various magnet coils determine the requirements such an apparatus has to fulfill to be operated successfully in pulsed fields. Independent of the chosen coil it is desirable to operate the entire experiment at the highest possible bandwidth such that a correspondingly large temporal fraction of the magnetic field pulse can be used to probe a given sample. Our apparatus offers a bandwidth of up to 20 MHz and has been tested successfully at the Hochfeld-Magnetlabor Dresden, even in a very fast dual coil magnet that has produced a peak field of 94.2 T. Using a medium-sized single coil with a significantly slower dependence, it is possible to perform advanced multi-pulse nuclear magnetic resonance experiments. As an example we discuss a Carr-Purcell spin echo sequence at a field of 62 T. PMID:22938280

  2. Magnetic probe array with high sensitivity for fluctuating field.

    PubMed

    Kanamaru, Yuki; Gota, Hiroshi; Fujimoto, Kayoko; Ikeyama, Taeko; Asai, Tomohiko; Takahashi, Tsutomu; Nogi, Yasuyuki

    2007-03-01

    A magnetic probe array is constructed to measure precisely the spatial structure of a small fluctuating field included in a strong confinement field that varies with time. To exclude the effect of the confinement field, the magnetic probes consisting of figure-eight-wound coils are prepared. The spatial structure of the fluctuating field is obtained from a Fourier analysis of the probe signal. It is found that the probe array is more sensitive to the fluctuating field with a high mode number than that with a low mode number. An experimental demonstration of the present method is attempted using a field-reversed configuration plasma, where the fluctuating field with 0.1% of the confinement field is successfully detected. PMID:17411230

  3. Configuration-dependent electronic and magnetic properties of graphene monolayers and nanoribbons functionalized with aryl groups

    SciTech Connect

    Tian, Xiaoqing Gu, Juan; Xu, Jian-bin

    2014-01-28

    Graphene monolayers functionalized with aryl groups exhibit configuration-dependent electronic and magnetic properties. The aryl groups were adsorbed in pairs of neighboring atoms in the same sublattice A (different sublattices) of graphene monolayers, denoted as the M{sub 2}{sup AA} (M{sub 2}{sup AB}) configuration. The M{sub 2}{sup AA} configuration behaved as a ferromagnetic semiconductor. The band gaps for the majority and minority bands were 1.1 eV and 1.2 eV, respectively. The M{sub 2}{sup AB} configuration behaved as a nonmagnetic semiconductor with a band gap of 0.8 eV. Each aryl group could induce 1 Bohr magneton (μ{sub B}) into the molecule-graphene system. Armchair graphene nanoribbons (GNRs) exhibited the same configuration-dependent magnetic properties as the graphene monolayers. The net spin of the functionalized zigzag GNRs was mainly localized on the edges demonstrating an adsorption site-dependent magnetism. For the zigzag GNRs, both the M{sub 2}{sup AA} and M{sub 2}{sup AB} configurations possibly had a magnetic moment. Each aryl group could induce 1.5–3.5 μ{sub B} into the molecule-graphene system. There was a metal-to-insulator transition after adsorption of the aryl groups for the zigzag GNRs.

  4. Van der Waals torque induced by external magnetic fields

    SciTech Connect

    Esquivel-Sirvent, R.; Cocoletzi, G. H.; Palomino-Ovando, M.

    2010-01-01

    We present a method for inducing and controlling van der Waals torques between two parallel slabs using a constant magnetic field. The torque is calculated using the Barash theory of dispersive torques. In III–IV semiconductors such as InSb, the effect of an external magnetic field is to induce an optical anisotropy, in an otherwise isotropic material, that will in turn induce a torque. The calculations of the torque are done in the Voigt configuration, with the magnetic field parallel to the surface of the slabs. As a case study we consider a slab made of calcite and a second slab made of InSb. In the absence of magnetic field there is no torque. As the magnetic field increases, the optical anisotropy of InSb increases and the torque becomes different from zero, increasing with the magnetic field. The resulting torque is of the same order of magnitude as that calculated using permanent anisotropicmaterials when the magnetic fields is close to 1 T.

  5. The synchronous orbit magnetic field data set

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1979-01-01

    The magnetic field at synchronous orbit is the result of superposition of fields from many sources such as the earth, the magnetopause, the geomagnetic tail, the ring current and field-aligned currents. In addition, seasonal changes in the orientation of the earth's dipole axis causes significant changes in each of the external sources. Main reasons for which the synchronous orbit magnetic field data set is a potentially valuable resource are outlined. The primary reason why synchronous magnetic field data have not been used more extensively in magnetic field modeling is the presence of absolute errors in the measured fields. Nevertheless, there exists a reasonably large collection of synchronous orbit magnetic field data. Some of these data can be useful in quantitative modeling of the earth's magnetic field. A brief description is given of the spacecraft, the magnetometers, the standard graphical data displays, and the digital data files.

  6. Transonic Flow Field Analysis for Wing-Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.

    1980-01-01

    A computational method for simulating the aerodynamics of wing-fuselage configurations at transonic speeds is developed. The finite difference scheme is characterized by a multiple embedded mesh system coupled with a modified or extended small disturbance flow equation. This approach permits a high degree of computational resolution in addition to coordinate system flexibility for treating complex realistic aircraft shapes. To augment the analysis method and permit applications to a wide range of practical engineering design problems, an arbitrary fuselage geometry modeling system is incorporated as well as methodology for computing wing viscous effects. Configuration drag is broken down into its friction, wave, and lift induced components. Typical computed results for isolated bodies, isolated wings, and wing-body combinations are presented. The results are correlated with experimental data. A computer code which employs this methodology is described.

  7. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  8. Chiral plasmons without magnetic field.

    PubMed

    Song, Justin C W; Rudner, Mark S

    2016-04-26

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  9. Magnetic Fields in Irregular Galaxies: NGC 4214

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.

    2006-12-01

    Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.

  10. Superconducting and hybrid systems for magnetic field shielding

    NASA Astrophysics Data System (ADS)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  11. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1994-01-01

    The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

  12. Magnetic fields from the electroweak phase transition

    SciTech Connect

    Tornkvist, O.

    1998-02-01

    I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.

  13. Deformable homeotropic nematic droplets in a magnetic field

    NASA Astrophysics Data System (ADS)

    Otten, Ronald H. J.; van der Schoot, Paul

    2012-10-01

    We present a Frank-Oseen elasticity theory for the shape and structure of deformable nematic droplets with homeotropic surface anchoring in the presence of a magnetic field. Inspired by recent experimental observations, we focus on the case where the magnetic susceptibility is negative, and find that small drops have a lens shape with a homogeneous director field for any magnetic-field strength, whereas larger drops are spherical and have a radial director field, at least if the magnetic field is weak. For strong magnetic fields the hedgehog configuration transforms into a split-core line defect that, depending on the anchoring strength, can be accompanied by an elongation of the tactoid itself. We present a three-dimensional phase diagram that shows the tactoid shape and director field for a given anchoring strength, tactoid size, and magnetic-field strength. Our findings rationalize the different shapes and structures that recently have been observed experimentally for nematic droplets found in dispersions of gibbsite platelets in two types of solvent.

