Science.gov

Sample records for magnetic field configurations

  1. ECR Plasma CVD in Different Magnetic Field Configurations

    NASA Astrophysics Data System (ADS)

    Murata, Masayoshi; Uchida, Satoshi; Kishimoto, Kengo; Tanaka, Masayoshi; Komori, Akio; Kawai, Yoshinobu

    1992-05-01

    An electron cyclotron resonance (ECR) plasma is produced with a slotted Lisitano coil, and the axial distribution of the plasma parameters is measured in detail for different magnetic field configurations. It is found that the plasma density in uniform magnetic fields axially decreases more slowly than that in divergent magnetic fields. Furthermore, carbon films are formed by ECR plasma chemical vapor deposition (CVD), and the deposition rate obtained in the uniform magnetic fields is found to be larger than that obtained in the divergent magnetic fields.

  2. Formation of active region and quiescent prominence magnetic field configurations

    NASA Technical Reports Server (NTRS)

    An, C.-H.; Bao, J. J.; Wu, S. T.

    1986-01-01

    To investigate the formation of prominences, researchers studied chromospheric mass injection into an overlying coronal dipole magnetic field using a 2-D ideal magnetohydrodynamic (MHD) numerical model. Researchers propose that active region prominences are formed by chromospheric plasmas injected directly into the overlying coronal magnetic field and that quiescent prominences are formed by plasmas evaporated at the interface between spicules and corona. Hence, for the simulation of an active region prominence magnetic field we inject the mass from one side, but use a symmetric mass injection to form a quiescent prominence field configuration. Researchers try to find optimum conditions for the formation of Kippenhahn-Schuluter(K-S)type field configuration for stable support of the injection plasmas. They find that the formation of K-S type field configuration by mass injection requires a delicate balance between injection velocity, density, and overlying magnetic fields. These results may explain why a prominence does not form on every neutral line.

  3. Steady state magnetic field configurations for the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  4. A filament supported by different magnetic field configurations

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.

    2011-08-01

    A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.

  5. Closed expressions for the magnetic field of toroidal multipole configurations

    SciTech Connect

    Sheffield, G.V.

    1983-04-01

    Closed analytic expressions for the vector potential and the magnetic field for the lower order toroidal multipoles are presented. These expressions can be applied in the study of tokamak plasma cross section shaping. An example of such an application is included. These expressions also allow the vacuum fields required for plasma equilibrium to be specified in a general form independent of a particular coil configuration.

  6. Ring Current Modeling in a Realistic Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Moore, T. E.

    1997-01-01

    A 3-dimensional kinetic model has been developed to study the dynamics of the storm time ring current in a dipole magnetic field. In this paper, the ring current model is extended to include a realistic, time-varying magnetic field model. The magnetic field is expressed as the cross product of the gradients of two Euler potentials and the bounce-averaged particle drifts are calculated in the Euler potential coordinates. A dipolarization event is modeled by collapsing a tail-like magnetosphere to a dipole-like configuration. Our model is able to simulate the sudden enhancements in the ring current ion fluxes and the corresponding ionospheric precipitation during the substorm expansion.

  7. Hamiltonian description of closed configurations of the vacuum magnetic field

    SciTech Connect

    Skovoroda, A. A.

    2015-05-15

    Methods of obtaining and using the Hamiltonians of closed vacuum magnetic configurations of fusion research systems are reviewed. Various approaches to calculate the flux functions determining the Hamiltonian are discussed. It is shown that the Hamiltonian description allows one not only to reproduce all traditional results, but also to study the behavior of magnetic field lines by using the theory of dynamic systems. The potentialities of the Hamiltonian formalism and its close relation to traditional methods are demonstrated using a large number of classical examples adopted from the fundamental works by A.I. Morozov, L.S. Solov’ev, and V.D. Shafranov.

  8. Hamiltonian description of closed configurations of the vacuum magnetic field

    NASA Astrophysics Data System (ADS)

    Skovoroda, A. A.

    2015-05-01

    Methods of obtaining and using the Hamiltonians of closed vacuum magnetic configurations of fusion research systems are reviewed. Various approaches to calculate the flux functions determining the Hamiltonian are discussed. It is shown that the Hamiltonian description allows one not only to reproduce all traditional results, but also to study the behavior of magnetic field lines by using the theory of dynamic systems. The potentialities of the Hamiltonian formalism and its close relation to traditional methods are demonstrated using a large number of classical examples adopted from the fundamental works by A.I. Morozov, L.S. Solov'ev, and V.D. Shafranov.

  9. Steady state magnetic field configurations for the earth's magnetotail

    SciTech Connect

    Hau, L.N.; Wolf, R.A.; Voigt, G.H. ); Wu, C.C. )

    1989-02-01

    The authors present a two-dimensional, force-balanced magnetic field model in which flux tubes have constant pV{gamma} throughout an extended region of the nightside plasma sheet, between approximately 36 R{sub E} geocentric distance and the region of the inner edge of the plasma sheet. They have thus demonstrated the theoretical existence of a steady state magnetic field configuration that is force-balanced and also consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD (isotropic pressure, perfect conductivity). The numerical solution was constructed for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The primary characteristics of the steady state convection solution are (1) a pressure maximum just tailward of the inner edge of the plasma sheet and (2) a deep, broad minimum in equatorial magnetic field strength B{sub ze}, also just tailward of the inner edge. The results are consistent with Erickson's (1985) convection time sequences, which exhibited analogous pressure peaks and B{sub ze} minima. Observations do not indicate the existence of a B{sub ze} minimum, on the average. They suggest that the configurations with such deep minima in B{sub ze} may be tearing-mode unstable, thus leading to substorm onset in the inner plasma sheet.

  10. Parallel heat transport in reversed shear magnetic field configurations

    NASA Astrophysics Data System (ADS)

    Blazevski, D.; Del-Castillo-Negrete, D.

    2012-03-01

    Transport in magnetized plasmas is a key problem in controlled fusion, space plasmas, and astrophysics. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), χ, and the perpendicular, χ, conductivities (χ/χ may exceed 10^10 in fusion plasmas); (ii) Magnetic field lines chaos; and (iii) Nonlocal parallel transport. We have recently developed a Lagrangian Green's function (LG) method to solve the local and non-local parallel (χ/χ->∞) transport equation applicable to integrable and chaotic magnetic fields. footnotetext D. del-Castillo-Negrete, L. Chac'on, PRL, 106, 195004 (2011); D. del-Castillo-Negrete, L. Chac'on, Phys. Plasmas, APS Invited paper, submitted (2011). The proposed method overcomes many of the difficulties faced by standard finite different methods related to the three issues mentioned above. Here we apply the LG method to study transport in reversed shear configurations. We focus on the following problems: (i) separatrix reconnection of magnetic islands and transport; (ii) robustness of shearless, q'=0, transport barriers; (iii) leaky barriers and shearless Cantori.

  11. Rotating magnetic quadrupole current drive for field-reversed configurations

    SciTech Connect

    Milroy, Richard D.; Guo, H.Y.

    2005-07-15

    In the translation, confinement, and sustainment experiment [A. L. Hoffman, H. Y. Guo, J. T. Slough, S. J. Tobin, L. S. Schrank, W. A. Reass, and G. A. Wurden, Fusion Sci. Technol. 41, 92 (2002)], field-reversed configurations (FRCs) are created and sustained using a rotating magnetic field (RMF). The RMF is usually in the form of a rotating dipole, which in vacuum penetrates uniformly to the axis of symmetry. However, plasma conditions in the FRC normally adjust so that the RMF only partially penetrates the plasma column. We have investigated the possibility of using a rotating quadrupole rather than a rotating dipole magnetic field. The vacuum field from a quadrupole is proportional to radius and cannot penetrate to the axis of symmetry; however, this is not a disadvantage if the current drive is confined to the outer region of the FRC. It was found that the quadrupole drive efficiency is comparable to that of a dipole, but the rotating dipole is more effective at stabilizing the n=2 rotational instability. A strong internal oscillation in B{sub {theta}} is often observed in FRCs sustained by a quadrupole field. The spectral content of the signals indicates that an internal n=1 magnetic structure forms and corotates with the electrons. Similar but much lower amplitude structures can form when a rotating dipole is employed (edge-driven mode)

  12. Error-field penetration in reversed magnetic shear configurations

    SciTech Connect

    Wang, H. H.; Wang, Z. X.; Wang, X. Q.; Wang, X. G.

    2013-06-15

    Error-field penetration in reversed magnetic shear (RMS) configurations is numerically investigated by using a two-dimensional resistive magnetohydrodynamic model in slab geometry. To explore different dynamic processes in locked modes, three equilibrium states are adopted. Stable, marginal, and unstable current profiles for double tearing modes are designed by varying the current intensity between two resonant surfaces separated by a certain distance. Further, the dynamic characteristics of locked modes in the three RMS states are identified, and the relevant physics mechanisms are elucidated. The scaling behavior of critical perturbation value with initial plasma velocity is numerically obtained, which obeys previously established relevant analytical theory in the viscoresistive regime.

  13. Field Reversed Configuration Translation and the Magnetized Target Fusion Collaboration

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Wurden, G. A.; Sieck, P. E.; Waganaar, W. J.; Dorf, L.; Kostora, M.; Cortez, R. J.; Degnan, J. H.; Ruden, E. L.; Domonkos, M.; Adamson, P.; Grabowski, C.; Gale, D. G.; Kostora, M.; Sommars, W.; Frese, M.; Frese, S.; Camacho, J. F.; Parks, P.; Siemon, R. E.; Awe, T.; Lynn, A. G.; Gribble, R.

    2009-06-01

    After considerable design and construction, we describe the status of a physics exploration of magnetized target fusion (MTF) that will be carried out with the first flux conserving compression of a high pressure field-reversed configuration (FRC). The upgraded Los Alamos (LANL) high density FRC experiment FRXL has demonstrated that an appropriate FRC plasma target can be created and translated on a time scale fast enough to be useful for MTF. Compression to kilovolt temperature is expected to form a Mbar pressure, high energy density laboratory plasma (HEDLP). Integrated hardware on the new Field Reversed Compression and Heating Experiment (FRCHX) at the Air Force Research Laboratory Shiva Star facility, has formed initial FRC's and will radially compress them within a cylindrically symmetric aluminum "liner". FRXL has shown that time scales for FRC translation to the target region are significantly shorter than the typical FRC lifetime. The hardware, diagnostics, and design rationales are presented. Pre-compression plasma formation and trapping experimental data from FRXL and FRCHX are shown.

  14. Spin valve with non-collinear magnetization configuration imprinted by a static magnetic field

    NASA Astrophysics Data System (ADS)

    Lapa, Pavel N.; Khaire, Trupti; Ding, Junjia; Pearson, John E.; Novosad, Valentyn; Hoffmann, Axel; Jiang, J. S.

    2016-05-01

    To control the angle between magnetizations in two adjacent ferromagnetic layers without using a rotator, a novel spin valve was designed and fabricated. A key element of the design is a replacement of a pinned ferromagnetic layer by a synthetic antiferromagnet (SAF). The predefined non-collinear magnetization configurations are produced by cooling the valve in different magnetic fields. Giant magnetoresistance (GMR) measurements allowed mapping of the angle between the magnetizations in the SAF and the free layer depending on the magnitude of the cooling field.

  15. Interpretation of the coronal magnetic field configuration of the Sun

    NASA Astrophysics Data System (ADS)

    Li, Bo; Li, Xing; Yu, Hui

    2012-12-01

    The origin of the heliospheric magnetic flux on the Sun, and hence the origin of the solar wind, is a topic of hot debate. While the prevailing view is that the solar wind originates from outside the coronal streamer helmets, there also exists the suggestion that the open magnetic field spans a far wider region. Without the definitive measurement of the coronal magnetic field, it is difficult to unambiguously resolve the conflict between the two scenarios. We present two 2-dimensional, Alfvénic-turbulence-based models of the solar corona and solar wind, one with and the other without a closed magnetic field region in the inner corona. The purpose of the latter model is to test whether it is possible to realize a picture suggested by polarimetric measurements of the corona using the Fe XIII 10747 Å line, where open magnetic field lines seem to penetrate the streamer base. The boundary conditions at the coronal base are able to account for important observational constraints, especially those on the magnetic flux distribution. Interestingly, the two models provide similar polarized brightness (pB) distributions in the field of view (FOV) of SOHO/LASCO C2 and C3 coronagraphs. In particular, a dome-shaped feature is present in the C2 FOV even for the model without a closed magnetic field. Moreover, both models fit the Ulysses data scaled to 1 AU equally well. We suggest that: 1) The pB observations cannot be safely taken as a proxy for the magnetic field topology, as is often implicitly assumed. 2) The Ulysses measurements, especially the one showing a nearly uniform distribution with heliocentric latitude of the radial magnetic field, do not rule out the ubiquity of open magnetic fields on the Sun.

  16. Evaluation of magnetic refocusing in linear-beam microwave tubes. [using optimal magnetic field configuration

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1974-01-01

    Magnetic field configurations in which the axial component of the field decays linearly to a constant plateau field are evaluated for use in refocusing the output beam of linear beam microwave tubes. The slope of the decay and the value of the plateau field are parameters in this study. A uniform beam with a space charge force only in the radial direction is assumed, and the electron trajectories are computed for various classes. For a given magnetic configuration (slope and plateau value) the plateau length is calculated for a specified class and the rms deviation of the output angles for all classes is computed at the end of this plateau length. A minimum condition for a refocused beam is defined to be one in which the rms value of the output angles is less than the rms input. Many of the configurations satisfied this criteria and successfully reduced the rms value by half.

  17. The magnetic field and magnetospheric configuration of Uranus

    NASA Technical Reports Server (NTRS)

    Ness, Norman F.; Connerney, John E. P.; Lepping, Ronald P.; Schulz, Michael; Voigt, Gerd-Hannes

    1991-01-01

    A significant and unique planetary magnetic field discovered by Voyager 2 is presented. A large tilt of 58.6 deg of the magnetic-dipole axis from the rotation axis was found. Combined with a large offset of 0.3 RU of the magnetic dipole from the center of the planet, the moment of 0.23 gauss-RU3 leads to field magnitudes at the surface which vary widely between 0.1 and 1.0 gauss. A simple diagram illustrating the offset tilted dipole of Uranus and some field lines is shown. A more exact and accurate spherical-harmonic model of the planetary field, which includes both dipole and quadrupole moments, is derived. There exists a well-developed bipolar magnetic tail on the night side of the planet which rotates daily about the extended planet-sunline with Uranus because of the large obliquity of the Uranian rotation axis.

  18. Hanle Effect Diagnostics of the Coronal Magnetic Field: A Test Using Realistic Magnetic Field Configurations

    NASA Astrophysics Data System (ADS)

    Raouafi, N.-E.; Solanki, S. K.; Wiegelmann, T.

    2009-06-01

    Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H I Lyα and β lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H I Lyβ, are useful for such measurements.

  19. Numerical simulation of mass injection for the formation of prominence magnetic field configurations. II - Symmetric injection

    NASA Technical Reports Server (NTRS)

    An, C.-H.; Bao, J. J.; Wu, S. T.; Suess, S. T.

    1988-01-01

    A two-dimensional MHD model simulating the formation of Kippenhahn-Schluter (1957) quiescent prominence (QP) magnetic field configurations is used to explore symmetric mass injection into a dipole magnetic field. An optimum magnetic field strength for QP formation by mass injection is obtained. It is found that a weaker magnetic field strength is more favorable for the condensation of the injected plasma but that a stronger field is more favorable for supporting the condensed plasma against gravity.

  20. Aspects of Magnetic Field Configurations in Planar Nonlinear Electrodynamics

    NASA Astrophysics Data System (ADS)

    de Assis, L. P. G.; Gaete, Patricio; Helaÿel-Neto, José A.; Vellozo, S. O.

    2012-02-01

    In the framework of three-dimensional Born-Infeld Electrodynamics, we pursue an investigation of the consequences of the space-time dimensionality on the existence of magnetostatic fields generated by electric charges at rest in an inertial frame, which are present in its four-dimensional version. Our analysis reveals interesting features of the model. In fact, a magnetostatic field associated with an electric charge at rest does not appear in this case. Interestingly, the addition of the topological term (Chern-Simons) to Born-Infeld Electrodynamics yields the appearance of the magnetostatic field. We also contemplate the fields associated to the would-be-magnetic monopole in three dimensions.

  1. Magnetic Field Configuration Models and Reconstruction Methods: a comparative study

    NASA Astrophysics Data System (ADS)

    Al-haddad, Nada; Möstl, Christian; Roussev, Ilia; Nieves-Chinchilla, Teresa; Poedts, Stefaan; Hidalgo, Miguel Angel; Marubashi, Katsuhide; Savani, Neel

    2012-07-01

    This study aims to provide a reference to different magnetic field models and reconstruction methods. In order to understand the dissimilarities of those models and codes, we analyze 59 events from the CDAW list, using four different magnetic field models and reconstruction techniques; force- free reconstruction (Lepping et al.(1990); Lynch et al.(2003)), magnetostatic reconstruction, referred as Grad-Shafranov (Hu & Sonnerup(2001); Mostl et al.(2009)), cylinder reconstruction (Marubashi & Lepping(2007)), elliptical, non-force free (Hidalgo et al.(2002)). The resulted parameters of the reconstructions, for the 59 events are compared, statistically, as well as in more details for some cases. The differences between the reconstruction codes are discussed, and suggestions are provided as how to enhance them. Finally we look at 2 unique cases under the microscope, to provide a comprehensive idea of the different aspects of how the fitting codes work.

  2. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    SciTech Connect

    Velas, K. M.; Milroy, R. D.

    2014-01-15

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub θ}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.

  3. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    SciTech Connect

    Shimizu, T.

    2015-10-15

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.

  4. Study on Axially Distributed Divertor Magnetic Field Configuration in a Mirror Cell

    SciTech Connect

    Islam, M.K.; Nakashima, Y.; Higashizono, Y.; Katanuma, I.; Cho, T

    2005-01-15

    A mirror magnetic field configuration (MFC) is studied in which a divertor is distributed axially using multipole coils. Both configurations of divertor and minimum-B are obtained in a mirror cell. Magnetohydrodynamic (MHD) instability of a mirror cell can be eliminated in this way. Concept of the design and properties of the MFC are discussed.

  5. Convective Power Loss Measurements in a Field Reversed Configuration with Rotating Magnetic Field Current Drive

    NASA Astrophysics Data System (ADS)

    Melnik, Paul

    The Translation, Confinement, and Sustainment Upgrade (TCSU) experiment achieves direct formation and sustainment of a field reversed configuration (FRC) plasma through rotating magnetic fields (RMF). The pre-ionized gas necessary for FRC formation is supplied by a magnetized cascade arc source that has been developed for TCSU. To ensure ideal FRC performance, the condition of the vacuum chamber prior to RMF start-up has been characterized with the use of a fast response ion gauge. A circuit capable of gating the puff valves with initial high voltage for quick response and then indefinite operational voltage was also designed. A fully translatable combination Langmuir / Mach probe was also built to measure the electron temperature, electron density, and ion velocity of the FRC. These measurements were also successfully completed in the FRC exhaust jets allowing for an accurate analysis of the FRC power loss through convection.

  6. Radial current density effects on rotating magnetic field current drive in field-reversed configurations

    SciTech Connect

    Clemente, R. A.; Gilli, M.; Farengo, R.

    2008-10-15

    Steady state solutions, suitable for field-reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs) are obtained by properly including three-dimensional effects, in the limit of large FRC elongation, and the radial component of Ohm's law. The steady electrostatic potential, necessary to satisfy Ohm's law, is considered to be a surface function. The problem is analyzed at the midplane of the configuration and it is reduced to the solution of two coupled nonlinear differential equations for the real and imaginary parts of the phasor associated to the longitudinal component of the vector potential. Additional constraints are obtained by requesting that the steady radial current density and poloidal magnetic flux vanish at the plasma boundary which is set at the time-averaged separatrix. The results are presented in terms of the degree of synchronism of the electrons with the RMF and compared with those obtained when radial current effects are neglected. Three important differences are observed when compared with the case without radial current density. First, at low penetration of the RMF into the plasma there is a significant increase in the driven azimuthal current. Second, the RMF amplitude necessary to access the high synchronism regime, starting from low synchronism, is larger and the difference appears to increase as the separatrix to classical skin depth ratio increases. Third, the minimum RMF amplitude necessary to sustain almost full synchronism is reduced.

  7. Rotating magnetic field current drive of high-temperature field reversed configurations with high {zeta} scaling

    SciTech Connect

    Guo, H. Y.; Hoffman, A. L.; Milroy, R. D.

    2007-11-15

    Greatly reduced recycling and impurity ingestion in the Translation, Confinement, and Sustainment--Upgrade (TCSU) device has allowed much higher plasma temperatures to be achieved in the field reversed configurations (FRC) under rotating magnetic field (RMF) formation and sustainment. The hotter plasmas have higher magnetic fields and much higher diamagnetic electron rotation rates so that the important ratio of average electron rotation frequency to RMF frequency, called {zeta}, approaches unity, for the first time, in TCSU. A large fraction of the RMF power is absorbed by an as yet unexplained (anomalous) mechanism directly proportional to the square of the RMF magnitude. It becomes of relatively lesser significance as the FRC current increases, and simple resistive heating begins to dominate, but the anomalous absorption is useful for initial plasma heating. Measurements of total absorbed power, and comparisons of applied RMF torque to torque on the electrons due to electron-ion friction under high-{zeta} operation, over a range of temperatures and fields, have allowed the separation of the classical Ohmic and anomalous heating to be inferred, and cross-field plasma resistivities to be calculated.

  8. Numerical simulation of mass injection for the formation of prominence magnetic field configurations. I - Asymmetric injection

    NASA Technical Reports Server (NTRS)

    An, Chang-Hyuk; Bao, J. J.; Wu, S. T.

