Science.gov

Sample records for magnetic field environments

  1. Magnetic Field based Heading Estimation for Pedestrian Navigation Environments

    E-print Network

    Calgary, University of

    referenced to true North with the help of magnetic field models like International Geomagnetic Reference environments are seldom encountered and additional artificial magnetic fields are present causing magneticMagnetic Field based Heading Estimation for Pedestrian Navigation Environments Muhammad Haris Afzal

  2. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.

    2015-05-19

    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  3. Complex Plasmas in Strong Magnetic Field Environments

    SciTech Connect

    Konopka, U.; Schwabe, M.; Knapek, C.; Kretschmer, M.; Morfill, G.E.

    2005-10-31

    To complete our picture of general complex plasmas, experiments under the influence of high magnetic fields have been carried out in a radio frequency (rf) discharge with and without embedded micro-particles. The influence of the strong magnetic field on the plasma with respect to its homogeneity as well as on the isotropy of the particle interaction was studied. We observed a filamentation of the plasma at low pressures and low powers even in the absence of particles. The plasma filaments moved around -- traced by embedded particles -- and suddenly changed to a crystalline like arrangement.

  4. Mitigated-force carriage for high magnetic field environments

    SciTech Connect

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  5. Interacting Electrons in a Two-Dimensional Disordered Environment: Effect of a Zeeman Magnetic Field

    E-print Network

    Scalettar, Richard T.

    Interacting Electrons in a Two-Dimensional Disordered Environment: Effect of a Zeeman Magnetic 95616, USA (Received 27 February 2003; published 17 June 2003) The effect of a Zeeman magnetic field A hundred years after the Nobel prize was awarded in 1902 for the discovery of the Zeeman effect

  6. Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field

    E-print Network

    Cantillon-Murphy, Padraig

    In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's ...

  7. Magnetic Fields

    E-print Network

    Schöller, Markus

    2015-01-01

    In this chapter, we give a brief introduction into the use of the Zeeman effect in astronomy and the general detection of magnetic fields in stars, concentrating on the use of FORS2 for longitudinal magnetic field measurements.

  8. Effect of magnetic field fluctuation on ultra-low field MRI measurements in the unshielded laboratory environment.

    PubMed

    Liu, Chao; Chang, Baolin; Qiu, Longqing; Dong, Hui; Qiu, Yang; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming

    2015-08-01

    Magnetic field fluctuations in our unshielded urban laboratory can reach hundreds of nT in the noisy daytime and is only a few nT in the quiet midnight. The field fluctuation causes the Larmor frequency fL to drift randomly for several Hz during the unshielded ultra-low field (ULF) nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) measurements, thus seriously spoiling the averaging effect and causing imaging artifacts. By using an active compensation (AC) technique based on the spatial correlation of the low-frequency magnetic field fluctuation, the field fluctuation can be suppressed to tens of nT, which is a moderate situation between the noisy daytime and the quiet midnight. In this paper, the effect of the field fluctuation on ULF MRI measurements was investigated. The 1D and 2D MRI signals of a water phantom were measured using a second-order low-Tc superconducting quantum interference device (SQUID) in three fluctuation cases: severe fluctuation (noisy daytime), moderate fluctuation (daytime with AC) and minute fluctuation (quiet midnight) when different gradient fields were applied. When the active compensation is applied or when the frequency encoding gradient field Gx reaches a sufficiently strong value in our measurements, the image artifacts become invisible in all three fluctuation cases. Therefore it is feasible to perform ULF-MRI measurements in unshielded urban environment without imaging artifacts originating from magnetic fluctuations by using the active compensation technique and/or strong gradient fields. PMID:26037135

  9. Effect of magnetic field fluctuation on ultra-low field MRI measurements in the unshielded laboratory environment

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Chang, Baolin; Qiu, Longqing; Dong, Hui; Qiu, Yang; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming

    2015-08-01

    Magnetic field fluctuations in our unshielded urban laboratory can reach hundreds of nT in the noisy daytime and is only a few nT in the quiet midnight. The field fluctuation causes the Larmor frequency fL to drift randomly for several Hz during the unshielded ultra-low field (ULF) nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) measurements, thus seriously spoiling the averaging effect and causing imaging artifacts. By using an active compensation (AC) technique based on the spatial correlation of the low-frequency magnetic field fluctuation, the field fluctuation can be suppressed to tens of nT, which is a moderate situation between the noisy daytime and the quiet midnight. In this paper, the effect of the field fluctuation on ULF MRI measurements was investigated. The 1D and 2D MRI signals of a water phantom were measured using a second-order low-Tc superconducting quantum interference device (SQUID) in three fluctuation cases: severe fluctuation (noisy daytime), moderate fluctuation (daytime with AC) and minute fluctuation (quiet midnight) when different gradient fields were applied. When the active compensation is applied or when the frequency encoding gradient field Gx reaches a sufficiently strong value in our measurements, the image artifacts become invisible in all three fluctuation cases. Therefore it is feasible to perform ULF-MRI measurements in unshielded urban environment without imaging artifacts originating from magnetic fluctuations by using the active compensation technique and/or strong gradient fields.

  10. Static field influences on transcranial magnetic stimulation: Considerations for TMS in the scanner environment

    PubMed Central

    Yau, Jeffrey M.; Jalinous, Reza; Cantarero, Gabriela L.; Desmond, John E.

    2014-01-01

    Background: Transcranial magnetic stimulation (TMS) can be combined with functional magnetic resonance imaging (fMRI) to simultaneously manipulate and monitor human cortical responses. Although tremendous efforts have been directed at characterizing the impact of TMS on image acquisition, the influence of the scanner’s static field on the TMS coil has received limited attention. Objective/Hypothesis: The aim of this study was to characterize the influence of the scanner’s static field on TMS. We hypothesized that spatial variations in the static field could account for TMS field variations in the scanner environment. Methods: Using a MRI-compatible TMS coil, we estimated TMS field strengths based on TMS-induced voltage changes measured in a search coil. We compared peak field strengths obtained with the TMS coil positioned at different locations (B0 field vs fringe field) and orientations in the static field. We also measured the scanner’s static field to derive a field map to account for TMS field variations. Results: TMS field strength scaled depending on coil location and orientation with respect to the static field. Larger TMS field variations were observed in fringe field regions near the gantry as compared to regions inside the bore or further removed from the bore. The scanner’s static field also exhibited the greatest spatial variations in fringe field regions near the gantry. Conclusions: The scanner’s static field influences TMS fields and spatial variations in the static field correlate with TMS field variations. TMS field variations can be minimized by delivering TMS in the bore or outside of the 0 - 70 cm region from the bore entrance. PMID:24656916

  11. Recommendations for Guidelines for Environment-Specific Magnetic-Field Measurements, Rapid Program Engineering Project #2

    SciTech Connect

    Electric Research and Management, Inc.; IIT Research Institute; Magnetic Measurements; Survey Research Center, University of California; T. Dan Bracken, Inc.

    1997-03-11

    The purpose of this project was to document widely applicable methods for characterizing the magnetic fields in a given environment, recognizing the many sources co-existing within that space. The guidelines are designed to allow the reader to follow an efficient process to (1) plan the goals and requirements of a magnetic-field study, (2) develop a study structure and protocol, and (3) document and carry out the plan. These guidelines take the reader first through the process of developing a basic study strategy, then through planning and performing the data collection. Last, the critical factors of data management, analysis reporting, and quality assurance are discussed. The guidelines are structured to allow the researcher to develop a protocol that responds to specific site and project needs. The Research and Public Information Dissemination Program (RAPID) is based on exposure to magnetic fields and the potential health effects. Therefore, the most important focus for these magnetic-field measurement guidelines is relevance to exposure. The assumed objective of an environment-specific measurement is to characterize the environment (given a set of occupants and magnetic-field sources) so that information about the exposure of the occupants may be inferred. Ideally, the researcher seeks to obtain complete or "perfect" information about these magnetic fields, so that personal exposure might also be modeled perfectly. However, complete data collection is not feasible. In fact, it has been made more difficult as the research field has moved to expand the list of field parameters measured, increasing the cost and complexity of performing a measurement and analyzing the data. The guidelines address this issue by guiding the user to design a measurement protocol that will gather the most exposure-relevant information based on the locations of people in relation to the sources. We suggest that the "microenvironment" become the base unit of area in a study, with boundaries defined by the occupant's activity patterns and the field variation from the sources affecting the area. Such a stratification allows the researcher to determine which microenvironment are of most interest, and to methodically focus the areas, in order to gather the most relevant set of data.

  12. Magnetically Actuated Propellant Orientation Experiment, Controlling Fluid Motion With Magnetic Fields in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Holt, J. B.

    2000-01-01

    This report details the results of a series of fluid motion experiments to investigate the use of magnets to orient fluids in a low-gravity environment. The fluid of interest for this project was liquid oxygen (LO2) since it exhibits a paramagnetic behavior (is attracted to magnetic fields). However, due to safety and handling concerns, a water-based ferromagnetic mixture (produced by Ferrofluidics Corporation) was selected to simplify procedures. Three ferromagnetic fluid mixture strengths and a nonmagnetic water baseline were tested using three different initial fluid positions with respect to the magnet. Experiment accelerometer data were used with a modified computational fluid dynamics code termed CFX-4 (by AEA Technologies) to predict fluid motion. These predictions compared favorably with experiment video data, verifying the code's ability to predict fluid motion with and without magnetic influences. Additional predictions were generated for LO2 with the same test conditions and geometries used in the testing. Test hardware consisted of a cylindrical Plexiglas tank (6-in. bore with 10-in. length), a 6,000-G rare Earth magnet (10-in. ring), three-axis accelerometer package, and a video recorder system. All tests were conducted aboard the NASA Reduced-Gravity Workshop, a KC-135A aircraft.

  13. Magnetic Environment and Magnetic Field Standards at NPL for the Calibration of Low Noise Magnetometers and Gradiometers for Cleanliness Studies

    NASA Astrophysics Data System (ADS)

    Hall, M. J.; Harmon, S. A. C.; Turner, S.

    2012-05-01

    The magnetic field standards, facilities and capabilities available at NPL for the calibration of magnetometers and gradiometers and the measurement of the magnetic moment and relative magnetic permeability of materials will be presented. This work is performed in the NPL low magnetic field facility. The details of this facility will be explained, how the noise floor is being reduced and how the facility enables magnetic cleanliness measurement will be presented. This will include the discussion of a gradient field coil for the calibration of gradiometers. Methods to check that the materials used in space projects are not unduly magnetic will be discussed.

  14. Survey and assessment of electric and magnetic field (EMF) public exposure in the transportation environment

    SciTech Connect

    Dietrich, F.M.; Jacobs, W.L.

    1999-03-01

    This research, conducted under the support of the Federal Electric and Magnetic Field Research and Public Information Dissemination (EMF RAPID) Engineering Program, characterized the extreme-low-frequency (ELF) electric and magnetic fields (EMF) which a traveler might encounter while using various forms of transportation. Extensive measurement of field level, frequency, temporal variability and spatial variability are reported for: conventional internal-combustion cars, trucks and buses; electric cars, trucks and buses; commuter trains; ferry boats; jetliners; airport shuttle trams; and escalators and moving sidewalks. Static magnetic field levels are also reported. Where possible, the source of the fields is identified. This effort extends extensive past work which investigated field in electrified trains, subways, light rail vehicles, and a magnetically levitated train by using similar protocols to characterize the complex ELF (3 Hz to 3000 Hz) electric and magnetic fields found in virtually all transportation systems.

  15. Geospace Environment Modeling 2008-2009 Challenge: Ground Magnetic Field Perturbations

    NASA Technical Reports Server (NTRS)

    Pulkkinen, A.; Kuznetsova, M.; Ridley, A.; Raeder, J.; Vapirev, A.; Weimer, D.; Weigel, R. S.; Wiltberger, M.; Millward, G.; Rastatter, L.; Hesse, M.; Singer, H. J.; Chulaki, A.

    2011-01-01

    Acquiring quantitative metrics!based knowledge about the performance of various space physics modeling approaches is central for the space weather community. Quantification of the performance helps the users of the modeling products to better understand the capabilities of the models and to choose the approach that best suits their specific needs. Further, metrics!based analyses are important for addressing the differences between various modeling approaches and for measuring and guiding the progress in the field. In this paper, the metrics!based results of the ground magnetic field perturbation part of the Geospace Environment Modeling 2008 2009 Challenge are reported. Predictions made by 14 different models, including an ensemble model, are compared to geomagnetic observatory recordings from 12 different northern hemispheric locations. Five different metrics are used to quantify the model performances for four storm events. It is shown that the ranking of the models is strongly dependent on the type of metric used to evaluate the model performance. None of the models rank near or at the top systematically for all used metrics. Consequently, one cannot pick the absolute winner : the choice for the best model depends on the characteristics of the signal one is interested in. Model performances vary also from event to event. This is particularly clear for root!mean!square difference and utility metric!based analyses. Further, analyses indicate that for some of the models, increasing the global magnetohydrodynamic model spatial resolution and the inclusion of the ring current dynamics improve the models capability to generate more realistic ground magnetic field fluctuations.

  16. Detection of magnetic environments in porous media by low-field 2D NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Casieri, Cinzia; De Luca, Francesco; Nodari, Luca; Russo, Umberto; Terenzi, Camilla

    2010-08-01

    The 2D 1H NMR correlation maps of longitudinal ( T1) and transverse ( T2) relaxation times prove sensitive in monitoring the distribution of magnetic pore environments in porous systems. The comparison with Mössbauer data establishes a direct correspondence between the susceptibility-induced effects observed in the T1- T2 maps for pore-filling water and the Fe(III)-bearing magnetic compounds.

  17. Combined Measurements of the Magnetic Field in the Plasma Environment of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Koenders, Christoph; Richter, Ingo; Auster, Hans-Ulrich; Glassmeier, Karl-Heinz; Tsurutani, Bruce; Volwerk, Martin

    2014-05-01

    In 2004, the European spacecraft Rosetta was launched to a long journey to the comet 67P/Churyumov-Gerasimenko. Two magnetometers are among the different scientific instruments. One of them is mounted on the lander Philae and incorporated into the ROMAP package. The other one (RPC MAG) is part of the Rosetta Plasma Consortium (RPC) and located on a boom outside the orbiter. Both instruments are intended to study the plasma environment of the comet during the mission. As known from numerical simulations, this environment will change dramatically. In the early phase the activity of the comet will be low, and instead of a bow shock a Mach cone will be triggered. At this stage, Rosetta will arrive at the comet and the magnetometers will probably detect pick-up ion waves in the upstream region. In addition, the solar wind will penetrate the developing coma and reach the surface of the nucleus. Thus, our magnetometers will be able to study this situation for the first time ever. Furthermore, combined measurements of our magnetometers allow the characterisation of conductivity properties of the nucleus during the weak activity phase and a detection of a remanent magnetisation, possibly generated during formation of the comet. Later, the activity of the comet increases and the structures such as the cometary ionopause and the diamagnetic cavity will evolve. The two instruments will allow us to study these structures and their stabilities. We will present the design of the instruments and look forward to the next two years of unique magnetic field observations at the comet.

  18. The Revised Electromagnetic Fields Directive and Worker Exposure in Environments With High Magnetic Flux Densities

    PubMed Central

    Stam, Rianne

    2014-01-01

    Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers’ exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker’s body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices. PMID:24557933

  19. [Consequences of changed regulations on the protection of the environment against the influence of the 50 Hz magnetic field].

    PubMed

    Szuba, Marek

    2009-01-01

    Over the recent years some countries have introduced norms, regulations or recommendations limiting the value of few A/m permissible levels of the 50 Hz magnetic field (MF) in the environment. This results from the studies indicating a number of biological effects on living organisms exposed to magnetic fields with levels similar to those produced by high voltage overhead power lines. The main objective of these restrictions was to protect human health from the effects of MF produced by high voltage overhead transmission lines. The changed permissible level of MF intensity to the level now binding in different countries will have great economic and financial impact. The greatest impact will be observed in the already established residential areas, which require that the levels of magnetic field from existing overhead lines be lowered. The effects of more strict regulations on the protection against the effects of the 50 Hz magnetic field, reducing the levels to values lower than 0.25 A/m, can be grouped into three categories: technical effects, space and landscape implications and financial impact. The lowering of MF maximum acceptable level will require changes in the structure of new power lines and modifications in the existing grid. Unfortunately, the replacing of overhead power lines with cables is not possible on account of too high costs. The extension of the area, in which construction of dwelling houses will not be possible, can turn out to be the only solution. PMID:19603697

  20. The design of the inelastic neutron scattering mode for the Extreme Environment Diffractometer with the 26 T High Field Magnet

    NASA Astrophysics Data System (ADS)

    Bartkowiak, Maciej; Stüßer, Norbert; Prokhnenko, Oleksandr

    2015-10-01

    The Extreme Environment Diffractometer is a neutron time-of-flight instrument, designed to work with a constant-field hybrid magnet capable of reaching fields over 26 T, unprecedented in neutron science; however, the presence of the magnet imposes both spatial and technical limitations on the surrounding instrument components. In addition to the existing diffraction and small-angle neutron scattering modes, the instrument will operate also in an inelastic scattering mode, as a direct time-of-flight spectrometer. In this paper we present the Monte Carlo ray-tracing simulations, the results of which illustrate the performance of the instrument in the inelastic-scattering mode. We describe the focussing neutron guide and the chopper system of the existing instrument and the planned design for the instrument upgrade. The neutron flux, neutron spatial distribution, divergence distribution and energy resolution are calculated for standard instrument configurations.

  1. A Monte Carlo-based radiation safety assessment for astronauts in an environment with confined magnetic field shielding.

    PubMed

    Geng, Changran; Tang, Xiaobin; Gong, Chunhui; Guan, Fada; Johns, Jesse; Shu, Diyun; Chen, Da

    2015-12-01

    The active shielding technique has great potential for radiation protection in space exploration because it has the advantage of a significant mass saving compared with the passive shielding technique. This paper demonstrates a Monte Carlo-based approach to evaluating the shielding effectiveness of the active shielding technique using confined magnetic fields (CMFs). The International Commission on Radiological Protection reference anthropomorphic phantom, as well as the toroidal CMF, was modeled using the Monte Carlo toolkit Geant4. The penetrating primary particle fluence, organ-specific dose equivalent, and male effective dose were calculated for particles in galactic cosmic radiation (GCR) and solar particle events (SPEs). Results show that the SPE protons can be easily shielded against, even almost completely deflected, by the toroidal magnetic field. GCR particles can also be more effectively shielded against by increasing the magnetic field strength. Our results also show that the introduction of a structural Al wall in the CMF did not provide additional shielding for GCR; in fact it can weaken the total shielding effect of the CMF. This study demonstrated the feasibility of accurately determining the radiation field inside the environment and evaluating the organ dose equivalents for astronauts under active shielding using the CMF. PMID:26484984

  2. Mercury's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.

    2014-12-01

    Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal sources cannot be distinguished from core fields, nor cleanly separated from external fields. I will report on recent data acquired at altitudes as low as 25 km that have the potential to resolve these issues. The presence of remanent crustal fields would have profound implications for Mercury's thermal and dynamical histories.

  3. Magnetospheric environments of outer planet rings - influence of Saturn's axially symmetric magnetic field

    SciTech Connect

    Hood, L.L.

    1987-07-01

    Saturn's main rings exist within a zone of negligible magnetospheric losses and surface alteration effects, substantially due to the solid-body absorption of inwardly diffusing magnetospheric particles. This process is presently shown to be especially efficient in the inner magnetosphere of Saturn, due to the near-axial symmetry of the planetary magnetic field relative to the equatorial rotation plane; under the assumption of comparable diffusion rates, the inward magnetospheric particle transport is far more inhibited in the inner Saturnian magnetosphere than in the same regions of Jupiter and Uranus, even when only rings of comparable widths and depths are considered. In light of this, ring particle surface exposure to the ion fluxes of the radiation belt remains a prepossessing rationale for low Uranian ring albedos. 86 references.

  4. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  5. Magnetic field mapper

    NASA Technical Reports Server (NTRS)

    Masters, R. M.; Stenger, F. J.

    1969-01-01

    Magnetic field mapper locates imperfections in cadmium sulphide solar cells by detecting and displaying the variations of the normal component of the magnetic field resulting from current density variations. It can also inspect for nonuniformities in other electrically conductive materials.

  6. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  7. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-06-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  8. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  9. Magnetic Fields Analogous to electric field, a magnet

    E-print Network

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic characteristic of elementary particles such as an electron #12;Magnetic Fields Magnetic field lines Direction

  10. Magnetic Fields and Plasmas

    SciTech Connect

    Schep, T.J.

    2004-03-15

    Plasmas and magnetic fields are inseparably related in numerous physical circumstances. This is not only the case in natural occurring plasmas like the solar corona and the earth magnetic tail, but also in laboratory plasmas like tokamaks and stellarators.

  11. Static magnetic fields enhance turbulence

    E-print Network

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  12. Magnetic field generator

    DOEpatents

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  13. Magnetic Field & Right Hand Rule

    E-print Network

    Heller, Barbara

    Magnetic Field & Right Hand Rule Academic Resource Center #12;Magnetic Fields And Right Hand Rules By: Anthony Ruth #12;Magnetic Fields vs Electric Fields · Magnetic fields are similar to electric charges and stationary charges. · In addition, magnetic fields create a force only on moving charges

  14. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  15. Planets' magnetic environments

    SciTech Connect

    Lanzerotti, L.J.; Uberoi, C.

    1989-02-01

    The magnetospheres of Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and comets and the heliomagnetosphere are examined. The orientations of the planetary spin and magnetic axes, the size of the magnetospheres, and the magnetic properties and the radio emissions of the planets are compared. Results from spacecraft studies of the planets are included. Plans for the Voyager 2 mission and its expected study of the Neptune magnetosphere are considered.

  16. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  17. Magnetosheath magnetic field variability

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    1994-01-01

    A case study using simulations IRM and CCE observations demonstrates that transient magnetospheric events correspond to pressure pulses in the magnetosheath, inward bow shock motion, and magnetopause compression. Statistical surveys indicate that the magnetosheath magnetic field orientation rarely remains constant during periods of magnetopause and bow shock motion (both characterized by periods of 1 to 10 min). There is no tendency for bow shock motion to occur for southward interplanetary magnetic field (IMF) orientations.

  18. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  19. Molecules in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana

    2015-08-01

    Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.

  20. Cluster Magnetic Fields from Galactic Outflows

    E-print Network

    J. Donnert; K. Dolag; H. Lesch; E. Müller

    2008-10-24

    We performed cosmological, magneto-hydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields are galactic outflows during the star-burst phase of galactic evolution. To do this we coupled a semi-analytical model for magnetized galactic winds as suggested by \\citet{2006MNRAS.370..319B} to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy clusters fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude that magnetized galactic outflows and their subsequent evolution within the intra-cluster medium can fully account for the observed magnetic fields in galaxy clusters. Our findings also suggest that measuring cosmological magnetic fields in low-density environments such as filaments is much more useful than observing cluster magnetic fields to infer their possible origin.

  1. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  2. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  3. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-01

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles. PMID:17812894

  4. The induced magnetic field.

    PubMed

    Islas, Rafael; Heine, Thomas; Merino, Gabriel

    2012-02-21

    Aromaticity is indispensable for explaining a variety of chemical behaviors, including reactivity, structural features, relative energetic stabilities, and spectroscopic properties. When interpreted as the spatial delocalization of ?-electrons, it represents the driving force for the stabilization of many planar molecular structures. A delocalized electron system is sensitive to an external magnetic field; it responds with an induced magnetic field having a particularly long range. The shape of the induced magnetic field reflects the size and strength of the system of delocalized electrons and can have a large influence on neighboring molecules. In 2004, we proposed using the induced magnetic field as a means of estimating the degree of electron delocalization and aromaticity in planar as well as in nonplanar molecules. We have since tested the method on aromatic, antiaromatic, and nonaromatic compounds, and a refinement now allows the individual treatment of core-, ?-, and ?-electrons. In this Account, we describe the use of the induced magnetic field as an analytical probe for electron delocalization and its application to a large series of uncommon molecules. The compounds include borazine; all-metal aromatic systems Al(4)(n-); molecular stars Si(5)Li(n)(6-n); electronically stabilized planar tetracoordinate carbon; planar hypercoordinate atoms inside boron wheels; and planar boron wheels with fluxional internal boron cluster moieties. In all cases, we have observed that planar structures show a high degree of electron delocalization in the ?-electrons and, in some examples, also in the ?-framework. Quantitatively, the induced magnetic field has contributions from the entire electronic system of a molecule, but at long range the contributions arising from the delocalized electronic ?-system dominate. The induced magnetic field can only indirectly be confirmed by experiment, for example, through intermolecular contributions to NMR chemical shifts. We show that calculating the induced field is a useful method for understanding any planar organic or inorganic system, as it corresponds to the intuitive Pople model for explaining the anomalous proton chemical shifts in aromatic molecules. Indeed, aromatic, antiaromatic, and nonaromatic molecules show differing responses to an external field; that is, they reduce, augment, or do not affect the external field at long range. The induced field can be dissected into different orbital contributions, in the same way that the nucleus-independent chemical shift or the shielding function can be separated into component contributions. The result is a versatile tool that is particularly useful in the analysis of planar, densely packed systems with strong orbital contributions directly atop individual atoms. PMID:21848282

  5. HMI Magnetic Field Products

    NASA Astrophysics Data System (ADS)

    Hoeksema, Jon T.; HMI Magnetic Field Team

    2013-07-01

    The Helioseismic and Magnetic Imager (HMI) on SDO has measured magnetic field, velocity, and intensity in the photosphere over the full disk continuously since May 2010 with arc-second resolution. Scalar images are measured every 45 seconds. From these basic observables the pipeline automatically identifies and tracks active regions on the solar disk. The vector magnetic field and a variety of summary quantities are determined every 720s in these tracked Space-weather HMI Active Region Patches (SHARPS). Synoptic and synchronic maps are constructed daily and after each Carrington Rotation Most data products are available with definitive scientific calibration after a few day deal at and in a quick-look near-real-time version a few minutes after the observations are made. Uncertainties are determined for the derived products. All of the magnetic field products along with movies and images suitable for browsing are available at http:://Hmi.stanford.edu/magnetic. Other products, e.g. coronal field over active regions, can be computed on demand.

  6. Planets in extreme magnetic environments

    NASA Astrophysics Data System (ADS)

    Moutou, Claire

    2015-12-01

    Interactions between stars and planets in very close-in systems include irradiation, tidal and magnetic effects, the relative amplitudes of which depend on the system parameters. The extent of magnetic interactions, however, is only poorly known since the magnetic fields of the parent star itself is barely characterized. In this presentation, I will review the recent efforts made to measure and characterize the magnetic fields of star hosting close-in planets, in order to provide quantitative constraints in the studies of star-planet interactions.We have been using the spectropolarimeters CFHT/ESPaDOnS and TBL/NARVAL to assess the our ability to detect the circular polarization of several dozens planet-host stars, and to map the large-scale magnetic topology of a sub-sample of these stars. The detection of magnetic fields as low as a few Gauss is possible around relatively bright, solar-like stars. After hot-Jupiter systems, we got interested in systems with smaller planets in close orbits. Several applications of these magnetic topologies have already been used in theoretical analyses of the star-planet interactions, that we will briefly review. Perspectives for this work include further observing programs and more detailed theoretical representations.