  14. Overview of C-2 field-reversed configuration experiment plasma diagnostics

    SciTech Connect

    Gota, H. Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

    2014-11-15

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  15. Overview of C-2 field-reversed configuration experiment plasma diagnosticsa)

    NASA Astrophysics Data System (ADS)

    Gota, H.; Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

    2014-11-01

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ˜5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  16. Overview of C-2 field-reversed configuration experiment plasma diagnostics.

    PubMed

    Gota, H; Thompson, M C; Tuszewski, M; Binderbauer, M W

    2014-11-01

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs. PMID:25430249

  17. Simulations of the Field-Reversed Configuration with the NIMROD Code

    NASA Astrophysics Data System (ADS)

    Macnab, A. I. D.; Barnes, D. C.; Milroy, R. D.; Kim, C. C.; Sovinec, C. R.

    2007-06-01

    The recently formed Plasma Science and Innovation Center (PSI-Center) is refining the NIMROD code to simulate field-reversed configurations (FRCs). The NIMROD code can resolve highly anisotropic heat conduction and viscosity. This, combined with its ability to include two-fluid effects, allows us to capture more detailed physics than previous calculations. Some initial simulations are focused on 2D ( n = 0 only) non-linear two-fluid simulations. We present initial validations of a translating FRC and note good conservation of density and magnetic flux. As a validation of the effects of anisotropic thermal conduction, we present a comparison of an FRC with standard thermal transport to one with anisotropic conduction. Two-fluid simulations are shown which produce significant spin-up due to the end-shorting boundary condition. Finally, simulations of the tilt instability are presented, which show that Hall physics significantly retards, but does not eliminate the growth rate.

  18. Field-Reversed Configuration Formation Scheme Utilizing a Spheromak and Solenoid Induction

    SciTech Connect

    Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Ren, B.; McGeehan, B.; Inomoto, M.

    2008-06-12

    A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state.

  19. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  20. ESA's Magnetic Field Mission Swarm

    NASA Astrophysics Data System (ADS)

    Haagmans, R.; Kern, M.; Plank, G.; Menard, Y.

    2008-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The Mission shall deliver data that allow access to new insights into the Earth system by improving our understanding of the Earth's interior and climate. The mission is nominally scheduled for launch in 2010. After release from a single launcher, a side-by-side flying slowly decaying lower pair of satellites will be released at an initial altitude of about 490 km together with a third satellite that will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations that are required to separate and model various sources of the geomagnetic field. At present the project is in the development phase. The current project status, planned products and performances, and on-going scientific studies will be given special attention during the presentation. There will also be outlook to the next planned Swarm workshop.

  1. Magnetic switching in ultrashort field pulses (abstract)

    NASA Astrophysics Data System (ADS)

    Back, C. H.; Weller, D.; Heidmann, J.; Mauri, D.; Garwin, E. L.; Siegmann, H. C.

    1997-04-01

    The Ginzburg-Landau-Lifshitz (GLL) equation, which describes the time dependence of spin precesssion in an external magnetic field1 relates the minimal field required to reverse the magnetization at fixed pulse length to the anisotropy field of the sample.23 We have systematically varied this parameter between 1.3 and about 5.0 T in a series of perpendicularly magnetized Co/Pt multilayer films and studied the magnetization reversal in picosecond in plane field pulses. Such pulses of several Tesla field strength and ultrashort duration were obtained in the final focus test beam section of the Stanford Linear Accelerator Center. The resulting magnetization pattern, which is reminiscent of the field during exposure, is subsequently analyzed with Kerr microscopy2 (see Fig. 1). As a prominent feature, we observe a beam field related switching radius from up to down magnetization which we compare to the theoretically expected field within the GLL formalism.

  2. Stability of topological charge of magnetic skyrmion configurations

    NASA Astrophysics Data System (ADS)

    Jalil, M. B. A.; Tan, S. G.; Siu, Z. B.; Gan, W.; Purnama, I.; Lew, W. S.

    2016-02-01

    We analyze the topological charge of a skyrmion qs, and the corresponding Hall conductivity σxy, which can serve as an electrical read-out for skyrmion-based memory. We derived the general form of the Dzyaloshinskii-Moriya (DM) interaction for any arbitrary orientation of the DM vector D. Based on the DM interaction energy, we obtained the dependence the skyrmion helicity angle γ on the orientation of D. We showed via general mathematical arguments, the topological nature of the skyrmionic charge qs, and its independence of γ and specific details of the interior of the skyrmion (e.g., its core size). Finally, we showed via numerical micromagnetics the stability of qs under varying applied B-fields till the annihilation field, despite the drastic reduction in the skyrmion core size.

  3. Interaction Forces Between Multiple Bodies in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Joffe, Benjamin

    1996-01-01

    Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.

  4. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  5. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  6. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this

  7. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary

  8. [Analysis of peculiarities of magnetic field effect].

    PubMed

    Macheret, Ie L; Murashko, N K

    2003-01-01

    In the article is analyzed the influence of a magnetic field of the Earth on human, state of his health and necessity of magnetic diagnostics. The magnetic fields is an effective preventive and tentative method in case of an early development of diseases. PMID:14723128

  9. Magnetic field effect on charged Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.

    2016-01-01

    We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.

  10. Baryon onset in a magnetic field

    NASA Astrophysics Data System (ADS)

    Haber, Alexander; Preis, Florian; Schmitt, Andreas

    2016-01-01

    The critical baryon chemical potential for the onset of nuclear matter is a function of the vacuum mass and the binding energy. Both quantities are affected by an external magnetic field. We show within two relativistic mean-field models - including magnetic catalysis, but omitting the anomalous magnetic moment - that a magnetic field increases both the vacuum mass and the binding energy. For sufficiently large magnetic fields, the effect on the vacuum mass dominates and as a result the critical baryon chemical potential is increased.

  11. Patterns of magnetic field merging sites on the magnetopause

    SciTech Connect

    Luhmann, J.G.; Walker, R.J.

    1984-05-01

    Models of the magnetospheric and magnetosheath magnetic fields are used to determine the relative orientations of the two near the dayside magnetopause for the purpose of locating potential merging sites. Areas of the magnetopause with various degrees of antiparallelness for different Interplanetary fields as contour diagrams are studied. For southward and GSE-Y interplanetary field, the patterns obtained are consistent with those envisioned by Crooker in an earlier analysis which used simplified representations for the magnetic field geometry. Here the application of realistic models shows the locations of areas where any antiparallel component occurs. Merging sites for radial interplanetary fields are also illustrated. The results suggest that the geometrical configuration of the fields is suitable for merging over a large fraction of the magnetopause for interplanetary fields that are either primarily southward, GSE-Y, or radial (GSE-X) in direction.

  12. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  13. Force-free magnetic fields - The magneto-frictional method

    NASA Technical Reports Server (NTRS)

    Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.

    1986-01-01

    The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.