    1988-01-01

    A two-dimensional ideal MHD numerical model is used to investigate chromospheric mass injection into an overlying coronal dipole magnetic field. Such injection is shown to produce magnetic field deformations conducive to the formation of active region prominences. The results support a model in which an absorptive strand is formed by chromospheric asymmetric mass injection into the overlying coronal magnetic field. A necessary condition for the accumulation of the strands is that the mass injection forms a Kippenhahn-Schluter-type (1957) field configuration.

  9. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    SciTech Connect

    Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A.; Cohen, S. A.

    2011-01-05

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  10. Magnetic field configurations associated with fast solar wind

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Wang, Y.-M.

    1991-01-01

    The implications are considered of the observed inverse correlation between solar wind speed at earth and the expansion rate of the sun-earth flux tube as it passes through the corona. It is found that the coronal expansion rate depends critically on the large-scale photospheric field distribution around the footpoint of the flux tube. The smallest expansions occur in tubes that are rooted near a local minimum in the field. This suggests that the fastest wind streams originate from regions where large coronal holes are about to break apart and from the facing edges of adjacent like-polarity holes, whose field lines converge as they transit the corona. Predictions are made which follow from the above ideas.

  11. Stochastic Ion Heating in a Field-reversed Configuration Geometry by Rotating Magnetic Fields

    SciTech Connect

    S.A. Cohen, A.S. Landsman, and A.H. Glasser

    2007-06-25

    Ion heating by application of rotating magnetic fields (RMF) to a prolate field-reversed configuration(FRC) is explored by analytical and numerical techniques. For odd-parity RMF (RMFo), perturbation analysis shows ions in figure-8 orbits gain energy at resonances of the RMFo frequency, ωR, with the figure-8 orbital frequency, ω. Since figure-8 orbits tend to gain the most energy from the RMF and are unlikely to escape in the cusp region (where most losses occur), they are optimal candidates for rapid stochastic heating, as compared to cyclotron and betatron orbits. Comparisons are made between heating caused by even- and odd-parity RMFs and between heating in currently operating and in reactor-scale FRC devices.

  12. Observations of improved confinement in field reversed configurations sustained by antisymmetric rotating magnetic fields

    SciTech Connect

    Guo, H.Y.; Hoffman, A.L.; Steinhauer, L.C.

    2005-06-15

    Rotating magnetic fields (RMF) have been employed to both form and sustain currents in field reversed configurations (FRC). A major concern about this method has been the fear of opening up magnetic field lines with even small ratios of vacuum RMF B{sub {omega}} to external confinement field B{sub e}. A recently proposed innovation was to use an antisymmetric arrangement of RMF, but vacuum calculations with full RMF penetration showed that very low values of B{sub {omega}}/B{sub e} would still be required to provide field-line closure. Recent comparisons of symmetric and antisymmetric RMF drive on the translation, confinement, and sustainment (TCS) facility [A. L. Hoffman, H. Y. Guo, J. T. Slough et al., Fusion Sci. Technol. 41, 92 (2002)] have shown strong improvements in the basic confinement properties of the FRCs when using antisymmetric drive, even with ratios of B{sub {omega}}/B{sub e} as high as 0.3. This is due to normal standard operation with only partial penetration of the RMF beyond the FRC separatrix. The uniform transverse RMF in vacuum is shielded by the conducting plasma, resulting in a mostly azimuthal field near the FRC separatrix with a very small radial component. Simple numerical calculations using analytical solutions for the partially penetrated antisymmetric RMF, superimposed on Grad-Shafranov solutions for the poloidal FRC fields, show good field-line closure for the TCS experimental conditions. The antisymmetric arrangement also leads to more efficient current drive and improved stabilization of rotational modes.

  13. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  14. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2007-02-20

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  15. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-02-07

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  16. Particle Diffusion in Chaotic Magnetic Fields Generated by Asymmetric Current Configurations

    NASA Astrophysics Data System (ADS)

    Ram, A. K.; Dasgupta, B.

    2008-12-01

    The observed cross-field diffusion of charged particles in cosmic rays is assumed to be due to the chaotic nature of the interplanetary/intergalactic magnetic fields. Among the classic works on this subject have been those of Parker [1] and Jokipii [2]. Parker considered the passage of cosmic ray particles and energetic solar particles in a large scale magnetic field containing small scale irregularities. In the context of cosmic ray propagation, Jokipii considered a small fluctuating component, added on to a uniform magnetic field, to study the spatial transport of particles. In these studies the irregular component of the magnetic field is prescribed in an ad hoc fashion. In contrast, we consider asymmetric, nonlinear, steady-state magnetic fields, in three spatial dimensions, generated by currents flowing in circular loops and straight lines [3]. These magnetic fields are completely deterministic and, for certain range of parameters, chaotic. We will present analytical and numerical studies on the spatial characteristics of these fields. The motion of charged particles in the nonlinear and chaotic magnetic fields is determined using the Lorentz equation. A particle moving in a deterministic chaotic magnetic field superposed on a uniform background magnetic field is found to undergo spatial transport. This shows that chaotic magnetic fields generated by simple current configurations can produce cross-field diffusion. A detailed analysis of particle motion and diffusion along with application to space plasmas will be presented. [1] E.N. Parker, Planet. Space Sci. 13, 9 (1965). [2] J.R. Jokipii, Astrophys. J. 146, 480 (1966), and J.R. Jokipii, Astrophys. J. 149, 405 (1967). [3] A.K. Ram and B. Dasgupta, Eos Trans. AGU 87 (52), Fall Meet. Suppl. Abstract NG31B-1593 (2006); and Eos Trans. AGU 88 (52), Fall Meet. Suppl. Abstract NG21B-0522 (2007).

  17. Principal physics of rotating magnetic-field current drive of field reversed configurations

    SciTech Connect

    Hoffman, A.L.; Guo, H.Y.; Miller, K.E.; Milroy, R.D.

    2006-01-15

    After extensive experimentation on the Translation, Confinement, and Sustainment rotating magnetic-field (RMF)-driven field reversed configuration (FRC) device [A. L. Hoffman et al., Fusion Sci. Technol. 41, 92 (2002)], the principal physics of RMF formation and sustainment of standard prolate FRCs inside a flux conserver is reasonably well understood. If the RMF magnitude B{sub {omega}} at a given frequency {omega} is high enough compared to other experimental parameters, it will drive the outer electrons of a plasma column into near synchronous rotation, allowing the RMF to penetrate into the plasma. If the resultant azimuthal current is strong enough to reverse an initial axial bias field B{sub o} a FRC will be formed. A balance between the RMF applied torque and electron-ion friction will determine the peak plasma density n{sub m}{proportional_to}B{sub {omega}}/{eta}{sup 1/2}{omega}{sup 1/2}r{sub s}, where r{sub s} is the FRC separatrix radius and {eta} is an effective weighted plasma resistivity. The plasma total temperature T{sub t} is free to be any value allowed by power balance as long as the ratio of FRC diamagnetic current, I{sup '}{sub dia}{approx_equal}2B{sub e}/{mu}{sub o}, is less than the maximum possible synchronous current, I{sup '}{sub sync}=e{omega}r{sub s}{sup 2}/2. The RMF will self-consistently penetrate a distance {delta}{sup *} governed by the ratio {zeta}=I{sup '}{sub dia}/I{sup '}{sub sync}. Since the FRC is a diamagnetic entity, its peak pressure p{sub m}=n{sub m}kT{sub t} determines its external magnetic field B{sub e}{approx_equal}(2{mu}{sub o}p{sub m}){sup 1/2}. Higher FRC currents, magnetic fields, and poloidal fluxes can thus be obtained, with the same RMF parameters, simply by raising the plasma temperature. Higher temperatures have also been noted to reduce the effective plasma resistivity, so that these higher currents can be supported with surprisingly little increase in absorbed RMF power.

  18. Thermally induced magnetization switching in Fe/MnAs/GaAs(001): selectable magnetic configurations by temperature and field control.

    PubMed

    Spezzani, Carlo; Vidal, Franck; Delaunay, Renaud; Eddrief, Mahmoud; Marangolo, Massimiliano; Etgens, Victor H; Popescu, Horia; Sacchi, Maurizio

    2015-01-01

    Spintronic devices currently rely on magnetization control by external magnetic fields or spin-polarized currents. Developing temperature-driven magnetization control has potential for achieving enhanced device functionalities. Recently, there has been much interest in thermally induced magnetisation switching (TIMS), where the temperature control of intrinsic material properties drives a deterministic switching without applying external fields. TIMS, mainly investigated in rare-earth-transition-metal ferrimagnets, has also been observed in epitaxial Fe/MnAs/GaAs(001), where it stems from a completely different physical mechanism. In Fe/MnAs temperature actually modifies the surface dipolar fields associated with the MnAs magnetic microstructure. This in turn determines the effective magnetic field acting on the Fe overlayer. In this way one can reverse the Fe magnetization direction by performing thermal cycles at ambient temperatures. Here we use element selective magnetization measurements to demonstrate that various magnetic configurations of the Fe/MnAs/GaAs(001) system are stabilized predictably by acting on the thermal cycle parameters and on the presence of a bias field. We show in particular that the maximum temperature reached during the cycle affects the final magnetic configuration. Our findings show that applications are possible for fast magnetization switching, where local temperature changes are induced by laser excitations. PMID:25631753

  19. Thermally induced magnetization switching in Fe/MnAs/GaAs(001): selectable magnetic configurations by temperature and field control

    PubMed Central

    Spezzani, Carlo; Vidal, Franck; Delaunay, Renaud; Eddrief, Mahmoud; Marangolo, Massimiliano; Etgens, Victor H.; Popescu, Horia; Sacchi, Maurizio

    2015-01-01

    Spintronic devices currently rely on magnetization control by external magnetic fields or spin-polarized currents. Developing temperature-driven magnetization control has potential for achieving enhanced device functionalities. Recently, there has been much interest in thermally induced magnetisation switching (TIMS), where the temperature control of intrinsic material properties drives a deterministic switching without applying external fields. TIMS, mainly investigated in rare-earth–transition-metal ferrimagnets, has also been observed in epitaxial Fe/MnAs/GaAs(001), where it stems from a completely different physical mechanism. In Fe/MnAs temperature actually modifies the surface dipolar fields associated with the MnAs magnetic microstructure. This in turn determines the effective magnetic field acting on the Fe overlayer. In this way one can reverse the Fe magnetization direction by performing thermal cycles at ambient temperatures. Here we use element selective magnetization measurements to demonstrate that various magnetic configurations of the Fe/MnAs/GaAs(001) system are stabilized predictably by acting on the thermal cycle parameters and on the presence of a bias field. We show in particular that the maximum temperature reached during the cycle affects the final magnetic configuration. Our findings show that applications are possible for fast magnetization switching, where local temperature changes are induced by laser excitations. PMID:25631753

  20. Particle Confinement in Axisymmetric Poloidal Magnetic Field Configurations with Zeros of B: Methodological Note

    SciTech Connect

    Arsenin, V.V.; Skovoroda, A.A.

    2005-12-15

    Collisionless particle confinement in axisymmetric configurations with magnetic field nulls is analyzed. The existence of an invariant of motion--the generalized azimuthal momentum--makes it possible to determine in which of the spatial regions separated by magnetic separatrices passing through the magnetic null lines the particle occurs after it leaves the vicinity of a magnetic null line. In particular, it is possible to formulate a sufficient condition for the particle not to escape through the separatrix from the confinement region to the external region. In the configuration under analysis, the particles can be lost from a separatrix layer with a thickness on the order of the Larmor radius because of the nonconservation of the magnetic moment {mu}. In this case, the variations in {mu} are easier to describe in a coordinate system associated with the magnetic surfaces. An analysis is made of the applicability of expressions for the single-pass change {delta}{mu} in the magnetic moment that were obtained in different magnetic field models for a confinement system with a divertor (such that there is a circular null line)

  1. Numerical simulation of magnetic compression on a field-reversed configuration plasma

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Suzuki, Y.; Okada, S.; Goto, S.

    1999-12-01

    A two-dimensional magnetohydrodynamic (MHD) simulation of an axial magnetic compression on a field-reversed configuration (FRC) plasma is carried out for the parameter range of a corresponding experiment conducted on the FRC Injection Experiment (FIX) [S. Okada et al., 17th IAEA Fusion Energy Conference 1998 (International Atomic Energy Agency, Vienna) (in press)]. The simulation results show that during the initial stage of the magnetic compression the front part of the FRC plasma is mainly compressed radially, and that after this stage, the compression is primarily axial. Of particular interest is expected that the closed magnetic flux surfaces of the FRC can be retained without any degradation during the magnetic compression process. Further, it is observed in the simulation that the axial magnetic compression enables a transition of the MHD equilibrium from a long and thin to a short and fat FRC. The effects of this magnetic compression on FRC plasmas are discussed.

  2. 3D Magnetic Field Configuration of the 2006 December 13 Flare Extrapolated with the Optimization Method

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ding, M. D.; Wiegelmann, T.; Li, H.

    2008-06-01

    The photospheric vector magnetic field of the active region NOAA 10930 was obtained with the Solar Optical Telescope (SOT) on board the Hinode satellite with a very high spatial resolution (about 0.3''). Observations of the two-ribbon flare on 2006 December 13 in this active region provide us a good sample to study the magnetic field configuration related to the occurrence of the flare. Using the optimization method for nonlinear force-free field (NLFFF) extrapolation proposed by Wheatland et al. and recently developed by Wiegelmann, we derive the three-dimensional (3D) vector magnetic field configuration associated with this flare. The general topology can be described as a highly sheared core field and a quasi-potential envelope arch field. The core field clearly shows some dips supposed to sustain a filament. Free energy release in the flare, calculated by subtracting the energy contained in the NLFFF and the corresponding potential field, is 2.4 × 1031 ergs, which is ~2% of the preflare potential field energy. We also calculate the shear angles, defined as the angles between the NLFFF and potential field, and find that they become larger at some particular sites in the lower atmosphere, while they become significantly smaller in most places, implying that the whole configuration gets closer to the potential field after the flare. The Ca II H line images obtained with the Broadband Filter Imager (BFI) of the SOT and the 1600 Å images with the Transition Region and Coronal Explorer (TRACE) show that the preflare heating occurs mainly in the core field. These results provide evidence in support of the tether-cutting model of solar flares.

  3. Superposed epoch analysis of pressure and magnetic field configuration changes in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Kistler, L. M.; Baumjohann, W.; Nagai, T.; Mobius, E.

    1993-01-01

    Using data from 41 substorm events in the near-Earth magnetotail, we have combined plasma, energetic ion, and magnetic field data from the AMPTE/IRM spacecraft to perform a superposed epoch analysis of changes in the total pressure and in the magnetic field configuration as a function of time relative to substorm onset. Unloading is evident in the total pressure profile; the pressure decreases by about 20 percent. Pressure changes during the growth phase are not as uniform for the different substorms as the pressure changes during the expansion phase. To study changes in the magnetic field configuration, we have determined the development of the plasma pressure profiles in z for an average of data from 15 to 19 R(E). At substorm onset, the field line dipolarization begins on the innermost field lines and then progresses to the outer field lines. The field lines map the closest to the Earth about 45 min after substorm onset, and then begin to stretch out again during the recovery phase of the substorm.

  4. A configurable component-based software system for magnetic field measurements

    SciTech Connect

    Nogiec, J.M.; DiMarco, J.; Kotelnikov, S.; Trombly-Freytag, K.; Walbridge, D.; Tartaglia, M.; /Fermilab

    2005-09-01

    A new software system to test accelerator magnets has been developed at Fermilab. The magnetic measurement technique involved employs a single stretched wire to measure alignment parameters and magnetic field strength. The software for the system is built on top of a flexible component-based framework, which allows for easy reconfiguration and runtime modification. Various user interface, data acquisition, analysis, and data persistence components can be configured to form different measurement systems that are tailored to specific requirements (e.g., involving magnet type or test stand). The system can also be configured with various measurement sequences or tests, each of them controlled by a dedicated script. It is capable of working interactively as well as executing a preselected sequence of tests. Each test can be parameterized to fit the specific magnet type or test stand requirements. The system has been designed with portability in mind and is capable of working on various platforms, such as Linux, Solaris, and Windows. It can be configured to use a local data acquisition subsystem or a remote data acquisition computer, such as a VME processor running VxWorks. All hardware-oriented components have been developed with a simulation option that allows for running and testing measurements in the absence of data acquisition hardware.

  5. Design of magnetic field configuration for controlled discharge properties in highly ionized plasma

    NASA Astrophysics Data System (ADS)

    Alami, Jones; Stranak, Vitezslav; Herrendorf, Ann-Pierra; Hubicka, Zdenek; Hippler, Rainer

    2015-08-01

    In the present article, the effect of magnetic field design on electron and ion properties in both a metallic Ti/Ar and a reactive Ti/Ar + O2 high power impulse magnetron sputtering (HiPIMS) discharges is investigated. For the purpose, a variable magnetron with defined imbalance and geometrical coefficients K and {{K}\\text{G}} , respectively, was utilized. The electron density, the mean electron energy, the plasma potential, and the floating potential were determined by employing time-resolved Langmuir probe measurements, for four specified magnetic field configurations. Mass spectroscopy was used in order to determine the energy distribution function of metal (Ti+ , Ti2+) and gaseous (Ar+ , Ar2+ , O+ , O2+ ) ions. Analysis of the measured data shows that the magnetic field design dramatically affects the charged particles energy- and spatial-distribution, causing a change in the plasma properties. It is concluded that a well-determined configuration of the magnetic field is necessary in order to insure discharge stability and reproducibility.

  6. Magnetic flux trapping during field reversal in the formation of a field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.

    1985-11-01

    The flow of plasma and magnetic flux toward a wall is examined in a slab geometry where the magnetic field is parallel to the wall. Magnetohydrodynamic (MHD) flow with a quasisteady approximation is assumed that reduces the problem to three coupled ordinary differential equations. The calculated behavior shows that a thin current sheath is established at the wall in which a variety of phenomena appear, including significant resistive heating and rapid deceleration of the plasma flow. The sheath physics determines the speed at which flux and plasma flow toward the wall. The model has been applied to the field-reversal phase of a field-reversed theta pinch, during which the reduced magnetic field near the wall drives an outward flow of plasma and magnetic flux. The analysis leads to approximate expressions for the instantaneous flow speed, the loss of magnetic flux during the field reversal phase, the integrated heat flow to the wall, and the highest possible magnetic flux retained after reversal. Predictions from this model are compared with previous time-dependent MHD calculations and with experimental results from the TRX-1 [Proceedings of the 4th Symposium on the Physics and Technology of Compact Toroids, 27-29 October 1981 (Lawrence Livermore National Laboratory, Livermore, CA, 1982), p. 61] and TRX-2 [Proceedings of the 6th U.S. Symposium on Compact Toroid Research, 20-23 February, 1984 (Princeton Plasma Physics Laboratory, Princeton, NJ, 1984), p. 154] experiments.

  7. Equilibrium configurations of a jet of an ideally conducting liquid in an external nonuniform magnetic field

    NASA Astrophysics Data System (ADS)

    Zubarev, N. M.; Zubareva, O. V.

    2016-06-01

    Possible equilibrium configurations of the free surface of a jet of an ideally conducting liquid placed in a nonuniform magnetic field are considered. The magnetic field is generated by two thin wires that are parallel to the jet and bear oppositely directed currents. Equilibrium is due to a balance between capillary and magnetic forces. For the plane symmetric case, when the jet deforms only in the plane of its cross section, two one-parameter families of exact solutions to the problem are derived using the method of conformal mapping. According to these solutions, a jet with an initially circular cross section deforms up to splitting into two separate jets. A criterion for jet splitting is derived by analyzing approximate two-parameter solutions.

  8. Plasma-dominated magnetic field configurations for the magnetosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Ip, A. K.; Voigt, G.-H.

    1985-01-01

    There is significant indirect evidence that the planet Uranus possesses a magnetic field. This evidence is based on the observation of hydrogen Lyman alpha emission from Uranus with the aid of the International Ultraviolet Explorer (IUE) spacecraft. The detection of water ice on the Uranian moons led Cheng (1984) to suggest that charged particle sputtering of the icy satellites could provide a significant internal source of oxygen ions and protons to the Uranian magnetosphere. Cheng concluded that this mechanism would predict aurorae around both magnetic poles of Uranus. Cheng's idea of the presence of a continuous internal plasma supply to the Uranian magnetosphere is further pursued in the present investigation. Questions are considered regarding the evolution of Uranus' magnetosphere from a vacuum configuration toward a plasma pressure dominated equilibrium configuration, taking into account the amount of the thermal plasma pressure as a free parameter.

  9. Analysis and Modeling of Coronal Holes Observed by CORONAS-1. 1; Morphology and Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Obridko, Vladmir; Formichev, Valery; Kharschiladze, A. F.; Zhitnik, Igor; Slemzin, Vladmir; Hathaway, David H.; Wu, Shi T.

    1998-01-01

    Two low-latitude coronal holes observed by CORONAS-1 in April and June 1994 are analyzed together with magnetic field measurements obtained from Wilcox and Kitt Peak Solar Observatories. To estimate the comparable temperature of these two coronal holes, the YOHKOH observations are also utilized. Using this information, we have constructed three-dimensional magnetic field lines to illustrate the geometrical configuration of these coronal holes. The calculated synoptic maps are used to determine the existence of closed and open field regions of the hole. Finally, we have correlated the characteristics of two coronal holes with observed solar wind speed. We found that the brighter coronal hole has high speed solar wind, and the dimmer coronal hole has low speed solar wind.

  10. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-10-14

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  11. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-12-16

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  12. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Holak; Lim, Youbong; Choe, Wonho; Park, Sanghoo; Seon, Jongho

    2015-04-01

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe4+ are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effect in the co-current magnetic field configuration.

