These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Stable magnetic field configurations in stars  

NASA Astrophysics Data System (ADS)

Long-lived, large-scale magnetic field configurations with similar total fluxes exist in at least three very different, although related kind of stars: upper main sequence stars, white dwarfs, and neutron stars (e.g. Reisenegger 2001). Much or all of the volume of these stars is stably stratified, so there is no convection that could maintain these fields through dynamo processes (except in the cores of upper main sequence stars). Magnetohydrodynamic simulations of stably stratified stars (Braithwaite & Spruit 2004, 2006; Braithwaite & Nordlund 2006) suggest that configurations with linked poloidal and toroidal fields get spontaneously established and might be stable over long times. Physical arguments show that such configurations are in fact natural and that the stable stratification is likely to play a crucial role in their stability. Thus, contrary to assumptions in recent papers, the field is not force-free, and the fluid cannot be taken to be barotropic. Work is in progress to represent these fields analytically and investigate the conditions for their stability. In the case of neutron stars with strong enough fields, the stable stratification can be overcome by long-term, dissipative processes such as beta decays and ambipolar diffusion (Goldreich & Reisenegger 1992; Reisenegger et al. 2005), leading to the release of magnetic energy and potentially explaining the energy source for the "magnetar" phenomenon (Thompson & Duncan 1993, 1996).

Reisenegger, Andreas; Munoz, Francisco; Santos, Raul

2

Configuration of the local interstellar magnetic field  

NASA Astrophysics Data System (ADS)

The discovery of the Ribbon of energetic neutral atoms by the Interstellar Boundary Explorer (IBEX) provides a new and unexpected diagnostic of the direction of the local interstellar magnetic field (ISMF). The IBEX Ribbon forms where the interstellar magnetic field draping over the heliosphere is perpendicular to the sightline. We have shown that the direction of the interstellar magnetic field close to the Sun, obtained from starlight polarized in the interstellar medium (ISM), is consistent with the ISMF direction that is traced by the IBEX Ribbon. In this presentation we show that new optical polarization data indicate that the local ISMF has a smoothly varying component stretching from the first to the third galactic quadrant. Both the ISMF direction and the kinematics of local interstellar gas within tens of parsecs support an interpretation where the local interstellar clouds are a fragment of the expanding Loop I superbubble.

Frisch, Priscilla C.; Andersson, B.; Berdhyugin, A.; Funsten, H. O.; DeMajistre, R.; Magalhaes, A.; McComas, D.; Piirola, V.; Schwadron, N.; Seriacopi, D.; Slavin, J. D.; Wiktorowicz, S.; IBEX Team

2014-01-01

3

Steady state magnetic field configurations for the earth's magnetotail  

NASA Technical Reports Server (NTRS)

A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

1989-01-01

4

Ring Current Modeling in a Realistic Magnetic Field Configuration  

NASA Technical Reports Server (NTRS)

A 3-dimensional kinetic model has been developed to study the dynamics of the storm time ring current in a dipole magnetic field. In this paper, the ring current model is extended to include a realistic, time-varying magnetic field model. The magnetic field is expressed as the cross product of the gradients of two Euler potentials and the bounce-averaged particle drifts are calculated in the Euler potential coordinates. A dipolarization event is modeled by collapsing a tail-like magnetosphere to a dipole-like configuration. Our model is able to simulate the sudden enhancements in the ring current ion fluxes and the corresponding ionospheric precipitation during the substorm expansion.

Fok, M.-C.; Moore, T. E.

1997-01-01

5

Influence of initial magnetic field configuration on spheromak evolution  

NASA Astrophysics Data System (ADS)

The influence of the initial magnetic field distribution on spheromak formation and closed flux generation upon decay is studied using the NIMROD code. Previous spheromak simulations using the NIMROD code have demonstrated the formation of axisymmetric closed flux surfaces with decay of the magnetic field. The q profile within the closed flux region was non-monotonic with values q00.8 and qmin0.5. As the configuration evolved, a m=1, n=2 mode led to localized magnetic field chaos resulting in a degradation of thermal energy confinement. Given the limited ability to control the evolution of the q profile within the closed flux region of a spheromak, we investigate the possibility of forming spheromak plasmas that avoid this deleterious mode by tailoring the initial magnetic field profile appropriately. Poloidal flux amplification during the formation process involves conversion of injected toroidal flux via a line-tied kink mode. By strengthening or weakening the initial magnetic field along the geometric axis of the flux conserver, we attempt to control the amount of flux amplification to produce higher or lower values of q throughout the closed flux surface region. Simulations are performed using a finite element grid that approximates the geometry of the Sustained Spheromak Physics Experiment. In collaboration with Bick Hooper and Bruce Cohen, Lawrence Livermore National Laboratories.

Cone, Giovanni

2005-10-01

6

Parallel heat transport in reversed shear magnetic field configurations  

NASA Astrophysics Data System (ADS)

Transport in magnetized plasmas is a key problem in controlled fusion, space plasmas, and astrophysics. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), ?, and the perpendicular, ?, conductivities (?/? may exceed 10^10 in fusion plasmas); (ii) Magnetic field lines chaos; and (iii) Nonlocal parallel transport. We have recently developed a Lagrangian Green's function (LG) method to solve the local and non-local parallel (?/?->?) transport equation applicable to integrable and chaotic magnetic fields. footnotetext D. del-Castillo-Negrete, L. Chac'on, PRL, 106, 195004 (2011); D. del-Castillo-Negrete, L. Chac'on, Phys. Plasmas, APS Invited paper, submitted (2011). The proposed method overcomes many of the difficulties faced by standard finite different methods related to the three issues mentioned above. Here we apply the LG method to study transport in reversed shear configurations. We focus on the following problems: (i) separatrix reconnection of magnetic islands and transport; (ii) robustness of shearless, q'=0, transport barriers; (iii) leaky barriers and shearless Cantori.

Blazevski, D.; Del-Castillo-Negrete, D.

2012-03-01

7

Magnetic field configuration in the magnetotail near 60 earth radii  

NASA Technical Reports Server (NTRS)

The magnetic field line configuration in the geomagnetic tail near 60 earth radii is examined on the basis of nearly 3 years of magnetometer data from the lunar-orbiting Explorer 35 satellite. The magnetotail field line characteristics inside the plasma sheet and in the high-latitude tail, i.e., outside the plasma sheet, are separately examined. In the high-latitude tail the magnetic field lines systematically diverge in both longitudinal (east-west) and latitudinal (north-south) directions; the divergence angle between field lines near the dusk flank and those near the dawn flank is about 14 deg, but the divergence along the Z direction is only about 8 deg. The degree of divergence is found to be greater in the evening side than in the morning side and greater in the northern tail than in the southern tail. Inside the plasma sheet the field lines deviate by about 19 deg from the sun-earth line, and the spatial distribution of the field line deviation does not have any systematic tendency.

Meng, C.-I.; Anderson, K. A.

1974-01-01

8

The ``Shim-a-ring'' magnet: Configurable static magnetic fields using a ring magnet with a concentric ferromagnetic shim  

NASA Astrophysics Data System (ADS)

We introduce a permanent magnet assembly that can be configured to obtain uniform, gradient, or tunable field distribution. The design is composed of a single ring shaped permanent magnet and a concentric ferromagnetic shim. Magnetic field is configured by changing the shape of the air gap inside the ring magnet. Circular cross-section produces up to 0.54 T uniform field, whereas rectangular or triangular cross-sections result in gradient magnetic field distributions. Tunable field from a given ring magnet is obtained by changing the thickness of the ferromagnetic shim or the spacing between the shim and the permanent magnet.

Nath, P.; Chandrana, C. K.; Dunkerley, D.; Neal, J. A.; Platts, D.

2013-05-01

9

Single ion dynamics inside magnetic field-reversed configuration  

NASA Astrophysics Data System (ADS)

The field-reversed configuration (FRC) is a toroidal-shaped magnetic-field geometry used for confining plasmas for the purpose of the controlled, safe, steady-state production of fusion energy. As a result of angular invariance of the Solov'ev equilibrium, used for analytic and numerical study of the FRC, the full three dimensional Hamiltonian system can be expressed as two coupled highly nonlinear oscillators. Due to high nonlinearity of the equations of motion, the behavior of the system is highly complex, showing regimes of both chaotic and integrable motion, depending on the constants of motion and geometry of the FRC. Using analytic techniques from nonlinear dynamics and Poincare surface-of-section plots, the structure of phase space is investigated and shown to be highly sensitive to the parameters of the system. In the limit of a highly elongated geometry, there is a separation of time scales between the axial and radial motion of the ion, leading to adiabatic chaos. Integrability criteria are derived which distinguish between near-integrable and chaotic trajectories, based on the crossing of the phase-space separatrix. An averaged one-dimensional potential for near-integrable motion is derived. It is found that orbits with high radial energies are more integrable and confined closer to the midplane, suggesting that high temperature plasmas may be more stable and have lower resistivity. The affect of a small odd-parity rotating magnetic field (RMF) on ion heating inside the elongated FRC is investigated. The addition of RMF breaks the angular invariance leading to a more chaotic system. It is found that cyclotron orbits tend to interact more regularly with RMF than figure-8 orbits. Stochastic heating for cyclotron orbits occurs in a series of random steps in the regions of field-reversal, indicating that magnetic nulls are important to ion heating. The maximum energy gains are large, particularly for cyclotron orbits, confirming the affectiveness off odd-parity RMF in heating the ions. The interaction of figure-8 orbits with RMF in the midplane is investigated analytically and displays a set of resonances that increase and overlap closer to the phase-space separatrix.

Landsman, Alexandra Sasha

2005-12-01

10

Toroidal Field Generation and Magnetic Field Relaxation in a Conical Theta Pinch Generated Configuration  

Microsoft Academic Search

Two different cone angles, 10^ circ and 18^circ, were used in this experiment to investigate the effect of the cone angle on the toroidal field generation and magnetic field structure evolution. The configuration was generated in the pinch and then translated into a 15 cm (diameter) x 70 cm (length) stainless steel flux conserver. The hydrogen fill gas was puffed

Kurnia Wira

1988-01-01

11

Resonance and chaotic trajectories in magnetic field reversed configuration  

NASA Astrophysics Data System (ADS)

The nonlinear dynamics of a single ion in a field reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive an integrable Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincare surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime, the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics.

Landsman, A. S.; Cohen, S. A.; Edelman, M.; Zaslavsky, G. M.

2005-09-01

12

A field-reversed magnetic configuration and applications of high-temperature FRC plasma  

SciTech Connect

As applied to a tokomak, a magnetic trap for confinement of a plasma with an inverted field or a magnetic field reversed configuration (FRC) is one of the most promising alternatives of the systems with high {beta}. A brief review of the latest data on FRC and potential directions of using such configurations in addition to energy generation in thermonuclear reactors (TNRs) is proposed.

Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University (Russian Federation)

2011-12-15

13

Underground cable magnetic field simulation and management using new design configurations  

Microsoft Academic Search

This paper addresses one of the most important sources of magnetic fields: underground power cables. New design configurations for one, two, three and four cables per phase are presented from a magnetic field perspective. Different management techniques are studied in detail. Judicious placement of cable phases in multiconductor lines to reduce the field effect is implemented by computer modeling and

I. O. Habiballah; A. S. Farag; M. M. Dawoud; A. Firoz

1998-01-01

14

Unbalanced magnetic field configuration: plasma and film properties  

NASA Astrophysics Data System (ADS)

Coatings of CrN, TiN, ZrN, TaN and NbN were deposited using an unbalanced magnetron sputtering system with two different degrees of unbalancing to investigate the effect of the degree of unbalancing on both plasma characteristics and film properties. The degree of unbalancing was determined by an extensive characterization of the magnetic field fluxes in the X-Z plane perpendicular to the target. Then, the plasma parameters, such as electron temperature, plasma potential, plasma density and ion current density, were obtained for each target and as a function of the unbalance coefficient. The film microstructure, hardness, corrosion and wear resistant were measured to determine the effect of the degree of unbalancing on these properties. The results suggested that the degree of unbalancing, through the variations induced in the ion bombardment and plasma ionization, had a strong influence on the film hardness, microstructure and preferred orientation.

Rodil, S. E.; Olaya, J. J.

2006-08-01

15

Study on Axially Distributed Divertor Magnetic Field Configuration in a Mirror Cell  

SciTech Connect

A mirror magnetic field configuration (MFC) is studied in which a divertor is distributed axially using multipole coils. Both configurations of divertor and minimum-B are obtained in a mirror cell. Magnetohydrodynamic (MHD) instability of a mirror cell can be eliminated in this way. Concept of the design and properties of the MFC are discussed.

Islam, M.K.; Nakashima, Y.; Higashizono, Y.; Katanuma, I.; Cho, T

2005-01-15

16

Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations  

SciTech Connect

The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-? plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (?fc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (?fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

E. Oz, C.E. Myers, M.R. Edwards, B. Berlinger, A. Brooks, and S.A. Cohen

2011-01-05

17

Radial current density effects on rotating magnetic field current drive in field-reversed configurations  

SciTech Connect

Steady state solutions, suitable for field-reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs) are obtained by properly including three-dimensional effects, in the limit of large FRC elongation, and the radial component of Ohm's law. The steady electrostatic potential, necessary to satisfy Ohm's law, is considered to be a surface function. The problem is analyzed at the midplane of the configuration and it is reduced to the solution of two coupled nonlinear differential equations for the real and imaginary parts of the phasor associated to the longitudinal component of the vector potential. Additional constraints are obtained by requesting that the steady radial current density and poloidal magnetic flux vanish at the plasma boundary which is set at the time-averaged separatrix. The results are presented in terms of the degree of synchronism of the electrons with the RMF and compared with those obtained when radial current effects are neglected. Three important differences are observed when compared with the case without radial current density. First, at low penetration of the RMF into the plasma there is a significant increase in the driven azimuthal current. Second, the RMF amplitude necessary to access the high synchronism regime, starting from low synchronism, is larger and the difference appears to increase as the separatrix to classical skin depth ratio increases. Third, the minimum RMF amplitude necessary to sustain almost full synchronism is reduced.

Clemente, R. A.; Gilli, M. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970 Campinas, SP (Brazil); Farengo, R. [Centro Atomico Bariloche and Instituto Balseiro, San Carlos de Bariloche (8400), RN (Argentina)

2008-10-15

18

Stochastic Ion Heating in a Field-reversed Configuration Geometry by Rotating Magnetic Fields  

SciTech Connect

Ion heating by application of rotating magnetic fields (RMF) to a prolate field-reversed configuration(FRC) is explored by analytical and numerical techniques. For odd-parity RMF (RMFo), perturbation analysis shows ions in figure-8 orbits gain energy at resonances of the RMFo frequency, ?R, with the figure-8 orbital frequency, ?. Since figure-8 orbits tend to gain the most energy from the RMF and are unlikely to escape in the cusp region (where most losses occur), they are optimal candidates for rapid stochastic heating, as compared to cyclotron and betatron orbits. Comparisons are made between heating caused by even- and odd-parity RMFs and between heating in currently operating and in reactor-scale FRC devices.

S.A. Cohen, A.S. Landsman, and A.H. Glasser

2007-06-25

19

Penetration and radial force balance in field-reversed configuration with large rotating magnetic field  

SciTech Connect

A field-reversed configuration (FRC) is formed by applying a rotating magnetic field (RMF) much larger than the axial magnetic field to a cylindrical glass vacuum chamber filled with 10 Pa argon gas without a preionization. The FRC with the plasma density 2.2x10{sup 19} m{sup -3}, the temperature 8.0 eV, the separatrix length 0.45 m, and the separatrix radius 0.035 m is sustained for the notably long period of 40 ms. It is observed that the antenna current which produces the RMF is reduced by about half after the FRC is formed. The interaction between the plasma and the antenna circuit increases the antenna resistance and changes the inductance of the antenna so that the circuit becomes nonresonant. The RMF is sufficiently large to fully penetrate to the center during the period and drive the current with a rigid rotor profile. The RMF is shown to play a major role in sustaining the plasma pressure.

Ohnishi, M.; Fukuhara, M.; Masaki, T.; Osawa, H.; Chikano, T. [Department of Electrical Engineering and Computer Science, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680 (Japan); Hugrass, W. [School of Computing, University of Tasmania, Locked Bag 1359, Launceston, Tasmania 7250 (Australia)

2008-10-15

20

Magnetic field configurations of a magnetar throughout its interior and exterior - core, crust and magnetosphere  

NASA Astrophysics Data System (ADS)

We obtained the magnetic field configurations, including both poloidal and toroidal components, throughout the interior and exterior of magnetars using a realistic equation of state. We divided the magnetized star into the hydromagnetic equilibrium core, Hall equilibrium crust and twisted force-free magnetosphere. We systematically and simultaneously calculated these regions under various boundary conditions using the Green function relaxation method, and noted the following interesting characteristics of these numerical results. First, the strength and structure of core magnetic fields affect the crustal magnetic fields. Secondly, the current sheet on the core-crust interface affects both internal and external magnetic field configurations. Thirdly, the twisted magnetosphere makes a cross-point of magnetic field lines, such as X-point geometry, in the magnetosphere. The X-point geometry appears and disappears according to the strength of the twisted field in the magnetosphere or the core-crust boundary conditions. Our results mean that both Hall magnetohydrodynamic secular evolution and magnetospheric dynamical evolution are deeply affected by conditions of another region and the core-crust stress of magnetars.

Fujisawa, Kotaro; Kisaka, Shota

2014-12-01

21

Internal magnetic field measurements in a translating field-reversed configuration  

SciTech Connect

Magnetic field probes have been employed to study the internal field structure of Field-Reversed Configurations (FRCs) translating past the probes in the FRX-C/T device. Internal closed flux surfaces can be studied in this manner with minimal perturbation because of the rapid transit of the plasma (translational velocity v/sub z/ approx. 10 cm/..mu..s). Data have been taken using a low-field (5 kG), 5-mtorr-D/sub 2/ gas-puff mode of operation in the FRC source coil which yields an initial plasma density of approx. 1 x 10/sup 15/ cm/sup -3/ and x/sub s/ approx. 0.04. FRCs translate from the approx. 25 cm radius source coil into a 20 cm radius metal translation vessel. Two translation conditions are studied: (1) translation into a 4 kG guide field (matched guide-field case), resulting in similar plasma parameters but with x/sub s/ approx. .45, and (2) translation into a 1 kG guide field (reduced guide-field case), resulting in expansion of the FRC to conditions of density approx. 3 x 10/sup 14/, external field B/sub 0/ approx. 2 kG and x/sub s/ approx. 0.7. The expected reversed B/sub z/ structure is observed in both cases. However, the field measurements indicate a possible sideways offset of the FRC from the machine axis in the matched case. There is also evidence of island structure in the reduced guide-field case. Fluctuating levels of B/sub theta/ are ovserved with amplitudes less than or equal to B/sub 0//3 in both cases. Field measurements on the FRC symmetry axis in the reduced guide-field case indicate ..beta.. on the separatrix of ..beta../sub s/ approx. = 0.3 (indexed to the external field) has been achieved. This decrease of ..beta../sub s/ with increased x/sub s/ is expected, and desirable for improved plasma confinement.

Armstrong, W.T.; Chrien, R.E.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

1984-02-23

22

Extended magnetohydrodynamic simulations of field reversed configuration formation and sustainment with rotating magnetic field current drive  

SciTech Connect

Three-dimensional simulations of field reversed configuration (FRC) formation and sustainment with rotating magnetic field (RMF) current drive have been performed with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. The Hall term is a zeroth order effect with strong coupling between Fourier components, and recent enhancements to the NIMROD preconditioner allow much larger time steps than was previously possible. Boundary conditions to capture the effects of a finite length RMF antenna have been added, and simulations of FRC formation from a uniform background plasma have been performed with parameters relevant to the translation, confinement, and sustainment-upgrade experiment at the University of Washington [H. Y. Guo, A. L. Hoffman, and R. D. Milroy, Phys. Plasmas 14, 112502 (2007)]. The effects of both even-parity and odd-parity antennas have been investigated, and there is no evidence of a disruptive instability for either antenna type. It has been found that RMF effects extend considerably beyond the ends of the antenna, and that a large n=0 B{sub t}heta can develop in the open-field line region, producing a back torque opposing the RMF.

Milroy, R. D. [Plasma Science and Innovation Center, University of Washington, P.O. Box 32250, Seattle, Washington 98195-2250 (United States)] [Redmond Plasma Physics Laboratory, University of Washington, 14700 NE 95th St., Suite 100, Redmond, Washington 98052 (United States); Kim, C. C. [Plasma Science and Innovation Center, University of Washington, P.O. Box 32250, Seattle, Washington 98195-2250 (United States); Sovinec, C. R. [Plasma Science and Innovation Center, University of Wisconsin, Madison, Wisconsin 53706 (United States)

2010-06-15

23

Investigating Tx coils and magnetic field Rx sensor configurations for underwater geo-location  

NASA Astrophysics Data System (ADS)

In this work, new configurations of magnetic field transmitter coils (Tx) and receiver sensors (Rx) are studied for underwater (UW) geo-locations. The geo-location system, based on low frequency magnetic fields, uses measured vector magnetic fields at a given set of points in space. It contains an active pulsed direct current transmitter, tri-axial field receivers, and a global positioning system unit (GPS). The GPS is coupled with the EMI system and provides continuous geo-referencing of the UW system's position. UW geolocations are estimated using a) closed form solution, that uses the total vector magnetic field tensor's gradient, and b) nonlinear optimization technique based of the differential evolution (DE) algorithm. In this work we first investigated the advantages and disadvantages of the proposed UW low frequency magnetic field geo-location system. Namely, we present systematic studies on: a) magnetic field transmitter configurations to determine the best compromise between size, shape and practical implementation to achieve maximum transmitter range in the UW environment, b) the placements of tri-axial receiver sensors with respect to the Tx to accurately estimate the UW geo-location from the measured magnetic fields; c) different sources of noise (such as the air-water interface, coupling between targets' EMI responses and the geo-location system's signals, water conductivity), to estimate how these noises influence the system's performance and localization precision. Finally, we assessed the capabilities of the closed-form solution and the DE technique to predict the location of an underwater interrogation system by comparing their corresponding estimated results to the true value. We found that for realistic water conductivities, the frequency should be less than 100 Hz. We showed that when the primary magnetic field is contaminated with random noises due to the presence of underwater metallic targets, water conductivity/frequency changes, and finite size of the transmitter, the performance of the full vector magnetic field tensor gradient approach degrades significantly compared to that of the DE method. In addition, the number of receivers required by the vector magnetic field tensor gradient technique and its sensitivity with respect to the sensor separation prevented us from further considering this technique for UW geo-location, leaving the non-linear approach, that uses only three vector Rx, as our technique of choice for tracking the location of underwater interrogation sensors with centimeter-level accuracy.

Shubitidze, Fridon; Bijamov, Alex; Schultz, Gregory; Miller, Jon; Shamatava, Irma

2011-06-01

24

Testing Circuit Models for the Energies of Coronal Magnetic Field Configurations  

E-print Network

Circuit models involving bulk currents and inductances are often used to estimate the energies of coronal magnetic field configurations, in particular configurations associated with solar flares. The accuracy of circuit models is tested by comparing calculated energies of linear force-free fields with specified boundary conditions with corresponding circuit estimates. The circuit models are found to provide reasonable (order of magnitude) estimates for the energies of the non-potential components of the fields, and to reproduce observed functional dependences of the energies. However, substantial departure from the circuit estimates is observed for large values of the force-free parameter, and this is attributed to the influence of the non-potential component of the field on the path taken by the current.

M. S. Wheatland; F. J. Farvis

2003-11-02

25

How is magnetic-field configuration related to upflows in active regions?  

NASA Astrophysics Data System (ADS)

Using three-dimensional magnetohydrodynamic (MHD) simulations, we demonstrate the flux emergence to derive features of magnetic-field configuration formed on the Sun. These features depend on a twist parameter of magnetic field: strongly or weakly twisted fields. We focus on a flux expansion factor which represents the expansion rate of the cross section along a flux tube. We derive the expansion factor, magnetic field, current density (twist of the magnetic field) and effective gravity of coronal loops in a self-consistently formed active region via flux emergence, and investigate how these quantities are related to the flow system of the active region. We found clear correlations among the strength of the vertical magnetic field, current density, expansion factor, and upflow location. On the basis of simulation results, we also study the plasma properties of a real active region which is observed by Nobeyama Radioheliograph (NoRH), X-Ray Telescope (XRT), and Extreme Ultraviolet Imaging Spectrometer (EIS) onboard Hinode. We discuss how these simulation and observation results tell about the mechanism of the solar wind.

Lee, H.; Magara, T.; An, J.; Kang, J.

2012-12-01

26

Development of Field-Reversed Configuration Plasma Gun Formation Techniques for Magnetized Target Fusion  

NASA Astrophysics Data System (ADS)

Magnetized Target Fusion (MTF) is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. Los Alamos National Laboratory (LANL) is currently pursing demonstration of the MTF concept via compression of an FRC (field-reversed configuration) plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC as an MTF target lies in the initial pre-ionization (PI) stage. The PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. This trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties. It also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we plan to test and characterize a new system to improve the initial PI plasma formation. This system will use an array of plasma guns to form the initial plasma. Initial characterization of the plasma gun behavior will be presented.

Lynn, Alan; Gilmore, Mark; Wynkoop, Tyler; Intrator, Thomas; Weber, Thomas

2012-10-01

27

On the final configuration of a plane magnetic field dragged by a highly conducting fluid and anchored at the boundary  

NASA Astrophysics Data System (ADS)

The final configuration of the magnetic field dragged by a plane conducting flow such that the feet of the field lines are fixed at the boundary is studied by asymptotic analysis on the small magnetic diffusivity. The first order approximation yields that the streamlines become also magnetic field lines and the magnetic potential satisfies an ordinary differential equation on the transversal variable whose boundary values are found by the addition of a boundary layer. It turns out that these values correspond to certain averages along the boundaries, except when there exist stagnation points, which dominate the magnetic potential diffusion. Corners of the boundary curves behave differently, because stagnation points there disappear after straightening the curve by a change of variables that also kills the zero of the velocity.

Nez, Manuel

2014-08-01

28

Impact of rotation on the geometrical configurations of fossil magnetic fields  

E-print Network

The MiMeS project demonstrated that a small fraction of massive stars (around 7%) presents large-scale, stable, generally dipolar magnetic fields at their surface. They are supposed to be fossil remnants of initial phases of stellar evolution. In fact, they result from the relaxation to MHD equilibrium states during the formation of stable radiation zones of initial fields generated by a previous convective phase. In contrast with the case of magnetic fields built by dynamo mechanisms, the geometry of fossil fields at the surface of early-type stars seems to be independent of rotation: dipolar fields are observed both in slowly- and rapidly-rotating stars. In this work, we present new theoretical results, where we generalized previous studies by taking rotation into account. The properties of relaxed fossil fields are compared to those obtained when rotation is ignored. Consequences for magnetic fields in the radiative envelope of rotating early-type stars are discussed.

Emeriau, Constance

2014-01-01

29

On the Magnetic Field of Pulsars with Realistic Neutron Stars Configurations  

E-print Network

We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas- Fermi (EMTF) equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following the Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium leads to values of the magnetic field and radiation efficiency of pulsars very different from estimates based on fiducial parameters assuming a neutron star mass, M = 1.4 Msun, radius R = 10 km, and moment of inertia, I = 10^45 g cm^2. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog which takes into due account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsars class and show that, indeed, all these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and with magnetic fields lower than the quantum critical field for any value of the neutron star mass.

Riccardo Belvedere; Jorge Armando Rueda; Remo Ruffini

2014-11-10

30

Point sensitive NMR imaging system using a magnetic field configuration with a spatial minimum  

DOEpatents

A point-sensitive NMR imaging system (10) in which a main solenoid coil (11) produces a relatively strong and substantially uniform magnetic field and a pair of perturbing coils (PZ1 and PZ2) powered by current in the same direction superimposes a pair of relatively weak perturbing fields on the main field to produce a resultant point of minimum field strength at a desired location in a direction along the Z-axis. Two other pairs of perturbing coils (PX1, PX2; PY1, PY2) superimpose relatively weak field gradients on the main field in directions along the X- and Y-axes to locate the minimum field point at a desired location in a plane normal to the Z-axes. An RF generator (22) irradiates a tissue specimen in the field with radio frequency energy so that desired nuclei in a small volume at the point of minimum field strength will resonate.

Eberhard, Philippe H. (El Cerrito, CA)

1985-01-01

31

Global power balance on high density field reversed configurations for use in magnetized target fusion  

NASA Astrophysics Data System (ADS)

Field Reversed Configuration plasmas (FRCs) have been created in the Field Reversed Experiment-Liner (FRX-L) with density 2--6 x 10 22 m-3, total temperature 300--400 eV, and lifetime on the order of 10 micros. This thesis investigates global energy balance on high-density FRCs for the first time. The zero-dimensional approach to global energy balance developed by Rej and Tuszewski (Phys. Fluids 27, p. 1514, 1984) is utilized here. From the shots analyzed with this method, it is clear that energy loss from these FRCs is dominated by particle and thermal (collisional) losses. The percentage of radiative losses versus total loss is an order of magnitude lower than previous FRC experiments. This is reasonable for high density based on empirical scaling from the extensive database of tokamak plasma experiments. Ohmic dissipation, which heats plasma when trapped magnetic field decays to create electric field, is an important source of heating for the plasma. Ohmic heating shows a correlation with increasing the effective Lundquist number (S*). Empirical evidence suggest S* can be increased by lowering the density, which does not achieve the goals of FRX-L. A better way to improve ohmic heating is to trap more poloidal flux. This dissertation shows that FRX-L follows a semi-empirical scaling law which predicts plasma temperature gains for larger poloidal flux. Flux (tau?) and particle (tauN) lifetimes for these FRCs were typically shorter than 10 micros. Approximately 1/3 of the particle and flux lifetimes for these FRCs did not scale with the usual tauN ? tau? scaling of low-density FRCs, but instead showed tauN ? tau ?. However, scatter in the data indicates that the average performance of FRCs on FRX-L yields the typical (for FRCs) relationship tau N ? tau?. Fusion energy gain Q was extrapolated for the shots analyzed in this study using a zero-dimensional scaling code with liner effects. The predicted Q is below the desired value of 0.1 (Schoenberg et al., LA-UR-98-2413, 1998). The situation predicted to lead to Q = 0.1 requires a larger plasma pressure than shown in the present data. This can be accomplished by increasing the plasma density (through larger fill pressure) and maintaining temperature with increased flux trapping. Larger Q and other benefits could be realized by raising the plasma pressure for future FRX-L shots. The innovation inherent in this work performed by the author is the extension of the global power balance model to include a time history of the plasma discharge. This extension required rigorous checking of the power balance model using internal density profiles provided by the multichord interferometer. Typical orders of the parameters calculated by the model are 500 MW total loss power, 100 MW ohmic heating power, and 200 MW total compression (input) power. Radiation was never measured above 5 MW, which is why it was deemed insignificant. It should be noted that these numbers are merely estimates and vary widely between shots.

Renneke, Richard M.

32

Analysis of magnetic probe signals including effect of cylindrical conducting wall for field-reversed configuration experiment.  

PubMed

A confinement field is disturbed by magnetohydrodynamic (MHD) motions of a field-reversed configuration (FRC) plasma in a cylindrical conductor. The effect of the conductor should be included to obtain a spatial structure of the disturbed field with a good precision. For this purpose, a toroidal current in the plasma and an eddy current on a conducting wall are replaced by magnetic dipole and image magnetic dipole moments, respectively. Typical spatial structures of the disturbed field are calculated by using the dipole moments for such MHD motions as radial shift, internal tilt, external tilt, and n=2 mode deformation. Then, analytic formulas for estimating the shift distance, tilt angle, and deformation rate of the MHD motions from magnetic probe signals are derived. It is estimated from the calculations by using the dipole moments that the analytic formulas include an approximately 40% error. Two kinds of experiment are carried out to investigate the reliability of the calculations. First, a magnetic field produced by a circular current is measured in an aluminum pipe to confirm the replacement of the eddy current with the image magnetic dipole moments. The measured fields coincide well with the calculated values including the image magnetic dipole moments. Second, magnetic probe signals measured from the FRC plasma are substituted into the analytic formulas to obtain shift distance and deformation rate. The experimental results are compared to the MHD motions measured by using a radiation from the plasma. If the error included in the analytic formulas and the difference between the magnetic and optical structures in the plasma are considered, the results of the radiation measurement support well those of the magnetic analysis. PMID:18601402

Ikeyama, Taeko; Hiroi, Masanori; Nemoto, Yuuichi; Nogi, Yasuyuki

2008-06-01

33

Comparison between hybrid and fully kinetic models of asymmetric magnetic reconnection: Coplanar and guide field configurations  

SciTech Connect

Magnetic reconnection occurring in collisionless environments is a multi-scale process involving both ion and electron kinetic processes. Because of their small mass, the electron scales are difficult to resolve in numerical and satellite data, it is therefore critical to know whether the overall evolution of the reconnection process is influenced by the kinetic nature of the electrons, or is unchanged when assuming a simpler, fluid, electron model. This paper investigates this issue in the general context of an asymmetric current sheet, where both the magnetic field amplitude and the density vary through the discontinuity. A comparison is made between fully kinetic and hybrid kinetic simulations of magnetic reconnection in coplanar and guide field systems. The models share the initial condition but differ in their electron modeling. It is found that the overall evolution of the system, including the reconnection rate, is very similar between both models. The best agreement is found in the guide field system, which confines particle better than the coplanar one, where the locality of the moments is violated by the electron bounce motion. It is also shown that, contrary to the common understanding, reconnection is much faster in the guide field system than in the coplanar one. Both models show this tendency, indicating that the phenomenon is driven by ion kinetic effects and not electron ones.

Aunai, Nicolas; Hesse, Michael; Kuznetsova, Maria; Black, Carrie; Evans, Rebekah [Space Weather Laboratory, Code 674, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Zenitani, Seiji [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Smets, Roch [Laboratoire de Physique des Plasmas, Universite Pierre et Marie Curie, Ecole polytechnique, route de Palaiseau, 91128 Palaiseau Cedex (France)

2013-02-15

34

Mitigation of rotational instability of high-beta field-reversed configuration by double-sided magnetized plasmoid injection  

NASA Astrophysics Data System (ADS)

Active control of destructive rotational instability in a high-beta field-reversed configuration (FRC) plasma was demonstrated by using double-sided plasmoid injection technique. The elliptical deformation of the FRC's cross section was mitigated as a result of substantial suppression of spontaneous spin-up by the plasmoid injection. It was found that the injected plasmoid provided better stability against the rotational mode, suggesting that the compensation of the FRC's decaying magnetic flux might help to suppress its spin-up.

Itagaki, H.; Asai, T.; Inomoto, M.; Takahashi, Ts.

2014-03-01

35

Passive magnetic bearing configurations  

DOEpatents

A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

Post, Richard F. (Walnut Creek, CA)

2011-01-25

36

Electronic spectrum of a two-dimensional quantum dot array in the presence of electric and magnetic fields in the Hall configuration  

NASA Astrophysics Data System (ADS)

We report calculations of the electronic spectrum of a two-dimensional lattice of coupled quantum dots, subject to external electric and magnetic fields in the Hall configuration. The quantum dots array was modeled by a periodic superposition of truncated, parabolic potential wells. By adopting the Landau gauge, a single-particle Hamiltonian was formulated, and its eigenfunctions were obtained as appropriately symmetrized, magnetic field-dependent Bloch functions. The magnetic field was consistently included in the corresponding Wannier functions, which were approximated by the eigenvectors of an isolated quantum dot in the presence of the external magnetic field, and multiplied by the Peierlss phase.

Muoz, Enrique; Barticevic, Zdenka; Pacheco, Monica

2005-04-01

37

Application of a Solar Wind Model Driven by Turbulence Dissipation to a 2D Magnetic Field Configuration  

E-print Network

Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. (2007) developed a sophisticated, 1D, time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al. (2014), which incorporates turbulent dissipation of Alfv\\'en waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional ...