  7. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  8. Fast Room Temperature Very Low Field-Magnetic Resonance Imaging System Compatible with MagnetoEncephaloGraphy Environment.

    PubMed

    Galante, Angelo; Sinibaldi, Raffaele; Conti, Allegra; De Luca, Cinzia; Catallo, Nadia; Sebastiani, Piero; Pizzella, Vittorio; Romani, Gian Luca; Sotgiu, Antonello; Della Penna, Stefania

    2015-01-01

    In recent years, ultra-low field (ULF)-MRI is being given more and more attention, due to the possibility of integrating ULF-MRI and Magnetoencephalography (MEG) in the same device. Despite the signal-to-noise ratio (SNR) reduction, there are several advantages to operating at ULF, including increased tissue contrast, reduced cost and weight of the scanners, the potential to image patients that are not compatible with clinical scanners, and the opportunity to integrate different imaging modalities. The majority of ULF-MRI systems are based, until now, on magnetic field pulsed techniques for increasing SNR, using SQUID based detectors with Larmor frequencies in the kHz range. Although promising results were recently obtained with such systems, it is an open question whether similar SNR and reduced acquisition time can be achieved with simpler devices. In this work a room-temperature, MEG-compatible very-low field (VLF)-MRI device working in the range of several hundred kHz without sample pre-polarization is presented. This preserves many advantages of ULF-MRI, but for equivalent imaging conditions and SNR we achieve reduced imaging time based on preliminary results using phantoms and ex-vivo rabbits heads. PMID:26630172

  9. Fast Room Temperature Very Low Field-Magnetic Resonance Imaging System Compatible with MagnetoEncephaloGraphy Environment

    PubMed Central

    Galante, Angelo; Sinibaldi, Raffaele; Conti, Allegra; De Luca, Cinzia; Catallo, Nadia; Sebastiani, Piero; Pizzella, Vittorio; Romani, Gian Luca; Sotgiu, Antonello; Della Penna, Stefania

    2015-01-01

    In recent years, ultra-low field (ULF)-MRI is being given more and more attention, due to the possibility of integrating ULF-MRI and Magnetoencephalography (MEG) in the same device. Despite the signal-to-noise ratio (SNR) reduction, there are several advantages to operating at ULF, including increased tissue contrast, reduced cost and weight of the scanners, the potential to image patients that are not compatible with clinical scanners, and the opportunity to integrate different imaging modalities. The majority of ULF-MRI systems are based, until now, on magnetic field pulsed techniques for increasing SNR, using SQUID based detectors with Larmor frequencies in the kHz range. Although promising results were recently obtained with such systems, it is an open question whether similar SNR and reduced acquisition time can be achieved with simpler devices. In this work a room-temperature, MEG-compatible very-low field (VLF)-MRI device working in the range of several hundred kHz without sample pre-polarization is presented. This preserves many advantages of ULF-MRI, but for equivalent imaging conditions and SNR we achieve reduced imaging time based on preliminary results using phantoms and ex-vivo rabbits heads. PMID:26630172

  10. Minimizing magnetic fields for precision experiments

    NASA Astrophysics Data System (ADS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  11. Magnetic fields at Uranus

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Connerney, J. E. P.; Lepping, R. P.

    1986-01-01

    The conclusions drawn regarding the structure, behavior and composition of the Uranian magnetic field and magnetosphere as revealed by Voyager 2 data are summarized. The planet had a bipolar magnetotail and a bow shock wave which was observed 23.7 Uranus radii (UR) upstream and a magnetopause at 18.0 UR. The magnetic field observed can be represented by a dipole offset from the planet by 0.3 UR. The field vector and the planetary angular momentum vector formed a 60 deg angle, permitting Uranus to be categorized as an oblique rotator, with auroral zones occurring far from the rotation axis polar zones. The surface magnetic field was estimated to lie between 0.1-1.1 gauss. Both the field and the magnetotail rotated around the planet-sun line in a period of about 17.29 hr. Since the ring system is embedded within the magnetosphere, it is expected that the rings are significant absorbers of radiation belt particles.

  12. Magnetic fields at Uranus

    NASA Astrophysics Data System (ADS)

    Ness, N. F.; Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Connerney, J. E. P.; Lepping, R. P.

    1986-07-01

    The conclusions drawn regarding the structure, behavior and composition of the Uranian magnetic field and magnetosphere as revealed by Voyager 2 data are summarized. The planet had a bipolar magnetotail and a bow shock wave which was observed 23.7 Uranus radii (UR) upstream and a magnetopause at 18.0 UR. The magnetic field observed can be represented by a dipole offset from the planet by 0.3 UR. The field vector and the planetary angular momentum vector formed a 60 deg angle, permitting Uranus to be categorized as an oblique rotator, with auroral zones occurring far from the rotation axis polar zones. The surface magnetic field was estimated to lie between 0.1-1.1 gauss. Both the field and the magnetotail rotated around the planet-sun line in a period of about 17.29 hr. Since the ring system is embedded within the magnetosphere, it is expected that the rings are significant absorbers of radiation belt particles.

  13. Space environment of Mercury at the time of the first MESSENGER flyby: Solar wind and interplanetary magnetic field modeling of upstream conditions

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.; Odstrcil, Dusan; Anderson, Brian J.; Arge, C. Nick; Benna, Mehdi; Gloeckler, George; Raines, Jim M.; Schriver, David; Slavin, James A.; Solomon, Sean C.; Killen, Rosemary M.; Zurbuchen, Thomas H.

    2009-10-01

    The first flyby of Mercury by the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft occurred on 14 January 2008. In order to provide contextual information about the solar wind (SW) properties and the interplanetary magnetic field near the planet, we have used an empirical modeling technique combined with a numerical physics-based SW model. The Wang-Sheeley-Arge (WSA) method uses solar photospheric magnetic field observations (from Earth-based instruments) in order to estimate inner heliospheric conditions out to 21.5 solar radii from the Sun. This information is then used as input to the global numerical magnetohydrodynamic model, ENLIL, which calculates SW velocity, density, temperature, and magnetic field strength and polarity throughout the inner heliosphere. The present paper shows WSA-ENLIL conditions computed for the several week period encompassing the first flyby. This information is used in conjunction with MESSENGER magnetometer data (and the only limited available MESSENGER SW plasma data) to help understand the Mercury flyby results. The in situ spacecraft data, in turn, can also be used iteratively to improve the model accuracy for inner heliospheric “space weather” purposes. Looking to the future, we discuss how with such modeling we can estimate relatively continuously the SW properties near Mercury and at the cruise location of MESSENGER now, for upcoming flybys, and toward the time of spacecraft orbit insertion in 2011.

  14. Radial magnetic field in magnetic confinement device

    NASA Astrophysics Data System (ADS)

    Xiong, Hao; Liu, Ming-Hai; Chen, Ming; Rao, Bo; Chen, Jie; Chen, Zhao-Quan; Xiao, Jin-Shui; Hu, Xi-Wei

    2015-09-01

    The intrinsic radial magnetic field (Br) in a tokamak is explored by the solution of the Grad-Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak should possess a three-dimensional magnetic field configuration, which could be reduced to a two-dimensional one when the radial position is greater than 0.6a. The radial magnetic field and the amzimuthal magnetic field have the same order of magnitude at the core of the device. These results can offer a reference for the analysis of the plasma instability, the property of the core plasma, and the magnetic field measurement. Project supported by the Special Domestic Program of ITER, China (Grant No. 2009GB105003).

  15. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  16. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  17. Using Tailed Radio Galaxies to Probe the Environment and Magnetic Field of Galaxy Clusters in the SKA Era

    E-print Network

    Johnston-Hollitt, M; Pratley, L

    2015-01-01

    The morphology of tailed radio galaxies is an invaluable source of environmental information, in which a history of the past interactions in the intra-cluster medium, such as complex galaxy motions and cluster merger shocks, are preserved. In recent years, the use of tailed radio galaxies as environmental probes has gained momentum as a method for galaxy cluster detection, examining the dynamics of individual clusters, measuring the density and velocity flows in the intra-cluster medium, and for probing cluster magnetic fields. To date instrumental limitations in terms of resolution and sensitivity have confined this research to the local (z < 0.7) Universe. The advent of SKA1 surveys however will allow detection of roughly 1,000,000 tailed radio galaxies and their associated galaxy clusters out to redshifts of 2 or more. This is in fact ten times more than the current number of known clusters in the Universe. Additionally between 50,000 and 100,000 tailed radio galaxies will be sufficiently polarized to a...

  18. The Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Jansson, Ronnie; Farrar, Glennys R.

    2012-12-01

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength ?20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  19. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  20. Magnetic nanoparticle motion in external magnetic field

    NASA Astrophysics Data System (ADS)

    Usov, N. A.; Liubimov, B. Ya

    2015-07-01

    A set of equations describing the motion of a free magnetic nanoparticle in an external magnetic field in a vacuum, or in a medium with negligibly small friction forces is postulated. The conservation of the total particle momentum, i.e. the sum of the mechanical and the total spin momentum of the nanoparticle is taken into account explicitly. It is shown that for the motion of a nanoparticle in uniform magnetic field there are three different modes of precession of the unit magnetization vector and the director that is parallel the particle easy anisotropy axis. These modes differ significantly in the precession frequency. For the high-frequency mode the director points approximately along the external magnetic field, whereas the frequency and the characteristic relaxation time of the precession of the unit magnetization vector are close to the corresponding values for conventional ferromagnetic resonance. On the other hand, for the low-frequency modes the unit magnetization vector and the director are nearly parallel and rotate in unison around the external magnetic field. The characteristic relaxation time for the low-frequency modes is remarkably long. This means that in a rare assembly of magnetic nanoparticles there is a possibility of additional resonant absorption of the energy of alternating magnetic field at a frequency that is much smaller compared to conventional ferromagnetic resonance frequency. The scattering of a beam of magnetic nanoparticles in a vacuum in a non-uniform external magnetic field is also considered taking into account the precession of the unit magnetization vector and director.

  1. Diffusion of magnetic field via turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar.

  2. Planetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Stevenson, David J.

    2003-03-01

    The past several years have seen dramatic developments in the study of planetary magnetic fields, including a wealth of new data, mainly from the Galilean satellites and Mars, together with major improvements in our theoretical modeling effort of the dynamo process believed responsible for large planetary fields. These dynamos arise from thermal or compositional convection in fluid regions of large radial extent. The relevant electrical conductivities range from metallic values to values that may be only about 1% or less that of a typical metal, appropriate to ionic fluids and semiconductors. In all planets, the Coriolis force is dynamically important, but slow rotation may be more favorable for a dynamo than fast rotation. The maintenance and persistence of convection appears to be easy in gas giants and ice-rich giants, but is not assured in terrestrial planets because the quite high electrical conductivity of iron-rich cores guarantees a high thermal conductivity (through the Wiedemann-Franz law), which allows for a large core heat flow by conduction alone. In this sense, high electrical conductivity is unfavorable for a dynamo in a metallic core. Planetary dynamos mostly appear to operate with an internal field ˜(2 ??/ ?) 1/2 where ? is the fluid density, ? is the planetary rotation rate and ? is the conductivity (SI units). Earth, Ganymede, Jupiter, Saturn, Uranus, Neptune, and maybe Mercury have dynamos, Mars has large remanent magnetism from an ancient dynamo, and the Moon might also require an ancient dynamo. Venus is devoid of a detectable global field but may have had a dynamo in the past. The presence or absence of a dynamo in a terrestrial body (including Ganymede) appears to depend mainly on the thermal histories and energy sources of these bodies, especially the convective state of the silicate mantle and the existence and history of a growing inner solid core. Induced fields observed in Europa and Callisto indicate the strong likelihood of water oceans in these bodies.

  3. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  4. Magnetic field therapy: a review.

    PubMed

    Markov, Marko S

    2007-01-01

    There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation. PMID:17454079

  5. What Are Electric and Magnetic Fields? (EMF)

    MedlinePLUS

    ... Print this page Share What are Electric and Magnetic Fields? (EMF) Electric and Magnetic Fields Electricity is an essential part of our ... we take for granted. What are electric and magnetic fields? Electric and magnetic fields (EMF) are invisible ...

  6. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  7. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  8. Magnetic Propeller for Uniform Magnetic Field Levitation

    E-print Network

    Krinker, Mark

    2008-01-01

    Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

  9. Magnetic Propeller for Uniform Magnetic Field Levitation

    E-print Network

    Mark Krinker; Alexander Bolonkin

    2008-07-12

    Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

  10. Leptogenesis and primordial magnetic fields

    SciTech Connect

    Long, Andrew J.; Sabancilar, Eray; Vachaspati, Tanmay E-mail: eray.sabancilar@asu.edu

    2014-02-01

    The anomalous conversion of leptons into baryons during leptogenesis is shown to produce a right-handed helical magnetic field; in contrast, the magnetic field produced during electroweak baryogenesis is known to be left-handed. If the cosmological medium is turbulent, the magnetic field evolves to have a present day coherence scale ? 10 pc and field strength ? 10{sup ?18} Gauss. This result is insensitive to the energy scale at which leptogenesis took place. Observations of the amplitude, coherence scale, and helicity of the intergalactic magnetic field promise to provide a powerful probe of physics beyond the Standard Model and the very early universe.

  11. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  12. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  13. Exoplanet Magnetic Fields and Their Detectability

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tian, B. Y.; Vilim, R.

    2014-12-01

    The investigation of planetary magnetic fields in our solar system provides a wealth of information on planetary interior structure and dynamics. Satellite magnetic data demonstrates that planetary dynamos can produce a range of magnetic field morphologies and intensities. Numerical dynamo simulations are working towards determining relationships between planetary properties and the resulting magnetic field characteristics. However, with only a handful of planetary dynamos in our solar system, it is challenging to determine specific dependence of magnetic field properties on planetary characteristics. Extrasolar planets therefore provide a unique opportunity by significantly increasing the number of planets for study as well as offering a much larger range of planetary properties to investigate. Although detection of exoplanet magnetic fields is challenging at present, the increasing sophistication of observational tools available to astronomers implies these extrasolar planetary magnetic fields may eventually be detectable. This presentation will discuss potential observational trends for magnetic field strength and morphology for exoplanets based on numerical simulations and interior structure modeling. We will focus on the influence of planetary age, environment, composition and structure.

  14. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  15. Evolution of twisted magnetic fields

    SciTech Connect

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  16. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  17. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  18. Magnetic Field Apparatus (MFA) Hardware Test

    NASA Technical Reports Server (NTRS)

    Anderson, Ken; Boody, April; Reed, Dave; Wang, Chung; Stuckey, Bob; Cox, Dave

    1999-01-01

    The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.

  19. Vestibular stimulation by magnetic fields.

    PubMed

    Ward, Bryan K; Roberts, Dale C; Della Santina, Charles C; Carey, John P; Zee, David S

    2015-04-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging studies, these reports have become more common. It was recently learned that humans, mice, and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  20. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  1. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  2. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)??G if the energy scale of inflation is few×10(16)??GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

  3. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  4. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  5. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  6. Magnetic Field Generation in Stars

    NASA Astrophysics Data System (ADS)

    Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

    2015-10-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.

  7. Neutron scattering in magnetic fields

    SciTech Connect

    Koehler, W.C.

    1984-01-01

    The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two general areas of application can be distinguished. In one the field acts to change the properties of the scattering sample; in the second the field acts on the neutron itself. Several examples are discussed. Precautions necessary for high precision polarized beam measurements are reviewed. 33 references.

  8. Reconnection of stressed magnetic fields

    NASA Technical Reports Server (NTRS)

    Hassam, A. B.

    1992-01-01

    It is shown that magnetized plasma configurations under magnetic stress relax irreversibly to the state of minimum stress at a rate that is essentially Alfvenic provided a magnetic null is present. The relaxation is effected by the reconnection at the field null and proceeds at a rate proportional to the absolute value of ln(eta) exp-1, where eta is the resistivity. An analytic calculation in the linear regime is presented.

  9. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  10. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2013-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  11. Black Holes and Magnetic Fields

    E-print Network

    Filip Hejda; Ji?í Bi?ák

    2015-10-01

    We briefly summarise the basic properties of spacetimes representing rotating, charged black holes in strong axisymmetric magnetic fields. We concentrate on extremal cases, for which the horizon surface gravity vanishes. We investigate their properties by finding simpler spacetimes that exhibit their geometries near degenerate horizons. Employing the simpler geometries obtained by near-horizon limiting description we analyse the Meissner effect of magnetic field expulsion from extremal black holes.

  12. Magnetic fields on the Sun

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1981-01-01

    Synoptic observations of solar magnetic fields are discussed. Seen in long-term averages, the magnetic fields of the Sun show distinctive behavior. The active-region latitudes are characterized by magnetic fields of preceding polarity. The flow of following polarity fields to make up the polar fields is episodic, not continuous. This field motion is a directed poleward flow and is not due to diffusion. The total magnetic flux on the solar surface, which is related linearly to the calcium emission in integrated sunlight, varies from activity minimum to maximum by a factor of 2 or 3. Nearly all this flux is seen at active-region latitudes-only about 1% is at the poles. The total flux of the Sun disappears from the surface at a very rapid rate and is replaced by new flux. All the field and flux patterns that we see originate in active-region latitudes. The polar magnetic fields of the Sun were observed to change polarity recently. The variations of the full-disk solar flux are shown to lead to the proper rotation rate of the Sun, but the phase of the variations is constant for only a year or two at most.

  13. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  14. Towards real-time Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, B.; Civet, F.

    2015-10-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury.Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine two indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field and extrapolate these measurements to Mars. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field on a daily basis. We present a comparison of these two proxies and demonstrate their complementarity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  15. Magnetic field induced dynamical chaos

    SciTech Connect

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-15

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  16. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  17. Magnetic field effect on hemin

    NASA Astrophysics Data System (ADS)

    Bartoszek, Mariola; Balanda, Maria; Skrzypek, Danuta; Drzazga, Zofia

    2001-12-01

    Magnetic behaviour of hemin has been investigated by means of magnetostatic methods, AC-susceptibility measurements and EPR spectroscopy. The measurements were made using polycrystalline and oriented samples of hemin in the temperature range 2.3-292 K and in magnetic fields up to 6 T. In the paramagnetic region, the susceptibility obeys the Curie-Weiss law with positive Curie-Weiss temperature. At low temperature, a rapid increase of the susceptibility is noticed but up to 2 K no long-range correlations are observed. The studies show that the iron ion in hemin exists in two spin states ( S= {5}/{2} and {1}/{2}). The applied magnetic field increases the occupation of the low-spin state. Hemin shows high-field-induced magnetic anisotropy which, similar to the susceptibility, increases with decreasing temperature.

  18. Master Thesis Virtual environments for a Magnetic

    E-print Network

    Master Thesis Virtual environments for a Magnetic Levitation Haptic Device Martin Oberhuber Prof my supervisor Prof. Ralph L. Hollis who gave me the opportunity to contribute to the Magnetic Levitation Haptic project. I want to thank my tutor at ETH Zurich, Prof. Bradley J. Nelson for setting up

  19. UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS

    SciTech Connect

    Broderick, Avery E.; Blandford, Roger D.

    2010-08-01

    Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m{sup -2}){sup 1/4}(B/1 G){sup 1/2} MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, {nu}{sub SA}, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of {nu}{sub SA} range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, {nu}{sub SA} ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.

  20. Magnetic fields in quiescent prominences

    NASA Technical Reports Server (NTRS)

    Van Ballegooijen, A. A.; Martens, P. C. H.

    1990-01-01

    The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.

  1. Dissipation function in a magnetic field (Review)

    NASA Astrophysics Data System (ADS)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  2. Magnetic fields of green.

    PubMed

    Branton, Scott; Lile, Lawrence

    2011-01-01

    By incorporating even the basic elements of a more environmentally friendly, "green"construction and design in an MRI setting can create a safer, more pleasant space for the patients and staff, better images, and operational cost savings. Using building systems that have reduced amounts of steel can decrease construction time, increase thermal insulation, and reduce the weight of the structure meaning less energy required to transport and install. HVAC systems and lighting design can also play a major role in creating a "green"MRI suite. LEED certification places a focus on quality of the built environment, life cycle cost, and a productive indoor environment, as well as impact on the exterior environment. An LEED certified building considers costs and benefits for the lifetime of the building. PMID:22043731

  3. The magnetic field of Uranus

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.

    1987-01-01

    Aspherical harmonic model of the planetary magnetic field of Uranus is obtained from the Voyager 2 encounter observations using generalized inverse techniques which allow partial solutions to complex (underdetermined) problems. The Goddard Space Flight Center 'Q3' model is characterized by a large dipole tilt (58.6 deg) relative to the rotation axis, a dipole moment of 0.228 G R(Uranus radii cubed) and an unusually large quadrupole moment. Characteristics of this complex model magnetic field are illustrated using contour maps of the field on the planet's surface and discussed in the context of possible dynamo generation in the relatively poorly conducting 'ice' mantle.

  4. Magnetic field fluctuations during substorms

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1971-01-01

    Before a magnetospheric substorm and during its early phases the magnetic field magnitude in the geomagnetic tail increases and field lines in the nighttime hemisphere assume a more tail-like configuration. Before the substorm onset a minimum amount of magnetic flux is observed to cross the neutral sheet which means that the neutral sheet currents attain their most earthward locations and their greatest current densities. This configuration apparently results from an increased transport of magnetic flux to the tail caused by a southward interplanetary magnetic field. The field begins relaxing toward a more dipolar configuration at the time of a substorm onset with the recovery probably occurring first between 6 and 10 R sub E. This recovery must be associated with magnetospheric convection which restores magnetic flux to the dayside hemisphere. Field aligned currents appear to be required to connect magnetospheric currents to the auroral electrojets, implying that a net current flows in a limited range of longitudes. Space measurements supporting current systems are limited. More evidence exists for the occurrence of double current sheets which do not involve net current at a given longitude.

  5. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  6. Laboratory Measurements of Astrophysical Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Murphy, C. D.; Miniati, F.; Edwards, M.; Mithen, J.; Bell, A. R.; Constantin, C.; Everson, E.; Schaeffer, D.; Niemann, C.; Ravasio, A.; Brambrink, E.; Benuzzi-Mounaix, A.; Koenig, M.; Gregory, C.; Woolsey, N.; Park, H.-S.; Remington, B.; Ryutov, D.; Bingham, R.; Gargate, L.; Spitkovsky, A.; Gregori, G.

    2010-11-01

    It has been proposed that high Mach number collisionless shocks propagating in an initially unmagnetized plasma play a major role in the magnetization of large scale structures in the Universe. A detailed study of the experimental configuration necessary to scale such environments down to laboratory dimensions will be presented. We will show initial results from preliminary experiments conducted at the Phoenix laser (UCLA) and the LULI laser (Ecole Polytechnique) where collisionless shocks are generated by the expansion of exploding foils driven by energetic laser beams. The time evolution of the magnetic field is probed with induction coils placed at 10 cm from the laser focus. We will discuss various mechanisms of magnetic field generation and compare them with the experimental results.

  7. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.

  8. Characteristics and variability of Titan's magnetic environment.

    PubMed

    Bertucci, César L

    2009-02-28

    The structure and variability of Saturn's magnetic field in the vicinity of Titan's orbit is studied. In the dawn magnetosphere, the magnetic field presents a significant radial component directed towards Saturn, suggesting that Titan is usually located below the planet's warped and dynamic magnetodisc. Also, a non-negligible component along the co-rotation direction suggests that Saturn's magnetic field lines close to the magnetodisc are being swept back from their respective magnetic meridians. In the noon sector, Titan seems to be closer to the magnetodisc central current sheet, as the field lines in this region seem to be more dipolar. The distance between the central current sheet and Titan depends mainly on the solar wind pressure. Also, delta|B|/|B| approximately 0.5 amplitude waveforms at periods close to Saturn's kilometric radiation period are present in the background magnetic field. This modulation in the field is ubiquitous in Saturn's magnetosphere and associated with the presence of a rotating asymmetry in the planet's magnetic field. PMID:19073462

  9. Magnetic field survey at PG&E photovoltaic sites

    SciTech Connect

    Chang, G.J.; Jennings, C.

    1994-08-01

    Public awareness has aroused concerns over the possible effects of magnetic fields on human health. While research continues to determine if magnetic fields do, in fact, affect human health, concerned individuals are requesting data on magnetic field sources in their environments to base personal decisions about limiting their exposure to these sources. Timely acceptance and implementation of photovoltaics (PV), particularly for distributed applications such as PV rooftops, windows, and vehicles, may be hampered by the lack of PV magnetic field data. To address this situation, magnetic flux density was measured around equipment at two PVUSA (Photovoltaics for Utility Scale Applications) project sites in Kerman and Davis, California. This report documents the data and compares the PV magnetic fields with published data on more prevalent magnetic field sources. Although not comprehensive, electric and magnetic field (EMF) data taken at PVUSA indicate that 60-Hz magnetic fields (the EMF type of greatest public concern) are significantly less for PV arrays than for household applications. Therefore, given the present EMF research knowledge, PV array EMF may not merit considerable concern. The PV system components exhibiting significant AC magnetic fields are the transformers and power conditioning units (PCUs). However, the AC magnetic fields associated with these components are localized and are not detected at PV system perimeters. Concern about transformer and PCU EMF would apply to several generation and storage technologies.

  10. Magnetic Field Issues in Magnetic Resonance Imaging.

    NASA Astrophysics Data System (ADS)

    Petropoulos, Labros Spiridon

    Advances in Magnetic Resonance Imaging depend on the capability of the available hardware. Specifically, for the main magnet configuration, using derivative constraints, we can create a static magnetic field with reduced levels of inhomogeneity over a prescribed imaging volume. In the gradient coil, the entire design for the axial elliptical coil, and the mathematical foundation for the transverse elliptical coil have been presented. Also, the design of a self-shielded cylindrical gradient coil with a restricted length has been presented. In order to generate gradient coils adequate for head imaging without including the human shoulders in the design, asymmetric cylindrical coils in which the gradient center is shifted axially towards the end of a finite cylinder have been introduced and theoretical as well as experimental results have been presented. In order to eliminate eddy current effects in the design of the non-shielded asymmetric gradient coils, the self-shielded asymmetric cylindrical gradient coil geometry has been introduced. Continuing the development of novel geometries for the gradient coils, the complete set of self-shielded cylindrical gradient coils, which are designed such that the x component of the magnetic field varies linearly along the three traditional gradient axes, has been presented. In order to understand the behavior of the rf field inside a dielectric object, a mathematical model is briefly presented. Although specific methods can provide an indication of the rf behavior inside a loosely dielectric object, finite element methodology is the ultimate approach for modeling the human torso and generating an accurate picture for the shape of the rf field inside this dielectric object. For this purpose we have developed a 3D finite element model, using the Coulomb gauge condition as a constraint. Agreement with the heterogeneous multilayer planar model has been established, while agreement with theoretical results from the spherical model and experimental results from the cylindrical model at 170 M H z is very good and provides an encouraging sign for using this finite element approach for modeling the rf inside the human body. (Abstract shortened by UMI.).