  13. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    SciTech Connect

    Kim, Holak; Lim, Youbong; Choe, Wonho Park, Sanghoo; Seon, Jongho

    2015-04-13

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effect in the co-current magnetic field configuration.

  14. Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations

    SciTech Connect

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2011-06-15

    A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ''kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.

  15. EMVIM: An empirical model for the magnetic field configuration near Venus

    NASA Astrophysics Data System (ADS)

    He, Maosheng; Vogt, Joachim; Zhang, Tielong; Rong, Zhaojin

    2016-04-01

    More than 2000 orbits of Venus Express magnetic field measurements are condensed into Empirical Model of Venusian Induced Magnetic fields (EMVIM), an empirical model to quantify the magnetic configuration in the Venusian magnetosphere at low altitude (<500 km) as a function of the upstream solar wind magnetic field (IMF components) and the solar activity index F10.7 as control variables. Empirical orthogonal function (EOF) analysis is used to construct a set of data-derived basis functions that are associated with different fundamental magnetospheric processes. The most important basis function represents the magnetic draping configuration of the IMFz component while the second important one represents the draping of the IMFy component. Solar wind-magnetosphere interactions are quantified through regression analysis of EOF amplitudes and the control variables. Combining the basis functions with regression coefficients results in a model with a determination coefficient R2 of 0.29. As an applicational example, the model is used to quantify the density of the terminator end of the tail current JE in terms of cross-flow IMF component and F10.7 as JEA/ṡkm-1 = 3.75ṡ(IMF⊥+0.264 nT/nT-0.0190ṡ(IMF⊥ṡF10.7+30.3 nTṡsolar flux unit (1 sfu = 10-22 W m-2 Hz-1))/nTṡsfu -0.00182ṡ(F10.72-7237 sfu2)/sfu2, showing that the current strength is anticorrelated with solar activity.

  16. Configuration of the magnetic field and reconstruction of Pangaea in the Permian period.

    PubMed

    Westphal, M

    1977-05-12

    The virtual geomagnetic poles of Laurasia and Gondwanaland in the Carboniferous and Permian periods diverge significantly when these continents are reassembled according to the fit calculated by Bullard et al. Two interpretations have been offered: Briden et al. explain these divergences by a magnetic field configuration very different from that of a geocentric axial dipole; Irving (and private communication), Van der Voo and French(4) suggest a different reconstruction and it is shown here that these two interpretations are not incompatible and that the first may help the second. PMID:16073416

  17. Design of magnetic field configuration in Space Plasma Environment Research Facility (SPERF)

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Zheng, Jinxing; E, Peng; Nie, Qiuyue; Mao, Aohua

    2015-11-01

    The Space Plasma Environment Research Facility (SPERF) for geospace plasma environment simulation, as a component of Space Environment Simulation Research Infrastructure (SESRI), is designed to investigate fundamental space plasma phenomenon such as magnetic reconnection at magnetopause and magnetotail, as well as energetic particles transport and interaction with waves in magnetosphere, etc. To achieve the scientific and experimental goals, it is essential to realize the magnetic field configuration. In this report, the magnetic field coils, including four flux cores for simulating the magnetosheath field and plasma, a dipole coil for simulating the inner magnetosphere a disturbance coil for simulating magnetic storm distortion, and a group of magnetotail coils for simulating the magnetotail and the near earth neutral line, are designed to imitate the large-scale space structures based on the numerical simulations and the scaling relation of hydromagnetism between the laboratory and the magnetosphere. Three scenarios with operations of various coils to simulate specified processes in space plasmas will also be presented. This work has been supported by National Nature Science Foundation of China (Nos. 11261140326, 11405038).

  18. Magnetic Field Configuration Models and Reconstruction Methods for Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Al-Haddad, N.; Nieves-Chinchilla, T.; Savani, N. P.; Möstl, C.; Marubashi, K.; Hidalgo, M. A.; Roussev, I. I.; Poedts, S.; Farrugia, C. J.

    2013-05-01

    This study aims to provide a reference for different magnetic field models and reconstruction methods for interplanetary coronal mass ejections (ICMEs). To understand the differences in the outputs of these models and codes, we analyzed 59 events from the Coordinated Data Analysis Workshop (CDAW) list, using four different magnetic field models and reconstruction techniques; force-free fitting, magnetostatic reconstruction using a numerical solution to the Grad-Shafranov equation, fitting to a self-similarly expanding cylindrical configuration and elliptical, non-force-free fitting. The resulting parameters of the reconstructions for the 59 events are compared statistically and in selected case studies. The ability of a method to fit or reconstruct an event is found to vary greatly; this depends on whether the event is a magnetic cloud or not. We find that the magnitude of the axial field is relatively consistent across models, but that the axis orientation of the ejecta is not. We also find that there are a few cases with different signs of the magnetic helicity for the same event when we leave the boundaries free to vary, which illustrates that this simplest of parameters is not necessarily always clearly constrained by fitting and reconstruction models. Finally, we examine three unique cases in depth to provide a comprehensive idea of the different aspects of how the fitting and reconstruction codes work.

  19. Magnetic pressure driven implosion of solid liner suitable for compression of field reverse configurations

    SciTech Connect

    Degnan, J.H.; Bartlett, R.; Cavazos, T.

    1999-07-01

    The initial design and performance of a magnetic pressure driven imploding solid liner with dimensions suitable for compressing a Field Reversed Configuration (FRC) is presented and discussed. The nominal liner parameters are 30 cm length, 5 cm outer radius, {approximately}0.1 cm thickness, Al material. The liner is imploded by magnetic pressure from an axial discharge driven by a 1,300 microfarad capacitor bank. Other nominal discharge parameters are {approximately}80 kV initial bank voltage, {approximately}44 nanohenry initial total inductance, and {approximately} milliohm series resistance. The discharge current exceeds 10 mega-amps in {approximately} 9 {micro}sec. Several types of calculations indicate that such a liner will implode in {approximately} 22 to 25 /{micro}sec, and will achieve a >0.3 cm/{micro}sec implosion velocity by the time the liner has imploded to {approximately}2.5 cm radius. This performance and these dimensions are suitable for FRC formation and compression, as discussed by K Schoenberg, R. Siemon, et al. (1). The diagnostics for the initial experiments include current (via Rogowski coils and inductive magnetic probes), voltage (via capacitive divider probes), flash radiography, and diagnostic magnetic field compression. Several types of simulations, including two dimensional magnetohydrodynamic simulations, are also discussed.

  20. Stable transport and side-focusing of sheet electron beams in periodically cusped magnetic field configurations

    SciTech Connect

    Anderson, J.; Basten, M.A.; Rauth, L.; Booske, J.H.; Joe, J.; Scharer, J.E.

    1995-12-31

    Sheet electron beams and configurations with multiple electron beams have the potential to make possible higher power sources of microwave radiation due to their ability to transport high currents, at reduced current densities, through a single narrow RF interaction circuit. Possible microwave device applications using sheet electron beams include sheet-beam klystrons, grating TWT`s, and planar FELs. Historically, implementation of sheet beams in microwave devices has been discouraged by their susceptibility to the diocotron instability in solenoidal focusing systems. However, recent theoretical and numerical studies have shown that stable transport of sheet beams is possible in periodically cusped magnetic (PCM) fields. The use of an offset-pole PCM configuration has been shown analytically to provide side-fields for 2-D focusing of the beam, and this has been recently verified with PIC code simulations. The authors present further theoretical studies of sheet and multi-beam transport and discuss experimental measurements of an offset-pole PCM array which is currently being constructed.

  1. Development of Field-Reversed Configuration Plasma Gun Formation Techniques for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Lynn, Alan; Gilmore, Mark; Wynkoop, Tyler; Intrator, Thomas; Weber, Thomas

    2012-10-01

    Magnetized Target Fusion (MTF) is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. Los Alamos National Laboratory (LANL) is currently pursing demonstration of the MTF concept via compression of an FRC (field-reversed configuration) plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC as an MTF target lies in the initial pre-ionization (PI) stage. The PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. This trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties. It also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we plan to test and characterize a new system to improve the initial PI plasma formation. This system will use an array of plasma guns to form the initial plasma. Initial characterization of the plasma gun behavior will be presented.

  2. Measurements accounting for the impediment of ion spin-up in rotating magnetic field driven field reversed configurations

    NASA Astrophysics Data System (ADS)

    Deards, C. L.; Hoffman, A. L.; Steinhauer, L. C.

    2011-11-01

    Improved vacuum hygiene, wall conditioning, and reduced recycling in the rotating magnetic field (RMF) driven translation, confinement, and sustainment-upgrade (TCSU) field reversed configuration experiment have made possible a more accurate assessment of the forces affecting ion spin-up. This issue is critical in plasmas sustained by RMFs, such as TCSU since ion spin-up can substantially reduce or cancel the RMF current drive effect. Several diagnostics are brought to bear, including a 3-axis translatable magnetic probe allowing the first experimental measurement of the end shorting effect. These results show that the ion rotation is determined by a balance between electron-ion friction, the end shorting effect, and ion drag against neutrals.

  3. Measurements accounting for the impediment of ion spin-up in rotating magnetic field driven field reversed configurations

    SciTech Connect

    Deards, C. L.; Hoffman, A. L.; Steinhauer, L. C.

    2011-11-15

    Improved vacuum hygiene, wall conditioning, and reduced recycling in the rotating magnetic field (RMF) driven translation, confinement, and sustainment-upgrade (TCSU) field reversed configuration experiment have made possible a more accurate assessment of the forces affecting ion spin-up. This issue is critical in plasmas sustained by RMFs, such as TCSU since ion spin-up can substantially reduce or cancel the RMF current drive effect. Several diagnostics are brought to bear, including a 3-axis translatable magnetic probe allowing the first experimental measurement of the end shorting effect. These results show that the ion rotation is determined by a balance between electron-ion friction, the end shorting effect, and ion drag against neutrals.

  4. Three-Dimensional MHD Simulation of FTEs Produced by Merging at an Isolated Point in a Sheared Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Santos, J. C.; Sibeck, D. G.; Buchner, J.; Gonzalez, W. D.; Ferreira, J. L.

    2014-01-01

    We present predictions for the evolution of FTEs generated by localized bursts of reconnection on a planar magnetopause that separates a magnetosheath region of high densities and weak magnetic field from a magnetospheric region of low densities and strong magnetic field. The magnetic fields present a shear angle of 105 degrees. Reconnection forms a pair of FTEs each crossing the magnetopause in the field reversal region and bulging into the magnetosphere and magnetosheath. At their initial stage they can be characterized as flux tubes since the newly reconnected magnetic field lines are not twisted. Reconnection launches Alfvenic perturbations that propagate along the FTEs generating high-speed jets, which move the pair of FTEs in opposite directions. As the FTE moves, it displaces the ambient magnetic field and plasma producing bipolar magnetic field and plasma velocity signatures normal to the nominal magnetopause in the regions surrounding the FTE. The combination of the ambient plasma with the FTE flows generates a vortical velocity pattern around the reconnected field lines. During its evolution the FTE evolves to a flux rope configuration due to the twist of the magnetic field lines. The alfvenic perturbations propagate faster along the part of the FTE bulging into the magnetosphere than in the magnetosheath, and due to the differences between the plasma and magnetic field properties the perturbations have slightly different signatures in the two regions. As a consequence, the FTEs have different signatures depending on whether the satellite encounters the part bulging into the magnetosphere or into the magnetosheath.

  5. Resolution of the 180° Ambiguity for Inverse Horizontal Magnetic Field Configurations

    NASA Astrophysics Data System (ADS)

    Li, Jing; Amari, Tahar; Fan, Yuhong

    2007-01-01

    A well-known problem in solar physics is that solutions for the transverse magnetic field direction are ambiguous with respect to a 180° reversal in the field direction. In this paper we focus on three methods for the removal of the 180° ambiguity applied to three MHD models. These methods are (1) the reference field method, (2) the method of magnetic pressure gradient, and (3) the magnetic field divergence-free method. All three methods are noniterative, and methods 2 and 3 are analytical and fast. We apply these methods to three MHD equilibrium model fields: (1) an analytical solution of a nonlinear force-free magnetic field equilibrium from Low, (2) a simulation of an emerging twisted flux tube from Fan & Gibson, and (3) a pre-eruptive twisted magnetic flux rope equilibrium reached by relaxation from Amari et al. We measure the success of methods within ``inverse horizontal field'' regions in the boundary, which are mathematically defined by B⊥˙∇⊥Bz>0. When such regions overlap with the magnetic field neutral lines, they are known as ``bald patches'' (BPs) or inverse topology. Our most important conclusion is that the magnetic divergence-free method is far more successful than the other two methods within BPs. This method requires a second level of measurements of the vertical magnetic field. As high-quality multilevel magnetograms will come online in the near future, our work shows that multilayer magnetic field measurements will be highly desirable to objectively and successfully tackle the 180° ambiguity problem.

  6. Transition from drift to interchange instabilities in an open magnetic field line configuration

    SciTech Connect

    Poli, F. M.; Ricci, P.; Fasoli, A.; Podesta, M.

    2008-03-15

    The transition from a regime dominated by drift instabilities to a regime dominated by pure interchange instabilities is investigated and characterized in the simple magnetized toroidal device TORPEX [TORoidal Plasma EXperiment, A. Fasoli et al., Phys. of Plasmas 13, 055906 (2006)]. The magnetic field lines are helical, with a dominant toroidal component and a smaller vertical component. Instabilities with a drift character are observed in the favorable curvature region, on the high field side with respect to the maximum of the background density profile. For a limited range of values of the vertical field they coexist with interchange instabilities in the unfavorable curvature region, on the plasma low field side. With increasing vertical magnetic field magnitude, a gradual transition between the two regimes is observed on the low field side, controlled by the value of the field line connection length. The observed transition follows the predictions of a two-fluid linear model.

  7. On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics

    NASA Technical Reports Server (NTRS)

    Zheng, Y.; Zaharia, S. G.; Fok, M. H.

    2010-01-01

    Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents.

  8. ON THE MAGNETIC FIELD OF PULSARS WITH REALISTIC NEUTRON STAR CONFIGURATIONS

    SciTech Connect

    Belvedere, R.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it

    2015-01-20

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M {sub ☉}, radius R = 10 km, and moment of inertia I = 10{sup 45} g cm{sup 2}. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.

  9. On the Magnetic Field of Pulsars with Realistic Neutron Star Configurations

    NASA Astrophysics Data System (ADS)

    Belvedere, R.; Rueda, Jorge A.; Ruffini, R.

    2015-01-01

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M ⊙, radius R = 10 km, and moment of inertia I = 1045 g cm2. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.

  10. The TITAN magnet configuration

    SciTech Connect

    Bathke, C.G.

    1987-01-01

    The TITAN study uses copper-alloy ohmic-heating coils (OHC) to startup inductively a reversed-field-pinch (RFP) fusion reactor. The plasma equilibrium is maintained with a pair of superconducting equilibrium-field coils (EFCs). A second pair of copper EFCs provides the necessary trimming of the equilibrium field during plasma transients. A compact toroidal-field-coil (TFC) set is provided by an integrated blanket/coil (IBC). The IBC concept also is applied to the toroidal-field divertor coils. Steady-state operation is achieved with oscillating-field current drive, which oscillates at low amplitude and frequency the OHCs, EFCs, the TFCs, and divertor coils about their steady-state currents. An integrated magnet design, which uses low-field, low technology coils, and the related design basis is given. 18 refs.

  11. The TITAN magnet configuration

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.

    The TITAN study uses copper-alloy ohmic-heating coils (OHC) to start up inductively a reversed-field-pinch (RFP) fusion reactor. The plasma equilibrium is maintained with a pair of superconducting equilibrium-field coils (EFCs). A second pair of copper EFCs provides the necessary trimming of the equilibrium field during plasma transients. A compact toroidal-field-coil (TFC) set is provided by an integrated blanket/coil (IBC). The IBC concept also is applied to the toroidal-field divertor coils. Steady-state operation is achieved with oscillating-field current drive, which oscillates at low amplitude and frequency the OHCs, EFCs, the TFCs, and divertor coils about their steady-state currents. An integrated magnet design, which uses low-field, low technology coils, and the related design basis is given.

  12. Point sensitive NMR imaging system using a magnetic field configuration with a spatial minimum

    DOEpatents

    Eberhard, Philippe H.

    1985-01-01

    A point-sensitive NMR imaging system (10) in which a main solenoid coil (11) produces a relatively strong and substantially uniform magnetic field and a pair of perturbing coils (PZ1 and PZ2) powered by current in the same direction superimposes a pair of relatively weak perturbing fields on the main field to produce a resultant point of minimum field strength at a desired location in a direction along the Z-axis. Two other pairs of perturbing coils (PX1, PX2; PY1, PY2) superimpose relatively weak field gradients on the main field in directions along the X- and Y-axes to locate the minimum field point at a desired location in a plane normal to the Z-axes. An RF generator (22) irradiates a tissue specimen in the field with radio frequency energy so that desired nuclei in a small volume at the point of minimum field strength will resonate.

  13. Point sensitive NMR imaging system using a magnetic field configuration with a spatial minimum

    DOEpatents

    Eberhard, P.H.

    A point-sensitive NMR imaging system in which a main solenoid coil produces a relatively strong and substantially uniform magnetic field and a pair of perturbing coils powered by current in the same direction superimposes a pair of relatively weak perturbing fields on the main field to produce a resultant point of minimum field strength at a desired location in a direction along the Z-axis. Two other pairs of perturbing coils superimpose relatively weak field gradients on the main field in directions along the X- and Y-axes to locate the minimum field point at a desired location in a plane normal to the Z-axes. An rf generator irradiates a tissue specimen in the field with radio frequency energy so that desired nuclei in a small volume at the point of minimum field strength will resonate.

  14. Anomalous D'yakonov-Perel' spin relaxation in semiconductor quantum wells under a strong magnetic field in the Voigt configuration

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Yu, T.; Wu, M. W.

    2013-06-01

    We report an anomalous scaling of the D’yakonov-Perel’ spin relaxation with the momentum relaxation in semiconductor quantum wells under a strong magnetic field in the Voigt configuration. We focus on the case in which the external magnetic field is perpendicular to the spin-orbit-coupling-induced effective magnetic field and its magnitude is much larger than the latter one. It is found that the longitudinal spin relaxation time is proportional to the momentum relaxation time even in the strong-scattering limit, indicating that the D’yakonov-Perel’ spin relaxation demonstrates Elliott-Yafet-like behavior. Moreover, the transverse spin relaxation time is proportional (inversely proportional) to the momentum relaxation time in the strong- (weak-) scattering limit, both in the opposite trends against the well-established conventional D’yakonov-Perel’ spin relaxation behaviors. We further demonstrate that all the above anomalous scaling relations come from the unique form of the effective inhomogeneous broadening.

  15. The field and plasma configuration of a filament overlying a solar bipolar magnetic region

    NASA Technical Reports Server (NTRS)

    Low, B. C.

    1981-01-01

    This paper presents an analytic model for a finite-size straight filament suspended horizontally in a steady state over a bipolar magnetic region. The equations of magnetostatic equilibrium are integrated exactly. The solution obtained illustrates the roles played by the electric current, magnetic field, pressure, and plasma weight in the balance of force everywhere in space. A specific example of a filament of diameter 50,000 km, with a density two orders of magnitude over the corona and supported by a magnetic field of about 4 gauss is included. The filament temperature can take values ranging from a small fraction to a few times the coronal temperature, depending on the internal electric current of the filament. To produce a cool filament, such as the quiescent prominence, the solution is required to have an internal field with a strong component along the filament, giving rise to helical structures. A hot filament such as the X-ray coronal loop can be produced as a twisted magnetic flux tube embedded in a strong background field aligned parallel to the filament and having lower density and temperature. The basic steps of construction can be used to develop models more realistic than the ones presented for their analytic simplicity.

  16. Analysis of magnetic probe signals including effect of cylindrical conducting wall for field-reversed configuration experiment

    SciTech Connect

    Ikeyama, Taeko; Hiroi, Masanori; Nemoto, Yuuichi; Nogi, Yasuyuki

    2008-06-15

    A confinement field is disturbed by magnetohydrodynamic (MHD) motions of a field-reversed configuration (FRC) plasma in a cylindrical conductor. The effect of the conductor should be included to obtain a spatial structure of the disturbed field with a good precision. For this purpose, a toroidal current in the plasma and an eddy current on a conducting wall are replaced by magnetic dipole and image magnetic dipole moments, respectively. Typical spatial structures of the disturbed field are calculated by using the dipole moments for such MHD motions as radial shift, internal tilt, external tilt, and n=2 mode deformation. Then, analytic formulas for estimating the shift distance, tilt angle, and deformation rate of the MHD motions from magnetic probe signals are derived. It is estimated from the calculations by using the dipole moments that the analytic formulas include an approximately 40% error. Two kinds of experiment are carried out to investigate the reliability of the calculations. First, a magnetic field produced by a circular current is measured in an aluminum pipe to confirm the replacement of the eddy current with the image magnetic dipole moments. The measured fields coincide well with the calculated values including the image magnetic dipole moments. Second, magnetic probe signals measured from the FRC plasma are substituted into the analytic formulas to obtain shift distance and deformation rate. The experimental results are compared to the MHD motions measured by using a radiation from the plasma. If the error included in the analytic formulas and the difference between the magnetic and optical structures in the plasma are considered, the results of the radiation measurement support well those of the magnetic analysis.

  17. Investigation of different magnetic field configurations using an electrical, modular Zeeman slower

    SciTech Connect

    Ohayon, Ben; Ron, Guy

    2015-10-15

    We present a method of constructing an automatically reconfigurable, modular, electronic Zeeman slower, which is remotely controlled. This setup is used to investigate the ability of different magnetic field profiles to slow thermal atoms to the capture velocity of a magneto-optical-trap. We show that a simple numerical optimization process yields better results than the commonly used approach for deciding on the appropriate field and comes close to the optimum field, found by utilizing a fast feedback loop which uses a genetic algorithm. Our new numerical method is easily adaptable to a variety of existing slower designs and may be beneficial where feedback is unavailable.