Lionello, Roberto; Downs, Cooper; Linker, Jon A; Miki?, Zoran

2014-01-01

38

Application of a Solar Wind Model Driven by Turbulence Dissipation to a 2D Magnetic Field Configuration  

NASA Astrophysics Data System (ADS)

Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. developed a sophisticated, one-dimensional (1D), time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al., which incorporates turbulent dissipation of Alfvn waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional MHD simulations by the requirement of transverse force balance.

Lionello, Roberto; Velli, Marco; Downs, Cooper; Linker, Jon A.; Miki?, Zoran

2014-12-01

39

Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3-Pb(Fe,Ta)O3 single-crystal lamellae.  

PubMed

Thin single-crystal lamellae cut from Pb(Zr,Ti)O3-Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching. PMID:24421376

Evans, D M; Schilling, A; Kumar, Ashok; Sanchez, D; Ortega, N; Katiyar, R S; Scott, J F; Gregg, J M

2014-02-28

40

Pulse modulated microwave operation on large bore electron cyclotron resonance ion source with cylindrically comb-shaped magnetic fields configuration  

SciTech Connect

In order to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure, the magnetic field configuration is constructed by a pair of comb-shaped magnet which has opposite polarity each other, and which cylindrically surrounds the plasma chamber. By using the pulse microwave mode operation, we aim at generation of plasma with parameters that cannot be achieved at the continuous microwave (cw) mode. The maximum beam current is obtained in the experimental condition of the pulse width 100-200 {mu}s at the duty ratio 40%-50%. According to probe measurements of the ECR plasma, it is found the electron density in the pulse mode is larger than that in the cw mode, while the electron temperatures in the pulse mode were lower than that in the cw mode. These indirect evidences cause to enhance ion beams in the pulse mode operation, and then suggest a spread of operation windows for plasma parameters suitable to production of molecular or cluster ions.

Hirai, Yoshiaki; Kato, Yushi; Sato, Fuminobu; Iida, Toshiyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

2010-02-15

41

Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion  

SciTech Connect

The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap #24;50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would design the microwave optics and oversee the fabrication and assembly of all components and assist with integration into the FRX-L machine control system. LANL would provide a preexisting 65 kW X-band microwave source and some associated waveguide hardware. Once constructed and installed, UNM would take the lead in operating the microwave breakdown system and conducting studies to optimize its use in FRC PI formation in close cooperation with the needs of the LANL MTF team. In conjunction with our LANL collaborators, we decided after starting the project to switch from a microwave plasma breakdown approach to a plasma gun technology to use for enhanced plasma formation in the FRX-L field-reversed configuration experiment at LANL. Plasma guns would be able to provide significantly higher density plasma with greater control over its distribution in time and space within the experiment. This would allow greater control and #12;ne-tuning of the PI plasma formed in the experiment. Multiple plasma guns would be employed to fill a Pyrex glass test chamber (built at UNM) with plasma which would then be characterized and optimized for the MTF effort.

Lynn, Alan

2013-11-01

42

Upgraded coil configuration for ISABELLE magnets  

SciTech Connect

Achievement of the design field of 5 T in the ISABELLE dipole magnets is turning out to be more arduous than expected and several avenues of improvement are being pursued. One possibility for improving training and peak field performance is discussed in this paper. It has been recognized that the inert spacers with their adjacent active turns in the cosine magnet windings can be replaced by a double thickness braid operating at approximately half-current density in 46 of the 190 turns. Since the high-field region occurs in the low current density turns near the poles, a performance improvement can be expected. It has been verified that the proposed coil configuration satisfies the field requirements and details thereof are given. Results from an experimental magnet in which superconducting spacer turns are used to simulate half-current density windings are presented. Construction of thick braid coils is being planned and the status of these magnets is reviewed.

Hahn, H.; Dahl, P.F.; Kaugerts, J.E.; Prodell, A.G.

1981-01-01

43

The Magnetic Configuration of a ?-Spot  

NASA Astrophysics Data System (ADS)

Sunspots, which harbor both magnetic polarities within one penumbra, are called ?-spots. They are often associated with flares. Nevertheless, there are only very few detailed observations of the spatially resolved magnetic field configuration. We present an investigation performed with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope in Tenerife. We observed a sunspot with a main umbra and several additional umbral cores, one of them with opposite magnetic polarity (the ?-umbra). The ?-spot is divided into two parts by a line along which central emissions of the spectral line Ca II 854.2 nm appear. The Evershed flow comming from the main umbra ends at this line. In deep photospheric layers, we find an almost vertical magnetic field for the ?-umbra, and the magnetic field decreases rapidly with height, faster than in the main umbra. The horizontal magnetic field in the direction connecting main and ?-umbra is rather smooth, but in one location next to a bright penumbral feature at some distance to the ?-umbra, we encounter a change of the magnetic azimuth by 90 from one pixel to the next. Near the ?-umbra, but just outside, we encounter a blue-shift of the spectral line profiles which we interpret as Evershed flow away from the ?-umbra. Significant electric current densities are observed at the dividing line of the spot and inside the ?-umbra.

Balthasar, H.; Beck, C.; Louis, R. E.; Verma, M.; Denker, C.

2014-10-01

44

Cross-field motion of plasma blob-filaments and related particle flux in an open magnetic field line configuration on QUEST  

NASA Astrophysics Data System (ADS)

Blob-filaments have been observed by combined measurement with a fast camera and a movable Langmuir probe in an open magnetic field line configuration of electron cyclotron resonance (ECR) heating plasma in QUEST. Blob-filaments extended along field lines do correspond to over-dense plasma structures and propagated across the field lines to the outer wall. The radial velocity of the blob structure, Vb, was obtained by three methods and was dominantly driven by the E B force. The radial velocity, size of the blob showed good agreements with the results obtained by sheath-connected interchange theoretical model. Vb corresponds to roughly 0.02-0.07 of the local sound speed (Cs) in QUEST. The higher moments (skewness S and kurtosis K) representing the shape of PDF of density fluctuation are studied. Their least squares fitting with quadratic polynomial is K = (1.60 0.27)S2 - (0.46 0.20). The larger blob structures, occurring only 10% of the time, can carry more than 60% loss of the entire radial particle flux.

Liu, H. Q.; Hanada, K.; Nishino, N.; Ogata, R.; Ishiguro, M.; Gao, X.; Zushi, H.; Nakamura, K.; Fujisawa, A.; Idei, H.; Hasegawa, M.; Quest Group

2013-07-01

45

Magnetic Fields  

NSDL National Science Digital Library

This page and its annex describes, in trivial terms, the physics of magnetic fields and the history of its discovery. Included is the work of Halley, Oersted, Ampere and Maxwell. It also describes a way of demonstrating it in the classroom, using a vu-graph projector. Later sections #5, #5a and #6 extend this to magnetic field lines and electromagnetism.

Stern, David

2005-01-04

46

The Magnetic Field  

NSDL National Science Digital Library

This webpage is part of the University Corporation for Atmospheric Research (UCAR) "Windows to the Universe" program. It describes the nature and configuration of magnetic fields, which are the result of moving electric charges, including how they cause magnetic objects to orient themselves along the direction of the magnetic force points, which are illustrated as lines. Magnetic field lines by convention point outwards at the north magnetic pole and inward at the south magnetic pole. The site features text, scientific illustrations and an animation. Text and vocabulary are selectable for the beginning, intermediate, or advanced reader.

47

Counter effects of meridional flows and magnetic fields in stationary axisymmetric self-gravitating barotropes under the ideal MHD approximation: clear examples - toroidal configurations  

NASA Astrophysics Data System (ADS)

We obtain the general forms for the current density and the vorticity from the integrability conditions of the basic equations which govern the stationary states of axisymmetric magnetized self-gravitating barotropic objects with meridional flows under the ideal magnetohydrodynamics (MHD) approximation. As seen from the stationary condition equations for such bodies, the presence of the meridional flows and that of the poloidal magnetic fields act oppositely on the internal structures. The different actions of these two physical quantities, the meridional flows and the poloidal magnetic fields, could be clearly seen through stationary structures of the toroidal gaseous configurations around central point masses in the framework of Newtonian gravity because the effects of the two physical quantities can be seen in an amplified way for toroidal systems compared to those for spheroidal stars. The meridional flows make the structures more compact, i.e. the widths of toroids thinner, while the poloidal magnetic fields are apt to elongate the density contours in a certain direction depending on the situation. Therefore, the simultaneous presence of the internal flows and the magnetic fields would work as if there were no such different actions within and around the stationary gaseous objects such as axisymmetric magnetized toroids with internal motions around central compact objects under the ideal MHD approximation, although these two quantities might exist in real systems.

Fujisawa, Kotaro; Takahashi, Rohta; Yoshida, Shijun; Eriguchi, Yoshiharu

2013-05-01

48

Radiation belt data assimilation of a moderate storm event using a magnetic field configuration from the physics-based RAM-SCB model  

NASA Astrophysics Data System (ADS)

Data assimilation using Kalman filters provides an effective way of understanding both spatial and temporal variations in the outer electron radiation belt. Data assimilation is the combination of in situ observations and physical models, using appropriate error statistics to approximate the uncertainties in both the data and the model. The global magnetic field configuration is one essential element in determining the adiabatic invariants for the phase space density (PSD) data used for the radiation belt data assimilation. The lack of a suitable global magnetic field model with high accuracy is still a long-lasting problem. This paper employs a physics-based magnetic field configuration for the first time in a radiation belt data assimilation study for a moderate storm event on 19 December 2002. The magnetic field used in our study is the magnetically self-consistent inner magnetosphere model RAM-SCB, developed at Los Alamos National Laboratory (LANL). Furthermore, we apply a cubic spline interpolation method in converting the differential flux measurements within the energy spectrum, to obtain a more accurate PSD input for the data assimilation than the commonly used linear interpolation approach. Finally, the assimilation is done using an ensemble Kalman filter (EnKF), with a localized adaptive inflation (LAI) technique to appropriately account for model errors in the assimilation and improve the performance of the Kalman filter. The assimilative results are compared with results from another assimilation experiment using the Tsyganenko 2001S (T01S) magnetic field model, to examine the dependence on a magnetic field model. Results indicate that the data assimilations using different magnetic field models capture similar features in the radiation belt dynamics, including the temporal evolution of the electron PSD during a storm and the location of the PSD peak. The assimilated solution predicts the energy differential flux to a relatively good degree when compared with independent LANL-GEO in situ observations. A closer examination suggests that for the chosen storm event, the assimilation using the RAM-SCB predicts a better flux at most energy levels during storm recovery phase but is slightly worse in the storm main phase than the assimilation using the T01S model.

Yu, Y.; Koller, J.; Jordanova, V. K.; Zaharia, S. G.; Godinez, H. C.

2014-05-01

49

Solar Energetic Particle Events in the 23rd Solar Cycle: Interplanetary Magnetic Field Configuration and Statistical Relationship with Flares and CMEs  

E-print Network

We study the influence of the large-scale interplanetary magnetic field configuration on the solar energetic particles (SEPs) as detected at different satellites near Earth and on the correlation of their peak intensities with the parent solar activity. We selected SEP events associated with X and M-class flares at western longitudes, in order to ensure good magnetic connection to Earth. These events were classified into two categories according to the global interplanetary magnetic field (IMF) configuration present during the SEP propagation to 1AU: standard solar wind or interplanetary coronal mass ejections (ICMEs). Our analysis shows that around 20% of all particle events are detected when the spacecraft is immersed in an ICME. The correlation of the peak particle intensity with the projected speed of the SEP-associated coronal mass ejection is similar in the two IMF categories of proton and electron events, $\\approx 0.6$. The SEP events within ICMEs show stronger correlation between the peak proton inten...

Miteva, R; Malandraki, O; Dorrian, G

2014-01-01

50

Configurations of the solar wind flow and magnetic field around the planets with no magnetic field: Calculation by a new MHD simulation scheme  

Microsoft Academic Search

A new MHD simulation scheme is developed on an unstructured grid system using the finite volume total variation diminishing scheme and applied to the problem of solar wind-planet interaction, assuming a perfect-conducting ionosphere around the planet. It is shown that the scheme presented here enables one to calculate effectively the configuration of three-dimensional MHD flow near planets, together with the

T. Tanaka

1993-01-01

51

Average configuration of the distant (less than 220-earth-radii) magnetotail - Initial ISEE-3 magnetic field results  

NASA Technical Reports Server (NTRS)

Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.

Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.

1983-01-01

52

Magnetic Field Safety Magnetic Field Safety  

E-print Network

Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

McQuade, D. Tyler

53

High Energy Electron Confinement in a Magnetic Cusp Configuration  

E-print Network

We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when beta (plasma pressure/magnetic field pressure) is order of unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high beta a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. The current experiment validates this theoretical conjecture for the first time and represents critical progress toward the Polywell fusion concept which combines a high beta cusp configuration with an electrostatic fusion for a compact, economical, power-producing nuclear fusion reactor.

Park, Jaeyoung; Sieck, Paul E; Offermann, Dustin T; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

2014-01-01

54

The First Magnetic Fields  

E-print Network

We demonstrate that the Biermann battery mechanism for the creation of large scale magnetic fields can arise in a simple model protogalaxy. Analytic calculations and numerical simulations follow explicitly the generation of vorticity (and hence magnetic field) at the outward-moving shock that develops as the protogalactic perturbation collapses. Shear angular momentum then distorts this field into a dipole-like configuration. The magnitude of the field created in the fully formed disk galaxy is estimated to be 10^(-17) Gauss, approximately what is needed as a seed for the galactic dynamo.

George Davies; Lawrence M. Widrow

1999-12-14

55

Magnetic topology of a candidate NCSX plasma boundary configuration  

NASA Astrophysics Data System (ADS)

A candidate magnetic topology of the plasma boundary of the proposed compact stellarator national compact stellarator experiment (NCSX) is investigated using field-line tracing with diffusion. The required magnetic fields are obtained from a free-boundary equilibrium using the magnetic fields from external coils and bootstrap plasma currents inside the last closed magnetic surface (LCMS). These results are used to calculate the magnetic fields of the finite beta equilibria inside and outside the LCMS in a form suitable for field-line tracing. Poincar plots of field lines that diffuse outwards from starting points just inside the LCMS indicate an ergodic divertor region. Intersections of field lines with a simple limiting surface show contained patches suitable for divertor control. Undesirable regions of sharply inclined angle of intersection with the limiting surface are localized, indicating the suitability of the configuration for optimized divertor design techniques. We also discuss physics implications of field-line lengths in the divertor region.

Koniges, A. E.; Grossman, A.; Fenstermacher, M.; Kisslinger, J.; Mioduszewski, P.; Rognlien, T.; Strumberger, E.; Umansky, M.

2003-02-01

56

Rigid-rotor, field-reversed configuration  

NASA Astrophysics Data System (ADS)

The radial profiles, n(r), Bz(r), and Er(r), for a Flux-Coil ("inductively driven"), Field-Reversed Configuration (FC-FRC) are measured and compared to the predictions of the Rigid-Rotor Model (RRM), which is an analytic, one-dimensional, time-independent, equilibrium description for the FRC. Injectors mounted on both ends of the confinement vessel provide a pre-fill plasma. Coaxial coils mounted outside the vacuum boundaries of the annular-confinement vessel accelerate the plasma and produce the FRC. The density profile is measured by laser interferometry, the magnetic-field profile using an in-situ probe array, and the electric-field profile using an in-situ, floating-probe array. Free parameters for each profile are measured, which also allow other intrinsic-plasma parameters to be determined, using computer-fit algorithms: null radius, radial thickness, plasma temperature, rotation frequencies, the latter of which are independently verified by spectroscopy. All radial profiles agree with the RRM predictions, for the experimental configuration, parameter regime, and specified-time interval studied here.

Conti, F.; Wessel, F. J.; Binderbauer, M. W.; Bolte, N.; Giammanco, F.; Morehouse, M.; Qerushi, A.; Rahman, H. U.; Roche, T.; Slepchenkov, M.

2014-02-01

57

Structure and magnetic configurations of accretion disk-dynamo models  

NASA Astrophysics Data System (ADS)

The influence of large-scale magnetic fields on the structure of accretion disks is studied. The magnetic field is obtained by a self-consistent nonlinear dynamo model with magnetic pressure strongly influencing the density stratification which itself feeds back to the field generation. The resulting magnetic field geometry is discussed in relation to the accretion disk wind theory. Regarding new results of MHD turbulence simulations, both possible signs of the alpha -effect are allowed (Brandenburg & Donner 1997). In the canonical case of positive alpha the resulting field is of quadrupolar symmetry. The field strength is about 50% of the value for dynamo models nonlinearly limited by alpha -quenching. The temperature profiles as well as the disk geometry remain nearly unchanged. The viscous stress remains the key transporter of angular momentum driving the accretion inflow. For negative alpha , however, a stationary dipolar structure of the magnetic field results. The additional magnetic torque at the disk surface changes the profile of the effective temperature significantly to a profile which is more flat. The magnetic torque becomes of the same order as the radial viscous torque. The inclination angle of the poloidal field exceeds 30o even for a magnetic Prandtl number of order unity, and also the criterion for poloidal collimation after Spruit et al. (1997) is fulfilled. The dynamo-generated magnetic field configuration thus supports the magnetic wind launching concept for accretion disks for realistic turbulent magnetic Prandtl numbers.

Rekowski, M. v.; Rdiger, G.; Elstner, D.

2000-01-01

58

Local geometrical properties of magnetic configurations with nested equilibrium magnetic surfaces  

NASA Astrophysics Data System (ADS)

The complete set of universal local relationships between geometrical (the curvature and torsion of the force lines of the magnetic field and the field complementary to it) and magnetic (| B|, |??|, b (? b), and the local shear s) quantities in currentless magnetic configurations comprising a system of equilibrium nested magnetic surfaces, including those with several magnetic axes, is derived. Possible applications of these relationships are discussed.

Skovoroda, A. A.

2009-04-01

59

High field superconducting magnets  

NASA Technical Reports Server (NTRS)

A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

2011-01-01

60

Large-gap magnetic positioning system having advantageous configuration  

NASA Technical Reports Server (NTRS)

A magnetic configuration was devised in which the positioned object is maintained in a stable orientation and position on one side of an opaque plane surface entirely by means of magnetic components on the other side of the plane. The system is effective with or without gravity, and can operate in any orientation. In this system, the positioned object need only contain a simple dipole magnet. The positioning components consist of a group of permanent magnets creating a magnetic field configuration which stabilizes the levitated dipole in all but one degree of freedom, and a magnetic position sensing and force feedback system to actively stabilize the object in the one unstable direction. The system utilizes very low power at equilibrium and can maintain gaps of 50 mm.

Chong, Paul; Commandeur, Colin; Davis, Harold; Whitehead, Lorne

1992-01-01

61

Flare morphologies and coronal field configurations  

NASA Technical Reports Server (NTRS)

Chromospheric flares are the footpoints of closed coronal field lines. In this paper different flare morphologies from observations are presented, and the implied coronal field configurations above the flaring region are examined. Flares are grouped according to the number of ribbons, from an unresolved compact point-like flare to four-ribbon flares. Quiet region flares having characteristics of their own are also presented here. It is found that compact, unresolved point-like flares have two distinct footpoints when viewed in offband H-alpha. The footpoints of some of the compact flares also show increased separation as a function of time. Unlike large two-ribbon flares, the ribbons of many small and/or short-lived two-ribbon flares usually have no measurable separation of ribbons. Multiple-ribbon (three or more ribbon) flares consists of two or more pairs of two-ribbons, or two or more sets of field lines. Parity of the ribbons in multiple-ribbon flares, or the lack of it, depends on the magnetic makeup of the locale of the ribbons. Flares in old quiet regions resulting from sudden filament eruptions show discrete small patches of emissions reflecting the 'spottiness' of the decayed and dispersed field of the quiet region.

Tang, F.

1985-01-01

62

A Field Display Universal LED Configuration Design  

Microsoft Academic Search

The paper introduces a LED configuration design with Chinese characters prompt, which is based on P89LPC932 and widely applied in the field display of various card readers. Hardware circuit principles, design ideas of configuration LED, display and protocol and key codes are expounded here, all of which help solve the problem of poor compatibility in the system caused by too

Tan Hai; Tang Bin; Zhou Xinqin; Pan Shaoming; Pan Shibin

2008-01-01

63

Alternative poloidal field configurations for ITER  

SciTech Connect

The US Home Team has investigated the physics and engineering issues for two alternate poloidal field coil configurations for ITER. The first is called the Segmented CS configuration, where all of the solenoid modules are pancake-wound. The second option, termed the Hybrid CS configuration, utilizes a layer-wound central module and pancake-wound end modules. Performance comparisons are presented for the baseline design and the two alternate PF configurations, characterizing the 21 MA reference scenario. Alternate operating modes such as reverse-shear operation and a 17 MA driven mode were evaluated, but are not reported here.

Bulmer, R.H.; Neilson, G.H.

1997-09-02

64

Chaotic motion of charged particles in toroidal magnetic configurations  

E-print Network

We study the motion of a charged particle in a tokamak magnetic field and discuss its chaotic nature. Contrary to most of recent studies, we do not make any assumption on any constant of the motion and solve numerically the cyclotron gyration using Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to make long-time simulations. First considering an idealized magnetic configuration, we add a non generic perturbation corresponding to a magnetic ripple, breaking one of the invariant of the motion. Chaotic motion is then observed and opens questions about the link between chaos of magnetic field lines and chaos of particle trajectories. Second, we return to a axi-symmetric configuration and tune the safety factor (magnetic configuration) in order to recover chaotic motion. In this last setting with two constants of the motion, the presence of chaos implies that no third global constant exists, we highlight this fact by looking at variations of the first order of the magnetic moment in this chaotic setting. We are facing a mixed phase space with both regular and chaotic regions and point out the difficulties in performing a global reduction such as gyrokinetics.

Benjamin Cambon; Xavier Leoncini; Michel Vittot; Rmi Dumont; Xavier Garbet

2014-02-11

65

Stability and confinement of spheromaks and field-reversed configurations  

SciTech Connect

The formation, confinement and stability of two types of compact toroids, spheromaks and field reversed configurations (FRC), are reviewed. Spheromaks, which contain both toroidal and poloidal magnetic fields, have been formed with magnetized coaxial plasma guns, by a combination of Z- and theta-pinch techniques and by an electrodeless slow induction technique, and trapped in both prolate and oblate flux conservers. As predicted by theory, the prolate configuration is unstable to the tilt mode, but the oblate configuration with a conducting wall is stable. Configuration lifetimes of up to 0.8 ms are observed. The FRC is a high-beta, highly prolate compact toroid formed with field-reversed theta-pinch techniques and having purely poloidal magnetic field. Theory predicts unstable fluting and internal tilting modes, but they are not observed experimentally. Configurations with high densities approx. 10/sup 15/ cm/sup -3/ and with lifetimes of 50 to 120 ..mu..s are terminated by an n=2 rotational mode of instability.

Quinn, W.E.

1982-01-01

66

Magnetic fields in astrophysics  

Microsoft Academic Search

The evidence of cosmic magnetism is examined, taking into account the Zeeman effect, beats in atomic transitions, the Hanle effect, Faraday rotation, gyro-lines, and the strength and scale of magnetic fields in astrophysics. The origin of magnetic fields is considered along with dynamos, the conditions for magnetic field generation, the topology of flows, magnetic fields in stationary flows, kinematic turbulent

Ia. B. Zeldovich; A. A. Ruzmaikin; D. D. Sokolov

1983-01-01

67

The effects of magnetic nozzle configurations on plasma thrusters  

NASA Technical Reports Server (NTRS)

Plasma thrusters have been operated at power levels from 10kW to 0.1MW. When these devices have had magnetic fields applied to them which form a nozzle configuration for the expanding plasma, they have shown marked increases in exhaust velocity which is in direct proportion to the magnitude of the applied field. Further, recent results have shown that electrode erosion may be influenced by applied magnetic fields. This research is directed to the experimental and computational study of the effects of applied magnetic field nozzles in the acceleration of plasma flows. Plasma source devices which eliminate the plasma interaction in normal thrusters are studied as most basic. Normal thruster configurations will be studied without applied fields and with applied magnetic nozzle fields. Unique computational studies will utilize existing codes which accurately include transport processes. Unique diagnostic studies will support the experimental studies to generate new data. Both computation and diagnostics will be combined to indicate the physical mechanisms and transport properties that are operative in order to allow scaling and accurate prediction of thruster performance.

York, Thomas M.

1989-01-01

68

The effects of magnetic nozzle configurations on plasma thrusters  

NASA Technical Reports Server (NTRS)

Plasma thrusters have been operated at power levels from 10 kw to 0.1 MW. When these devices have had magnetic fields applied to them which form a nozzle configuration for the expanding plasma, they have shown marked increases in exhaust velocity which is in direct proportion to the magnitude of the applied field. Further, recent results have shown that electrode erosion may be influenced by applied magnetic fields. This research effort is directed to the experimental and computational study of the effects of applied magnetic field nozzles in the acceleration of plasma flows. Plasma source devices which eliminate the plasma interaction in normal thrusters are studied as most basic. Normal thruster configurations were studied without applied fields and with applied magnetic nozzle fields. Unique computational studies utilize existing codes which accurately include transport processes. Unique diagnostic studies supported the experimental studies to generate new data. Both computation and diagnostics were combined to indicate the physical mechanisms and transport properties that are operative in order to allow scaling and accurate prediction of thruster performance.

York, Thomas M.

1990-01-01

69

Magnetic field sensor  

NASA Astrophysics Data System (ADS)

Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

Silva, Nicolas

2012-09-01

70

Effective heat conduction in a configuration with nonoverlapped magnetic islands  

SciTech Connect

The effective radial heat conduction {kappa}{sub eff} in a plasma configuration with nonoverlapped magnetic island chains is assessed by applying an ''optimal path'' method. This approach implies that heat is transported predominantly along paths rendering the minimum temperature variation and is related to the principle of minimum entropy production. Paths combined of up to three radial sections and two segments aligned along magnetic field lines are considered. It is demonstrated that the enhancement of {kappa}{sub eff} over the level of perpendicular heat conduction {kappa}{sub perpendicular} arising due to flows along magnetic field lines is controlled only by the Chirikov parameter and by the value 4b{sub r}{sup 2}{kappa}{sub parallel}/{kappa}{sub perpendicular}, where b{sub r} is the relative amplitude of the radial field resonant harmonic and {kappa}{sub parallel} is the parallel heat conduction.

Gupta, A.; Tokar, M. Z. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ, Trilateral Euregio Cluster, Juelich (Germany)

2008-03-15

71

Dynamic responses of sunspots to their ambient magnetic configuration  

NASA Astrophysics Data System (ADS)

In our earlier study of a revisit of the classic Wilson Effect, it was found that a large proportion of sunspots do not display the geometric effect which is ascribed to a depression of the umbra. It was shown that the presence or absence of the effect, observed close to the limb, depends upon the ambient magnetic configuration of the sunspot. In this follow up study, we look for the impact of changes in ambient magnetic configuration on the measurable properties of sunspots during their disk passage, using observations obtained at the Kodaikanal observatory during 1978-80. Digitized photoheliogram data were used to examine and measure areas of spots and their umbrae for 101 cases. Magnetic field measures published by the Academy of sciences, Leningrad were used to evaluate the ambient magnetic configuration. The results indicate that the extent of magnetic bipolarity is associated with changes in the proportion of the area of the penumbra to that of the umbra. In regular spots, the relative area of penumbra reduces with reduction in the strength of ambient opposite polarity spots and pores. However, in the presence of pore sized blob(s) in penumbra, and with associated emerging fluxes, the penumbra is significantly enlarged. But in the presence of a light bridge or a split umbra, the relative area of penumbra is considerably reduced.

Bagare, S. P.

2011-08-01

72

Magnetic configuration of the distant plasma sheet - ISEE 3 observations  

NASA Technical Reports Server (NTRS)

The influence of the IMF orientation and magnitude and substorm activity on the magnetic configuration of the central plasma sheet at 20-240 earth radii down the geomagnetic tail is investigated on the basis of ISEE-3 data. The results are presented graphically, and high-speed antisolar bulk flows threaded by southward magnetic fields are shown to be present in the distant plasma sheet after periods of substorm activity and southward IMF Bz. The effective dayside reconnection efficiency is estimated as 25 + or - 4 percent, in good agreement with theoretical models.

Slavin, J. A.; Smith, E. J.; Daly, P. W.; Sanderson, T. R.; Wenzel, K.-P.; Lepping, R. P.

1987-01-01

73

Exploring Magnetic Fields  

NSDL National Science Digital Library

In this activity, students investigate the presence of magnetic fields around magnets, the sun and the earth. They will explore magnetic field lines, understand that magnetic lines of force show the strength and direction of magnetic fields, determine how field lines interact between attracting and repelling magnetic poles, and discover that the earth and sun have magnetic properties. They will also discover that magnetic force is invisible and that a "field of force" is a region or space in which one object can attract or repel another.

74

Magnetic fields of galaxies  

Microsoft Academic Search

The current state of the understanding of the magnetic fields of galaxies is reviewed. A simple model of the turbulent dynamo is developed which explains the main observational features of the global magnetic fields of spiral galaxies. The generation of small-scale chaotic magnetic fields in the interstellar medium is also examined. Attention is also given to the role of magnetic

Aleksandr A. Ruzmaikin; Dmitrii D. Sokolov; Anvar M. Shukurov

1988-01-01

75

Magnetic reconnection configurations and particle acceleration in solar flares  

E-print Network

types of solar flares. Upper panel: two-ribbon flares; Lower panel: compact flares. The color showsMagnetic reconnection configurations and particle acceleration in solar flares P. F. Chen, W. J space under different magnetic configurations. Key words: solar flares, magnetic reconnection, particle

Chen, P. F.

76

The Radio Properties and Magnetic Field Configuration in the Crab-like Pulsar Wind Nebula G54.1+0.3  

E-print Network

We present a multifrequency radio investigation of the Crab-like pulsar wind nebula (PWN) G54.1+0.3 using the Very Large Array. The high resolution of the observations reveals that G54.1+0.3 has a complex radio structure which includes filamentary and loop-like structures that are magnetized, a diffuse extent similar to the associated diffuse X-ray emission. But the radio and X-ray structures in the central region differ strikingly, indicating that they trace very different forms of particle injection from the pulsar and/or particle acceleration in the nebula. No spectral index gradient is detected in the radio emission across the PWN, whereas the X-ray emission softens outward in the nebula. The extensive radio polarization allows us to image in detail the intrinsic magnetic field, which is well-ordered and reveals that a number of loop-like filaments are strongly magnetized. In addition, we determine that there are both radial and toroidal components to the magnetic field structure of the pulsar wind nebula...

Lang, Cornelia C; Lu, Fangjun; Clubb, Kelsey

2010-01-01

77

Facility Measures Magnetic Fields  

NASA Technical Reports Server (NTRS)

Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

1991-01-01

78

3-D magnetic configurations for filaments and flares: The role of magnetic dips and bald patches  

Microsoft Academic Search

The 3-D magnetic configuration of a filament and of a low energy flare is reconstructed, using linear magnetohydrostatic (lmhs) extrapolations. In both cases, we find observational signatures of energy release at the locations of computed bald patches separatrices, characterised by field lines which are tangent to the photosphere.The filament was observed on Sept. 25, 1996, in H? with the MSDP

G. Aulanier; B. Schmieder; L. van Driel-Gesztelyi; T. Kucera; P. Dmoulin; C. Fang; N. Mein; J.-C. Vial; P. Mein; Y. H. Tang; C. Deforest

2000-01-01

79

Earths magnetic field  

Microsoft Academic Search

Recent studies of the Paleosecular Variation of lavas (PSVL) by the authors and others, shows that the variability of Earth's magnetic field over the last several million years is less than the variability of the present Earth's magnetic field. The present magnetic field is asymmetric between the northern and southern hemispheres. The dispersion in the southern hemisphere being much greater

N. Opdyke; V. Mejia

2003-01-01

80

Compact torroidal development: Activity plan for field reversed configurations  

NASA Astrophysics Data System (ADS)

The description, goals, status, plans, and approach for the investigation of the properties of a magnetic configuration for plasma confinement identified as the field reversed configuration (FRC) are given. This component of the magnetic fusion development program has been characterized by its potential for physical compactness and a flexible range of output power. The included material represents the second phase of FRC program planning. The first was completed in February 1983, and was reported in DOE/ER-0160; Compact Toroid Development. This planning builds on that previous report and concentrates on the detailed plans for the next several years of the current DOE sponsored program. It has been deliberately restricted to the experimental and theoretical efforts possible within the present scale of effort. A third phase of this planning exercise is to examine the subsequent effort and resources needed to achieve near term (1987 to 1990) FRC technical objectives.

1984-06-01

81

Kinetic Stability of the Field Reversed Configuration  

SciTech Connect

New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). The FRC is an innovative confinement approach that offers a unique fusion reactor potential because of its compact and simple geometry, translation properties, and high plasma beta. One of the most important issues is FRC stability with respect to low-n (toroidal mode number) MHD modes. There is a clear discrepancy between the predictions of standard MHD theory that many modes should be unstable on the MHD time scale, and the observed macroscopic resilience of FRCs in experiments.

E.V. Belova; R.C. Davidson; H. Ji; and M. Yamada

2002-07-09

82

The Magnetic Field  

NSDL National Science Digital Library

This demonstration of the magnetic field lines of Earth uses a bar magnet, iron filings, and a compass. The site explains how to measure the magnetic field of the Earth by measuring the direction a compass points from various points on the surface. There is also an explanation of why the north magnetic pole on Earth is actually, by definition, the south pole of a magnet.

Barker, Jeffrey

83

Magnetic Fields Analogous to electric field, a magnet  

E-print Network

Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic characteristic of elementary particles such as an electron #12;Magnetic Fields Magnetic field lines Direction

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

84

Graphene Nanoribbon in Sharply Localized Magnetic Fields  

E-print Network

We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.

Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal

2011-03-21

85

Reducing Field Distortion in Magnetic Resonance Imaging  

NASA Technical Reports Server (NTRS)

A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

2010-01-01

86

Magnetic Fields on the Surface of the Sun  

NSDL National Science Digital Library

This is a lesson about magnetism in solar flares. Learners will map magnetic fields around bar magnets and investigate how this configuration relates to magnetic fields of sunspots. This activity requires compasses, bar magnets, and a equipment for the instructor to project a PowerPoint or pdf lecture presentation. This is Activity 1 in the Exploring Magnetism in Solar Flares teachers guide.

87

Hybrid equilibria of field-reversed configurations  

SciTech Connect

This paper presents the first detailed model of hybrid equilibria relevant to field-reversed configuration experiments, leading to a system of equations that are solved for a range of fully two-dimensional equilibria. Several features of these highly kinetic objects are explored. The range of equilibria is primarily dependent on a single free parameter related to the flow shear. The level of flow shear has a profound effect on the structure, especially near the separatrix. This likely has a strong influence on both stability and transport properties. Higher flow shear is favorable in every respect. The key factor behind the influence of flow shear is the relatively rapid end loss of unconfined ions. Differences between hybrid and static-fluid equilibrium models are highlighted, including the integrity of surface functions, the effect of flow shear, and the scrape-off layer thickness.

Steinhauer, Loren C. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States)

2011-11-15

88

Mapping Magnetic Field Lines  

NSDL National Science Digital Library

This is a lesson about the magnetic field of a bar magnet. The lesson begins with an introductory discussion with learners about magnetism to draw out any misconceptions that may be in their minds. Then, learners freely experiment with bar magnets and various materials, such as paper clips, rulers, copper or aluminum wire, and pencils, to discover that magnets attract metals containing iron, nickel, and/or cobalt but not most other materials. Next, learners experiment with using a magnetic compass to discover how it is affected by the magnet and then draw the magnetic field lines of the magnet by putting dots at the location of the compass arrow. This is the first lesson in the first session of the Exploring Magnetism teacher guide.