  14. Ion energy distribution function measurements in the Irvine Field Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Roche, Thomas; Garate, Eusebio; Harris, Wayne; Heidbrink, William; McWilliams, Roger; Trask, Erik

    2009-11-01

    A gridded ion energy analyzer has been constructed to measure the ion energy distribution function in the Irvine Field Reversed Configuration (IFRC). Three grids provide Debye shielding, electron rejection and ion energy selection, respectively. It has an acceptance angle of ˜20 degrees. Due to a large, negative, floating potential a fast (17 MHz bandwidth) optocoupler is used to decouple the signal from earth ground. A dummy collector is also used to subtract background noise pickup. Ion current flows in the negative theta direction in the IFRC. Measurements have been taken both parallel and anti-parallel to the current near the magnetic null. These measurements have shown that a shifted Maxwellian, with peak energy of ˜18 eV, can be fit to the ion energy distribution function. This number agrees with the upper limit of 20 eV previously placed on the peak by a time of flight diagnosticfootnotetext W. S. Harris et al., Rev. Sci. Instrum. 79, 10F313 (2008). Coupling of the distribution function measurements with magnetic field measurements will determine the distribution of orbit types in the IFRC, specifically the ratio of betatron to drift type particle orbits.

  15. Characterizing the quiet time magnetic field at geostationary orbit

    NASA Astrophysics Data System (ADS)

    Skone, S. H.; Donovan, E. F.; Rostoker, G.

    1995-12-01

    There is now an increasing body of evidence which suggests that the onset of a substorm expansive phase is triggered in the near-Earth tail region, inside X~-12RE [Samson et al., 1992]. For this reason, it is necessary to characterize the magnetic field in the near-Earth region, particularly the quiet time reference field. We have therefore carried out a detailed study of the magnetic field at geostationary orbit, using data acquired during quiet times from the GOES 5 and GOES 6 satellites which operated simultaneously during 1986. Diurnal and seasonal variations of the total field, and the perturbation magnetic field with the IGRF removed, have been identified and attributed to variations in the position of the neutral sheet with respect to the satellite. We have processed the data to remove seasonal effects by using the semiempirical expression developed by Lopez [1990] to express the displacement of the neutral sheet with respect to the magnetic equatorial plane. We then use our magnetic field model, recently developed by Donovan [1993a], to model the observed quiet time magnetic field at geostationary orbit, and also determine the quiet time current configuration.

  16. Diffusion of Magnetic Field and Removal of Magnetic Flux from Clouds Via Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; Lazarian, A.; de Gouveia Dal Pino, E. M.; Cho, J.

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.

  17. Large-scale magnetic fields in magnetohydrodynamic turbulence.

    PubMed

    Alexakis, Alexandros

    2013-02-22

    High Reynolds number magnetohydrodynamic turbulence in the presence of zero-flux large-scale magnetic fields is investigated as a function of the magnetic field strength. For a variety of flow configurations, the energy dissipation rate [symbol: see text] follows the scaling [Symbol: see text] proportional U(rms)(3)/ℓ even when the large-scale magnetic field energy is twenty times larger than the kinetic energy. A further increase of the magnetic energy showed a transition to the [Symbol: see text] proportional U(rms)(2) B(rms)/ℓ scaling implying that magnetic shear becomes more efficient at this point at cascading the energy than the velocity fluctuations. Strongly helical configurations form nonturbulent helicity condensates that deviate from these scalings. Weak turbulence scaling was absent from the investigation. Finally, the magnetic energy spectra support the Kolmogorov spectrum k(-5/3) while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k(-3/2) as observed in the solar wind. PMID:23473153

  18. Magnetometer measures orthogonal components of magnetic fields

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Driven magnetometer accurately measures the components of a low strength magnetic field in each of three mutually perpendicular directions. To accomplish this, it employs the principle of magnetic resonance in optically pumped rubidium vapor.

  19. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  20. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  1. Formation of a White-Light Jet Within a Quadrupolar Magnetic Configuration

    NASA Astrophysics Data System (ADS)

    Filippov, Boris; Koutchmy, Serge; Tavabi, Ehsan

    2013-08-01

    We analyze multi-wavelength and multi-viewpoint observations of a large-scale event viewed on 7 April 2011, originating from an active-region complex. The activity leads to a white-light jet being formed in the outer corona. The topology and evolution of the coronal structures were imaged in high resolution using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). In addition, large field-of-view images of the corona were obtained using the Sun Watcher using Active Pixel System detector and Image Processing (SWAP) telescope onboard the PRoject for Onboard Autonomy (PROBA2) microsatellite, providing evidence for the connectivity of the coronal structures with outer coronal features that were imaged with the Large Angle Spectrometric Coronagraph (LASCO) C2 on the S olar and Heliospheric Observatory (SOHO). The data sets reveal an Eiffel-tower type jet configuration extending into a narrow jet in the outer corona. The event starts from the growth of a dark area in the central part of the structure. The darkening was also observed in projection on the disk by the Solar TErrestrial RElations Observatory-Ahead (STEREO-A) spacecraft from a different point of view. We assume that the dark volume in the corona descends from a coronal cavity of a flux rope that moved up higher in the corona but still failed to erupt. The quadrupolar magnetic configuration corresponds to a saddle-like shape of the dark volume and provides a possibility for the plasma to escape along the open field lines into the outer corona, forming the white-light jet.

  2. Application peculiarities of magnetic materials for protection from magnetic fields

    NASA Astrophysics Data System (ADS)

    Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.

    2016-02-01

    In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.

  3. Instantaneous configuration of the geomagnetic field inferred from the low-altitude isotropic boundaries: modeling and observations

    NASA Astrophysics Data System (ADS)

    Ilie, Raluca; Ganushkina, Natalia; Toth, Gabor; Liemohn, Michael

    2015-04-01

    Understanding the interplay between ionospheric, auroral and magnetospheric phenomena requires detailed knowledge of Earth’s magnetic field geometry under various solar wind conditions. This geometry is directly relevant to the magnetic field mapping between different regions of near-Earth space.To evaluate the instantaneous geomagnetic field configuration we probe the isotropic boundaries (IB) of energetic particles measured at low altitudes. Those are interpreted as the boundary between the regions of adiabatic and stochastic particle motion in the equatorial magnetotail and provide information regarding the degree of magnetic field stretching.We investigate the topology and dynamics of the magnetotail current during active and quiet times as de- pendent on solar wind and IMF parameters based on NOAA/POES MEPED and DMSP SSJ/4 measurements in combination with global magnetospheric simulations using the Space Weather Modeling Framework (SWMF).The extensive NOAA/POES MEPED low-altitude data sets give the locations of isotropic boundaries, which are used to extract information regarding particle distributions and field structure in the source regions in the magnetosphere.We present a comparison between the magnetic field lines with the observed IB latitude and those com- puted from the SWMF using the theoretical relation for IB locations in the magnetotail, i.e. where the ratio between curvature radius and Larmor radius is close to 8. This investigation assesses the accuracy of the model magnetic field and the structure of the magnetotail. The results are examined in relation to the solar wind and IMF conditions to determine the corresponding configuration and dynamics of the magnetotail.