  18. Generation and manipulation of monodispersed ferrofluid emulsions: The effect of a uniform magnetic field in flow-focusing and T-junction configurations

    NASA Astrophysics Data System (ADS)

    Tan, Say Hwa; Nguyen, Nam-Trung

    2011-09-01

    This paper demonstrates the use of magnetically controlled microfluidic devices to produce monodispersed ferrofluid emulsions. By applying a uniform magnetic field on flow-focusing and T-junction configurations, the size of the ferrofluid emulsions can be actively controlled. The influences of the flow rates, the orientation, and the polarity of the magnetic field on the size of ferrofluid emulsions produced in both flow-focusing and T-junction configurations are compared and discussed.

  19. Ion heating in the field-reversed configuration (FRC) by rotating magnetic fields (RMF) near cyclotron resonance

    SciTech Connect

    Samuel A. Cohen; Alan H. Glasser

    2000-07-20

    The trajectories of ions confined in a Solovev FRC equilibrium magnetic geometry and heated with a small-amplitude, odd-parity rotating magnetic field, have been studied with a Hamiltonian computer code. When the RMF frequency is in the ion-cyclotron range, explosive heating occurs. Higher-energy ions are found to have betatron-type orbits, preferentially localized near the FRC midplane. These results are relevant to a compact magnetic-fusion-reactor design.

  20. On the jet structure and magnetic field configuration of GRB 020813

    NASA Astrophysics Data System (ADS)

    Lazzati, D.; Covino, S.; Gorosabel, J.; Rossi, E.; Ghisellini, G.; Rol, E.; Castro Cerón, J. M.; Castro-Tirado, A. J.; Della Valle, M.; di Serego Alighieri, S.; Fruchter, A. S.; Fynbo, J. P. U.; Goldoni, P.; Hjorth, J.; Israel, G. L.; Kaper, L.; Kawai, N.; Le Floc'h, E.; Malesani, D.; Masetti, N.; Mazzali, P.; Mirabel, F.; Moller, P.; Ortolani, S.; Palazzi, E.; Pian, E.; Rhoads, J.; Ricker, G.; Salmonson, J. D.; Stella, L.; Tagliaferri, G.; Tanvir, N.; van den Heuvel, E.; Wijers, R. A. M. J.; Zerbi, F. M.

    2004-07-01

    The polarization curve of GRB 020813 is discussed and compared to different models for the structure, evolution and magnetisation properties of the jet and the interstellar medium onto which the fireball impacts. GRB 020813 is best suited for this kind of analysis for the smoothness of its afterglow light curve, ensuring the applicability of current models. The polarization dataset allows us to rule out the standard GRB jet, in which the energy and Lorentz factor have a well defined value inside the jet opening angle and the magnetic field is generated at the shock front. We explore alternative models finding that a structured jet or a jet with a toroidal component of the magnetic field can fit equally well the polarization curve. Stronger conclusions cannot be drawn due to the incomplete sampling of the polarization curve. A more dense sampling, especially at early times, is required to pin down the structure of the jet and the geometry of its magnetic field. Based on observations collected at the European Southern Observatory, Cerro Paranal (Chile), ESO programmes 69.D-0461(A) and 69.D-0701(A).

  1. The latitude dependencies of the solar wind. [of interplanetary magnetic field polarity and configurations

    NASA Technical Reports Server (NTRS)

    Rosenberg, R. L.; Winge, C. R., Jr.

    1974-01-01

    The motion of spacecraft following the earth's orbit occurs within the solar latitude range of 7 deg 15 min N on approximately September 7 to 7 deg 15 min S on approximately March 6. The latitude dependencies so far detected within this range have shown that the photospheric dipole-like field of the sun makes very important contributions to the interplanetary magnetic field (IMF) observed near the ecliptic. Changes in geomagnetic activity from even to odd numbered 11-year solar cycles are related to changes in the sun's dipolar field. The north-south IMF component and meridional, nonradial flow are important to a complete understanding of steady-state solar wind dynamics. Coronal conditions must be latitude-dependent in a way that accounts for the observed latitude dependence of the velocity and density of the solar wind.

  2. Stable anisotropic plasma confinement in magnetic configurations with convex-concave field lines

    NASA Astrophysics Data System (ADS)

    Tsventoukh, M. M.

    2014-02-01

    It is shown that a combination of the convex and the concave part of a field line provides a strong stabilizing action against convective (flute-interchange) plasma instability (Tsventoukh 2011 Nucl. Fusion 51 112002). This results in internal peaking of the stable plasma pressure profile that is calculated from the collisionless kinetic stability criterion for any magnetic confinement system with combination of mirrors and cusps. Connection of the convex and concave field line parts results in a reduction of the space charge that drives the unstable E × B motion, as there is an opposite direction of the particle drift in a non-uniform field at convex and concave field lines. The pressure peaking arises at the minimum of the second adiabatic invariant J that takes place at the ‘middle’ of a tandem mirror-cusp transverse cross-section. The position of the minimum in J varies with the particle pitch angle that results in a shift of the peaking position depending on plasma anisotropy. This allows one to improve a stable peaked pressure profile at a convex-concave field by changing the plasma anisotropy over the trap cross-section. Examples of such anisotropic distribution functions are found that give an additional substantial enhancement in the maximal central pressure. Furthermore, the shape of new calculated stable profiles has a wide central plasma layer instead of a narrow peak.

  3. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  4. Application of a Solar Wind Model Driven by Turbulence Dissipation to a 2D Magnetic Field Configuration

    NASA Astrophysics Data System (ADS)

    Lionello, Roberto; Velli, Marco; Downs, Cooper; Linker, Jon A.; Mikić, Zoran

    2014-12-01

    Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. developed a sophisticated, one-dimensional (1D), time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al., which incorporates turbulent dissipation of Alfvén waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional MHD simulations by the requirement of transverse force balance.

  5. Application of a solar wind model driven by turbulence dissipation to a 2D magnetic field configuration

    SciTech Connect

    Lionello, Roberto; Downs, Cooper; Linker, Jon A.; Mikić, Zoran; Velli, Marco E-mail: cdowns@predsci.com E-mail: mikic@predsci.com

    2014-12-01

    Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. developed a sophisticated, one-dimensional (1D), time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al., which incorporates turbulent dissipation of Alfvén waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional MHD simulations by the requirement of transverse force balance.

  6. Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device.

    PubMed

    Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T

    2016-05-01

    A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively. PMID:27250428

  7. Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 single-crystal lamellae

    PubMed Central

    Evans, D. M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Katiyar, R. S.; Scott, J. F.; Gregg, J. M.

    2014-01-01

    Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching. PMID:24421376

  8. High Performance Field Reversed Configurations

    NASA Astrophysics Data System (ADS)

    Binderbauer, Michl

    2014-10-01

    The field-reversed configuration (FRC) is a prolate compact toroid with poloidal magnetic fields. FRCs could lead to economic fusion reactors with high power density, simple geometry, natural divertor, ease of translation, and possibly capable of burning aneutronic fuels. However, as in other high-beta plasmas, there are stability and confinement concerns. These concerns can be addressed by introducing and maintaining a significant fast ion population in the system. This is the approach adopted by TAE and implemented for the first time in the C-2 device. Studying the physics of FRCs driven by Neutral Beam (NB) injection, significant improvements were made in confinement and stability. Early C-2 discharges had relatively good confinement, but global power losses exceeded the available NB input power. The addition of axially streaming plasma guns, magnetic end plugs as well as advanced surface conditioning leads to dramatic reductions in turbulence driven losses and greatly improved stability. As a result, fast ion confinement significantly improved and allowed for build-up of a dominant fast particle population. Under such appropriate conditions we achieved highly reproducible, long-lived, macroscopically stable FRCs with record lifetimes. This demonstrated many beneficial effects of large orbit particles and their performance impact on FRCs Together these achievements point to the prospect of beam-driven FRCs as a path toward fusion reactors. This presentation will review and expand on key results and present context for their interpretation.

  9. Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion

    SciTech Connect

    Lynn, Alan

    2013-11-01

    The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap 50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would

  10. 3D effects of edge magnetic field configuration on divertor/scrape-off layer transport and optimization possibilities for a future reactor

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Xu, Y.; Ida, K.; Corre, Y.; Feng, Y.; Schmitz, O.; Frerichs, H.; Tabares, F. L.; Evans, T. E.; Coenen, J. W.; Liang, Y.; Bader, A.; Itoh, K.; Yamada, H.; Ghendrih, Ph.; Ciraolo, G.; Tafalla, D.; Lopez-Fraguas, A.; Guo, H. Y.; Cui, Z. Y.; Reiter, D.; Asakura, N.; Wenzel, U.; Morita, S.; Ohno, N.; Peterson, B. J.; Masuzaki, S.

    2015-10-01

    This paper assesses the three-dimensional (3D) effects of the edge magnetic field structure on divertor/scrape-off layer transport, based on an inter-machine comparison of experimental data and on the recent progress of 3D edge transport simulation. The 3D effects are elucidated as a consequence of competition between transports parallel (\\parallel ) and perpendicular (\\bot ) to the magnetic field, in open field lines cut by divertor plates, or in magnetic islands. The competition has strong impacts on divertor functions, such as determination of the divertor density regime, impurity screening and detachment control. The effects of magnetic perturbation on the edge electric field and turbulent transport are also discussed. Parameterization to measure the 3D effects on the edge transport is attempted for the individual divertor functions. Based on the suggested key parameters, an operation domain of the 3D divertor configuration is discussed for future devices.

  11. Field-Reversed Configurations in an Unmagnetized Plasma

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Strohmaier, K. D.

    2008-09-26

    An oscillating magnetic field is applied with a loop antenna to an unmagnetized plasma. At small amplitudes the field is evanescent. At large amplitudes the field magnetizes the electrons, which allows deeper field penetration in the whistler modes. Field-reversed configurations are formed at each half cycle. Electrons are energized. Transient whistler instabilities produce high-frequency oscillations in the magnetized plasma volume.

  12. Inductive sustainment of oblate field-reversed configurations with the assistance of magnetic diffusion, shaping, and finite-Larmor radius stabilization

    SciTech Connect

    Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Jacobson, C. M.; McGeehan, B.; Ren, Y.; Inomoto, M.; Maqueda, R.

    2008-02-15

    Oblate field-reversed configurations (FRCs) have been sustained for >300 {mu}s, or >15 magnetic diffusion times, through the use of an inductive solenoid. These argon FRCs can have their poloidal flux sustained or increased, depending on the timing and strength of the induction. An inward pinch is observed during sustainment, leading to a peaking of the pressure profile and maintenance of the FRC equilibrium. The good stability observed in argon (and krypton) does not transfer to lighter gases, which develop terminal co-interchange instabilities. The stability in argon and krypton is attributed to a combination of external field shaping, magnetic diffusion, and finite-Larmor radius effects.

  13. Controlling precise magnetic field configuration around electron cyclotron resonance zone for enhancing plasma parameters and beam current

    SciTech Connect

    Yano, Keisuke Kurisu, Yosuke; Nozaki, Dai; Kimura, Daiju; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    Multi-charged ion source which has wide operating conditions is required in various application fields. We have constructed tandem type ECR ion source (ECRIS); one of the features of its main stage is an additional coil for controlling magnetic field distribution around the mirror bottom precisely. Here the effect of magnetic field variation caused by the additional coil is experimentally considered in terms of plasma parameters and beam current as the first investigation of the main stage plasma. Furthermore, behavior of magnetic lines of force flowing from the ECR zone is calculated, and is compared with measurement results aiming for better understanding of interrelationship between plasma production and ion beam generation on the ECRIS.

  14. Cross-field motion of plasma blob-filaments and related particle flux in an open magnetic field line configuration on QUEST

    NASA Astrophysics Data System (ADS)

    Liu, H. Q.; Hanada, K.; Nishino, N.; Ogata, R.; Ishiguro, M.; Gao, X.; Zushi, H.; Nakamura, K.; Fujisawa, A.; Idei, H.; Hasegawa, M.; Quest Group

    2013-07-01

    Blob-filaments have been observed by combined measurement with a fast camera and a movable Langmuir probe in an open magnetic field line configuration of electron cyclotron resonance (ECR) heating plasma in QUEST. Blob-filaments extended along field lines do correspond to over-dense plasma structures and propagated across the field lines to the outer wall. The radial velocity of the blob structure, Vb, was obtained by three methods and was dominantly driven by the E × B force. The radial velocity, size of the blob showed good agreements with the results obtained by sheath-connected interchange theoretical model. Vb corresponds to roughly 0.02-0.07 of the local sound speed (Cs) in QUEST. The higher moments (skewness S and kurtosis K) representing the shape of PDF of density fluctuation are studied. Their least squares fitting with quadratic polynomial is K = (1.60 ± 0.27)S2 - (0.46 ± 0.20). The larger blob structures, occurring only 10% of the time, can carry more than 60% loss of the entire radial particle flux.

  15. 11-13 GHz electron cyclotron resonance plasma source using cylindrically comb-shaped magnetic-field configuration for broad ion-beam processing

    SciTech Connect

    Asaji, Toyohisa; Kato, Yushi; Sato, Fuminobu; Iida, Toshiyuki; Saito, Junji

    2006-11-15

    An electron cyclotron resonance (ECR) plasma source for broad ion-beam processing has been upgraded by a cylindrically comb-shaped magnetic-field configuration and 11-13 GHz frequency microwaves. A pair of comb-shaped magnets surrounds a large-bore discharge chamber. The magnetic field well confines plasmas with suppressing diffusion toward the axial direction of the cylindrical chamber. The magnetic field is constructed with a multipole and two quasiring permanent magnets. The plasma density clearly increases as compared with that in a simple multipole magnetic-field configuration. The frequency of microwaves output from the traveling-wave tube amplifier can be easily changed with an input signal source. The plasma density for 13 GHz is higher than that for 11 GHz. The maximum plasma density has reached approximately 10{sup 18} m{sup -3} at a microwave power of only 350 W and a pressure of 1.0 Pa. The enhancement of plasma generation by second-harmonic resonance and microwave modes has been investigated. The plasma density and the electron temperature are raised around the second-harmonic resonance zone. And then, the ion saturation current is periodically increased with varying the position of the plate tuner. The distance between the peaks is nearly equal to half of the free-space wavelength of microwave. The efficiency of ECR has been improved by using the comb-shaped magnetic field and raising microwave frequency, and then the high-density plasma source has been accomplished at low microwave power.

  16. Radiation belt data assimilation of a moderate storm event using a magnetic field configuration from the physics-based RAM-SCB model

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Koller, J.; Jordanova, V. K.; Zaharia, S. G.; Godinez, H. C.

    2014-05-01

    Data assimilation using Kalman filters provides an effective way of understanding both spatial and temporal variations in the outer electron radiation belt. Data assimilation is the combination of in situ observations and physical models, using appropriate error statistics to approximate the uncertainties in both the data and the model. The global magnetic field configuration is one essential element in determining the adiabatic invariants for the phase space density (PSD) data used for the radiation belt data assimilation. The lack of a suitable global magnetic field model with high accuracy is still a long-lasting problem. This paper employs a physics-based magnetic field configuration for the first time in a radiation belt data assimilation study for a moderate storm event on 19 December 2002. The magnetic field used in our study is the magnetically self-consistent inner magnetosphere model RAM-SCB, developed at Los Alamos National Laboratory (LANL). Furthermore, we apply a cubic spline interpolation method in converting the differential flux measurements within the energy spectrum, to obtain a more accurate PSD input for the data assimilation than the commonly used linear interpolation approach. Finally, the assimilation is done using an ensemble Kalman filter (EnKF), with a localized adaptive inflation (LAI) technique to appropriately account for model errors in the assimilation and improve the performance of the Kalman filter. The assimilative results are compared with results from another assimilation experiment using the Tsyganenko 2001S (T01S) magnetic field model, to examine the dependence on a magnetic field model. Results indicate that the data assimilations using different magnetic field models capture similar features in the radiation belt dynamics, including the temporal evolution of the electron PSD during a storm and the location of the PSD peak. The assimilated solution predicts the energy differential flux to a relatively good degree when

  17. Magnetic Field Configurations Associated With Angular Momentum Transport in Astrophysics and the Accretion Theory of Spontaneous Rotation in the Laboratory^*

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2007-11-01

    Differentially rotating structures in the prevalent field of a central object have been shown to develop a ``crystal'' magnetic structure resulting from toroidal internal currents and leading to the formation of density ring sequencesootnotetextB. Coppi and F. Rousseau, Ap. J. 641, 458 (2006) rather than disks. Poloidal current densities with appropriate symmetries are found to be connected with angular momentum transport processes represented by an effective viscosity. Jets are suggested to consist of a series of stable ``smoke- rings'' ejected vertically in opposite directions from the central region of the considered ring sequence. A small inward flow velocity is shown to induce a spiral pattern in the magnetic field lines on a selected family of magnetic surfaces. The accretion theoryootnotetextB. Coppi, Nuc. Fus. 42, 1 (2002) of the spontaneous rotation phenomenon in toroidal laboratory plasmas relies on the ejection of angular momentum toward the surrounding material wall, by collisional ballooning modes excited at the edge, whose phase velocity depends on collisionality. The resulting recoil gives rise to the rotation of the main body of the plasma column as other plasma modes (called VTG) provide the needed inward transport of angular momentum. *Sponsored in part by the US D.O.E.

  18. An automated approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Dekeyser, W.; Baelmans, M.; Gauger, N. R.; Reiter, D.

    2015-01-01

    Automated methods based on optimization can greatly assist computational engineering design in many areas. In this paper an optimization approach to the magnetic design of a nuclear fusion reactor divertor is proposed and applied to a tokamak edge magnetic configuration in a first feasibility study. The approach is based on reduced models for magnetic field and plasma edge, which are integrated with a grid generator into one sensitivity code. The design objective chosen here for demonstrative purposes is to spread the divertor target heat load as much as possible over the entire target area. Constraints on the separatrix position are introduced to eliminate physically irrelevant magnetic field configurations during the optimization cycle. A gradient projection method is used to ensure stable cost function evaluations during optimization. The concept is applied to a configuration with typical Joint European Torus (JET) parameters and it automatically provides plausible configurations with reduced heat load.

  19. Analysis of Possible Magnetic Field Configurations of Mercury In Response To The Impinging Solar Wind: Open Field Regions and Magnetosheath Plasma Access Into The Inner Regions.

    NASA Astrophysics Data System (ADS)

    Massetti, S.; Orsini, S.; Milillo, A.; Mura, A.; de Angelis, E.

    The presence of a magnetosphere around Mercury plays a fundamental role on the way the solar wind plasma interacts with the planet. In particular, the relative weakness of the magnetic field compared with the size of Mercury, together with the absence of an atmosphere, leads to relevant differences between the physical phenomena acting on Earth and Mercury. On the basis of a modified Tsyganenko T96 model we try to figure out the geometry of the magnetic field that could characterise Mercury, and its response to the variations of the impinging solar wind. The investigation is focused on the shape and dimension of the open field regions (cusps) that allow the direct pen- etration of magnetosheath plasma through the exosphere of Mercury, till its surface. Target of the study is the evaluation of the sputtered particles from the crust of the planet, and their contribution to neutral particle production in the exosphere.

  20. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  1. Magnetic topology of a candidate NCSX plasma boundary configuration

    NASA Astrophysics Data System (ADS)

    Koniges, A. E.; Grossman, A.; Fenstermacher, M.; Kisslinger, J.; Mioduszewski, P.; Rognlien, T.; Strumberger, E.; Umansky, M.

    2003-02-01

    A candidate magnetic topology of the plasma boundary of the proposed compact stellarator national compact stellarator experiment (NCSX) is investigated using field-line tracing with diffusion. The required magnetic fields are obtained from a free-boundary equilibrium using the magnetic fields from external coils and bootstrap plasma currents inside the last closed magnetic surface (LCMS). These results are used to calculate the magnetic fields of the finite beta equilibria inside and outside the LCMS in a form suitable for field-line tracing. Poincaré plots of field lines that diffuse outwards from starting points just inside the LCMS indicate an ergodic divertor region. Intersections of field lines with a simple limiting surface show contained patches suitable for divertor control. Undesirable regions of sharply inclined angle of intersection with the limiting surface are localized, indicating the suitability of the configuration for optimized divertor design techniques. We also discuss physics implications of field-line lengths in the divertor region.

  2. Local geometrical properties of magnetic configurations with nested equilibrium magnetic surfaces

    SciTech Connect

    Skovoroda, A. A.

    2009-04-15

    The complete set of universal local relationships between geometrical (the curvature and torsion of the force lines of the magnetic field and the field complementary to it) and magnetic (|B|, |{nabla}{Phi}|, b {center_dot} ({nabla} x b), and the local shear s) quantities in currentless magnetic configurations comprising a system of equilibrium nested magnetic surfaces, including those with several magnetic axes, is derived. Possible applications of these relationships are discussed.

  3. Equilibrium rotation in field-reversed configurations

    SciTech Connect

    Steinhauer, Loren

    2008-01-15

    The turbulence that drives anomalous transport in field-reversed configurations (FRCs) is believed to break the otherwise closed magnetic surfaces inside the separatrix. This places electrons in the core of the plasma in electrical contact with those in the periphery. This effect was proposed and investigated in the context of spheromaks [D. D. Ryutov, Phys. Plasmas 14, 022506 (2007)]. The opening up of internal magnetic field lines serves to regulate the electrostatic potential in the interior of the plasma, and in turn drives ion rotation. In effect, 'end-shorting', a well-known phenomenon in the FRC scrape-off layer, also extends into the plasma interior. For conditions relevant to experiments, the ion rotation can be expressed in terms of equilibrium properties (density and temperature gradients) and as such is the 'equilibrium' rotation. This theory is incomplete in that it neglects evolving, transport-related effects that modify the equilibrium and, indirectly, the rotation rate. Consequently, the equilibrium rotation theory is only partially successful in predicting experimental results: although it predicts the average rotation well, the estimated degree of rotational shear seems unlikely, especially at late times in the plasma lifetime.