89

Optimized configurations of autostable superconducting magnetic bearings for practical applications  

SciTech Connect

In order to establish an optimized bearing design for a flywheel for energy storage, the authors have studied model bearing configurations involving bulk YBCO pellets and double-dipole magnet configurations. They were interested to see what is the correlation between the maximum attainable levitation force, measured for a typical bearing gap of 3 mm, and the separation between the magnetic poles. Equal polarity (north-north) and alternate polarity (north-south) configurations were investigated. The maximum levitation force was obtained with the alternate polarity arrangement for a separation between the magnetic poles of 6 mm. It represents an increase of 19% compared to a non-optimized configuration. The experiments demonstrate that configurations of superconducting magnetic bearings can be optimized to obtain better levitation properties.

Schoechlin, A.; Ritter, T.; Bornemann, H.J. [Forschungszentrum Karlsruhe GmbH (Germany)] [Forschungszentrum Karlsruhe GmbH (Germany)

1995-11-01

90

Magnetic Field Example 1  

NSDL National Science Digital Library

Clicking on the different links below will produce different magnetic fields in the box above. The wires (perpendicular to the screen) or coils (in and out of the screen) are not visible, but you can determine what they are from the field. You can also click on a point to read off the magnetic field at that place.

Christian, Wolfgang; Belloni, Mario

2008-02-19

91

Three-dimensional Prominence-hosting Magnetic Configurations: Creating a Helical Magnetic Flux Rope  

NASA Astrophysics Data System (ADS)

The magnetic configuration hosting prominences and their surrounding coronal structure is a key research topic in solar physics. Recent theoretical and observational studies strongly suggest that a helical magnetic flux rope is an essential ingredient to fulfill most of the theoretical and observational requirements for hosting prominences. To understand flux rope formation details and obtain magnetic configurations suitable for future prominence formation studies, we here report on three-dimensional isothermal magnetohydrodynamic simulations including finite gas pressure and gravity. Starting from a magnetohydrostatic corona with a linear force-free bipolar magnetic field, we follow its evolution when introducing vortex flows around the main polarities and converging flows toward the polarity inversion line near the bottom of the corona. The converging flows bring the feet of different loops together at the polarity inversion line, where magnetic reconnection and flux cancellation happen. Inflow and outflow signatures of the magnetic reconnection process are identified, and thereby the newly formed helical loops wind around preexisting ones so that a complete flux rope grows and ascends. When a macroscopic flux rope is formed, we switch off the driving flows and find that the system relaxes to a stable state containing a helical magnetic flux rope embedded in an overlying arcade structure. A major part of the formed flux rope is threaded by dipped field lines that can stably support prominence matter, while the total mass of the flux rope is in the order of 4-5 1014 g.

Xia, C.; Keppens, R.; Guo, Y.

2014-01-01

92

Magnetic Field Distribution of Permanent Magnet Magnetized by Static Magnetic Field Generated by HTS Bulk Magnet  

Microsoft Academic Search

Demagnetized rare earth magnets (Nd-Fe-B) can be fully magnetized by scanning them in the intense static fields over 3 T of a HTS bulk magnet which was cooled to the temperature range lower than 77K with use of cryo-coolers and activated by the field of 5 T. We precisely examined the magnetic field distributions of magnetized permanent magnets. The magnetic

Tetsuo Oka; Nobutaka Kawasaki; Satoshi Fukui; Jun Ogawa; Takao Sato; Toshihisa Terasawa; Yoshitaka Itoh; Ryohei Yabuno

2012-01-01

93

Abstract: Quasistatic magnetic fields  

Microsoft Academic Search

A prototype switching system has been developed which can switch 20 kA at 230 V for short periods of time through inductive loads. High power silicon controlled rectifiers are used to switch the National Magnet Laboratory dc generators on and off into a liquid N2 cooled, low impedance high field magnet so that high fields can be generated for a

H. C. Praddaude; S. Foner

1979-01-01

94

Cosmic Magnetic Fields  

Microsoft Academic Search

Most of the visible matter in the Universe is in a plasma state, or more specifically is composed of ionized or partially ionized gas permeated by magnetic fields. Thanks to recent advances on the theory and detection of cosmic magnetic fields there has been a worldwide growing interest in the study of their role on the formation of astrophysical sources

Elisabete M. de Gouveia Dal Pino; Dal Pino

2006-01-01

95

Configuration mixing and deviations of magnetic moments from Schmidt lines  

Microsoft Academic Search

Deviations of nuclear magnetic moments of oddA nuclei from the Schmidt lines are explained by configuration mixing. The general results obtained are applied to several nuclei and the magnitudes of the admixture coefficients necessary to explain the deviations are estimated. The results show that the deviations can be successfully explained only for those nuclei, in which possible configuration admixtures give

P. Vogel

1961-01-01

96

Magnetic Fields in Galaxies  

NASA Astrophysics Data System (ADS)

Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gmez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

Beck, Rainer

97

Interplanetary Magnetic Field Lines  

NSDL National Science Digital Library

This web page provides information and a graphical exercise for students regarding the interaction between magnetic field lines and a plasma. The activity involves tracing a typical interplanetary magnetic field line, dragged out of a location on the Sun by the radial flow of the solar wind. This illustrates the way magnetic field lines are "frozen to the plasma" and the wrapping of field lines due to the rotation of the sun. This is part of the work "The Exploration of the Earth's Magnetosphere". A Spanish translation is available.

Stern, David

2005-04-27

98

Final Report - Effect of Magnetic Configuration on Spheromak Performances, FY2000 - FY2001, Tracking No.00SI008  

Microsoft Academic Search

This is the final report on LDRD SI-funded research to determine the Effect of Magnetic Field Configurations on Spheromak Performance for the years FY2000-FY2001, during which a new set of bias magnetic field coils was used to change the vacuum magnetic field configuration of the SSPX spheromak at LLNL. The USDOE Office of Fusion Energy Science funded the routine operation

D N Hill; E B Hooper; H S McLean; B W Stallard; S Woodruff; R D Wood

2002-01-01

99

Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind  

NASA Technical Reports Server (NTRS)

The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

Burlaga, L. F.; Barouch, E.

1974-01-01

100

Dynamic processes in field-reversed-configuration compact toroids  

SciTech Connect

In this lecture, the dynamic processes involved in field-reversed configuration (FRC) formation, translation, and compression will be reviewed. Though the FRC is related to the field-reversed mirror concept, the formation method used in most experiments is a variant of the field-reversed THETA-pinch. Formation of the FRC eqilibrium occurs rapidly, usually in less than 20 ..mu..s. The formation sequence consists of several coupled processes: preionization; radial implosion and compression; magnetic field line closure; axial contraction; equilibrium formation. Recent experiments and theory have led to a significantly improved understanding of these processes; however, the experimental method still relies on a somewhat empirical approach which involves the optimization of initial preionization plasma parameters and symmetry. New improvements in FRC formation methods include the use of lower voltages which extrapolate better to larger devices. The axial translation of compact toroid plasmas offers an attractive engineering convenience in a fusion reactor. FRC translation has been demonstrated in several experiments worldwide, and these plasmas are found to be robust, moving at speeds up to the Alfven velocity over distances of up to 16 m, with no degradation in the confinement. Compact toroids are ideal for magnetic compression. Translated FRCs have been compressed and heated by imploding liners. Upcoming experiments will rely on external flux compression to heat a translater FRC at 1-GW power levels. 39 refs.

Rej, D.J.

1987-01-01

101

Magnetic Bar Field Model  

NSDL National Science Digital Library

The EJS Magnetic Bar Field Model shows the field of a bar magnet and has a movable compass that reports the magnetic field values. The bar magnet model is built by placing a group of magnetic dipoles along the bar magnet. You can modify this simulation if you have Ejs installed by right-clicking within the plot and selecting Open Ejs Model from the pop-up menu item. The Magnetic Bar Field model was created using the Easy Java Simulations (Ejs) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. Double clicking the ejs_em_MagneticBarField.jar file will run the program if Java is installed. Ejs is a part of the Open Source Physics Project and is designed to make it easier to access, modify, and generate computer models. Additional Ejs models are available. They can be found by searching ComPADRE for Open Source Physics, OSP, or Ejs.

Christian, Wolfgang; Franciscouembre; Cox, Anne

2009-09-18

102

The role of geomagnetic field configuration in EMIC wave generation  

Microsoft Academic Search

Global configuration of the geomagnetic field plays an important role in magnetospheric dynamics. We study the effect of field configuration on electromagnetic ion-cyclotron (EMIC) wave growth with test particle simulations. As an initial study, we quantitatively examine the accuracy of several empirical geomagnetic field models widely in use. We study two years characterized by very different space weather conditions: 1996

J. P. McCollough

2010-01-01

103

Magnetic field tomography, helical magnetic fields and Faraday depolarization  

NASA Astrophysics Data System (ADS)

Wide-band radio polarization observations offer the possibility to recover information about the magnetic fields in synchrotron sources, such as details of their three-dimensional configuration, that has previously been inaccessible. The key physical process involved is the Faraday rotation of the polarized emission in the source (and elsewhere along the wave's propagation path to the observer). In order to proceed, reliable methods are required for inverting the signals observed in wavelength space into useful data in Faraday space, with robust estimates of their uncertainty. In this paper, we examine how variations of the intrinsic angle of polarized emission ?0 with the Faraday depth ? within a source affect the observable quantities. Using simple models for the Faraday dispersion F(?) and ?0(?), along with the current and planned properties of the main radio interferometers, we demonstrate how degeneracies among the parameters describing the magneto-ionic medium can be minimized by combining observations in different wavebands. We also discuss how depolarization by Faraday dispersion due to a random component of the magnetic field attenuates the variations in the spectral energy distribution of the polarization and shifts its peak towards shorter wavelengths. This additional effect reduces the prospect of recovering the characteristics of the magnetic field helicity in magneto-ionic media dominated by the turbulent component of the magnetic field.

Horellou, C.; Fletcher, A.

2014-07-01

104

Magnetic Fields, Flares & Forecasts  

Microsoft Academic Search

A 2D wavelet transform modulus maxima (WTMM) method is used to characterise the complexity of the distribution of the photospheric magnetic field of active regions. The WTMM method offers increased accuracy and reliability over previous fractal and multifractal methods. The multifractal spectrum of both quiet Sun and active region magnetic features are presented. It is shown that the multifractal nature

Paul A. Conlon; P. Kestener; R. McAteer; P. Gallagher

2009-01-01

105

Solar Wind Magnetic Fields  

NASA Technical Reports Server (NTRS)

The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

Smith, E. J.

1995-01-01

106

NCSX MAGNETIC CONFIGURATION FLEXIBILITY AND ROBUSTNESS  

E-print Network

a combination of nonaxisymmetric modular coils and axi- symmetric toroidal and poloidal field coils. The primary computational tool for the studies is STELLOPT, a free- boundary optimization code that varies coil currents. There are six coils in each of the three periods of the machine. Stellarator symmetry implies that within any

Hudson, Stuart

107

Magnetic field screening effect in electroweak model  

E-print Network

It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of that phenomenon is conditioned by features of the electro-weak interaction, namely, there is mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that corresponding magnetic bound state exists in the electroweak theory and can be detected in experiment.

Bakry, A; Zhang, P M; Zou, L P

2014-01-01

108

Magnetic properties of actinide elements having the 5f6 and 5f7 electronic configurations  

Microsoft Academic Search

Magnetic susceptibility measurements have been made on multimicrogram quantities of 243AmF3, 248CmF4, 248CmO2, and 248CmBaO3 samples (nominally the 5f6 electronic configuration) and on 248Cm2O3, 248CmF3, 249BkF4, and 249BkO2 (nominally the 5f7 electronic configuration) in the temperature range 4.2-300 K and in magnetic fields up to 1650 G. The experimentally determined effective magnetic moments and the Curie-Weiss constants for these compounds

S. E. Nave; R. G. Haire; Paul G. Huray

1983-01-01

109

Magnetic properties of actinide elements having the 5f⁶ and 5f⁷ electronic configurations  

Microsoft Academic Search

Magnetic susceptibility measurements have been made on multimicrogram quantities of ²⁴³AmF, ²⁴⁸CmF, ²⁴⁸CmO, and ²⁴⁸CmBaO samples (nominally the 5f⁶ electronic configuration) and on ²⁴⁸CmO, ²⁴⁸CmF, ²⁴⁹BkF, and ²⁴⁹BkO (nominally the 5f⁷ electronic configuration) in the temperature range 4.2--300 K and in magnetic fields up to 1650 G. The experimentally determined effective magnetic moments and the Curie-Weiss constants for these compounds

S. E. Nave; R. G. Haire; P. G. Huray

1983-01-01

110

Stable and unstable invariant manifolds in a partially chaotic magnetic configuration generated by nonlinear reconnection  

NASA Astrophysics Data System (ADS)

A numerical contour dynamics code has been employed to calculate the stable and unstable manifolds related to two interacting magnetic island chains. The magnetic configuration is generated by a nonlinear reconnection process described in D. Borgogno et al. [Phys. Plasmas. 12, 032309 (2005)]. The appearance of the first homoclinic and heteroclinic intersections of the dominant manifolds are shown and one of the associated uniformly hyperbolic orbits is given. The stickiness of the field lines around the island and the eventual development of global stochasticity are discussed. The basic geometry of the magnetic configuration is periodic so that the structure of the manifolds may be compared with the one obtained with Poincar plots.

Borgogno, D.; Grasso, D.; Pegoraro, F.; Schep, T. J.

2008-10-01

111

Planetary magnetic fields  

Microsoft Academic Search

The past several years have seen dramatic developments in the study of planetary magnetic fields, including a wealth of new data, mainly from the Galilean satellites and Mars, together with major improvements in our theoretical modeling effort of the dynamo process believed responsible for large planetary fields. These dynamos arise from thermal or compositional convection in fluid regions of large

David J. Stevenson

2003-01-01

112

Graphene Magnetic Field Sensors  

Microsoft Academic Search

Graphene extraordinary magnetoresistance (EMR) devices have been fabricated and characterized in varying magnetic fields at room temperature. The atomic thickness, high carrier mobility and high current carrying capabilities of graphene are ideally suited for the detection of nanoscale sized magnetic domains. The device sensitivity can reach 10 mV\\/Oe, larger than state of the art InAs 2DEG devices of comparable size

Simone Pisana; Patrick M. Braganca; Ernesto E. Marinero; Bruce A. Gurney

2010-01-01

113

Magnetic fields around black holes  

NASA Astrophysics Data System (ADS)

Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our Newtonian results are excellent approximations for slowly spinning black holes. We proceed to address the issue of the spin dependence of the Blandford & Znajek power. The result we choose to highlight is our finding that given the validity of our assumption for the dynamical behavior of the so-called plunge region in black hole accretors, rotating black holes produce maximum Poynting flux via the Blandford & Znajek process for a black hole spin parameter of about a [approximate] 0.8. This is contrary to the conventional claim that the maximum electromagnetic flux is achieved for highest black hole spin.

Garofalo, David A. G.

114

Configuration Mixing and Magnetic Moments of Odd Nuclei  

Microsoft Academic Search

The deviations of magnetic moments of odd nuclei from the Schmidt lines are calculated by taking into account the effect of departure from the single-particle model in nuclear states caused by configuration mixing. The calculation are based upon the simple peturbation theory and the values of the deviations are estimated by adopting the two-body interaction strengths and integrals which are

Akito Arima; Hisashi Horie

1954-01-01

115

Magnetic Field and Life  

NSDL National Science Digital Library

This is a lesson where learners explore magnetic forces, fields, and the relationship between electricity. Learners will use this information to infer how the Earth generates a protective magnetic field. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes, prerequisite concepts, common misconceptions, student journal and reading. This is lesson seven in the Astro-Venture Geology Training Unit that were developed to increase students' awareness of and interest in astrobiology and the many career opportunities that utilize science, math and technology skills. The lessons are designed for educators to use with with the Astro-Venture multimedia modules.

116

Hidden magnetic configuration in epitaxial La1-rSrzMnO3 films  

SciTech Connect

We present an unreported magnetic configuration in epitaxial La{sub 1-x}Sr{sub x}MnO{sub 3} (x {approx} 0.3) (LSMO) films grown on strontium titanate (STO). X-ray magnetic circular dichroism indicates that the remanent magnetic state of thick LSMO films is opposite to the direction of applied magnetic field. Spectroscopic and scattering measurements reveal that the average Mn valence varies from mixed Mn{sup 3+}/Mn{sup 4+} to an enriched Mn{sup 3+} region near the STO interface, resulting in a compressive lattice along a, b-axis and a possible electronic reconstruction in the Mn e{sub g} orbital (d{sub 3z{sup 2}-r{sup 2}}). This reconstruction may provide a mechanism for coupling the Mn{sup 3+} moments antiferromagnetically along the surface normal direction, and in turn may lead to the observed reversed magnetic configuration.

Kao, Chi-Chang

2011-05-23

117

Stable magnetic fields in stellar interiors  

NASA Astrophysics Data System (ADS)

We investigate the 50-year old hypothesis that the magnetic fields of the Ap stars are stable equilibria that have survived in these stars since their formation. With numerical simulations we find that stable magnetic field configurations indeed appear to exist under the conditions in the radiative interior of a star. Confirming a hypothesis by Prendergast (1956, ApJ, 123, 498), the configurations have roughly equal poloidal and toroidal field strengths. We find that tori of such twisted fields can form as remnants of the decay of an unstable random initial field. In agreement with observations, the appearance at the surface is an approximate dipole with smaller contributions from higher multipoles, and the surface field strength can increase with the age of the star. The results of this paper were summarised by Braithwaite & Spruit (2004, Nature, 431, 891).

Braithwaite, J.; Nordlund, .

2006-05-01

118

Magnetic configuration sweep control in heliac type stellarators  

NASA Astrophysics Data System (ADS)

A novel magnetic configuration sweep control system for the TJ-II heliac device is described. The system is prepared to establish a reference for plasma, torus or vessel current while the coil configuration currents are swept during a single plasma discharge. It can also be run in a special simulation mode, which does not require powering the TJ-II device, intended for commissioning and experiment preparation purposes. Preliminary tests with the system have shown its ability to perform rotational transform scans while establishing a waveform for torus current independently, despite variable plasma conditions. This opens up new experimental possibilities to study the influence of rotational transform and shear independently.

Romero, J. A.; Pacios, L.; de la Pea, A.; Lapayese, F.; Ascasbar, E.

2014-04-01

119

On magnetic field ``reconstruction''  

NASA Astrophysics Data System (ADS)

Context: Solanki and colleagues have presented intriguing 3D reconstructions of magnetic fields from the vector polarimetry of the He I 1083 nm multiplet. Aims: In this Research Note I re-examine the reconstruction technique used. Methods: Using a simple dipole field, I examine the reconstruction technique as applied to the theoretical fields. I assume that the He line forms in two locations, (1) along the magnetic loops and (2) in a horizontal plane. Results: The planar interpretation can account for all aspects of the data, but the loop interpretation has geometrical and physical problems. Conclusions: The data by themselves are not sufficient to determine which picture is more applicable. Nevertheless I argue that the planar interpretation makes more physical sense and that the early reconstructions lead to spurious results. I suggest additional tests that might help constrain the problem further.

Judge, P. G.

2009-01-01

120

Nuclear Magnetic Resonance and Magnetic Field Measurements  

NSDL National Science Digital Library

This laboratory is designed for students to become familiar with the principles and detection techniques of Nuclear Magnetic Resonance (NMR), examine the relationship between current and magnetic field in an electromagnet, and gain experience in the use of magnetic field measurement techniques.

2012-01-04

121

Vacuum Energy of Quantum Fields in Classical Background Configurations  

Microsoft Academic Search

The ground state energy of a quantum field in the background of classical field configurations is considered. The subject of the ground state energy in framework of the quantum field theory is explained. The short review of calculation methods (generalized zeta function and heat kernel expansion) and their mathematical foundations is given. We use the zeta-functional regularization and express the

I. Drozdov

2003-01-01

122

The Earth's Magnetic Field  

NSDL National Science Digital Library

This section of the Windows to the Universe website provides information and images about Earth's magnetic field (the magnetosphere), including detailed information about the aurora borealis, magnets, and solar wind. Windows to the Universe is a user-friendly learning system pertaining to the Earth and Space sciences. The objective of this project is to develop an innovative and engaging website that includes a rich array of documents, including images, movies, animations, and data sets that explore the Earth and Space sciences and the historical and cultural ties between science, exploration and the human experience. Links at the top of each page allow users to navigate between beginner, intermediate and advanced levels.

Johnson, Roberta

2000-07-01

123

The Heliospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The Heliospheric Magnetic Field (HMF) is the physical framework in which energetic particles and cosmic rays propagate. Changes in the large scale structure of the magnetic field lead to short- and long term changes in cosmic ray intensities, in particular in anti-phase with solar activity. The origin of the HMF in the corona is well understood and inner heliospheric observations can generally be linked to their coronal sources. The structure of heliospheric magnetic polarities and the heliospheric current sheet separating the dominant solar polarities are reviewed here over longer than a solar cycle, using the three dimensional heliospheric observations by Ulysses. The dynamics of the HMF around solar minimum activity is reviewed and the development of stream interaction regions following the stable flow patterns of fast and slow solar wind in the inner heliosphere is described. The complex dynamics that affects the evolution of the stream interaction regions leads to a more chaotic structure of the HMF in the outer heliosphere is described and discussed on the basis of the Voyager observations. Around solar maximum, solar activity is dominated by frequent transients, resulting in the interplanetary counterparts of Coronal Mass Ejections (ICMEs). These produce a complex aperiodic pattern of structures in the inner heliosphere, at all heliolatitudes. These structures continue to interact and evolve as they travel to the outer heliosphere. However, linking the observations in the inner and outer heliospheres is possible in the case of the largest solar transients that, despite their evolutions, remain recognizably large structures and lead to the formation of Merged Interaction Regions (MIRs) that may well form a quasi-spherical, "global" shell of enhanced magnetic fields around the Sun at large distances. For the transport of energetic particles and cosmic rays, the fluctuations in the magnetic field and their description in alternative turbulent models remains a very important research topic. These are also briefly reviewed in this paper.

Balogh, Andr; Erds, Gza

2013-06-01

124

Classical field configurations and infrared slavery  

NASA Astrophysics Data System (ADS)

The problem of determining the energy of two spinor particles interacting through massless-particle exchange is analyzed using the path-integral method. A form for the long-range interaction energy is obtained by analyzing an abridged vertex derived from the parent theory. This abridged vertex describes the radiation of zero-momentum particles by pointlike sources. A path-integral formalism for calculating the energy of the radiation field associated with this abridged vertex is developed and applications are made to determine the energy necessary for adiabatic separation of two sources in quantum electrodynamics and for an SU(2) Yang-Mills theory. The latter theory is shown to be consistent with confinement via infrared slavery.

Swanson, Mark S.

1987-09-01

125

Reducing Magnetic Fields Around Power Cables  

NASA Technical Reports Server (NTRS)

Four power conductors arranged symmetrically about fifth grounded conductor. Four current-carrying wires arranged symmetrically around central grounded wire that nominally carries no current. In comparison with other cable configurations, this one results in smaller magnetic fields around cable. Technique for use when size of wires in cable makes twisting impractical.

Sargent, Noel B.; Gitelman, Florida; Pongracz-Bartha, Edward; Spalding, John

1993-01-01

126

Normal glow discharge in axial magnetic field  

NASA Astrophysics Data System (ADS)

Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1–5 Torr, emf of power supply 1–2 kV, and magnetic field induction B = 0–0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

Surzhikov, S.; Shang, J.

2014-10-01

127

Ferrofluid drops in rotating magnetic fields  

Microsoft Academic Search

Drops of a ferrofluid floating in a non-magnetic liquid of the same density and spun by a rotating magnetic field are investigated experimentally and theoretically. The parameters for the experiment are chosen such that different stationary drop shapes including non-axis-symmetric configurations could be observed. Within an approximate theoretical analysis the character of the occurring shape bifurcations, the different stationary drop

Alexander V. Lebedev; Andreas Engel; Konstantin I. Morozov; Heiko Bauke

2003-01-01

128

Magnetic Fields, Flares & Forecasts  

NASA Astrophysics Data System (ADS)

A 2D wavelet transform modulus maxima (WTMM) method is used to characterise the complexity of the distribution of the photospheric magnetic field of active regions. The WTMM method offers increased accuracy and reliability over previous fractal and multifractal methods. The multifractal spectrum of both quiet Sun and active region magnetic features are presented. It is shown that the multifractal nature of the quiet Sun is significantly different from that of an active region. As such, a method is proposed to seperate the information corresponding to the multifractal spectrum of an active region from the surrounding quite Sun texture. The WTMM method and segmentation procedure are shown to detect the internal restructuring of active region magnetic features prior to flaring. We detect two thresholds (Haussdorf dimension > 1.2 and Holder Exponent > -0.7) as possible indicators for conditions favourable to flaring.

Conlon, Paul A.; Kestener, P.; McAteer, R.; Gallagher, P.

2009-05-01

129

The Primordial Origin Model of Magnetic Fields in Spiral Galaxies  

NASA Astrophysics Data System (ADS)

We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.

Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro

2010-10-01

130

Magnetic fields and cancer  

SciTech Connect

This letter is a response to an article by Savitz and Kaune, EHP 101:76-80. W-L wire code was applied to data from a 1988 Denver study, and an association was reported between high W-L wire code and childhood cancer. This author discusses several studies and provides explanations which weakens the argument that classification error resulted in an appreciable reduction in the association between W-L high wire code and childhood cancer. In conclusion, the fact that new wire code is only weakly correlated with magnetic field measurements (in the same manner as the original W-L wire code) suggests that the newly reported stronger association with childhood cancer is likely due to factors other than magnetic fields. Differential residential mobility and differential residential age are two possible explanations and are suggestive that the reported association may be false.

Jones, T.L.

1993-10-01

131

Magnetic Field of the Earth  

NSDL National Science Digital Library

Students can learn about how the magnetic field of the earth is similar to magnets. Go to the following link: Magnetic Field of the Earth 1. What makes the earth like a magnet? 2. How do we measure magnetism? Be sure to check out the fun games and activities on this web site too!! Now click on the following link and listen to a 2 minute presentation about magnetism: Pulse Planet Next go to ...

Merritt, Mrs.

2005-10-18

132

Ionospheric currents and field-aligned currents generated by dynamo action in an asymmetric Earth magnetic field  

Microsoft Academic Search

To investigate the influence of the magnetic field configuration on large-scale ionospheric electrodynamics, a geomagnetic field coordinate system based on Euler potentials is built for three magnetic field configurations: dipole, tilted dipole, and a revision of the International Geomagnetic Reference Field (IGRF). The two-dimensional ionospheric dynamo equation is expressed in this framework under the assumptions of equipotential field lines and

P. Le Sager; T. S. Huang

2002-01-01

133

Magnetic Configurations Related to the Coronal Heating and Solar Wind Generation I. Twist and Expansion Profiles of Magnetic Loops Produced by Flux Emergence  

E-print Network

The generation of outflows from the Sun known as solar winds is coupled with the heating of the solar corona, and both processes are operated in magnetic structures formed on the Sun. To study the magnetic configuration responsible for these processes, we use three-dimensional magnetohydrodynamic simulations to reproduce magnetic structures via flux emergence and investigate their configurations. We focus on two key quantities characterizing a magnetic configuration: the force-free parameter alpha and the flux expansion rate fex, the former of which represents how much a magnetic field is twisted while the latter represents how sharply a magnetic field expands. We derive distributions of these quantities in an emerging flux region. Our result shows that an emerging flux region consists of outer part where a magnetic loop takes a large flux expansion rate but a small value of alpha at their photospheric footpoints, and inner part occupied by those loops where a strong electric current flows. We also investigat...

Lee, Hwanhee

2014-01-01

134

AC Magnetic Field Survey Report  

E-print Network

AC Magnetic Field Survey Report of Literature Building - 3000 University of California San Diego:..........................................................................................................2 ELF OR AC MAGNETIC FIELD CHARACTERISTICS:...............................................2 UNITS of California San Diego La Jolla, California PROJECT: AC Magnetic Field Survey SCOPE: The scope of this project

Krstic, Miroslav

135

The WIND magnetic field investigation  

Microsoft Academic Search

The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and

R. P. Lepping; M. H. Ac?na; L. F. Burlaga; W. M. Farrell; J. A. Slavin; K. H. Schatten; F. Mariani; N. F. Ness; F. M. Neubauer; Y. C. Whang; J. B. Byrnes; R. S. Kennon; P. V. Panetta; J. Scheifele; E. M. Worley

1995-01-01

136

Magnetic Field Topology in Jets  

NASA Technical Reports Server (NTRS)

We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

Gardiner, T. A.; Frank, A.

2000-01-01

137

Low field magnetic resonance imaging  

DOEpatents

A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

2010-07-13

138

CSEM-steel hybrid wiggler/undulator magnetic field studies  

SciTech Connect

Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 kOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields.

Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

1985-05-01

139

NMR at low magnetic fields  

NASA Astrophysics Data System (ADS)

NMR provides outstanding information in chemistry and in medicine. But the equipment is expensive as high-field magnets are employed. Low-field NMR works with inexpensive permanent magnets. Until recently these did not provide fields sufficiently homogeneous for spectroscopy and were mostly used for relaxation measurements. Relaxation can also be measured outside the magnet, and small mobile NMR devices have been developed for non-destructive testing of large objects. Today small stray-field magnets and small magnets with homogeneous fields are available for relaxation analysis, imaging, and spectroscopy. Their availability is believed to be essential for shifting NMR analysis from a specialist's tool to a convenience tool.

Blmich, Bernhard; Casanova, Federico; Appelt, Stephan

2009-08-01

140

Magnetic Fields in Irregular Galaxies  

E-print Network

Magnetic fields are an important component of the interstellar medium, especially in low-mass galaxies like irregulars where the magnetic pressure may be significant. However, few irregular galaxies have observed magnetic field structures. Using the VLA, the GBT, and the ATCA, we have observed several irregular galaxies in the radio continuum to determine their magnetic field structures. Here we report on our results for the galaxies NGC 4214 and NGC 1569.

Amanda A. Kepley; Stefanie Muehle; Eric M. Wilcots; John Everett; Ellen Zweibel; Timothy Robishaw; Carl Heiles

2007-08-24

141

Magnetic Fields in Protostellar Disks  

E-print Network

· Shear in disc may wind up field or drive MRI · Equipartition field in the minimum solar nebula to the shear in the disc? ­ which form of diffusion is dominant? logn/nH (s-1) M+ C+ m+ e He+ H+ H3 instability (MRI) ­ disc-driven winds Magnetic fields · Magnetic fields play an important role during star

Wardle, Mark

142

Magnetic correlations between two Kondo impurities with two magnetic configurations: Narrow-band limit  

NASA Astrophysics Data System (ADS)

The lowest excitation energy and the magnetic correlations between two magnetic impurities are analyzed within the two-magnetic-impurity model Hamiltonian. The model includes two magnetic ions that can exist in two valence states and a band of conduction electrons. The two localized states represent the ground states of the ionic configurations (5f)n and (5f), assumed to be a doublet and a triplet, respectively. In the zero band-width limit, three parameters characterize this model: the energy difference between the magnetic configurations (?), the localized-extended-state hybridization energy (V), and the relationship between the Fermi wavelength and the distance r? between the magnetic ions (?=kr?). For ??0, the strong coupling regime takes place and the physics that governs the ground state depends on ?/V. For V?-?, the highest spin configuration is favored, and the model shows a triplet ground state and the coexistence of strong ferromagnetic (F) correlations between the impurities with the Kondo physics of two magnetic impurities. For V<-?, with major charge fluctuations between the magnetic configurations, a singlet ground state occurs and antiferromagnetic (AF) correlations between the impurities appear. When ? increases, the decoupling of the impurities proceeds and decreases, finally for ?=?/2 the decoupled limit takes place and the model is reduced to two independent ions (=0). For a narrow region of ?/V, when ? increases, the model shows the crossover from singlet (AF) ground state to triplet (F) ground state.

Allub, R.

2013-07-01

143

The Heliospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

Owens, Mathew J.; Forsyth, Robert J.

2013-11-01

144

Photonic Magnetic Field Sensor  

NASA Astrophysics Data System (ADS)

Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

Wyntjes, Geert

2002-02-01

145

Plasma transport in a simulated magnetic-divertor configuration  

SciTech Connect

The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.

Strawitch, C. M.

1981-03-01

146

Magnetic Fields: Visible and Permanent.  

ERIC Educational Resources Information Center

Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

Winkeljohn, Dorothy R.; Earl, Robert D.

1983-01-01

147

Plasma separation from magnetic field lines in a magnetic nozzle  

NASA Technical Reports Server (NTRS)

This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

1993-01-01

148

Testing the configurable analog blocks of field programmable analog arrays  

Microsoft Academic Search

The problem of testing the configurable analog blocks (CABs) of field programmable analog arrays (FPAAs) is addressed in This work. The considered fault model comprises deviations in the nominal values of CAB programmable capacitors, deviations in the programmable gains of CAB input amplifiers and stuck-on\\/stuck-open faults in CAB switches. The problem of test stimuli generation is solved, in a first

T. Balen; F. Azais; M. Lubaszewski; M. Renovell

2004-01-01

149

Testing the Configurable Analog Blocks of Field Programmable Analog Arrays  

Microsoft Academic Search

The problem of testing the Configurable Analog Blocks (CABs) of Field Programmable Analog Arrays (FPAAs) is addressed in this paper. The considered fault model comprises deviations in the nominal values of CAB programmable capacitors, deviations in the programmable gains of CAB input amplifiers and stuck- on\\/stuck-open faults in CAB switches. The problem of test stimuli generation is solved, in a

Tiago R. Balen; Antonio Andrade Jr.; Florence Azas; Michel Renovell; Marcelo Lubaszewski

2004-01-01

150

Simulation of viscoelastic flows using Brownian configuration fields  

Microsoft Academic Search

In this paper we present a new approach for calculating viscoelastic flows. The polymer stress is not determined from a closed-form constitutive equation, but from a microscopic model. In this description, we replace the collection of individual polymer molecules by an ensemble of configuration fields, representing the internal degrees of freedom of the polymers. Similar to the motion of real

M. A Hulsen; A. P. G van Heel; B. H. A. A van den Brule

1997-01-01

151

(version 6/26/06) Magnetic Fields  

E-print Network

where the magnetic fields of the Earth and the bar magnet sum to zero. INTRODUCTION A magnetic field(version 6/26/06) Magnetic Fields GOALS (1) To visualize the magnetic fields produced by several to trace out the magnetic field lines of a single bar magnet on a large sheet of paper. (3) To calculate

Collins, Gary S.

152

Magnetic Propeller for Uniform Magnetic Field Levitation  

E-print Network

Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

Mark Krinker; Alexander Bolonkin

2008-07-12

153

NATIONAL HIGH MAGNETIC FIELD LABORATORY  

E-print Network

and testing areas, magnet experiment cells, and laser laboratory areas. The laboratory is used 24 hours perNATIONAL HIGH MAGNETIC FIELD LABORATORY NHMFL FLORIDA STATE UNIVERSITY SAFETY PROCEDURE SP-3 TITLE Dalton ______________________________________________________ ASSISTANT DIRECTOR, ENVIRONMENTAL, HEALTH

Weston, Ken

154

The ASTROMAG superconducting magnet facility configured for a free flying satellite  

SciTech Connect

ASTROMAG is a particle astrophysics facility that was originally configured for the Space Station. The heart of the ASTROMAG facility is a large superconducting magnet which is cooled using superfluid helium. The task of resizing the facility so that it will fly in a satellite in a high angle of inclination orbit is driven by the launch weight capability of the launch rocket and the desire to be able to do nearly the same physics as the Space Station version of ASTROMAG. In order to reduce the launch weight, the magnet and its cryogenic system had to be downsized, yet the integrated field generated by the magnet in the particle detectors has to match the Space Station version of the magnet. The use of aluminum matrix superconductor and oriented composite materials in the magnet insulation permits one to achieve this goal. The net magnetic dipole moment from the ASTROMAG magnet must be small to minimize the torque due to interaction with the earth's magnetic field. The ASTROMAG magnet consists of identical two coils 1.67 meters apart. The two coils are connected in series in persistent mode. Each coil is designed to carry 2.34 million ampere turns. Both coils are mounted on the same magnetic axis and they operate at opposite polarity. This reduces the dipole moment by a factor of more than 1000. This is tolerable for the Space Station version of the magnet. A magnet operating on a free flying satellite requires additional compensation. This report presents the magnet parameters of a free flying version of ASTROMAG and the parameters of the space cryogenic system for the magnet. 12 refs., 6 figs.