  11. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  12. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet

    NASA Astrophysics Data System (ADS)

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  13. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our Newtonian results are excellent approximations for slowly spinning black holes. We proceed to address the issue of the spin dependence of the Blandford & Znajek power. The result we choose to highlight is our finding that given the validity of our assumption for the dynamical behavior of the so-called plunge region in black hole accretors, rotating black holes produce maximum Poynting flux via the Blandford & Znajek process for a black hole spin parameter of about a [approximate] 0.8. This is contrary to the conventional claim that the maximum electromagnetic flux is achieved for highest black hole spin.

  14. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  15. Supplementary Notes: 1. Simulated magnetic field pattern

    E-print Network

    Cai, Long

    magnetic field B0 and the MNP- labeled cell's magnetization vector: || = = ! "# $ !% & '. (3 here, under a 400 G magnetizing field B0) uniformly distributed on a 15-µm diameter spherical cell with the applied bias magnetic field B0 to create a characteristic 2-lobed shape common to all labeled cells

  16. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  17. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  18. Heliospheric Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Popescu, Adrian Sabin

    2007-09-01

    From the Maxwell equations in the local Minkowski spacetime chart (derived from the DEUS topology) we obtain the relations to be particularized for a solar type star and a massive star, and later to be used for a 3D representation of the electric and magnetic field topology (in heliosphere or in a stellar atmosphere) and of its evolution with the cosmological time.

  19. Plasma-satellite interaction driven magnetic field perturbations

    SciTech Connect

    Saeed-ur-Rehman; Marchand, Richard

    2014-09-15

    We report the first fully kinetic quantitative estimate of magnetic field perturbations caused by the interaction of a spacecraft with space environment. Such perturbations could affect measurements of geophysical magnetic fields made with very sensitive magnetometers on-board satellites. Our approach is illustrated with a calculation of perturbed magnetic fields near the recently launched Swarm satellites. In this case, magnetic field perturbations do not exceed 20 pT, and they are below the sensitivity threshold of the on-board magnetometers. Anticipating future missions in which satellites and instruments would be subject to more intense solar UV radiation, however, it appears that magnetic field perturbations associated with satellite interaction with space environment, might approach or exceed instruments' sensitivity thresholds.

  20. The mechanisms of the effects of magnetic fields on cells

    NASA Astrophysics Data System (ADS)

    Kondrachuk, A.

    The evolution of organisms in conditions of the Earth magnetism results in close dependence of their functioning on the properties of the Earth magnetic field. The magnetic conditions in space flight differ from those on the Earth (e.g. much smaller values of magnetic filed) that effect various processes in living organisms. Meanwhile the mechanisms of interaction of magnetic fields with cell structures are poorly understood and systemized. The goal of the present work is to analyze and estimate the main established mechanisms of "magnetic fields - cell" interaction. Due to variety and complexity of the effects the analysis is mainly restricted to biological effects of the static magnetic field at a cellular level. 1) Magnetic induction. Static magnetic fields exert forces on moving ions in solution (e.g., electrolytes), giving rise to induced electric fields and currents. This effect may be especially important when the currents changed due to the magnetic field application are participating in some receptor functions of cells (e.g. plant cells). 2) Magneto-mechanical effect of reorientation. Uniform static magnetic fields produce torques on certain molecules with anisotropic magnetic properties, which results in their reorientation and spatial ordering. Since the structures of biological cells are magnetically and mechanically inhomogeneous, the application of a homogeneous magnetic field may cause redistribution of stresses within cells, deformation of intracellular structures, change of membrane permeability, etc. 3) Ponderomotive effects. Spatially non-uniform magnetic field exerts ponderomotive force on magnetically non-uniform cell structures. This force is proportional to the gradient of the square of magnetic field and the difference of magnetic susceptibilities of the component of the cell and its environment. 4) Biomagnetic effects. Magnetic fields can exert torques and translational forces on ferromagnetic structures, such as magnetite and ferritins presented in the cells. 5) Electronic interactions. Static magnetic fields can alter energy levels and spin orientation of electrons. Similar interactions can also occur with nuclear spins, but these are very weak compared to electron interactions. 6) Free radicals. Magnetic fields alter the spin states of the radicals, which, in turn, changes the relative probabilities of recombination and other interactions, possibly with biological consequences. 7) Non-linear effects. A number of non-linear mechanisms of magnetic effects on cells were recently proposed to explain how the cell could extract a weak magnetic signal from noise (e.g. stochastic non-linear resonance, self-tuned Hopf bifurcations). These new models need further experimental testing.

  1. Separation of magnetic field lines

    SciTech Connect

    Boozer, Allen H.

    2012-11-15

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

  2. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  3. The magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.

  4. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  5. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  6. Bacterial Growth in Weak Magnetic Field

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    2015-03-01

    We study the growth of bacteria in a weak magnetic field. Computational analysis of experimental data shows that the growth rate of bacteria is affected by the magnetic field. The effect of magnetic field depends on the strength and type of magnetic field. It also depends on the type of bacteria. We mainly study gram positive and gram negative bacteria of rod type as well as spherical bacteria. Preliminary results show that the weak magnetic field enhances the growth of rod shape gram negative bacteria. Gram positive bacteria can be even killed in the inhomogeneous magnetic field.

  7. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    PubMed

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. PMID:25953822

  8. Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field

    NASA Astrophysics Data System (ADS)

    Johnson, Catherine L.; Phillips, Roger J.; Purucker, Michael E.; Anderson, Brian J.; Byrne, Paul K.; Denevi, Brett W.; Feinberg, Joshua M.; Hauck, Steven A.; Head, James W.; Korth, Haje; James, Peter B.; Mazarico, Erwan; Neumann, Gregory A.; Philpott, Lydia C.; Siegler, Matthew A.; Tsyganenko, Nikolai A.; Solomon, Sean C.

    2015-05-01

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury’s crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury’s history. Ancient field strengths that range from those similar to Mercury’s present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury’s crust inferred from MESSENGER elemental composition data.

  9. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  10. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  11. Explaining Mercury's peculiar magnetic field

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.

    2014-05-01

    MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken and we explore two scenarios. Increasing the heat flux through the northern hemisphere of the core-mantle boundary is an obvious choice but is not supported by current models for Mercury's mantle. We find that a combination of internal rather than bottom driving and an increased heat flux through the equatorial region of the core-mantle boundary also promotes the required symmetry breaking and results in very Mercury like fields. The reason is that the imposed heat flux pattern, though being equatorially symmetric, lowers the critical Rayleigh number for the onset of equatorially anti-symmetric convection modes. In both scenarios, a stably stratified layer or a feedback coupling to the magnetospheric field is required for lowering the field strength to Mercury-like values.

  12. MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2

    E-print Network

    Fornberg, Bengt

    MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value to the formation of an azimuthal rope of twisted magnetic field embedded within the global field, and to the energy

  13. Field errors in superconducting magnets

    SciTech Connect

    Barton, M.Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  14. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  15. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  16. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  17. The generation and stability of magnetic fields in CP stars

    E-print Network

    R. Arlt

    2008-01-29

    A variety of magnetohydrodynamic mechanisms that may play a role in magnetic, chemically peculiar (mCP) stars is reviewed. These involve dynamo mechanisms in laminar flows as well as turbulent environments, and magnetic instabilities of poloidal and toroidal fields as well as combinations of the two. While the proto-stellar phase makes the survival of primordial fields difficult, the variety of magnetic field configurations on mCP stars may be an indication for that they are instability remnants, but there is no process which is clearly superior in explaining the strong fields.

  18. Minireview: Biological effects of magnetic fields

    SciTech Connect

    Villa, M.; Mustarelli, P. ); Caprotti, M. )

    1991-01-01

    The literature about the biological effects of magnetic fields is reviewed. The authors begin by discussing the weak and/or time variable fields, responsible for subtle changes in the circadian rhythms of superior animals, which are believed to be induced by same sort of resonant mechanism. The safety issues related with the strong magnetic fields and gradients generated by clinical NMR magnets are then considered. The last portion summarizes the debate about the biological effects of strong and uniform magnetic fields.

  19. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  20. Magnetic Fields at Largest Universal Strengths: Overview

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Balogh, A.; Falanga, M.; Treumann, R. A.

    2015-10-01

    A brief review is given about the role strong magnetic fields play in the universe. We list the main observational and theoretical achievements treated in the following chapters including a number of open questions which future research is going to attack. Strong fields in the universe exceed any large scale fields by several orders of magnitude, at first glance suggesting that their generation mechanisms would be different. However, it is believed that gravitational collapse and magnetic flux conservation is responsible for the amplification of fields generated in the progenitors to the observed strengths. In this sense the extremely strong fields are mainly fossil, and their variety confirms the different masses and stages where the collapse comes to rest, at the lightest in white dwarfs and at the strongest in magnetars, which are a particular class of neutron stars with strongly inhomogeneous particularly structured crust. Various effects related to the detection of such fields, radiation generation and consequences for the environment are pointed out and referred to the relevant chapters in this volume.

  1. Magnetic monopole and the nature of the static magnetic field

    E-print Network

    Xiuqing Huang

    2008-12-10

    We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

  2. Magnetic field sources and their threat to magnetic media

    NASA Technical Reports Server (NTRS)

    Jewell, Steve

    1993-01-01

    Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

  3. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 ?T; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 ?T), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  4. The influence of crustal magnetic sources on the topology of the Martian magnetic environment

    NASA Astrophysics Data System (ADS)

    Brain, David Andrew

    2002-09-01

    In this thesis I use magnetometer data and magnetic field models to explore the morphology of magnetic fields close to Mars, with emphasis on the manner and extent to which crustal magnetic sources affect the magnetic field configuration. I analyze Mars Global Surveyor (MGS) Magnetometer (MAG) data to determine the relative importance of the solar wind and of crustal magnetic sources in the observations. Crustal sources locally modify the solar wind interaction, adding variability to the Martian magnetic environment that depends on planetary rotation. I identify trends in the vector magnetic field with respect to altitude, solar zenith angle, and geographic location. The influence of the strongest crustal source extends to 1300 1400 km. I then use MAG data to evaluate models for the magnetic field associated with Mars' crust and for the solar wind interaction with the Martian ionosphere. A linear superposition of a spherical harmonic crustal model and a gasdynamic solar wind model improves the fit to MAG data over that from either model individually. I use simple pressure balance to calculate the shape and size of the Martian solar wind obstacle under a variety of different conditions. The obstacle is irregularly shaped (“lumpy”) and varies over the course of a Martian rotation, over a Martian year, and with changes in the upstream pressure. The obstacle above strong crustal sources can exceed 1000 km and is always higher than the altitude of the MGS spacecraft in its mapping orbit. I use a superposition model to explore the magnetic field topology at Mars under a variety of conditions. The model field topology is sensitive to changes in the interplanetary magnetic field (IMF) strength and orientation, as well as to Mars' orientation with respect to the solar wind flow. Regions of open magnetic field are located above strong crustal sources in the models, where the magnetic field is radially oriented with respect to the Martian surface. An examination of MAG and electron reflectometer (ER) data above one of these regions reveals a sharp change in the electron energy spectrum coinciding with perturbations in the orientation of the magnetic field.

  5. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  6. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  7. Magnetic field generation by the stationary accretion shock instability

    E-print Network

    E. Endeve; C. Y. Cardall; R. D. Budiardja; A. Mezzacappa

    2008-06-18

    By adding a weak magnetic field to a spherically symmetric fluid configuration that caricatures a stalled shock in the post-bounce supernova environment, we explore the capacity of the stationary accretion shock instability (SASI) to generate magnetic fields. The SASI develops upon perturbation of the initial condition, and the ensuing flow generates--{\\em in the absence of rotation}--dynamically significant magnetic fields ($\\sim 10^{15}$ G) on a time scale that is relevant for the explosion mechanism of core-collapse supernovae. We describe our model, present some recent results, and discuss their potential relevance for supernova models.

  8. Heat pipes for use in a magnetic field

    DOEpatents

    Werner, Richard W. (San Ramon, CA); Hoffman, Myron A. (Davis, CA)

    1983-01-01

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area.

  9. Heat pipes for use in a magnetic field

    DOEpatents

    Werner, R.W.; Hoffman, M.A.

    1983-07-19

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

  10. Full 180° Magnetization Reversal with Electric Fields

    PubMed Central

    Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

  11. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  12. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  13. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  14. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  15. Magnetic field effect on charged Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.

    2016-01-01

    We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.

  16. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  17. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1994-01-01

    The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

  18. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  19. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    PubMed Central

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-01-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet ? singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580

  20. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S. (Oak Ridge, TN)

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  1. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  2. On Magnetic Field Generation Mechanisms in Astrophysics

    NASA Astrophysics Data System (ADS)

    Cherny, O. G.

    Magnetic chemically peculiar stars (CP stars) are characterized by a strong magnetic field, peculiar chemical composition and slow rotation. Since the origin and evolution of CP stars may be responsible for such unusual features, understanding the mechanisms of generation of the magnetic field is one of the ways to learn more about the CP star characteristics. At present there are two mechanisms of magnetic field generation considered in astrophysics, a fossil field hypothesis and turbulent dynamo theory. However, there is another mechanism of magnetic field generation. All the elementary particles including the most abundant, i. e. the protons, electrons, neutrons, have their own angular momenta and the corresponding magnetic momenta. Microscopic magnetic fields are determined generally by these magnetic momenta. Provided that microscopic magnetic fields are aligned, large-scale magnetic fields may be generated, which has been proved in the experiments of Barnett, Einstein and de Haas. This phenomenon is best illustrated by the experiments with iron. Analysis performed in the current study showed that all the large bodies of the Solar System have both an iron-nickel core and a magnetic field, which is proportional to the planet's core volume and its rotational velocity. We hypothesize that the reason for this phenomenon is a magnetic interaction of ferromagnetic materials, which occurred during the formation of the Solar System. We show that the magnitude of the magnetic field of the Earth and a change of magnetic field polarity can be explained by the gyromagnetic effect. In the beginning of formation of the Solar System the prospective Sun was the main attractive center. Therefore, there is a possibility that the Sun contains a massive (relative to the Earth) iron-nickel core.

  3. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  4. The Protogalactic Origin for Cosmic Magnetic Fields

    E-print Network

    Russell M. Kulsrud; Renyue Cen; Jeremiah P. Ostriker; Dongsu Ryu

    1996-07-28

    It is demonstrated that strong magnetic fields are produced from a zero initial magnetic field during the pregalactic era, when galaxies are first forming. Their development proceeds in three phases. In the first phase, weak magnetic fields are created by the Biermann battery mechanism, acting in shocked parts of the intergalactic medium where caustics form and intersect. In the second phase, these weak magnetic fields are amplified to strong magnetic fields by the Kolmogoroff turbulence endemic to gravitational structure formation of galaxies. During this second phase, the magnetic fields reach saturation with the turbulent power, but they are coherent only on the scale of the smallest eddy. In the third phase, the magnetic field strength increases to equipartition with the turbulent energy, and the coherence length of the magnetic fields increases to the scale of the largest turbulent eddy, comparable to the scale of the entire galaxy. The resulting magnetic field represents a galactic magnetic field of primordial origin. No further dynamo action is necessary, after the galaxy forms, to explain the origin of magnetic fields. However, the magnetic field may be altered by dynamo action once the galaxy and the galactic disk have formed. It is first shown by direct numerical simulations, that thermoelectric currentsassociated with the Biermann battery, build the field up from zero to $10^{-21}$ G in the regions about to collapse into galaxies, by $z\\sim3$. For weak fields, in the absence of dissipation, the cyclotron frequency ${\\bf \\omega_{cyc}}=e{\\bf B } /m_H c $ and $ {\\bf \\omega}/(1+ \\chi )$, where ${\\bf \\omega = \

  5. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  6. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  7. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  8. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  9. Static uniform magnetic fields and amoebae

    SciTech Connect

    Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.

    1997-03-01

    Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

  10. Superconducting magnets in high radiation environments: Design problems and solutions

    SciTech Connect

    St. Lorant, S.J.; Tillmann, E.

    1989-11-01

    As part of the Stanford Linear Collider Project, three high-field superconducting solenoid magnets are used to rotate the spin direction of a polarized electron beam. The magnets are installed in a high-radiation environment, where they will receive a dose of approximately 10{sup 3} rad per hour, or 10{sup 8} rad over their lifetimes. This level of radiation and the location in which the magnets are installed, some 10 meters below ground in contiguous tunnels, required careful selection of materials for the construction of the solenoids and their ancillary cryogenic equipment, as well as the development of compatible component designs. This paper describes the materials used and the design of the equipment appropriate for the application. Included are summaries of the physical and mechanical properties of the materials and how they behave when irradiated. 16 refs., 7 figs., 1 tab.

  11. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1991-01-01

    The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

  12. Magnetic field effects on plasma ionization balance

    SciTech Connect

    Weisheit, J.C.

    1995-12-31

    Magnetic fields give rise to several phenomena that can significantly affect ionization balance in a plasma. Theoretical models commonly used to determine the charge state distribution (viz., ) of ions in non-magnetized plasmas are reviewed first, for both equilibrium and non-equilibrium situations. Then, after a brief survey of laboratory and cosmic plasmas with strong fields, B > 10{sup 6} Gauss, some of the ways such magnetic fields influence are highlighted. Most key problems have yet to be tackled.

  13. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  14. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  15. Five years of magnetic field management

    SciTech Connect

    Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

    1995-01-01

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors` experiences and shows the results of the specific projects completed in recent years.

  16. Magnetic fields in anisotropic relativistic stars

    E-print Network

    Vladimir Folomeev; Vladimir Dzhunushaliev

    2015-02-28

    Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.

  17. Magnetic Fields in the Milky Way

    NASA Astrophysics Data System (ADS)

    Haverkorn, Marijke

    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.

  18. The geomagnetic environment in which sea turtle eggs incubate affects subsequent magnetic navigation behaviour of hatchlings.

    PubMed

    Fuxjager, Matthew J; Davidoff, Kyla R; Mangiamele, Lisa A; Lohmann, Kenneth J

    2014-09-22

    Loggerhead sea turtle hatchlings (Caretta caretta) use regional magnetic fields as open-ocean navigational markers during trans-oceanic migrations. Little is known, however, about the ontogeny of this behaviour. As a first step towards investigating whether the magnetic environment in which hatchlings develop affects subsequent magnetic orientation behaviour, eggs deposited by nesting female loggerheads were permitted to develop in situ either in the natural ambient magnetic field or in a magnetic field distorted by magnets placed around the nest. In orientation experiments, hatchlings that developed in the normal ambient field oriented approximately south when exposed to a field that exists near the northern coast of Portugal, a direction consistent with their migratory route in the northeastern Atlantic. By contrast, hatchlings that developed in a distorted magnetic field had orientation indistinguishable from random when tested in the same north Portugal field. No differences existed between the two groups in orientation assays involving responses to orbital movements of waves or sea-finding, neither of which involves magnetic field perception. These findings, to our knowledge, demonstrate for the first time that the magnetic environment present during early development can influence the magnetic orientation behaviour of a neonatal migratory animal. PMID:25100699

  19. The geomagnetic environment in which sea turtle eggs incubate affects subsequent magnetic navigation behaviour of hatchlings

    PubMed Central

    Fuxjager, Matthew J.; Davidoff, Kyla R.; Mangiamele, Lisa A.; Lohmann, Kenneth J.

    2014-01-01

    Loggerhead sea turtle hatchlings (Caretta caretta) use regional magnetic fields as open-ocean navigational markers during trans-oceanic migrations. Little is known, however, about the ontogeny of this behaviour. As a first step towards investigating whether the magnetic environment in which hatchlings develop affects subsequent magnetic orientation behaviour, eggs deposited by nesting female loggerheads were permitted to develop in situ either in the natural ambient magnetic field or in a magnetic field distorted by magnets placed around the nest. In orientation experiments, hatchlings that developed in the normal ambient field oriented approximately south when exposed to a field that exists near the northern coast of Portugal, a direction consistent with their migratory route in the northeastern Atlantic. By contrast, hatchlings that developed in a distorted magnetic field had orientation indistinguishable from random when tested in the same north Portugal field. No differences existed between the two groups in orientation assays involving responses to orbital movements of waves or sea-finding, neither of which involves magnetic field perception. These findings, to our knowledge, demonstrate for the first time that the magnetic environment present during early development can influence the magnetic orientation behaviour of a neonatal migratory animal. PMID:25100699

  20. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  1. High-field magnetization of polycrystalline praseodymium

    SciTech Connect

    Leyarovski, E.; Mrachkov, J.; Gilewski, A.; Mydlarz, T.

    1987-06-01

    The field dependence of the induced magnetic moment in polycrystalline Pr is studied in impulse magnetic fields up to 45 T at 4.2 K and in stationary magnetic fields up to 18 T at 20 and 30 K. No anomalies in the magnetization have been observed which might be associated with the metamagnetic phase transition in single crystals at 31.5 T (K. A. McEwen, G. J. Cock, L. W. Roeland, and A. R. Mackinstosh, Phys. Rev. Lett. 30, 287 (1973)), as well as with any changes of the orientation of the magnetic moments characteristic for an antiferromagnetic. The observed magnetization is satisfactorily described using a molecular field Hamiltonian including the crystal electric field potential, exchange interactions, and Zeeman-effect term.

  2. High-field magnetization of polycrystalline praseodymium

    NASA Astrophysics Data System (ADS)

    Leyarovski, E.; Mrachkov, J.; Gilewski, A.; Mydlarz, T.

    1987-06-01

    The field dependence of the induced magnetic moment in polycrystalline Pr is studied in impulse magnetic fields up to 45 T at 4.2 K and in stationary magnetic fields up to 18 T at 20 and 30 K. No anomalies in the magnetization have been observed which might be associated with the metamagnetic phase transition in single crystals at 31.5 T [K. A. McEwen, G. J. Cock, L. W. Roeland, and A. R. Mackinstosh, Phys. Rev. Lett. 30, 287 (1973)], as well as with any changes of the orientation of the magnetic moments characteristic for an antiferromagnetic. The observed magnetization is satisfactorily described using a molecular field Hamiltonian including the crystal electric field potential, exchange interactions, and Zeeman-effect term.

  3. Image-Optimized Coronal Magnetic Field Reconstructions

    NASA Astrophysics Data System (ADS)

    Jones, S. I.; Davila, J. M.; Uritsky, V. M.

    2014-12-01

    The magnetic field dominates many of the most important and puzzling processes in the corona. In the absence of direct measurements, solar physicists have struggled for decades to accurately reconstruct the coronal magnetic field using photospheric magnetograms. Even with today's excellent magnetographs, these reconstructions are plagued by several problems, among them long computation time, and poor agreement with the structures seen in EUV and coronagraph images. However no method exists for systematically improving the agreement between coronal images and magnetic reconstructions. Solar Orbiter and Solar Probe Plus will bring us closer to the sun we have ever been before, but taking full advantage of that opportunity requires accurate coronal magnetic field reconstructions so that we can connect the in situ observations offered by these unique missions to magnetic sources at the surface of the Sun. In this study we propose a method to improve coronal magnetic field reconstructions by optimizing agreement between the reconstructed field and white-light coronagraph images.

  4. The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Nakotte, Heinz

    2001-11-01

    The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

  5. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  6. Graphene Nanoribbon in Sharply Localized Magnetic Fields

    E-print Network

    Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal

    2013-03-20

    We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.

  7. Control of magnetism by electric fields

    NASA Astrophysics Data System (ADS)

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

  8. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  9. Magnetic field evolution of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ?, r ? ?-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B??1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/?)-1. The characteristic time of decreasing of the magnetic field ? is equal to ? ? 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  10. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  11. Energy of magnetic moment of superconducting current in magnetic field

    NASA Astrophysics Data System (ADS)

    Gurtovoi, V. L.; Nikulov, A. V.

    2015-09-01

    The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment.

  12. Magnetic field perturbations in the systems where only poloidal magnetic field is present*

    E-print Network

    magnetic field is present). Examples include FRC, levitated dipoles, and long diffuse pinches. We consider · Small perturbations in the general geometry · Uniform magnetic field imposed on the levitated dipole an infinitesimal perturbation causes a dramatic change of the magnetic topology: without perturbations, each field

  13. The National High Magnetic Field Laboratory

    NASA Astrophysics Data System (ADS)

    Jaime, M.; Lacerda, A.; Takano, Y.; Boebinger, G. S.

    2006-11-01

    The National High Magnetic Field Laboratory, established in 1990 with support from the National Science Foundation, the State of Florida, and the US Department of Energy, is a facility open to external users around the world. The experimental capabilities are distributed in three campuses. In Tallahassee, Florida, continuous magnetic fields are produced by means of superconducting and resistive magnets reaching fields of up to 33T (resistive), and 45T (hybrid). EMR, ICR, and a 900MHz wide bore NMR magnet are also available. The facility in Gainesville, Florida, is devoted to generating extremely low temperatures in the presence of external magnetic fields (15T, down to 0.4mK), and large MRI imaging capabilities. In Los Alamos, New Mexico, a 9 kV-capable capacitor bank and a number of different liquid Nitrogen-cooled resistive magnets produce repetitive pulses up to 75 T and now a single-shot pulsed up to 300T.

  14. Imaging of magnetic colloids under the influence of magnetic field by cryogenic transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jinsong; Aslam, M.; Dravid, Vinayak P.

    2008-08-01

    The application of superparamagnetic nanoparticles for in vivo magnetic resonance imaging (MRI) under external ac magnetic field has attracted considerable research efforts in recent years. However, it is unclear how superparamagnetic nanostructures arrange themselves in fluidic environment under external magnetic field. Here, we report direct visualization of the effect of applied magnetic field to the ferrofluids (about 6 nm superparamagnetic magnetite (Fe3O4) nanoparticle "colloidal" suspension) using the cryogenic transmission electron microscopy (cryo-TEM). While long dipole chains (up to millimeter range) of the magnetite along the magnetic lines are found in samples dried inside the magnetic field, only short dipole chains (within tens of nanometer scale) with random orientations are observed in the wet sample observed by cryo-TEM. In the wet sample, aggregations of medium-length dipole chains (up to hundreds of nanometer) can be observed at the areas where the nanoparticles are "solidified" when phase separation occurs. In situ formation of flux-closure rings is observed at the edge where vitreous ice sublimes due to high-energy electron radiation that leaves magnetite nanoparticles isolated in the vacuum. Such observations may help elucidate the nature of magnetic field-induced assembly in fluidic environment as in the physiological aqueous conditions in MRI and related applications.

  15. Magnetic fields in the early Universe

    NASA Astrophysics Data System (ADS)

    Grasso, D.; Rubinstein, H. R.