  4. A high performance field-reversed configuration

    SciTech Connect

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; and others

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  5. The magnetic field of the Milky Way

    NASA Astrophysics Data System (ADS)

    Reid, Mark J.

    Models of the magnetic field configuration of the Milky Way are reviewed. Current analyses of rotation measure data suggest that the Milky Way possesses a bisymmetric-like spiral magnetic field, that field reversals among spiral arms exist, and that the magnetic spiral may not closely match the mass spiral structure. Zeeman measurements of OH masers may provide alternative magnetic field information.

  6. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Krall, Nicholas A.; Sieck, Paul E.; Offermann, Dustin T.; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

    2015-04-01

    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure) is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad's work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β . This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  7. Global configuration of a magnetic cloud

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.; Lepping, R. P.; Jones, J. A.

    A magnetic cloud associated with a 2N flare on January 1, 1978 was observed by IMP-8, Helios A, Helios B, and Voyager 2. The variation of the magnetic field observed at each spacecraft is represented to good approximation by Lundquist's solution for a cylindrically symmetric force-free magnetic field with constant alpha. A least-squares fit of Lundquist's solution to the data from each spacecraft gives the local orientation of the axis of the magnetic cloud. The times of the estimated boundaries of the magnetic cloud at each spacecraft, together with the speeds of the boundaries and the spacecraft position, give the positions of the boundaries at a given time. From these results the magnetic cloud is determined to resemble a flux rope whose minor radius is approximately 0.15 AU at 1 AU, and whose radius of curvature at 1 AU is approximately 1/3 AU.

  8. Magnetic fields at neptune.

    PubMed

    Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1989-12-15

    in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an "oblique" rotator. PMID:17756002

  9. Chaotic motion of charged particles in toroidal magnetic configurations

    SciTech Connect

    Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; Dumont, Rémi; Garbet, Xavier

    2014-09-01

    We study the motion of a charged particle in a tokamak magnetic field and discuss its chaotic nature. Contrary to most of recent studies, we do not make any assumption on any constant of the motion and solve numerically the cyclotron gyration using Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to make long-time simulations. First considering an idealized magnetic configuration, we add a nongeneric perturbation corresponding to a magnetic ripple, breaking one of the invariant of the motion. Chaotic motion is then observed and opens questions about the link between chaos of magnetic field lines and chaos of particle trajectories. Second, we return to an axisymmetric configuration and tune the safety factor (magnetic configuration) in order to recover chaotic motion. In this last setting with two constants of the motion, the presence of chaos implies that no third global constant exists, we highlight this fact by looking at variations of the first order of the magnetic moment in this chaotic setting. We are facing a mixed phase space with both regular and chaotic regions and point out the difficulties in performing a global reduction such as gyrokinetics.

  10. A Mirnov loop array for field-reversed configurations

    SciTech Connect

    Tuszewski, M.

    1990-01-01

    An array of 64 magnetic pick-up loops has been used for stability studies of large field-reversed configurations in the FRX-C/LSM device. This array proved reliable, could resolve signals of a few Gauss, and allowed the detection of several plasma instabilities. 3 refs., 4 figs.

  11. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  12. The effects of magnetic nozzle configurations on plasma thrusters

    NASA Technical Reports Server (NTRS)

    York, Thomas M.

    1989-01-01

    Plasma thrusters have been operated at power levels from 10kW to 0.1MW. When these devices have had magnetic fields applied to them which form a nozzle configuration for the expanding plasma, they have shown marked increases in exhaust velocity which is in direct proportion to the magnitude of the applied field. Further, recent results have shown that electrode erosion may be influenced by applied magnetic fields. This research is directed to the experimental and computational study of the effects of applied magnetic field nozzles in the acceleration of plasma flows. Plasma source devices which eliminate the plasma interaction in normal thrusters are studied as most basic. Normal thruster configurations will be studied without applied fields and with applied magnetic nozzle fields. Unique computational studies will utilize existing codes which accurately include transport processes. Unique diagnostic studies will support the experimental studies to generate new data. Both computation and diagnostics will be combined to indicate the physical mechanisms and transport properties that are operative in order to allow scaling and accurate prediction of thruster performance.

  13. The effects of magnetic nozzle configurations on plasma thrusters

    NASA Technical Reports Server (NTRS)

    York, Thomas M.

    1990-01-01

    Plasma thrusters have been operated at power levels from 10 kw to 0.1 MW. When these devices have had magnetic fields applied to them which form a nozzle configuration for the expanding plasma, they have shown marked increases in exhaust velocity which is in direct proportion to the magnitude of the applied field. Further, recent results have shown that electrode erosion may be influenced by applied magnetic fields. This research effort is directed to the experimental and computational study of the effects of applied magnetic field nozzles in the acceleration of plasma flows. Plasma source devices which eliminate the plasma interaction in normal thrusters are studied as most basic. Normal thruster configurations were studied without applied fields and with applied magnetic nozzle fields. Unique computational studies utilize existing codes which accurately include transport processes. Unique diagnostic studies supported the experimental studies to generate new data. Both computation and diagnostics were combined to indicate the physical mechanisms and transport properties that are operative in order to allow scaling and accurate prediction of thruster performance.

  14. Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    SciTech Connect

    Silva, R. M. da; Domínguez, D.; Aguiar, J. Albino

    2014-12-08

    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.

  15. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  16. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  17. The magnetosphere of Uranus - Plasma sources, convection, and field configuration

    NASA Technical Reports Server (NTRS)

    Voigt, G.-H.; Hill, T. W.; Dessler, A. J.

    1983-01-01

    It is suggested by qualitative considerations based on analogy with earth, Jupiter, and Saturn that the magnetosphere of Uranus may lack a plasma source able to produce significant internal currents, internal convection, and associated effects. A class of approximately self-consistent quantitative magnetohydrostatic equilibrium configurations for the case of a pole-on magnetosphere with variable plasma parameters is presently constructed in order to test this hypothesis by means of forthcoming Voyager measurements. The configurations that can be computed for the geometries of the magnetic field and of the tail current sheet, for a given distribution of plasma pressure, have a single, funnel-shaped polar cusp pointing into the solar wind and a cylindrical tail plasma sheet whose currents close within the tail, rather than on the tail magnetopause. Interconnection of interplanetary and magnetospheric fields yields a highly asymmetric tail-field configuration.

  18. Magnetic refrigeration: recent developments and alternative configurations

    NASA Astrophysics Data System (ADS)

    Almanza, Morgan; Kedous-Lebouc, Afef; Yonnet, Jean-Paul; Legait, Ulrich; Roudaut, Julien

    2015-07-01

    Magnetic refrigeration, based on magnetocaloric effect, is an upcoming environmentaly friendly technology with a high potential to improve energy efficiency and to reduce greenhouse gas emission. It is a multidisciplinary research theme and its real emergence requires, to overcome scientific and technical issues related to both material and system. This paper presents the state of the art in magnetic cooling, the main recent works achieved and discusses in more details the thermodynamic phenomenon according to the G2Elab experience in the field. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  19. Magnetic field fluctuations during substorms

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1971-01-01

    Before a magnetospheric substorm and during its early phases the magnetic field magnitude in the geomagnetic tail increases and field lines in the nighttime hemisphere assume a more tail-like configuration. Before the substorm onset a minimum amount of magnetic flux is observed to cross the neutral sheet which means that the neutral sheet currents attain their most earthward locations and their greatest current densities. This configuration apparently results from an increased transport of magnetic flux to the tail caused by a southward interplanetary magnetic field. The field begins relaxing toward a more dipolar configuration at the time of a substorm onset with the recovery probably occurring first between 6 and 10 R sub E. This recovery must be associated with magnetospheric convection which restores magnetic flux to the dayside hemisphere. Field aligned currents appear to be required to connect magnetospheric currents to the auroral electrojets, implying that a net current flows in a limited range of longitudes. Space measurements supporting current systems are limited. More evidence exists for the occurrence of double current sheets which do not involve net current at a given longitude.

  20. Linewidth-modulated motional Stark effect measurements of internal field structure in low-field configurations

    NASA Astrophysics Data System (ADS)

    Reinecke, E. A.; Fonck, R. J.; Thorson, T. A.

    2001-01-01

    Motional Stark effect measurements of internal field structure in low-field magnetic confinement configurations are considered for both magnitude and direction of the local magnetic field. The amplitude and phase delay of an oscillating spectral linewidth driven by a rotating polarizer provides a means of determining the magnitude and direction of the total field simultaneously while avoiding difficulties of neutral beam energy drift. Photon-noise limit estimates for a diagnostic beam on the low-field PEGASUS toroidal experiment indicate sensitivities of roughly 20 G and 0.2° for the magnitude and direction angle. These values are sufficient to provide significant constraints on magnetic equilibrium reconstructions.

  1. Linewidth-modulated motional Stark effect measurements of internal field structure in low-field configurations

    SciTech Connect

    Reinecke, E. A.; Fonck, R. J.; Thorson, T. A.

    2001-01-01

    Motional Stark effect measurements of internal field structure in low-field magnetic confinement configurations are considered for both magnitude and direction of the local magnetic field. The amplitude and phase delay of an oscillating spectral linewidth driven by a rotating polarizer provides a means of determining the magnitude and direction of the total field simultaneously while avoiding difficulties of neutral beam energy drift. Photon-noise limit estimates for a diagnostic beam on the low-field PEGASUS toroidal experiment indicate sensitivities of roughly 20 G and 0.2{sup o} for the magnitude and direction angle. These values are sufficient to provide significant constraints on magnetic equilibrium reconstructions.

  2. WE-G-17A-08: Electron Gun Operation for in Line MRI-Linac Configurations: An Assessment of Beam Fidelity and Recovery Techniques for Different SIDs and Magnetic Field Strengths

    SciTech Connect

    Whelan, B; Keall, P; Constantin, D; Holloway, L; Kolling, S; Oborn, B; Fahrig, R

    2014-06-15

    Purpose: To test the functionality of medical electron guns within the fringe field of a purpose built superconducting MRI magnet, and to test different recovery techniques for a variety of imaging field strengths and SIDs. Methods: Three different electron guns were simulated using Finite Element Modelling; a standard diode gun, a standard triode gun, and a novel diode gun designed to operate within parallel magnetic fields. The approximate working regime of each gun was established by assessing exit current in constant magnetic fields of varying strength and defining ‘working’ as less than 10% change in injection current. Next, the 1.0T MRI magnet was simulated within Comsol Multiphysics. The coil currents in this model were also scaled to produce field strengths of .5, 1, 1.5 and 3T. Various magnetic shield configurations were simulated, varying the SID from 800 to 1300mm. The average magnetic field within the gun region was assessed together with the distortion in the imaging volume - greater than 150uT distortion was considered unacceptable. Results: The conventional guns functioned in fields of less than 7.5mT. Conversely, the redesigned diode required fields greater than .1T to function correctly. Magnetic shielding was feasible for SIDS of greater than 1000mm for field strengths of .5T and 1T, and 1100mm for 1.5 and 3.0T. Beyond these limits shielding resulted in unacceptable MRI distortion. In contrast, the redesigned diode could perform acceptably for SIDs of less than 812, 896, 931, and 974mm for imaging strengths of 0.5, 1.0, 1.5, 3.0T. Conclusions: For in-line MRIlinac configurations where the electron gun is operating in low field regions, shielding is a straight forward option. However, as magnetic field strength increases and the SID is reduced, shielding results in too great a distortion in the MRI and redesigning the electron optics is the preferable solution. The authors would like to acknowledge funding from the National Health and Research

  3. Magnetic configuration of submicron-sized magnetic patterns in domain wall motion memory

    NASA Astrophysics Data System (ADS)

    Ohshima, Norikazu; Numata, Hideaki; Fukami, Shunsuke; Nagahara, Kiyokazu; Suzuki, Tetsuhiro; Ishiwata, Nobuyuki; Fukumoto, Keiki; Kinoshita, Toyohiko; Ono, Teruo

    2010-05-01

    We observed magnetic configuration and its change by external magnetic fields in submicron-sized U- and H-shaped NiFe patterns with an x-ray magnetic circular dichroism photoemission electron microscope. The microscope images showed the formation of a single domain wall (DW) with transverse structure at one corner of the U- and H-shaped patterns by applying the magnetic field from the oblique direction. By applying the magnetic field from the direction parallel to a horizontal bar in the patterns, the magnetic configuration in the U-shaped pattern was changed and four patterns were formed: (1) the DW moved from one trap site to another, (2) the DW moved beyond the trap site and formed a single domain, (3) the DW moved and stopped between the trap sites, and (4) the DW remained at the initial position. Only pattern (1) showed reversible DW motion, although pattern (2) was predominantly formed. In contrast, the magnetization configurations showed pattern (1), and reversible DW motion was observed for more than 80% of the H-shaped patterns. Micromagnetic simulation revealed that the DW in the U-shaped pattern was not sufficiently fixed at the corner and easily moved and vanished at the edge of the patterns because the magnetization in the two parallel bars rotated with a magnetic field. The DW was trapped with sufficient strength at the corner, and DW motion occurred only between the trap sites for the H-shaped patterns. The DW motion process was observed with an in situ magnetic field using the x-ray magnetic circular dichroism photoemission electron microscope and the process could be optimized by controlling the pattern shape.

  4. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  5. The Radio Properties and Magnetic Field Configuration in the Crab-Like Pulsar Wind Nebula G54.1+0.3

    NASA Astrophysics Data System (ADS)

    Lang, Cornelia C.; Wang, Q. Daniel; Lu, Fangjun; Clubb, Kelsey I.

    2010-02-01

    We present a multifrequency radio investigation of the Crab-like pulsar wind nebula (PWN) G54.1+0.3 using the Very Large Array. The high resolution of the observations reveals that G54.1+0.3 has a complex radio structure which includes filamentary and loop-like structures that are magnetized, a diffuse extent similar to the associated diffuse X-ray emission. But the radio and X-ray structures in the central region differ strikingly, indicating that they trace very different forms of particle injection from the pulsar and/or particle acceleration in the nebula. No spectral index gradient is detected in the radio emission across the PWN, whereas the X-ray emission softens outward in the nebula. The extensive radio polarization allows us to image in detail the intrinsic magnetic field, which is well-ordered and reveals that a number of loop-like filaments are strongly magnetized. In addition, we determine that there are both radial and toroidal components to the magnetic field structure of the PWN. Strong mid-infrared (IR) emission detected in Spitzer Space Telescope data is closely correlated with the radio emission arising from the southern edge of G54.1+0.3. In particular, the distributions of radio and X-ray emission compared with the mid-IR emission suggest that the PWN may be interacting with this interstellar cloud. This may be the first PWN where we are directly detecting its interplay with an interstellar cloud that has survived the impact of the supernova explosion associated with the pulsar's progenitor.

  6. Nonequilibrium dynamics of emergent field configurations

    NASA Astrophysics Data System (ADS)

    Howell, Rafael Cassidy

    The processes by which nonlinear physical systems approach thermal equilibrium is of great importance in many areas of science. Central to this is the mechanism by which energy is transferred between the many degrees of freedom comprising these systems. With this in mind, in this research the nonequilibrium dynamics of nonperturbative fluctuations within Ginzburg-Landau models are investigated. In particular, two questions are addressed. In both cases the system is initially prepared in one of two minima of a double-well potential. First, within the context of a (2 + 1) dimensional field theory, we investigate whether emergent spatio-temporal coherent structures play a dynamcal role in the equilibration of the field. We find that the answer is sensitive to the initial temperature of the system. At low initial temperatures, the dynamics are well approximated with a time-dependent mean-field theory. For higher temperatures, the strong nonlinear coupling between the modes in the field does give rise to the synchronized emergence of coherent spatio-temporal configurations, identified with oscillons. These are long-lived coherent field configurations characterized by their persistent oscillatory behavior at their core. This initial global emergence is seen to be a consequence of resonant behavior in the long wavelength modes in the system. A second question concerns the emergence of disorder in a highly viscous system modeled by a (3 + 1) dimensional field theory. An integro-differential Boltzmann equation is derived to model the thermal nucleation of precursors of one phase within the homogeneous background. The fraction of the volume populated by these precursors is computed as a function of temperature. This model is capable of describing the onset of percolation, characterizing the approach to criticality (i.e. disorder). It also provides a nonperturbative correction to the critical temperature based on the nonequilibrium dynamics of the system.

  7. Confinement of translated field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.; Armstrong, W. T.; Chrien, R. E.; Klingner, P. L.; McKenna, K. F.; Rej, D. J.; Sherwood, E. G.; Siemon, R. E.

    1986-03-01

    The confinement properties of translating field-reversed configurations (FRC) in the FRX-C/T device [Phys. Fluids 29, (1986)] are analyzed and compared to previous data without translation and to available theory. Translation dynamics do not appear to appreciably modify the FRC confinement. Some empirical scaling laws with respect to various plasma parameters are extracted from the data. These are qualitatively similar to those obtained in the TRX-1 device [Phys. Fluids 28, 888 (1985)] without translation and with a different formation method. Translation with a static gas fill offers new opportunities such as improved particle confinement or refueling of the FRC particle inventory.

  8. Magnetic fields in ring galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  9. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  10. Sensitivity of detachment extent to magnetic configuration and external parameters

    NASA Astrophysics Data System (ADS)

    Lipschultz, Bruce; Parra, Felix I.; Hutchinson, Ian H.

    2016-05-01

    Divertor detachment may be essential to reduce heat loads to magnetic fusion tokamak reactor divertor surfaces. Yet in experiments it is difficult to control the extent of the detached, low pressure, plasma region. At maximum extent the front edge of the detached region reaches the X-point and can lead to degradation of core plasma properties. We define the ‘detachment window’ in a given position control variable C (for example, the upstream plasma density) as the range in C within which the front location can be stably held at any position from the target to the X-point; increased detachment window corresponds to better control. We extend a 1D analytic model [1] to determine the detachment window for the following control variables: the upstream plasma density, the impurity concentration and the power entering the scrape-off layer (SOL). We find that variations in magnetic configuration can have strong effects; increasing the ratio of the total magnetic field at the X-point to that at the target, {{B}×}/{{B}t} , (total flux expansion, as in the super-x divertor configuration) strongly increases the detachment window for all control variables studied, thus strongly improving detachment front control and the capability of the divertor plasma to passively accommodate transients while still staying detached. Increasing flux tube length and thus volume in the divertor, through poloidal flux expansion (as in the snowflake or x-divertor configurations) or length of the divertor, also increases the detachment window, but less than the total flux expansion does. The sensitivity of the detachment front location, z h , to each control variable, C, defined as \\partial {{z}h}/\\partial C , depends on the magnetic configuration. The size of the radiating volume and the total divertor radiation increase \\propto {{≤ft({{B}×}/{{B}t}\\right)}2} and \\propto {{B}×}/{{B}t} , respectively, but not by increasing divertor poloidal flux expansion or field line length. We

  11. Simultaneous effects of radial magnetic field and wall properties on peristaltic flow of Carreau-Yasuda fluid in curved flow configuration

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Tanveer, A.; Alsaadi, F.

    2015-12-01

    The objective of present article is to address the magnetohydrodynamic (MHD) peristaltic flow of Carreau-Yasuda fluid in a curved geometry. The channel boundaries satisfy wall slip and compliant properties. The fluid is electrically conducting through an applied magnetic field in the radial direction. Heat transfer is also studied. Governing equation comprised the viscous dissipation effects. The non-linear expressions are first obtained and then approximated using long wavelength and low Reynolds number considerations. The resulting systems are solved for the series solutions. The expressions of velocity, temperature, heat transfer coefficient and stream function are obtained and analyzed via graphical illustrations.

  12. Improved critical current in confined superconductors in parallel field configuration

    NASA Astrophysics Data System (ADS)

    Glatz, Andreas; Aronson, Igor; Wang, Yonglei; Xiao, Zhili

    2015-03-01

    We present results on the re-entrance of the superconducting state in systems placed into a magnetic field parallel to the applied current. In experiments it was observed that the magneto-resistance first increases with magnetic field, but at higher field drops again such that superconductivity is recovered. This effect is strongly temperature dependent and can lead to a suppression of resistance below the measurable threshold over a range of a few kG. We study the vortex dynamics and magneto-resistance in this situation in the framework of a large-scale time-dependent Ginzburg Landau simulation. A small external current as well as the magnetic field are applied in the x-direction, the latter is then ramped up. Our simulations reproduce this effect and reveal the mechanism for the observed behavior: the intermediate resistive state is due to a vortex instability leading to an unwinding of twisted vortex configurations. This leads to a periodic dynamic resistive state. When the field increases these instabilities get stabilized due to a higher vortex density and the resistance drops upon increasing the magnetic field. Work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences, and by the Office of Science, Materials Sc.

  13. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  14. Magnetosphere of Uranus: plasma sources, convection, and field configuration

    SciTech Connect

    Voigt, G.; Hill, T.W.; Dessler, A.J.

    1983-03-01

    At the time of the Voyager 2 flyby of Uranus, the planetary rotational axis will be roughly antiparallel to the solar wind flow. If Uranus has a magnetic dipole moment that is approximately aligned with its spin axis, and if the heliospheric shock has not been encountered, we will have the rare opportunity to observe a ''pole-on'' magnetosphere as discussed qualitatively by Siscoe. Qualitative arguments based on analogy with Earth, Jupiter, and Saturn suggest that the magnetosphere of Uranus may lack a source of plasma adequate to produce significant internal currents, internal convection, and associated effects. In order to provide a test of this hypothesis with the forthcoming Voyager measurements, we have constructed a class of approximately self-consistent quantitative magnetohydrostatic equilibrium configurations for a pole-on magnetosphere with variable plasma pressure parameters. Given a few simplifying assumptions, the geometries of the magnetic field and of the tail current sheet can be computed for a given distribution of trapped plasma pressure. The configurations have a single funnel-shaped polar cusp that points directly into the solar wind and a cylindrical tail plasma sheet whose currents close within the tail rather than on the tail magnetopause, and whose length depends on the rate of decrease of thermal plasma pressure down the tail. Interconnection between magnetospheric and interplanetary fields results in a highly asymmetric tail-field configuration. These features were predicted qualtitatively by Siscoe; the quantitative models presented here may be useful in the interpretation of Voyager encounter results.