Green, M.A.; Smoot, G.F.

1991-06-01

155

The Astromag Superconducting Magnet Facility Configured for a FreeFlying Satellite  

SciTech Connect

ASTROMAG is a particle astrophysics facility that was originally configured for the Space Station. The heart of the ASTROMAG facility is a large superconducting magnet which is cooled using superfluid helium. The task of resizing the facility so that it will fly in a satellite in. a high angle of inclination orbit is driven by the launch weight capability of the launch rocket and the desire to be able to do nearly the same physics as the Space Station version of ASTROMAG. In order to reduce the launch weight, the magnet and its cryogenic system had to be downsized, yet the integrated field generated by the magnet in the particle detectors has to match the Space Station version of the magnet. The use of aluminum matrix superconductor and oriented composite materials in the magnet insulation permits one to achieve this goal. The net magnetic dipole moment from the ASTROMAG magnet must be small to minimize the torque due to interaction with the earth's magnetic field. The ASTROMAG magnet consists of identical two coils 1.67 meters apart. The two coils are connected in series in persistent mode. Each coil is designed to carry 2.34 million ampere turns. Both coils are mounted on the same magnetic axis and they operate at opposite polarity. This reduces the dipole moment by a factor of more than 1000. This is tolerable for the Space Station version of the magnet. A magnet operating on a free flying satellite requires additional compensation. This report presents the magnet parameters of a free flying version of ASTROMAG and the parameters of the space cryogenic system for the magnet.

Green, M.A.; Smoot, George F.

1991-06-01

156

Understanding the Chromospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The chromospheric magnetic field is an important and essential component for understanding solar atmospheric fields. Due to the problems of polarization radiation transfer in the chromosphere and the low detective sensitivity of chromospheric spectrum lines, observations of chromospheric magnetic fields are very difficult, so studies of chromospheric fields are infrequent. However, the understanding of chromospheric fields is evolving. In this report, we summarize our current empirical knowledge and basic physical understanding of chromospheric fields. We concentrate on the comparison of magnetic fields in the photosphere and chromosphere, and then display their difference.

Jin, C. L.; Harvey, J. W.; Pietarila, A.

2014-10-01

157

Reconnection of Magnetic Fields  

NASA Astrophysics Data System (ADS)

Preface; Part I. Introduction: 1.1 The Sun E. R. Priest; 1.2 Earth's magnetosphere J. Birn; Part II. Basic Theory of MHD Reconnection: 2.1 Classical theory of two-dimensional reconnection T. G. Forbes; 2.2 Fundamental concepts G. Hornig; 2.3 Three-dimensional reconnection in the absence of magnetic null points G. Hornig; 2.4 Three-dimensional reconnection at magnetic null points D. Pontin; 2.5 Three-dimensional flux tube reconnection M. Linton; Part III. Basic Theory of Collisionless Reconnection: 3.1 Fundamentals of collisionless reconnection J. Drake; 3.2 Diffusion region physics M. Hesse; 3.3 Onset of magnetic reconnection P. Pritchett; 3.4 Hall-MHD reconnection A. Bhattacharjee and J. Dorelli; 3.5 Role of current-aligned instabilities J. Bchner and W. Daughton; 3.6 Nonthermal particle acceleration M. Hoshino; Part IV. Reconnection in the Magnetosphere: 4.1 Reconnection at the magnetopause: concepts and models J. G. Dorelli and A. Bhattacharjee; 4.2 Observations of magnetopause reconnection K.-H. Trattner; 4.3 On the stability of the magnetotail K. Schindler; 4.4 Simulations of reconnection in the magnetotail J. Birn; 4.5 Observations of tail reconnection W. Baumjohann and R. Nakamura; 4.6 Remote sensing of reconnection M. Freeman; Part V. Reconnection in the Sun's Atmosphere: 5.1 Coronal heating E. R. Priest; 5.2 Separator reconnection D. Longcope; 5.3 Pinching of coronal fields V. Titov; 5.4 Numerical experiments on coronal heating K. Galsgaard; 5.5 Solar flares K. Kusano; 5.6 Particle acceleration in flares: theory T. Neukirch; 5.7 Fast particles in flares: observations L. Fletcher; 6. Open problems J. Birn and E. R. Priest; Bibliography; Index.

Birn, J.; Priest, E. R.

2007-01-01

158

Separatrix radius measurement of field-reversed configuration plasma in FRX-L  

SciTech Connect

Magnetic pickup coils and single turn flux loops are installed on the FRX-L device. The combination of the two measurements provides the excluded flux radius that approximates the separatrix radius of the field-reversed configuration (FRC) plasma. Arrays of similar probes are used to map out local magnetic field dynamics beyond both ends of the theta-coil confinement region to help understand the effects of cusp locations on flux trapping during the FRC formation process. Details on the probe design and system calibrations are presented. The overall system calibration of excluded flux radius measurement is examined by replacing FRC plasma with a known radius aluminum conductor cylinder.

Zhang, S.Y.; Tejero, E.M.; Taccetti, J.M.; Wurden, G.A.; Intrator, T.P.; Waganaar, W.J.; Perkins, R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2004-10-01

159

Exposure guidelines for magnetic fields  

SciTech Connect

The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

Miller, G.

1987-12-01

160

Magnetic field studies at Jupiter by Voyager 1: preliminary results  

Microsoft Academic Search

Results obtained by the Goddard Space Flight Center magnetometers on Voyager 1 concerning the large scale configuration of the Jovian bow shock and magnetopause, and the magnetic field in both the inner and outer magnetosphere are highlighted. There is evidence that a magnetic tail extending away from the planet on the nightside is formed by the solar wind-Jovian field interaction.

N. F. Ness; M. H. Acuna; R. P. Lepping; L. F. Burlaga; K. W. Behannon; F. M. Neubauer

1979-01-01

161

Magnetic-field-dosimetry system  

DOEpatents

A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1981-01-21

162

Magnetic fields in massive stars  

E-print Network

Although indirect evidence for the presence of magnetic fields in high-mass stars is regularly reported in the literature, the detection of these fields remains an extremely challenging observational problem. We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

S. Hubrig

2007-03-09

163

The Galileo magnetic field investigation  

Microsoft Academic Search

The Galileo Orbiter carries a complement of fields and particles instruments designed to provide data needed to shed light on the structure and dynamical variations of the Jovian magnetosphere. Many questions remain regarding the temporal and spatial properties of the magnetospheric magnetic field, how the magnetic field maintains corotation of the embedded plasma and the circumstances under which corotation breaks

M. G. Kivelson; K. K. Khurana; J. D. Means; C. T. Russell; R. C. Snare

1992-01-01

164

Topology of induced lunar magnetic fields  

NASA Technical Reports Server (NTRS)

Using the asymmetric theory of lunar induction the total and induced magnetic field line structure within the Moon and the diamagnetic cavity were obtained. Total field distributions are shown for orientations of the oscillating interplanetary field parallel, perpendicular and at 45 deg to the cavity axis. Induced field lines are shown only for the orientations of the interplanetary field parallel and orthogonal to the cavity axis. When compared with the field lines derived using the long wavelength limit of spherically symmetric vacuum induction theory, the configurations obtained using the asymmetric theory exhibit significant distortion. For all orientations of the interplanetary field, the field lines are strongly compressed on the sunlit hemisphere because of the confining solar wind pressure at the lunar surface and the exclusion of the field by the lunar core.

Schwartz, K.; Schubert, G.

1973-01-01

165

Single conductor transmission cable magnetic fields  

SciTech Connect

Generally accepted methods for calculating magnetic fields in the vicinity of overhead transmission lines are currently available. These calculation procedures have received general acceptance because they are well documented and field measurements have verified their accuracy. Similar data and calculation procedures, however, are lacking for underground transmission cables. This report describes a research project which was designed to investigate the magnetic fields produced by single conductor underground transmission cables, specifically self-contained fluid filled and extruded dielectric types. A test bay was designed and constructed at the EPRI Waltz Mill Cable Test Facility to obtain measurements for a range of commonly used installation configurations, sheath grounding practices, load current magnitudes, and cable sheath constructions. The results of these tests showed that the magnetic field varies over a wide range depending on the cable installation configuration, sheath resistance and bonding, and the relationship of cable phases for double circuit installations. Magnetic field measurements were also conducted on an in-service single conductor transmission cable to substantiate and supplement the Waltz Mill test results. An analysis of the measured magnetic field values for both the Waltz Mill tests and the in-service transmission cable showed good agreement with currently existing calculation procedures. The calculation procedure which was used is similar to that for overhead transmission lines except that induced sheath/shield currents for multipoint sheath/shield grounding must be calculated and taken into account. The measurements showed that the earth has little or no effect on the above ground magnetic field. 7 refs., 23 figs., 11 tabs.

Cooper, J.H. (Power Technologies, Inc., Wilmerding, PA (United States))

1991-08-01

166

Mars Observer magnetic fields investigation  

NASA Technical Reports Server (NTRS)

The magnetic fields experiment designed for the Mars Observer mission will provide definitive measurements of the Martian magnetic field from the transition and mapping orbits planned for the Mars Observer. The paper describes the instruments (which include a classical magnetometer and an electron reflection magnetometer) and techniques designed to investigate the nature of the Martian magnetic field and the Mars-solar wind interaction, the mapping of crustal magnetic fields, and studies of the Martian ionosphere, which are activities included in the Mars Observer mission objectives. Attention is also given to the flight software incorporated in the on-board data processor, and the procedures of data processing and analysis.

Acuna, M. H.; Connerney, J. E. P.; Wasilewski, P.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Mcfadden, J.; Curtis, D. W.; Reme, H.; Cros, A.

1992-01-01

167

Domain configuration and magnetization switching in arrays of permalloy nanostripes  

NASA Astrophysics Data System (ADS)

The proximity effect in the collective behavior of arrays of magnetic nanostripes is currently a subject of intensive research. The imperative of reducing the size and distances between elements in order to achieve higher storage capacity, faster access to the information as well as low energy consumption, brings consequences about the isolated behavior of the elements and devices. Parallel to each other permalloy nanostripes with high aspect ratio have been prepared by the nanolithography technique. The evolution of the closure domains and the magnetization direction in individual nanostructures has been imaged under applied magnetic fields using Variable Field Magnetic Force Microscopy. Moreover, the magnetostatic interactions between neighboring elements and the proximity effects in arrays of such nanostructures have been quantitatively analyzed by Magnetic Force Microscopy and micromagnetic simulations. The agreement between simulations and the experimental results allows us to conclude the relevance of those interactions depending on the geometry characteristics. In particular, results suggest that the magnetostatic coupling between adjacent nanostripes vanishes for separation distances higher than 500 nm.

Iglesias-Freire, .; Jaafar, M.; Prez, L.; de Abril, O.; Vzquez, M.; Asenjo, A.

2014-04-01

168

The Helias Reactor Concept: Comparative Analysis of Different Field Period Configurations  

SciTech Connect

The Helias reactor (HSR) is an upgraded version of the Wendelstein 7-X (W7-X) experiment. A straightforward extrapolation of W7-X leads to a five-period configuration with a major radius of 22 m. To reduce the size of the reactor, another option with four periods has been investigated. Recent studies have focused on a three-period Helias configuration (HSR3/15i) (major radius 15 m, plasma radius 2.5 m, B = 5 T), which presents a more compact option than the five- and four-period configurations. In HSR3/15i, the resulting magnetic configuration is consistent with the island divertor concept. The stochastic region outside the last magnetic surface is imposed by the remnants of the 3/4 islands and the plasma flows along distinct channels toward the plates. The main problem is due to the high value of the bootstrap current ({approx}1 MA) and alpha-particle losses (estimated as 6%). Further optimization of HSR3/15i can cause the maximum value of the magnetic field at the superconductive coils to be exceeded. There is a trade-off between physics goals (alpha-particle confinement and small bootstrap current) and technical realization (NbTi technology). The comparative analysis of different period configurations will be presented.

Andreeva, Tamara [Max-Planck-Institut fuer Plasmaphysik (Germany); Beidler, Craig D. [Max-Planck-Institut fuer Plasmaphysik (Germany); Harmeyer, Ewald [Max-Planck-Institut fuer Plasmaphysik (Germany)] (and others)

2004-09-15

169

Magnetic field draping about coronal mass ejecta  

SciTech Connect

Fast coronal mass ejecta (CMEs) accelerate and deflect the slower moving solar wind plasma which piles up ahead of them as they propagate out through the heliosphere. This acceleration and deflection, in turn, causes the interplanetary magnetic field (IMF) imbedded in the upstream solar wind to drape about the ejecta. Draping should cause substantial out-of-the-ecliptic magnetic fields at some locations ahead of CMEs, and radial fields behind and along the flanks. At the Earth, draping can be an important factor in the generation of some magnetic storms and substorms, while in the outer heliosphere draping may produce very large magnetotail-like configurations, somewhat analogous to those observed behind Venus and comets. 17 refs.

McComas, D.J.; Gosling, J.T.

1987-01-01

170

(Revised December 30, 2013) Magnetic Fields  

E-print Network

of the points where the magnetic fields of the Earth and the bar magnet sum to zero. INTRODUCTION A magnetic(Revised December 30, 2013) Magnetic Fields GOALS (1) To visualize the magnetic fields produced compasses to trace out the magnetic field lines of a single bar magnet on a large sheet of paper. (3

Collins, Gary S.

171

Dynamic evolution of coronal magnetic fields  

NASA Technical Reports Server (NTRS)

The response of coronal magnetic fields to photospheric motion is investigated using a time-dependent, two-dimensional MHD simulation. Starting with an initially uniform field, a circular section of the loop base is slowly rotated to represent the photospheric motion. The field lines at the base move with this flow in a manner consistent with the generated electric fields. The subsequent evolution of the field and flow can be characterized as passing through several distinct configurations. In the earliest phase the kinetic energy is negligible, and the current and field are parallel throughout most of the cylinder. This is followed by a period in which the field rotation increases, the axial field at and near the axis increases, and the acial field decreases in two cylindrical regions away from the axis. When the field in an appreciable portion of the cylinder has undergone one complete rotation, a rapid change in field configuration occurs with a large portion of the field making several rotations at large radii and a corresponding large reduction in the axial field.

Steinolfson, Richard S.

1986-01-01

172

Magnetic response to applied electrostatic field in external magnetic field  

NASA Astrophysics Data System (ADS)

We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

Adorno, T. C.; Gitman, D. M.; Shabad, A. E.

2014-04-01

173

The Effects of Magnetic Nozzle Configurations on Plasma Thrusters  

NASA Technical Reports Server (NTRS)

Over the course of eight years, the Ohio State University has performed research in support of electric propulsion development efforts at the NASA Lewis Research Center, Cleveland, OH. This research has been largely devoted to plasma propulsion systems including MagnetoPlasmaDynamic (MPD) thrusters with externally-applied, solenoidal magnetic fields, hollow cathodes, and Pulsed Plasma Microthrusters (PPT's). Both experimental and theoretical work has been performed, as documented in four master's theses, two doctoral dissertations, and numerous technical papers. The present document is the final report for the grant period 5 December 1987 to 31 December 1995, and summarizes all activities. Detailed discussions of each area of activity are provided in appendices: Appendix 1 - Experimental studies of magnetic nozzle effects on plasma thrusters; Appendix 2 - Numerical modeling of applied-field MPD thrusters; Appendix 3 - Theoretical and experimental studies of hollow cathodes; and Appendix 4 -Theoretical, numerical and experimental studies of pulsed plasma thrusters. Especially notable results include the efficacy of using a solenoidal magnetic field downstream of a plasma thruster to collimate the exhaust flow, the development of a new understanding of applied-field MPD thrusters (based on experimentally-validated results from state-of-the art, numerical simulation) leading to predictions of improved performance, an experimentally-validated, first-principles model for orificed, hollow-cathode behavior, and the first time-dependent, two-dimensional calculations of ablation-fed, pulsed plasma thrusters.

Turchi, P. J.

1997-01-01

174

Theory of fossil magnetic field  

E-print Network

Theory of fossil magnetic field is based on the observations, analytical estimations and numerical simulations of magnetic flux evolution during star formation in the magnetized cores of molecular clouds. Basic goals, main features of the theory and manifestations of MHD effects in young stellar objects are discussed.

Dudorov, Alexander E

2014-01-01

175

Magnetic domain configuration of La0.7Sr0.3MnO3 patterned elements  

Microsoft Academic Search

The magnetization configuration in small La0.7Sr0.3MnO3 elements is investigated as a function of geometry, film thickness, magnetic field, and temperature using x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM). The patterned elements were defined by focused ion beam (FIB) lithography, and consist of elements varying in shape (from circular, triangular and quadrangular) and size, from 200 nm up to 10

Carlos A. F. Vaz; Jan Rhensius; Andre Bisig; Mathias Klui; Laura Heyderman; Miguel Nio; Andrea Locatelli; F. Gaucher; Alice Galdi; Laurence Mchin

2011-01-01

176

Heat pipes for use in a magnetic field  

DOEpatents

A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

Werner, R.W.; Hoffman, M.A.

1983-07-19

177

Heat pipes for use in a magnetic field  

DOEpatents

A heat pipe configuration for use in a magnetic field environment of a fusion reactor. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area.

Werner, Richard W. (San Ramon, CA); Hoffman, Myron A. (Davis, CA)

1983-01-01

178

Origin of cosmic magnetic fields.  

PubMed

We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few10(-12)??G if the energy scale of inflation is few10(16)??GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

Campanelli, Leonardo

2013-08-01

179

Novel technologies and configurations of superconducting magnets for MRI  

NASA Astrophysics Data System (ADS)

A review of non-traditional approaches and emerging trends in superconducting magnets for MRI is presented. Novel technologies and concepts have arisen in response to new clinical imaging needs, changes in market cost structure, and the realities of newly developing markets. Among key trends are an increasing emphasis on patient comfort and the need for greener magnets with reduced helium usage. The paper starts with a brief overview of the well-optimized conventional MR magnet technology that presently firmly occupies the dominant position in the imaging market up to 9.4 T. Non-traditional magnet geometries, with an emphasis on openness, are reviewed. The prospects of MgB2 and high-temperature superconductors for MRI applications are discussed. In many cases the introduction of novel technologies into a cost-conscious commercial market will be stimulated by growing needs for advanced customized procedures, and specialty scanners such as orthopedic or head imagers can lead the way due to the intrinsic advantages in their design. A review of ultrahigh-field MR is presented, including the largest 11.7 T Iseult magnet. Advanced cryogenics approaches with an emphasis on low-volume helium systems, including hermetically sealed self-contained cryostats requiring no user intervention, as well as future non-traditional non-helium cryogenics, are presented.

Lvovsky, Yuri; Stautner, Ernst Wolfgang; Zhang, Tao

2013-09-01

180

NATIONAL HIGH MAGNETIC FIELD LABORATORY  

E-print Network

NATIONAL HIGH MAGNETIC FIELD LABORATORY SUPPORTED BY: THE NATIONAL SCIENCE FOUNDATION and THE STATE OF FLORIDA OPERATED BY: FLORIDA STATE UNIVERSITY · UNIVERSITY OF FLORIDA · LOS ALAMOS NATIONAL LABORATORY Page 15 2005 ANNUAL REPORT #12;2005 ANNUAL REPORT National High magnetic Field Laboratory 2005 NHMFL

Weston, Ken

181

Magnetic Field Problem: Measuring Current  

NSDL National Science Digital Library

A cross section of two circular wire loops carrying the exact same current is shown above (position given in centimeters and magnetic field given in milli-Tesla). You can click-drag to read the magnitude of the magnetic field.

Christian, Wolfgang; Belloni, Mario

2007-03-03

182

Vacuum Magnetic Field Mapping of the Compact Toroidal Hybrid (CTH)  

NASA Astrophysics Data System (ADS)

Vacuum magnetic field mapping experiments are performed on the CTH torsatron with a movable electron gun and phosphor-coated screen or movable wand at two different toroidal locations. These experiments compare the experimentally measured magnetic configuration produced by the as-built coil set, to the magnetic configuration simulated with the IFT Biot-Savart code using the measured coil set parameters. Efforts to minimize differences between the experimentally measured location of the magnetic axis and its predicted value utilizing a Singular Value Decomposition (SVD) process result in small modifications of the helical coil winding law used to model the vacuum magnetic field geometry of CTH. Because these studies are performed at relatively low fields B = 0.01 - 0.05 T, a uniform ambient magnetic field is included in the minimization procedure.

Peterson, J. T.; Hanson, J.; Hartwell, G. J.; Knowlton, S. F.; Montgomery, C.; Munoz, J.

2007-11-01

183

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Structure of Magnetic  

E-print Network

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Chapter 3 Structure of Magnetic Fields Many of the most interesting plasmas are permeated by or imbedded in magnetic fields.1 As shown in Fig. 3.1, the magnetic field properties of magnetic fields in plasmas can be discussed without specifying a model for the plasma

Callen, James D.

184

Magnetic Fields and Massive Star Formation  

E-print Network

Massive stars ($M > 8$ \\msun) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 $\\mu$m obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of $\\lsim$ 0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within $40^\\circ$ of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the ...

Zhang, Qizhou; Girart, Josep M; Hauyu,; Liu,; Tang, Ya-Wen; Koch, Patrick M; Li, Zhi-Yun; Keto, Eric; Ho, Paul T P; Rao, Ramprasad; Lai, Shih-Ping; Ching, Tao-Chung; Frau, Pau; Chen, How-Huan; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain; Csengeri, Timea; Juarez, Carmen

2014-01-01

185

Magnetic Field Measurements in Beam Guiding Magnets  

E-print Network

Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

Henrichsen, K N

1998-01-01

186

Los Alamos field-reversed configuration (FRC) research  

SciTech Connect

Recent experimental results are discussed for a compact toroid produced by a field-reversed theta-pinch and containing purely poloidal magnetic fields. The confinement time is found to vary inversely with the ion gyro-radius and to be approximately independent of ion temperature for fixed gyro-radius. Within a coil of fixed radius, the plasmoid major radius R was varied by approx. 30% and the confinement appears to scale as R/sup 2/. A semi-empirical formation model has been formulated that predicts reasonably well the plasma parameters as magnetic field and fill pressure are varied in present experiments. The model is used to predict parameters in larger devices under construction.

Armstrong, W.T.; Bartsch, R.R.; Cochrane, J.C.; Linford, R.K.; Lipson, J.; McKenna, K.F.; Platts, D.A.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

1981-01-01

187

Instability of the current sheet in the Earth's magnetotail with normal magnetic field  

NASA Astrophysics Data System (ADS)

Instability of a current sheet in the Earth's magnetotail has been investigated by two-dimensional fully kinetic simulations. Two types of magnetic configuration have been studied; those with uniform normal magnetic field along the current sheet and those in which the normal magnetic field has a spatial hump. The latter configuration has been proposed by Sitnov and Schindler [Geophys. Res. Lett. 37, L08102 (2010)] as one in which ion tearing modes might grow. The first type of configuration exhibits electron tearing modes when the normal magnetic field is small. The second type of configuration exhibits an instability which does not tear or change the topology of magnetic field lines. The hump in the initial configuration can propagate Earthward in the nonlinear regime, leading to the formation of a dipolarization front. Secondary magnetic islands can form in regions where the normal magnetic field is very weak. Under no conditions do we find the ion tearing instability.

Bessho, N.; Bhattacharjee, A.

2014-10-01

188

Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution  

DOEpatents

The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency. 15 figures.

Prueitt, M.L.; Mueller, F.M.; Smith, J.L.

1991-04-09

189

Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution  

DOEpatents

The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

Prueitt, Melvin L. (Los Alamos, NM); Mueller, Fred M. (Los Alamos, NM); Smith, James L. (Los Alamos, NM)

1991-01-01

190

Monopoles without magnetic charges: Finite energy monopole-antimonopole configurations in CP1 model and restricted QCD  

NASA Astrophysics Data System (ADS)

We propose a new type of regular monopole-like field configuration in quantum chromodynamics (QCD) and CP1 model. The monopole configuration can be treated as a monopole-antimonopole pair without localized magnetic charges. An exact numeric solution for a simple monopole-antimonopole solution has been obtained in CP1 model with an appropriate potential term. We suppose that similar monopole solutions may exist in effective theories of QCD and in the electroweak standard model.

Zou, L. P.; Pak, D. G.; Zhang, P. M.

2014-01-01

191

Preflare magnetic and velocity fields  

NASA Technical Reports Server (NTRS)

A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

1986-01-01

192

Streamer propagation in magnetic field  

E-print Network

The propagation of a streamer near an insulating surface under the influence of a transverse magnetic field is theoretically investigated. In the weak magnetic field limit it is shown that the trajectory of the streamer has a circular form with a radius that is much larger than the cyclotron radius of an electron. The charge distribution within the streamer head is strongly polarized by the Lorentz force exerted perpendicualr to the streamer velocity. A critical magnetic field for the branching of a streamer is estimated. Our results are in good agreement with available experimental data.

Zhuravlev, V N; Vagner, I D; Wyder, P

1997-01-01

193

AC photovoltaic module magnetic fields  

SciTech Connect

Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

Jennings, C.; Chang, G.J. [Pacific Gas and Electric Co., San Francisco, CA (United States); Reyes, A.B.; Whitaker, C.M. [Endecon Engineering, San Ramon, CA (United States)

1997-12-31

194

Investigating Magnetic Force Fields  

NSDL National Science Digital Library

In this classroom activity, the students will investigate the magnetic pull of a bar magnet at varying distances with the use of paper clips. Students will hypothesize, conduct the experiment, collect the data, and draw conclusions that support their data. Each student will record the experiment and their findings in their science journals. As a class, students will compare each groups' data and their interpretation of the results.

Daryl ("Tish") Monjeau, Bancroft Elementary School, Minneapolis, MN

2012-03-18

195

LABORATORY VI MAGNETIC FIELDS AND FORCES  

E-print Network

PROBLEM #1: PERMANENT MAGNETS You have a job working a company that designs magnetic resonance imaging that the different magnet configurations in each figure do not interact with the magnets in the other figures. WARM MAGNETS Lab VI - 3 Before you start, you should review the Warm-up questions for Problem #1

Minnesota, University of

196

Neutron scattering in magnetic fields  

SciTech Connect

The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two general areas of application can be distinguished. In one the field acts to change the properties of the scattering sample; in the second the field acts on the neutron itself. Several examples are discussed. Precautions necessary for high precision polarized beam measurements are reviewed. 33 references.

Koehler, W.C.

1984-01-01

197

Magnetic Field Effects on Plasma Plumes  

NASA Technical Reports Server (NTRS)

Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

2012-01-01

198

The white light corona and photospheric magnetic fields  

NASA Technical Reports Server (NTRS)

Some results are presented from a continuing investigation of the coronal structure vs. the photospheric magnetic field relationship. Two approaches to the problem are considered. First, the individual coronal features recorded at each limb were located on a chart of the magnetic field measured with low spatial resolution, depicting the large scale or global field configuration. Second, the characteristics of neutral line segments, defined by the presence of H alpha line filament, with no associated coronal structure were investigated. Preliminary results are discussed.

Mccabe, Marie K.

1986-01-01

199

Global simulations of magnetorotational turbulence - III. Influence of field configuration and mass injection  

NASA Astrophysics Data System (ADS)

The stresses produced by magnetorotational turbulence can provide effective angular momentum transport in accretion discs. However, questions remain about the ability of simulated discs to reproduce observationally inferred stress-to-gas-pressure ratios. In this paper, we present a set of high-resolution global magnetohydrodynamic disc simulations which are initialized with different field configurations: purely toroidal, vertical field lines, and nested poloidal loops. A mass source term is included which allows the total disc mass to equilibrate in simulations with long run times, and also enables the impact of rapid mass injection to be explored. Notably different levels of angular momentum transport are observed during the early-time transient disc evolution. However, given sufficient time to relax, the different models evolve to a statistically similar quasi-steady state with a stress-to-gas-pressure ratio, 0.032-0.036. Such behaviour is anticipated based on consideration of mean magnetic field evolution subject to our adopted simulation boundary conditions. The indication from our results is that steady, isolated discs may be unable to maintain a large-scale magnetic field or produce values for the stress-to-gas-pressure ratio implied by some observations. Supplementary simulations exploring the influence of trapping magnetic field, injecting vertical field, and rapidly injecting additional mass into the disc show that large stresses can be induced by these mechanisms. In the first instance, a highly magnetized disc is produced with 0.21, whereas the latter cases lead to a transient burst of accretion with a peak ? 0.1-0.25. As a whole, the simulations highlight the common late-time evolution and characteristics of turbulent discs for which the magnetic field is allowed to evolve freely (i.e. without constraint/replenishment). In contrast, if the boundaries of the disc, the rate of injection of magnetic field, or the rate of mass replenishment are modified to mimic astrophysical discs, markedly different disc evolution occurs.

Parkin, E. R.

2014-07-01

200

N-flationary magnetic fields  

NASA Astrophysics Data System (ADS)

There is increasing interest in the role played by pseudo Nambu Goldstone bosons (pNGBs) in the construction of string-inspired models of inflation. In these models the inflaton is expected to be coupled to gauge fields, and will lead to the generation of magnetic fields that can be of cosmological interest. We study the production of such fields mainly focusing on the model of N-flation, where the collective effect of several pNGBs drives inflation. Because the fields produced are maximally helical, inverse cascade processes in the primordial plasma significantly increase their coherence length. We discuss under what conditions inflation driven by pNGBs can account for the cosmological magnetic fields observed. A constraint on the parameters of this class of inflationary scenarios is also derived by requiring that the magnetic field does not backreact on the inflating background.

Anber, Mohamed M.; Sorbo, Lorenzo

2006-10-01

201

Field of the Magnetic Monopole  

E-print Network

This paper shows that based upon the Helmholtz decomposition theorem the field of a stationary magnetic monopole, assuming it exists, cannot be represented by a vector potential. Persisting to use vector potential in monopole representation violates fundamentals of mathematics. The importance of this finding is that the vector potential representation was crucial to the original prediction of the quantized value for a magnetic charge.

A. R. Hadjesfandiari

2007-01-19

202

Neutron in Strong Magnetic Fields  

E-print Network

Relativistic world-line Hamiltonian for strongly interacting 3q systems in magnetic field is derived from the path integral for the corresponding Green's function. The neutral baryon Hamiltonian in magnetic field obeys the pseudomomentum conservation and allows a factorization of the c.m. and internal motion. The resulting expression for the baryon mass in magnetic field is written explicitly with the account of hyperfine, OPE and OGE (color Coulomb) interaction. The neutron mass is fast decreasing with magnetic field, losing 1/2 of its value at eB~0.25 GeV^2 and is nearly zero at eB~0.5 GeV^2. Possible physical consequences of the calculated mass trajectory of the neutron, M_n(B), are presented and discussed.

M. A. Andreichikov; B. O. Kerbikov; V. D. Orlovsky; Yu. A. Simonov

2013-12-08

203

Differential rotation and magnetic fields in stellar interiors  

E-print Network

The processes contributing to the evolution of an initially weak magnetic field in a differentially rotating star are reviewed. These include rotational smoothing (akin to convective expulsion) and a list of about 5 instabilities, among them magnetorotational instability, byoyancy instability, and pinch-type instabilities. The important effects of thermal and magnetic diffusion on these instabilities are analyzed in some detail. The first instability to set in is a pinch-type instability. It becomes important in modifying the field configuration before magnetic buoyancy-driven instabilities set in. The evolution of an initially strong field remains a more open question, including the old problem whether dynamically stable magnetic equilibria exist in stars.

H. C. Spruit

1999-07-12

204

Review of magnetic field observations  

NASA Technical Reports Server (NTRS)

Recent observations of magnetic fields in the magnetosphere are reviewed, and critical experiments and data are identified for theoretical analysis and interpretation. Quantitative studies of the solar wind interaction with the earth's magnetic field, regional measurements near the earth's equator at R = 2-8 R sub E, the polar cusp region of the geomagnetosphere, and structural models of the neutral sheet region in the geomagnetic tail are considered.

Ness, N. F.

1971-01-01

205

Two-fluid physics and field-reversed configurations  

SciTech Connect

In this paper, algorithms for the solution of two-fluid plasma equations are presented and applied to the study of field-reversed configurations (FRCs). The two-fluid model is more general than the often used magnetohydrodynamic (MHD) model. The model takes into account electron inertia, charge separation, and the full electromagnetic field equations, and it allows for separate electron and ion motion. The algorithm presented is the high-resolution wave propagation scheme. The wave propagation method is based on solutions to the Riemann problem at cell interfaces. Operator splitting is used to incorporate the Lorentz and electromagnetic source terms. The algorithms are benchmarked against the Geospace Environmental Modeling Reconnection Challenge problem. Equilibrium of FRC is studied. It is shown that starting from a MHD equilibrium produces a relaxed two-fluid equilibrium with strong flows at the FRC edges due to diamagnetic drift. The azimuthal electron flow causes lower-hybrid drift instabilities (LHDI), which can be captured if the ion gyroradius is well resolved. The LHDI is known to be a possible source of anomalous resistivity in many plasma configurations. LHDI simulations are performed in slab geometries and are compared to recent experimental results.

Hakim, A.; Shumlak, U. [Tech-X Corporation, 5621 Arapahoe Avenue - Suite A, Boulder, Colorado 80303 (United States); Aerospace and Energetics Research Program, University of Washington, Seattle, Washington 98195-2600 (United States)

2007-05-15

206

Chiral transition with magnetic fields  

E-print Network

We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling constants and the number of fermions. We show that the critical temperature for the restoration of chiral symmetry monotonically increases from small to intermediate values of the magnetic fields and that this temperature is always above the critical temperature for the case when the magnetic field is absent.

Alejandro Ayala; Luis Alberto Hernandez; Ana Julia Mizher; Juan Cristobal Rojas; Cristian Villavicencio

2014-04-25

207

Optical sensor of magnetic fields  

DOEpatents

An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

Butler, M.A.; Martin, S.J.

1986-03-25

208

Magnetic-field enhancement in gold nanosandwiches  

NASA Astrophysics Data System (ADS)

Using dispersive finite-difference time-domain (D-FDTD) simulations, we show that a pair of gold nanodisks stacked in a 'sandwich'-like (end-fire) configuration produces a large enhancement of the magnetic field when irradiated with a plane optical wave, if the distance between the nanodisks is optically small. The effect, which can be rationalized in terms of a magnetic dipole resonance, is due the excitation of a hybridized asymmetric plasmon mode, in which the induced electrical dipoles in the two disks oscillate out-of-phase. The strong magnetic response, together with the simple morphology, suggests that Au nanosandwiches are suitable elementary building blocks for optical metamaterials that exhibit negative refraction.

Pakizeh, T.; Abrishamian, M. S.; Granpayeh, N.; Dmitriev, A.; Kll, M.

2006-09-01

209

Effect of AEM energy applicator configuration on magnetic nanoparticle mediated hyperthermia for breast cancer.  