    2001-07-01

    This review concerns the origin and the possible effects of magnetic fields in the early Universe. We start by providing the reader with a short overview of the current state of the art of observations of cosmic magnetic fields. We then illustrate the arguments in favor of a primordial origin of magnetic fields in the galaxies and in the clusters of galaxies. We argue that the most promising way to test this hypothesis is to look for possible imprints of magnetic fields on the temperature and polarization anisotropies of the cosmic microwave background radiation (CMBR). With this purpose in mind, we provide a review of the most relevant effects of magnetic fields on the CMBR. A long chapter of this review is dedicated to particle-physics-inspired models which predict the generation of magnetic fields during the early Universe evolution. Although it is still unclear if any of these models can really explain the origin of galactic and intergalactic magnetic fields, we show that interesting effects may arise anyhow. Among these effects, we discuss the consequences of strong magnetic fields on the big-bang nucleosynthesis, on the masses and couplings of the matter constituents, on the electroweak phase transition, and on the baryon and lepton number violating sphaleron processes. Several intriguing common aspects, and possible interplay, of magnetogenesis and baryogenesis are also discussed.

  16. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  17. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  18. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O. (Mountain View, CA)

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  19. Structure of magnetic fields in intracluster cavities

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, Konstantinos Nektarios; Braithwaite, Jonathan; Lyutikov, Maxim

    2010-12-01

    Observations of clusters of galaxies show ubiquitous presence of X-ray cavities, presumably blown by the active galactic nuclei (AGN) jets. We consider magnetic field structures of these cavities. Stability requires that they contain both toroidal and poloidal magnetic fields, while realistic configurations should have vanishing magnetic field on the boundary. For axisymmetric configurations embedded in unmagnetized plasma, the continuity of poloidal and toroidal magnetic field components on the surface of the bubble then requires solving the elliptical Grad-Shafranov equation with both Dirichlet and Neumann boundary conditions. This leads to a double eigenvalue problem, relating the pressure gradients and the toroidal magnetic field to the radius of the bubble. We have found fully analytical stable solutions. This result is confirmed by numerical simulation. We present synthetic X-ray images and synchrotron emission profiles and we evaluate the rotation measure for radiation transversing the bubble.

  20. Magnetic fields in Neutron Stars

    E-print Network

    Viganò, Daniele; Miralles, Juan A; Rea, Nanda

    2015-01-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  1. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  2. Diffusion in Electronegative Discharges with Magnetic Fields.

    NASA Astrophysics Data System (ADS)

    Bell, David Eugene

    Electronegative plasmas are important in a variety of electric discharge applications, such as plasma reactors, negative ion sources, and even electropositive discharges when contaminated with an electronegative impurity. The need for an understanding of the processes and phenomena associated with these electronegative discharges has spurred the development of numerical simulations and models. While many of the devices incorporate various configurations of external magnetic fields, specific attention to the influence of the magnetic field on the discharge operating point, structure, and stability is lacking. To address this deficiency, a collisional model for diffusion in three -component plasmas with an applied magnetic field is developed; it is an extension of Schottky theory allowing for negative ions and a magnetic field. This study analyzes the effect of magnetic fields on diffusion in three-component plasmas; provides an analytic solution for the collisional model in a magnetic field; evaluates the validity of effective diffusion coefficients through an analysis of the afterglow; and provides a regime of validity for the model in terms of magnetic field strength by analytically establishing the critical magnetic field for the onset of "anomalous" diffusion. When a discharge operating at constant current is subjected to an increase in axial magnetic field, the ionization frequency decreases more rapidly in an electronegative discharge than an electropositive discharge, due to negative ions reducing the ambipolar electric field. The model is compared qualitatively to a hydrogen discharge and quantitatively to a sulfur hexafluoride discharge with good agreement. The time-dependent model shows that, for a hydrogen discharge, one can obtain an enhancement of the negative ion density in the afterglow. Electronegative discharges are more unstable with respect to the helical mode instability than electropositive discharges, due to the larger axial electric field and weaker ambipolar electric field in an electronegative discharge.

  3. Pulsed field magnetization characteristics of a holed superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Yokoyama, K.; Igarashi, R.; Togasaki, R.; Oka, T.

    2015-11-01

    We have proposed a holed superconducting bulk magnet to trap the magnetic field efficiently in the high-performance material excited by pulsed field magnetization. Previously, a single pulsed field was applied with varying amplitudes of the magnetic fields and temperatures to a GdBCO bulk material with four 2-mm-diameter holes, and the time responses of flux density on the bulk surface and trapped field distributions were measured. The experimental results suggested that the number of holes was too high because a large distortion appeared in the trapped field distributions. In this paper, we processed only a single hole with a different hole size and investigated the magnetization characteristics. After estimating the trapped field performance by applying a single pulsed field with varying its amplitude and temperature in the original material, a 1-mm-diameter hole was drilled; then the hole was extended to 2 mm in diameter, and the same experiments were carried out in each sample. A total magnetic flux of both 1-mm-diameter hole and 2-mm-diameter hole samples was about 10 percent higher than that of a four-hole sample at a low temperature. On the other hand, the value of a 2-mm-diameter hole sample was the same as that of a four-hole sample at a high temperature. The experimental results suggested that about 1 mm in diameter was proper for the hole size.

  4. The dynamic role of magnetic fields in galaxy evolution

    NASA Astrophysics Data System (ADS)

    McBride, James Dennis Gold

    Magnetic fields are present in a variety of astrophysical environments, where they can affect the motions and structure of matter. Observations of magnetic fields in the Milky Way show that magnetic fields are an important force acting on gas in the interstellar medium. Observing magnetic fields outside of the Milky Way is challenging, and the most reliable observations of extragalactic magnetic fields are in galaxies similar to the Milky Way. This dissertation focuses on results from observations of magnetic fields in galaxies at a very different stage of their evolution than the Milky Way. There are two main types of galaxies described here: starburst galaxies and early-type galaxies. Starburst galaxies are galaxies that are very rapidly forming stars as a result of a merger, and represent a short lived, but dramatic, phase during galaxy evolution. Early-type galaxies have limited star formation, and typically have little remaining gas. The three main approaches I use to study extragalactic magnetic fields are: (i) directly measuring magnetic fields via Zeeman splitting, targeting starburst galaxies that host such strong OH maser lines that they are called OH megamasers (OHMs); (ii) exploring the excitation of OH in both starburst galaxies and early-type galaxies, in order to understand how and where OHMs are produced; and (iii) assessing the quality of an alternative method of measuring magnetic fields in galaxies based on measuring synchrotron fluxes, looking in starburst galaxies and one early-type galaxy. Using both single dish and interferometric observations of Zeeman splitting in OHMs, I find that magnetic fields are dynamically important within starburst galaxies, both on scales relevant to star formation (roughly a parsec), and on larger scales with the interstellar medium of starburst galaxies. I discuss observations of OH lines in starburst galaxies and in early-type galaxies, and conclude that they support models in which OHMs are excited radiatively through far-infrared emission. I present evidence that estimates of magnetic fields from applying the minimum energy argument to observations of synchrotron fluxes are wrong in two very different environments: the interstellar medium of starburst galaxies and a radio jet in an early-type galaxy.

  5. The magnetic field of ? Orionis A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J.-C.; Rivinius, Th.

    2015-10-01

    Context. ? Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. Aims: We aim at verifying the presence of a magnetic field in ? Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field. Methods: Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the least-squares deconvolution technique to extract the magnetic information. Results: We confirm that ? Ori A is magnetic. We find that the supergiant component ? Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~140 G. Because the magnetic field is weak and the stellar wind is strong, ? Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion ? Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ~300 G. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.Appendix A is available in electronic form at http://www.aanda.org

  6. Perpendicular magnetic fields in cantilever beam magnetometry

    NASA Astrophysics Data System (ADS)

    Koch, R.; Das, A. K.; Yamaguchi, H.; Pampuch, C.; Ney, A.

    2004-09-01

    Cantilever beam magnetometry is a common technique to determine the magnetoelastic (ME) coupling constants of thin films by measuring the stress that develops when the film magnetization is changed. In cantilever beam experiments performed so far the film magnetization was mainly rotated within the film plane. Here we discuss the measurement of the ME coupling constants, when the magnetizing field is chosen so that it rotates the film magnetization out of the film plane. A major stress contribution, which arises additionally to the ME stress, originates in the torque that magnetic dipoles experience in a magnetic field. In order to separate torque effects from ME contributions in cantilever beam experiments a general method is proposed. With this method the ME coupling constants can be quantitatively determined and furthermore the film magnetization as well as its perpendicular anisotropy constant are obtained quantitatively.

  7. Magnetic-field-controlled reconfigurable semiconductor logic.

    PubMed

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

    2013-02-01

    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices. PMID:23364687

  8. Field Mapping System for Solenoid Magnet

    NASA Astrophysics Data System (ADS)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  9. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

  10. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    DOEpatents

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  11. External-field-free magnetic biosensor

    SciTech Connect

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6?dB from one iron oxide magnetic nanoparticle with 8?nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200?nm?×?200?nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3?dB is achieved for 30??l magnetic nanoparticles suspension (30?nm iron oxide particles, 1?mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  12. Decay of Resonaces in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2015-08-01

    We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of K±*, K0* vector mesons as well as ?* (1520) and ?0* baryonic states is considered in static fields 1013-1015 T. In particular, n = 0 Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from ?0(770) mesons may occur if strong decay channel ?0 ? ?+?- is significantly suppressed. CP - violating ?+?- decays of pseudoscalar ?c and ?(547) mesons in the magnetic field are discussed, and superpositions of quarkonium states ?c,b and ?c,b(nP) with ?(nS), ?(nS) mesons in the external field are considered.

  13. Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles.

    PubMed

    Heinrich, D; Goñi, A R; Osán, T M; Cerioni, L M C; Smessaert, A; Klapp, S H L; Faraudo, J; Pusiol, D J; Thomsen, C

    2015-09-23

    We have used low-field (1)H nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time ?inh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time ?inh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with the chain axes aligned along the magnetic field direction. PMID:26291429

  14. An active antenna for ELF magnetic fields

    NASA Technical Reports Server (NTRS)

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  15. Skyrmion in a uniform magnetic field

    E-print Network

    He, Bing-Ran

    2015-01-01

    We investigate the skyrmion properties in a uniform magnetic field. Based on the symmetry of the system, we propose an axially symmetric ansatz of a soliton for studying the skyrmion properties. We show the baryon number is always conserved even in a nonzero magnetic background. We find that with increasing magnetic field strength, the static mass of the skyrmion first decreases and then increases as the dominant role shifts from the linear term of the magnetic field to the quadratic term of the magnetic field. On the other hand, the soliton size first increases and then decreases as the magnetic field strength increases. We find that the distribution of the baryon number density and energy density is anisotropic in a uniform magnetic background. Furthermore, the x- and z-axis projection of the radius of the baryon number density is strongly dependent on the increase of the magnetic field, while the energy density does not have this dependency. Finally, in the core part of the magnetar, the equation of state ...

  16. Surface magnetic fields across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Landstreet, John D.

    2015-10-01

    The past 20 years have seen remarkable advances in spectropolarimetric instrumentation that have allowed us, for the first time, to identify some magnetic stars in most major stages of stellar evolution. We are beginning to see the broad outline of how such fields change during stellar evolution, to confront theoretical hypotheses and models of magnetic field structure and evolution with detailed data, and to understand more of the ways in which the presence of a field in turn affects stellar structure and evolution.

  17. Tuning permanent magnets with adjustable field clamps

    SciTech Connect

    Schermer, R.I.

    1987-01-01

    The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius.

  18. Magnetic fields near Mars - First results

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Schwingenschuh, K.; Moehlmann, D.; Oraevskii, V. N.; Eroshenko, E.; Slavin, J.

    1989-01-01

    The magnetic fields of Mars have been measured from Phobos 2 with high temporal resolution in the tail and down to an 850-km altitude. During four successive highly elliptical orbits, the position of the bow shock as well as that of a transition layer, the 'planetopause', were identified. Subsequent circular orbits at 6000-km altitude provided the first high-resolution data in the planetary tail and indicate that the interplanetary magnetic field mainly controls the magnetic tail. Magnetic turbulence was also detected when the spacecraft crossed the orbit of Phobos, indicating the possible existence of a torus near the orbit of this moon.

  19. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  20. Qualifying the Sunpower M87N Cryocooler for Operation in the AMS-02 Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Banks, Stuart; Shirey, Kim; Breon, Susan

    2003-01-01

    The Alpha Magnetic Spectrometer-02 (AMs-02) experiment uses a superfluid helium dewar to cool a large superconducting magnet. The outer vapor-cooled shields of the dewar are to be held at 80 K by four Sunpower M87N cryocoolers. These cryocoolers have magnetic components that might interact with the external applied field generated by the superconducting magnet, thereby degrading the cryocoolers' performance. Engineering models of the Sunpower M87 have been qualified for operation in a magnetic environment similar to the AMs-02 magnetic environment. Although there was no noticeable performance degradation at field levels that were comparable to AMs-02 field levels, there appears to be a small performance degradation at higher field levels. It was theorized that there were three possible issues related to these performance losses at high magnetic fields: i) induced piston rubbing on the cylinder wall due to forces and torques on the linear motor due to the applied magnetic fields; ii) Magnetic hysteretic and/or eddy current damping of the balancer due to its motion in the applied magnetic fields; iii) Inductance losses in motor due to the applied magnetic field. The experiments conducted at the Massachusetts Institute of Technology (MIT) cyclotron facility in June 2002 were designed to test these. Tests were performed over a range of field levels that were lower, comparable, and higher than the field levels that the cryocoolers will experience in the AMs-02 operating environment. This paper describes the experiments and the inferences derived from them.

  1. Pulsed field magnets at the United States National High Magnetic Field Laboratory

    SciTech Connect

    Campbell, L.J.; Parkin, D.M.; Crow, J.E.; Schneider-Muntau, H.J.; Sullivan, N.S.

    1993-11-01

    The pulsed field facility of the National High Magnetic Field Laboratory (NHMFL) consists of four components. Now available are (1) explosive driven flux compression, (2) capacitor-driven magnets, and (3) a 20 T superconducting magnet. The fourth component, a 60 T quasi-continuous magnet, has been designed and is scheduled for installation in early 1995. All magnets have He-4 cryostats giving temperatures from room temperature (RT) to 2.2--1.5 K. Dilution refrigerators for the superconducting 20 T magnet and the 50 T pulsed magnet will be installed by early 1994. A wide range of experiments has been completed within the past year.

  2. Magnetic Field Control of the Quantum Chaotic Dynamics of Hydrogen Analogs in an Anisotropic Crystal Field

    SciTech Connect

    Zhou Weihang; Chen Zhanghai; Zhang Bo; Yu, C. H.; Lu Wei; Shen, S. C.

    2010-07-09

    We report magnetic field control of the quantum chaotic dynamics of hydrogen analogues in an anisotropic solid state environment. The chaoticity of the system dynamics was quantified by means of energy level statistics. We analyzed the magnetic field dependence of the statistical distribution of the impurity energy levels and found a smooth transition between the Poisson limit and the Wigner limit, i.e., transition between regular Poisson and fully chaotic Wigner dynamics. The effect of the crystal field anisotropy on the quantum chaotic dynamics, which manifests itself in characteristic transitions between regularity and chaos for different field orientations, was demonstrated.

  3. Magnetic Field Control of the Quantum Chaotic Dynamics of Hydrogen Analogues in an Anisotropic Crystal Field

    E-print Network

    Weihang Zhou; Zhanghai Chen; Bo Zhang; C. H. Yu; Wei Lu; S. C. Shen

    2010-03-09

    We report magnetic field control of the quantum chaotic dynamics of hydrogen analogues in an anisotropic solid state environment. The chaoticity of the system dynamics was quantified by means of energy level statistics. We analyzed the magnetic field dependence of the statistical distribution of the impurity energy levels and found a smooth transition between the Poisson limit and the Wigner limit, i.e. transition between regular Poisson and fully chaotic Wigner dynamics. Effect of the crystal field anisotropy on the quantum chaotic dynamics, which manifests itself in characteristic transitions between regularity and chaos for different field orientations, was demonstrated.

  4. Diffusion in electronegative discharges with magnetic fields

    NASA Astrophysics Data System (ADS)

    Bell, David E.

    1993-12-01

    Electronegative plasmas are important in a variety of electric discharge applications, such as plasma reactors, negative ion sources, and even electropositive discharges when contaminated with an electronegative impurity. The need for an understanding of the processes and phenomena associated with these electronegative discharges has spurred the development of numerical simulations and models. While many of the devices incorporate various configurations of external magnetic fields, specific attention to the influence of the magnetic field on the discharge operating point, structure, and stability is lacking. To address this deficiency, a collisional model for diffusion in three-component plasmas with an applied magnetic field is developed; it is an extension of Schottky theory allowing for negative ions and a magnetic field. This study analyzes the effect of magnetic fields on diffusion in three-component plasmas; provides an analytic solution for the collisional model in a magnetic field; evaluates the validity of effective diffusion coefficients through an analysis of the afterglow; and provides a regime of validity for the model in terms of magnetic field strength by looking at the onset of anomalous diffusion.

  5. The CMS Magnetic Field Map Performance

    E-print Network

    V. I. Klyukhin; N. Amapane; V. Andreev; A. Ball; B. Curé; A. Hervé; A. Gaddi; H. Gerwig; V. Karimaki; R. Loveless; M. Mulders; S. Popescu; L. I. Sarycheva; T. Virdee

    2011-10-04

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field values. The value of the field at a given point of a volume is obtained by interpolation from a regular grid of values resulting from a TOSCA calculation or, when available, from a parameterization. The results of the measurements and calculations are presented, compared and discussed.

  6. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-05-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple ``open`` configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic ``bottles,`` still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  7. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-01-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple open'' configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic bottles,'' still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  8. Magnetic Field Measurement with Ground State Alignment

    NASA Astrophysics Data System (ADS)

    Yan, Huirong; Lazarian, A.

    Observational studies of magnetic fields are crucial. We introduce a process "ground state alignment" as a new way to determine the magnetic field direction in diffuse medium. The alignment is due to anisotropic radiation impinging on the atom/ion. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1 G ? B ? 10^{-15} G). In fact, the effects of atomic/ionic alignment were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this chapter, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields in the Epoch of Reionization.

  9. Magnetic field spectrum at cosmological recombination revisited

    E-print Network

    Shohei Saga; Kiyotomo Ichiki; Keitaro Takahashi; Naoshi Sugiyama

    2015-06-03

    If vector type perturbations are present in the primordial plasma before recombination, the generation of magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard cosmological perturbation theory, non-linear couplings of first-order scalar perturbations create second-order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and extend it by newly taking into account the time evolution of purely second-order vector perturbations with a newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the product-terms of the first-order scalar modes is consistent with the result in our previous study. However, we find, both numerically and analytically, that the magnetic fields from the purely second-order vector perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the magnetic fields on small scales, $k \\gtrsim 10~h{\\rm Mpc}^{-1}$, is smaller than the previous estimates. The amplitude of the generated magnetic fields at cosmological recombination is about $B_{\\rm rec} =5.0\\times 10^{-24}~{\\rm Gauss}$ on $k = 5.0 \\times 10^{-1}~h{\\rm Mpc}^{-1}$. Finally, we discuss the reason of the discrepancies that exist in estimates of the amplitude of magnetic fields among other authors.

  10. How are static magnetic fields detected biologically?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2009-03-01

    There is overwhelming evidence that life, from bacteria to birds to bats, detects magnetic fields, using the fields for orientation or navigation. Indeed there are recent reports (based on Google Earth imagery) that cattle and deer align themselves with the earth's magnetic field. [1]. The development of frog and insect eggs are changed by high magnetic fields, probably through known physical mechanisms. However, the mechanisms for eukaryotic navigation and alignment are not clear. Persuasive published models will be discussed. Evidence, that static magnetic fields might produce therapeutic effects, will be updated [2]. [4pt] [1] S. Begall, et al., Proc Natl Acad Sci USA, 105:13451 (2008). [0pt] [2] L. Finegold and B.L. Flamm, BMJ, 332:4 (2006).

  11. Normal glow discharge in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Surzhikov, S.; Shang, J.

    2014-10-01

    Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

  12. Electric-field guiding of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.

    2015-10-01

    We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.

  13. The magnetic field of Mercury, part 1

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1974-01-01

    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

  14. Theory of cosmological seed magnetic fields

    SciTech Connect

    Saleem, H.

    2007-07-15

    A theory for the generation of seed magnetic field and plasma flow on cosmological scales driven by externally given baroclinic vectors is presented. The Beltrami-like plasma fields can grow from zero values at initial time t=0 from a nonequilibrium state. Exact analytical solutions of the set of two-fluid equations are obtained that are valid for large plasma {beta}-values as well. Weaknesses of previous models for seed magnetic field generation are also pointed out. The analytical calculations predict the galactic seed magnetic field generated by this mechanism to be of the order of 10{sup -14} G, which may be amplified later by the {alpha}{omega} dynamo (or by some other mechanism) to the present observed values of the order of {approx}(2-10) {mu}G. The theory has been applied to laser-induced plasmas as well and the estimate of the magnetic field's magnitude is in agreement with the experimentally observed values.

  15. ASYMMETRIC DIFFUSION OF MAGNETIC FIELD LINES

    SciTech Connect

    Beresnyak, Andrey

    2013-04-20

    Stochasticity of magnetic field lines is important for particle transport properties. Magnetic field lines separate faster than diffusively in turbulent plasma, which is called superdiffusion. We discovered that this superdiffusion is pronouncedly asymmetric, so that the separation of field lines along the magnetic field direction is different from the separation in the opposite direction. While the symmetry of the flow is broken by the so-called imbalance or cross-helicity, the difference between forward and backward diffusion is not directly due to imbalance, but a non-trivial consequence of both imbalance and non-reversibility of turbulence. The asymmetric diffusion perpendicular to the mean magnetic field entails a variety of new physical phenomena, such as the production of parallel particle streaming in the presence of perpendicular particle gradients. Such streaming and associated instabilities could be significant for particle transport in laboratory, space, and astrophysical plasmas.

  16. Ultracold atoms in strong synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    2015-03-01

    The Harper Hofstadter Hamiltonian describes charged particles in the lowest band of a lattice at high magnetic fields. This Hamiltonian can be realized with ultracold atoms using laser assisted tunneling which imprints the same phase into the wavefunction of neutral atoms as a magnetic field dose for electrons. I will describe our observation of a bosonic superfluid in a magnetic field with half a flux quantum per lattice unit cell, and discuss new possibilities for implementing spin-orbit coupling. Work done in collaboration with C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton, and Woo Chang Chung.

  17. Relativistic stars with purely toroidal magnetic fields

    SciTech Connect

    Kiuchi, Kenta; Yoshida, Shijun

    2008-08-15

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  18. Texturing Nd-Fe-B magnets under high magnetic field

    NASA Astrophysics Data System (ADS)

    Rivoirard, S.; Barthem, V. M. T. S.; Bres, R.; Beaugnon, E.; de Miranda, P. E. V.; Givord, D.

    2008-08-01

    An original approach is explored in the preparation of anisotropic hard magnetic alloys. This constitutes a proof of principle toward the preparation of anisotropic bonded magnets. Nd-Fe-B ribbons (50% Nd2Fe14B+50% Nd-Cu alloy), constituted of Nd2Fe14B grains embedded in a Nd-Cu eutectic matrix, were annealed under an applied magnetic field up to 16 T at various temperatures above the Nd-Cu melting temperature. The grain orientation mechanism is described in terms of a competition between the aligning magnetic field torque acting on the solid magnetic grains and the friction counter torque at the interface between the grains and the liquid matrix. The large temperature effect on the orientation behavior is attributed to the associated increase in the liquid phase volume fraction.

  19. Dynamo Models for Saturn's Axisymmetric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tajdaran, K.

    2012-12-01

    Magnetic field measurements by the Cassini mission have confirmed the earlier Pioneer 11 and Voyager missions' results that Saturn's observed magnetic field is extremely axisymmetric . For example, Saturn's dipole tilt is less than 0.06 degrees (Cao et al., 2011) . The nearly-perfect axisymmetry of Saturn's dipole is troubling because of Cowling's Theorem which states that an axisymmetric magnetic field cannot be maintained by a dynamo. However, Cowling's Theorem applies to the magnetic field generated inside the dynamo source region and we can avert any contradiction with Cowling's Theorem if we can find reason for a non-axisymmetric field generated inside the dynamo region to have an axisymmetrized potential field observed at satellite altitude. Stevenson (1980) proposed a mechanism for this axisymmetrization. He suggested that differential rotation in a stably-stratified electrically conducting layer (i.e. the helium rain-out layer) surrounding the dynamo could act to shear out the non-axisymmetry and hence produce an axisymmetric observed magnetic field. In previous work, we used three-dimensional self-consistent numerical dynamo models to demonstrate that a thin helium rain-out layer can produce a more axisymmetrized field (Stanley, 2010). We also found that the direction of the zonal flows in the layer is a crucial factor for magnetic field axisymmetry. Here we investigate the influence of the thickness of the helium rain-out layer and the intensity of the thermal winds on the axisymmetrization of the field. We search for optimal regions in parameter space for producing axisymmetric magnetic fields with similar spectral properties to the observed Saturnian field.

  20. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  1. Magnetic Field Strengths in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Anish Roshi, D.; Jeyakumar, S.; Bania, T. M.; Montet, Benjamin T.; Shitanishi, J. A.

    2016-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 {{GHz}} toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B? 100{--}300 ? {{G}} in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B? 200{--}1000 ? {{G}}. H i and OH Zeeman measurements of the line of sight magnetic field strength ({B}{{los}}), taken from the literature, are between a factor of ? 0.5{--}1 of the lower bound of our carbon RRL magnetic field strength estimates. Since | {B}{{los}}| ?slant B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths.

  2. Intergalactic Magnetic Fields from Quasar Outflows

    E-print Network

    Steven Furlanetto; Abraham Loeb

    2001-02-05

    Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and calculate their distribution as a function of size and magnetic field strength at different redshifts. We generically find that by a redshift z=3, about 5-20% of the IGM volume is filled by magnetic fields with an energy density >10% of the mean thermal energy density of a photo-ionized IGM (at T=10^4 K). As massive galaxies and X-ray clusters condense out of the magnetized IGM, the adiabatic compression of the magnetic field could result in the field strength observed in these systems without a need for further dynamo amplification. The intergalactic magnetic field could also provide a nonthermal contribution to the pressure of the photo-ionized gas that may account for the claimed discrepancy between the simulated and observed Doppler width distributions of the Ly-alpha forest.

  3. The theory of the Galactic magnetic field

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1987-01-01

    The paper discusses the role of the magnetic field in determining the large scale structure and dynamics of the interstellar medium. It then discusses the origin and maintenance of the Galactic field. The two major competing theories are that the field is primordial and connected to an intergalactic field or that the field is removed from and regenerated within the Galaxy. Finally, cosmic ray acceleration and confinement in the interstellar medium are discussed.