  15. The configuration of the Brazilian scientific field.

    PubMed

    Barata, Rita B; Aragão, Erika; de Sousa, Luis E P Fernandes; Santana, Taris M; Barreto, Mauricio L

    2014-03-01

    This article describes the configuration of the scientific field in Brazil, characterizing the scientific communities in every major area of knowledge in terms of installed capacity, ability to train new researchers, and capacity for academic production. Empirical data from several sources of information are used to characterize the different communities. Articulating the theoretical contributions of Pierre Bourdieu, Ludwik Fleck, and Thomas Kuhn, the following types of capital are analyzed for each community: social capital (scientific prestige), symbolic capital (dominant paradigm), political capital (leadership in S & T policy), and economic capital (resources). Scientific prestige is analyzed by taking into account the volume of production, activity index, citations, and other indicators. To characterize symbolic capital, the dominant paradigms that distinguish the natural sciences, the humanities, applied sciences, and technology development are analyzed theoretically. Political capital is measured by presidency in one of the main agencies in the S & T national system, and research resources and fellowships define the economic capital. The article discusses the composition of these different types of capital and their correspondence to structural capacities in various communities with the aim of describing the configuration of the Brazilian scientific field. PMID:24676181

  16. The role of the crystal orientation (c-axis) on switching field distribution and the magnetic domain configuration in electrodeposited hcp Co–Pt nanowires

    NASA Astrophysics Data System (ADS)

    Shahid Arshad, Muhammad; Proenca, Mariana P.; Trafela, Spela; Neu, Volker; Wolff, Ulrike; Stienen, Sven; Vazquez, Manuel; Kobe, Spomenka; Žužek Rožman, Kristina

    2016-05-01

    In this report, Co–Pt nanowires (NWs) were produced via potentiostatic electrodeposition into commonly used commercial ordered-alumina and disordered-polycarbonate membranes with similar pore diameters (≈200 nm). The pore diameter of the membranes and the deposition conditions were chosen such that the Co–Pt NWs fabricated into both membranes had a hexagonal close packed (hcp) crystal structure with a crystallographic texturing of the c-axis in the direction perpendicular to the NWs’ long axis; this effect was more pronounced in the alumina membranes. Due to the local fluctuation in electrodeposition conditions (pore diameter, pore shape), we have found a small variation in the c-axis orientations in the plane perpendicular to the NWs’ long axis. Magnetic characterizations suggested that there is uniaxial anisotropy perpendicular to the Co–Pt NWs’ long axis and the small variation in the orientation of the hcp c-axis plays an important role in the switching-field distribution and the magnetic domain structure of the Co–Pt NWs. First order reversal curves (FORCs) revealed week magnetostatic interactions between Co–Pt NWs, thus suggesting that the different pore alignments are not influencing much the magnetic properties in both membranes. The micromagnetic simulation revealed that the transverse-stripe (TS) and longitudinal stripe (LS) domains are energetically most favorable structures in such NWs. This study accentuates the influence of the crystal orientation (c-axis) of the high-anisotropy materials on their functional magnetic properties and thus is of great importance for the fabrication of nanodevices based on such NWs.

  17. Magnetic configuration dependence of magnetoresistance in a Fe-porphyrin-like carbon nanotube spintronic device

    SciTech Connect

    Zeng, Jing; Chen, Ke-Qiu

    2014-01-20

    By using nonequilibrium Green's functions in combination with the density functional theory, we investigate the spin-dependent transport properties in a Fe-porphyrin-like carbon nanotube spintronic device. The results show that magnetoresistance ratio is strongly dependent on the magnetic configuration of the Fe-porphyrin-like carbon nanotube. Under the application of the external magnetic field, the magnetoresistance ratio of the device can be increased from about 19% to about 1020% by tuning the magnetic configuration in the device. Our results confirm that the magnetic configuration is a key factor for obtaining a high-performance spintronic device.

  18. Plasma-wall interaction in Hall thrusters with magnetic lens configuration

    SciTech Connect

    Brieda, Lubos; Keidar, Michael

    2012-06-15

    Some recently developed Hall thrusters utilize a magnetic field configuration in which the field lines penetrate the thruster walls at a high incidence angle. This so-called magnetic lens leads to an electric field pointing away from the walls, which is expected to reduce ion losses and improve thruster efficiency. This configuration also introduces an interesting behavior in the sheath formation. At sufficiently large angles, ions are repelled from the wall, and sheath collapse is expected. We use a plasma simulation code to investigate this phenomenon in detail. We consider the role of the magnetic field incidence angle, secondary electron emission, and a magnetic mirror. Numerical study confirms the theoretical predictions, and at large angles, ions are seen to turn away from the wall. We also consider the role of the magnetic field geometry on ion wall flux and channel erosion, and observe reduction in both quantities as the magnetic field incidence angle is increased.

  19. Test ion transport in a collisional, field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Roche, T.; McWilliams, R.; Heidbrink, W. W.; Bolte, N.; Garate, E. P.; Morehouse, M.; Slepchenkov, M.; Wessel, F.

    2014-08-01

    Diffusion of test-ions in a flux-coil generated, collisional, field-reversed configuration is measured via time-resolved tomographic reconstruction of Ar+ optical emission in the predominantly nitrogen plasma. Azimuthal test ion diffusion across magnetic field lines is found to be classical during the stable period of the discharge. Test ion radial confinement is enhanced by a radial electric field, reducing the observed outward radial transport rate below predictions based solely on classical cross-field diffusion rates. Test ion diffusion is ˜500 m2 s-1 during the stable period of the discharge. The electric field inferred from plasma potential measurements and from equilibrium calculations is consistent with the observed reduction in argon transport.

  20. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    SciTech Connect

    Welch, D. R.; Cohen, S. A.; Genoni, T. C.; Glasser, A. H.

    2010-06-28

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments. __________________________________________________

  1. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  2. Physics in the magnetic configuration space of W7-X

    NASA Astrophysics Data System (ADS)

    Geiger, J.; Beidler, C. D.; Feng, Y.; Maaßberg, H.; Marushchenko, N. B.; Turkin, Y.

    2015-01-01

    The neoclassical confinement and the bootstrap current are analysed in the configuration space of W7-X by self-consistent neoclassical transport simulations. Since the establishment of quasi-stationary operation is the most important goal for W7-X, the analysis concentrates on high-performance discharge scenarios in magnetic configurations which are adjusted so that bootstrap current vanishes, or, alternatively, on scenarios where the bootstrap current can be balanced by strong ECCD. Both scenarios lead to restrictions either in the configuration space or in plasma parameters and ECRH heating scenarios. Furthermore, the flexibility of the magnetic configuration space of W7-X is briefly described with emphasis on other physics topics of interest, for example, ballooning unstable configurations as well as configurations with a magnetic hill which might lead to interchange instability.

  3. Optimized configurations of autostable superconducting magnetic bearings for practical applications

    SciTech Connect

    Schoechlin, A.; Ritter, T.; Bornemann, H.J.

    1995-11-01

    In order to establish an optimized bearing design for a flywheel for energy storage, the authors have studied model bearing configurations involving bulk YBCO pellets and double-dipole magnet configurations. They were interested to see what is the correlation between the maximum attainable levitation force, measured for a typical bearing gap of 3 mm, and the separation between the magnetic poles. Equal polarity (north-north) and alternate polarity (north-south) configurations were investigated. The maximum levitation force was obtained with the alternate polarity arrangement for a separation between the magnetic poles of 6 mm. It represents an increase of 19% compared to a non-optimized configuration. The experiments demonstrate that configurations of superconducting magnetic bearings can be optimized to obtain better levitation properties.

  4. On Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Florido, E.; Battaner, E.

    2010-12-01

    Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.

  5. Tilting of Field-Reversed Configurations in an EMHD Plasma

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Strohmaier, K. D.

    2004-11-01

    A field-reversed configuration (FRC) is established with a pulsed coil inside a large, magnetized laboratory plasma in the regime of electron magnetohydrodynamics (EMHD) ( R. L. Stenzel J. M. Urrutia K. D. Strohmaier M. C. Griskey, Experiments on Nonlinear EMHD Fields. Physica Scripta T107, 163 (2004)). The three-dimensional field configuration is measured with a movable probe from repeated experiments. During the free relaxation of the FRC, a tilt and precession of the current layer are observed. An axially symmetric FRC has two 3D null points on axis, a 2D toroidal null line and a closed separatrix surface. The tilt of such an FRC changes the topology to four null points (2 radial and 2 spiral nulls) and an open separatrix, both observed experimentally and in simulations. All the field lines are open, but the high pitch of the spiral nulls slows down the free flow of electrons along field lines. Observations show that a tilt of the field is coupled to a precession around the ambient field direction. In the late stage of the relaxation, the tilted current layer loses its 2D structure, which has not yet been investigated.

  6. Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope

    SciTech Connect

    Xia, C.; Keppens, R.; Guo, Y.

    2014-01-10

    The magnetic configuration hosting prominences and their surrounding coronal structure is a key research topic in solar physics. Recent theoretical and observational studies strongly suggest that a helical magnetic flux rope is an essential ingredient to fulfill most of the theoretical and observational requirements for hosting prominences. To understand flux rope formation details and obtain magnetic configurations suitable for future prominence formation studies, we here report on three-dimensional isothermal magnetohydrodynamic simulations including finite gas pressure and gravity. Starting from a magnetohydrostatic corona with a linear force-free bipolar magnetic field, we follow its evolution when introducing vortex flows around the main polarities and converging flows toward the polarity inversion line near the bottom of the corona. The converging flows bring the feet of different loops together at the polarity inversion line, where magnetic reconnection and flux cancellation happen. Inflow and outflow signatures of the magnetic reconnection process are identified, and thereby the newly formed helical loops wind around preexisting ones so that a complete flux rope grows and ascends. When a macroscopic flux rope is formed, we switch off the driving flows and find that the system relaxes to a stable state containing a helical magnetic flux rope embedded in an overlying arcade structure. A major part of the formed flux rope is threaded by dipped field lines that can stably support prominence matter, while the total mass of the flux rope is in the order of 4-5× 10{sup 14} g.

  7. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  8. Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field

    SciTech Connect

    Mauel, M; Ryutov, D; Kesner, J

    2003-12-02

    In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.

  9. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.

    2016-05-01

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.

  10. Helical quadrupole field stabilization of field-reversed configuration plasma

    SciTech Connect

    Shimamura, S.; Nogi, Y.

    1986-01-01

    The n = 2 mode rotational instability, which appears on a field-reversed configuration plasma produced by a theta pinch, is stabilized by a helical quadrupole field. The critical strength of the field to stabilize the instability is obtained as a function of pitch angle of the helical coil ..cap alpha.. rad/m. Typically, the plasma in the ..cap alpha.. = 6 winding field is stabilized by about one-fifth of ..cap alpha.. = 0 field strength. To physically explain such a good effectiveness of the helical field, the rotation speed of the plasma is measured by a Doppler shift of a carbon V 2270.9-A line. However, the clear explanation to the helical effect is not yet given.

  11. Optimizing Field-Reversed Configuration Plasmas for Plasma Compression Experiments

    NASA Astrophysics Data System (ADS)

    Grabowski, C.; Degnan, J. H.; Amdahl, D. J.; Domonkos, M.; Ruden, E. L.; White, W.; Wurden, G. A.; Frese, M. H.; Frese, S. D.; Camacho, J. F.; Coffey, S. K.; Kostora, M.; McCullough, J.; Sommars, W.; Kiuttu, G. F.; Lynn, A. G.; Yates, K.; Bauer, B. S.; Fuelling, S.; Pahl, R.

    2013-10-01

    The Field-Reversed Configuration Heating Experiment (FRCHX) is a collaborative experiment between the Air Force Research Laboratory (AFRL) and Los Alamos National Laboratory (LANL) to study high energy density plasmas and various associated phenomena. With FRCHX, a field-reversed configuration (FRC) plasma is formed via reversed-field theta pinch and then translated a short distance into a cylindrical aluminum shell (solid liner), where it is either compressed by the magnetically-driven implosion of the shell or diagnosed in preparation for such compression tests. The lifetime of the trapped magnetic flux within the FRC is an important parameter affecting the confinement of plasma during the compression and ultimately the final density, temperature, and yield of neutrons from the plasma. Processes occurring during formation, initial plasma temperature, and instabilities in turn all affect the trapped-flux lifetime and the integrity of the FRC. A discussion of FRC parameters measured on FRCHX and efforts that have been made to improve these parameters and the FRC stability will be presented in connection with results from recent FRCHX experiments. This work is supported by DOE-OFES.

  12. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  13. Overview of C-2 Field Reversed Configuration Experiments

    NASA Astrophysics Data System (ADS)

    Guo, Houyang; TAE Team

    2013-10-01

    The C-2 compact toroid merging (CT) facility was built to form and sustain high temperature Field Reversed Configurations (FRC) with extremely high beta (i.e., with the ratio of confined plasma to external total magnetic pressure approaching 100%). Significant progress has been made in C-2 on both technology and physics fronts, achieving stable plasmas up to 5 ms with a dramatic improvement in confinement, far beyond the prediction from the conventional FRC scaling. The key approaches to these exciting achievements are (1) dynamic FRC formation by collisional merging of super-Alfvénic CTs, (2) effective control of stability and transport by plasma guns and neutral beam injection, and (3) active wall conditioning. The emerging confinement scaling for this new plasma regime shows a strong dependence on temperature in contrast to the usually observed Bohm or gyro-Bohm scaling in other magnetic confinement systems. This presentation highlights these recent advances.

  14. Magnetic reconnection in collisionless plasmas - Prescribed fields

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Drake, J. F.; Chen, J.

    1990-01-01

    The structure of the dissipation region during magnetic reconnection in collisionless plasma is investigated by examining a prescribed two-dimensional magnetic x line configuration with an imposed inductive electric field E(y). The calculations represent an extension of recent MHD simulations of steady state reconnection (Biskamp, 1986; Lee and Fu, 1986) to the collisionless kinetic regime. It is shown that the structure of the x line reconnection configuration depends on only two parameters: a normalized inductive field and a parameter R which represents the opening angle of the magnetic x lines.

  15. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  16. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  17. Dynamic Magnetic Field Applications for Materials Processing

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

  18. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  19. Magnetoresistance of nanosized magnetic configurations in single nanowires

    NASA Astrophysics Data System (ADS)

    Wegrowe, J.-E.; Gilbert, S.; Doudin, B.; Ansermet, J.-Ph.

    1998-03-01

    The problem of studying spin configurations at nanoscopic level is that magnetic measurements at this scale cannot be performed using usual magnetometers. We have shown that anisotropic magnetoresistance (AMR) measured with micro-contacts allows spin configurations of a single nanowire to be studied in details. The nanowires are diameter 50 nm and length 6000 nm and are produced by a combination of electrodeposition in track-etched membrane templates and sputtering technics. Magnetoresistance of well-defined spin configurations in single nanowires, like Curling magnetization reversal modes or domain wall, are measured.

  20. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  1. Magnetic Configurations in Co/Cu Multilayered Nanowires: Evidence of Structural and Magnetic Interplay.

    PubMed

    Reyes, D; Biziere, N; Warot-Fonrose, B; Wade, T; Gatel, C

    2016-02-10

    Off-axis electron holography experiments have been combined with micromagnetic simulations to study the remnant magnetic states of electrodeposited Co/Cu multilayered nanocylinders. Structural and chemical data obtained by transmission electron microscopy have been introduced in the simulations. Three different magnetic configurations such as an antiparallel coupling of the Co layers, coupled vortices, and a monodomain-like state have been quantitatively mapped and simulated. While most of the wires present the same remnant state whatever the direction of the saturation field, we show that some layers can present a change from an antiparallel coupling to vortices. Such a configuration can be of particular interest to design nano-oscillators with two different working frequencies. PMID:26783831

  2. Four-state magnetic configuration in a tri-layer asymmetric ring

    NASA Astrophysics Data System (ADS)

    Popescu, Horia; Fortuna, Franck; Delaunay, Renaud; Spezzani, Carlo; Lopez-Flores, Victor; Jaouen, Nicolas; Sacchi, Maurizio

    2015-11-01

    Ring-shaped multilayered sub-micron dots have the potential for the development of non-volatile multi-bit devices. We show that a Co/Cu/FeNi asymmetric ring can take four distinct remanent magnetic states, each one stabilized by applying a magnetic field pulse along one of four in-plane orthogonal directions. We use element selective x-ray holography for imaging the Co magnetic configuration following a magnetic pulse. Micro-magnetic simulations support our experimental findings; they also provide an estimate of the system magnetization dynamics, setting out the conditions for further time-resolved experiments.

  3. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  4. Diagnosing the field reversed configuration plasmas on FRX-L

    NASA Astrophysics Data System (ADS)

    Zhang, S. Y.; Wurden, G. A.; Taccetti, J. M.; Intrator, T. P.; Sanchez, P.; Bass, C.; Carey, C.; Renneke, R.; Harris, M.; de Vries, S.; Liang, J.; Kozar, M.; Aragonez, R.; Maqueda, R. J.; Tuszewski, M.; Ruden, E.; Grabowski, C.; Degnan, J. H.; Sommars, W.; Analla, F.

    2002-11-01

    FRX-L is a plasma device designed to form field-reversed-configuration (FRC) plasma of about 200eV and 10**23m**(-3) with 20 micro seconds lifetime. Many diagnostic challenges are presented in such plasma device due to its severe electromagnetic environment and very limited access space. A number of diagnostics have been developed and operated on the device. This paper provides a review on the diagnostics on FRX-L, including a multi-chord laser interferometer (633 microns He-Ne laser; 8 chords designed, 2 chords operating now) for measuring the line integrated electron density, tiny magnetic pick-up coils (B-dot probes) for measuring the magnetic fields and excluded magnetic fluxes by FRC plasmas. Diagnostic capabilities are also described, for example, Impurity lines and visible light are monitored by optical multichannel analyzer spectrometers, photodiodes and photomultipliers with optical filters, which are fed by optical fibres; Time sequential plasma pictures are taken by end-on framing camera. New and planned diagnostics are also described, which include Thomson Scattering system, bolometer, neutron detector and an X-ray framing camera.

  5. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  6. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  7. Nonlinear electron magnetohydrodynamics physics. I. Whistler spheromaks, mirrors, and field reversed configurations

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Strohmaier, K. D.

    2008-04-15

    The nonlinear interactions of time-varying magnetic fields with plasmas is investigated in the regime of electron magnetohydrodynamics. Simple magnetic field geometries are excited in a large laboratory plasma with a loop antenna driven with large oscillatory currents. When the axial loop field opposes the ambient field, the net field can be reversed to create a field-reversed configuration (FRC). In the opposite polarity, a strong field enhancement is produced. The time-varying antenna field excites whistler modes with wave magnetic fields exceeding the ambient magnetic field. The resulting magnetic field topologies have been measured. As the magnetic topology is changed from FRC to strong enhancement, two propagating field configurations resembling spheromaks are excited, one with positive and the other with negative helicity. Such 'whistler spheromaks' propagate with their null points along the weaker ambient magnetic field, with the current density localized around its O-line. In contrast, 'whistler mirrors' which have topologies similar to linear whistlers, except with B{sub wave}>B{sub 0}, have no null regions and, therefore, broad current layers. This paper describes the basic field topologies of whistler spheromaks and mirrors, while companion papers discuss the associated nonlinear phenomena as well as the interaction between them.

  8. Magnetization reversal in magnetic dot arrays: Nearest-neighbor interactions and global configurational anisotropy

    NASA Astrophysics Data System (ADS)

    Van de Wiele, Ben; Fin, Samuele; Pancaldi, Matteo; Vavassori, Paolo; Sarella, Anandakumar; Bisero, Diego

    2016-05-01

    Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal sets in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.

  9. Rotational stability of a long field-reversed configuration

    SciTech Connect

    Barnes, D. C. Steinhauer, L. C.

    2014-02-15

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.

  10. Hybrid state of the tail magnetic configuration during steady convection events

    SciTech Connect

    Sergeev, V.A.; Pulkkinen, T.I.; Pellinen, R.J.; Tsyganenko, N.A.

    1994-12-01

    Previous observations have shown that during periods of steady magnetospheric convection (SMC) a large amount of magnetic flux crosses the plasma sheet (corresponding to {approximately} 10{degrees} wide auroral oval at the nightside) and that the magnetic configuration in the midtail is relaxed (the current sheet is thick and contains enhanced B{sub Z}). These signatures are typical for the substorm recovery phase. Using near-geostationary magnetic field data, magnetic field modeling, and a novel diagnostic technique (isotropic boundary algorithm), the authors show that in the near-Earth tail the magnetic configuration is very stretched during the SMC events. This stretching is caused by an intense, thin westward current. Because of the strongly depressed B{sub Z}, there is a large radial gradient in the near-tail magnetic field. These signatures have been previously associated only with the substorm growth phase. These results indicate that during the SMC periods the magnetic configuration is very peculiar, with co-existing thin near-Earth current sheet and thick midtail plasma sheet. The deep local minimum of the equatorial B {sub Z} that develops at R {approximately} 12 R{sub E} is consistent with steady, adiabatic, Earthward convection in the midtail. These results impose constraints on the existing substorm theories, and call for an explanation of how such a stressed configuration can persist for such a long time without tail current disruptions that occur at the end of a substorm growth phase. 24 refs., 7 figs., 1 tab.