PubMed

Magnetic nanoparticle mediated low heat hyperthermia (42~45( o )C) via alternating electromagnetic (AEM) energy is a promising, cancer specific and minimally-invasive cancer therapy. Iron oxide particles frequently used for this therapy are non-toxic and already used as a contrast agent for magnetic resonance imaging. One important issue in the hyperthermia is applying an appropriate amount of energy to the tumor at various sizes and depths, with a minimal damage to normal tissue. For the therapy to be desirable, the AEM energy applicator needs to be non-invasive and user-friendly. To better understand the effect of the probe on the magnetic field distribution, computer simulation was performed for the field distribution by probes with various configurations. In a solenoid-type probe, the field is mainly inside the probe and, therefore, is difficult to use on body. A pancake-shaped probe is easy to use but the field penetration is shallow and, thus, may better serve surface tumor treatment. A sandwich probe, composed of two pancake probes, has a penetration depth deeper than a pancake probe. The results also showed that the spacing between two adjacent coils and the number of coil turns are very important for controlling the field penetration depth and strength. Experiments were also performed to study the effects of the size and concentration of iron oxide nanoparticles on heating. Among the tested particle sizes of 10~50 nm, 30 nm particles showed the best heating for the same mass. PMID:21445781

Sanapala, Krishna K; Hewaparakrama, Kapila; Kang, Kyung A

2011-01-01

210

Magnetic field induced dynamical chaos  

SciTech Connect

In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the xy plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra, E-mail: bidhanchandra.bag@visva-bharati.ac.in [Department of Chemistry, Visva-Bharati, Santiniketan 731 235 (India)

2013-12-15

211

Magnetic fields in protoplanetary disks  

E-print Network

Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary discs. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface, and magnetically-driven mixing has implications for disk chemistry and evolution of the grain population. However, the weak ionisation of protoplanetary discs means that magnetic fields may not be able to effectively couple to the matter. I present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas. For a standard population of 0.1 micron grains the active surface layers have a combined column of about 2 g/cm^2 at 1 AU; by the time grains have aggregated to 3 microns the active surface density is 80 g/cm^2. In the absence of grains, x-rays maintain magnetic coupling to 10% of the disk material at 1 AU (150 g/cm^2). At 5 AU the entire disk thickness becomes active once grains have aggregated to 1 micron in size.

Mark Wardle

2007-04-07

212

Active Region Magnetic Fields. I. Plage Fields  

Microsoft Academic Search

We present observations taken with the Advanced Stokes Polarimeter (ASP) in active-region plages and study the frequency distribution of the magnetic field strength (B), inclination with respect to vertical ( gamma ), azimuthal orientation ( chi ), and filling factor (f). The most common values at disk center are B = 1400 G, gamma < 10 deg, no preferred east-west

V. Martinez Pillet; B. W. Lites; A. Skumanich

1997-01-01

213

Nucleation of bulk superconductivity close to critical magnetic field  

E-print Network

We consider the two-dimensional Ginzburg-Landau functional with constant applied magnetic field. For applied magnetic fields close to the second critical field $H_{C_2}$ and large Ginzburg-Landau parameter, we provide leading order estimates on the energy of minimizing configurations. We obtain a fine threshold value of the applied magnetic field for which bulk superconductivity contributes to the leading order of the energy. Furthermore, the energy of the bulk is related to that of the Abrikosov problem in a periodic lattice. A key ingredient of the proof is a novel $L^\\infty$-bound which is of independent interest.

S. Fournais; A. Kachmar

2009-09-30

214

Magnetic fields in O stars  

NASA Astrophysics Data System (ADS)

During the last decade, large-scale, organized (generally dipolar) magnetic fields with strengths between 0.1 and 20 kG have been detected in dozens of OB stars. This contribution reviews the impact of such fields on the stellar winds of O-type stars, with emphasis on variability and X-ray emission.

Naz, Y.

2014-11-01

215

Magnetization and rotation of MTG HTSC ring in magnetic field  

Microsoft Academic Search

The magnetization of a melt-texture growth (MTG) HTSC ring has been studied. It is shown that the magnetic field inside the ring is larger than the external field under a certain range of external magnetic fields. We have also investigated the magnetic field dependence of the response of a detective coil near a rotating superconducting ring. The responses of the

E. V. Postrekhin; L. W. Zhou; K. J. Huang; C. B. Cai; S. M. Gong; Y. X. Fu

1996-01-01

216

Analysis of microwave generation by field emitted electrons moving in crossed electric and magnetic fields  

Microsoft Academic Search

A new microwave generating device is proposed and analysed theoretically. The device is based on the controlled motion of field emission (FE) electrons in a vacuum working space subject to crossed electric E and magnetic B fields. A cylindrical capacitor configuration is considered, the symmetry of the arrangement being cylindrical around the B axis whilst the radial electric field is

V. Filip; D. Nicolaescu; C. N. Plavitu; F. Okuyama

1997-01-01

217

Visualization and topography of the stray magnetic field of crack-type discontinuities in magnetic materials  

Microsoft Academic Search

Configurations of the domain structure of gadolinium-cobalt amorphous films placed in spatially nonuniform magnetic fields,\\u000a which are produced by cracks in steel plates, are determined. The possibility of visualization and topography of the stray\\u000a fields (their normal H\\u000a \\u000a z\\u000a component) of cracks with openings 1.5 to 50 m wide by the use of an applied magnetic field is shown. Strip

V. E. Ivanov; V. N. Bashkinova

2006-01-01

218

Flux Transport and the Sun's Global Magnetic Field  

NASA Technical Reports Server (NTRS)

The Sun s global magnetic field is produced and evolved through the emergence of magnetic flux in active regions and its transport across the solar surface by the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective flows of granulation, supergranulation, and giant cell convection. Maps of the global magnetic field serve as the inner boundary condition for space weather. The photospheric magnetic field and its evolution determine the coronal and solar wind structures through which CMEs must propagate and in which solar energetic particles are accelerated and propagate. Producing magnetic maps which best represent the actual field configuration at any instant requires knowing the magnetic field over the observed hemisphere as well as knowing the flows that transport flux. From our Earth-based vantage point we only observe the front-side hemisphere and each pole is observable for only six months of the year at best. Models for the surface magnetic flux transport can be used to provide updates to the magnetic field configuration in those unseen regions. In this presentation I will describe successes and failures of surface flux transport and present new observations on the structure, the solar cycle variability, and the evolution of the flows involved in magnetic flux transport. I find that supergranules play the dominant role due to their strong flow velocities and long lifetimes. Flux is transported by differential rotation and meridional flow only to the extent that the supergranules participate in those two flows.

Hathaway, David H.

2010-01-01

219

Magnetic field investigations on low cost missions  

Microsoft Academic Search

Magnetic fields pervade all of space and provide important diagnostic information on the nature of processes occurring within and around solar system objects. Thus magnetic investigations are frequently included on planetary missions. Since spacecraft subsystems can generate magnetic fields that may interfere with the measurement of the ambient field, magnetic cleanliness programs are usually instituted to minimize such extraneous magnetic

R. C. Snare; C.T. Russell

1995-01-01

220

Profile stabilization of tilt mode in a Field Reversed Configuration  

SciTech Connect

The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.

Cobb, J.W.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Barnes, D.C. [Los Alamos National Lab., NM (United States)

1993-06-01

221

Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment  

NASA Astrophysics Data System (ADS)

A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

2012-10-01

222

Including stereoscopic information in the reconstruction of coronal magnetic fields  

E-print Network

We present a method to include stereoscopic information about the three dimensional structure of flux tubes into the reconstruction of the coronal magnetic field. Due to the low plasma beta in the corona we can assume a force free magnetic field, with the current density parallel to the magnetic field lines. Here we use linear force free fields for simplicity. The method uses the line of sight magnetic field on the photosphere as observational input. The value of $\\alpha$ is determined iteratively by comparing the reconstructed magnetic field with the observed structures. The final configuration is the optimal linear force solution constrained by both the photospheric magnetogram and the observed plasma structures. As an example we apply our method to SOHO MDI/EIT data of an active region. In the future it is planned to apply the method to analyse data from the SECCHI instrument aboard the STEREO mission.

T. Wiegelmann; T. Neukirch

2008-01-21

223

The use of high magnetic fields at the study of magnetism and superconductivity in intermetallic compounds  

SciTech Connect

Magnetic fields have a large impact on the magnetic and superconducting properties of solids. High magnetic fields are required to reach magnetic saturation along a hard magnetic direction in a variety of rare-earth intermetallics, to break the ferrimagnetic moment configuration in specific 3d-4f intermetallics, to quench the strongly correlated electron states in heavy fermion compounds, to reach the upper critical fields in several classes of superconductors, to study flux-pinning phenomena in the high-{Tc} superconductors, etc. In the present review, the attention is focused to the field interval 20--50 tesla. Experiments in this field range are the privilege of specialized high magnetic field laboratories. There is a lively activity in this area of research with the number of participating institutes continuously growing.

Franse, J.J.M.; Boer, F.R. de; Frings, P.H.; Visser, A. de [Univ. of Amsterdam (Netherlands). Van der Waals-Zeeman Lab.] [Univ. of Amsterdam (Netherlands). Van der Waals-Zeeman Lab.

1994-03-01

224

Transverse magnetic surface plasmons and complete absorption supported by doped graphene in Otto configuration  

NASA Astrophysics Data System (ADS)

High sensitivity of the Attenuated Total Reflectance technique for exciting transverse magnetic surface plasmons in free-standing doped graphene is reported; complete agreement with the electromagnetic dispersion relation is numerically demonstrated in the terahertz regime. By reducing the air gap between prism and graphene in the Otto configuration we found that the surface plasmon excitation is weakened, but interference effects arise producing perfect absorption. At 5 THz two dips of zero-reflection were found, one of them with residual plasmonic contribution. Consequently, the reflection can be suppressed by changing the separation between prism and graphene; it is not needed to modify the graphene doping level. Conditions for destructive interference leading to complete absorption are presented and a particular behavior of the evanescent magnetic fields just at perfect absorption is reported

Ramos-Mendieta, F.; Hernndez-Lpez, J. A.; Palomino-Ovando, M.

2014-06-01

225

Titan Magnetic Tail: Does its Configuration correspond to the Induced Magnetosphere?  

E-print Network

Magnetic field structure observed in numerous Cassini flybys in the region of Titan interaction with the corotating flow of Kronian magnetosheric plasma contradicts the classical picture of the ideal induced magnetosphere produced by the magnetic field line draping about the obstacle. Clear draping is observed only upstream the Titan, but not in the Titan magnetic wake. We consider the magnetic field tension downstream the Titan magnetic tail and show that the magnetic field direction is not consistent with the induced magnetosphere produced by magnetic field lines draping. We arrive at the conclusion that the mechanisms alternative to the induced magnetosphere formation should be considered for the Titan magnetic surrounding.

Israelevich, P

2014-01-01

226

Indoor localization using magnetic fields  

NASA Astrophysics Data System (ADS)

Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.

Pathapati Subbu, Kalyan Sasidhar

227

A new high performance field reversed configuration operating regime in the C-2 device  

SciTech Connect

Large field reversed configurations (FRCs) are produced in the C-2 device by combining dynamic formation and merging processes. The good confinement of these FRCs must be further improved to achieve sustainment with neutral beam (NB) injection and pellet fuelling. A plasma gun is installed at one end of the C-2 device to attempt electric field control of the FRC edge layer. The gun inward radial electric field counters the usual FRC spin-up and mitigates the n = 2 rotational instability without applying quadrupole magnetic fields. Better plasma centering is also obtained, presumably from line-tying to the gun electrodes. The combined effects of the plasma gun and of neutral beam injection lead to the high performance FRC operating regime, with FRC lifetimes up to 3 ms and with FRC confinement times improved by factors 2 to 4.

Tuszewski, M.; Smirnov, A.; Thompson, M. C.; Barnes, D.; Binderbauer, M. W.; Brown, R.; Bui, D. Q.; Clary, R.; Conroy, K. D.; Deng, B. H.; Dettrick, S. A.; Douglass, J. D.; Garate, E.; Glass, F. J.; Gota, H.; Guo, H.Y.; Gupta, D.; Gupta, S.; Kinley, J. S.; Knapp, K. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); and others

2012-05-15

228

Tearing relaxation and the globalization of transport in field-reversed configurations  

SciTech Connect

Tearing instability of field-reversed configurations (FRC) is investigated using the method of neighboring equilibria. It is shown that the conducting wall position in experiment lies very close to the location needed for tearing stability. This strongly suggests that vigorous but benign tearing modes, acting globally, are the engine of continual self-organization in FRCs, i.e., tearing relaxation. It also explains the ''profile consistency'' and anomalous loss rate of magnetic flux. In effect, tearing globalizes the effect of edge-driven transport.

Steinhauer, Loren [Redmond Plasma Physics Laboratory, University of Washington, Redmond, Washington 98052 (United States); Barnes, D. C. [Coronado Consulting, 146 Bishop Lamy Rd., Lamy, New Mexico 87540 (United States)

2009-09-15

229

Mars Crustal Magnetic Field Remnants  

NASA Technical Reports Server (NTRS)

The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.

This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.

The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.

These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.

2001-01-01

230

Effect of magnetic configuration on frequency of NBI-driven Alfvn modes in TJ-II  

NASA Astrophysics Data System (ADS)

Excitation of modes in the Alfvnic frequency range, 30 kHz < fAE < 300 kHz, was observed in hydrogen plasma heated by hydrogen neutral beam injection (NBI) in the TJ-II heliac. Co-field and counter-field NBI were injected, and the components of the poloidal magnetic field were varied one by one and in combinations, in order to investigate the beam-driven modes over an extended range of the rotational transform values, 1.51<\\unicode{7548} (0)<1.67 . Taking advantage of the unique TJ-II capabilities, a dynamic magnetic configuration experiment with \\unicode{7548} (? , t) variation during discharges has shown strong effects on the mode frequency via both vacuum \\unicode{7548} changes and induced net plasma current. A drastic frequency increase from ?50 to ?250 kHz was observed for some modes when plasma current as low as 2 kA was induced by small (10%) changes in the vertical field. A comprehensive set of diagnostics including a heavy ion beam probe, magnetic probes and a multi-chord bolometer made it possible to identify the spatial spread of the modes and deduce the internal amplitudes of their plasma density and magnetic field perturbations. A simple analytical model for fAE, based on the local Alfvn eigenmode (AE) dispersion relation, was proposed to characterize the observation. It was shown that all the observations, including vacuum iota and plasma current variations, may be fitted by the model, so the linear mode frequency dependence on \\unicode{7548} (plasma current) and one over square root density dependence present the major features of the NBI-induced AEs in TJ-II, and provide the framework for further experiment-to-theory comparison.

Melnikov, A. V.; Ochando, M.; Ascasibar, E.; Castejon, F.; Cappa, A.; Eliseev, L. G.; Hidalgo, C.; Krupnik, L. I.; Lopez-Fraguas, A.; Liniers, M.; Lysenko, S. E.; de Pablos, J. L.; Perfilov, S. V.; Sharapov, S. E.; Spong, D. A.; Jimenez, J. A.; Ufimtsev, M. V.; Breizman, B. N.; HIBP group; the TJ-II team

2014-12-01

231

Origin of primordial magnetic fields  

SciTech Connect

Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields {approx}{mu}G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) {approx}10 {mu}G over a comoving {approx}1 pc region are predicted at redshift z{approx}10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs {approx}10{sup -2} {mu}G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z{approx}10. In the collapse to a galaxy (comoving size {approx}30 kpc) at z{approx}10, the fields are amplified to {approx}10 {mu}G. This indicates that the MFs created immediately after the QHPT (10{sup -4} s), predicted by the fluctuation-dissipation theorem, could be the origin of the {approx}{mu}G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field predicted by our model in producing the first stars and in reionizing the Universe.

Souza, Rafael S. de; Opher, Reuven [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)

2008-02-15

232

Shear-induced inflation of coronal magnetic fields  

NASA Technical Reports Server (NTRS)

Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z)squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes.

Klimchuk, James A.

1989-01-01

233

Effect of magnetic yoke on magnetic field distribution and intercepting effect of multi-channel cascading magnet arrays  

NASA Astrophysics Data System (ADS)

`Magnetic-Sieve' possesses a potential use in oxygen separation. The effect of a magnetic yoke on magnetic field distribution and intercepting effect of multi-channel cascading magnet arrays in a `Magnetic-Sieve' configuration is studied by ANSYS finite element software. The multi-channel cascading magnet arrays consist of cuboid neodymium-iron-boron permanent magnets. The size of the magnets is WH = 38 mm5 mm, and the clearance between two adjacent magnets is 1 mm. The results show that the intercepting effect tends to decrease from the central channel to the most lateral channels in multi-channel cascading magnet arrays. Compared with the simulation result of two magnets, the central magnetic inductions of the center channel and the most lateral channels in the multi-channel cascading magnet array including 14 magnets decrease respectively 10% and 31%, and the intercepting effects of the center channel and the most lateral channels decrease 19% and 60%, respectively. When the magnetic yoke is added on the multi-channel cascading magnet array, the above-mentioned four values are increased by 28%, 29%, 63% and 65%, respectively. The simulation study shows that the introducing of magnetic yokes can enhance the central magnetic induction and the intercepting effect of the gradient magnetic field, and moreover, reduce the disparities of intercepting effect among the channels.

Zhang, S. P.; Wu, P.; Wang, L.; Li, F. C.; Chen, S.; Sun, S. F.

2010-03-01

234

Direct Measurement of Impurity Transport in a Field Reversed Configuration  

NASA Astrophysics Data System (ADS)

An optical tomography system has been developed and implemented in the Flux Coil Generated Field Reversed Configuration (FCG-FRC) at Tri Alpha Energy. Sixteen chords view 35% of the FRC at the mid-plane. The chords are arranged in two identical fans of eight chords each. To measure transport of an impurity species, argon, an FRC is generated using either Nitrogen or Deuterium as the primary species. A puff valve is activated prior to the shot such that the argon begins to bleed in to the vacuum chamber as the FRC is formed. The gas is puffed at the optimal location for tomographic reconstruction. Each chord is collimated to illuminate a fiber optic cable which is fed to an array of photomultiplier tubes which are fitted with neutral density and band pass filters to allow the appropriate amount of light from the emitting, singly ionized, argon at 434.8 nm to be measured. Using a preliminary assumption that density of argon is proportional to light intensity gathered data have been used to reconstruct density profiles. These profiles often peak near the field null. The data are being analyzed to determine diffusive and convective transport coefficients.

Roche, T.; Bolte, N.; Heidbrink, W. W.; McWilliams, R.; Wessel, F.

2011-11-01

235

Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor  

SciTech Connect

A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

Coffey, H.T.

1992-12-31

236

Magnetic field studies at jupiter by voyager 1: preliminary results.  

PubMed

Results obtained by the Goddard Space Flight Center magnetometers on Voyager 1 are described. These results concern the large-scale configuration of the Jovian bow shock and magnetopause, and the magnetic field in both the inner and outer magnetosphere. There is evidence that a magnetic tail extending away from the planet on the nightside is formed by the solar wind-Jovian field interaction. This is much like Earth's magnetosphere but is a new configuration for Jupiter's magnetosphere not previously considered from earlier Pioneer data. We report on the analysis and interpretation of magnetic field perturbations associated with intense electrical currents (approximately 5 x 10(6) amperes) flowing near or in the magnetic flux tube linking Jupiter with the satellite Jo and induced by the relative motion between Io and the corotating Jovian magnetosphere. These currents may be an important source of heating the ionosphere and interior of Io through Joule dissipation. PMID:17800435

Ness, N F; Acuna, M H; Lepping, R P; Burlaga, L F; Behannon, K W; Neubauer, F M

1979-06-01

237

Magnetic Resonance Imaging at Ultrahigh Fields  

PubMed Central

Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultra-high fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. PMID:24686229

Ugurbil, Kamil

2014-01-01

238

Numerical analyses of trapped field magnet and stable levitation region of HTSC  

SciTech Connect

Stable levitation with a permanent magnet and a bulk high {Tc} superconductor (HTSC) is examined numerically by using the critical state model and the frozen field model. Differences between a permanent magnet and a trapped field magnet are first discussed from property of levitation force. Stable levitation region of the HTSC on a ring magnet and on a solenoid coil are calculated with the numerical methods. Obtained results are discussed from difference of the magnetic field configuration.

Tsuchimoto, M.; Kojima, T.; Waki, H.; Honma, T. [Hokkaido Univ., Sapporo (Japan)] [Hokkaido Univ., Sapporo (Japan)

1995-05-01

239

EXPLORER 10 MAGNETIC FIELD MEASUREMENTS  

Microsoft Academic Search

Magnetic field measurements made by means of Explorer 10 over geocentric ; distances of 1.8 to 42.6R\\/sub e\\/ on March 25experiment on the same satellite are ; referenced in interpretations. The close-in data are consistent with the ; existence of a very weak ring current below 3R\\/sub e\\/ along the trajectory, but ; alternative explanations for the field deviations are

J. P. Heppner; N. F. Ness; C. S. Scearce; T. L. Skillman

1963-01-01

240

Crystal field and magnetic properties  

NASA Technical Reports Server (NTRS)

Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

Flood, D. J.

1977-01-01

241

Transverse Magnetic Field Propellant Isolator  

NASA Technical Reports Server (NTRS)

An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

Foster, John E.

2000-01-01

242

Magnetic dipole transitions in 4d{sup N} configurations of tungsten ions  

SciTech Connect

Magnetic dipole transitions between the levels of ground 4d{sup N} configurations of tungsten ions were analyzed by employing a large basis of interacting configurations. Previously introduced configuration interaction strength between two configurations was used to determine the configurations with the largest contribution to wave functions of atomic states for the considered configurations. Collisional-radiative modeling was performed for the levels of the ground configuration coupled through electric dipole transitions with 4p{sup 5}4d{sup N+1} and 4d{sup N-1}4f configurations. New identification of some lines observed in the electron-beam ion trap plasma was proposed based on calculations in which wavelength convergence was reached.

Jonauskas, V.; Kisielius, R.; Kyniene, A.; Kucas, S.; Norrington, P. H. [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania); Department of Applied Mathematics and Theoretical Physics, Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdon (United Kingdom)

2010-01-15

243

Force-free magnetic fields - Generating functions and footpoint displacements  

NASA Technical Reports Server (NTRS)

This paper presents analytic and numerical calculations that explore equilibrium sequences of bipolar force-free magnetic fields in relation to displacments of their magnetic footpoints. It is shown that the appearance of magnetic islands - sometimes interpreted as marking the loss of equilibrium in models of the solar atmosphere - is likely associated only with physically unrealistic footpoint displacements such as infinite separation or 'tearing' of the model photosphere. The work suggests that the loss of equilibrium in bipolar configurations, sometimes proposed as a mechanism for eruptive solar events, probably requires either fully three-dimensional field configurations or nonzero plasma pressure. The results apply only to fields that are strictly bipolar, and do not rule out equilibrium loss in more complex structures such as quadrupolar fields.

Wolfson, Richard; Verma, Ritu

1991-01-01

244

Diffusion of magnetic field via turbulent reconnection  

Microsoft Academic Search

The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as

Reinaldo Santos de Lima; Alexander Lazarian; Elisabete M. de Gouveia Dal Pino; Jungyeon Cho

2010-01-01

245

Langmuir chains of ions in linearly and circularly polarized electromagnetic field crossed with the magnetic field  

NASA Astrophysics Data System (ADS)

We have recently discovered that so called Langmuir [1] states of Helium can stabilize in both the circularly polarized electromagnetic and the magnetic fields when the fields are crossed and two electrons are rotating in the configuration when the two parallel single-electron circular trajectories have the both particles moving in the spatial phase. The stability islands in the fields strength planes have exotic shapes and the configurations are bistable geometrically. Here we discover the whole chains of ions when the single Langmuir configuration is additionally experiencing the infinite chain of neighbouring ions and alike space-periodic configurations. This leads to self-stabilization and Born-Opennheimer binding of Hydrogen, helium or higher charged ions in chains parallel to the magnetic field and when the CP field vector is perpendicular. The excitations along the chain are plasmon-like and have the physical meaning of the deviation from the CP field rotation helicity. Ones the linearly polarized field is superposed from two circularly polarized counterrotating fields similar configurations exist by the geometric argument. Numerical simulations using the recently discovered Cartesian-hypespherical coordinates method previously applied to Langmuir configurations themself are also presented. [1] M. Kalinski, L. Hansen, and D. Farrelly, ``Nondispersive Two-Electron Wave Packets in a Helium Atom,'' Phys. Rev. Lett. 95, 103001 (2005).

Kalinski, Matt

2010-03-01

246

Separation of magnetic field lines  

SciTech Connect

The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

2012-11-15

247

Interplanetary Magnetic Field Guiding Relativistic Particles  

NASA Technical Reports Server (NTRS)

The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

2011-01-01

248

Magnetic fields in the sun  

NASA Technical Reports Server (NTRS)

The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

Mullan, D. J.

1974-01-01

249

Switchable magnetic bottles and field gradients for particle traps  

NASA Astrophysics Data System (ADS)

Versatile methods for the manipulation of individual quantum systems, such as confined particles, have become central elements in current developments in precision spectroscopy, frequency standards, quantum information processing, quantum simulation, and alike. For atomic and some subatomic particles, both neutral and charged, a precise control of magnetic fields is essential. In this paper, we discuss possibilities for the creation of specific magnetic field configurations which find application in these areas. In particular, we pursue the idea of a magnetic bottle which can be switched on and off by transition between the normal and the superconducting phase of a suitable material in cryogenic environments, for example, in trap experiments in moderate magnetic fields. Methods for a fine-tuning of the magnetic field and its linear and quadratic components in a trap are presented together with possible applications.

Vogel, Manuel; Birkl, Gerhard; Quint, Wolfgang; von Lindenfels, David; Wiesel, Marco

2014-01-01

250

Switchable Magnetic Bottles and Field Gradients for Particle Traps  

E-print Network

Versatile methods for the manipulation of individual quantum systems, such as confined particles, have become central elements in current developments in precision spectroscopy, frequency standards, quantum information processing, quantum simulation, and alike. For atomic and some subatomic particles, both neutral and charged, a precise control of magnetic fields is essen- tial. In this paper, we discuss possibilities for the creation of specific magnetic field configurations which find appli- cation in these areas. In particular, we pursue the idea of a magnetic bottle which can be switched on and off by transition between the normal and the superconducting phase of a suitable material in cryogenic environments, for example in trap experiments in moderate magnetic fields. Methods for a fine-tuning of the magnetic field and its linear and quadratic components in a trap are presented together with possible applications.

Vogel, Manuel; Quint, Wolfgang; von Lindenfels, David; Wiesel, Marco

2014-01-01

251

Far infrared laser polarimetry and far forward scattering diagnostics for the C-2 field reversed configuration plasmasa)  

NASA Astrophysics Data System (ADS)

A two-chord far infrared (FIR) laser polarimeter for high speed sub-degree Faraday rotation measurements in the C-2 field reversed configuration experiment is described. It is based on high power proprietary FIR lasers with line width of about 330 Hz. The exceptionally low intrinsic instrument phase error is characterized with figures of merit. Significant toroidal magnetic field with rich dynamics is observed. Simultaneously obtained density fluctuation spectra by far forward scattering are presented.

Deng, B. H.; Kinley, J. S.; Knapp, K.; Feng, P.; Martinez, R.; Weixel, C.; Armstrong, S.; Hayashi, R.; Longman, A.; Mendoza, R.; Gota, H.; Tuszewski, M.

2014-11-01

252

Usage of Bi-HTS in high field magnets  

Microsoft Academic Search

At present, superconducting high field magnets built up of metallic low temperature superconductors (LTS) like NbTi and ternary\\/quaternary Nb3Sn is near to the upper limit of achievable field strength. Fields above approx. 23 T seem to be only reachable with LTS-HTS hybrid configurations consisting of an outer LTS section and a high temperature superconductor (HTS) insert. Commercially available Bi-HTS wires

F. Hornung; M. Klaser; T. Schneider

2004-01-01

253

The protostar merger scenario of Ap star magnetic field generation  

NASA Astrophysics Data System (ADS)

We propose that the small fraction of stars that are magnetic can be explained if, towards the end of the formation process, a correspondingly small fraction of stars merge after they have developed substantial radiative envelopes. Magnetic A stars may result from merging stars, and owe their strong magnetism to fields generated by a dynamo mechanism as they merge. We postulate a simple dynamo that generates magnetic field from differential rotation. We limit the growth of magnetic fields by the requirement that the poloidal field stabilizes the toroidal field and vice versa. While magnetic torques dissipate the differential rotation, toroidal field is generated from poloidal field by an ? dynamo. Both poloidal and toroidal fields reach a stable configuration that is independent of the size of small initial seed fields but proportional to the initial differential rotation. We posit the hypothesis that strongly magnetic stars form from the merging of two stellar objects. Highest fields are generated when the merger introduces differential rotation that amounts to its critical break up velocity within the condensed object. Such mergers can also account for the lack of close binaries among these stars.

Lau, H. H. B.; Tout, C. A.; Wickramasinghe, D.; Ferrario, L.

2014-11-01

254

Recent magneto-inertial fusion experiments on the field reversed configuration heating experiment  

NASA Astrophysics Data System (ADS)

Magneto-inertial fusion (MIF) approaches take advantage of an embedded magnetic field to improve plasma energy confinement by reducing thermal conduction relative to conventional inertial confinement fusion (ICF). MIF reduces required precision in the implosion and the convergence ratio. Since 2008 (Wurden et al 2008 IAEA 2008 Fusion Energy Conf. (Geneva, Switzerland, 13-18 October) IC/P4-13 LA-UR-08-0796) and since our prior refereed publication on this topic (Degnan et al 2008 IEEE Trans. Plasma Sci. 36 80), AFRL and LANL have developed further one version of MIF. We have (1) reliably formed, translated, and captured field reversed configurations (FRCs) in magnetic mirrors inside metal shells or liners in preparation for subsequent compression by liner implosion; (2) imploded a liner with interior magnetic mirror field, obtaining evidence for compression of a 1.36 T field to 540 T (3) performed a full system experiment of FRC formation, translation, capture, and imploding liner compression operation; (4) identified by comparison of 2D-MHD simulation and experiments factors limiting the closed-field lifetime of FRCs to about half that required for good liner compression of FRCs to multi-keV, 1019 ion cm-3, high energy density plasma (HEDP) conditions; and (5) designed and prepared hardware to increase that closed-field FRC lifetime to the required amount. Those lifetime experiments are now underway, with the goal of at least doubling closed-field FRC lifetimes and performing FRC implosions to HEDP conditions this year. These experiments have obtained imaging evidence of FRC rotation, and of initial rotation control measures slowing and stopping such rotation. Important improvements in fidelity of simulation to experiment have been achieved, enabling improved guidance and understanding of experiment design and performance.

Degnan, J. H.; Amdahl, D. J.; Domonkos, M.; Lehr, F. M.; Grabowski, C.; Robinson, P. R.; Ruden, E. L.; White, W. M.; Wurden, G. A.; Intrator, T. P.; Sears, J.; Weber, T.; Waganaar, W. J.; Frese, M. H.; Frese, S. D.; Camacho, J. F.; Coffey, S. K.; Makhin, V.; Roderick, N. F.; Gale, D. G.; Kostora, M.; Lerma, A.; McCullough, J. L.; Sommars, W.; Kiuttu, G. F.; Bauer, B.; Fuelling, S. R.; Siemon, R. E.; Lynn, A. G.; Turchi, P. J.

2013-09-01

255

Magnetic Field Line Simulation Using a Microcomputer.  

ERIC Educational Resources Information Center

Describes the implementation of a computer simulation of magnetic field lines. Discusses properties of magnetic fields and the calculation of magnetic fields at points. Provides a program listing (additional programs and teaching notes available from the author) and gives examples of several field plots. (JM)

Kirkup, L.

1986-01-01

256

Visualization of nonuniform magnetic fields by gadolinium-cobalt amorphous films  

Microsoft Academic Search

Configurations of magnetic domain structure of gadolinium-cobalt amorphous films with a perpendicular anisotropy under the effect of spatially nonuniform magnetic stray fields produced by various miniature sources have been studied. The domain structure of the amorphous films has been shown to qualitatively and quantitatively reflect the symmetry and magnitude of the normal component of the nonuniform magnetic fields and, similar

V. E. Ivanov

2008-01-01

257

The HMI Magnetic Field Pipeline  

NASA Astrophysics Data System (ADS)

The Helioseismic and Magnetic Imager (HMI) will provide frequent full-disk magnetic field data after launch of the Solar Dynamics Observatory (SDO), currently scheduled for fall 2009. 16 megapixel line-of-sight magnetograms (Blos) will be recorded every 45 seconds. A full set of polarized filtergrams needed to determine the vector magnetic field requires 90 seconds. Quick-look data will be available within a few minutes of observation. Quick-look space weather and browse products must have identified users, and the list currently includes full disk magnetograms, feature identification and movies, 12-minute disambiguated vector fields in active region patches, time evolution of AR indices, synoptic synchronic frames, potential and MHD model results, and 1 AU predictions. A more complete set of definitive science data products will be offered about a day later and come in three types. "Pipeline products, such as full disk vector magnetograms, will be computed for all data on an appropriate cadence. A larger menu of "On Demand products, such as Non-Linear Force Free Field snapshots of an evolving active region, will be produced whenever a user wants them. Less commonly needed "On Request products that require significant project resources, such as a high resolution MHD simulation of the global corona, will be created subject to availability of resources. Further information can be found at the SDO Joint Science Operations Center web page, jsoc.stanford.edu

Hoeksema, Jon Todd; Liu, Y.; Schou, J.; Scherrer, P.; HMI Science Team

2009-05-01

258

Microstability theory for the field reversed configuration. Final report  

SciTech Connect

This report summarizes the work done in the last contract period. Previous work has been described in Annual Performance Reports. The work carried on under this Research Grant and not included in previous progress and annual reports includes two distinct items. One work is a study of the nonlocal high beta microstability of the FRC (Field Reversed Configuration), which they began sometime ago. This study identified the limiting beta (=4{pi}nT/B{sup 2}) for the mode to remain unstable. The study found that as beta increases, the wavenumbers (k{sub y}, K{sub z}) for maximum growth changes, so that the limiting beta is not the one found by fixing (k{sub y}, K{sub z}) and increasing beta. It also appears that the criterion for nonlocal terms to influence the result, as beta increases, is substantially weaker than might have been thought. The authors identify the parameter that determines this effect. This study is presented as Appendix 1 of this report. The second study is of the effect of collisions on the lower hybrid drift instability. The result is that the effect of collisions is substantially more important than might have been expected. These two studies are in different stages of completion. The second is in fact complete, and could be published virtually as is, although it would benefit from a small amount of numerical analysis. The first study is far richer than the second, in that it includes a variety of regimes and effects. The formulation presented in it could e used as the basis for a series of papers, although in its present stage it is not ready for publication. It is unfortunate, but the level of the research Grant, and its untimely end, did not permit further progress on that study.

Krall, N.A.

1997-11-05

259

Electric and magnetic fields at power frequencies.  