  4. Beam Fields in an Integrated Cavity, Coupler and Window Configuration

    SciTech Connect

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2010-02-10

    In a multi-bunch high current storage ring, beam generated fields couple strongly into the RF cavity coupler structure when beam arrival times are in resonance with cavity fields. In this study the integrated effect of beam fields over several thousand RF periods is simulated for the complete cavity, coupler, window and waveguide system of the PEP-II B-factory storage ring collider. We show that the beam generated fields at frequencies corresponding to several bunch spacings for this case gives rise to high field strength near the ceramic window which could limit the performance of future high current storage rings such as PEP-X or Super B-factories.

  5. Magnetic Field Topology of Sigmoids

    NASA Astrophysics Data System (ADS)

    Son, J. H.; Canfield, R. C.; Acton, L. W.

    2004-12-01

    Sigmoids are studied due to their eruptive nature, which affects the Earth and the space atmosphere. The shape of the sigmoid (S-shaped or inverse S-shaped) is an indicator of eruption. The origin of this shape has been the topic of many research papers. One such paper by Fan and Gibson, The Emergence of a Twisted Magnetic Flux Tube Into a Preexisting Coronal Arcade, appeared in 2003. Fan and Gibson argue that a sigmoid with left-handed twist has left-handed writhe, which gives the sigmoid its S-shape and right-handed twist the inverse S-shape. Our study determined that there is no correlation between a sigmoid's handedness and shape as claimed in the paper by Fan and Gibson. Doing a statistical study observing the topology of the sigmoid using the data from Yohkoh Soft X-ray Telescope, we classified each sigmoid by its shape, twist, and magnetic field lines. We found that 23% of our data was right-handed and S-shaped, 33% was left-handed and S-shaped, 22% was right-handed and inverse S-shaped, and 22% was left-handed and inverse-S shaped. Thus, we found no systematic relationship between the handedness and shape of the sigmoid -- in disagreement with Fan and Gibson.

  6. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1991-01-01

    The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

  7. The Influence of the Interplanetary Magnetic Field (IMF) on Atmospheric Escape at Mars

    NASA Astrophysics Data System (ADS)

    Curry, S. M.; Luhmann, J. G.; Ma, Y.; Dong, C. F.; Brain, D. A.

    2014-07-01

    We present a study on the response of Mars’ atmosphere to changes in the interplanetary magnetic field (IMF) configuration, specifically with respect to the atmospheric escape rate via pick up ions and upcoming MAVEN observations.

  8. Parallel heat transport in integrable and chaotic magnetic fields

    SciTech Connect

    Castillo-Negrete, D. del; Chacon, L.

    2012-05-15

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  9. Reconstruction of equilibrium magnetic configurations in the Globus-M spherical tokamak

    NASA Astrophysics Data System (ADS)

    Sakharov, N. V.; Voronin, A. V.; Gusev, V. K.; Kavin, A. A.; Kamenshchikov, S. N.; Lobanov, K. M.; Minaev, V. B.; Novokhatsky, A. N.; Patrov, M. I.; Petrov, Yu. V.; Shchegolev, P. B.

    2015-12-01

    The results of reconstruction of equilibrium magnetic configurations in the Globus-M spherical tokamak by means of the EFIT code and by the method of movable filaments with the use of the data from magnetic measurements are compared. The EFIT code allows one to completely reconstruct the magnetic configuration by solving the Grad-Shafranov equation. In the method of movable filaments, the distribution of the toroidal current flowing through the plasma is described by a set of infinitely thin current-carrying rings. In this method, the last closed magnetic surface (LCMS) and the open surfaces lying beyond the LCMS are calculated. Using both methods, the coordinates of the regions where the separatrix strikes the divertor plates were determined. The results obtained agree well with the distributions of the temperature over the tungsten divertor tiles measured using an IR camera.

  10. Reconstruction of equilibrium magnetic configurations in the Globus-M spherical tokamak

    SciTech Connect

    Sakharov, N. V. Voronin, A. V.; Gusev, V. K.; Kavin, A. A.; Kamenshchikov, S. N.; Lobanov, K. M.; Minaev, V. B.; Novokhatsky, A. N.; Patrov, M. I. Petrov, Yu. V.; Shchegolev, P. B.

    2015-12-15

    The results of reconstruction of equilibrium magnetic configurations in the Globus-M spherical tokamak by means of the EFIT code and by the method of movable filaments with the use of the data from magnetic measurements are compared. The EFIT code allows one to completely reconstruct the magnetic configuration by solving the Grad−Shafranov equation. In the method of movable filaments, the distribution of the toroidal current flowing through the plasma is described by a set of infinitely thin current-carrying rings. In this method, the last closed magnetic surface (LCMS) and the open surfaces lying beyond the LCMS are calculated. Using both methods, the coordinates of the regions where the separatrix strikes the divertor plates were determined. The results obtained agree well with the distributions of the temperature over the tungsten divertor tiles measured using an IR camera.

  11. Multiple Ribbons of a M1.6 Flare Related to the Magnetic Configuration of the NOAA AR 365

    NASA Astrophysics Data System (ADS)

    Chandra, R.; Schmieder, B.; Aulanier, G.; Malherbe, M. J.

    2008-09-01

    The aim of this paper is to understand the magnetic configuration of an active region NOAA 365 and its evolution before and after the occurrence of a M1.6 flare in order to understand the magnetic origin of the flare and its development at particularly the ribbons. We analyze a M1.6 flare occurring in the active region NOAA 365, using space instruments (SOHO/MDI, EIT, TRACE, RHESSI) as well as ground based instruments i.e. the MSDP spectrograph of the Meudon solar tower. The analysis of the magnetic topology of the region is done by using a force-free field linear extrapolation code of the photospheric field proposed in the database FROMAGE. Two series of ribbons are identified, signature of the reconnection, the main ribbons in the center of the active region and secondary ribbons at the periphery of the active region. The main ribbons have a `J' shape, typical shape for large emerging flux tube. The secondary ribbons are explained by the magnetic configuration.

  12. Asymptotic analysis of force-free magnetic fields of cylindrical symmetry

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Antiochos, S. K.; Roumeliotis, G.

    1995-01-01

    It is known from computer calculations that if a force-free magnetic-field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution, and, in the process, the energy of the field increases progressively. Analysis of a simple model of force-free fields of cylindrical symmetry leads to simple asymptotic expressions for the extent and energy of such a configuration. The analysis is carried through for both spherical and planar source surfaces. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.

  13. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Drinkwater, M. R.; Haagmans, R.; Floberghagen, R.; Plank, G.; Menard, Y.

    2011-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently approaching the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products to the Swarm user community. The setup of Swarm ground segment and the contents of the data products will be addressed. More information on the Swarm mission can be found at the mission web site (see URL below).