  11. A novel approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Baelmans, M.; Dekeyser, W.; Gauger, N. R.; Reiter, D.

    2015-08-01

    Divertor exhaust system design and analysis tools are crucial to evolve from experimental fusion reactors towards commercial power plants. In addition to material research and dedicated vessel geometry design, improved magnetic configurations can contribute to sustaining the diverted heat loads. Yet, computational design of the magnetic divertor is a challenging process involving a magnetic equilibrium solver, a plasma edge grid generator and a computationally demanding plasma edge simulation. In this paper, an integrated approach to efficient sensitivity calculations is discussed and applied to a set of slightly reduced divertor models. Sensitivities of target heat load performance to the shaping coil currents are directly evaluated. Using adjoint methods, the cost for a sensitivity evaluation is reduced to about two times the simulation cost of one specific configuration. Further, the use of these sensitivities in an optimal design framework is illustrated by a case with realistic Joint European Torus (JET) configurational parameters.

  12. Stable and unstable invariant manifolds in a partially chaotic magnetic configuration generated by nonlinear reconnection

    SciTech Connect

    Borgogno, D.; Grasso, D.; Pegoraro, F.; Schep, T. J.

    2008-10-15

    A numerical contour dynamics code has been employed to calculate the stable and unstable manifolds related to two interacting magnetic island chains. The magnetic configuration is generated by a nonlinear reconnection process described in D. Borgogno et al. [Phys. Plasmas. 12, 032309 (2005)]. The appearance of the first homoclinic and heteroclinic intersections of the dominant manifolds are shown and one of the associated uniformly hyperbolic orbits is given. The stickiness of the field lines around the island and the eventual development of global stochasticity are discussed. The basic geometry of the magnetic configuration is periodic so that the structure of the manifolds may be compared with the one obtained with Poincare plots.

  13. Magnetic fields of spherical compact stars in a braneworld

    SciTech Connect

    Ahmedov, B. J.; Fattoyev, F. J.

    2008-08-15

    We study the stellar magnetic field configuration in dependence on brane tension and present solutions of Maxwell equations in the external background space-time of a magnetized spherical star in a Randall-Sundrum II type braneworld. The star is modeled as a sphere consisting of perfect highly magnetized fluid with infinite conductivity and a frozen-in magnetic field. With respect to solutions for magnetic fields found in the Schwarzschild space-time, brane tension introduces enhancing corrections to the exterior magnetic field which could be relevant for the magnetic fields of magnetized compact objects as pulsars and magnetars and may provide observational evidence for the brane tension.

  14. Intermediate regime of charged particle scattering in the field-reversal configuration

    SciTech Connect

    Shustov, P. I. Yushkov, E. V.; Artemyev, A. V.

    2015-12-15

    In this paper, we investigate the charged particle scattering in the magnetic field configuration with stretched magnetic field lines. This scattering results from the violation of the adiabaticity of charged particle motion in the region with the strong gradient of the magnetic field. We consider the intermediate regime of charged particle dynamics, when the violation of the adiabaticity is significant enough, but particle motion is not chaotic. We demonstrate and describe the significant scattering of particles with large adiabatic invariants (magnetic moment). We discuss a possible application of obtained results for description of the peculiarities of pitch-angle diffusion of relativistic electrons in the Earth radiation belts.

  15. The interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.

    1972-01-01

    Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

  16. Stability of a pinned magnetic domain wall as a function of its internal configuration

    SciTech Connect

    Montaigne, F.; Duluard, A.; Briones, J.; Lacour, D.; Hehn, M.; Childress, J. R.

    2015-01-14

    It is shown that there are many stable configurations for a domain wall pinned by a notch along a magnetic stripe. The stability of several of these configurations is investigated numerically as a function of the thickness of the magnetic film. The depinning mechanism depends on the structure of the domain wall and on the thickness of the magnetic film. In the case of a spin-valve structure, it appears that the stray fields emerging from the hard layer at the notch location influence the stability of the micromagnetic configuration. Different depinning mechanisms are thus observed for the same film thickness depending on the magnetization orientation of the propagating domain. This conclusion qualitatively explains experimental magnetoresistance measurements.

  17. Formation of field-reversed configuration by use of two merging spheromaks with opposing toroidal field

    NASA Astrophysics Data System (ADS)

    Ono, Yasushi

    2016-03-01

    In 1986, we, U. Tokyo group first reported the new formation of the field-reversed configuration (FRC) by two merging spheromaks with opposing toroidal field. This unique formation has been developed mainly in our TS-3 and TS- 4 merging experiments, leading us to a new scenario of FRC slow-formation, heating and current-amplification. Its formation efficiency is much higher than the conventional field-reversed theta-pinch method. The relaxation from the force-free (β˜0.05-0.1) spheromaks to the high-β (β˜0.7-1) FRC is caused by conversion of the toroidal (partly poloidal) magnetic energy of the spheromaks to the ion thermal energy of the FRC through the reconnection outflow. The reconnection heating energy scales with square of the reconnecting magnetic field, suggesting direct access to the alpha heating without using any additional heating. A central solenoid (CS) coil was installed successfully to amplify the FRC plasma current by factor 2. Our toroidal mode observations suggest that the tilting stability of the oblate FRC is provided by ion kinetic effect. As another important extension, fast application of external toroidal magnetic field transformed this oblate FRC into an ultra-high-β spherical tokamak (ST) with diamagnetic toroidal magnetic field, suggesting close relationship between FRCs and high-β STs in the second stable region for ballooning mode.

  18. Confinement and heating studies of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Chrien, Robert E.

    1990-10-01

    Confinement studies of field-reversed configurations (FRCs) have been actively pursued during the past ten years with the larger and longer-lived FRCs produced in the FRX-C and FRX-C/LSM devices. Confinement measurements have included the global FRC quantities and, in some cases, profiles of electron temperature and density. The inferred confinement times and transport coefficients are used for comparison with transport models as well as to find the best operating conditions in the experiment. Global power flow modelling shows that energy confinement during the equilibrium phase is usually dominated by particle losses, with a substantial secondary contribution from electron thermal conduction. Particle losses in present kinetic FRCs are strongly influenced by open field line confinement, which complicates the study of transport mechanisms. The electron thermal conduction is observed to be anomalous, as in other plasma devices. The bulk electrical resistivity is also anomalous and shows no evidence of classical Spitzer scaling. Recently, the resistive anomaly has been shown to correlate with tilt-like magnetic perturbations observed with Mirnov coils. FRC confinement studies have also been extended to a higher temperature regime during magnetic compression heating. In these experiments, translated FRCs are compressed by increasing the external magnetic flux up to a factor of seven on a time scale between the radial Alfven time and the FRC lifetime. Electron and ion temperatures up to 0.4 keV and 1.6 keV, respectively have been obtained. Confinement times scale roughly as r(exp 2) during compression.

  19. Electronic configurations and magnetic anisotropy in organometallic metallocenes

    NASA Astrophysics Data System (ADS)

    Nawa, Kenji; Kitaoka, Yukie; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori

    2015-05-01

    Electronic configurations and magnetic anisotropy of organometallic metallocenes (MCp2s) were investigated by means of first principles calculations based on the constraint density functional theory. The results predict that the ground states for M = Cr, Mn, Fe, Co, and Ni are the 3E2 g, 2E2 g, 1A1 g, 2E1 g, and 3A2 g states, respectively. The magnetizations of the CoCp2 and NiCp2 energetically favor highly orienting along the perpendicular and parallel directions to the cyclopentadienyl (Cp) plane, respectively, and the others show almost no preference for the magnetic easy axis.

  20. Spectral Diagnostics of Plasma Confined within a Field Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Little, J. M.; Heidbrink, W. W.; Garate, E. P.; McWilliams, R.; Trask, E.; Harris, W. S.

    2006-10-01

    A field reversed configuration (FRC) consists of a toroidal plasma current confined by closed magnetic field lines within a cylindrical chamber. The FRC at the University of California Irvine is estimated to operate in a temperature range of 1eV-5eV at a density of approximately 5x10^13 cm-3. An impurity ion survey and temperature measurement are to be performed by analyzing the visible light emitted by the plasma. In order to determine the different species of ions confined within the field, a spectrometer with a resolution of one nanometer will be used. Light from the chamber will be collected using a collimating probe and transmitted to the spectrometer via fiber optic cable. Software will be used to analyze the data, which will then be compared to the NIST Atomic Spectra Database. Expected impurities include oxygen and carbon ions from the plasma injectors. Measurements of the ion temperature will be performed by an observation of the Doppler broadening of the H-alpha emission line. Assuming an ion temperature of 5eV, a resoultion of approximately one angstrom is needed to observe this effect. Due to limitations of the spectrometer, the light from the fiber optic cable will instead be sent through a high resolution spectrometer and imaged using a gated intensifier. By observing the H-alpha line shape the ion temperature can be determined.

  1. Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Ravat, D.; Frawley, James J.

    1999-01-01

    Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

  2. Magnetization dynamics using ultrashort magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Tudosa, Ioan

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic

  3. Refocusing properties of periodic magnetic fields

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1976-01-01

    The use of depressed collectors for the efficient collection of spent beams from linear-beam microwave tubes depends on a refocusing procedure in which the space charge forces and transverse velocity components are reduced. The refocusing properties are evaluated of permanent magnet configurations whose axial fields are approximated by constant plateaus or linearly varying fields. The results provide design criteria and show that the refocusing properties can be determined from the plateau fields alone.

  4. Thick Liquid-Walled, Field-Reversed Configuration

    SciTech Connect

    Moir, R W; Bulmer, R H; Gulec, K; Fogarty, P; Nelson, B; Ohnishi, M; Rensink, M; Rognlien, T D; Santarious, J F; Sze, D K

    2000-09-22

    A thick flowing layer of liquid (e.g., flibe--a molten salt, or Sn{sub 80}Li{sub 20}--a liquid metal) protects the structural walls of the field-reversed configuration (FRC) so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction. The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit or receiver nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhancement of convection near the surface to transport hot surface liquid into the cooler interior. This surface temperature must be compatible with a practical heat transport and energy recovery system. The evaporative flux from the wall driven by the surface temperature must also result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D transport code for the resulting impurity ions; these ions are either swept out to the distant end tanks, or diffuse to the hot plasma core. An auxiliary plasma between the edge plasma and the liquid wall can further attenuate evaporating flux of atoms and molecules by ionization. The current in this auxiliary plasma might serve as the antenna for the current drive method, which produces a rotating magnetic field. Another method of current drive uses small spheromaks injected along the magnetic fields, which additionally provide fueling along with pellet fueling if necessary.

  5. MHD waves and instabilities for gravitating, magnetized configurations in motion

    NASA Astrophysics Data System (ADS)

    Keppens, Rony; Goedbloed, Hans J. P.

    Seismic probing of equilibrium configurations is of course well-known from geophysics, but has also been succesfully used to determine the internal structure of the Sun to an amazing accuracy. The results of helioseismology are quite impressive, although they only exploit an equilibrium structure where inward gravity is balanced by a pressure gradient in a 1D radial fashion. In principle, one can do the same for stationary, gravitating, magnetized plasma equilibria, as needed to perform MHD seismology in astrophysical jets or accretion disks. The introduction of (sheared) differential rotation does require the important switch from diagnosing static to stationary equilibrium configurations. The theory to describe all linear waves and instabilities in ideal MHD, given an exact stationary, gravitating, magnetized plasma equilibrium, in any dimensionality (1D, 2D, 3D) has been known since 1960, and is governed by the Frieman-Rotenberg equation. The full (mathematical) power of spectral theory governing physical eigenmode determination comes into play when using the Frieman-Rotenberg equation for moving equilibria, as applicable to astrophysical jets, accretion disks, but also solar flux ropes with stationary flow patterns. I will review exemplary seismic studies of flowing equilibrium configurations, covering solar to astrophysical configurations in motion. In that case, even essentially 1D configurations require quantification of the spectral web of eigenmodes, organizing the complex eigenfrequency plane.

  6. Normal glow discharge in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Surzhikov, S.; Shang, J.

    2014-10-01

    Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

  7. Magnetic fields from heterotic cosmic strings

    SciTech Connect

    Gwyn, Rhiannon; Alexander, Stephon H.; Brandenberger, Robert H.; Dasgupta, Keshav

    2009-04-15

    Large-scale magnetic fields are observed today to be coherent on galactic scales. While there exists an explanation for their amplification and their specific configuration in spiral galaxies--the dynamo mechanism--a satisfying explanation for the original seed fields required is still lacking. Cosmic strings are compelling candidates because of their scaling properties, which would guarantee the coherence on cosmological scales of any resultant magnetic fields at the time of galaxy formation. We present a mechanism for the production of primordial seed magnetic fields from heterotic cosmic strings arising from M theory. More specifically, we make use of heterotic cosmic strings stemming from M5-branes wrapped around four of the compact internal dimensions. These objects are stable on cosmological time scales and carry charged zero modes. Therefore a scaling solution of such defects will generate seed magnetic fields which are coherent on galactic scales today.

  8. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  9. Hidden Magnetic Configuration in Epitaxial La1-x SrxMnO3 Films

    SciTech Connect

    Lee, J.S.; Arena, D.A.; Yu, P.; Nelson, C.S.; Fan, R.; Kinane, C.J.; Langridge, S.; Rossell, M.D.; Ramesh, R.; Kao, C.C.

    2010-12-17

    We present an unreported magnetic configuration in epitaxial La{sub 1-x}Sr{sub x}MnO{sub 3} (x {approx} 0.3) (LSMO) films grown on strontium titanate (STO). X-ray magnetic circular dichroism indicates that the remanent magnetic state of thick LSMO films is opposite to the direction of the applied magnetic field. Spectroscopic and scattering measurements reveal that the average Mn valence varies from mixed Mn{sup 3+}/Mn{sup 4+} to an enriched Mn{sup 3+} region near the STO interface, resulting in a compressive lattice along the a, b axis and a possible electronic reconstruction in the Mn e{sub g} orbital (d{sub 3z{sup 2}-r{sup 2}}). This reconstruction may provide a mechanism for coupling the Mn{sup 3+} moments antiferromagnetically along the surface normal direction, and in turn may lead to the observed reversed magnetic configuration.

  10. Hidden magnetic configuration in epitaxial La1-rSrzMnO3 films

    SciTech Connect

    Kao, Chi-Chang

    2011-05-23

    We present an unreported magnetic configuration in epitaxial La{sub 1-x}Sr{sub x}MnO{sub 3} (x {approx} 0.3) (LSMO) films grown on strontium titanate (STO). X-ray magnetic circular dichroism indicates that the remanent magnetic state of thick LSMO films is opposite to the direction of applied magnetic field. Spectroscopic and scattering measurements reveal that the average Mn valence varies from mixed Mn{sup 3+}/Mn{sup 4+} to an enriched Mn{sup 3+} region near the STO interface, resulting in a compressive lattice along a, b-axis and a possible electronic reconstruction in the Mn e{sub g} orbital (d{sub 3z{sup 2}-r{sup 2}}). This reconstruction may provide a mechanism for coupling the Mn{sup 3+} moments antiferromagnetically along the surface normal direction, and in turn may lead to the observed reversed magnetic configuration.

  11. Nonlinear stability of field-reversed configurations with self-generated toroidal field

    SciTech Connect

    Omelchenko, Y. A.; Schaffer, M. J.; Parks, P. B.

    2001-10-01

    The field-reversed configuration (FRC) is a high-beta compact toroidal plasma confinement scheme in which the external poloidal field is reversed on the geometric axis by azimuthal (toroidal) plasma current. A quasineutral, hybrid, particle-in-cell (PIC) approach [Y. A. Omelchenko and R. N. Sudan, Phys. Plasmas 2, 2773 (1995)] is applied to study long-term nonlinear stability of computational FRC equilibria to a number of toroidal modes, including the most disruptive tilt mode. In particular, a self-generated toroidal magnetic field is found to be an important factor in mitigating the instability and preventing the confinement disruption. This is shown to be a unique FRC property resulting from the Hall effect in the regions of vanishing poloidal magnetic field. The instability-driven toroidal field stabilizes kink formation by increasing the magnetic field energy without destabilizing curvature-driven plasma motion. Finally, the tilt instability saturates due to nonlinear, finite Larmor radius (FLR) effects and plasma relaxation to a quasisteady kinetic state. During this transition the FRC is shown to dissipate a substantial amount of initially trapped flux and plasma energy. These effects are demonstrated for kinetic and fluid-like, spherical and prolate FRCs.

  12. Chaotic magnetic fields: Particle motion and energization

    SciTech Connect

    Dasgupta, Brahmananda; Ram, Abhay K.; Li, Gang; Li, Xiaocan

    2014-02-11

    Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

  13. The Primordial Origin Model of Magnetic Fields in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro

    2010-10-01

    We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.

  14. Preliminary investigation of force-reduced superconducting magnet configurations for advanced technology applications

    SciTech Connect

    Bouillard, J.X.

    1992-12-01

    The feasibility of new high-field low specific weight superconducting magnet designs using force-free fields is being explored analytically and numerically. This report attempts to assess the technical viability of force-free field concepts to produce high-field, low specific weight and large bore volume magnets, which could promote the use of high temperature superconductors. Several force-free/force-reduced magnet configurations are first reviewed, then discussed and assessed. Force-free magnetic fields, fields for which the current flows parallel to the field, have well-known mathematical solutions extending upon infinite domains. These solutions, however, are no longer force-free everywhere for finite geometries. In this preliminary study, force-free solutions such as the Lundquist solutions truncated to a size where the internal field of the coil matches an externally cylindrical magnetic field (also called a Lundquist coil) are numerically modeled and explored. Significant force-reduction for such coils was calculated, which may have some importance for the design of lighter toroidal magnets used in thermonuclear fusion power generation, superconducting magnetic energy storage (SMES), and mobile MHD power generation and propulsion.

  15. Field-reversed configuration (FRC) experiments

    NASA Astrophysics Data System (ADS)

    Siemon, R. E.; Chrien, R. E.; Hugrass, W. N.; Okada, S.; Rej, D. J.; Taggart, D. P.; Tuszewski, M.; Webster, R. B.; Wright, B. L.; Slough, J. T.

    FRCs with equilibrium separatrix radii up to 0.18 m have been formed and studied in FRX-C/LSM. For best formation conditions at low fill pressure, the particle confinement exceeds the predictions of LHD transport calculations by up to a factor of two; however, the inferred flux confinement is more anomalous than in smaller FRCs. Higher bias field produces axial shocks and degradation in confinement, while higher fill pressure results in gross fluting during formation. FRCs have been formed in TRX with s from 2 to 6. These relatively collisional FRCs exhibit flux lifetimes of 10 yields 20 kinetic growth times for the internal tilt mode. The coaxial slow source has produced annular FRCs in a coaxial coil geometry on slow time scales using low voltages.

  16. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  17. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  18. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  19. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  20. Micromagnetic study of magnetic configurations in submicron permalloy disks

    NASA Astrophysics Data System (ADS)

    Ha, Jonathan Kin; Hertel, Riccardo; Kirschner, J.

    2003-06-01

    We report a finite-element study of magnetic configurations in submicron permalloy disks using micromagnetics principles. Depending on the disk size, many (meta)stable magnetic states such as normal and twisted onion, in-plane vortex, and various buckle states are observed. A diagram is constructed to bring out the dependence of the different remanent states on the disk diameter and thickness. It shows that the disk thickness is the decisive factor in determining whether a vortex state is energetically more favorable than an onion state, and that the disk diameter determines whether some in-plane buckling can be sustainable.

  1. Vacuum magnetic field mapping experiments for validated determination of the helical field coil location in stellarators

    SciTech Connect

    Peterson, J.; Hanson, J.; Hartwell, G.; Knowlton, S.

    2010-03-15

    Understanding the behavior of plasmas in magnetic confinement fusion devices typically requires accurate knowledge of the magnetic field structure. In stellarator-type confinement devices, the helical magnetic field is produced by currents in external coils and may be traced experimentally in the absence of plasma through the experimental technique of vacuum magnetic field mapping. Field mapping experiments, such as these, were performed on the recently constructed compact toroidal hybrid to verify the range of accessible magnetic configurations, compare the actual magnetic configuration with the design configuration, and identify any vacuum field errors that lead to perturbations of the vacuum magnetic flux surfaces. Furthermore, through the use of a new coil optimization routine, modifications are made to the simulation coil model such that better agreement exists between the experimental and simulation results. An outline of the optimization procedure is discussed in conjunction with the results of one such optimization process performed on the helical field coil.

  2. Reconnection of Magnetic Fields

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.

  3. Magnetic fields and stardust

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1988-01-01

    The purpose of this paper is to outline the principles governing the use of far-infrared and submillimeter polarimetry to investigate magnetic fields and dust in interstellar clouds. Particular topics of discussion are the alignment of dust grains in dense clouds, the dependence on wavelength of polarization due to emission or to partial absorption by aligned grains, the nature of that dependence for mixtures of grains with different properties, and the problem of distinguishing between (1) the effects of the shapes and dielectric functions of the grains and (2) the degree and direction of their alignment.

  4. Efficient magnetic fields for supporting toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Landreman, Matt; Boozer, Allen H.

    2016-03-01

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However, the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The efficiency of an externally generated magnetic field is a measure of the field's shaping component magnitude at the plasma compared to the magnitude near the coils; the efficiency of a plasma equilibrium can be measured using the efficiency of the required external shaping field. Counterintuitively, plasma shapes with low curvature and spectral width may have low efficiency, whereas plasma shapes with sharp edges may have high efficiency. Two precise measures of magnetic field efficiency, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix yields an efficiency ordered basis for the magnetic field distributions. Calculations are carried out for both tokamak and stellarator cases. For axisymmetric surfaces with circular cross-section, the SVD is calculated analytically, and the range of poloidal and toroidal mode numbers that can be controlled to a given desired level is determined. If formulated properly, these efficiency measures are independent of the coordinates used to parameterize the surfaces.