PubMed

Exposures to electric and magnetic fields are among the most ubiquitous exposures that the Canadian population experiences. Sources of electric and magnetic field exposures may be occupational or residential and include proximity to certain types of electrical equipment, transmission and distribution power lines as well as appliance use. The early studies of children tended toward a consistent association between risks for leukemia and brain cancer and residential proximity to power lines having high wire configuration. More recent studies-and studies which have attempted to improve upon the measurement of exposure by using calculated fields, point-in-time or personal monitoring-have been inconsistent, with some suggesting increased risk and others not. Occupational exposures have suggested an increase in risk for leukemia, and to a lesser extent brain cancer and Non-Hodgkin lymphoma. However, studies of residential exposures and cancer in adults generally have suggested no effect. Laboratory work has been unable to demonstrate a biological mechanism which might explain the epidemiological findings. In spite of extensive efforts over the past 20 years and many expert reviews, it has been difficult to reach consensus regarding the carcinogenic effects of electric and magnetic fields. Exposure assessment has proven to be complex, and agreement on the relevant exposure metric has not yet been obtained. There is justification to question whether point-in-time measures in homes are appropriate indices of the relevant etiological exposure, as they fail to account for changes over time, peak exposures or time-varying fields. Nevertheless, it is probably desirable to err on the side of caution in not placing too much weight on the inconsistencies. The IARC has classified EMF as a "possible carcinogen" which refers to the circumstances where there is limited evidence of carcinogenicity in humans and inadequate evidence in experimental animals. The IARC review indicated limited evidence for the carcinogenicity of extremely low-frequency magnetic fields in relation to childhood leukemia at high level exposure in the residential environment (average residential magnetic field strength >0.4 ?T). Even higher levels of exposure in the occupational environment may increase the risk of leukemia in adults. PMID:21199600

Miller, Anthony B; Green, Lois M

2010-01-01

260

Residential wire codes: reproducibility and relation with measured magnetic fields  

PubMed Central

OBJECTIVES: To investigate the reproducibility of wire codes to characterise residential power line configurations and to determine the extent to which wire codes provide a proxy measure of residential magnetic field strength in a case-control study of childhood leukaemia conducted in nine states within the United States. METHODS: Misclassification of wire codes was assessed with independent measurements by two technicians for 187 residences. The association between categories of wire code and measured level of magnetic field was evaluated in 858 residences with both a wire code measurement and a 24 hour measurement of the magnetic field in the bedroom. The strength of the association between category of wire code and risk of leukaemia was examined in two regions with different average levels of magnetic field in homes with high categories of wire code. RESULTS: The reproducibility of any of three different classifications of wire codes was excellent (kappa > or = 0.89). Mean and median magnetic fields, and the percentage of homes with high magnetic fields increased with increasing category for each of the wire code classification schemes. The size of the odds ratios for risk of leukaemia and high categories of wire code did not reflect the mean levels of the magnetic field in those categories in two study regions. CONCLUSION: Misclassification of categories of wire code is not a major source of bias in the study. Wire codes provide a proxy measure of exposure to residential magnetic fields. If magnetic fields were a risk factor for leukaemia, however, there would be some attenuation of risk estimates based on wire codes because of misclassification of exposure to magnetic fields at both extremes of the wire code range. The lack of an association between high categories of wire code and risk of leukaemia cannot be explained by a failure of the wire code classification schemes to estimate exposure to magnetic fields in the study area. PMID:9764111

Tarone, R. E.; Kaune, W. T.; Linet, M. S.; Hatch, E. E.; Kleinerman, R. A.; Robison, L. L.; Boice, J. D.; Wacholder, S.

1998-01-01

261

Large magnetic field instabilities induced by magnetic dipole transitions  

Microsoft Academic Search

We present a new mechanism that will limit very high magnetic fields which have been conjectured to exist in connection with some astrophysical phenomena. Low lying strongly interacting particles and resonances mixing with each other via magnetic dipole QED couplings force a vacuum instability for large external magnetic fields. These mixings limit fields to a few GeV2.

Myron Bander; H. R. Rubinstein

1992-01-01

262

Magnetic Resonance Imaging System Based on Earth's Magnetic Field  

Microsoft Academic Search

This article describes both the setup and the use of a system for magnetic resonance imaging (MRI) in the Earth's magnetic field. Phase instability caused by temporal fluctuations of Earth's field can be successfully improved by using a reference signal from a separate Earth's field nuclear magnetic resonance (NMR) spectrometer\\/magnetometer. In imaging, it is important to correctly determine the phase

Ales Mohoric; Gorazd Planinsic; Miha Kos; Andrej Duh; Janez Stepisnik

2004-01-01

263

Generation of Whistler Wave by a Rotating Magnetic Field Source  

NASA Astrophysics Data System (ADS)

The interaction of Rotating Magnetic Fields (RMF) with plasmas is a fundamental plasma physics problem with implications to fusion related Field-Reversed Configurations (FRC), space propulsion, astronaut protection from cosmic rays in long interstellar travel, control of the energetic population in the radiation belts and near zone processes in pulsar magnetospheres. In this paper we report recent experiments on the generation of whistler waves with a new type RMF-based antenna. The experiments were conducted on UCLA's Large Plasma Device (LAPD). The Rotating Magnetic Field (RMF) is created using poly-phased loop antennas. A number of parameter combinations, e.g. plasma density, background magnetic field, and driving current, were used. It was found that RMF created by a two phase-delayed loop antenna drives significant currents along the ambient magnetic field. The measured amplitude of induced wave field was proportional to the square-root of the plasma density. The spatial decay rate for the wave perturbation across the background magnetic field was found to scale with the plasma skin depth. A small amplitude second harmonic was also measured. The paper will also present analytic and simulation results that account for the experimental results; in particular, the scaling of the induced magnetic field as a function of the RMF and plasma parameters and the spatial decay rate of magnetic field. Applications of RMF as an efficient radiation source of plasma waves in space plasmas will be discussed. This work was sponsored by ONR MURI Grant 5-28828

Karavaev, A.; Papadopoulos, K.; Shao, X.; Sharma, A. S.; Gigliotti, A.; Gekelman, W.; Pribyl, P.; Vincena, S.

2008-12-01

264

The Giotto magnetic field investigation  

Microsoft Academic Search

The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28\\/sec during close encounter,

F. M. Neubauer; G. Musmann; M. H. Acuna; L. F. Burlaga; N. F. Ness; F. Mariani; M. Wallis; E. Ungstrup; H. Schmidt

1983-01-01

265

Heat pulse propagation in chaotic 3-dimensional magnetic fields  

E-print Network

Heat pulse propagation in $3$-D chaotic magnetic fields is studied by solving the parallel heat transport equation using a Lagrangian-Green's function (LG) method. The LG method provides an efficient and accurate technique that circumvents limitations of finite elements and finite difference methods. The main two problems addressed are: (i) The dependence of the radial transport on the magnetic field stochasticity (controlled by the amplitude of the perturbation, $\\epsilon$); and (ii) The role of reversed shear configurations on pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, radial transport is observed to depend strongly on $\\epsilon$ due to the presence of high-order magnetic islands and Cantori that act as quasi-transport barriers that preclude the radial penetration of heat pulses within physically relevant time scale. The dependence of the magnetic field connection length, $\\ell_B$, on $\\epsilon$ is studied in detail. The decay rate of the temperature maximum...

del-Castillo-Negrete, D

2014-01-01

266

MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2  

E-print Network

MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value to the formation of an azimuthal rope of twisted magnetic field embedded within the global field, and to the energy

Fornberg, Bengt

267

Development Trends in High Field Magnet Technology  

Microsoft Academic Search

The production of high magnetic fields using low temperature superconductors (LTS) has become common place. However, large magnet sizes and associated high cooling costs have often precluded the full utilization of these research capabilities. Recent advances in internal Sn superconductors and cryogen free technology have opened up a new era in superconducting magnet development. Ultra-compact, laboratory sized magnets producing fields

R. Harrison; R. Bateman; J. Brown; F. Domptail; C. M. Friend; P. Ghoshal; C. King; A. Van der Linden; Z. Melhem; P. Noonan; A. Twin; M. Field; S. Hong; J. Parrell; Y. Zhang

2008-01-01

268

Experimental profile evolution of a high-density field-reversed configuration  

SciTech Connect

A field-reversed configuration (FRC) gains angular momentum over time, eventually resulting in an n=2 rotational instability (invariant under rotation by {pi}) terminating confinement. To study this, a laser interferometer probes the time history of line integrated plasma density along eight chords of the high-density ({approx}10{sup 17} cm{sup -3}) field-reversed configuration experiment with a liner. Abel and tomographic inversions provide density profiles during the FRC's azimuthally symmetric phase, and over a period when the rotational mode has saturated and rotates with a roughly fixed profile, respectively. During the latter part of the symmetric phase, the FRC approximates a magnetohydrodynamic (MHD) equilibrium, allowing the axial magnetic-field profile to be calculated from pressure balance. Basic FRC properties such as temperature and poloidal flux are then inferred. The subsequent two-dimensional n=2 density profiles provide angular momentum information needed to set bounds on prior values of the stability relevant parameter {alpha} (rotational to ion diamagnetic drift frequency ratio), in addition to a view of plasma kinematics useful for benchmarking plasma models of higher order than MHD.

Ruden, E. L.; Zhang, Shouyin; Intrator, T. P.; Wurden, G. A. [Air Force Research Laboratory, Directed Energy Directorate, 3550 Aberdeen Avenue SE, Kirtland AFB, New Mexico, 87117-5776 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2006-12-15

269

Comparing Magnetic Fields on Earth and Mars  

NASA Video Gallery

This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

270

Measurements of Solar Vector Magnetic Fields  

NASA Technical Reports Server (NTRS)

Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

Hagyard, M. J. (editor)

1985-01-01

271

Plasma stability in a dipole magnetic field  

E-print Network

The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field ...

Simakov, Andrei N., 1974-

2001-01-01

272

What Are Electric and Magnetic Fields? (EMF)  

MedlinePLUS

What are Electric and Magnetic Fields? (EMF) Electric and Magnetic Fields Electricity is an essential part of our lives. Electricity powers all sorts of things around us, from computers to refrigerators ...

273

Liquid first walls for magnetic fusion energy configurations  

Microsoft Academic Search

Liquids (~7 neutron mean free paths thick), with certain restrictions, can probably be used in magnetic fusion designs between the burning plasma and the structural materials of the fusion power core. If this works there would be a number of profound advantages: a cost of electricity lower by as much as a factor of 2; removal of the need to

R. W. Moir

1997-01-01

274

The nonextensive parameter for nonequilibrium plasmas in magnetic field  

E-print Network

The nonextensive parameter for nonequilibrium electron gas in a magnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is closely related to the temperature gradient, the electric field strength, the magnetic induction as well as the overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity of the gas. Thus the nonextensive q-parameter in magnetic field represents the nonequilibrium nature or nonisothermal configurations of nonequilibrium electron gas in the electromagnetic interactions.

Haining, Yu

2014-01-01

275

Primordial magnetic field limits from cosmological data  

SciTech Connect

We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi, GE-0128 (Georgia); Sethi, Shiv K. [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Pandey, Kanhaiya [Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)

2010-10-15

276

Magnetic-Field Processing of Industrial Effluents  

Microsoft Academic Search

the field acts on pollutants in the colloidal state; and the field influences the structure of the water. Magnetic treatment is simple, safe, and very inexpensive, but a patent search under the topic Magnetic treatment of water and aqueous solutions has shown that the existing devices and methods for using magnetic fields to process effluents containing heavy-metal ions

V. P. Malkin

2002-01-01

277

Magnetic field navigation in an indoor environment  

Microsoft Academic Search

This paper describes a method that has been developed to aid an inertial navigation system when GNSS signals are not available, by taking advantage of the uniqueness of magnetic field variations. Most indoor environments have many different features (ferrous structural materials or contents, electrical currents, etc.) which perturb the Earths natural magnetic field. The variations in the magnetic field in

William Storms; Jeremiah Shockley; John Raquet

2010-01-01

278

CORONAL MAGNETIC FIELD MEASUREMENTS THROUGH GYRORESONANCE EMISSION  

E-print Network

Chapter 5 CORONAL MAGNETIC FIELD MEASUREMENTS THROUGH GYRORESONANCE EMISSION Stephen M. White This article reviews the use of gyroresonance emission at radio wavelengths to measure coronal magnetic fields probes of the magnetic field strength above active regions, and this unique capability is one

White, Stephen

279

Appendix E: Software MEASURING CONSTANT MAGNETIC FIELD  

E-print Network

E - 1 Appendix E: Software MEASURING CONSTANT MAGNETIC FIELD (THE HALL PROBE APPLICATION) Basics yourself with the equipment. The software package that works in tandem with your magnetic field sensor is written in LabVIEWTM. It allows you to measure and record magnetic field strength as a function

Minnesota, University of

280

Quenching of flames by magnetic fields (abstract)  

Microsoft Academic Search

The effects of magnetic fields on combustion of alcohol with the aid of platinum catalysis have been studied to simulate in part the oxidation of organic matter in the living body, and it has been found that the combustion reactions are influenced by magnetic fields. It has also been observed that candle flames are pressed down by magnetic fields of

S. Ueno

1988-01-01

281

Applied Magnetic Field Enhances Arc Vapor Deposition  

NASA Technical Reports Server (NTRS)

Applied magnetic field enhances performance of vaporization part of arc vapor deposition apparatus. When no magnetic field applied by external means, arc wonders semirandomly over cathode, with net motion toward electrical feedthrough. When magnetic field applied arc moves circumferentially around cathode, and downward motion suppressed.

Miller, T. A.; Loutfy, R. O.; Withers, J. C.

1993-01-01

282

Collisionless magnetic reconnection in the presence of a sheared velocity field  

SciTech Connect

The linear theory of magnetic field lines reconnection in a two-dimensional configuration in the presence of a (Kelvin-Helmholtz stable) sheared velocity field is investigated within a single fluid model, where the onset of magnetic field line reconnection is made possible by the effect of electron inertia in the so called large DELTA{sup '} regime.

Faganello, M. [Ecole Polytechnique, LPP, Palaiseau, 91128 (France); Pegoraro, F.; Califano, F. [Department of Physics, University of Pisa and CNISM, Pisa, 56127 (Italy); Marradi, L. [Department of Physics, University of Pisa and CNISM, Pisa, 56127 (Italy)] [Universite de Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, 06304 Nice (France)

2010-06-15

283

CORRELATION OF MAGNETIC FIELDS AND ENERGETIC ELECTRONS ON THE IMP 1 SATELLITE  

Microsoft Academic Search

A study of simultaneous magnetic field and energetic particle records from the IMP 1 satellite on the dark side of the earth has shown several distinct correlations that can be understood as diamagnetic effects of charged particle populations. Depression of the mag- netic field in the closed magnetic field line configuration of the particle cusp region is ob- served on

K. A. ANDERSON; N. F. NESS

1966-01-01

284

Levitation performance of the magnetized bulk high- Tc superconducting magnet with different trapped fields  

NASA Astrophysics Data System (ADS)

To a high- Tc superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high- Tc superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

Liu, W.; Wang, J. S.; Liao, X. L.; Zheng, S. J.; Ma, G. T.; Zheng, J.; Wang, S. Y.

2011-03-01

285

Magnetic field response sensor for conductive media  

NASA Technical Reports Server (NTRS)

A magnetic field response sensor comprises an inductor placed at a fixed separation distance from a conductive surface to address the low RF transmissivity of conductive surfaces. The minimum distance for separation is determined by the sensor response. The inductor should be separated from the conductive surface so that the response amplitude exceeds noise level by a recommended 10 dB. An embodiment for closed cavity measurements comprises a capacitor internal to said cavity and an inductor mounted external to the cavity and at a fixed distance from the cavity's wall. An additional embodiment includes a closed cavity configuration wherein multiple sensors and corresponding antenna are positioned inside the cavity, with the antenna and inductors maintained at a fixed distance from the cavity's wall.

Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

2009-01-01

286

Magnetic field response sensor for conductive media  

NASA Technical Reports Server (NTRS)

A magnetic field response sensor comprises an inductor placed at a fixed separation distance from a conductive surface to address the low RF transmissivity of conductive surfaces. The minimum distance for separation is determined by the sensor response. The inductor should be separated from the conductive surface so that the response amplitude exceeds noise level by a recommended 10 dB. An embodiment for closed cavity measurements comprises a capacitor internal to said cavity and an inductor mounted external to the cavity and at a fixed distance from the cavity's wall. An additional embodiment includes a closed cavity configuration wherein multiple sensors and corresponding antenna are positioned inside the cavity, with the antenna and inductors maintained at a fixed distance from the cavity's wall.

Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

2010-01-01

287

Magnetic Field Response Sensor For Conductive Media  

NASA Technical Reports Server (NTRS)

A magnetic field response sensor comprises an inductor placed at a fixed separation distance from a conductive surface to address the low RF transmissivity of conductive surfaces. The minimum distance for separation is determined by the sensor response. The inductor should be separated from the conductive surface so that the response amplitude exceeds noise level by a recommended 10 dB. An embodiment for closed cavity measurements comprises a capacitor internal to said cavity and an inductor mounted external to the cavity and at a fixed distance from the cavity s wall. An additional embodiment includes a closed cavity configuration wherein multiple sensors and corresponding antenna are positioned inside the cavity, with the antenna and inductors maintained at a fixed distance from the cavity s wall.

Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

2006-01-01

288

Electron temperature measurements of field-reversed configuration plasmas on the FRX-C/LSM experiment  

SciTech Connect

A single-point Thomson scattering diagnostic is used to determine the electron temperature T/sub e/ of field-reversed-configuration (FRC) compact toroids generated in the /theta/-pinch source of the Los Alamos FRX-C/LSM experiment. Measurements are performed close to the axial midplane and near the magnetic and geometric axes. A broad range of plasma conditions is investigated and electron temperatures vary, on average, between 90 and 190 eV. For a given condition, T/sub e/ remains relatively constant during the 60 /mu/s measurement interval between formation and the onset of the n = 2 rotational instability. T/sub e/ increases with plasma diameter and external magnetic field, and decreases slightly with fill pressure. The temperature at the geometric axis is consistently 10--20% lower than that near the field null. The temperature is approximately 35% higher than observed previously on the smaller FRX-C device. The implications of these measurements on plasma confinement properties are discussed. 25 refs., 18 figs., 8 tabs.

Rej, D.J.

1989-09-01

289

Effects of magnetic fields on fibrinolysis  

NASA Astrophysics Data System (ADS)

In this study, we investigated the possible effects of magnetic fields on the fibrinolytic process. Fibrin dissolution was observed and the fibrinolytic activities were evaluated. First, fibrinolytic processes in magnetic fields were investigated by the fibrin plate method. We gathered solutions from the dissolved fibrin, and measured mean levels of fibrin degradation products (FDPs) in solutions. Mean levels of FDPs exposed to 8 T magnetic fields were higher than those not exposed to fields. Second, we carried out an experiment to understand how fibrin oriented in a magnetic field dissolves. FDPs in solutions of dissolved fibrins in fibrin plates were assayed. The result was that fibrin gels formed in a magnetic field at 8 T were more soluble than those not formed in a magnetic field. A model based on the diamagnetic properties of macromolecules was explained, and changes of protein concentrations in a solution in gradient magnetic fields were predicted.

Iwasaka, M.; Ueno, S.; Tsuda, H.

1994-05-01

290

Magnetic monopole and the nature of the static magnetic field  

E-print Network

We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

Xiuqing Huang

2008-12-10

291

Heliospheric magnetic fields and plasmas  

NASA Technical Reports Server (NTRS)

A survey of the existing literature on heliospheric physics, covering the period 1972-1982, is presented. Attention is given to observations and theories germane to the examination of the heliosphere as a large-scale astrophysical system that is part of the earth's environment. The literature includes data and models for magnetic sectors and the large-scale magnetic field, the large-scale plasma structure, and models and observed variations in the solar wind. Consideration is also devoted to the transient and corotating streams and shocks, the composition of the solar wind, and to MHD turbulence, waves, and discontinuities. More intensive investigations of the region near 1 AU are recommended, particularly to characterize the coronal source of the solar wind. The solar polar mission will be the first to provide radial measurements for comparisons with previous exclusively ecliptic measurements of solar activities.

Burlaga, L. F.

1983-01-01

292

The Giotto magnetic field investigation  

NASA Technical Reports Server (NTRS)

The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.

Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.

1983-01-01

293

Magnetic Helicity and Large Scale Magnetic Fields: A Primer  

E-print Network

Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. H...

Blackman, Eric G

2014-01-01

294

Magnetic field perturbations in the systems where only poloidal magnetic field is present*  

E-print Network

1 Magnetic field perturbations in the systems where only poloidal magnetic field is present* D In some plasma confinement systems the confinement is provided by a poloidal magnetic field (no toroidal magnetic field is present). Examples include FRC, levitated dipoles, and long diffuse pinches. We consider

295

Magnetic Fields1 Increasingly, instruments that generate large static magnetic fields (e.g., NMR spectrometers,  

E-print Network

Magnetic Fields1 Increasingly, instruments that generate large static magnetic fields (e.g., NMR spectrometers, MRI) are present in research laboratories. Such magnets typically have fields of 14,000 to 235,000 G (1.4 to 23.5 T), far above that of Earth's magnetic field, which is approximately 0.5 G

Shull, Kenneth R.

296

The magnetic field over the Southern African continent: from core to crustal magnetic fields  

Microsoft Academic Search

Secular magnetic field evolutions do not proceed in a regular way all over the Earth. In some regions like Southern Africa, the field has been changing more rapidly than elsewhere. During the last five decades, the Earth's magnetic field has been represented in spherical harmonics from a series of measurements that were generally obtained at magnetic field observatories. Unfortunately, magnetic

Erwan Thbault; Pieter Kotze; Arnaud Chulliat; Fotini Vervelidou

2010-01-01

297

Analysis of perturbed magnetic fields via construction of nearby integrable fields  

E-print Network

) Plasma Theory Laboratory, Japan Atomic Energy Research Institute, Naka-gun, Ibaraki-ken, Japan R. L. Dewar Dept. of Theoretical Physics & Plasma Research Laboratory, R.S.Phys.S.E., Australian National treatments of magnetic field configurations, plasma dynamics and general Hamiltonian systems, utilize

Hudson, Stuart

298

Overview of C-2 field-reversed configuration experiment plasma diagnosticsa)  

NASA Astrophysics Data System (ADS)

A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to 5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

Gota, H.; Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

2014-11-01

299

Field-Reversed Configuration Formation Scheme Utilizing a Spheromak and Solenoid Induction  

SciTech Connect

A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state.

S.P. Gerhardt, E.V. Belova, M. Yamada, H. Ji, Y. Ren, B. McGeehan, and M. Inomoto

2008-06-12

300

Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization  

DOEpatents

In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

2000-12-19

301

Heat pulse propagation in chaotic three-dimensional magnetic fields  

NASA Astrophysics Data System (ADS)

Heat pulse propagation in three-dimensional chaotic magnetic fields is studied by solving numerically the parallel heat transport equation using a Lagrangian Green's function (LG) method. The LG method provides an efficient and accurate technique that circumvents known limitations of finite elements and finite difference methods. The main two problems addressed are (i) the dependence of the radial transport of heat pulses on the level of magnetic field stochasticity (controlled by the amplitude of the magnetic field perturbation, ?), and (ii) the role of reversed shear magnetic field configurations on heat pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, the radial transport of heat pulses is observed to depend strongly on ? due to the presence of high-order magnetic islands and Cantori. These structures act as quasi-transport barriers which can actually preclude the radial penetration of heat pulses within physically relevant time scales. The dependence of the magnetic field connection length, ?B, on ? is studied in detail. Regions where ?B is large, correlate with regions where the radial propagation of the heat pulse slows down or stops. The decay rate of the temperature maximum, max(t), the time delay of the temperature response as function of the radius, ?, and the radial heat flux \\langle {{\\bit q}\\cdot {\\hat e}_\\psi} \\rangle , are also studied as functions of the magnetic field stochasticity and ?B. In all cases it is observed that the scaling of max with t transitions from sub-diffusive, max t-1/4, at short times (??t < 105) to a significantly slower, almost flat scaling at longer times (??t > 105). A strong dependence on ? is also observed on ? and \\langle {{\\bit q}\\cdot {\\hat e}_\\psi} \\rangle . Even in the case when there are no flux surfaces nor magnetic field islands, reversed shear magnetic field configurations exhibit unique transport properties. The radial propagation of heat pulses in fully chaotic fields considerably slows down in the shear reversal region and, as a result, the delay time of the temperature response in reversed shear configurations is about an order of magnitude longer than the one observed in monotonic q-profiles. The role of separatrix reconnection of resonant modes in the shear reversal region, and the role of shearless Cantori in the observed phenomena are also discussed.

del-Castillo-Negrete, Diego; Blazevski, Daniel

2014-06-01

302

Magnetic fluid flow phenomena in DC and rotating magnetic fields  

E-print Network

An investigation of magnetic fluid experiments and analysis is presented in three parts: a study of magnetic field induced torques in magnetorheological fluids, a characterization and quantitative measurement of properties ...

Rhodes, Scott E. (Scott Edward), 1981-

2004-01-01

303

Magnetic field effects on microwave absorbing materials  

NASA Technical Reports Server (NTRS)

The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

1991-01-01

304

Generation and evolution of stable stellar magnetic fields in young A-type stars  

NASA Astrophysics Data System (ADS)

While the presence of magnetic fields on low-mass stars is attributed to a dynamo process that is primarily driven by convective motion, the existence of magnetic fields on intermediate-mass stars very probably has other explanations. This paper focuses on the generation of stable magnetic configurations at the early stages of stellar evolution, and presumes that the fields we detect are nearly constant in time. The convective processing of an initial magnetic field during the pre-main-sequence phase is studied in a very simple model star. Azimuthal magnetic fields are found to be typical remnants in the upcoming radiative envelope after convection has receded.

Arlt, R.

2014-11-01

305

Problems with magnetic field measurements on spacecrafts  

Microsoft Academic Search

The paper summarizes the difficulties and possible solutions to design and evaluate accurate vector magnetic field measurements on spacecrafts in the interplanetary magnetic field. Problems are discussed like calibration, boom mounted sensors and misalignment angles determination in flight. The application of a detailed magnetic cleanliness program as an example the comet Halley-Giotto spacecraft is demonstrated in detail. The use of

Gnter Musmann

1988-01-01

306

Neutrinos with Mixing in Twisting Magnetic Fields  

E-print Network

Transitions in a system of neutrinos with vacuum mixing and magnetic moments, propagating in matter and transverse magnetic field, are considered. It is shown that in the realistic case of magnetic field direction varying along the neutrino path qualitatively new phenomena become possible: permutation of neutrino conversion resonances, appearance of resonances in the neutrino-antineutrino ($\

E. Kh. Akhmedov; S. T. Petcov; A. Yu. Smirnov

1993-01-06

307

Discovery of magnetic fields in CPNs  

E-print Network

For the first time we have directly detected magnetic fields in central stars of planetary nebulae by means of spectro-polarimetry with FORS1 at the VLT. In all four objects of our sample we found kilogauss magnetic fields, in NGC 1360 and LSS1362 with very high significance, while in Abell36 and EGB5 the existence of a magnetic field is probable but with less certainty. This discovery supports the hypothesis that the non-spherical symmetry of most planetary nebulae is caused by magnetic fields in AGB stars. Our high discovery rate demands mechanisms to prevent full conservation of magnetic flux during the transition to white dwarfs.

S. Jordan; K. Werner; S. J. O'Toole

2004-10-21

308

Particle acceleration and transport in a chaotic magnetic field  

NASA Astrophysics Data System (ADS)

Time-dependent chaotic magnetic field can arise from a simple asymmetric current wire-loop system (CWLS). Such simple CWLSs exist, for example, in solar flares. Indeed one can use an ensemble of such systems to model solar active region magnetic field [1,2]. Here we use test particle simulation to investigate particle transport and energization in such a time-dependent chaotic magnetic field, and through induction, a chaotic electric field. We first construct an ensemble of simple systems based on the estimated size and field strength of solar active region. By following the trajectories of single charged particles, we will examine how particle energy is changed. Diffusion coefficients in both real space and momentum space can be calculated as well as the average trapped time of the particles within chaotic field region. Particle energy spectrum as a function of time will be examined. [1] Dasgupta, B. and Abhay K. Ram, (2007) Chaotic magnetic fields due to asymmetric current configurations -application to cross field diffusion of particles in cosmic rays, (Presented at the 49th Annual Meeting of the DPP, APS, Abstract # BP8.00102) [2] G. Li, B. Dasgupta, G. Webb, and A. K. Ram, (2009) Particle Motion and Energization in a Chaotic Magnetic Field, AIP Conf. Proc. 1183, pp. 201-211; doi: http://dx.doi.org/10.1063/1.3266777

Li, X.; Li, G.; Dasgupta, B.

2012-12-01

309

The Influence of the Interplanetary Magnetic Field (IMF) on Atmospheric Escape at Mars  

NASA Astrophysics Data System (ADS)

We present a study on the response of Mars atmosphere to changes in the interplanetary magnetic field (IMF) configuration, specifically with respect to the atmospheric escape rate via pick up ions and upcoming MAVEN observations.

Curry, S. M.; Luhmann, J. G.; Ma, Y.; Dong, C. F.; Brain, D. A.

2014-07-01

310

Magnetic field and plasma wave observations in a plasma cloud at Venus  

Microsoft Academic Search

Pioneer Venus magnetic field and plasma wave data are examined in a particularly clear example of a plasma cloud above the Venus ionosphere. The magnetic configuration is suggestive of acceleration of the plasma cloud by magnetic tension. If the plasma is at rest at the subsolar point, it could be accelerated to approx.90 km\\/sec by the observed stress at the

C.T. Russell; J. G. Luhmann; R. C. Elphic; F. L. Scarf; L. H. Brace

1982-01-01

311

VOLUME 83, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 11 OCTOBER 1999 Steady State Thermoelectric Field-Reversed Configurations  

E-print Network

Thermoelectric Field-Reversed Configurations A. B. Hassam Institute for Plasma Research, University of Maryland that the cross-field thermoelectric force of magnetized plasmas can maintain field-reversed configurations. If a peaked radial temperature profile is maintained, the thermoelectric force is in the opposite direction

Hassam, Adil

312

Unique topological characterization of braided magnetic fields  

SciTech Connect

We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.

Yeates, A. R. [Department of Mathematical Sciences, Durham University, Durham DH1 3LE (United Kingdom); Hornig, G. [Division of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom)

2013-01-15

313

Parallel heat transport in integrable and chaotic magnetic fields  

SciTech Connect

The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

Castillo-Negrete, D. del; Chacon, L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)

2012-05-15

314

Parallel heat transport in integrable and chaotic magnetic fields  

SciTech Connect

The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

Del-Castillo-Negrete, Diego B [ORNL; Chacon, Luis [ORNL

2012-01-01

315

A procedure for the design of snowflake magnetic configurations in tokamaks  

NASA Astrophysics Data System (ADS)

This paper deals with the design of snowflake (SF) plasma configurations in tokamaks. The SF configuration represents a promising solution for the power exhaust and divertor design problem due to its ability to flare the scrape-off layer in the vicinity of the SF point. SF plasma configurations have been successfully achieved in tokamaks like Tokamak Configuration Variable (TCV), DIII-D and National Spherical Torus Experiment (NSTX), and are under investigation for future tokamaks such as DEMO. The first attempts to determine such new plasma configurations have picked out the inherent difficulties in obtaining them with low coil currents and in controlling the associated equilibria against external disturbances and modeling errors. This paper presents a novel procedure based on the linearized model of the plasma for the design of an SF divertor configuration. Moreover, a procedure for the optimization of the poloidial field coil system is proposed. The effectiveness of the techniques is demonstrated with an application to DEMO.

Albanese, R.; Ambrosino, R.; Mattei, M.

2014-03-01

316

Bipolar pulse field for magnetic refrigeration  

DOEpatents

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

Lubell, M.S.

1994-10-25

317

Advances in Remote Sensing of Magnetic Fields  

NASA Astrophysics Data System (ADS)

In sharp contrast to stellar magnetic fields, geomagnetic fields have never been remotely sensed. If geomagnetic fields could be measured remotely at the nanotesla (nT) level or better, our understanding of the processes that produce these fields would advance markedly. Unlike characteristics such as topography and temperature, measurements of the magnetic field are determined almost exclusively in situ. The inability to remotely sense these fields has hindered their utility. The Remote Atmospheric Magnetics Workshop highlighted advances in this frontier area, focusing on lab- and field-based studies.

Purucker, Michael

2014-09-01

318

50-Hz magnetic field exposure system for small animals.  

PubMed

The design, construction, and results of evaluation of an animal-exposure system for the study of biological effects of extremely low frequency (ELF) magnetic fields are described. The system uses a square coil arrangement based on a modification of the Helmholtz coil. Due to the cubic configuration of this exposure system, horizontal and vertical magnetic fields as high as 0.3 mT can be generated. Circularly polarized magnetic fields can also be generated by changing the current and phase difference between two sets of coils. Tests were made for uniformity of the magnetic field, stray fields, sham-exposure ratio of stray field, changes of temperature and humidity, light intensity and distribution inside the animal-housing space, and noise due to air-conditioning equipment. Variation of the magnetic field was less than 2% inside the animal housing. The stray-field level inside the sham-exposure system is less than 2% of experimental exposure levels. The system can be used for simultaneous exposure of 48 rats (2 to a cage) or 96 mice (4 to a cage). PMID:8494553

Shigemitsu, T; Takeshita, K; Shiga, Y; Kato, M

1993-01-01

319

Franck-Hertz experiment in magnetic field  

E-print Network

The paper studies the impact of applied magnetic field on the inelastic collisions of electrons with argon atoms. In the electron-argon Franck-Hertz experiment, the influence of applied magnetic field emerges complicated features, and is equivalent to that of the temperature. In case the accelerating electric intensity becomes strong enough, enlarging magnetic flux density will be equivalent to the increasing of oven temperature. When the accelerating electric intensity is very weak and the applied magnetic field occupies a dominant position, enhancing magnetic flux density is identical with the decreasing of oven temperature. And the non-uniform distribution of applied magnetic field has an influence on the inelastic collision as well. The study claims that the influence of magnetic field variation is equivalent to that of temperature variety, and that it leads the electron energy to transfer obviously in the experiment.

Ying Weng; Zi-Hua Weng

2010-10-07

320

Magnetic Fields and Rotations of Protostars  

E-print Network

The evolution of the magnetic field and angular momentum in the collapsing cloud core is studied using three-dimensional resistive MHD nested grid simulations. Starting with a Bonnor-Ebert isothermal cloud rotating in a uniform magnetic field, we calculate the cloud evolution from the molecular cloud core (n=10^4 cm^-3) to the stellar core (n \\simeq 10^22 cm^-3). The magnetic field strengths at the center of the clouds converge to a certain value as the clouds collapse, when the clouds have the same angular momenta but different strengths of the magnetic fields at the initial state. For 10^12 cm^-3 magnetic field from the collapsing cloud core, and the magnetic field lines, which are strongly twisted for n magnetic field lines are twisted and amplified again for nc > 10^16 cm^-3, because the magnetic field is recoupled with the warm gas. Finally, protostars at their formation epoch have 0.1-1kG of the magnetic fields, which are comparable to observations. The magnetic field strength of protostar slightly depends on the angular momentum of the host cloud. The protostar formed from the slowly rotating cloud core has a stronger magnetic field. The evolution of the angular momentum is closely related to the evolution of the magnetic field. The angular momentum in the collapsing cloud is removed by the magnetic effect. The formed protostars have 0.1-2 days of the rotation period at their formation epoch, which are slightly shorter than the observation. This indicates that the further removal mechanism of the angular momentum such as interaction between the protostar and disk, wind gas or jet is important in further evolution of the protostar.

Masahiro N. Machida; Shu-ichiro Inutsuka; Tomoaki Matsumoto

2007-02-07

321

Magnetic moments of light hypernuclei with the N 1 Y configurations (Y=?, ? and ?)  

Microsoft Academic Search

SummaryWithin the framework of shell model, we have calculated magnetic moments of light hypernuclei and obtained the Schmidt diagrams\\u000a of N1 Y systems (N=n and p; Y=?, ? and ?). Using the first-order perturbation theory, the configuration mixing effects on magnetic\\u000a moments of N1 Y hypernuclei have been also estimated and shown to be small in many cases.

Y. Tanaka

1991-01-01

322

Magnetism  

NSDL National Science Digital Library

This webpage is part of the University Corporation for Atmospheric Research (UCAR) Windows to the Universe program. It describes the nature and configuration of magnetic fields, which are the result of moving electric charges, including how they cause magnetic objects to orient themselves along the direction of the magnetic force points, which are illustrated as lines. Magnetic field lines by convention point outwards at the north magnetic pole and inward at the south magnetic pole. The site features text, scientific illustrations and an animation. Text and vocabulary are selectable for the beginning, intermediate, or advanced reader.