  14. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  15. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  16. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  17. Modeling the Jovian magnetic field and its secular variation using all available magnetic field observations

    NASA Astrophysics Data System (ADS)

    Ridley, Victoria A.; Holme, Richard

    2016-03-01

    We present new models of Jupiter's internal magnetic field and secular variation from all available direct measurements from three decades of spacecraft observation. A regularized minimum norm approach allows the creation of smooth, numerically stable models displaying a high degree of structure. External field from the magnetodisk is modeled iteratively for each orbit. Jupiter's inner magnetosphere is highly stable with time, with no evidence for variation with solar activity. We compare two spherical harmonic models, one assuming a field constant in time and a second allowing for linear time variation. Including secular variation improves data fit with fewer additional parameters than increasing field complexity. Our favored solution indicates a ˜0.012% yr-1 increase in Jupiter's dipole magnetic moment from 1973 to 2003; this value is roughly one quarter of that for Earth. Inaccuracies in determination of the planetary reference frame cannot explain all the observed secular variation. Should more structure be allowed in the solutions, we find the northern hemispherical configuration resembles recent models based on satellite auroral footprint locations, and there is also evidence of a possible patch of reversed polar flux seen at the expected depth of the dynamo region, resembling that found at Earth and with implications for the Jovian interior. Finally, using our preferred model, we infer flow dynamics at the top of Jupiter's dynamo source. Though highly speculative, the results produce several gyres with some symmetry about the equator, similar to those seen at Earth's core-mantle boundary, suggesting motion on cylinders aligned with the rotation axis.

  18. Experimental study of the formation of field-reversed configurations employing high-order multipole fields

    NASA Astrophysics Data System (ADS)

    Slough, J. T.; Hoffman, A. L.

    1990-04-01

    A high-order multipole ``barrier'' field was applied at the vacuum tube wall in the TRX experiment [Phys. Fluids B 1, 840 (1989)] during both the preionization and field reversal phases of field-reversed configuration (FRC) formation. Use of this field during field reversal resulted in a significant reduction of impurities as well as increased flux trapping. With a large enough B? at the wall, sheath detachment from the wall became apparent, and flux loss through the sheath became negligible (<10%). At larger wall B? (>1.5 kG), destructive rotational spin-up occurred, driven by Hall current forces. When the multipole barrier field was also applied during either axial discharge or ringing theta current preionization, a very symmetric and uniform breakdown of the fill gas was achieved. In particular, using ringing theta preionization, complete ionization of the fill gas was accomplished with purely inductive fields of remarkably low magnitude, where Ez?3 V/cm, and E??20 V/cm. Due to the improved ionization symmetry, about 65% to 75% of the lift-off flux (flux remaining after field reversal) could be retained through the remaining formation processes into an equilibrium FRC. Using the multipole field during both preionization and formation, it was possible to form FRC's with good confinement with greater than 3 mWb of trapped flux at 15 mTorr D2 or H2 in a 10 cm radius device. Values of s in excess of 4 could be achieved in this manner.

  19. Ion pump using cylindrically symmetric spindle magnetic field

    NASA Astrophysics Data System (ADS)

    Rashid, M. H.

    2012-11-01

    For all accelerators and many research and industries, excellent vacuum conditions are required and the highest possible pumping rates are necessary. For most applications the standard ion sputtering pump (ISP) meets these requirements and is optimal for financial point of view also. The physical principle of the ISP is well known and many companies manufacture variety of ISP. Most of them use dipole magnetic field produced by permanent magnet and electric dipole field between the electrodes in which tenuous plasma is created because of interaction of between the relatively fast electrons slow residual gas atoms. Performance of an ISP depends basically on the electron cloud density in between the titanium electrodes but in the available present configurations no consideration has been given to electron confinement which needs a mirror magnetic field. If this is incorporated it will make a robust ISP surely; furthermore, the requirement of constant feeding of high voltage to electrodes for supplying sufficient number of electrons will be reduced too. A study has been performed to create sufficient rotationally symmetric spindle magnetic field (SMF) with inherent presence of magnetic mirror effect to electron motion to confine them for longer time for enhancing the density of electron cloud between the electrodes. It will lessen the electric power feeding the electrodes and lengthen their life-time. Construction of further compact and robust ISP is envisaged herein. The field simulation using the commercially available permanent magnet together with simulation of electron motion in such field will be presented and discussed in the paper.

  20. PIC simulation studies for instabilities in a current sheet with finite normal magnetic fields

    NASA Astrophysics Data System (ADS)

    Bessho, N.; Bhattacharjee, A.

    2012-12-01

    Collisionless tearing instabilities have been studied for many years by theory as well as fully kinetic simulations. In the Earth's magnetotail, the current sheet has small magnetic fields normal to the sheet, which is known to suppress the electron tearing instability. The ion tearing instability was also proposed, but it was demonstrated by several studies that the current sheet in the Earth's magnetotail is stable to the tearing modes. Recently, Sitnov and Schindler (2010) claimed that the ion tearing mode may be unstable in a multi-scale field configuration where there is a hump in the normal magnetic field in the current sheet. To test this prediction, we have studied a current sheet with a normal magnetic field by means of particle-in-cell (PIC) simulations. We have investigated two types of magnetic field configuration. The first one has uniform normal magnetic fields in the current sheet, and the second one has a hump in the normal magnetic field. In the first configuration, we have done scaling studies with respect to the mass ratio and the magnitude of the normal magnetic field. The growth rate scales as (mi/m_e)-1/4, and we have observed waves grow only when kρ ez>1, where ρ ez is the electron gyro-radius in the normal field, both of which are consistent with the electron tearing instability. In the second type of magnetic configuration with a hump in normal fields, we have observed instabilities which are different from the electron tearing mode. Since there is no topological change in the magnetic field, these instabilities are not tearing modes. When a hump is located in a region where the sheet thickness is of the order of the ion gyro-radius, the hump moves earthward. We will discuss the nature of the instability in the second type of magnetic configuration, and implications for dipolarization fronts in magnetic substorms.

  1. Magnetic field effects on plasma ionization balance

    SciTech Connect

    Weisheit, J.C.

    1995-12-31

    Magnetic fields give rise to several phenomena that can significantly affect ionization balance in a plasma. Theoretical models commonly used to determine the charge state distribution (viz., ) of ions in non-magnetized plasmas are reviewed first, for both equilibrium and non-equilibrium situations. Then, after a brief survey of laboratory and cosmic plasmas with strong fields, B > 10{sup 6} Gauss, some of the ways such magnetic fields influence are highlighted. Most key problems have yet to be tackled.

  2. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  3. Minimizing magnetic fields for precision experiments

    NASA Astrophysics Data System (ADS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  4. Minimizing magnetic fields for precision experiments

    SciTech Connect

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  5. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  6. Measurement of magnetic fields in stars

    SciTech Connect

    Landstreet, J.D.

    1980-05-01

    A review is presented of techniques of measuring magnetic fields in nondegenerate stars. The strengths and limitations of the classical photographic field measurement technique are compared to those of various photoelectric methods developed during the past decade, particularly the Balmer-line Zeeman analyzer technique. The problem of modeling magnetic data to infer the magnetic field geometry of an observed star is discussed. In the few cases where sufficient data are available to test the centered dipole geometry, it is found to be inadequate. It appears that most magnetic stars have field geometries at least as complex as the oblique decentered dipole (or dipole plus parallel linear quadrupole) model.

  7. Quark matter in a strong magnetic field

    SciTech Connect

    Chakrabarty, S.