  4. High Field Pulse Magnets with New Materials

    NASA Astrophysics Data System (ADS)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  5. Magnetic monopoles in field theory and cosmology.

    PubMed

    Rajantie, Arttu

    2012-12-28

    The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems. PMID:23166376

  6. Report of the panel on geopotential fields: Magnetic field, section 9

    NASA Technical Reports Server (NTRS)

    Achache, Jose J.; Backus, George E.; Benton, Edward R.; Harrison, Christopher G. A.; Langel, Robert A.

    1991-01-01

    The objective of the NASA Geodynamics program for magnetic field measurements is to study the physical state, processes and evolution of the Earth and its environment via interpretation of measurements of the near Earth magnetic field in conjunction with other geophysical data. The fields measured derive from sources in the core, the lithosphere, the ionosphere, and the magnetosphere. Panel recommendations include initiation of multi-decade long continuous scalar and vector measurements of the Earth's magnetic field by launching a five year satellite mission to measure the field to about 1 nT accuracy, improvement of our resolution of the lithographic component of the field by developing a low altitude satellite mission, and support of theoretical studies and continuing analysis of data to better understand the source physics and improve the modeling capabilities for different source regions.

  7. On the helicity of open magnetic fields

    SciTech Connect

    Prior, C.; Yeates, A. R.

    2014-06-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  8. Juno and Jupiter's Magnetic Field (Invited)

    NASA Astrophysics Data System (ADS)

    Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.

    2013-12-01

    The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.

  9. Sound Fields in Complex Listening Environments

    PubMed Central

    2011-01-01

    The conditions of sound fields used in research, especially testing and fitting of hearing aids, are usually simplified or reduced to fundamental physical fields, such as the free or the diffuse sound field. The concepts of such ideal conditions are easily introduced in theoretical and experimental investigations and in models for directional microphones, for example. When it comes to real-world application of hearing aids, however, the field conditions are more complex with regard to specific stationary and transient properties in room transfer functions and the corresponding impulse responses and binaural parameters. Sound fields can be categorized in outdoor rural and urban and indoor environments. Furthermore, sound fields in closed spaces of various sizes and shapes and in situations of transport in vehicles, trains, and aircrafts are compared with regard to the binaural signals. In laboratory tests, sources of uncertainties are individual differences in binaural cues and too less controlled sound field conditions. Furthermore, laboratory sound fields do not cover the variety of complex sound environments. Spatial audio formats such as higher-order ambisonics are candidates for sound field references not only in room acoustics and audio engineering but also in audiology. PMID:21676999

  10. The magnetic field of zeta Orionis A

    E-print Network

    Blazère, A; Tkachenko, A; Bouret, J -C; Rivinius, Th

    2015-01-01

    Zeta Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. We aim at verifying the presence of a magnetic field in zeta Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field.Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the Least-Squares Deconvolution (LSD) technique to extract the magnetic information. We confirm that zeta Ori A is magnetic. We find that the supergiant component zeta Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a per...

  11. Magnetic Field Effects in Fermion Pairings

    E-print Network

    Vivian de la Incera

    2013-07-29

    This paper considers various fermion pairings of interest for the QCD phases. The effects of an external magnetic field on the pairing mechanisms, on the realization of new condensates, and on the properties of the magnetized phases are all explored and discussed.

  12. Magnetic space-based field measurements

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1981-01-01

    Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.

  13. Discontinuities in the magnetic field near Enceladus

    NASA Astrophysics Data System (ADS)

    Simon, Sven; Saur, Joachim; Treeck, Shari C.; Kriegel, Hendrik; Dougherty, Michele K.

    2014-05-01

    The plasma interaction of Saturn's icy moon Enceladus generates a hemisphere coupling current system that directly connects the giant planet's northern and southern polar magnetosphere. Based on Cassini magnetometer observations from all 20 targeted Enceladus flybys between 2004 and 2014, we study the magnetic field discontinuities associated with these hemisphere coupling currents. We identify a total number of 11 events during which the magnetic field was discontinuous at the surface of the Enceladus flux tube (defined by the bundle of magnetic field lines tangential to the solid body of the moon). A minimum variance analysis is applied to calculate the surface normals of these discontinuities. In agreement with theoretical expectations, the normals are found to be perpendicular to the surface of the Enceladus flux tube. The variation of the hemisphere coupling currents with Enceladean longitude leaves a clear imprint in the strengths of the observed magnetic field jumps as well.

  14. Discontinuities in the Magnetic Field near Enceladus

    NASA Astrophysics Data System (ADS)

    Simon, S.; Saur, J.; van Treeck, S.; Kriegel, H.; Dougherty, M. K.

    2014-12-01

    The plasma interaction of Saturn's icy moon Enceladus generates a hemisphere coupling current system that directly connects the giant planet's northern and southern polar magnetosphere. Based on Cassini magnetometer observations from all 20 targeted Enceladus flybys between 2004 and 2014, we study the magnetic field discontinuities associated with these hemisphere coupling currents. We identify a total number of 11 events during which the magnetic field was discontinuous at the surface of the Enceladus fluxtube (defined by the bundle of magnetic field lines tangential to the solid body of the moon). A Minimum Variance Analysis is applied to calculate the surface normals of these discontinuities. In agreement with theoretical expectations, the normals are found to be perpendicular to the surface of the Enceladus fluxtube. The variation of the hemisphere coupling currents with Enceladean longitude leaves a clear imprint in the strengths of the observed magnetic field jumps as well.

  15. Understanding the Geometry of Astrophysical Magnetic Fields

    E-print Network

    Broderick, Avery E

    2009-01-01

    Faraday rotation measurements have provided an invaluable technique with which to measure the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13 (RM/rad m^-2)^(1/4) (B/G)^(1/2) MHz, the character of Faraday rotation changes, entering what we term the ``super-adiabatic regime'' in which the rotation measure is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing rotation measures at high ...

  16. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  17. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  18. Lunar magnetic field measurements with a cubesat

    E-print Network

    Garrick-Bethell, Ian

    We have developed a mission concept that uses 3-unit cubesats to perform new measurements of lunar magnetic fields, less than 100 meters above the Moon’s surface. The mission calls for sending the cubesats on impact ...

  19. Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires.

    PubMed

    Huang, Hao-Ting; Lai, Mei-Feng; Hou, Yun-Fang; Wei, Zung-Hang

    2015-05-13

    We investigated the influence of magnetic domain walls and magnetic fields on the thermal conductivity of suspended magnetic nanowires. The thermal conductivity of the nanowires was obtained using steady-state Joule heating to measure the change in resistance caused by spontaneous heating. The results showed that the thermal conductivity coefficients of straight and wavy magnetic nanowires decreased with an increase in the magnetic domain wall number, implying that the scattering between magnons and domain walls hindered the heat transport process. In addition, we proved that the magnetic field considerably reduced the thermal conductivity of a magnetic nanowire. The influence of magnetic domain walls and magnetic fields on the thermal conductivity of polycrystalline magnetic nanowires can be attributed to the scattering of long-wavelength spin waves mediated by intergrain exchange coupling. PMID:25839230

  20. Tracing Magnetic Fields by Atomic Alignment in Extended Radiation Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong; Dong, Le

    2015-05-01

    Tracing magnetic field is crucial as magnetic field plays an important role in many astrophysical processes. Earlier studies have demonstrated that ground state alignment (GSA) is an effective way to detect a weak magnetic field (1G? B? {{10}-15} G) in a diffuse medium. We explore the atomic alignment in the presence of an extended radiation field for both absorption lines and emission lines. The alignment in the circumstellar medium, binary systems, disks, and the local interstellar medium are considered in order to study the alignment in the radiation field where the pumping source has a clear geometric structure. Furthermore, the multipole expansion method is adopted to study GSA induced in the radiation field with unidentified pumping sources. We study the alignment in the dominant radiation components of the general radiation field: the dipole and quadrupole radiation field. We discuss the approximation of GSA in a general radiation field by summing the contribution from the dipole and quadrupole radiation field. We conclude that GSA is a powerful tool for detecting weak magnetic fields in the diffuse medium in general radiation fields.

  1. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  2. System having unmodulated flux locked loop for measuring magnetic fields

    DOEpatents

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Blue Springs, MO)

    2006-08-15

    A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.

  3. Magnetic fields of the W4 superbubble

    NASA Astrophysics Data System (ADS)

    Gao, X. Y.; Reich, W.; Reich, P.; Han, J. L.; Kothes, R.

    2015-06-01

    Context. Superbubbles and supershells are the channels for transferring mass and energy from the Galactic disk to the halo. Magnetic fields are believed to play a vital role in their evolution. Aims: We study the radio continuum and polarized emission properties of the W4 superbubble to determine its magnetic field strength. Methods: New sensitive radio continuum observations were made at ?6 cm, ?11 cm, and ?21 cm. The total intensity measurements were used to derive the radio spectrum of the W4 superbubble. The linear polarization data were analysed to determine the magnetic field properties within the bubble shells. Results: The observations show a multi-shell structure of the W4 superbubble. A flat radio continuum spectrum that stems from optically thin thermal emission is derived from 1.4 GHz to 4.8 GHz. By fitting a passive Faraday screen model and considering the filling factor fne, we obtain the thermal electron density ne = 1,0/??ne (±5%) cm-3 and the strength of the line-of-sight component of the magnetic field B// = 5,0/??ne (±10%) ?G (i.e. pointing away from us) within the western shell of the W4 superbubble. When the known tilted geometry of the W4 superbubble is considered, the total magnetic field Btot in its western shell is greater than 12 ?G. The electron density and the magnetic field are lower and weaker in the high-latitude parts of the superbubble. The rotation measure is found to be positive in the eastern shell but negative in the western shell of the W4 superbubble, which is consistent with the case where the magnetic field in the Perseus arm is lifted up from the plane towards high latitudes. Conclusions: The magnetic field strength and the electron density we derived for the W4 superbubble are important parameters for evolution models of superbubbles breaking out of the Galactic plane.

  4. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ?}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 ?m obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ?0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (? 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  5. Nonlinear diffusion waves in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Datsko, I. M.; Rybka, D. V.; Ratakhin, N. A.; Khishchenko, K. V.

    2015-11-01

    The nonlinear diffusion of a magnetic field and the large-scale instabilities arising upon an electrical explosion of conductors in a superstrong (2-3 MG) magnetic field were investigated experimentally on the MIG high-current generator (up to 2.5 peak current, 100 ns current rise time). It was observed that in the nonlinear stage of the process, the wavelength of thermal instabilities (striations) increased with a rate of 1.5-3 km/s.

  6. Magnetic Fields and Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Zhang, Qizhou; Qiu, Keping; Girart, Josep M.; (Baobab Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Li, Zhi-Yun; Keto, Eric; Ho, Paul T. P.; Rao, Ramprasad; Lai, Shih-Ping; Ching, Tao-Chung; Frau, Pau; Chen, How-Huan; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain; Csengeri, Timea; Juárez, Carmen

    2014-09-01

    Massive stars (M > 8 M ?) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 ?m obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of lsim0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (lsim 103 AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  7. Secondary resonance magnetic force microscopy using an external magnetic field for characterization of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dongzi; Mo, Kangxin; Ding, Xidong; Zhao, Liangbing; Lin, Guocong; Zhang, Yueli; Chen, Dihu

    2015-09-01

    A bimodal magnetic force microscopy (MFM) that uses an external magnetic field for the detection and imaging of magnetic thin films is developed. By applying the external modulation magnetic field, the vibration of a cantilever probe is excited by its magnetic tip at its higher eigenmode. Using magnetic nanoparticle samples, the capacity of the technique which allows single-pass imaging of topography and magnetic forces is demonstrated. For the detection of magnetic properties of thin film materials, its signal-to-noise ratio and sensitivity are demonstrated to be superior to conventional MFM in lift mode. The secondary resonance MFM technique provides a promising tool for the characterization of nanoscale magnetic properties of various materials, especially of magnetic thin films with weak magnetism.

  8. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus.

  9. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field.

    PubMed

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus. PMID:26520987

  10. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L. (Hamburg, DE)

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  11. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  12. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  13. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R. (Coram, NY)

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  14. Asymptotic freedom in strong magnetic fields.

    PubMed

    Andreichikov, M A; Orlovsky, V D; Simonov, Yu A

    2013-04-19

    Perturbative gluon exchange interaction between quark and antiquark, or in a 3q system, is enhanced in a magnetic field and may cause vanishing of the total qq[over ¯] or 3q mass, and even unlimited decrease of it-recently called the magnetic collapse of QCD. The analysis of the one-loop correction below shows a considerable softening of this phenomenon due to qq[over ¯] loop contribution, similar to the Coulomb case of QED, leading to approximately logarithmic damping of gluon exchange interaction (?O(1/ln|eB|)) at large magnetic field. PMID:23679595

  15. Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation

    PubMed Central

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672

  16. Magnetic field effects on the motion of circumplanetary dust

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel Simon

    Hypervelocity impacts on satellites or ring particles replenish circumplanetary dusty rings with grains of all sizes. Due to interactions with the plasma environment and sunlight, these grains become electrically charged. We study the motion of charged dust grains launched at the Kepler orbital speed, under the combined effects of gravity and the electromagnetic force. We conduct numerical simulations of dust grain trajectories, covering a broad range of launch distances from the planetary surface to beyond synchronous orbit, and the full range of charge-to-mass ratios from ions to rocks, with both positive and negative electric potentials. Initially, we assume that dust grains have a constant electric potential, and, treating the spinning planetary magnetic field as an aligned and centered dipole, we map regions of radial instability (positive grains only), where dust grains are driven to escape or collide with the planet at high speed, and vertical instability (both positive and negative charges) whereby grains launched near the equatorial plane and are forced up magnetic field lines to high latitudes, where they may collide with the planet. We derive analytical criteria for local stability in the equatorial plane, and solve for the boundaries between all unstable and stable outcomes. Comparing our analytical solutions to our numerical simulations, we develop an extensive model for the radial, vertical and azimuthal motions of dust grains of arbitrary size and launch location. We test these solutions at Jupiter and Saturn, both of whose magnetic fields are reasonably well represented by aligned dipoles, as well as at the Earth, whose magnetic field is close to an anti-aligned dipole. We then evaluate the robustness of our stability boundaries to more general conditions. Firstly, we examine the effects of non-zero launch speeds, of up to 0.5 km s-1, in the frame of the parent body. Although these only weakly affect stability boundaries, we find that the influence of a launch impulse on stability boundaries strongly depends on its direction. Secondly, we focus on the effects of higher-order magnetic field components on orbital stability. We find that vertical stability boundaries are particularly sensitive to a moderate vertical offset in an aligned dipolar magnetic field. This configuration suffices as a model for Saturn's full magnetic field. The vertical instability also expands to cover a wider range of launch distances in slightly tilted magnetic dipoles, like the magnetic field configurations for Earth and Jupiter. By contrast, our radial stability criteria remain largely unaffected by both dipolar tilts and vertical offsets. Nevertheless, a tilted dipole magnetic field model introduces non-axisymmetric forces on orbiting dust grains, which are exacerbated by the inclusion of other higher-order magnetic field components, including the quadrupolar and octupolar terms. Dust grains whose orbital periods are commensurate with the spatial periodicities of a rotating non-axisymmetric magnetic field experience destabilizing Lorentz resonances. These have been studied by other authors for the largest dust grains moving on perturbed Keplerian ellipses. With Jupiter's full magnetic field as our model, we extend the concept of Lorentz resonances to smaller dust grains and find that these can destabilize trajectories on surprisingly short timescales, and even cause negatively-charged dust grains to escape within weeks. We provide detailed numerically-derived stability maps highlighting the destabilizing effects of specific higher-order terms in Jupiter's magnetic field, and we develop analytical solutions for the radial locations of these resonances for all charge-to-mass ratios. We include stability maps for the full magnetic field configurations of Jupiter, Saturn, and Earth, to compare with our analytics. We further provide numerically-derived stability maps for the tortured magnetic fields of Uranus and Neptune. Relaxing the assumption of constant electric charges on dust, we test the effects of time-variable grain chargin

  17. Fast Reconnection of Weak Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1998-01-01

    Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.

  18. Magnetic fields in early-type stars

    NASA Astrophysics Data System (ADS)

    Grunhut, Jason H.; Neiner, Coralie

    2015-10-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M ?) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have furthered our understanding of the interactions between the magnetic field and stellar wind, as well as the consequences and connections of this interaction with other observed phenomena.

  19. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect

    Canabal, A.; Tajima, T.; Dolgashev, V.A.; Tantawi, S.G.; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  20. Magnetic field dependence of plasma relaxation times

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Joyce, G.; Turner, L.

    1974-01-01

    A previously derived Fokker-Planck collision integral for an electron plasma in a dc magnetic field is examined in the limit in which the Debye length is greater than the thermal gyroradius, which is in turn greater than the mean distance of closest approach. It is demonstrated that the collision integral can be satisfactorily approximated by the classical Landau value (which ignores the presence of a dc magnetic field) if the following replacement is made: In the Coulomb logarithm, the Debye length is replaced by the gyroradius. This induces a fundamental logarithmic dependence on magnetic field in the relaxation times. Numerical comparison of the asymptotic approximations with the previously derived exact results is made, and good agreement is found. The simplification this introduces into the description of collision processes in magnetized plasma is considerable.

  1. Mechanical propulsion from unsymmetrical magnetic induction fields

    SciTech Connect

    Schlicher, R.L.; Biggs, A.W.; Tedeschi, W.J.

    1995-06-01

    A method is reported for generating mechanical spacecraft propulsion from unsymmetrical magnetic induction fields. It is based on an unsymmetrical three-dimensional loop antenna structure driven by a repetitively-pulsed high-current power supply. Antenna geometry is optimized for generating propulsive thrust rather than radiating electromagnetic energy. Part of this antenna consists of flat electrical conductors, which form a partially-closed quasi-cylindrical volume around a center conductor. Magnetic flux concentrates at the closed end of the quasicylindrical volume thereby creating a magnetic field flux density gradient along a single axis collinear to the Center Conductor. This magnetic field density gradient imbalances the magneto-mechanical forces that result from the interactions of the internal magnetic induction field with the current in the conductors of the antenna structure, in accordance with Lorentz`s Force Law. Also, there are electrically isolated prismatic conductor surfaces attached to the inside surface of the flat conductors which form the closed end of the quasi-cylindrical volume. Mechanical pressures occur on these conductor prisms because of the changing internal magnetic field and are a consequence of Faraday`s Induction Law and Lenz`s Law. Input current rise time and wave shape are crucial to maximizing spacecraft propulsive thrust.

  2. Magnetic fields of Jupiter and Saturn

    SciTech Connect

    Ness, N.F.

    1981-01-01

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

  3. Magnetic nanoparticles for applications in oscillating magnetic field

    SciTech Connect

    Peeraphatdit, Chorthip

    2010-12-15

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific loss power of PNIPAM-coated Fe{sub 3}O{sub 4} was peculiarly high, and the heat loss mechanism of this material remains to be elucidated. Since thermocatalysis is a long-term goal of this project, we also investigated the effects of the oscillating magnetic field system for the synthesis of 7-hydroxycoumarin-3-carboxylic acid. Application of an oscillating magnetic field in the presence of magnetic particles with high thermal response was found to effectively increase the reaction rate of the uncatalyzed synthesis of the coumarin derivative compared to the room temperature control.

  4. The formation of sunspot penumbra. Magnetic field properties

    NASA Astrophysics Data System (ADS)

    Rezaei, R.; Bello González, N.; Schlichenmaier, R.

    2012-01-01

    Aims: We study the magnetic flux emergence and formation of a sunspot penumbra in the active region NOAA 11024. Methods: We simultaneously observed the Stokes parameters of the photospheric iron lines at 1089.6 nm with the TIP and 617.3 nm with the GFPI spectropolarimeters along with broad-band images using G-band and Ca ii K filters at the German VTT. The photospheric magnetic field vector was reconstructed from an inversion of the measured Stokes profiles. Using the AZAM code, we converted the inclination from line-of-sight (LOS) to the local reference frame (LRF). Results: Individual filaments are resolved in maps of magnetic parameters. The formation of the penumbra is intimately related to the inclined magnetic field. No penumbra forms in areas with strong magnetic field strength and small inclination. Within 4.5 h observing time, the LRF magnetic flux of the penumbra increases from 9.7 × 1020 to 18.2 × 1020 Mx, while the magnetic flux of the umbra remains constant at ~3.8 × 1020 Mx. Magnetic flux in the immediate surroundings is incorporated into the spot, and new flux is supplied via small flux patches (SFPs), which on average have a flux of 2-3 × 1018 Mx. The spot's flux increase rate of 4.2 × 1016 Mx s-1 corresponds to the merging of one SFP per minute. We also find that, during the formation of the spot penumbra, a) the maximum magnetic field strength of the umbra does not change; b) the magnetic neutral line keeps the same position relative to the umbra; c) the new flux arrives on the emergence side of the spot while the penumbra forms on the opposite side; d) the average LRF inclination of the light bridges decreases from 50° to 37°; and e) as the penumbra develops, the mean magnetic field strength at the spot border decreases from 1.0 to 0.8 kG. Conclusions: The SFPs associated with elongated granules are the building blocks of structure formation in active regions. During the sunspot formation, their contribution is comparable to the coalescence of pores. Besides a set of critical parameters for the magnetic field, a quiet environment in the surroundings is important for penumbral formation. As remnants of trapped granulation between merging pores, the light bridges are found to play a crucial role in the formation process. They seem to channel the magnetic flux through the spot during its formation. Light bridges are also the locations where the first penumbral filaments form.

  5. Mercury's Internal Magnetic Field: Results from MESSENGER's Search for Remanent Crustal Magnetization Associated with Impact Basins

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.; Johnson, C. L.; Nicholas, J. B.; Philpott, L. C.; Korth, H.; Anderson, B. J.; Head, J. W., III; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Magnetic field measurements obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft in orbit around Mercury have entered a new phase since April 2014, with periapsis altitudes below 200 km. MESSENGER is now obtaining magnetic profiles across large impact features at altitudes less than the horizontal scale of those features. We use data from this latest phase to investigate evidence for remanent crustal magnetization specifically associated with impact basins and large craters. The spatial resolution of magnetic field measurements for investigating crustal magnetization is approximately equal to the altitude of the observations. We focus on large impact features because their relative ages provide a powerful chronological tool for interpreting any associated magnetic signatures. We examine profiles across large impact basins such as Caloris, Shakespeare, Budh-Sobkou and Goethe. For example, coverage over Caloris during the last year of the mission will be largely at night and will comprise 18 profiles with altitudes between 125 and 200 km and 12 profiles with altitudes between 50 and 125 km over the northern part of the basin. We use large-scale magnetospheric models developed with MESSENGER data to remove contributions from the offset axial dipole, magnetopause, and magnetotail. The residual magnetic fields above 200 km are still dominated by poorly understood magnetospheric fields such as those from the cusp and from Birkeland currents. We empirically average, or exclude observations from these local times, in order to search for repeatable internal field signals. We use local basis functions such as equivalent source dipoles, applied with regularization tools, in order to map the altitude-normalized magnetic field from internal sources. These internal sources may comprise both crustal and core contributions, and we use the information from the along-track magnetic gradient in order to separate these contributions.

  6. Resonant Magnetic Field Sensors Based On MEMS Technology

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  7. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    SciTech Connect

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  8. Magnetic Catheter Manipulation in the Interventional MRI Environment

    PubMed Central

    Wilson, Mark W.; Martin, Alastair B.; Lillaney, Prasheel; Losey, Aaron D.; Yee, Erin J.; Bernhardt, Anthony; Malba, Vincent; Evans, Lee; Sincic, Ryan; Saeed, Maythem; Arenson, Ronald L.; Hetts, Steven W.

    2013-01-01

    Purpose To evaluate deflection capability of a prototype endovascular catheter, which is remotely magnetically steerable, for use in the interventional MRI environment. Materials and Methods Copper coils were mounted on the tips of commercially available 2.3 – 3.0 Fr microcatheters. The coils were fabricated in a novel manner by plasma vapor deposition of a copper layer followed by laser lithography of the layer into coils. Orthogonal helical (solenoid) and saddle-shaped (Helmholtz) coils were mounted on a single catheter tip. Microcatheters were tested in water bath phantoms in a 1.5T clinical MRI scanner, with variable simultaneous currents applied to the coils. Catheter tip deflection was imaged in the axial plane utilizing a “real-time” steady-state free precession (SSFP) MRI sequence. Degree of deflection and catheter tip orientation were measured for each current application. Results The catheter tip was clearly visible in the longitudinal and axial planes. Magnetic field artifacts were visible when the orthogonal coils at the catheter tip were energized. Variable amounts of current applied to a single coil demonstrated consistent catheter deflection in all water bath experiments. Changing current polarity reversed the observed direction of deflection, whereas current applied to two different coils resulted in deflection represented by the composite vector of individual coil activations. Microcatheter navigation through the vascular phantom was successful through control of applied current to one or more coils. Conclusion Controlled catheter deflection is possible with laser lithographed multi-axis coil tipped catheters in the MRI environment. PMID:23707097

  9. Poloidal magnetic fields in superconducting neutron stars

    NASA Astrophysics Data System (ADS)

    Henriksson, K. T.; Wasserman, I.

    2013-06-01

    We develop the formalism for computing the magnetic field within an axisymmetric neutron star with a strong type II superconductor core surrounded by a normal conductor. The formalism takes full account of the constraints imposed by hydrostatic equilibrium with a barotropic equation of state. A characteristic of this problem is that the currents and fields need to be determined simultaneously and self-consistently. Within the core, the strong type II limit B ? H allows us to compute the shapes of individual field lines. We specialize to purely poloidal magnetic fields that are perpendicular to the equator, and develop the `most dipolar case' in which field lines are vertical at the outer radius of the core, which leads to a magnetic field at the stellar surface that is as close to a dipole as possible. We demonstrate that although field lines from the core may only penetrate a short distance into the normal shell, boundary conditions at the inner radius of the normal shell control the field strength on the surface. Remarkably, we find that for a Newtonian N = 1 polytrope, the surface dipole field strength is Bsurf ? Hb?b/3, where Hb is the magnetic field strength at the outer boundary of the type II core and ?bR is the thickness of the normal shell. For reasonable models, Hb ? 1014 G and ?b ? 0.1 so the surface field strength is Bsurf ? 3 × 1012 G, comparable to the field strengths of many radio pulsars. In general, Hb and ?b are both determined by the equation of state of nuclear matter and by the mass of the neutron star, but Bsurf ˜ 1012 G is probably a robust result for the `most dipolar' case. We speculate on how the wide range of neutron star surface fields might arise in situations with less restrictions on the internal field configuration. We show that quadrupolar distortions are ˜-10-9(Hb/1014 G)2 and arise primarily in the normal shell for B ? Hb.

  10. Lightning Magnetic Field Measurements around Langmuir Laboratory

    NASA Astrophysics Data System (ADS)

    Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.

    2010-12-01

    In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.