Team, University C.

2007-12-12

323

Magnetic Field Variations in the Near Geomagnetic Tail Associated with Weak Substorm Activity  

Microsoft Academic Search

Magnetic field observations obtained with the UCLA Ogo 5 fluxgate magnetometer on an inbound pass, during which the satellite remained close to the magnetic meridian and traveled almost parallel to and approximately 2 Rr above the expected position of the neutral sheet, are used to illustrate the variations in the configuration of the tail field during weak substorm activity. Beyond

C. T. Russell; R. L. McPherron; P. J. Coleman

1971-01-01

324

Molecular dynamics simulation of reorientation of polyethylene chains under a high magnetic field  

Microsoft Academic Search

The purpose of this investigation is to clarify the dynamical process of reorientation of a polyethylene chains under high magnetic fields. Molecular dynamics (MD) simulations at constant temperature and pressure are carried out to study the reorientation of two polyethylene chains with different configurations. We utilized static homogeneous external magnetic fields of 25T into the velocity Verlet integration algorithm through

M. S. Al-Haik; M. Y. Hussaini

2006-01-01

325

Measuring T Tauri star magnetic fields  

Microsoft Academic Search

Stellar magnetic fields including a strong dipole component are believed to play a critical role in the early evolution of newly formed stars and their circumstellar accretion disks. It is currently believed that the stellar magnetic field truncates the accretion disk several stellar radii above the star. This action forces accreting material to flow along the field lines and accrete

Christopher M. Johns-Krull

2009-01-01

326

DC-based magnetic field controller  

DOEpatents

A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

1994-01-01

327

Nonlinear evolution of the coronal magnetic field under reconnective relaxation  

NASA Technical Reports Server (NTRS)

Recently, Vekstein et al. (Vekstein, Priest, & Steele 1993) have developed a model for coronal heating in which the corona responds to photospheric footpoint motions by small-scale reconnection events that bring about a relaxed state while conserving magnetic helicity but not field-line connectivity. Vekstein et al. consider a partially open field configuration in which magnetic helicity is ejected to infinity on open field lines but retained in the closed-field region. Under this scheme, they describe the evolution of an initially potential field, in response to helicity injection, in the linear regime. The present work uses numerical calculations to extend the model of Vekstein et al. into the fully nonlinear regime. The results show a rise and bulging of the field lines of the closed-field region with increasing magnetic helicity, to a point where further solutions are impossible. We interpret these solution-sequence endpoints as indicating a possible loss of equilibrium, in the sense that a relaxed equilibrium state may no longer be available to the corona when sufficient helicity has been injected. The rise and bulging behavior is reminiscent of what is observed in a helmet streamer just before the start of a coronal mass ejection (CME), and so our model suggests that a catastrophic loss of magnetic equilibrium might be the initiation mechanism for CMEs. We also find that some choices of boundary conditions can result in qualitative changes in the magnetic topology, with the appearance of magnetic islands. Whether or not this behavior occurs depends on the relative strengths of the fields in the closed- and open-field regions; in particular, island formation is most likely when the open field (which is potential) is strong and thus acts to confine the force-free closed field. Finally, we show that the energy released through reconnective relaxation can be a substantial fraction of the magnetic energy injected into the corona through footpoint motions and may be sufficient for heating the corona above active regions.

Wolfson, R.; Vekstein, G. E.; Priest, E. R.

1994-01-01

328

Retention of configuration in nucleophilic vinylic halide substitution - Proton magnetic resonance spectra of cis- and trans- beta-styryldiphenylphosphine oxides.  

NASA Technical Reports Server (NTRS)

Cis- and trans-beta-bromostyrene reaction with lithium diphenylphosphide in tetrahydrofuran producing cis- and trans-beta- styryldiphenylphosphine, discussing proton magnetic resonance and configuration retention

Aguiar, A. M.; Daigle, D.

1965-01-01

329

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

2013-12-01

330

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

Plank, Gernot; Haagmans, Roger; Floberghagen, Rune; Menard, Yvon

2013-04-01

331

Comparing magnetic field extrapolations with measurements of magnetic loops  

E-print Network

We compare magnetic field extrapolations from a photospheric magnetogram with the observationally inferred structure of magnetic loops in a newly developed active region. This is the first time that the reconstructed 3D-topology of the magnetic field is available to test the extrapolations. We compare the observations with potential fields, linear force-free fields and non-linear force-free fields. This comparison reveals that a potential field extrapolation is not suitable for a reconstruction of the magnetic field in this young, developing active region. The inclusion of field-line-parallel electric currents, the so called force-free approach, gives much better results. Furthermore, a non-linear force-free computation reproduces the observations better than the linear force-free approximation, although no free parameters are available in the former case.

T. Wiegelmann; A. Lagg; S. K. Solanki; B. Inhester; J. Woch

2008-01-29

332

High Performance Field-Reversed Configuration Plasmas in the C-2 Device  

NASA Astrophysics Data System (ADS)

A high temperature, stable, long-lived field-reversed configuration (FRC) plasma state has been produced in the C-2 device by dynamically colliding and merging two oppositely directed compact toroids, by biasing edge plasma near the FRC separatrix from a plasma-gun (PG) located at one end of the C-2 device, and by neutral-beam (NB) injection. The PG creates an inward radial electric field (Er<0) which counters the usual FRC spin-up in the ion diamagnetic direction and mitigates the n = 2 rotational instability without applying quadrupole magnetic fields. Better plasma centering is also obtained, presumably from line-tying to the gun electrodes. The PG produces ExB velocity shear in the FRC edge layer which may explain observations of improved transport properties The FRCs are nearly axisymmetric, which enables fast ion confinement. The combined effects of the PG and of NB injection yield a new High Performance FRC (HPF) regime with confinement times improved by factors 2 to 4 and FRC lifetimes extended from 1 to 3 ms. A second PG was newly installed at the other end of the C-2 device, and new experimental campaigns with 2 PGs have been explored. Characteristics of the HPF regime will be presented at the meeting as well as newly obtained results with 2 PGs and NBs.

Gota, H.; Tuszewski, M.; Smirnov, A.; Guo, H.; Binderbauer, M.; Barnes, D.; Akhmetov, T.; Ivanov, A.

2012-10-01

333

Fringing field suppression for liquid crystal gratings using equivalent capacitance configuration  

NASA Astrophysics Data System (ADS)

A liquid crystal grating with high spatial frequency and equivalent capacitance configuration is proposed, where two layers of periodical ground electrodes are interlaced and aligned with the addressing electrodes. The equivalent capacitance configuration can reduce the fringing field effect efficiently owing to the generated electric field resisting the fringing field and redistributing the equivalent voltage exerting on the liquid crystal layer. The phase modulation depth and far-field diffraction patterns both for conventional and novel configurations were simulated. The results show that phase modulation is greatly enhanced and the maximum diffraction efficiency for a sinusoidal phase grating is 33.86%, which indicates that the equivalent capacitance configuration provides a good solution for suppressing the fringing field effect.

Yang, Lei; Xia, Jun; Zhang, Xiaobing; Xie, Yi; Kang, Mingwu; Zhang, Qiuzhi

2014-10-01

334

Magnetic Fields in Clusters of Galaxies  

E-print Network

A brief overview about our knowledge on galaxy cluster magnetic fields is provided. Emphasize is given to the mutual dependence of our knowledge on relativistic particles in galaxy clusters and the magnetic field strength. Furthermore, we describe efforts to measure magnetic field strengths, characteristic length-scales, and power-spectra with reliable accuracy. An interpretation of these results in terms of non-helical dynamo theory is given. If this interpretation turns out to be correct, the understanding of cluster magnetic fields is directly connected to our understanding of intra-cluster turbulence.

Torsten A. Ensslin; Corina Vogt; Christoph Pfrommer

2005-01-17

335

Ferroelectric Cathodes in Transverse Magnetic Fields  

SciTech Connect

Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

2002-07-29

336

Statistics of magnetic fields on OBA stars  

NASA Astrophysics Data System (ADS)

Starting from recent measurements, we studied the statistical properties of the magnetic fields of OBA stars. As one of the statistically significant characteristics of the magnetic field we use the average effective magnetic field of the star, < B>. We then investigated the distribution function f() of the magnetic fields of OBA stars. This function has a power-law dependence on , with an index of 2-3 and a fast decrease for ? 300 G for B-A stars and ? 80 G for O stars.

Kholtygin, A. F.; Hubrig, S.; Drake, N. A.; Sudnik, N. P.; Dushin, V. V.

2014-11-01

337

Magnetic monopole field exposed by electrons  

NASA Astrophysics Data System (ADS)

The experimental search for magnetic monopole particles has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study. Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle. We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole. This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.

Bch, Armand; van Boxem, Ruben; van Tendeloo, Gustaaf; Verbeeck, Jo

2014-01-01

338

Concentrator of magnetic field of light  

NASA Astrophysics Data System (ADS)

In the recent decade metamaterials with magnetic permeability different than unity and unusual response to the magnetic field of incident light have been intensively explored. Existence of magnetic artificial materials created an interest in a scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of those metamaterials. We present a method of measuring magnetic responses of such elementary cells within a wide range of optical frequencies with single probes of two types. The first type probe is made of a tapered silica fiber with radial metal stripes separated by equidistant slits of constant angular width. The second type probe is similar to metal coated, corrugated, tapered fiber apertured SNOM probe, but in this case corrugations are radially oriented. Both types of probes have internal illumination with azimuthally polarized light. In the near-field they concentrate into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one.

Wrbel, Piotr; Stefaniuk, Tomasz; Antosiewicz, Tomasz J.; Szoplik, Tomasz

2012-05-01

339

Numerical analysis of magnetic field in superconducting magnetic energy storage  

SciTech Connect

This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.

Kanamaru, Y. (Kanazawa Inst. of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921 (JP)); Amemiya, Y. (Chiba Inst. of Tech., Narashino (Japan))

1991-09-01

340

Magnetic field sensitivity of depolarized fiber optic gyros  

NASA Astrophysics Data System (ADS)

Results are presented of experimental measurements and an analysis of the magnetic field sensitivity of several types of depolarized fiber-optic gyros. It was found that depolarized gyros of the Bohm et al. (1981) and Fredricks and Ulrich (1984) configuration (having one depolarizer in the loop) can be highly sensitive to magnetic fields, while depolarized gyros incorporating Pavlath and Shaw concept (i.e., having unpolarized light enter and exit the loop) are insensitive to magnetic fields. It is shown that a gyro having all the advantages of both designs can be obtained by incorporating two depolarizers, one between the polarizer and the loop coupler and the other within the loop. A scheme of this type of fiber gyro is presented.

Blake, James N.

1991-02-01

341

Analysis of Exploding Plasma Behavior in a Dipole Magnetic Field  

NASA Astrophysics Data System (ADS)

Numerical analyses on plasma behaviors in a dipole magnetic field are performed using a three-dimensional (3D) hybrid code. Results are compared with the experimental data and magnetohydrodynamics (MHD) analysis. Dependence of plasma expansion on initial plasma energy and location are discussed by temporal evolutions of plasma position and magnetic field strength. An overall good agreement in the expansion behavior of plasmas among these results is found. The asymmetrical shape of the expanding plasma in the cross-field direction is also noticed, and the reason for this is discussed. For future engineering applications, these results will be useful in designing an optimal configuration of the magnetic thrust chamber for laser fusion rockets, and for studying the effective explosive methods for protecting the earth from collisions by asteroids or comets.

Muranaka, Takanobu; Uchimura, Hideyuki; Nakashima, Hideki; Zakharov, Yuri P.; Nikitin, Sergey A.; Ponomarenko, Arnold G.

2001-02-01

342

Dynamic Magnetostrictive Response of Heterostructural Magnetoelectric Magnetic Field Sensors  

NASA Astrophysics Data System (ADS)

Magnetoelectric (ME) heterostructural laminate composites have recently demonstrated high sensitivity room temperature operation in magnetic field sensing applications. Traditionally, a static (DC) magnetic field is applied to these sensors to enable optimal magnetostrictive response. In this thesis, the non-linear nature of the magnetostrictive response of a ME heterostructure is utilized, by applying a modulation magnetic field, to demonstrate an improvement by a factor of 11.62x in peak sensitivity and by 57.43 dB in 0-Hz signal-to-noise ratio of a sensor consisting of a longitudinally magnetized and transversely poled lamination of Metglas/PZT/Metglas layers in comparison with a conventional DC biased configuration. The ME sensor modulated by an AC magnetic field, tuned to stimulate an electro-magneto-mechanical resonance, in conjunction with a lock-in amplifier further exhibits enhanced environmental noise immunity, 1/f noise mitigation, and does not require a DC magnetic bias field. Combined, these advantages hold promise for the development of miniature ME sensor elements for size- and weight-sensitive applications.

Gillette, Scott Matthew

343

Electric field assisted switching in magnetic tunnel junctions  

NASA Astrophysics Data System (ADS)

It is of great interest to acquire large effects of electric field on magnetic properties, partly driven by the premise that voltage-controlled magnetization reversal would be far more energy efficient and be compatible with the ubiquitous voltage-controlled semiconductor devices. Normally the effect of electric field in metallic systems is negligible because the electric field can only penetrate into the materials by a few monolayers due to screening by the free electrons. Here we report the pronounced effects of electric field in magnetic tunnel junctions (MTJs) with very thin CoFeB electrodes, where the magnetic anisotropy originates solely from the CoFeB/MgO interfaces. The MTJs have the key structure of Co40Fe40B20(1.2-1.3nm)/MgO(1.2-2nm)/Co40Fe40B20(1.6nm) and the tunneling magnetoresistance in all junctions is in excess of 100%. Due to the redistribution of electrons among the different 3d orbitals of Fe and Co, the perpendicular magnetic anisotropy of the CoFeB electrodes can be significantly modified by an applied electric field. As a result, the coercivity, the magnetic configuration, and the tunneling magnetoresistance of the MTJs can be manipulated by voltage pulses, such that the high and low resistance states of the MTJ can be reversibly controlled by voltages less than 1.5 V in magnitude and with much smaller current densities.

Wang, Weigang; Li, Mingen; Hagemen, Stephen; Chien, C. L.

2012-02-01

344

Electro-magnetically induced transparency in a static magnetic field  

NASA Astrophysics Data System (ADS)

We investigate both theoretically and experimentally the electro- magnetically induced transparency (EIT) phenomenon of atomic 87Rb at the room temperature with a static magnetic field lifting the degeneracy of all three involved hyperfine levels. Two collinearly propagating and linearly polarized laser fields (a probe field and a coupling field) are used to couple one hyperfine level (the upper level) of the 5P 1/2 state to two hyperfine levels (the lower levels) of the 5S 1/2 state, respectively. In the case of zero magnetic fields, we observed a deep EIT window with the contrast of about 66%. Here, the EIT window width is limited by both the spontaneous decay rate of the upper level and the coupling field intensity. When a magnetic field parallel to both laser beams is applied, the EIT window is split into three much narrower sub-windows with contrasts of about 32%. If the magnetic field is perpendicular to the laser beams, however, the EIT window is split into four much narrower sub-windows whose contrasts are 32% or 16%. This is because the decomposition of the linearly polarized optical fields strongly depends on the orientation of the used magnetic field. The underlying physics is that, in the limit of a weak probe field, an ideal degenerate three-level system can be split into three or four sets of independent three-level systems by a magnetic field due to the lifting of magnetic sublevels of the involved hyperfine levels. In this paper the absorption spectra corresponding to different magnetic field directions are clearly shown and compared. And a straightforward but effective theoretical method for analyzing the experimental results is put forward. Our theoretical calculations are in good agreement with the experimental results.

Wei, Xiao-Gang; Gao, Jin-Yue; Wu, Jin-Hui; Sun, Gui-Xia; Wang, Hai-Hua; Kang, Zhi-Hui; Shao, Zhuang; Jiang, Yun

2006-02-01

345

Destruction of magnetic surfaces by magnetic field irregularities: Part II  

Microsoft Academic Search

The present work is a continuation of the paper by Rosenbluth et al. (Nucl. Fusion 6 (1966) 297) and concerns the investigation of problems associated with the condition for the existence of magnetic surfaces in closed systems of the stellarator type. The unperturbed geometry of the magnetic field is produced by a straight helical field. Exact equations for the motion

N. N. Filonenko; R. Z. Sagdeev; G. M. Zaslavskii

1967-01-01

346

Cosmic Magnetic Fields (IAU S259)  

NASA Astrophysics Data System (ADS)

Preface K. G. Strassmeier, A. G. Kosovichev and J. E. Beckman; Organising committee; Conference photograph; Conference participants; Session 1. Interstellar magnetic fields, star-forming regions and the Death Valley Takahiro Kudoh and Elisabeta de Gouveia Dal Pino; Session 2. Multi-scale magnetic fields of the Sun; their generation in the interior, and magnetic energy release Nigel O. Weiss; Session 3. Planetary magnetic fields and the formation and evolution of planetary systems and planets; exoplanets Karl-Heinz Glassmeier; Session 4. Stellar magnetic fields: cool and hot stars Swetlana Hubrig; Session 5. From stars to galaxies and the intergalactic space Dimitry Sokoloff and Bryan Gaensler; Session 6. Advances in methods and instrumentation for measuring magnetic fields across all wavelengths and targets Tom Landecker and Klaus G. Strassmeier; Author index; Object index; Subject index.

Strassmeier, Klaus G.; Kosovichev, Alexander G.; Beckman, John E.

2009-06-01

347

SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES  

SciTech Connect

We present self-consistent high-resolution simulations of NGC 4038/4039 (the 'Antennae galaxies') including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10{sup -9} to 10{sup -4} G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of {approx}10 {mu}G, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Dolag, K.; Stasyszyn, F. A., E-mail: kotarba@usm.lmu.d [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

2010-06-20

348

The effect of magnet configurations on the levitation force of melt processed YBCO bulk superconductors  

Microsoft Academic Search

The high levitation force of YBCO bulk superconductors makes it possible for many applications such as magnetic bearings, flywheels and magnetic levitation transport systems etc. But for a given superconductor, the levitation forces are much different with different magnetic field distributions. In this paper, many small magnets (101010cm3) with the B=0.5T on the top surface have been selected to investigate

W. M. Yang; L. Zhou; Y. Feng; P. X. Zhang; J. R. Wang; C. P. Zhang; Z. M. Yu; X. D. Tang; W. Wei

2001-01-01

349

Atoms in Crossed Electric and Magnetic Fields  

NASA Astrophysics Data System (ADS)

In this dissertation, extensive experimental and theoretical work pertaining to three interesting aspects of the interaction of atoms with crossed electric and magnetic fields is presented. The first experiment discussed deals with the effects of weak crossed fields on sodium atoms. A fluorescence spectrum of laser excited sodium n = 11 states in an electric field of 2560 V/cm perpendicular to a magnetic field of 4.4 kG is presented, along with a comparison to theory. The data show the important effects of m-mixing and residual degeneracies which remain in the crossed fields. The next topic presented is the theoretical prediction of novel resonances, termed "quasi-Penning resonances," corresponding to electron states localized away from the nucleus at the Stark saddlepoint in strong crossed electric and magnetic fields. The stability and possibility for observation of these resonances is explored. Finally, extensive experimental maps of data are presented which compare laser induced ionization spectra of sodium atoms in crossed electric and magnetic fields to spectra in an electric field atone. The experiment explores the energy region of the electric field saddlepoint, where quasi-Penning resonances are predicted to occur. The magnetic field is too weak for the observation of these resonances, but the experiment provides important groundwork for the understanding of future experiments in strong crossed fields. The magnetic field is seen to cause splitting of some transitions due to the interaction of the electron spin with the magnetic field. Also, magnetic field induced state mixing causes a redistribution of oscillator strengths leading to changes in peak heights and auto-ionizing line widths. On the whole, however, the effect of the weak crossed magnetic field on the sodium Stark spectra remains small.

Korevaar, Eric John

1987-09-01

350

Calculation of magnetic fields for engineering devices  

Microsoft Academic Search

This paper deals with the methodology of magnet technology and its application to various engineering devices. Magnet technology has experienced a rapid growth in the past few years as a result of the advances made in superconductivity, numerical methods and computational techniques. Specifically, this paper concerns itself with: (a) Mathematical models for solving magnetic field problems; (b) The applicability, usefulness,

John S. Colonias

1976-01-01

351

The Evolution of the Earth's Magnetic Field.  

ERIC Educational Resources Information Center

Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

Bloxham, Jeremy; Gubbins, David

1989-01-01

352

Coronal magnetic fields and the solar wind  

NASA Technical Reports Server (NTRS)

Current information is presented on coronal magnetic fields as they bear on problems of the solar wind. Both steady state fields and coronal transient events are considered. A brief critique is given of the methods of calculating coronal magnetic fields including the potential (current free) models, exact solutions for the solar wind and field interaction, and source surface models. These solutions are compared with the meager quantitative observations which are available at this time. Qualitative comparisons between the shapes of calculated magnetic field lines and the forms visible in the solar corona at several recent eclipses are displayed. These suggest that: (1) coronal streamers develop above extended magnetic arcades which connect unipolar regions of opposite polarity; and (2) loops, arches, and rays in the corona correspond to preferentially filled magnetic tubes in the approximately potential field.

Newkirk, G., Jr.

1972-01-01

353

Magnetic field decay in model SSC dipoles  

SciTech Connect

We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

1988-08-01

354

Protecting SQUID metamaterials against stray magnetic fields  

NASA Astrophysics Data System (ADS)

Using superconducting quantum interference devices (SQUIDs) as the basic, low-loss elements of thin-film metamaterials has one main advantage: their resonance frequency is easily tunable by applying a weak magnetic field. The downside, however, is a strong sensitivity to stray and inhomogeneous magnetic fields. In this work, we demonstrate that even small magnetic fields from electronic components destroy the collective, resonant behaviour of the SQUID metamaterial. We also show how the effect of these fields can be minimized. As a first step, magnetic shielding decreases any initially present fields, including the earths magnetic field. However, further measures such as improvements in the sample geometry have to be taken to avoid the trapping of Abrikosov vortices.

Butz, S.; Jung, P.; Filippenko, L. V.; Koshelets, V. P.; Ustinov, A. V.

2013-09-01

355

Multipoint Magnetic and Electric Field Measurements in the Auroral Ionosphere  

NASA Astrophysics Data System (ADS)

In this study, we examine magnetic and electric field data taken from the NASA SIERRA multiple-payload rocket mission, which flew into a 100 nT auroral substorm at altitudes up to 735 km over the Poker Flat Research Range in Alaska on January 14, 2002. The SIERRA experiment was composed of three payloads synchronized with GPS and employing a new COWBOYS (COrnell Wire BOom Yo-yo System) electric field boom configuration. First we give an overview of the deployment, rough attitude, and geometry of our three-spacecraft system. We then show that the magnetic variations found on all three spacecraft magnetometers is consistent and that a field-aligned current interpretation of the magnetic variations is believable. The measured magnetic field gradients are shown to be correlated with precipitating electrons in typical inverted-V structures. Using accurate GPS positioning and timing and the magnetometer data from these multipoint observations, we infer current densities, assuming a static interpretation. We also examine the magnetic field variations for the presence of Alfvnic activity. Future work will be enabled once a full attitude solution is obtained for all three payloads, permitting the calculation of ?x B and the DC-electric fields.

Klatt, E. M.; Kintner, P. M.; MacDonald, E. A.; Lynch, K. A.

2002-12-01

356

Magnetic particles confined in a modulated channel: structural transitions tunable by tilting a magnetic field  

E-print Network

The ground state of colloidal magnetic particles in a modulated channel are investigated as function of the tilt angle of an applied magnetic field. The particles are confined by a parabolic potential in the transversal direction while in the axial direction a periodic substrate potential is present. By using Monte Carlo (MC) simulations, we construct a phase diagram for the different crystal structures as a function of the magnetic field orientation, strength of the modulated potential and the commensurability factor of the system. Interestingly, we found first and second order phase transitions between different crystal structures, which can be manipulated by the orientation of the external magnetic field. A re-entrant behavior is found between two- and four-chain configurations, with continuous second order transitions. Novel configurations are found consisting of frozen in solitons. By changing the orientation and/or strength of the magnetic field and/or the strength and the spatial frequency of the periodic substrate potential, the system transits through different phases.

J. E. Galvn-Moya; D. Lucena; W. P. Ferreira; F. M. Peeters

2014-01-03

357

Magnetic particles confined in a modulated channel: structural transitions tunable by tilting a magnetic field.  

PubMed

The ground state of colloidal magnetic particles in a modulated channel are investigated as a function of the tilt angle of an applied magnetic field. The particles are confined by a parabolic potential in the transversal direction while in the axial direction a periodic substrate potential is present. By using Monte Carlo simulations, we construct a phase diagram for the different crystal structures as a function of the magnetic field orientation, strength of the modulated potential, and the commensurability factor of the system. Interestingly, we found first- and second-order phase transitions between different crystal structures, which can be manipulated by the orientation of the external magnetic field. A reentrant behavior is found between two- and four-chain configurations, with continuous second-order transitions. Novel configurations are found consisting of frozen solitons of defects. By changing the orientation and/or strength of the magnetic field and/or the strength and periodicity of the substrate potential, the system transits through different phases. PMID:24730844

Galvn-Moya, J E; Lucena, D; Ferreira, W P; Peeters, F M

2014-03-01

358

Optimization of Magnetic Field-Assisted Synthesis of Carbon Nanotubes for Sensing Applications  

PubMed Central

One of the most effective ways of synthesizing carbon nanotubes is the arc discharge method. This paper describes a system supported by a magnetic field which can be generated by an external coil. An electric arc between two electrodes is stabilized by the magnetic field following mass flux stabilization from the anode to the cathode. In this work four constructions are compared. Different configurations of cathode and coils are calculated and presented. Exemplary results are discussed. The paper describes attempts of magnetic field optimization for different configurations of electrodes. PMID:25295922

Raniszewski, Grzegorz; Pyc, Marcin; Kolacinski, Zbigniew

2014-01-01

359

Magnetic field in the end region of the SSC quadrupole magnet  

SciTech Connect

Recent advances in methods of computing magnetic fields have made it possible to study the field in the end region of the SS quadrupole magnet in detail. The placement of conductor in the straight section, away from the ends, was designed to produce a practically pure quadrupole field in the two-dimensional sense. The ends of the coils were designed to produce a practically pure quadrupole field in the integral sense using a method that ignores the presence of the iron yoke. Subsequently, the effect of presence of the yoke on the field was analyzed. The paper presents the end configuration together with the computed integrated multipole components, local multipole components, and local field components. A comparison with measurements is included. 5 refs., 5 figs., 1 tab.

Caspi, S.; Helm, M.; Laslett, L.J.

1991-06-01

360

Magnetic field and radiative transfer modelling of a quiescent prominence  

NASA Astrophysics Data System (ADS)

Aims: The aim of this work is to analyse the multi-instrument observations of the June 22, 2010 prominence to study its structure in detail, including the prominence-corona transition region and the dark bubble located below the prominence body. Methods: We combined results of the 3D magnetic field modelling with 2D prominence fine structure radiative transfer models to fully exploit the available observations. Results: The 3D linear force-free field model with the unsheared bipole reproduces the morphology of the analysed prominence reasonably well, thus providing useful information about its magnetic field configuration and the location of the magnetic dips. The 2D models of the prominence fine structures provide a good representation of the local plasma configuration in the region dominated by the quasi-vertical threads. However, the low observed Lyman-? central intensities and the morphology of the analysed prominence suggest that its upper central part is not directly illuminated from the solar surface. Conclusions: This multi-disciplinary prominence study allows us to argue that a large part of the prominence-corona transition region plasma can be located inside the magnetic dips in small-scale features that surround the cool prominence material located in the dip centre. We also argue that the dark prominence bubbles can be formed because of perturbations of the prominence magnetic field by parasitic bipoles, causing them to be devoid of the magnetic dips. Magnetic dips, however, form thin layers that surround these bubbles, which might explain the occurrence of the cool prominence material in the lines of sight intersecting the prominence bubbles. Movie and Appendix A are available in electronic form at http://www.aanda.org

Gunr, S.; Schwartz, P.; Dudk, J.; Schmieder, B.; Heinzel, P.; Jur?k, J.

2014-07-01

361

Cosmic string formation and the power spectrum of field configurations  

E-print Network

We examine the statistical properties of defects formed by the breaking of a U(1) symmetry when the Higgs field has a power spectrum $P(k) \\propto k^n$. We find a marked dependence of the amount of infinite string on the spectral index $n$ and empirically identify an analytic form for this quantity. We also confirm that this result is robust to changes in the definition of infinite string. It is possible that this result could account for the apparent absence of infinite string in recent lattice-free simulations.

James Robinson; Andrew Yates

1996-02-23

362

Extended Magnetization of Superconducting Pellets in Highly Inhomogeneous Magnetic Field  

NASA Astrophysics Data System (ADS)

The magnetization of superconducting pellets is a worth point in the development of trapped flux superconducting motors. Experimental and simulated data have been reported extensively according to the framework of one or several pulses of a homogeneous magnetizing field applied to a pellet or a set of pellets. In case of cylindrical rotors of low power motors with radial excitation, however, the use of the copper coils to produce the starting magnetization of the pellets produces a highly inhomogeneous magnetic field which cannot be reduced to a 2D standard model. In this work we present an analysis of the magnetization of the superconducting cylindrical rotor of a small motor by using a commercial FEM program, being the rotor magnetized by the working copper coils of the motor. The aim of the study is a report of the magnetization obtained and theheat generated in the HTSC pellets.

Maynou, R.; Lpez, J.; Granados, X.; Torres, R.; Bosch, R.

363

The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields  

NASA Astrophysics Data System (ADS)

The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

Nakotte, Heinz

2001-11-01

364

High concentration ferronematics in low magnetic fields  

E-print Network

We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field $B_{bias}$, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that $B_{bias}$ is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role.

T. Tth-Katona; P. Salamon; N. ber; N. Tomaovi?ov; Z. Mitrov; P. Kop?ansk

2014-09-05

365

High concentration ferronematics in low magnetic fields  

NASA Astrophysics Data System (ADS)

We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field Bbias, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that Bbias is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role.

Tth-Katona, T.; Salamon, P.; ber, N.; Tomaovi?ov, N.; Mitrov, Z.; Kop?ansk, P.

2014-12-01

366

Observational testing of magnetospheric magnetic field models at geosynchronous orbit  

SciTech Connect

Empirical mode which estimate the magnetic field direction and magnitude at any point within the magnetosphere under a variety of conditions play an important role in space weather forecasting. We report here on a number of different studies aimed at quantitatively evaluating these models, and in particular the Tsyganenko T89a model. The models are evaluated in two basic ways: (1) by comparing the range of magnetic field tilt angles observed at geosynchronous orbit with the ranges predicted for the same locations by the models; and (2) by comparing the observed magnetic field mapping between the ionosphere and geosynchronous orbit (using two-satellite magnetic field conjunctions) with the model predictions at the same locations. We find that while the T89a model predicts reasonably well the basic variation in tilt angle with local time and permits a range of field inclinations adequate to encompass the majority of observed angles on the dawn, dusk, and night sides, it is unable to reproduce the range of inclinations on the dayside. The model also predicts a smaller magnetic latitude range of geosynchronous field line footpoints than the observed two-satellite mapping indicate. Together, these results suggest that the next generation of field models should allow a greater range of stretching, especially in local time sectors away from midnight. It is important to note, however, that any increased range should encompass less-stretched configurations: although there are certainly cases where the models are not sufficiently stretched, we find that on average all magnetic field models tested, including T89a, are too stretched. Finally, in investigating how well the observed degree of field stretch was ordered by various magnetospheric indices, we find that the tilt of the field at geosynchronous orbit is a promising candidate for the incorporation into future models.

Weiss, L.A.; Thomsen, M.F.; Reeves, G.D.; McComas, D.J.

1996-09-01

367

Comparison of the mean photospheric magnetic field and the interplanetary magnetic field  

Microsoft Academic Search

The mean photospheric magnetic field of the sun seen as a star has been compared with the interplanetary magnetic field observed with spacecraft near the earth. Each change in polarity of the mean solar field is followed about 4 1\\/2 days later by a change in polarity of the interplanetary field (sector boundary). The scaling of the field magnitude from

A. Severny; J. M. Wilcox; P. H. Scherrer; D. S. Colburn

1970-01-01

368

Neutron matter under strong magnetic fields: A comparison of models  

NASA Astrophysics Data System (ADS)

The equation of state of neutron matter is affected by the presence of a magnetic field due to the intrinsic magnetic moment of the neutron. Here we study the equilibrium configuration of this system for a wide range of densities, temperatures, and magnetic fields. Special attention is paid to the behavior of the isothermal compressibility and the magnetic susceptibility. Our calculation is performed using both microscopic and phenomenological approaches of the neutron matter equation of state, namely the Brueckner-Hartree-Fock (BHF) approach using the Argonne V18 nucleon-nucleon potential supplemented with the Urbana IX three-nucleon force, the effective Skyrme model in a Hartree-Fock description, and the quantum hadrodynamic formulation with a mean-field approximation. All these approaches predict a change from completely spin polarized to partially polarized matter that leads to a continuous equation of state. The compressibility and the magnetic susceptibility show characteristic behaviors which reflect that fact. Thermal effects tend to smear out the sharpness found for these quantities at T =0. In most cases a thermal increase of ?T =10 MeV is enough to hide the signals of the change of polarization. The set of densities and magnetic field intensities for which the system changes it spin polarization is different for each model. However, we found that under the conditions examined in this work there is an overall agreement between the three theoretical descriptions.

Aguirre, R.; Bauer, E.; Vidaa, I.

2014-03-01

369

Correlation properties of magnetosheath magnetic field fluctuations  

Microsoft Academic Search

The magnetosheath is characterized by a variety of low-frequency fluctuations, but their features and sources are different. Taking advantage of multipoint magnetic field measurements of the Cluster spacecraft, we present a statistical study to reveal properties of waves. We compute cross-correlation coefficients of magnetic field strengths as measured by pairs of the Cluster spacecraft and determine the correlation length of

O. Gutynska; J. afrnkov; Z. N?me?ek

2009-01-01

370

Magnetic fields, branes, and noncommutative geometry  

Microsoft Academic Search

We construct a simple physical model of a particle moving on the infinite noncommutative 2-plane. The model consists of a pair of opposite charges moving in a strong magnetic field. In addition, the charges are connected by a spring. In the limit of large magnetic field, the charges are frozen into the lowest Landau levels. Interactions of such particles include

Daniela Bigatti; Leonard Susskind

2000-01-01

371

Lattice Planar QED in external magnetic field  

E-print Network

We investigate planar Quantum ElectroDynamics (QED) with two degenerate staggered fermions in an external magnetic field on the lattice. Our preliminary results indicate that in external magnetic fields there is dynamical generation of mass for two-dimensional massless Dirac fermions in the weak coupling region. We comment on possible implications to the quantum Hall effect in graphene.

Paolo Cea; Leonardo Cosmai; Pietro Giudice; Alessandro Papa

2011-09-29

372

Directional discontinuities in the interplanetary magnetic field  

Microsoft Academic Search

It is shown that the interplanetary magnetic field has different characteristics on different scales, and it is noted that a given physical theory may not be applicable or relevant on all scales. Four scales are defined in terms of time intervals on which the data may be viewed. Many discontinuities in the magnetic-field direction are seen on the mesoscale (

Leonard F. Burlaga

1969-01-01

373

Lattice Planar QED in external magnetic field  

NASA Astrophysics Data System (ADS)

We investigate planar Quantum ElectroDynamics (QED) with two degenerate staggered fermions in an external magnetic field on the lattice. Our preliminary results indicate that in external magnetic fields there is dynamical generation of mass for two-dimensional massless Dirac fermions in the weak coupling region. We comment on possible implications to the quantum Hall effect in graphene.