    1996-07-01

    The effect of a strong magnetic field on the stability and gross properties of bulk as well as quasibulk quark matter is investigated using the conventional MIT bag model. Both the Landau diamagnetism and the paramagnetism of quark matter are studied. How the quark hadron phase transition is affected by the presence of a strong magnetic field is also investigated. The equation of state of strange quark matter changes significantly in a strong magnetic field. It is also shown that the thermal nucleation of quark bubbles in a compact metastable state of neutron matter is completely forbidden in the presence of a strong magnetic field. {copyright} {ital 1996 The American Physical Society.}

  8. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  9. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  10. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  11. Operating a magnetic nozzle helicon thruster with strong magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira

    2016-03-01

    A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  12. Pulsed magnetic field magnetic force microscope and evaluation of magnetic properties of soft magnetic tips

    NASA Astrophysics Data System (ADS)

    Zheng, Yangdong; Yoshimura, Satoru; Egawa, Genta; Zheng, Fu; Kinoshita, Yukinori; Saito, Hitoshi

    2015-08-01

    A pulsed magnetic field magnetic force microscope (PMF-MFM) is developed for evaluation of the magnetic properties of nano-scale materials and devices, as well as the characteristics of MFM tips. We present the setup of the PMF-MFM system, and focus on the evaluation of a FeCo soft magnetic tip by PMF-MFM. We find a new theoretical method to calculate tip magnetization curves (M-H curves) using MFM phase signals. We measure the MFM phase and amplitude signals for the FeCo tip during the presence of the pulsed magnetic fields oriented parallel and antiparallel to the initial tip magnetization direction, and acquire the tip coercivity H c ~ 1.1?kOe. The tip M-H curves are also calculated using the MFM phase signals data. We obtain the basic features of the tip magnetic properties from the tip M-H curves.

  13. Magnetized quark matter with a magnetic-field dependent coupling

    NASA Astrophysics Data System (ADS)

    Li, Chang-Feng; Yang, Li; Wen, Xin-Jian; Peng, Guang-Xiong

    2016-03-01

    It was recently derived that the QCD running coupling is a function of the magnetic field strength under the strong magnetic field approximation. Inspired by this progress and based on the self-consistent solutions of gap equations, the properties of two-flavor and three-flavor quark matter are studied in the framework of the Nambu-Jona-Lasinio model with a magnetic-field-dependent running coupling. We find that the dynamical quark masses as functions of the magnetic field strength are not monotonous in the fully chirally broken phase. Furthermore, the stability of magnetized quark matter with the running coupling is enhanced by lowering the free energy per baryon, which is expected to be more stable than that of the conventional constant coupling case. It is concluded that the magnetized strange quark matter described by running coupling can be absolutely stable.

  14. The Magnetic Field Geometry in Pulsar Wind Nebulae: Thoughts from an Observer's Point of View

    NASA Astrophysics Data System (ADS)

    Kothes, Roland

    There has been a lot of debate lately about the large-scale magnetic field configuration inside pulsar wind nebulae and the number of studies of individual sources is steadily increasing. I will present a careful investigation of all the observational evidence regarding the magnetic field structure inside these synchrotron nebulae and try to create a coherent picture of the magnetic field geometry and its development during the different phases of PWN and SNR evolution.

  15. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to morphological distortions induced by tidal interactions than are the random fields. As a result the polarized emission could be yet another indicator of an ongoing merging process. The found evolution of magnetic field with advancing interaction would definitely imply a stronger effect of magnetic fields on the galaxy surroundings in the earlier cosmological epochs. The process of strong gravitational interactions can efficiently magnetize the merger's surroundings, having a similar magnetizing effect on intergalactic medium as supernova explosions or galactic winds. If interacting galaxies generate some ultra-high energy cosmic rays (UHECRs), the disk or magnetized outflows can deflect them (up to 23°), and make an association of the observed UHECRs with the sites of their origin very uncertain.

  16. Cosmic Magnetic Fields (IAU S259)

    NASA Astrophysics Data System (ADS)

    Strassmeier, Klaus G.; Kosovichev, Alexander G.; Beckman, John E.

    2009-06-01

    Preface K. G. Strassmeier, A. G. Kosovichev and J. E. Beckman; Organising committee; Conference photograph; Conference participants; Session 1. Interstellar magnetic fields, star-forming regions and the Death Valley Takahiro Kudoh and Elisabeta de Gouveia Dal Pino; Session 2. Multi-scale magnetic fields of the Sun; their generation in the interior, and magnetic energy release Nigel O. Weiss; Session 3. Planetary magnetic fields and the formation and evolution of planetary systems and planets; exoplanets Karl-Heinz Glassmeier; Session 4. Stellar magnetic fields: cool and hot stars Swetlana Hubrig; Session 5. From stars to galaxies and the intergalactic space Dimitry Sokoloff and Bryan Gaensler; Session 6. Advances in methods and instrumentation for measuring magnetic fields across all wavelengths and targets Tom Landecker and Klaus G. Strassmeier; Author index; Object index; Subject index.

  17. Magnetic field optimization of permanent magnet undulators for arbitrary polarization

    NASA Astrophysics Data System (ADS)

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Scheer, M.; Englisch, U.

    2004-01-01

    Techniques for improving the magnetic field quality of APPLE II undulators are discussed. Individual block characterization including the inhomogeneities of the magnetization permits a precise prediction of field integrals as required for sorting. Specific shimming procedures adapted to the magnetic design of APPLE II undulators have to be employed in order to meet the stringent requirements of insertion devices in third generation synchrotron radiation sources as demonstrated for BESSY.

  18. The magnetic field in the disk of our Galaxy

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Qiao, G. J.

    1994-08-01

    The magnetic field in the disk of our Galaxy is investigated by using the Rotation Measures (RMs) of pulsars and Extragalactic Radio Sources (ERSes). Through analyses of the RMs of carefully selected pulsar samples, it is found that the Galaxy has a global field of BiSymmetric Spiral (BSS) configuration, rather than a concentric ring or an AxiSymmetric Spiral (ASS) configuration. The Galactic magnetic field of BSS structure is supposed to be of primordial origin. The pitch angle of the BSS structure is -8.2deg+/-0.5deg. The field geometry shows that the field goes along the Carina-Sagittarius arm, which is delineated by Giant Molecular Clouds (GMCs). The amplitude of the BSS field is 1.8+/-0.3μG. The first field strength maximum is at r_0_=11.9+/-0.15 kpc in the direction of l=180deg. The field is strong in the interarm regions and it reverses in the arm regions. In the vicinity of the Sun, it has a strength of ~1.4μG and reverses at 0.2-0.3kpc in the direction of l=0deg. Because of the unknown electron distribution of the Galaxy and other difficulties, it is impossible to derive the galactic field from the RMs of ERSes very quantitatively. Nevertheless, the RMs of ERSes located in the region of the two galactic poles are used to estimate the vertical component of the local galactic field, which is found to have a strength of 0.2-0.3μG and is directed from the south galactic pole to the north galactic pole. The scale height of the magnetic disk of the Galaxy is estimated from the RMs of all-sky distributed ERSes, being about 1.2+/-0.4pc. The regular magnetic field of our Galaxy, which is probably similar to that of M81, extends far from the optical disk.

  19. Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2008-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.