  11. Magnetic field imaging with NV ensembles

    E-print Network

    L. M. Pham; D. Le Sage; P. L. Stanwix; T. K. Yeung; D. Glenn; A. Trifonov; P. Cappellaro; P. R. Hemmer; M. D. Lukin; H. Park; A. Yacoby; R. L. Walsworth

    2012-07-13

    We demonstrate a method of imaging spatially varying magnetic fields using a thin layer of nitrogen-vacancy (NV) centers at the surface of a diamond chip. Fluorescence emitted by the two-dimensional NV ensemble is detected by a CCD array, from which a vector magnetic field pattern is reconstructed. As a demonstration, AC current is passed through wires placed on the diamond chip surface, and the resulting AC magnetic field patterns are imaged using an echo-based technique with sub-micron resolution over a 140 \\mu m x 140 \\mu m field of view, giving single-pixel sensitivity ~100 nT/\\sqrt{Hz}. We discuss ongoing efforts to further improve sensitivity and potential bioimaging applications such as real-time imaging of activity in functional, cultured networks of neurons.

  12. Measurements of Photospheric and Chromospheric Magnetic Fields

    E-print Network

    Lagg, Andreas; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-01-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Conseque...

  13. ECE 390 Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields.

    E-print Network

    ECE 390 ­ Electric & Magnetic Fields Catalog Description: Static and quasi-static electric), A. Jander (secondary) Course Content: · Introduction, review of vector analysis · Static electric fields in free space: Coulomb's law, Gauss's law, and electric potential, electric dipole · Static

  14. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-11-20

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  15. Magnetic field structure in Monoceros R2

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Novak, G.; Xie, T.; Goldsmith, P. F.

    1994-01-01

    We have carried out polarimetric observations to investigate the geometry of the magnetic field in the giant molecular cloud Monoceros R2. This study is based upon deep R-band charge coupled device (CCD) polarimetry, covering a total area of 0.5 deg(exp 2) of the giant molecular cloud. The data were calibrated using a new technique that relies on obtaining broad-band photometry of stars simultaneously with polarimetric photometry of the Mon R2 fields, thus providing an accurate means of measuring the electric vectors of starlight which is polarized by the fore-ground dust grains aligned by the magnetic field in the Mon R2 GMC. In this work, (1) we were able to continuously trace magnetic field lines from the largest scales in Mon R2 to the detailed structure of the field in the dense core, as determined from infrared polarimetry; and (2) we have found that the ambient field is apparently modified by a large-scale structure in the Mon R2 cloud. The mean angle of polarization for the complete sample we measured is 158 deg, which is roughly coincident with the local Galactic magnetic field (155 deg). The dispersion in the angle of polarization is 33 deg, similar to that found in the Orion GMC. The dispersion in angle of polarization for stars located along the western side of the three CCD fields is 22 deg. The CCD fields are bisected by a dense ridge of gas defining the boundary of an expanding gas shell that recent observational results at millimeter wavelengths now reveal dominates the Mon R2 GMC. Our results suggest th at the expanding shell has distorted the magnetic field lines extending from the core to the northern gas structure comprising Mon R2.

  16. Observation of Dirac monopoles in a synthetic magnetic field.

    PubMed

    Ray, M W; Ruokokoski, E; Kandel, S; Möttönen, M; Hall, D S

    2014-01-30

    Magnetic monopoles--particles that behave as isolated north or south magnetic poles--have been the subject of speculation since the first detailed observations of magnetism several hundred years ago. Numerous theoretical investigations and hitherto unsuccessful experimental searches have followed Dirac's 1931 development of a theory of monopoles consistent with both quantum mechanics and the gauge invariance of the electromagnetic field. The existence of even a single Dirac magnetic monopole would have far-reaching physical consequences, most famously explaining the quantization of electric charge. Although analogues of magnetic monopoles have been found in exotic spin ices and other systems, there has been no direct experimental observation of Dirac monopoles within a medium described by a quantum field, such as superfluid helium-3 (refs 10-13). Here we demonstrate the controlled creation of Dirac monopoles in the synthetic magnetic field produced by a spinor Bose-Einstein condensate. Monopoles are identified, in both experiments and matching numerical simulations, at the termini of vortex lines within the condensate. By directly imaging such a vortex line, the presence of a monopole may be discerned from the experimental data alone. These real-space images provide conclusive and long-awaited experimental evidence of the existence of Dirac monopoles. Our result provides an unprecedented opportunity to observe and manipulate these quantum mechanical entities in a controlled environment. PMID:24476889

  17. Primordial magnetic fields from self-ordering scalar fields

    NASA Astrophysics Data System (ADS)

    Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sekiguchi, Toyokazu; Sugiyama, Naoshi

    2015-04-01

    A symmetry-breaking phase transition in the early universe could have led to the formation of cosmic defects. Because these defects dynamically excite not only scalar and tensor type cosmological perturbations but also vector type ones, they may serve as a source of primordial magnetic fields. In this study, we calculate the time evolution and the spectrum of magnetic fields that are generated by a type of cosmic defects, called global textures, using the non-linear sigma (NLSM) model. Based on the standard cosmological perturbation theory, we show, both analytically and numerically, that a vector-mode relative velocity between photon and baryon fluids is induced by textures, which inevitably leads to the generation of magnetic fields over a wide range of scales. We find that the amplitude of the magnetic fields is given by B~10?9((1+z)/103)?2.5(v/mpl)2(k/Mpc?1)3.5/?N Gauss in the radiation dominated era for klesssim 1 Mpc?1, with v being the vacuum expectation value of the O(N) symmetric scalar fields. By extrapolating our numerical result toward smaller scales, we expect that B~ 10?14.5((1+z)/103)1/2(v/mpl)2(k/Mpc?1)1/2/?N Gauss on scales of kgtrsim 1 Mpc?1 at redshift 0zgtrsim 110. This might be a seed of the magnetic fields observed on large scales today.

  18. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2010-01-01

    The Spiral Magnetic Motor, which can accelerate a magnetized rotor through 90% of its cycle with only permanent magnets, was an energy milestone for the 20th century patents by Kure Tekkosho in the 1970's. However, the Japanese company used old ferrite magnets which are relatively weak and an electrically-powered coil to jump start every cycle, which defeated the primary benefit of the permanent magnet motor design. The principle of applying an inhomogeneous, anisotropic magnetic field gradient force Fz = ? cos ? dB/dz, with permanent magnets is well-known in physics, e.g., Stern-Gerlach experiment, which exploits the interaction of a magnetic moment with the aligned electron spins of magnetic domains. In this case, it is applied to dB/d? in polar coordinates, where the force F? depends equally on the magnetic moment, the cosine of the angle between the magnetic moment and the field gradient. The radial magnetic field increases in strength (in the attractive mode) or decreases in strength (in the repulsive mode) as the rotor turns through one complete cycle. An electromagnetic pulsed switching has been historically used to help the rotor traverse the gap (detent) between the end of the magnetic stator arc and the beginning (Kure Tekko, 1980). However, alternative magnetic pulse and switching designs have been developed, as well as strategic eddy current creation. This work focuses on the switching mechanism, novel magnetic pulse methods and advantageous angular momentum improvements. For example, a collaborative effort has begun with Toshiyuki Ueno (University of Tokyo) who has invented an extremely low power, combination magnetostrictive-piezoelectric (MS-PZT) device for generating low frequency magnetic fields and consumes "zero power" for static magnetic field production (Ueno, 2004 and 2007a). Utilizing a pickup coil such as an ultra-miniature millihenry inductor with a piezoelectric actuator or simply Wiegand wire geometry, it is shown that the necessary power for magnetic field switching device can be achieved in order to deflect the rotor magnet in transit. The Wiegand effect itself (bistable FeCoV wire called "Vicalloy") invented by John Wiegand (Switchable Magnetic Device, US Patent ?4,247,601), utilizing Barkhausen jumps of magnetic domains, is also applied for a similar achievement (Dilatush, 1977). Conventional approaches for spiral magnetic gradient force production have not been adequate for magnetostatic motors to perform useful work. It is proposed that integrating a magnetic force control device with a spiral stator inhomogeneous axial magnetic field motor is a viable approach to add a sufficient nonlinear boundary shift to apply the angular momentum and potential energy gained in 315 degrees of the motor cycle.

  19. Electric/magnetic field sensor

    DOEpatents

    Schill, Jr., Robert A. (Henderson, NV); Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  20. Behavior of a Single Langmuir Probe in a Magnetic Field.

    ERIC Educational Resources Information Center

    Pytlinski, J. T.; And Others

    1978-01-01

    Describes an experiment to demonstrate the influence of a magnetic field on the behavior of a single Langmuir probe. The experiment introduces the student to magnetically supported plasma and particle behavior in a magnetic field. (GA)

  1. The Magnetic Field in Tapia's Globule 2

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Carretti, Ettore; Bhat, Ramesh; Robishaw, Timothy; Crutcher, Richard; Vaillancourt, John

    2014-04-01

    We propose to measure the magnetic field in the Southern Coalsack using the Zeeman effect in OH at 1665 and 1667 MHz. This is motivated by (1) the measurement of a large magnetic field (B~90 uG) in the Coalsack region from optical and near infrared polarimetry and (2) a very low magnetic field (B~1 uG) measured ~30' from the cloud edge using pulsar Faraday rotation measurements. While the derived field strength in the cloud is significantly larger than usually seen in the interstellar medium, the existence of an X-ray emitting envelope around the cloud that contains significant amounts of O VI ions puts the magnetic pressure at approximate equipartition with the thermal pressure of such gas. A chain of observational results indicate that the Coalsack might be a unique, nearby example of externally triggered star formation. This chain starts with the passage of the Upper Centaurus-Lupus super bubble over the cloud, eventually causing triggered star formation. Probing the high magnetic field strength and providing accurate constraints for the interpretation of the observations of the cloud is therefore of great importance for testing this hypothesis.

  2. Measurement of the CMS Magnetic Field

    E-print Network

    V. I. Klyukhin; A. Ball; F. Bergsma; D. Campi; B. Curé; A. Gaddi; H. Gerwig; A. Hervé; J. Korienek; F. Linde; C. Lindenmeyer; R. Loveless; M. Mulders; T. Nebel; R. P. Smith; D. Stickland; G. Teafoe; L. Veillet; J. K. Zimmerman

    2011-10-03

    The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the initial magnetic flux density in steel at the maximum field to an accuracy of a few percent. The results of the measurements made at 4 T are reported and compared with a three-dimensional model of the CMS magnet system calculated with TOSCA.

  3. Reducing blood viscosity with magnetic fields

    NASA Astrophysics Data System (ADS)

    Tao, R.; Huang, K.

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ˜1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells’ normal function. This technology has much potential for physical therapy.

  4. Holographic Gauge Theory with Maxwell Magnetic Field

    E-print Network

    Wung-Hong Huang

    2010-03-13

    We first apply the transformation of mixing azimuthal with wrapped coordinate to the 11D M-theory with a stack N M5-branes to find the spacetime of a stack of N D4-branes with magnetic field in 10D IIA string theory, after the Kaluza-Klein reduction. In the near-horizon limit the background becomes the Melvin magnetic field deformed $AdS_6 \\times S^4$. Although the solution represents the D-branes under the Melvin RR one-form we use a simple observation to see that it also describes the solution of D-branes under the Maxwell magnetic field. As the magnetic field we consider is the part of the background itself we have presented an alternative to previous literature, because our method does not require the assumption of negligible back reaction. Next, we use the found solution to investigate the meson property through D4/D8 system (Sakai-Sugimoto model) and compare it with those studied by other authors. Finally, we present a detailed analysis about the Wilson loop therein and results show that the external Maxwell magnetic field will enhance the quark-antiquark potential.

  5. Cosmic Magnetic Fields: Observations and Prospects

    E-print Network

    Beck, Rainer

    2011-01-01

    Synchrotron emission, its polarization and its Faraday rotation at radio frequencies of 0.2-10 GHz are powerful tools to study the strength and structure of cosmic magnetic fields. The observational results are reviewed for spiral, barred and flocculent galaxies, the Milky Way, halos and relics of galaxy clusters, and for the intergalactic medium. Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of cosmic magnetic fields and will help to understand their origin. At low frequencies, LOFAR (10-250 MHz) will allow us to map the structure of weak magnetic fields in the outer regions and halos of galaxies and galaxy clusters. Polarization at higher frequencies (1-10 GHz), as observed with the EVLA, ASKAP, MeerKAT, APERTIF and the SKA, will trace magnetic fields in the disks and central regions of nearby galaxies in unprecedented detail. Surveys of Faraday rotation measures of pulsars will map the Milky Way's magnetic field with high precision. All-sky sur...

  6. Reionization constraints on primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Pandey, Kanhaiya L.; Choudhury, T. Roy; Sethi, Shiv K.; Ferrara, Andrea

    2015-08-01

    We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: 6 < z < 10. We perform a comprehensive Markov chain Monte Carlo (MCMC) physical analysis allowing the variation of parameters related to primordial magnetic fields (strength, B0, and power-spectrum index n_{B}), reionization and ? cold dark matter cosmological model. We find that magnetic field strengths in the range: B0 ? 0.05-0.3 nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the Wilkinson Microwave Anisotropy Probe and quasar absorption spectra data. Our analysis puts upper limits on the magnetic field strength B0 < 0.358, 0.120 and 0.059 nG (95 per cent c.l.) for n_{B} = -2.95, -2.9 and -2.85, respectively. These represent the strongest magnetic field constraints among those available from other cosmological observables.

  7. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  8. Refocusing properties of periodic magnetic fields

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1976-01-01

    The use of depressed collectors for the efficient collection of spent beams from linear-beam microwave tubes depends on a refocusing procedure in which the space charge forces and transverse velocity components are reduced. The refocusing properties are evaluated of permanent magnet configurations whose axial fields are approximated by constant plateaus or linearly varying fields. The results provide design criteria and show that the refocusing properties can be determined from the plateau fields alone.

  9. To be submitted to ApJ Letters Particle acceleration in stressed coronal magnetic fields

    E-print Network

    Vlahos, Loukas

    To be submitted to ApJ Letters Particle acceleration in stressed coronal magnetic fields R an analysis of particle acceleration in a model of the complex magnetic field environment in the flaring solar a relativistic test particle code. It is shown that both ions and electrons are accelerated readily

  10. Exploring Magnetic Fields with a Compass

    NASA Astrophysics Data System (ADS)

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this paper, we present a series of simple activities adapted from the Matter & Interactions textbook for doing just this. Interestingly, these simple measurements are comparable to predictions made by the Bohr model of the atom. Although antiquated, Bohr's atom can lead the way to a deeper analysis of the atomic properties of magnets. Although originally developed for an introductory calculus-based course, these activities can easily be adapted for use in an algebra-based class or even at the high school level.

  11. Mechanism of magnetic field effect in cryptochrome

    E-print Network

    Solov'yov, Ilia A

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a concrete light-driven reaction cycle in cryptochrome that lets a magnetic field influence the signaling state of the photoreceptor. The reaction cycle ties together transient absorption and electron-spin-resonance observations with known facts on avian magnetoreception. Our analysis establishes the feasibility of cryptochrome to act as a g...

  12. Near Field Environment Process Model Report

    SciTech Connect

    R.A. Wagner

    2000-11-14

    Waste emplacement and activities associated with construction of a repository system potentially will change environmental conditions within the repository system. These environmental changes principally result from heat generated by the decay of the radioactive waste, which elevates temperatures within the repository system. Elevated temperatures affect distribution of water, increase kinetic rates of geochemical processes, and cause stresses to change in magnitude and orientation from the stresses resulting from the overlying rock and from underground construction activities. The recognition of this evolving environment has been reflected in activities, studies and discussions generally associated with what has been termed the Near-Field Environment (NFE). The NFE interacts directly with waste packages and engineered barriers as well as potentially changing the fluid composition and flow conditions within the mountain. As such, the NFE defines the environment for assessing the performance of a potential Monitored Geologic Repository at Yucca Mountain, Nevada. The NFe evolves over time, and therefore is not amenable to direct characterization or measurement in the ambient system. Analysis or assessment of the NFE must rely upon projections based on tests and models that encompass the long-term processes of the evolution of this environment. This NFE Process Model Report (PMR) describes the analyses and modeling based on current understanding of the evolution of the near-field within the rock mass extending outward from the drift wall.

  13. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John (Oak Ridge, TN) [Oak Ridge, TN; Kisner, Roger (Knoxville, TN) [Knoxville, TN; Ludtka, Gerard (Oak Ridge, TN) [Oak Ridge, TN; Ludtka, Gail (Oak Ridge, TN) [Oak Ridge, TN; Jaramillo, Roger (Knoxville, TN) [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  14. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  15. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Yuen, Clement

    2011-07-01

    The current gold standard method of Malaria diagnosis relies on the blood smears examination. The method is laborintensive, time consuming and requires the expertise for data interpretation. In contrast, Raman scattering from a metabolic byproduct of the malaria parasite (Hemozoin) shows the possibility of rapid and objective diagnosis of malaria. However, hemozoin concentration is usually extremely low especially at the early stage of malaria infection, rendering weak Raman signal. In this work, we propose the sensitive detection of enriched ?-hematin, whose spectroscopic properties are equivalent to hemozoin, based on surface enhanced Raman spectroscopy (SERS) by using magnetic nanoparticles. A few orders of magnitude enhancement in the Raman signal of ?-hematin can be achieved using magnetic nanoparticles. Furthermore, the effect of magnetic field on SERS enhancement is investigated. Our result demonstrates the potential of SERS using magnetic nanoparticles in the effective detection of hemozoin for malaria diagnosis.

  16. Magnetic Field Effects on Plasma Plumes

    NASA Technical Reports Server (NTRS)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  17. Whistler Modes with Wave Magnetic Fields Exceeding the Ambient Field

    SciTech Connect

    Stenzel, R.L.; Urrutia, J.M.; Strohmaier, K.D.

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  18. Whistler modes with wave magnetic fields exceeding the ambient field.

    PubMed

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background. PMID:16606272

  19. Magnetic fields in early-type stars

    E-print Network

    Grunhut, Jason H

    2015-01-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M_sun) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have fu...

  20. Mechanical Response of Elastomers to Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Munoz, B. C.; Jolly, M. R.

    1996-01-01

    Elastomeric materials represent an important class of engineering materials, which are widely used to make components of structures, machinery, and devices for vibration and noise control. Elastomeric material possessing conductive or magnetic properties have been widely used in applications such as conductive and magnetic tapes, sensors, flexible permanent magnets, etc. Our interest in these materials has focussed on understanding and controlling the magnitude and directionality of their response to applied magnetic fields. The effect of magnetic fields on the mechanical properties of these materials has not been the subject of many published studies. Our interest and expertise in controllable fluids have given us the foundation to make a transition to controllable elastomers. Controllable elastomers are materials that exhibit a change in mechanical properties upon application of an external stimuli, in this case a magnetic field. Controllable elastomers promise to have more functionality than conventional elastomers and therefore could share the broad industrial application base with conventional elastomers. As such, these materials represent an attractive class of smart materials, and may well be a link that brings the applications of modern control technologies, intelligent structures and smart materials to a very broad industrial area. This presentation will cover our research work in the area of controllable elastomers at the Thomas Lord Research Center. More specifically, the presentation will discuss the control of mechanical properties and mathematical modeling of the new materials prepared in our laboratories along with experiments to achieve adaptive vibration control using the new materials.

  1. Topology of magnetic fields from MDI data: Background field

    NASA Astrophysics Data System (ADS)

    Knyazeva, I. S.; Makarenko, N. G.; Karimova, L. M.

    2010-08-01

    A quantitative description of the geometry and topology of the magnetic field of the Sun is given in terms of Minkowski functionals: the Euler characteristic and the perimeter of excursion sets for specified levels. Methods of mathematical morphology are applied to background fragments of magnetograms for the entire solar disk. The results obtained show that the topological characteristics of the background field are stable in time and correspond to log-normal, intermittent random fields.

  2. Modeling Solar Magnetic Fields Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Lee, G.; Malanushenko, A. V.; DeRosa, M. L.

    2014-12-01

    Previous research reconstructed a three-dimensional model of the magnetic field of an active region on the Sun from using solar coronal loops as guides for modeling(Malanushenko et al., ApJ,2009, 707:1044). In this study, we test the consistency of such reconstructions with data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) by applying the aformentioned method to additional active regions with varying amounts of solar activity. To create an initial model of a magnetic field surrounding an active region, we first manually trace the coronal loops on the coronal images in the following wavelengths: 171Å, 193Å, 211Å, 94Å, 131Å, and 335Å. The manually traced loops are then used as a guide for a computer reconstruction of the individual three-dimensional field lines with differing heights and degrees of local twist. The reconstructed field lines are then adjusted by a partially automated algorithm, so that the constructed field line would correspond to a coronal loop on the Sun. These fitted loops serve as a skeleton to create a model of the magnetic field of the active region. We expect that our modeling can be used in future works to predict future solar events. Implications of this ability include being able to prepare a response for a solar event before it happens.

  3. Human melatonin during continuous magnetic field exposure

    SciTech Connect

    Graham, C.; Cook, M.R.; Riffle, D.W.

    1997-05-01

    This report describes the third in a series of double-blind, laboratory-based studies that were aimed at determining the effects of nocturnal exposure to power frequency magnetic fields on blood levels of melatonin in human volunteers. The two earlier studies evaluated effects on melatonin of intermittent exposure to 60 Hz circularly polarized magnetic fields at 10 and 200 mG. No overall effects on melatonin levels were found. In the present study, men were exposed continuously rather than intermittently through the night to the same 200 mG magnetic field condition that was used previously; again, no overall effects on melatonin levels were found. The authors conclude that the intermittent and continuous exposure conditions used in the laboratory to date are not effective in altering nocturnal blood levels of melatonin in human volunteers.

  4. Neutrino dispersion in external magnetic fields

    SciTech Connect

    Kuznetsov, A. V.; Mikheev, N. V.; Vassilevskaya, L. A.; Raffelt, G. G.

    2006-01-15

    We calculate the neutrino self-energy operator {sigma}(p) in the presence of a magnetic field B. In particular, we consider the weak-field limit eB<field' m{sub l}{sup 2}<field, we show that it is crucial to include the contributions from all Landau levels of the intermediate charged lepton, not just the ground state. For the conditions of the early universe where the background medium consists of a charge-symmetric plasma, the pure B-field contribution to the neutrino dispersion relation is proportional to (eB){sup 2} and thus comparable to the contribution of the magnetized plasma.

  5. Vertical gradients of sunspot magnetic fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  6. The symmetry properties of planetary magnetic fields

    NASA Technical Reports Server (NTRS)

    Raedler, Karl-Heinz; Ness, Norman F.

    1990-01-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For earth, Jupiter, and Saturn, the centered dipole, quadrupole, and octupole contributions are included, while at Uranus only the dipole and quadrupole contributions are considered. It is found that there are a number of common features of the magnetic fields of earth and Jupiter. Compared to earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets.

  7. A magnetically field-controllable phononic crystal

    NASA Astrophysics Data System (ADS)

    Bayat, Alireza; Gordaninejad, Faramarz

    2014-04-01

    Phononic crystals are periodic structures consist of different materials in an elastic medium designed to interact with elastic waves. These crystals have practical applications, such as, frequency filters, beam splitters, sound or vibration protectors, acoustic lasers, acoustic mirrors and elastic waveguides. In this study, the wave propagation in a tunable phononic crystal is investigated. The magnetically controllable phononic crystal consists of a soft magnetorheological elastic medium undergoing large deformations upon the application of a magnetic field. Finite deformations and induced magnetic fields influence wave propagation characteristics in the periodic structure. The soft matrix is modeled as a hyperelastic elastomer to take into account the material nonlinearity. The integrated effects of material properties, transformation of the geometry of the unit cell, and the induced magnetic field, are used to tune the band structure of the periodic structure. Both analytical and finite element methods are employed to evaluate the dispersion diagrams considering Bloch boundary conditions. Results show that the applied magnetic field significantly affect the width and the position of band-gaps.

  8. Magnetic fluid readily controlled in zero gravity environment

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1965-01-01

    Colloid composed of finely ground iron oxide in a fluid such as heptane, is controlled and directed magnetically in a zero gravity environment. It will not separate on standing for long periods or after exposure to magnetic or centrifugal forces. Because of its low density and low viscosity, it is easily pumped.

  9. The symmetry properties of planetary magnetic fields

    SciTech Connect

    Raedler, K.H. ); Ness, N.F. )

    1990-03-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of Earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For Earth, Jupiter, and Saturn the centered dipole, quadrupole, and octupole contributions are included, while at Uranus, only the dipole and quadrupole contributoins are considered. The magnetic fields are analyzed by decomposing them into those parts which have simple symmetry properties with respect to the rotation axis and the equatorial plane. It is found that there are a number of common features of the magnetic fields of Earth and Jupiter. Compared to Earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis, by now rather well known, but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets. The implications of these results for dynamo models are discussed. With a vgiew to Cowling's theorem the symmetry of the fields is investigated with respect to not only the rotation axis but also to other axes intersecting the plaentary center. Surprisingly, the high degree of asymmetry of the Uranian field that is observed with respect to the rotation axis reduces considerably to being compare to that for Earth or Jupiter when the appropriate axis is employed.

  10. A unilateral NMR magnet for sub-structure analysis in the built environment: The Surface GARField

    NASA Astrophysics Data System (ADS)

    McDonald, P. J.; Aptaker, P. S.; Mitchell, J.; Mulheron, M.

    2007-03-01

    A new, portable NMR magnet with a tailored magnetic field profile and a complementary radio frequency sensor have been designed and constructed for the purpose of probing in situ the sub-surface porosity of cement based materials in the built environment. The magnet is a one sided device akin to a large NMR-MOUSE with the additional design specification of planes of constant field strength ? B0? parallel to the surface. There is a strong gradient G in the field strength perpendicular to these planes. As with earlier GARField magnets, the ratio G/? B0? is a system constant although the method of achieving this condition is substantially different. The new magnet as constructed is able to detect signals 50 mm ( 1H NMR at 3.2 MHz) away from the surface of the magnet and can profile the surface layers of large samples to a depth of 35-40 mm by moving the magnet, and hence the resonant plane of the polarising field, relative to the sample surface. The matching radio frequency excitation/detector coil has been designed to complement the static magnetic field such that the polarising B0 and sensing B1 fields are, in principal, everywhere orthogonal. Preliminary spatially resolved measurements are presented of cement based materials, including two-dimensional T1- T2 relaxation correlation spectra.