  5. EAST alternative magnetic configurations: modelling and first experiments

    NASA Astrophysics Data System (ADS)

    Calabrò, G.; Xiao, B. J.; Chen, S. L.; Duan, Y. M.; Guo, Y.; Li, J. G.; Liu, L.; Luo, Z. P.; Wang, L.; Xu, J.; Zhang, B.; Albanese, R.; Ambrosino, R.; Crisanti, F.; Pericoli Ridolfini, V.; Villone, F.; Viola, B.; Barbato, L.; De Magistris, M.; De Tommasi, G.; Giovannozzi, E.; Mastrostefano, S.; Minucci, S.; Pironti, A.; Ramogida, G.; Tuccillo, A. A.; Zagórski, R.

    2015-08-01

    Heat and particle loads on the plasma facing components are among the most challenging issues to be solved for a reactor design. Alternative magnetic configurations may enable tokamak operation with a lower peak heat load than a standard single null (SN) divertor. This papers reports on the creation and control of one of such alternatives: a two-null nearby divertor configuration. An important element of this study is that this two-null divertor was produced on a large superconducting tokamak as an experimental advanced superconducting tokamak. A preliminary experiment with the second null forming a configuration with significant distance between the two nulls and a contracting geometry near the target plates was performed in 2014. These configurations have been designed using the FIXFREE code and optimized with CREATE-NL tools and are discussed in the paper. Predictive edge simulations using the TECXY code are also presented by comparing the advanced divertor and SN configuration. Finally, the experimental results of ohmic and low confinement (L-mode) two-null divertor and SN discharges and interpretative two-dimensional edge simulations are discussed. Future experiments will be devoted to varying the distance between the two nulls in high confinement (H-mode) discharges.

  6. Diffusion of magnetic field via turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the

  7. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  8. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  9. Two-dimensional interpreter for field-reversed configurations

    SciTech Connect

    Steinhauer, Loren

    2014-08-15

    An interpretive method is developed for extracting details of the fully two-dimensional (2D) “internal” structure of field-reversed configurations (FRC) from common diagnostics. The challenge is that only external and “gross” diagnostics are routinely available in FRC experiments. Inferring such critical quantities as the poloidal flux and the particle inventory has commonly relied on a theoretical construct based on a quasi-one-dimensional approximation. Such inferences sometimes differ markedly from the more accurate, fully 2D reconstructions of equilibria. An interpreter based on a fully 2D reconstruction is needed to enable realistic within-the-shot tracking of evolving equilibrium properties. Presented here is a flexible equilibrium reconstruction with which an extensive data base of equilibria was constructed. An automated interpreter then uses this data base as a look-up table to extract evolving properties. This tool is applied to data from the FRC facility at Tri Alpha Energy. It yields surprising results at several points, such as the inferences that the local β (plasma pressure/external magnetic pressure) of the plasma climbs well above unity and the poloidal flux loss time is somewhat longer than previously thought, both of which arise from full two-dimensionality of FRCs.

  10. Electrostatic Drift-Wave Instability in Field-Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Lau, Calvin; Fulton, Daniel; Holod, Ihor; Lin, Zhihong; Binderbauer, Michl; Tajima, Toshiki; Schmitz, Lothar

    2015-11-01

    Recent progress in the C-2 advanced beam-driven field-reversed configuration (FRC) experiment [Binderbauer 2015] at Tri Alpha Energy has led to consistently reproducible plasma lifetimes of 5+ ms, ie. transport regimes. To understand the mechanisms, gyrokinetic particle-in-cell simulations of drift-wave instabilities have been carried out for the FRC [Fulton 2015]. The realistic magnetic geometry is represented in Boozer coordinates in the upgraded gyrokinetic toroidal code (GTC) [Lin 1998]. Radially local simulations find that, in the FRC core, ion scale modes are stable for realistic pressure gradients while the electron scale modes are unstable. On the other hand, in the scrape-off layer (SOL) outside of the separatrix, both ion and electron scale modes are unstable. These findings and linear instability thresholds found in simulation are consistent with the C-2 experimental measurements of density fluctuations [Schmitz 2015]. Collisional effects and instability drive mechanism will be clarified. Nonlocal and nonlinear simulation results will also be reported. supported by TAE.

  11. A flexible and configurable system to test accelerator magnets

    SciTech Connect

    Jerzy M. Nogiec et al.

    2001-07-20

    Fermilab's accelerator magnet R and D programs, including production of superconducting high gradient quadrupoles for the LHC insertion regions, require rigorous yet flexible magnetic measurement systems. Measurement systems must be capable of handling various types of hardware and extensible to all measurement technologies and analysis algorithms. A tailorable software system that satisfies these requirements is discussed. This single system, capable of distributed parallel signal processing, is built on top of a flexible component-based framework that allows for easy reconfiguration and run-time modification. Both core and domain-specific components can be assembled into various magnet test or analysis systems. The system configured to comprise a rotating coil harmonics measurement is presented. Technologies as Java, OODB, XML, JavaBeans, software bus and component-based architectures are used.

  12. Electronic configurations and magnetic anisotropy in organometallic metallocenes

    SciTech Connect

    Nawa, Kenji Kitaoka, Yukie; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori

    2015-05-07

    Electronic configurations and magnetic anisotropy of organometallic metallocenes (MCp{sub 2}s) were investigated by means of first principles calculations based on the constraint density functional theory. The results predict that the ground states for M = Cr, Mn, Fe, Co, and Ni are the {sup 3}E{sub 2g}, {sup 2}E{sub 2g}, {sup 1}A{sub 1g}, {sup 2}E{sub 1g}, and {sup 3}A{sub 2g} states, respectively. The magnetizations of the CoCp{sub 2} and NiCp{sub 2} energetically favor highly orienting along the perpendicular and parallel directions to the cyclopentadienyl (Cp) plane, respectively, and the others show almost no preference for the magnetic easy axis.

  13. CSEM-steel hybrid wiggler/undulator magnetic field studies

    SciTech Connect

    Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

    1985-05-01

    Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 kOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields.

  14. CSEM-Steel hybrid wiggler/undulator magnetic field studies

    SciTech Connect

    Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

    1985-06-01

    Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 KOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields. 3 refs., 6 figs.

  15. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  16. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  17. Sequence of Rotating Plasma Rings Configurations in the Prevalent Gravitational Field of a Central Object

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Rousseau, F.

    2005-10-01

    The search for the axisymmetric equilibrium configurations of thin differentially rotating plasma structures in the prevalent gravitational field of a central object has led to identify a new kind of configuration consisting of a sequence of pairs of plasma rings corresponding to pairs of oppositely directed current channels. The plasma pressure is of the order of the magnetic energy density associated with the currents flowing within the rings, but larger than that of the field in which the rings are immersed. The magnetic configuration has a ``crystal structure'' of the type found first for accretion disksootnotetextB. Coppi, Phys. of Plasmas 12, 057302 (2005). with relatively low magnetic energy densities. The ``sequence of plasma rings'' solutionootnotetextB. Coppi and F. Rousseau, M.I.T. LNS Report HEP 05/01,(2005). of the relevant equilibrium equations may in fact be extended to dusty plasmas, and be of interest in planetary physicsootnotetextC.K. Goertz and G. Morfill, Icarus 53, 219 (1983). A necessary condition is that the plasma rotation frequency is constant on magnetic surfaces requiring relatively large electrical conductivity. Moreover, accretion structures for which the magnetic configuration has a dominant effect are suitable to represent those from which jets can emerge. Sponsored in part by the U.S. Department of Energy.

  18. Evolution of the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple 'open' configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CME's) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CME's contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be one of the following: plasmoids that are completely disconnected from the Sun; magnetic 'bottles,' still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CME's indicate that CME's generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occur above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  19. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-01-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple open'' configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic bottles,'' still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  20. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-05-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple ``open`` configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic ``bottles,`` still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  1. Plasma separation from magnetic field lines in a magnetic nozzle

    NASA Technical Reports Server (NTRS)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  2. Observations of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.

  3. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  4. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  5. Magnetic Fields in Superconducting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Lander, S. K.

    2013-02-01

    The interior of a neutron star is likely to be predominantly a mixture of superfluid neutrons and superconducting protons. This results in the quantization of the star’s magnetic field into an array of thin flux tubes, producing a macroscopic force very different from the Lorentz force of normal matter. We show that in an axisymmetric superconducting equilibrium the behavior of a magnetic field is governed by a single differential equation. Solving this, we present the first self-consistent superconducting neutron star equilibria with poloidal and mixed poloidal-toroidal fields and also give the first quantitative results for the corresponding magnetically induced distortions to the star. The poloidal component is dominant in all our configurations. We suggest that the transition from normal to superconducting matter in a young neutron star may cause a large-scale field rearrangement.

  6. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  7. The kinetic features of ion dynamics in the closed magnetic configurations.

    NASA Astrophysics Data System (ADS)

    Malykhin, Andrey; Grigorenko, Elena; Malova, Helmi

    2016-04-01

    A lot of spacecraft observations showed that the closed magnetic configurations such as plasmoids and magnetic islands are often observed in the Earth magnetotail. The purpose of our study is to analyze the kinetic features of nonadiabatic ion dynamics in the current sheet (CS) inside a plasmoid and the efficiency of ion acceleration in such configurations. Trajectories of test ions of different masses (H+ i O+) were studied in the prescribed magnetic configuration similar to the one observed by Cluster spacecraft (s/c). The magnetic configuration consists of a single stationary plasmoid in the tail side of a near-Earth magnetic X-line. Everywhere in the system there is the constant and uniform dawn-dusk electric field Ey ~ 0.1 mV/m. Cold ion beams with the characteristics similar to the ones observed in the lobe were launched in the system. In the absence of electromagnetic fluctuations the plasmoid localization in the dawn-dusk direction imposes a limit on the ion energy gain in the course of ion nonadiabatic interaction with the plasmoid's CS (in the region of minimum |B| field). The ion dynamics and energy gain changed dramatically when we introduced the low-frequency electromagnetic fluctuations into the plasmoid. The spectra of the magnetic and electric field fluctuations were similar to the ones observed inside the plasmoids by Cluster spacecraft. Our analysis showed that in the presence of fluctuations the ion dynamics and energy gain are defined by the resonant interaction of ions with the wave harmonics. Ions can gain energy hundred times larger than their energy gain in the system without electromagnetic fluctuations. The inclusion of a guide magnetic field (By) significantly affects the ion dynamics inside the plasmoid. The presence of a guide field generates the "north-south" asymmetry in the ejection of nonadiabatic ions from the CS. The effects of the "north-south" asymmetry in the spatial distribution of the nonadiabatic ions inside the plasmoid on

  8. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  9. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  10. SPH simulations of magnetic fields in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dolag, K.; Bartelmann, M.; Lesch, H.

    1999-08-01

    We perform cosmological, hydrodynamic simulations of magnetic fields in galaxy clusters. The computational code combines the special-purpose hardware Grape for calculating gravitational interaction, and smooth-particle hydrodynamics for the gas component. We employ the usual MHD equations for the evolution of the magnetic field in an ideally conducting plasma. As a first application, we focus on the question what kind of initial magnetic fields yield final field configurations within clusters which are compatible with Faraday-rotation measurements. Our main results can be summarised as follows: (i) Initial magnetic field strengths are amplified by approximately three orders of magnitude in cluster cores, one order of magnitude above the expectation from spherical collapse. (ii) Vastly different initial field configurations (homogeneous or chaotic) yield results that cannot significantly be distinguished. (iii) Micro-Gauss fields and Faraday-rotation observations are well reproduced in our simulations starting from initial magnetic fields of ~ 10(-9) G strength at redshift 15. Our results show that (i) shear flows in clusters are crucial for amplifying magnetic fields beyond simple compression, (ii) final field configurations in clusters are dominated by the cluster collapse rather than by the initial configuration, and (iii) initial magnetic fields of order 10(-9) G are required to match Faraday-rotation observations in real clusters.

  11. Exposure guidelines for magnetic fields.

    PubMed

    Miller, G

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields. PMID:3434538

  12. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  13. [Magnetic fields and fish behavior].

    PubMed

    Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25438567

  14. [Magnetic fields and fish behavior].

    PubMed

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25508098

  15. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  16. Whistler Modes with Wave Magnetic Fields Exceeding the Ambient Field

    SciTech Connect

    Stenzel, R.L.; Urrutia, J.M.; Strohmaier, K.D.

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  17. Plasma transport in a simulated magnetic-divertor configuration

    SciTech Connect

    Strawitch, C. M.

    1981-03-01

    The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.

  18. Ultralow field magnetization reversal of two-body magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Fei; Lu, Jincheng; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.

    2016-08-01

    Field induced magnetization reversal was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value (on nanometer scale) in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The ultralow field switching phenomenon was missed in the parallel configuration where both the anisotropic axes are aligned along the separation line of the two particles. The micromagnetic results are consistent with the previous theoretical prediction [J. Appl. Phys. 109, 104303 (2011)] where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles might be implemented as a composite information bit.

  19. Magnetic fields in nearby spirals

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohui; Lenc, Emil

    2013-10-01

    Magnetic fields play an important role in star formation process and dynamic evolution of galaxies. Previous studies of magnetic fields relied on narrow band polarisation observations and difficult to disentangle magnetised structures along line of sight. Thanks to the broad bandwidth and multi-channels of CABB we are now able to recover the 3D structures of magnetic fields using RM synthesis and QU-fitting. We propose to observe two nearby spirals M83 and NGC 4945 to build clear pictures of their magnetic fields.

  20. Tunable surface plasmon polaritons in metal-strip waveguides with magnetized semiconductor substrates in Voigt configuration

    NASA Astrophysics Data System (ADS)

    Mathew, Gishamol; Mathew, Vincent

    2012-05-01

    The properties of surface plasmon polaritons (SPPs) in a magnetically tunable strip waveguide geometry comprising of a metal film of finite width deposited on a magnetized semiconductor and covered by an isotropic dielectric material were studied in Voigt configuration. The method of lines was used to compute the dispersion relation of fundamental modes, and the dependence of the propagation constant on metal film dimensions, material parameters and biasing magnetic field was considered. The bounded SPPs are nonreciprocal with respect to the direction of the biasing magnetic field, producing a nonreciprocal phase shift of the order of 2-18 rad mm-1 at a wavelength of excitation 1.55 μm. Moreover, controlled propagation of SPP modes and their effective tuning are possible in this strip geometry, which enables the design and development of tunable optoelectronic devices.

  1. Magnetic Fields in Early Protostellar Disk Formation

    NASA Astrophysics Data System (ADS)

    González-Casanova, Diego F.; Lazarian, Alexander; Santos-Lima, Reinaldo

    2016-03-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called “magnetic braking catastrophe.” In particular, we provide a detailed study of the dynamics of a 0.5 M⊙ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, “reconnection diffusion,” removes the magnetic flux from the disk; the other involves the change of the magnetic field's topology, but does not change the absolute value of the magnetic flux through the disk. We demonstrate that for the first mechanism, turbulence causes a magnetic flux transport outward from the inner disk to the ambient medium, thus decreasing the coupling of the disk to the ambient material. A similar effect is achieved through the change of the magnetic field's topology from a split monopole configuration to a dipole configuration. We explore how both mechanisms prevent the catastrophic loss of disk angular momentum and compare both above turbulent reconnection mechanisms with alternative mechanisms from the literature.

  2. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  3. Double ferromagnetic resonance and configuration-dependent dipolar coupling in unsaturated arrays of bistable magnetic nanowires

    NASA Astrophysics Data System (ADS)

    de La Torre Medina, J.; Piraux, L.; Olais Govea, J. M.; Encinas, A.

    2010-04-01

    The ferromagnetic resonance properties in arrays of low diameter bistable nanowires have been studied. Measurements performed in the frequency swept mode show that in nonsaturated states, wires magnetized in the positive and negative direction absorb at different frequencies giving place to spectra with two absorption peaks. Moreover, the positive and negative wires obey different dispersion relations, which allow interpreting their different frequency-field dependence in terms of the uniform precession mode. Measurements along sets of first-order reversal curves allow to determine the dipolar interaction field as a function of the magnetic state. The configuration dependence of the interaction field is found to be proportional to the value of the dipolar interaction field of the saturated state. An analytical mean-field expression, which explicitly incorporates the dependence of the interaction field with the magnetic configuration, is proposed and used to obtain a general expression for both the effective field and the dispersion relation, which describes with remarkable agreement the ferromagnetic resonance measurements in saturated and nonsaturated states.

  4. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  5. Magnetic Field Stabilization for Magnetically Shielded Volumes by External Field Coils

    PubMed Central

    Brys, T.; Czekaj, S.; Daum, M.; Fierlinger, P.; George, D.; Henneck, R.; Hochman, Z.; Kasprzak, M.; Kohlik, K.; Kirch, K.; Kuzniak, M.; Kuehne, G.; Pichlmaier, A.; Siodmok, A.; Szelc, A.; Tanner, L.

    2005-01-01

    For highly sensitive magnetic measurements, e.g., a measurement of the neutron electric dipole moment (EDM), the magnetic field has to be stable in time on a level below picoTesla. One of several measures we employ to achieve this uses an external field coil system which can stabilize the ambient external field at a predefined value. Here we report on the construction and characterization of such a system in the magnetic test facility at PSI. The system actively stabilizes the field along the axis of the EDM experiment by means of four coils in a Helmholtz-like configuration. Additional coils serve to compensate for transverse ambient field components. Because of the long integration times in the EDM experiment (about 100 s or more) only slow disturbances have to be corrected for. The performance of the system has been measured using static and moving magnetic sources and suppression factors in excess of 200 have been observed. PMID:27308117

  6. Magnetic Field Stabilization for Magnetically Shielded Volumes by External Field Coils.

    PubMed

    Brys, T; Czekaj, S; Daum, M; Fierlinger, P; George, D; Henneck, R; Hochman, Z; Kasprzak, M; Kohlik, K; Kirch, K; Kuzniak, M; Kuehne, G; Pichlmaier, A; Siodmok, A; Szelc, A; Tanner, L

    2005-01-01

    For highly sensitive magnetic measurements, e.g., a measurement of the neutron electric dipole moment (EDM), the magnetic field has to be stable in time on a level below picoTesla. One of several measures we employ to achieve this uses an external field coil system which can stabilize the ambient external field at a predefined value. Here we report on the construction and characterization of such a system in the magnetic test facility at PSI. The system actively stabilizes the field along the axis of the EDM experiment by means of four coils in a Helmholtz-like configuration. Additional coils serve to compensate for transverse ambient field components. Because of the long integration times in the EDM experiment (about 100 s or more) only slow disturbances have to be corrected for. The performance of the system has been measured using static and moving magnetic sources and suppression factors in excess of 200 have been observed. PMID:27308117

  7. System and method for magnetic current density imaging at ultra low magnetic fields

    DOEpatents

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  8. The ASTROMAG superconducting magnet facility configured for a free flying satellite

    SciTech Connect

    Green, M.A.; Smoot, G.F.

    1991-06-01

    ASTROMAG is a particle astrophysics facility that was originally configured for the Space Station. The heart of the ASTROMAG facility is a large superconducting magnet which is cooled using superfluid helium. The task of resizing the facility so that it will fly in a satellite in a high angle of inclination orbit is driven by the launch weight capability of the launch rocket and the desire to be able to do nearly the same physics as the Space Station version of ASTROMAG. In order to reduce the launch weight, the magnet and its cryogenic system had to be downsized, yet the integrated field generated by the magnet in the particle detectors has to match the Space Station version of the magnet. The use of aluminum matrix superconductor and oriented composite materials in the magnet insulation permits one to achieve this goal. The net magnetic dipole moment from the ASTROMAG magnet must be small to minimize the torque due to interaction with the earth's magnetic field. The ASTROMAG magnet consists of identical two coils 1.67 meters apart. The two coils are connected in series in persistent mode. Each coil is designed to carry 2.34 million ampere turns. Both coils are mounted on the same magnetic axis and they operate at opposite polarity. This reduces the dipole moment by a factor of more than 1000. This is tolerable for the Space Station version of the magnet. A magnet operating on a free flying satellite requires additional compensation. This report presents the magnet parameters of a free flying version of ASTROMAG and the parameters of the space cryogenic system for the magnet. 12 refs., 6 figs.

  9. The Astromag Superconducting Magnet Facility Configured for a FreeFlying Satellite

    SciTech Connect

    Green, M.A.; Smoot, George F.

    1991-06-01

    ASTROMAG is a particle astrophysics facility that was originally configured for the Space Station. The heart of the ASTROMAG facility is a large superconducting magnet which is cooled using superfluid helium. The task of resizing the facility so that it will fly in a satellite in. a high angle of inclination orbit is driven by the launch weight capability of the launch rocket and the desire to be able to do nearly the same physics as the Space Station version of ASTROMAG. In order to reduce the launch weight, the magnet and its cryogenic system had to be downsized, yet the integrated field generated by the magnet in the particle detectors has to match the Space Station version of the magnet. The use of aluminum matrix superconductor and oriented composite materials in the magnet insulation permits one to achieve this goal. The net magnetic dipole moment from the ASTROMAG magnet must be small to minimize the torque due to interaction with the earth's magnetic field. The ASTROMAG magnet consists of identical two coils 1.67 meters apart. The two coils are connected in series in persistent mode. Each coil is designed to carry 2.34 million ampere turns. Both coils are mounted on the same magnetic axis and they operate at opposite polarity. This reduces the dipole moment by a factor of more than 1000. This is tolerable for the Space Station version of the magnet. A magnet operating on a free flying satellite requires additional compensation. This report presents the magnet parameters of a free flying version of ASTROMAG and the parameters of the space cryogenic system for the magnet.

  10. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.