  20. Increasing the resolution and the signal-to-noise ratio of magnetic resonance sounding data using a central loop configuration

    NASA Astrophysics Data System (ADS)

    Behroozmand, Ahmad A.; Auken, Esben; Fiandaca, Gianluca; Rejkjaer, Simon

    2016-04-01

    Surface nuclear magnetic resonance technique, also called magnetic resonance sounding (MRS), is an emerging geophysical method that can detect the presence and spatial variations of the subsurface water content directly. In this paper, we introduce the MRS central loop geometry, in which the receiver loop is smaller than the transmitter loop and placed in its centre. In addition, using a shielded receiver coil we show how this configuration greatly increases signal-to-noise ratio and improves the resolution of the subsurface layers compared to the typically used coincident loop configuration. We compare sensitivity kernels for different loop configurations and describe advantages of the MRS central loop geometry in terms of superior behaviour of the sensitivity function, increased sensitivity values, reduced noise level of the shielded receiver coil, improved resolution matrix and reduced instrument dead time. With no extra time and effort in the field, central-loop MRS makes it possible to reduce measurement time and to measure data in areas with high anthropogenic noise. The results of our field example agree well with the complementary data, namely airborne electromagnetics, borehole data, and the hydrologic model of the area.

  1. Configuration Optimization of Underground Cables inside a Large Magnetic Steel Casing for Best Ampacity

    NASA Astrophysics Data System (ADS)

    Moutassem, Wael

    This thesis presents a method for optimizing cable configuration inside a large magnetic cylindrical steel casing, from the total ampacity point of view. The method is comprised of two main parts, namely: 1) analytically calculating the electromagnetic losses in the steel casing and sheathed cables, for an arbitrary cables configuration, and 2) implementing an algorithm for determining the optimal cables configuration to obtain the best total ampacity. The first part involves approximating the eddy current and hysteresis losses in the casing and cables. The calculation is based on the theory of images, which this thesis expands to apply to casings having both high magnetic permeability and high electric conductivity at the same time. The method of images, in combination with approximating the cable conductors and sheaths as multiple physical filaments, is used to compute the final current distributions in the cables and pipe and thus the associated losses. The accuracy of this computation is assessed against numerical solutions obtained using the Maxwell finite element program by Ansoft. Next, the optimal cable configuration is determined by applying a proposed two-level optimization algorithm. At the outer level, a combinatorial optimization based on a genetic algorithm explores the different possible configurations. The performance of every configuration is evaluated according to its total ampacity, which is calculated using a convex optimization algorithm. The convex optimization algorithm, which forms the inner level of the overall optimization procedure, is based on the barrier method. This proposed optimization procedure is tested for a duct bank installation containing twelve cables and fifteen ducts, comprising two circuits and two cables per phase, and compared with a brute force method of considering all possible configurations. The optimization process is also applied to an installation consisting of a single circuit inside a large magnetic steel casing.

  2. Analysis of Exploding Plasma Behavior in a Dipole Magnetic Field

    NASA Astrophysics Data System (ADS)

    Muranaka, Takanobu; Uchimura, Hideyuki; Nakashima, Hideki; Zakharov, Yuri P.; Nikitin, Sergey A.; Ponomarenko, Arnold G.

    2001-02-01

    Numerical analyses on plasma behaviors in a dipole magnetic field are performed using a three-dimensional (3D) hybrid code. Results are compared with the experimental data and magnetohydrodynamics (MHD) analysis. Dependence of plasma expansion on initial plasma energy and location are discussed by temporal evolutions of plasma position and magnetic field strength. An overall good agreement in the expansion behavior of plasmas among these results is found. The asymmetrical shape of the expanding plasma in the cross-field direction is also noticed, and the reason for this is discussed. For future engineering applications, these results will be useful in designing an optimal configuration of the magnetic thrust chamber for laser fusion rockets, and for studying the effective explosive methods for protecting the earth from collisions by asteroids or comets.

  3. Magnetic field sensitivity of depolarized fiber optic gyros

    NASA Astrophysics Data System (ADS)

    Blake, James N.

    1991-02-01

    Results are presented of experimental measurements and an analysis of the magnetic field sensitivity of several types of depolarized fiber-optic gyros. It was found that depolarized gyros of the Bohm et al. (1981) and Fredricks and Ulrich (1984) configuration (having one depolarizer in the loop) can be highly sensitive to magnetic fields, while depolarized gyros incorporating Pavlath and Shaw concept (i.e., having unpolarized light enter and exit the loop) are insensitive to magnetic fields. It is shown that a gyro having all the advantages of both designs can be obtained by incorporating two depolarizers, one between the polarizer and the loop coupler and the other within the loop. A scheme of this type of fiber gyro is presented.

  4. Controllability of brushite structural parameters using an applied magnetic field.

    PubMed

    Kuznetsov, V N; Yanovska, A A; Stanislavov, A S; Danilchenko, S N; Kalinkevich, A N; Sukhodub, L F

    2016-03-01

    The paper studies the influence of low intensity static magnetic field on brushite structural and microstructural parameters using the X-ray diffraction and the transmission electron microscopy. This effect was shown to have various influences on DCPD (Dicalcium Phosphate Dihydrate) structure depending on a magnetic field configuration or time of synthesis, which allows achieving controllability of the main properties of an obtained material. The influence of the magnetic field leads mostly to the decrease of crystallite sizes with no impact on the crystal lattice parameters. In (0 2 0) and (1 5 0) planes the growth of crystallite sizes is observed after 2 and 3days of crystallization, respectively. The analysis of different contributions to peak broadening in [0 b 0] direction showed a similar trend for the crystallite sizes with the lower lattice microstrains after 2days of synthesis. The effect similar to the preferred orientation was observed and classified with the Harris method. PMID:26706562

  5. Nonlocal heat transport in a stochastic magnetic field

    SciTech Connect

    Rax, J.M.; White, R.B.

    1991-12-01

    Heat transport in a stochastic magnetic field configuration is shown to be nonlocal. Collisional transport processes, in such a disordered media, cannot always be reduced to a standard diffusion process, and the concept of a diffusion coefficient is meaningless for a wide range of typical tokamak parameters. In the nonlocal regime the relaxation of a gradient is described by an integral equation, involving a nonlocal propagator. This propagator is calculated, and the relation to previous results is elucidated. 15 refs.

  6. Circuitry, systems and methods for detecting magnetic fields

    DOEpatents

    Kotter, Dale K. [Shelley, ID; Spencer, David F. [Idaho Falls, ID; Roybal, Lyle G. [Idaho Falls, ID; Rohrbaugh, David T. [Idaho Falls, ID

    2010-09-14

    Circuitry for detecting magnetic fields includes a first magnetoresistive sensor and a second magnetoresistive sensor configured to form a gradiometer. The circuitry includes a digital signal processor and a first feedback loop coupled between the first magnetoresistive sensor and the digital signal processor. A second feedback loop which is discrete from the first feedback loop is coupled between the second magnetoresistive sensor and the digital signal processor.

  7. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  8. Pre-Eruption Magnetic Configurations in the Low Atmosphere of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.