  11. A unilateral NMR magnet for sub-structure analysis in the built environment: the Surface GARField.

    PubMed

    McDonald, P J; Aptaker, P S; Mitchell, J; Mulheron, M

    2007-03-01

    A new, portable NMR magnet with a tailored magnetic field profile and a complementary radio frequency sensor have been designed and constructed for the purpose of probing in situ the sub-surface porosity of cement based materials in the built environment. The magnet is a one sided device akin to a large NMR-MOUSE with the additional design specification of planes of constant field strength /B0/ parallel to the surface. There is a strong gradient G in the field strength perpendicular to these planes. As with earlier GARField magnets, the ratio G//:B0/ is a system constant although the method of achieving this condition is substantially different. The new magnet as constructed is able to detect signals 50mm (1H NMR at 3.2 MHz) away from the surface of the magnet and can profile the surface layers of large samples to a depth of 35-40 mm by moving the magnet, and hence the resonant plane of the polarising field, relative to the sample surface. The matching radio frequency excitation/detector coil has been designed to complement the static magnetic field such that the polarising B0 and sensing B1 fields are, in principal, everywhere orthogonal. Preliminary spatially resolved measurements are presented of cement based materials, including two-dimensional T1-T2 relaxation correlation spectra. PMID:17123850

  12. Generation of Local Magnetic Field by Nano Electro-Magnets Hyung Kwon KIM1;2

    E-print Network

    Hwang, Sung Woo

    Generation of Local Magnetic Field by Nano Electro-Magnets Hyung Kwon KIM1;2 , Su Heon HONG1 , Bo; published April 27, 2004) Fabrication and characterization of nano electro-magnets are reported. The nano and current level of the electro-magnet. [DOI: 10.1143/JJAP.43.2054] KEYWORDS: magnetic field, electro-magnet

  13. Magnetic fields of spherical compact stars in a braneworld

    SciTech Connect

    Ahmedov, B. J.; Fattoyev, F. J.

    2008-08-15

    We study the stellar magnetic field configuration in dependence on brane tension and present solutions of Maxwell equations in the external background space-time of a magnetized spherical star in a Randall-Sundrum II type braneworld. The star is modeled as a sphere consisting of perfect highly magnetized fluid with infinite conductivity and a frozen-in magnetic field. With respect to solutions for magnetic fields found in the Schwarzschild space-time, brane tension introduces enhancing corrections to the exterior magnetic field which could be relevant for the magnetic fields of magnetized compact objects as pulsars and magnetars and may provide observational evidence for the brane tension.

  14. Broadband antenna systems for lightning magnetic fields

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Noggle, R. C.

    1975-01-01

    Broadband magnetic antenna systems suitable for recording submicrosecond field changes are described, and typical data from distant lightning are presented. Two types of systems are described, one with a high-impedance antenna loop connected to the integrator by a twisted pair of coaxial cables and another with the antenna loop and twisted signal loops formed from a single piece of coaxial cable. Data for correlated magnetic and electric field waveforms from lightning at a distance of 50 to 100 km are presented and are shown to be almost identical.

  15. Measurements of magnetic fields in solar prominences

    NASA Technical Reports Server (NTRS)

    Deglinnocenti, Egidio Landi

    1986-01-01

    Magnetic fields can be measured, in solar prominences, by means of two different basic mechanisms that are responsible for the introduction (or the reduction) of a given amount of polarization in spectral lines: these are the Zeeman effect and the Hanle effect. Through the splitting of the magnetic components of a spectral line, the Zeeman effect is capable of introducing a certain amount of circular polarization across the line profile. The Hanle effect consist of a modification of the linear polarization that is induced in spectral lines by the anisotropic illumination of the prominence plasma by the photospheric radiation field. These two effects are briefly discussed.

  16. Helical magnetic fields via baryon asymmetry

    E-print Network

    Eduard F. Piratova; Edilson A. Reyes; Héctor J. Hortúa

    2014-09-03

    There is strong observational evidence for the presence of large-scale magnetic fields MF in galaxies and clusters, with strength $\\sim \\mu$G and coherence lenght on the order of Kpc. However its origin remains as an outstanding problem. One of the possible explanations is that they have been generated in the early universe. Recently, it has been proposed that helical primordial magnetic fields PMFs, could be generated during the EW or QCD phase transitions, parity-violating processes and predicted by GUT or string theory. Here we concentrate on the study of two mechanisms to generate PMFs, the first one is the $\

  17. Space environment, electromagnetic fields, and circadian rhythm.

    PubMed

    Izumi, R; Ishioka, N; Mizuno, K; Goka, T

    2001-01-01

    Human space activity began in 1961. About 400 persons have gone to space since then, and about 70 of them have stayed more than 1 month. Circadian rhythm and sleep in space have been investigated several times, though the effect of longer stays in space has not been adequately clarified. Electromagnetic fields are different in the space environment, especially in deeper space missions, such as the Moon or Mars, but their effects on human health have rarely been studied. In this article, we summarize the current status of the International Space Station project, study circadian rhythm and sleep in space, investigate electromagnetic fields, and state the necessity for investigating this research field. PMID:11774866

  18. Magnetic fields of HgMn stars?

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; González, J. F.; Ilyin, I.; Korhonen, H.; Schöller, M.; Savanov, I.; Arlt, R.; Castelli, F.; Lo Curto, G.; Briquet, M.; Dall, T. H.

    2012-11-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have failed to detect magnetic fields, indicating an upper limit on the longitudinal field between 8 and 15 G. In these LSD studies, assumptions were made that all spectral lines are identical in shape and can be described by a scaled mean profile. Aims: We re-analyse the available spectropolarimetric material by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD 65949 and the hotter analog of HgMn stars, the PGa star HD 19400, using FORS 2 installed at the VLT. We also give new measurements of the eclipsing system AR Aur with a primary star of HgMn peculiarity, which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. Methods: We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS spectra for eight HgMn stars and one normal and one superficially normal B-type star obtained in 2010. Out of this sample, three HgMn stars belong to spectroscopic double-lined systems. The application of the moment technique to the HARPS and SOFIN spectra allowed us to study the presence of the longitudinal magnetic field, the crossover effect, and quadratic magnetic fields. Results for the HgMn star HD 65949 and the PGa star HD 19400 are based on a linear regression analysis of low-resolution spectra obtained with FORS 2 in spectropolarimetric mode. Results: Our measurements of the magnetic field with the moment technique using spectral lines of several elements separately reveal the presence of a weak longitudinal magnetic field, a quadratic magnetic field, and the crossover effect on the surface of several HgMn stars as well as normal and superficially normal B-type stars. Furthermore, our analysis suggests the existence of intriguing correlations between the strength of the magnetic field, abundance anomalies, and binary properties. The results are discussed in the context of possible mechanisms responsible for the development of the element patches and complex magnetic fields on the surface of late B-type stars. Based on observations obtained at the European Southern Observatory (ESO programmes 076.D-0169(A), 076.D-0172(A), 084.D-0338(A), 085.D-0296(A), 085.D-0296(B), 087.D-0049(A), 088.D-0284(A)), SOFIN observations at the 2.56 m Nordic Optical Telescope on La Palma, and observations obtained with the CORALIE Echelle Spectrograph on the 1.2 m Euler Swiss telescope on La Silla, Chile.Tables 2-7, 9, 10 are only available in electronic form at http://www.aanda.org

  19. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    SciTech Connect

    Lee, Seong-Joo Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-09

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a ?/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5??T static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  20. The Galactic magnetic field and its lensing of ultrahigh energy and Galactic cosmic rays

    E-print Network

    Farrar, Glennys R

    2015-01-01

    It has long been recognized that magnetic fields play an important role in many astrophysical environments, yet the strength and structure of magnetic fields beyond our solar system have been at best only qualitatively constrained. The Galactic magnetic field in particular is crucial for modeling the transport of Galactic CRs, for calculating the background to dark matter and CMB-cosmology studies, and for determining the sources of UHECRs. This report gives a brief overview of recent major advances in our understanding of the Galactic magnetic field (GMF) and its lensing of Galactic and ultrahigh energy cosmic rays.

  1. Magnetic fields and galactic star formation rates

    SciTech Connect

    Loo, Sven Van; Tan, Jonathan C.; Falle, Sam A. E. G.

    2015-02-10

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ?0.5 pc. Including an empirically motivated prescription for star formation from dense gas (n{sub H}>10{sup 5} cm{sup ?3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 ?G. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  2. Magnetic field exposure of commercial airline pilots.

    PubMed

    Hood; Nicholas; Butler; Lackland; Hoel; Mohr

    2000-10-01

    PURPOSE: Airline pilots are exposed to magnetic fields generated by the aircraft's electrical and electronic systems. The purpose of this study was to directly measure the flight deck magnetic fields to which commercial airline pilots are exposed when flying on different aircraft types over a 75-hour flight-duty month.METHODS: Magentic field measurements were taken using personal dosimeters capable of measuring magnetic fields in the 40-800 Hz frequency range. Dosimeters were carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. The data were analyzed by aircraft type, with statistics based on block hours. Block hours begin when the aircraft departs the gate prior to take off and end when the aircraft returns to the gate after landing.RESULTS: Approximately 1008 block hours were recorded at a sampling rate of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200.CONCLUSIONS: Measured flight deck magnetic field levels were substantially above the 0.8 to 1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure. PMID:11018425

  3. Unusual Magnetic Fields of Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Nellis, W. J.

    2015-06-01

    Voyager 2 discovered the unusual non-dipolar and non-axisymmetric magnetic fields of the Ice Giants Uranus and Neptune (U/N) in the 1980's. The cause of those unique fields has been a major scientific question ever since. The answer lies in physical properties of fluids that generate planetary magnetic fields by dynamo action: convecting, electrically conducting fluids at high pressures P and temperatures T. Properties of fluids at planetary P/Ts are measured under adiabatic shock compression and quasi-isentropic multiple-shock compression up to a few 100 GPa and several 1000 K. Dynamic-compression and Voyager 2 data measured over three decades indicate (i) There is little ``Ice'' in the Ice Giants. (ii) Magnetic fields of U/N are made by metallic fluid H close to outer planetary radii. (iii) Thus, it is reasonable to observe non-dipolar non-axisymmetric fields. (iv) Those fields are probably caused by decoupling of rotational motion of U/N from convective motions in their dynamos, unlike Earth with strong coupling between those motions and a dipolar field. The full paper on this work is published.

  4. Biomaterials and Magnetic fields for Cancer Therapy

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Mazuruk, Konstanty

    2003-01-01

    The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.

  5. Sensor for detecting changes in magnetic fields

    DOEpatents

    Praeg, Walter F. (Palos Park, IL)

    1981-01-01

    A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  6. Sensor for detecting changes in magnetic fields

    DOEpatents

    Praeg, W.F.

    1980-02-26

    A sensor is described for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device that comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  7. Terrestrial magnetic field effects on large photomultipliers

    NASA Astrophysics Data System (ADS)

    Leonora, E.; KM3NeT Consortium

    2013-10-01

    The effects of the Earth's magnetic field on the performance of large PMTs for a cubic-kilometer-scale neutrino telescope has been studied. Measurements were performed for three Hamamatsu PMTs: two 8? R5912 types; one with a standard and the other with a super bialkali photocathode, and a 10? R7081 type with a standard bialkali photocathode. The main characteristics of the PMTs, such as detection efficiency, transit time, transit time spread, gain, peak-to-valley ratio, charge resolution and fractions of spurious pulses were measured while varying the PMT orientations with respect to the Earth's magnetic field. The measurements were performed both with and without a mu-metal cage magnetic shielding. For the 8? PMTs the impact of the magnetic field was found to be smaller than for the 10? PMT. The magnetic shielding strongly reduced the orientation-dependent variations measured for the 10? PMT and even improved the performance. Although less pronounced, improvements were also measured for the 8? PMTs.

  8. ANCHORING MAGNETIC FIELD IN TURBULENT MOLECULAR CLOUDS

    SciTech Connect

    Li Huabai; Goodman, Alyssa; Darren Dowell, C.; Hildebrand, Roger; Novak, Giles

    2009-10-20

    One of the key problems in star formation research is to determine the role of magnetic fields. Starting from the atomic intercloud medium which has density n {sub H} approx 1 cm{sup -3}, gas must accumulate from a volume several hundred pc across in order to form a typical molecular cloud. Star formation usually occurs in cloud cores, which have linear sizes below 1 pc and densities n {sub H2} > 10{sup 5} cm{sup -3}. With current technologies, it is hard to probe magnetic fields at scales lying between the accumulation length and the size of cloud cores, a range corresponds to many levels of turbulent eddy cascade, and many orders of magnitude of density amplification. For field directions detected from the two extremes, however, we show here that a significant correlation is found. Comparing this result with molecular cloud simulations, only the sub-Alfvenic cases result in field orientations consistent with our observations.

  9. Pulsed-field magnetometry for rock magnetism

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2015-12-01

    An improved method is proposed for measuring dynamic magnetizations of bulk volcanic rock samples induced by a pulsed-field of 0.7 T and a duration of 10 ms. The transient magnetization is measured by a sensing system that consists of a pair of inductive differential coils, an analog preamplifier and integrator, and a high-speed digital storage scope. The system was calibrated using a paramagnetic salt (Gd2O3) and was tested to different kinds of volcanic rocks with their magnetic properties well-documented previously. The results were comparable with those measured by a quasi-static method using a vibrating sample magnetometer, although there were small discrepancies in hysteresis parameters suggesting the time-dependence of the magnetic properties. The proposed system provides not only the magnetization over the short interval of a pulse but also the rapid (~3 ms) exponential decay after a pulse. The decay time constant was different among the samples under study, indicating the variations of their magnetic relaxation time. Although the present system is not sensitive enough to characterize varieties of natural samples including sediments, it has the potential as a versatile and convenient tool for rock magnetism.

  10. The complex magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1975-01-01

    An analysis of the characteristics of the magnetic field of the planet Jupiter is presented. The data were obtained during the flight of Pioneer 11 space probe, using a high field triaxial fluxgate magnetometer. The data are analyzed in terms of traditional Schmitt normalized spherical harmonic expansion fitted to the observations in a least squares sense. Tables of data and graphs are provided to summarize the findings.

  11. Magnetic field influence on paramecium motility

    SciTech Connect

    Rosen, M.F.; Rosen, A.D. )

    1990-01-01

    The influence of a moderately intense static magnetic field on movement patterns of free swimming Paramecium was studied. When exposed to fields of 0.126 T, these ciliated protozoa exhibited significant reduction in velocity as well as a disorganization of movement pattern. It is suggested that these findings may be explained on the basis of alteration in function of ion specific channels within the cell membrane.

  12. Evolution of protoplanetary disks with dynamo magnetic fields

    NASA Technical Reports Server (NTRS)

    Reyes-Ruiz, M.; Stepinski, Tomasz F.

    1994-01-01

    The notion that planetary systems are formed within dusty disks is certainly not a new one; the modern planet formation paradigm is based on suggestions made by Laplace more than 200 years ago. More recently, the foundations of accretion disk theory where initially developed with this problem in mind, and in the last decade astronomical observations have indicated that many young stars have disks around them. Such observations support the generally accepted model of a viscous Keplerian accretion disk for the early stages of planetary system formation. However, one of the major uncertainties remaining in understanding the dynamical evolution of protoplanetary disks is the mechanism responsible for the transport of angular momentum and subsequent mass accretion through the disk. This is a fundamental piece of the planetary system genesis problem since such mechanisms will determine the environment in which planets are formed. Among the mechanisms suggested for this effect is the Maxwell stress associated with a magnetic field treading the disk. Due to the low internal temperatures through most of the disk, even the question of the existence of a magnetic field must be seriously studied before including magnetic effects in the disk dynamics. On the other hand, from meteoritic evidence it is believed that magnetic fields of significant magnitude existed in the earliest, PP-disk-like, stage of our own solar system's evolution. Hence, the hypothesis that PP disks are magnetized is not made solely on the basis of theory. Previous studies have addressed the problem of the existence of a magnetic field in a steady-state disk and have found that the low conductivity results in a fast diffusion of the magnetic field on timescales much shorter than the evolutionary timescale. Hence the only way for a magnetic field to exist in PP disks for a considerable portion of their lifetimes is for it to be continuously regenerated. In the present work, we present results on the self-consistent evolution of a turbulent PP disk including the effects of a dynamo-generated magnetic field.

  13. Magnetic Field Fluctuations in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    von Papen, M.; Saur, J.; Alexandrova, O.

    2012-12-01

    In the framework of turbulence, we analyze the statistical properties of magnetic field fluctuations measured by the Cassini spacecraft inside the Kronian magnetosphere. We focus on low-latitude passes, where Cassini is near the magnetic equator. In the power spectral densities of the fluctuations in frequency space measured in spacecraft frame we identify two power-law spectral ranges seperated by a spectral break around ion gyro-frequency. The mean spectral indices in the frequency range 0.05-1 Hz are ˜ 2.5 for the fluctuations perpendicular and parallel to the local mean magnetic field. The power-law spectral range below the spectral break is more variable and less pronounced, which may be due to nonconstant energy input on the corresponding scales. An increasing flatness with frequency indicates the build-up of intermittency.

  14. Magnetic fields and density functional theory

    SciTech Connect

    Salsbury Jr., Freddie

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  15. In situ magnetic field observations of the AMPTE artificial comet

    NASA Technical Reports Server (NTRS)

    Luehr, H.; Kloecker, N.; Southwood, D. J.; Dunlop, M. W.; Mier-Jedrzejowicz, W. A. C.; Rijnbeek, R. P.; Six, M.; Haeusler, B.; Acuna, M.

    1986-01-01

    Magnetometers aboard the IRM and UKS spacecraft monitored the magnetic field during the AMPTE artificial comet experiment of Dec. 27, 1984. Rapid photoionization of the released barium vapor resulted in the formation of a magnetic cavity, shielded from the ambient magnetic field.The presence of this highly conductive obstacle caused draping and compression of the solar wind magnetic field.

  16. Electrical conductivity of quark matter in magnetic field

    E-print Network

    B. Kerbikov; M. Andreichikov

    2011-12-05

    Fermion currents in dense quark matter embedded into magnetic field are under intense discussions motivated by Chiral Magnetic Effect. We argue that conductivity of quark matter may be independent of the magnetic field direction and not proportional to the magnetic field strength.

  17. Measuring the Earth's Magnetic Field in a Laboratory

    ERIC Educational Resources Information Center

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  18. Dynamical Field Line Connectivity in Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Ruffolo, D. J.; Matthaeus, W. H.

    2014-12-01

    Point-to-point magnetic connectivity has a stochastic character whenever magnetic fluctuations cause a field line random walk, with observable manifestations such as dropouts of solar energetic particles and upstream events at Earth's bow shock. This can also change due to dynamical activity. Comparing the instantaneous magnetic connectivity to the same point at two different times, we provide a nonperturbative analytic theory for the ensemble average perpendicular displacement of the magnetic field line, given the power spectrum of magnetic fluctuations. For simplicity, the theory is developed in the context of transverse turbulence, and is numerically evaluated for two specific models: reduced magnetohydrodynanmics (RMHD), a quasi-two dimensional model of anisotropic turbulence that is applicable to low-beta plasmas, and two-dimensional (2D) plus slab turbulence, which is a good parameterization for solar wind turbulence. We take into account the dynamical decorrelation of magnetic fluctuations due to wave propagation, nonlinear distortion, random sweeping, and convection by a bulk wind flow relative to the observer. The mean squared time-differenced displacement increases with time and with parallel distance, becoming twice the field line random walk displacement at long distances and/or times, corresponding to a pair of uncorrelated random walks. These results are relevant to a variety of astrophysical processes, such as electron transport and heating patterns in coronal loops and the solar transition region, changing magnetic connection to particle sources near the Sun or at a planetary bow shock, and thickening of coronal hole boundaries. Partially supported by the Thailand Research Fund, the US NSF (AGS-1063439 and SHINE AGS-1156094), NASA (Heliophysics Theory NNX11AJ44G), and by the Solar Probe Plus Project through the ISIS Theory team.

  19. SYNCHROTRON AGING IN FILAMENTED MAGNETIC FIELDS

    E-print Network

    Eilek, Jean

    SYNCHROTRON AGING IN FILAMENTED MAGNETIC FIELDS J. A. EILEK 1;2 , D. B. MELROSE 2 and M.A. WALKER 2 radio sources whose dynamical ages are known to be significantly greater than the ages inferred from; In addition, it is becoming increasingly clear that radio galaxies suffer from an ``aging problem

  20. Cylindrical isentropic compression by ultrahigh magnetic field

    NASA Astrophysics Data System (ADS)

    Gu, Zhuowei; Luo, Hao; Zhang, Hengdi; Zhao, Shichao; Tang, Xiaosong; Tong, Yanjin; Song, Zhenfei; Tan, Fuli; Zhao, Jianheng; Sun, Chengwei

    2014-05-01

    The cylindrical isentropic compression by ultrahigh magnetic field (MC-1) is a kind of unique high energy density technique. It has characters like ultrahigh pressure and low temperature rising, and would have widely used in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun the experiment since 2011 and a primary experimental device had been set-up. In the experiments, a seed magnetic field of 5 Tesla were set-up first and compressed by a stainless steel liner which is driven by high explosive initiated synchronously. The internal diameter of the liner is 97 mm, and its thickness is 1.5 mm. The movement of liner was recorded optically and a typical turnaround phenomenon was observed. From the photography results the liner was compressed smoothly and evenly and its average velocity was about 5-6 km/s. In the experiment a axial magnetic field of over 1400 Tesla has been recorded. The MC-1 process was numerical simulated by 1D MHD code MC11D and the simulations are in accord with the experiments.

  1. Enzyme Substrate Reactions in High Magnetic Fields

    PubMed Central

    Maling, J. E.; Weissbluth, M.; Jacobs, E. E.

    1965-01-01

    The reaction rates of two enzyme substrate systems, ribonuclease-RNA and succinate-cytochrome c reductase, were followed as a function of magnetic field from zero to 48,000 gauss. The reaction rates remained constant to within 10 per cent. PMID:5884011

  2. Strain sensors for high field pulse magnets

    SciTech Connect

    Martinez, Christian; Zheng, Yan; Easton, Daniel; Farinholt, Kevin M; Park, Gyuhae

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  3. A Topology for the Penumbral Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.

    We describe a scenario for the topology of the magnetic field in penumbrae that accounts for recent observations showing upflows, downflows, and reverse magnetic polarities. According to our conjecture, short narrow magnetic loops fill the penumbral photosphere. Flows along these arched field lines are responsible for both the Evershed effect and the convective transport. This scenario seems to be qualitatively consistent with most existing observations, including the dark cores in penumbral filaments reported by Scharmer et al. Each bright filament with dark core would be a system of two paired convective rolls with the dark core tracing the common lane where the plasma sinks down. The magnetic loops would have a hot footpoint in one of the bright filament and a cold footpoint in the dark core. The scenario fits in most of our theoretical prejudices (siphon flows along field lines, presence of overturning convection, drag of field lines by downdrafts, etc). If the conjecture turns out to be correct, the mild upward and downward velocities observed in penumbrae must increase upon improving the resolution. This and other observational tests to support or disprove the scenario are put forward.

  4. Relativistic hydrogenic atoms in strong magnetic fields

    E-print Network

    is measured in units of m 2 c 2 |q|# # 4.4×10 9 Tesla. Here m is the mass of the electron, c the speed#. It is worth recalling the the earth's magnetic field is of the order of 1 Gauss and 1 Tesla is 10 4 Gauss. #12

  5. Passive levitation in alternating magnetic fields

    SciTech Connect

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2009-06-16

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  6. Passive levitation in alternating magnetic fields

    SciTech Connect

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2010-09-14

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  7. Primordial magnetic fields from the string network

    E-print Network

    Horiguchi, Kouichirou; Sugiyama, Naoshi

    2016-01-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar--, vector-- and tensor--type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as $a^2B(k,z)\\sim4\\times10^{-16}G\\mu/((1+z)/1000)^{4.25}(k/{\\rm Mpc}^{-1})^{3.5}$ Gauss on super-horizon scales, and $a^2B(k,z)\\sim2.4\\times10^{-17}G\\mu/((1+z)/1000)^{3.5}(k/{\\rm Mpc}^{-1})^{2.5}$ Gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, ...

  8. Charm production in a strong magnetic field

    SciTech Connect

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G. de; Strickland, M.

    2014-11-11

    We discuss the effects of a strong magnetic field on B and D mesons, focusing on the changes of the energy levels and the masses of the bound states. Using the Color Evaporation Model we discuss the possible changes in the production of J/? and ?. We briefly comment the recent experimental data.

  9. Starspots Magnetic field by transit mapping

    NASA Astrophysics Data System (ADS)

    Válio, Adriana; Spagiari, Eduardo

    2014-08-01

    Sunspots are important signatures of the global solar magnetic field cycle. It is believed that other stars also present these same phenomena. However, today it is not possible to observe directly star spots due to their very small sizes. The method applied here studies star spots by detecting small variations in the stellar light curve during a planetary transit. When the planet passes in front of its host star, there is a chance of it occulting, at least partially, a spot. This allows the determination of the spots physical characteristics, such as size, temperature, and location on the stellar surface. In the case of the Sun, there exists a relation between the magnetic field and the spot temperature. We estimate the magnetic field component along the line-of-sight and the intensity of sunspots using data from the MDI instrument on board of the SOHO satellite. Assuming that the same relation applies to other stars, we estimate spots magnetic fields of CoRoT-2 and Kepler-17 stars.

  10. Why are living things sensitive to weak magnetic fields?

    PubMed

    Liboff, Abraham R

    2014-09-01

    There is evidence for robust interactions of weak ELF magnetic fields with biological systems. Quite apart from the difficulties attending a proper physical basis for such interactions, an equally daunting question asks why these should even occur, given the apparent lack of comparable signals in the long-term electromagnetic environment. We suggest that the biological basis is likely to be found in the weak (?50?nT) daily swing in the geomagnetic field that results from the solar tidal force on free electrons in the upper atmosphere, a remarkably constant effect exactly in phase with the solar diurnal change. Because this magnetic change is locked into the solar-derived everyday diurnal response in living things, one can argue that it acts as a surrogate for the solar variation, and therefore plays a role in chronobiological processes. This implies that weak magnetic field interactions may have a chronodisruptive basis, homologous to the more familiar effects on the biological clock arising from sleep deprivation, phase-shift employment and light at night. It is conceivable that the widespread sensitivity of biological systems to weak ELF magnetic fields is vestigially derived from this diurnal geomagnetic effect. PMID:23915203

  11. Magnetic Field Structure in Molecular Clouds by Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Su, B. H.; Eswaraiah, C.; Pandey, A. K.; Wang, C. W.; Lai, S. P.; Tamura, M.; Sato, S.

    2015-03-01

    We report on a program to delineate magnetic field structure inside molecular clouds by optical and infrared polarization observations. An ordered magnetic field inside a dense cloud may efficiently align the spinning dust grains to cause a detectable level of optical and near-infrared polarization of otherwise unpolarized background starlight due to dichroic extinction. The near-infrared polarization data were taken by SIRPOL mounted on IRSF in SAAO. Here we present the SIRPOL results in RCW 57, for which the magnetic field is oriented along the cloud filaments, and in Carina Nebula, for which no intrinsic polarization is detected in the turbulent environment. We further describe TRIPOL, a compact and efficient polarimer to acquire polarized images simultaneously at g', r', and i' bands, which is recently developed at Nagoya University for adaption to small-aperture telescopes. We show how optical observations probe the translucent outer parts of a cloud, and when combining with infrared observations probing the dense parts, and with millimeter and submillimeter observations to sutdy the central embedded protostar, if there is one, would yield the magnetic field structure on different length scales in the star-formation process.