Cea, P.; Cosmai, L.; Giudice, P.; Papa, A.

374

Ground Vehicle Navigation Using Magnetic Field Variation  

NASA Astrophysics Data System (ADS)

The Earth's magnetic field has been the bedrock of navigation for centuries. The latest research highlights the uniqueness of magnetic field measurements based on position due to large scale variations as well as localized perturbations. These observable changes in the Earth's magnetic field as a function of position provide distinct information which can be used for navigation. This dissertation describes ground vehicle navigation exploiting variation in Earth's magnetic field using a self-contained navigation system consisting of only a magnetometer and magnetic field maps. In order to achieve navigation, effective calibration enables repeatable magnetic field measurements from different vehicles and facilitates mapping of the observable magnetic field as a function of position. A new modified ellipsoid calibration technique for strapdown magnetometers in large vehicles is described, as well as analysis of position measurement generation comparing a multitude of measurement compositions using existing and newly developed likelihood techniques. Finally, navigation solutions are presented using both a position measurement and direct incorporation of the magnetometer measurements via a particle filter to demonstrate road navigation in three different environments. Emphatically, the results affirm that navigation using magnetic field variation in ground vehicles is viable and achieves adequate performance for road level navigation.

Shockley, Jeremiah A.

375

Astrophysical magnetic fields and nonlinear dynamo theory  

Microsoft Academic Search

The current understanding of astrophysical magnetic fields is reviewed, focusing on their generation and maintenance by turbulence. In the astrophysical context this generation is usually explained by a self-excited dynamo, which involves flows that can amplify a weak seed magnetic field exponentially fast. Particular emphasis is placed on the nonlinear saturation of the dynamo. Analytic and numerical results are discussed

Axel Brandenburg; Kandaswamy Subramanian

2005-01-01

376

Superconductor based sensor for monitoring magnetic field  

Microsoft Academic Search

The authors propose a method for measurement of magnetic fields with the help of a HTSC (high temperature superconductor) based sensor in conjunction with a microcomputer. The same sensor may be used for monitoring current in a circuit under the influence of a controlled magnetic field acting perpendicular to the direction of the current flow. The theoretical basis is discussed.

S. C. Kar; S. P. Basu

1992-01-01

377

Fall in Earth's magnetic field is erratic  

Microsoft Academic Search

Earth's magnetic field has decayed by about 5\\\\% per century since measurements began in 1840. Directional measurements predate those of intensity by more than 250 years, and we combined the global model of directions with paleomagnetic intensity measurements to estimate the fall in strength for this earlier period (1590 to 1840 A.D.). We found that magnetic field strength was nearly

David Gubbins; Adrian L. Jones; Christopher C. Finlay

2006-01-01

378

Adiabatic compression of a closed-field-line configuration by a centimeter-size liner  

SciTech Connect

The paper considers adiabatic compression of a pre-formed closed field line configuration by an imploding liner. Three configurations are discussed: the field-reversed configuration, the spheromak and the Z-pinch. It is shown that, by employing a 2D-compression, one can reach a break-even condition with an energy input as low as 100 kJ. It is emphasized that the possibility of performing crucial experiments on small-to-medium-scale experimental devices may considerably shorten the development path for the system under consideration.

Drake, R.P.; Hammer, J.H.; Hartman, C.W.; Perkins, L.J.; Ryutov, D.D.

1995-09-01

379

The Magnetic Field Structure of a Snowflake Divertor  

SciTech Connect

The snowflake divertor exploits a tokamak geometry in which the poloidal magnetic field null approaches second order; the name stems from the characteristic hexagonal, snowflake-like, shape of the separatrix for an exact second-order null. The proximity of the poloidal field structure to that of a second-order null substantially modifies edge magnetic properties compared to the standard X-point geometry; this, in turn, affects the edge plasma behavior. Modifications include: (1) The flux expansion near the null-point becomes 2-3 times larger; (2) The connection length between the equatorial plane and divertor plate significantly increases; (3) Magnetic shear just inside the separatrix becomes much larger; and (4) In the open-field-line region, the squeezing of the flux-tubes near the null-point increases, thereby causing stronger decoupling of the plasma turbulence in the divertor legs and in the main SOL. These effects can be used to reduce the power load on the divertor plates and/or to suppress the 'bursty' component of the heat flux. It is emphasized that the snowflake divertor can be created by a relatively simple set of poloidal field coils situated beyond the toroidal field coils. Analysis of the robustness of the proposed divertor configuration with respect to changes of the plasma current distribution is presented and it is concluded that, even if the null is close to the second order, the configuration is quite robust.

Ryutov, D D; Cohen, R H; Rognlien, T D; Umansky, M V

2008-05-30

380

Heat pulse propagation in chaotic 3-dimensional magnetic fields  

E-print Network

Heat pulse propagation in $3$-D chaotic magnetic fields is studied by solving the parallel heat transport equation using a Lagrangian-Green's function (LG) method. The LG method provides an efficient and accurate technique that circumvents limitations of finite elements and finite difference methods. The main two problems addressed are: (i) The dependence of the radial transport on the magnetic field stochasticity (controlled by the amplitude of the perturbation, $\\epsilon$); and (ii) The role of reversed shear configurations on pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, radial transport is observed to depend strongly on $\\epsilon$ due to the presence of high-order magnetic islands and Cantori that act as quasi-transport barriers that preclude the radial penetration of heat pulses within physically relevant time scale. The dependence of the magnetic field connection length, $\\ell_B$, on $\\epsilon$ is studied in detail. The decay rate of the temperature maximum, $\\langle T \\rangle_{max}(t)$, the time delay of the temperature response as function of the radius, $\\tau$, and the radial heat flux $\\langle {{\\bf q}\\cdot {\\hat e}_\\psi} \\rangle$, are also studied as functions of the magnetic field stochasticity and $\\ell_B$. In all cases, the scaling of $\\langle T \\rangle_{max}$ with $t$ transitions from sub-diffusive, $\\langle T \\rangle_{max} \\sim t^{-1/4}$, at short times ($\\chi_\\parallel t 10^5$). A strong dependence on $\\epsilon$ is also observed on $\\tau$ and $\\langle {{\\bf q}\\cdot {\\hat e}_\\psi} \\rangle$. The radial propagation of pulses in fully chaotic fields considerably slows down in the shear reversal region and, as a result, $\\tau$, in reversed shear configurations is an order of magnitude longer than the one in monotonic $q$-profiles.

D. del-Castillo-Negrete; D. Blazevski

2014-09-10

381

Permanent magnet edge-field quadrupole  

DOEpatents

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

Tatchyn, R.O.

1997-01-21

382

Permanent magnet edge-field quadrupole  

DOEpatents

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

Tatchyn, Roman O. (Mountain View, CA)

1997-01-01

383

Quenching of flames by magnetic fields  

Microsoft Academic Search

An experiment has been demonstrated to show a phenomenon involving quenching of candle flames using magnetic fields. An electromagnet with a pair of columnar magnetic poles in which inner sidepieces were hollowed out was used. Magnetic fields of 1.5 T at the brim gave a gradient of 50300 T\\/m in the direction perpendicular to the pole axis when the distance

S. Ueno

1989-01-01

384

Alignment of magnetic uniaxial particles in a magnetic field: Simulation  

NASA Astrophysics Data System (ADS)

The numerical investigations of the process of alignment of magnetically uniaxial Nd-Fe-B powders in an applied magnetic field were carried out using the discrete element method (DEM). It is shown that magnetic alignment of ensemble of spherical particles provides extremely high degree of alignment, which is achieved in low magnetic fields. A model of formation of anisotropic particles as a combination of spherical particles is suggested. The influence of the shape anisotropy and friction coefficient on the alignment degree was analyzed. The increase in the friction coefficient leads to a decrease in the alignment degree; the simulation results are in qualitative agreement with experimental dependences. It is shown that in magnetic fields higher than 5 T, the calculated field dependences of the alignment degree quantitatively render the experimental data. The increase of about 6% in the alignment degree in the experiments with addition of internal lubricant can be explained by the decrease of 14% in friction coefficient.

Golovnia, O. A.; Popov, A. G.; Sobolev, A. N.; Hadjipanayis, G. C.

2014-09-01

385

The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs -- Space-weather HMI Active Region Patches  

E-print Network

A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches (SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are avail...

Bobra, Monica G; Hoeksema, J Todd; Turmon, Michael J; Liu, Yang; Hayashi, Keiji; Barnes, Graham; Leka, K D

2014-01-01

386

In vivo heating of magnetic nanoparticles in alternating magnetic field.  

PubMed

We have evaluated heating capabilities of new magnetic nanoparticles. In in vitro experiments they were exposed to an alternating magnetic field with frequency 3.5 MHz and induction 1.5 mT produced in three turn pancake coil. In in vivo experiments rats with injected magnetic nanoparticles were also exposed to an ac field. An optimal increase of temperature of the tumor to 44 degrees C was achieved after 10 minutes of exposure. Obtained results showed that magnetic nanoparticles may be easily heated in vitro as well as in vivo, and may be therefore useful for hyperthermic therapy of cancer. PMID:15377087

Babincov, M; Altanerov, V; Altaner, C; Cicmanec, P; Babinec, P

2004-08-01

387

Processing of polymers in high magnetic fields  

SciTech Connect

Many organic molecules and polymers have an anisotropic diamagnetic susceptibility, and thus can be aligned in high magnetic fields. The presence of liquid crystallinity allows cooperative motions of the individual molecules, and thus the magnetic energy becomes greater than the thermal energy at experimentally obtainable field strengths. This work has determined the effect of magnetic field alignment on the thermal expansion and mechanical properties of liquid crystalline thermosets in the laboratory. Further advances in magnet design are needed to make magnetic field alignment a commercially viable approach to polymer processing. The liquid crystal thermoset chosen for this study is the diglycidyl ether of dihydroxy-{alpha}-methylstilbene cured with the diamine sulfamilamide. This thermoset has been cured at field strengths up to 18 Tesla.

Douglas, E.P.; Smith, M.E.; Benicewicz, B.C. [Los Alamos National Lab., NM (United States); Earls, J.D.; Priester, R.D. Jr. [Dow Chemical Co., Freeport, TX (United States)

1996-05-01

388

Reionization constraints on primordial magnetic fields  

E-print Network

We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: $6 magnetic fields (strength, $B_0$, and power-spectrum index $n_{\\scriptscriptstyle \\rm B}$), reionization, and $\\Lambda$CDM cosmological model. We find that magnetic field strengths in the range: $B_0 \\simeq 0.05{-}0.3$ nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the WMAP and quasar absorption spectra data. Our analysis puts upper-limits on the magnetic field strength $B_0 magnetic field constraints among those available from other cosmological observables.

Pandey, Kanhaiya L; Sethi, Shiv K; Ferrara, Andrea

2014-01-01

389

Measurement of AC magnetic field distribution using magnetic resonance imaging.  

PubMed

Electric currents are applied to body in numerous applications in medicine such as electrical impedance tomography, cardiac defibrillation, electrocautery, and physiotherapy. If the magnetic field within a region is measured, the currents generating these fields can be calculated using the curl operator. In this study, magnetic fields generated within a phantom by currents passing through an external wire is measured using a magnetic resonance imaging (MRI) system. A pulse sequence that is originally designed for mapping static magnetic field inhomogeneity is adapted. AC current in the form of a burst sine wave is applied synchronously with the pulse sequence. The frequency of the applied current is in the audio range with an amplitude of 175-mA rms. It is shown that each voxel value of sequential images obtained by the proposed pulse sequence is modulated similar to a single tone broadband frequency modulated (FM) waveform with the ac magnetic field strength determining the modulation index. An algorithm is developed to calculate the ac magnetic field intensity at each voxel using the frequency spectrum of the voxel signal. Experimental results show that the proposed algorithm can be used to calculate ac magnetic field distribution within a conducting sample that is placed in an MRI system. PMID:9368117

Ider, Y Z; Muftuler, L T

1997-10-01

390

The Magnetic Field in the Solar Atmosphere  

E-print Network

This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsible for all solar activity in its numerous manifestations. Thus, dynamic phenomena such as coronal mass ejections and flares are magnetically driven. In addition, the field also plays a crucial role in heating the solar chromosphere and corona as well as in accelerating the solar wind. Our main emphasis is the magnetic field in the upper solar atmosphere so that photospheric and chromospheric magnetic structures are mainly discussed where relevant for higher solar layers. Also, the discussion of the solar atmosphere and activity is limited to those topics of direct relevance to the magnetic field. After giving a brief overview about the solar magnetic field in general and its global structure, we discuss in more detail the magnetic field in active regions, the quie...

Wiegelmann, Thomas; Solanki, Sami K

2014-01-01

391

Warm inflation in presence of magnetic fields  

E-print Network

We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.

Gabriella Piccinelli; Angel Sanchez; Alejandro Ayala; Ana Julia Mizher

2013-11-03

392

Visualization of nonuniform magnetic fields by gadolinium-cobalt amorphous films  

Microsoft Academic Search

Configurations of magnetic domain structure of gadolinium-cobalt amorphous films with a perpendicular anisotropy under the\\u000a effect of spatially nonuniform magnetic stray fields produced by various miniature sources have been studied. The domain structure\\u000a of the amorphous films has been shown to qualitatively and quantitatively reflect the symmetry and magnitude of the normal\\u000a component of the nonuniform magnetic fields and, similar

V. E. Ivanov

2008-01-01

393

Plasma Equilibrium in a Magnetic Field with Stochastic Regions  

SciTech Connect

The nature of plasma equilibrium in a magnetic field with stochastic regions is examined. It is shown that the magnetic differential equation that determines the equilibrium Pfirsch-Schluter currents can be cast in a form similar to various nonlinear equations for a turbulent plasma, allowing application of the mathematical methods of statistical turbulence theory. An analytically tractable model, previously studied in the context of resonance-broadening theory, is applied with particular attention paid to the periodicity constraints required in toroidal configurations. It is shown that even a very weak radial diffusion of the magnetic field lines can have a significant effect on the equilibrium in the neighborhood of the rational surfaces, strongly modifying the near-resonant Pfirsch-Schluter currents. Implications for the numerical calculation of 3D equilibria are discussed

J.A. Krommes and Allan H. Reiman

2009-04-23

394

Neutron Stars with Hyperons subject to Strong Magnetic Field  

E-print Network

Neutron stars are one of the most exotic objects in the universe and a unique laboratory to study the nuclear matter above the nuclear saturation density. In this work, we study the equation of state of the nuclear matter within a relativistic model subjected to a strong magnetic field. We then apply this EoS to study and describe some of the physical characteristics of neutron star, especially the mass-radius relation and chemical compositions. To study the influence of a the magnetic field and the hyperons in the stellar interior, we consider altogether four solutions: two different values of magnetic field to obtain a weak and a strong influence, and two configurations: a family of neutron stars formed only by protons, electrons and neutrons and a family formed by protons, electrons, neutrons, muons and hyperons. The limit and the validity of the results found are discussed with some care. In all cases the particles that constitute the neutron star are in $\\beta$ equilibrium and zero total net charge. Our work indicates that the effect of a strong magnetic field has to be taken into account in the description of magnetars, mainly if we believe that there are hyperons in their interior, in which case, the influence of the magnetic field can increase the mass by more than 10%. We have also seen that although a magnetar can reach 2.48$M_{\\odot}$, a natural explanation of why we do not know pulsars with masses above 2.0$M_{\\odot}$ arises. We also discuss how the magnetic field affects the strangeness fraction in some standard neutron star masses and, to conclude our paper, we revisit the direct URCA process related to the cooling of the neutron stars and show how it is affected by the hyperons and the magnetic field.

L. L. Lopes; D. P. Menezes

2012-02-22

395

Bending of magnetic filaments under a magnetic field.  

PubMed

Magnetic beads and superparamagnetic (SP) colloid particles have successfully been employed for micromechanical manipulation of soft material, in situ probing of elastic properties, and design of smart materials (ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two end-member cases, (a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes, and (b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing SP particles. Our analysis yields also metastable equilibrium states (MES's), which only exist above a critical filament length, but become more stable with increasing magnetic field. The MES's for case (a) are, like the ground state, circular arcs, but more strongly bent. The multiform MES's in case (b), which comprise hairpin, sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization, case (a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments may hold advantages over tips usually employed in magnetic force microscopy. PMID:15697393

Shcherbakov, Valera P; Winklhofer, Michael

2004-12-01

396

Clean observations of magnetic field fluctuations on planetary surfaces  

Microsoft Academic Search

Magnetic field measurements on planetary surfaces are disturbed by various internal and external sources. We discuss methods to reduce their influence on the quality of magnetic field experiments aboard surface stations. Our major emphasis is on terrestrial seismo-magnetic measurements, but magnetic cleanliness procedures for the ROSETTA lander magnetic field experiment is discussed too. We consider not only disturbing magnetic field

K. Schwingenschuh; G. Prattes; M. Delva; H. U. Eichelberger; G. Berghofer; W. Magnes; M. Vellante; P. Nenovski; V. Wesztergom; H. U. Auster; K.-H. Fornacon

2012-01-01

397

Casimir effect in external magnetic field  

E-print Network

In this paper we examine the Casimir effect for charged fields in presence of external magnetic field. We consider scalar field (connected with spinless particles) and the Dirac field (connected with 1/2-spin particles). In both cases we describe quantum field using the canonical formalism. We obtain vacuum energy by direct solving field equations and using the mode summation method. In order to compute the renormalized vacuum energy we use the Abel-Plana formula.

Marcin Ostrowski

2005-04-13

398

Magnetic fields in noninvasive brain stimulation.  

PubMed

The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsne d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otvio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Mrcia Targas

2014-04-01

399

Magnetic monopole field exposed by electrons  

E-print Network

Magnetic monopoles have provided a rich field of study, leading to a wide area of research in particle physics, solid state physics, ultra-cold gases, superconductors, cosmology, and gauge theory. So far, no true magnetic monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the central results of quantum physics, shows however, that an effective monopole field can be produced. Understanding the effects of such a monopole field on its surroundings is crucial to its observation and provides a better grasp of fundamental physical theory. We realize the diffraction of fast electrons at a magnetic monopole field generated by a nanoscopic magnetized ferromagnetic needle. Previous studies have been limited to theoretical semiclassical optical calculations of the motion of electrons in such a monopole field. Solid state systems like the recently studied 'spin ice' provide a constrained system to study similar fields, but make it impossible to separate the monopole from the material. Free space ...

Bch, A; Van Tendeloo, G; Verbeeck, J

2013-01-01

400

Origin of magnetic fields in galaxies  

SciTech Connect

Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation -dissipation theorem, predicts {approx}0.034 {mu}G fields over {approx}0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation-dissipation theorem are not completely random, microgauss fields over regions > or approx. 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in < or approx. 10{sup 9} years in high redshift galaxies.

Souza, Rafael S. de; Opher, Reuven [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)

2010-03-15

401

Modeling solar force-free magnetic fields  

NASA Astrophysics Data System (ADS)

A class of nonlinear force-free magnetic fields is presented, described in terms of the solutions to a second-order, nonlinear ordinary differential equation. These magnetic fields are three-dimensional, filling the infinite half-space above a plane where the lines of force are anchored. They model the magnetic fields of the sun over active regions with a striking geometric realism. The total energy and the free energy associated with the electric current are finite and can be calculated directly from the magnetic field at the plane boundary using the virial theorem. In the study of solar magnetic fields with data from vector magnetographs, there is a long-standing interest in devising algorithms to extrapolate for the force-free magnetic field in a given domain from prescribed field values at the boundary. The closed-form magnetic fields of this paper open up an opportunity for testing the reliability and accuracy of algorithms that claim the capability of performing this extrapolation. The extrapolation procedure as an ill-posed mathematical problem is discussed.

Low, B. C.; Lou, Y. Q.

1990-03-01

402

Magnetic-field-controlled reconfigurable semiconductor logic.  

PubMed

Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices. PMID:23364687

Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

2013-02-01

403

Field configuration of beam excited modes in the Advanced Photon Source (APS) storage ring waveguides  

NASA Astrophysics Data System (ADS)

Argonne National Laboratory (ANL) is in the process of building a positron accelerator and storage ring, the Advanced Photo source (APS). The RF system for the APS storage ring uses 16 cylindrical TM010-like, reentrant cavities operating at 351.93 MHz to resupply energy lost by the beam due to synchrotron radiation. The stored beam will have approximately 60 bunches, 5 mA per bunch, for a total beam current of 300 mA. Calculations of the threshold current for coupled-bench instabilities in the storage ring have indicated that several beam-induced higher-order modes (HOM's) will reduce the threshold for beam stability and therefore should be damped. Previous data taken using a pillbox cavity showed that it is likely that some of these modes couple, through the coupling loop, from the storage ring cavity into the waveguide. This study investigates the electric and magnetic field configuration of each HOM present in the waveguide. A pillbox and a prototype storage ring cavity, together with various WR2300 waveguide components, are used to obtain the measurements needed for the determination of the mode configuration of the HOM's at the frequencies of interest. To avoid the development of beam instabilities due to the existence of these HOM's in the RF cavity, damping of the modes will be required. The HOM's present in the RF cavity coupling into the loop coupler and traveling through the coupler into the waveguide, may allow damping of some of the HOM's by insertion of dampers into the waveguide adjacent to each cavity.

Brauer, S. O.; Kustom, R. L.; Uslenghi, P. L. E.

404

The Measurement of Magnetic Fields  

ERIC Educational Resources Information Center

Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

Berridge, H. J. J.

1973-01-01

405

QCD vacuum structure in strong magnetic fields  

Microsoft Academic Search

We study the response of the QCD vacuum to strong magnetic fields, using a potential model for the quark-antiquark interaction. We find that production of spin-polarized u u pairs is energetically favorable for fields B > Bcrit ? 10 GeV2. We contrast the resulting uu condensate with the quark condensate which is present at zero magnetic field, and we estimate

Daniel Kabata; Kimyeong Leea; Erick Weinberg

406

Ohm's law for mean magnetic fields  

SciTech Connect

The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.

Boozer, A.H.

1986-05-01

407

An Extraordinary Magnetic Field Map of Mars  

NASA Technical Reports Server (NTRS)

The Mars Global Surveyor spacecraft has completed two Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriguing in both its global distribution and geometric properties [2,3]. Measurements of the vector magnetic field have been used to map the magnetic field of crustal origin to high accuracy [4]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from > 2 full years of MGS night-side observations, and uses along-track filtering to greatly reduce noise due to external field variations.

Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.; Mitchell, D. L.; Lin, R. P.

2004-01-01

408

Data-based magnetic field models: Present status and future prospects  

NASA Technical Reports Server (NTRS)

Empirical magnetic field models are discussed in terms of using models in multi-instrument data analysis. The variety of previous applications of field models are demonstrated. The problems found by using data based models are addressed and the prospects of their future development are outlined. Some issues related to time-dependency of the field configuration are presented.

Pulkkinen, T. I.; Koskinen, H. E. J.; Pellinen, R. J.; Sergeev, V. A.; Tsyganenko, N. A.; Opgenoorth, H. J.; Donovan, E.

1997-01-01

409

Electromagnet configurations for extreme attitude testing in magnetic suspension and balance systems  

NASA Technical Reports Server (NTRS)

The inclusion of adequate versatility into the electromagnet array configuration requires sizing the electromagnets to satisfy particular absolute force and moment requirements. Magnetic performance of a permanent magnet model core, air cored electromagnet may easily and reliably be computed by using the FORCE program which calculates model forces and moments via representations of the model as an assembly of dipoles and the electromagnets as an assembly of line currents. Some aspects of the performance of an ellipsoidal iron cored model may be inferred from the above under certain circumstances.

Britcher, C. P.

1980-01-01

410

Magnetic Field Disturbances Associated with changes in Lithologic Stress  

NASA Astrophysics Data System (ADS)

In August 2013 demolition by implosion of a multistory building on the campus of California State University East Bay (CSUEB) provided a strong seismic wave source. Anticipating that this event might provide an opportunity to acquire measurements of magnetic phenomena that could be associated with temporal changes in the lithologic stress regime, we placed several total-field magnetometers in the vicinity of CSUEB. The proximity of the implosion site to the active trace of the Hayward Fault provided additional incentive to measure any magnetic response to the propagation of seismic waves. The instruments used at the implosion site included three total-field cesium vapor magnetometers. These were distributed so as to acquire measurements within 200 m of the implosion site and to straddle the Hayward fault. This experiment also used the total magnetic field measurements acquired at the Jasper Ridge Biological Preserve (JRBP) cesium vapor magnetometer in the foothills behind Stanford University, some 20 km from the implosion site, as a distant reference. All magnetometers were configured to sample at a rate of 10 Hz and were synchronized to better that 1 mSec relative to GPS time. The Magnetic field measurements were coordinated with seismic motion measurements recorded at approximately 600 residential seismic stations and several multichannel seismographs located around the demolition site. Magnetic phenomena that may be associated with lithologic stress phenomena are compared to the seismic measurements in an effort to the observe correlations between lithologic stress and the generation of an anomalous magnetic field. The coherence of the magnetic and seismic events should provide insight into the character of possible earthquake precursor magnetic signals.

Johnston, J. M.; Budker, D.; Johnson, R. M.; Tchernychev, M.; Craig, M. S.

2013-12-01

411

Ultrafast heating and magnetic switching with weak external magnetic field  

NASA Astrophysics Data System (ADS)

The TbFeCo magneto-optical media with the coercivity of bigger than 1.0 kOe are used for the investigation of ultrafast heating and magnetic switching with the weak external magnetic field. It has been found that the laser-induced active region becomes larger with an external magnetic field because the boundary of the active region is magnetized with the assistance of the external field during the ultrafast heating. According to this physical phenomenon, the so called "mark expansion method" has been proposed for visual observation of ultrafast switching marks. Using this method, the ultrafast magnetic switching in TbFeCo media has been studied using 40 fs laser pulse with linear polarization. The result shows that the ultrafast magnetic switching can be implemented by the laser pulse with assistance of the weak external field of about 0.7 kOe. Further studies show that the area percentage of the magnetic mark expansion relative to its thermal mark decreases with the increasing of the laser pulse energy. There exists the threshold pulse energy that the active region is fully magnetized. The theoretical analysis of electron, spin, and lattice temperatures has been conducted to the active region of the media where the maximum spin temperature is close to the Curie temperature of the media. The result indicates that the media become active at 4.137 ps and the ultrafast heating plays a key role for the ultrafast magnetic switching. The weak external magnetic field provides sufficient driving force to control the magnetization direction in the media.

Li, J. M.; Xu, B. X.; Zhang, J.; Ye, K. D.

2013-01-01

412

Tuning permanent magnets with adjustable field clamps  

SciTech Connect

The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius.

Schermer, R.I.

1987-01-01

413

Particle Transport in Therapeutic Magnetic Fields  

NASA Astrophysics Data System (ADS)

Iron oxide magnetic nanoparticles, in ferrofluids or as magnetic microspheres, offer magnetic maneuverability, biochemical surface functionalization, and magnetic relaxation under the influence of an alternating field. The use of these properties for clinical applications requires an understanding of particles, forces, and scalar transport at various length scales. This review explains the behavior of magnetic nano- and microparticles during magnetic drug targeting and magnetic fluid hyperthermia, and the microfluidic transport of these particles in bioMEMS (biomedical microelectromechanical systems) devices for ex vivo therapeutic and diagnostic applications. Magnetic particle transport, the momentum interaction of these particles with a host fluid in a flow, and thermal transport in a particle-infused tissue are characterized through the governing electrodynamic, hydrodynamic, and scalar transport equations.

Puri, Ishwar K.; Ganguly, Ranjan

2014-01-01

414

Pure gauge configurations and tachyon solutions to string field theories equations of motion  

NASA Astrophysics Data System (ADS)

In construction of analytical solutions to open string field theories pure gauge configurations parameterized by wedge states play an essential role. These pure gauge configurations are constructed as perturbation expansions and to guaranty that these configurations are asymptotical solutions to equations of motion one needs to study convergence of the perturbation expansions. We demonstrate that for the large parameter of the perturbation expansion these pure gauge truncated configurations give divergent contributions to the equation of motion on the subspace of the wedge states. We perform this demonstration numerically for the pure gauge configurations related to tachyon solutions for the bosonic and NS fermionic SFT. By the numerical calculations we also show that the perturbation expansions are cured by adding extra terms. These terms are nothing but the terms necessary to make valued the Sen conjectures.

Aref'eva, Irina Ya.; Gorbachev, Roman V.; Grigoryev, Dmitry A.; Khromov, Pavel N.; Maltsev, Maxim V.; Medvedev, Peter B.

2009-05-01

415

Low loss pole configuration for multi-pole homopolar magnetic bearings  

NASA Technical Reports Server (NTRS)

A new pole configuration for multi-pole homopolar bearings proposed in this invention reduces rotational losses caused by eddy-currents generated when non-uniform flux distributions exist along the rotor surfaces. The new homopolar magnetic bearing includes a stator with reduced pole-to-pole and exhibits a much more uniform rotor flux than with large pole-to-pole gaps. A pole feature called a pole-link is incorporated into the low-loss poles to provide a uniform pole-to-pole gap and a controlled path for pole-to-pole flux. In order to implement the low-loss pole configuration of magnetic bearings with small pole-to-pole gaps, a new stator configuration was developed to facilitate installation of coil windings. The stator was divided into sector shaped pieces, as many pieces as there are poles. Each sector-shaped pole-piece can be wound on a standard coil winding machine, and it is practical to wind precision layer wound coils. To achieve maximum actuation efficiency, it is desirable to use all the available space for the coil formed by the natural geometric configuration. Then, the coils can be wound in a tapered shape. After winding, the sectored-pole-pieces are installed into and fastened by bonding or other means, to a ring of material which encloses the sectored-pole-pieces, forming a complete stator.

Blumenstock, Kenneth A. (Inventor); Hakun, Claef F. (Inventor)

2001-01-01

416

Octet magnetic moments and the violation of CGSR in $\\\\chi$QM with configuration mixing  

Microsoft Academic Search

Octet baryon magnetic moments are calculated within \\\\chiQM, respecting color spin spin forces (Szczepaniak et al., PRL 87, 072001(2001)), incorporating the orbital angular momentum as well as the quark sea contribution through the Cheng and Li mechanism (PRL 80, 2789(1998)). Using configuration mixing generated by color spin spin forces as well as the concept of ``effective'' quark mass to include

Harleen Dahiya; Manmohan Gupta

2002-01-01

417

The CMS Magnetic Field Map Performance  

E-print Network

The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field values. The value of the field at a given point of a volume is obtained by interpolation from a regular grid of values resulting from a TOSCA calculation or, when available, from a parameterization. The results of the measurements and calculations are presented, compared and discussed.

V. I. Klyukhin; N. Amapane; V. Andreev; A. Ball; B. Cur; A. Herv; A. Gaddi; H. Gerwig; V. Karimaki; R. Loveless; M. Mulders; S. Popescu; L. I. Sarycheva; T. Virdee

2011-10-04

418

Prediction of DC magnetic fields for magnetic cleanliness on spacecraft  

Microsoft Academic Search

Magnetometry is among the most used techniques in space exploration, e.g. to study complex plasma interactions between the solar wind and the Earth's magnetosphere, to map the planetary or interplanetary magnetic fields, or to retrieve information about the structural composition of planets. The success of each mission relies on the attainment of an adequate level of magnetic cleanliness at the

Axel Junge; Filippo Marliani

2011-01-01

419

Magnetic reconnection at the edge of Uranus's magnetic field  

NASA Astrophysics Data System (ADS)

A new modeling study sheds light on how the magnetosphere of Uranus compares to those of other planets. Magnetospheres around the inner planets Mercury and Earth are primarily driven by the solar windthe charged particles spewed out from the Sunthrough magnetic reconnection, in which the planet's magnetic field lines break and reconnect, releasing energy in the process.

Balcerak, Ernie

2014-09-01

420

Black Hole Spin Evolution Affected by Magnetic Field Decay  

E-print Network

Black holes are spun up by accreting matter and possibly spun-down by magnetic fields. In our work we consider the effect on black hole rotation of the two electromagnetic processes, Blandford-Znajek and Direct Magnetic Link, that differ in their magnetic field configuration. The efficiency of these processes varies with mass accretion rate and accretion regime and generally result in an equilibrium spin parameter in the range from 0.35 to ~0.98. Magnetic field loses its energy while being accreted that may lead to an increase in equilibrium Kerr parameter for the case of advection-dominated disc. We find magnetic field decay decay can decrease electromagnetic term significantly thus increasing the Kerr parameter. We have performed Monte-Carlo simulations for a supermassive black hole population. Our simulations show broad distributions in Kerr parameter (0.10.9, episodes of supercritical accretion are required. This implication does not however take into account black hole mergers (that play an important rol...

Chashkina, Anna

2014-01-01

421

Magnetic field controlled FZ single crystal growth of intermetallic compounds  

NASA Astrophysics Data System (ADS)

Intermetallic rare-earth-transition-metal compounds with their coexistence of magnetic ordering and superconductivity are still of great scientific interest. The crystal growth of bulk single crystals is very often unsuccessful due to an unfavorable solid-liquid interface geometry enclosing concave fringes. The aim of the work is the contactless control of heat and material transport during floating-zone single crystal growth of intermetallic compounds. This control is provided by a tailored design of the electromagnetic field and the resulting electromagnetically driven convection. Numerical simulations for the determination of the electromagnetic field configuration induced by the RF heater coil and the solution of the coupled heat and hydrodynamic equations were done for the model substance Ni with and without additional magnetic field. As a result, an innovative magnetic two-phase stirrer system has been developed which enables the controlled influence on the melt ranging from intensive inwards/outwards flows to flows almost at rest. The selection of parameters necessary for the desired fluid flow is determined from numerical simulation. The basis for the calculations are the process-related fluid flow conditions which are determined by the mode of heating, heat radiation at the free surface and material parameters. This treatment of the problem leads to the customised magnetic field for the special intermetallic compound. The application of the new magnetic system leads to a distinct improvement of the solid-liquid interface validated on experiments with the model substance Nickel.

Hermann, R.; Behr, G.; Gerbeth, G.; Priede, J.; Uhlemann, H.-J.; Fischer, F.; Schultz, L.

2005-02-01

422

Modeling center-surround configurations in population receptive fields using fMRI.  

PubMed

Antagonistic center-surround configurations are a central organizational principle of our visual system. In visual cortex, stimulation outside the classical receptive field can decrease neural activity and also decrease functional Magnetic Resonance Imaging (fMRI) signal amplitudes. Decreased fMRI amplitudes below baseline-0% contrast-are often referred to as "negative" responses. Using neural model-based fMRI data analyses, we can estimate the region of visual space to which each cortical location responds, i.e., the population receptive field (pRF). Current models of the pRF do not account for a center-surround organization or negative fMRI responses. Here, we extend the pRF model by adding surround suppression. Where the conventional model uses a circular symmetric Gaussian function to describe the pRF, the new model uses a circular symmetric difference-of-Gaussians (DoG) function. The DoG model allows the pRF analysis to capture fMRI signals below baseline and surround suppression. Comparing the fits of the models, an increased variance explained is found for the DoG model. This improvement was predominantly present in V1/2/3 and decreased in later visual areas. The improvement of the fits was particularly striking in the parts of the fMRI signal below baseline. Estimates for the surround size of the pRF show an increase with eccentricity and over visual areas V1/2/3. For the suppression index, which is based on the ratio between the volumes of both Gaussians, we show a decrease over visual areas V1 and V2. Using non-invasive fMRI techniques, this method gives the possibility to examine assumptions about center-surround receptive fields in human subjects. PMID:22408041

Zuiderbaan, Wietske; Harvey, Ben M; Dumoulin, Serge O

2012-01-01

423

Effects of Traveling Magnetic Field on Dynamics of Solidification  

NASA Technical Reports Server (NTRS)

The Lorentz body force induced in electrically conducting fluids can be utilized for a number of materials processing technologies. An application of strong static