    2012-07-01

    Major solar eruptions, namely flares and coronal mass ejections, rely on significant local accumulations of non-potential (free; stored in electric currents) magnetic energy and, quite likely, magnetic helicity in the solar atmosphere. Without [both of] them, eruptions cannot be powered. Simple tests can show that most free energy and helicity reside close to the lower atmospheric boundary in solar active regions, i.e. their photospheric or low chromospheric interface. Therefore, the pre-eruption configuration in this boundary should reflect these high free-energy and helicity conditions that jointly determine the degree of non-potentiality in active regions. We review the two main active-region photospheric/low-chromospheric configurations leading to major eruptions: instances of intense magnetic flux emergence in the absence of intense magnetic polarity inversion lines (PILs), and instances of strong PILs. In these configurations we discuss multiple measures that can be thought of as proxies of free magnetic energy and helicity and we outline a method to actually calculate these budgets. Combining information from different, but concerted, analyses and approaches, a new picture of eruption initiation emerges. We highlight this new insight and project on its physical plausibility and the advances that it may bring.

  9. The Evolution of the Earth's Magnetic Field.

    ERIC Educational Resources Information Center

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  10. Efficient gradient field generation providing a multi-dimensional arbitrary shifted field-free point for magnetic particle imaging

    SciTech Connect

    Kaethner, Christian Ahlborg, Mandy; Buzug, Thorsten M.; Knopp, Tobias; Sattel, Timo F.

    2014-01-28

    Magnetic Particle Imaging (MPI) is a tomographic imaging modality capable to visualize tracers using magnetic fields. A high magnetic gradient strength is mandatory, to achieve a reasonable image quality. Therefore, a power optimization of the coil configuration is essential. In order to realize a multi-dimensional efficient gradient field generator, the following improvements compared to conventionally used Maxwell coil configurations are proposed: (i) curved rectangular coils, (ii) interleaved coils, and (iii) multi-layered coils. Combining these adaptions results in total power reduction of three orders of magnitude, which is an essential step for the feasibility of building full-body human MPI scanners.

  11. Efficient gradient field generation providing a multi-dimensional arbitrary shifted field-free point for magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Kaethner, Christian; Ahlborg, Mandy; Knopp, Tobias; Sattel, Timo F.; Buzug, Thorsten M.

    2014-01-01

    Magnetic Particle Imaging (MPI) is a tomographic imaging modality capable to visualize tracers using magnetic fields. A high magnetic gradient strength is mandatory, to achieve a reasonable image quality. Therefore, a power optimization of the coil configuration is essential. In order to realize a multi-dimensional efficient gradient field generator, the following improvements compared to conventionally used Maxwell coil configurations are proposed: (i) curved rectangular coils, (ii) interleaved coils, and (iii) multi-layered coils. Combining these adaptions results in total power reduction of three orders of magnitude, which is an essential step for the feasibility of building full-body human MPI scanners.

  12. Cantilever magnetometry in pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Naughton, M. J.; Ulmet, J. P.; Narjis, A.; Askenazy, S.; Chaparala, M. V.; Hope, A. P.

    1997-11-01

    The technique of cantilever magnetometry is shown to be functional in pulsed magnetic fields. Employing micromachined single crystal silicon cantilevers and capacitance detection, we demonstrated a utilizable sensitivity to magnetic moment of 2.510-12 Am2 in magnetic fields to 36 T, representing an improvement of more than a factor of 10 over competing technologies. Torque magnetization measurements on microcrystals of anisotropic superconductors are presented as evidence of the feasibility of the technique in long pulse magnets of pulse duration 0.1-1 s.

  13. A method to measure specific absorption rate of nanoparticles in colloidal suspension using different configurations of radio-frequency fields

    PubMed Central

    Ketharnath, Dhivya; Pande, Rohit; Xie, Leiming; Srinivasan, Srimeenakshi; Godin, Biana; Wosik, Jarek

    2012-01-01

    We report a method for characterization of the efficiency of radio-frequency (rf) heating of nanoparticles (NPs) suspended in an aqueous medium. Measurements were carried out for water suspended 5 nm superparamagnetic iron-oxide NPs with 30 nm dextran matrix for three different configurations of rf electric and magnetic fields. A 30 MHz high-Q resonator was designed to measure samples placed inside a parallel plate capacitor and solenoid coil with or without an rf electric field shield. All components of rf losses were analyzed and rf electric and magnetic field induced heating of NPs and the dispersion medium was determined and discussed. PMID:22991480

  14. Magnetic field evolution of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ρ, r ∝ ρ-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B∝ρ1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/τ)-1. The characteristic time of decreasing of the magnetic field τ is equal to τ ≃ 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  15. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  16. Magnetic field shielding project. Final report

    SciTech Connect

    Fugate, D.; Whittemore, T.R.; Feero, W.E.; Hoburg, J.F.; Olsen, R.G.

    1998-11-01

    Magnetic field management research at EPRI has had three major components: transmission, distribution, and shielding. Shielding people and equipment from 60-Hz magnetic fields provided a particularly challenging objective. Although much was known and the science was well developed for shielding radio frequency fields, little was known about shielding power frequency fields. EPRI mounted a large research effort that reviewed basic principles; developed theory and practice; performed tests and verifications; and produced software and guides for design of effective shields.

  17. Relaxed plasmas in external magnetic fields

    SciTech Connect

    Spies, G.O. ); Li, J. )

    1994-09-01

    The extension of the theory of relaxed plasmas to external magnetic fields whose field lines intersect the wall is concisely formulated and then applied to the Extrap experiment [J. R. Drake, Plasma Phys. Controlled Fusion [bold 26], 387 (1984)]. It is found that the external octupole field, though not affecting the phenomenon of current saturation, inhibits field reversal at parts of the wall if it is sufficiently strong to generate magnetic x points within the plasma.

  18. High concentration ferronematics in low magnetic fields

    NASA Astrophysics Data System (ADS)

    Tóth-Katona, T.; Salamon, P.; Éber, N.; Tomašovičová, N.; Mitróová, Z.; Kopčanský, P.

    2014-12-01

    We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field Bbias, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that Bbias is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role.

  19. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  20. Differential Magnetic Field Shear in an Active Region

    NASA Technical Reports Server (NTRS)

    Schmeider, B.; DeMoulin, P.; Aulanier, G.; Golub, Leon

    1997-01-01

    The three-dimensional extrapolation of magnetic field lines from a magnetogram obtained at Kitt Peak allows us to understand the global structure of the NOAA active region 6718, as observed in X-rays with the Normal Incidence X-ray Telescope (NIXT) and in Ha with the Multichannel Subtractive Double Pass spectrograph (MSDP) in Meudon on 1991 July 11. This active region was in a quiet stage. Bright X-ray loops connect plages having field strengths of approx. 300 G, while H-alpha fibriles connect penumbrae having strong spot fields to the surrounding network. Small, intense X-ray features in the moat region around a large spot, which could be called X-ray-bright points, are due mainly to the emergence of magnetic flux and merging of these fields with surrounding ones. A set of large-scale, sheared X-ray loops is observed in the central part of the active region. Based on the fit between the observed coronal structure and the field configurations (and assuming a linear force-free field), we propose a differential magnetic field shear model for this active region. The decreasing shear in outer portions of the active region may indicate a continual relaxation of the magnetic field to a lower energy state in the progressively older portions of the AR.