  12. Core shifts, magnetic fields and magnetization of extragalactic jets

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej A.; Sikora, Marek; Pjanka, Patryk; Tchekhovskoy, Alexander

    2015-07-01

    We study the effect of radio-jet core shift, which is a dependence of the position of the jet radio core on the observational frequency. We derive a new method of measuring the jet magnetic field based on both the value of the shift and the observed radio flux, which complements the standard method that assumes equipartition. Using both methods, we re-analyse the blazar sample of Zamaninasab et al. We find that equipartition is satisfied only if the jet opening angle in the radio core region is close to the values found observationally, ?0.1-0.2 divided by the bulk Lorentz factor, ?j. Larger values, e.g. 1/?j, would imply magnetic fields much above equipartition. A small jet opening angle implies in turn the magnetization parameter of ?1. We determine the jet magnetic flux taking into account this effect. We find that the transverse-averaged jet magnetic flux is fully compatible with the model of jet formation due to black hole (BH) spin-energy extraction and the accretion being a magnetically arrested disc (MAD). We calculate the jet average mass-flow rate corresponding to this model and find it consists of a substantial fraction of the mass accretion rate. This suggests the jet composition with a large fraction of baryons. We also calculate the average jet power, and find it moderately exceeds the accretion power, dot{M} c^2, reflecting BH spin energy extraction. We find our results for radio galaxies at low Eddington ratios are compatible with MADs but require a low radiative efficiency, as predicted by standard accretion models.

  13. Magnetic fields in gaps surrounding giant protoplanets

    NASA Astrophysics Data System (ADS)

    Keith, Sarah L.; Wardle, Mark

    2015-07-01

    Giant protoplanets evacuate a gap in their host protoplanetary disc, which gas must cross before it can be accreted. A magnetic field is likely carried into the gap, potentially influencing the flow. Gap crossing has been simulated with varying degrees of attention to field evolution [pure hydrodynamical, ideal, and resistive magnetohydrodynamical (MHD)], but as yet there has been no detailed assessment of the role of the field accounting for all three key non-ideal MHD effects: Ohmic resistivity, ambipolar diffusion, and Hall drift. We present a detailed investigation of gap magnetic field structure as determined by non-ideal effects. We assess susceptibility to turbulence induced by the magnetorotational instability (MRI) and angular momentum loss from large-scale fields. As full non-ideal simulations are computationally expensive, we take an a posteriori approach, estimating MHD quantities from the pure hydrodynamical gap-crossing simulation by Tanigawa, Ohtsuki & Machida. We calculate the ionization fraction and estimate field strength and geometry to determine the strength of non-ideal effects. We find that the protoplanetary disc field would be easily drawn into the gap and circumplanetary disc. Hall drift dominates, so that much of the gap is conditionally MRI unstable depending on the alignment of the field and disc rotation axes. Field alignment also influences the strong toroidal field component permeating the gap. Large-scale magnetic forces are small in the circumplanetary disc, indicating that they cannot drive accretion there. However, turbulence will be key during satellite growth as it affects critical disc features, such as the location of the ice line.

  14. Magnetic field effects on plant growth, development, and evolution.

    PubMed

    Maffei, Massimo E

    2014-01-01

    The geomagnetic field (GMF) is a natural component of our environment. Plants, which are known to sense different wavelengths of light, respond to gravity, react to touch and electrical signaling, cannot escape the effect of GMF. While phototropism, gravitropism, and tigmotropism have been thoroughly studied, the impact of GMF on plant growth and development is not well-understood. This review describes the effects of altering magnetic field (MF) conditions on plants by considering plant responses to MF values either lower or higher than those of the GMF. The possible role of GMF on plant evolution and the nature of the magnetoreceptor is also discussed. PMID:25237317

  15. Magnetic field effects on plant growth, development, and evolution

    PubMed Central

    Maffei, Massimo E.

    2014-01-01

    The geomagnetic field (GMF) is a natural component of our environment. Plants, which are known to sense different wavelengths of light, respond to gravity, react to touch and electrical signaling, cannot escape the effect of GMF. While phototropism, gravitropism, and tigmotropism have been thoroughly studied, the impact of GMF on plant growth and development is not well-understood. This review describes the effects of altering magnetic field (MF) conditions on plants by considering plant responses to MF values either lower or higher than those of the GMF. The possible role of GMF on plant evolution and the nature of the magnetoreceptor is also discussed. PMID:25237317

  16. Circular polarization of obliquely propagating whistler wave magnetic field

    SciTech Connect

    Bellan, P. M.

    2013-08-15

    The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.

  17. Warm Magnetic Field Measurements of LARP HQ Magnet

    SciTech Connect

    Caspi, S; Cheng, D; Deitderich, D; Felice, H; Ferracin, P; Hafalia, R; Joseph, J; Lizarazo, J; Martchevskii, M; Nash, C; Sabbi, G L; Vu, C; Schmalzle, J; Ambrosio, G; Bossert, R; Chlachidze, G; DiMarco, J; Kashikhin, V

    2011-03-28

    The US-LHC Accelerator Research Program is developing and testing a high-gradient quadrupole (HQ) magnet, aiming at demonstrating the feasibility of Nb{sub 3}Sn technologies for the LHC luminosity upgrade. The 1 m long HQ magnet has a 120 mm bore with a conductor-limited gradient of 219 T/m at 1.9 K and a peak field of 15 T. HQ includes accelerator features such as alignment and field quality. Here we present the magnetic measurement results obtained at LBNL with a constant current of 30 A. A 100 mm long circuit-board rotating coil developed by FNAL was used and the induced voltage and flux increment were acquired. The measured b{sub 6} ranges from 0.3 to 0.5 units in the magnet straight section at a reference radius of 21.55 mm. The data reduced from the numerical integration of the raw voltage agree with those from the fast digital integrators.

  18. Lunar Magnetic Fields: Implications for Resource Utilization

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1992-01-01

    It is well known that solar-wind-implanted hydrogen and helium-3 in lunar soils are potentially usable resources for future manned activities. For economical mining of these implanted gases, it is desirable that relative concentrations exceed that of typical soils. It has previously been noted that the monthly variation of solar wind flux on the surface due to lunar immersion in the geomagnetic tail may have measurable consequences for resource utilization. It is pointed out that, for a constant external flux, locally strong lunar crustal magnetic fields will exert the dominant influence on solar wind volatile implantation rates. In particular, the strongest lunar crustal magnetic fields will both deflect and focus incident ions in local regions leading to local enhancements of the incident ion flux. Thus, the most economical sites for extraction of solar-wind-implanted volatiles may be within or adjacent to strong crustal magnetic fields. In addition, solar wind ion deflection by crustal magnetic fields must be considered in evaluating the issue of whether remnant cometary ice or water-bearing minerals have survived in permanently shadowed regions near the lunar poles. This is because sputter erosion of water ice by solar wind ions has been suggested to be an important ice loss mechanism within permanently shadowed regions. Thus, permanently shadowed regions that are also shielded from the solar wind by locally strong crustal fields could be the most promising locations for the survival of cometary ice. Additional numerical simulations are employed to show that solar wind ion deflection by strong lunar magnetic anomalies can produce local increases in the implantation rate of solar wind gases such as hydrogen.

  19. Strong magnetic fields in normal galaxies at high redshift.

    PubMed

    Bernet, Martin L; Miniati, Francesco; Lilly, Simon J; Kronberg, Philipp P; Dessauges-Zavadsky, Miroslava

    2008-07-17

    The origin and growth of magnetic fields in galaxies is still something of an enigma. It is generally assumed that seed fields are amplified over time through the dynamo effect, but there are few constraints on the timescale. It was recently demonstrated that field strengths as traced by rotation measures of distant (and hence ancient) quasars are comparable to those seen today, but it was unclear whether the high fields were in the unusual environments of the quasars themselves or distributed along the lines of sight. Here we report high-resolution spectra that demonstrate that the quasars with strong Mg II absorption lines are unambiguously associated with larger rotation measures. Because Mg ii absorption occurs in the haloes of normal galaxies along the sightlines to the quasars, this association requires that organized fields of surprisingly high strengths are associated with normal galaxies when the Universe was only about one-third of its present age. PMID:18633410

  20. Dynamic nuclear polarization at high magnetic fields

    PubMed Central

    Maly, Thorsten; Debelouchina, Galia T.; Bajaj, Vikram S.; Hu, Kan-Nian; Joo, Chan-Gyu; Mak–Jurkauskas, Melody L.; Sirigiri, Jagadishwar R.; van der Wel, Patrick C. A.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (?w) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (?e/?l), being ?660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (?5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms—the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in ?w and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments. PMID:18266416

  1. Parahydrogen discriminated PHIP at low magnetic fields

    NASA Astrophysics Data System (ADS)

    Prina, I.; Buljubasich, L.; Acosta, R. H.

    2015-02-01

    Parahydrogen induced polarization (PHIP) is a powerful hyperpolarization technique. However, as the signal created has an anti-phase characteristic, it is subject to signal cancellation when the experiment is carried out in inhomogeneous magnetic fields or in low fields that lack the necessary spectral resolution. The use of benchtop spectrometers and time domain (TD) analyzers has continuously grown in the last years and many applications are found in the food industry, for non-invasive compound detection or as a test bench for new contrast agents among others. In this type of NMR devices the combination of low and inhomogeneous magnetic fields renders the application of PHIP quite challenging. We have recently shown that the acquisition of J-spectra in high magnetic fields not only removes the anti-phase peak cancellation but also produces a separation of thermal from hyperpolarized signals, providing Parahydrogen Discriminated (PhD-PHIP) spectra. In this work we extend the use of PhD-PHIP to low and inhomogeneous fields. In this case the strong coupling found for the protons of the sample renders spin-echo spectra that have a great complexity, however, a central region in the spectrum with only hyperpolarized signal is clearly identified. This experimental approach is ideal for monitoring real time chemical reaction of pure PHIP signals.

  2. Fiber-optic magnetic-field imaging.

    PubMed

    Fedotov, I V; Doronina-Amitonova, L V; Sidorov-Biryukov, D A; Safronov, N A; Blakley, S; Levchenko, A O; Zibrov, S A; Fedotov, A B; Kilin, S Ya; Scully, M O; Velichansky, V L; Zheltikov, A M

    2014-12-15

    We demonstrate a scanning fiber-optic probe for magnetic-field imaging where nitrogen-vacancy (NV) centers are coupled to an optical fiber integrated with a two-wire microwave transmission line. The electron spin of NV centers in a diamond microcrystal attached to the tip of the fiber probe is manipulated by a frequency-modulated microwave field and is initialized by laser radiation transmitted through the optical tract of the fiber probe. The two-dimensional profile of the magnetic field is imaged with a high speed and high sensitivity using the photoluminescence spin-readout return from NV centers, captured and delivered by the same optical fiber. PMID:25503039

  3. Magnetic field contribution to the Lorentz model.

    PubMed

    Oughstun, Kurt E; Albanese, Richard A

    2006-07-01

    The classical Lorentz model of dielectric dispersion is based on the microscopic Lorentz force relation and Newton's second law of motion for an ensemble of harmonically bound electrons. The magnetic field contribution in the Lorentz force relation is neglected because it is typically small in comparison with the electric field contribution. Inclusion of this term leads to a microscopic polarization density that contains both perpendicular and parallel components relative to the plane wave propagation vector. The modified parallel and perpendicular polarizabilities are both nonlinear in the local electric field strength. PMID:16783441

  4. Ponderomotive ratchet in a uniform magnetic field

    SciTech Connect

    Dodin, I.Y.; Fisch, N.J.

    2005-10-01

    We show how a ratchet effect, generally used in systems with periodic potentials, can also be practiced on charged particles by an ac field alone, in a background magnetic field near the cyclotron resonance. The effect relies entirely on the spatial inhomogeneity of the high-frequency drive, which produces a deterministic asymmetric ponderomotive barrier for undamped particles. Such a barrier can reflect particles incident from one side while transmitting those incident from the opposite side, hence acting somewhat like a Maxwell demon. The necessary fields are perhaps most easily realized in a plasma, though the effect is more general.

  5. Quantum cascade lasers in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Wade, Aaron

    The frontier of the rapidly emerging field of nano-optoelectronics relies on the understanding and control of intersubband transitions in low-dimensional systems. The continual search for new optoelectronics concepts and materials (including, but not limited to, III-V semiconductors, nitrides, and Si/Ge) has resulted in a rapid expansion of the field of intersubband physics and quantum cascade devices. A quantum cascade (QC) structure is a general concept of an optoelectronic device (laser, LED, frequency mixer, or detector) based on a cascade of radiative transitions between size-quantized energy levels in a multi-quantum-well structure. Today, Quantum Cascade Lasers (QCL), which are the only semiconductor devices operating from the mid-infrared (MIR) to the THz range of frequencies, represent one of the most striking outcomes of intersubband structure engineering, and provide a state-of-the-art model structure to study the basic properties of low-dimensional semiconductor systems. This dissertation concerns the experimental study of MIR and THz QC structures in high magnetic fields. Because of the similar energy and size scales of the spatial and magnetic confinements, the application of an external magnetic field offers a unique experimental tool to control and understand the most basic processes determining the performance of QC nanostructures: quantum confinement and intersubband relaxation. Specific issues addressed in this thesis are (i) mechanisms of intersubband electron relaxation, including electron-phonon, electron-electron, and interface effects; (ii) intersubband transitions in the effective zero-dimensional system ("magnetic" quantum box system); and (iii) intersubband radiative transitions in tilted magnetic fields. First we present detailed studies of GaAs/AlGaAs and GaInAs/AlInAs mid-IR QCLs. By comparing the experimental data and the model of the electron lifetime in the presence of a strong magnetic field, the lifetimes of the elastic and inelastic scattering processes are determined. Ultimately this results in the development (formulation) of a new powerful spectroscopic tool to study the scattering mechanisms in QC structures---intersubband magneto-spectroscopy. Secondly, a study of InAs/AlSb mid-IR QC structures is performed. By applying the method of the intersubband magneto-spectroscopy, we directly measured the quantum efficiency of intersubband processes in a model two-level system, and then obtain electron lifetimes of the upper-state of the radiative transition. Thirdly, GaAs/AlGaAs THz QCLs are studied. Here, a magnetic field was used as a tool to controllably transform a 2D multi-QW structure into effective 0D system with reduced (eventually quenched) non-radiative intersubband scattering. This allowed us to achieve laser emission from a single device in an unprecedented range of frequencies from 0.68 THz to 3.33 THz. Moreover, the device shows 1 THz lasing at temperatures up to 215 K, and 3 THz lasing up to 225 K. This is the longest wavelength, the widest spectral coverage, and the highest operational temperatures of any single THz solid state laser to date. The last chapter discusses QCL angular-resolved magneto-spectroscopy. At tilted magnetic fields, additional optical transitions, never observed in QC structures, are allowed as a result of the intersubband-cyclotron coupling. Also, angular field measurements are an effective tool to study the effects related to cyclotron- and spin-splitting phenomena. Here we demonstrated the feasibility of QCL angular measurements at high magnetic fields, and discuss the first results.

  6. Magnetic-Field-Tunable Superconducting Rectifier

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  7. Finite Beta Boundary Magnetic Fields of NCSX

    NASA Astrophysics Data System (ADS)

    Grossman, A.; Kaiser, T.; Mioduszewski, P.

    2004-11-01

    The magnetic field between the plasma surface and wall of the National Compact Stellarator (NCSX), which uses quasi-symmetry to combine the best features of the tokamak and stellarator in a configuration of low aspect ratio is mapped via field line tracing in a range of finite beta in which part of the rotational transform is generated by the bootstrap current. We adopt the methodology developed for W7-X, in which an equilibrium solution is computed by an inverse equilibrium solver based on an energy minimizing variational moments code, VMEC2000[1], which solves directly for the shape of the flux surfaces given the external coils and their currents as well as a bootstrap current provided by a separate transport calculation. The VMEC solution and the Biot-Savart vacuum fields are coupled to the magnetic field solver for finite-beta equilibrium (MFBE2001)[2] code to determine the magnetic field on a 3D grid over a computational domain. It is found that the edge plasma is more stellarator-like, with a complex 3D structure, and less like the ordered 2D symmetric structure of a tokamak. The field lines make a transition from ergodically covering a surface to ergodically covering a volume, as the distance from the last closed magnetic surface is increased. The results are compared with the PIES[3] calculations. [1] S.P. Hirshman et al. Comput. Phys. Commun. 43 (1986) 143. [2] E. Strumberger, et al. Nucl. Fusion 42 (2002) 827. [3] A.H. Reiman and H.S. Greenside, Comput. Phys. Commun. 43, 157 (1986).

  8. Electrostatic fields in a dusty Martian environment

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1991-01-01

    While there have been several studies suggesting the possibility of electrical activity on Mars, to date there have been no measurements to search for evidence of such activity. In the absence of widespread water clouds and convective storm systems similar to those on the Earth and Jupiter, the most likely candidate for the creation of electrostatic charges and fields is triboelectric charging of dust, i.e., the friction between blown dust and the ground, and of dust particles with each other. Terrestrial experience demonstrates that electric fields 5 to 15 kV-m(exp -1) are not uncommon in dust storms and dust devils in desert regions, where the polarity varies according to the chemical composition and grain size. Simple laboratory experiments have demonstrated that modest electrostatic fields of roughly 5,000 V-m(exp -1) may be produced, along with electrical spark discharges and glow discharges, in a simulation of a dusty, turbulent Martian surface environment. While the Viking landers operated for several years with no apparent deleterious effects from electrostatic charging, this may have been at least partly due to good engineering design utilizing pre-1976 electronic circuitry to minimize the possibility of differential charging among the various system components. However, free roaming rovers, astronauts, and airborne probes may conceivably encounter an environment where electrostatic charging is a frequent occurrence, either by way of induction from a static electric field or friction with the dusty surface and atmosphere. This raises the possibility of spark discharges or current surges when subsequent contact is made with other pieces of electrical equipment, and the possibility of damage to modern microelectronic circuitry. Measurements of electrostatic fields on the surface of Mars could therefore be valuable for assessing this danger. Electric field measurements could also be useful for detecting natural discharges that originate in dust storms. This detection could be performed at distances ranging from 10s of km in the case of J-charge-like discharge signatures, to planetary distances if there exists a global electrical circuit or Schumann resonance spectrum.

  9. Axial magnetic field interrupters in autorecloser applications

    SciTech Connect

    Bestel, E.F.; Stoving, P.N.

    1996-12-31

    Application of vacuum interruption in distribution switchgear, especially in autoreclosers, which have uniquely high demands on vacuum fault interrupters, will be discussed. The fast open-close-open sequence and its associated highly asymmetrical waveforms are some of the difficulties encountered. The authors will present their solution to these problems in the form of an economical axial magnetic field interrupter that realizes current densities of up to 1.68 kA/cm{sup 2} - the most efficient axial magnetic interrupter that is in production today. Actual design test data per ANSI C37.60 will be shown.

  10. Laser plasma in a magnetic field

    SciTech Connect

    Kondo,K.; Kanesue, T.; Tamura, J.; Dabrowski, R.; Okamura, M.

    2009-09-20

    Laser Ion Source (LIS) is a candidate among various heavy ion sources. A high density plasma produced by Nd:YAG laser with drift velocity realizes high current and high charge state ion beams. In order to obtain higher charged particle ions, we had test experiments of LIS with a magnetic field by which a connement effect can make higher charged beams. We measured total current by Faraday Cup (FC) and analyzed charge distribution by Electrostatic Ion Analyzer (EIA). It is shown that the ion beam charge state is higher by a permanent magnet.

  11. Coulomb crystals in the magnetic field D. A. Baiko

    E-print Network

    Coulomb crystals in the magnetic field D. A. Baiko A.F. Ioffe Physical-Technical Institute The body-centered-cubic Coulomb crystal of ions in the presence of a uniform magnetic field is studied range of magnetic-field strengths and for several orientations of the field in the crystal. The phonon

  12. Orientation and Magnitude of Mars' Magnetic Field

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows the orientation and magnitude of the magnetic field measured by the MGS magnetometer as it sped over the surface of Mars during an early aerobraking pass (Day of the year, 264; 'P6' periapsis pass). At each point along the spacecraft trajectory we've drawn vectors in the direction of the magnetic field measured at that instant; the length of the line is scaled to show the relative magnitude of the field. Imagine traveling along with the MGS spacecraft, holding a string with a magnetized needle on one end: this essentially a compass with a needle that is free to spin in all directions. As you pass over the surface the needle would swing rapidly, first pointing towards the planet and then rotating quickly towards 'up' and back down again. All in a relatively short span of time, say a minute or two, during which time the spacecraft has traveled a couple of hundred miles. You've just passed over one of many 'magnetic anomalies' thus far detected near the surface of Mars. A second major anomaly appears a little later along the spacecraft track, about 1/4 the magnitude of the first - can you find it? The short scale length of the magnetic field signature locates the source near the surface of Mars, perhaps in the crust, a 10 to 75 kilometer thick outer shell of the planet (radius 3397 km).

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).

  13. Coronal magnetic field modeling using stereoscopy constraints

    NASA Astrophysics Data System (ADS)

    Chifu, I.; Inhester, B.; Wiegelmann, T.

    2015-05-01

    Aims: Nonlinear force-free field (NLFFF) extrapolation has been used extensively in the past to extrapolate solar surface magnetograms to stationary coronal field models. In theoretical tests with known boundary conditions, the nonlinear boundary value problem can be solved reliably. However, if the magnetogram is measured with errors, the extrapolation often yields field lines that disagree with the shapes of simultaneously observed and stereoscopically reconstructed coronal loops. We here propose an extension to an NLFFF extrapolation scheme that remedies this deficiency in that it incorporates the loop information in the extrapolation procedure. Methods: We extended the variational formulation of the NLFFF optimization code by an additional term that monitors and minimizes the difference of the local magnetic field direction and the orientation of 3D plasma loops. We tested the performance of the new code with a previously reported semi-analytical force-free solution. Results: We demonstrate that there is a range of force-free and divergence-free solutions that comply with the boundary measurements within some error bound. With our new approach we can obtain the solution out of this set the coronal fields which is well aligned with given loops. Conclusions: We conclude that the shape of coronal loops reconstructed by stereoscopy may lead to an important stabilization of coronal NLFFF field solutions when, as is typically the case, magnetic surface measurements with limited precision do not allow determining the solution solely from photospheric field measurements.

  14. The energy budget of stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Folsom, C. P.; Boro Saikia, S.; Bouvier, J.; Fares, R.; Gregory, S. G.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Moutou, C.; do Nascimento, J. D.; Petit, P.; Rosén, L.; Waite, I. A.

    2015-11-01

    Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1-1.5 M?. We find that the energy contained in toroidal fields has a power-law dependence on the energy contained in poloidal fields. However the power index is not constant across our sample, with stars less and more massive than 0.5 M? having power indices of 0.72 ± 0.08 and 1.25 ± 0.06, respectively. There is some evidence that these two power laws correspond to stars in the saturated and unsaturated regimes of the rotation-activity relation. Additionally, our sample shows that strong toroidal fields must be generated axisymmetrically. The latitudes at which these bands appear depend on the stellar rotation period with fast rotators displaying higher latitude bands than slow rotators. The results in this paper present new constraints for future dynamo studies.

  15. The energy budget of stellar magnetic fields

    E-print Network

    See, V; Vidotto, A A; Donati, J -F; Folsom, C P; Saikia, S Boro; Bouvier, J; Fares, R; Gregory, S G; Hussain, G; Jeffers, S V; Marsden, S C; Morin, J; Moutou, C; Nascimento, J D do; Petit, P; Rosen, L; Waite, I A

    2015-01-01

    Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1-1.5$\\,{\\rm M}_\\odot$. We find that the energy contained in toroidal fields has a power law dependence on the energy contained in poloidal fields. However the power index is not constant across our sample, with stars less and more massive than 0.5$\\,{\\rm M}_\\odot$ having power indices of 0.72$\\pm$0.08 and 1.25$\\pm$0.06 respectively. There is some evidence that these two power laws correspond to stars in the saturated and unsaturated regimes of the rotation-activity relation. Additionally, our sample shows that strong toroidal fields must be generated axisymmetrically. The latitudes at which these bands appear depend on the ste...

  16. The measurement and analysis of the magnetic field of a synchrotron light source magnet 

    E-print Network

    Graf, Udo Werner

    1994-01-01

    In this thesis a unique system is used to measure the magnetic field of a superconducting synchrotron light source magnet. The magnet measured is a superferric dipole C-magnet designed to produce a magnetic field up to 3 Tesla in magnitude. Its...

  17. The shape of the magnetic fluid surface above a magnetizable sphere in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Bashtovoi, V. G.; Motsar, A. A.; Naletova, V. A.; Reks, A. G.

    2015-10-01

    The shape of the free surface of a magnetic fluid above a spherical ferromagnetic body immersed in it in a uniform magnetic field is investigated experimentally. The effect of the direction and magnitude of the magnetic field on the deformation characteristics of the free surface of the magnetic fluid with various magnetic properties and geometrical parameters is established.

  18. Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field

    E-print Network

    Qin, Lu-Chang

    Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field ZHEN Liang( )1 27599-3255, USA Received 29 June 2006; accepted 15 January 2007 Abstract: Structural and magnetic properties of Fe-25Cr-12Co-1Si alloy thermo-magnetically treated under different external magnetic field

  19. Implications of a primordial magnetic field for magnetic monopoles, axions, and Dirac neutrinos

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.; Vachaspati, Tanmay

    2015-05-01

    We explore some particle physics implications of the growing evidence for a helical primordial magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the monopole number density, n (t0)<1 ×10-20 cm-3 , which is a "primordial" analog of the Parker bound for the survival of galactic magnetic fields. Our bound is weaker than existing constraints, but it is derived under independent assumptions. We also show how improved measurements of the PMF at different redshifts can lead to further constraints on magnetic monopoles. Axions interact with the PMF due to the ga ?? E .B /4 ? interaction. Including the effects of the cosmological plasma, we find that the helicity of the PMF is a source for the axion field. Although the magnitude of the source is small for the PMF, it could potentially be of interest in astrophysical environments. Earlier derived constraints from the resonant conversion of cosmic microwave background photons into axions lead to ga ??1 0-9 GeV-1 for the suggested PMF strength ˜10-14 G and coherence length ˜10 Mpc . Finally, we apply constraints on the neutrino magnetic dipole moment that arise from requiring successful big bang nucleosynthesis in the presence of a PMF, and we find ???1 0-16 ?B .

  20. Multifarious apparatus for dynamic measurements in intense magnetic fields

    NASA Astrophysics Data System (ADS)

    Balakirev, Fedor

    2015-03-01

    We describe a versatile apparatus which implements multiple types of measurement techniques suitable for intense magnetic field environment. Our approach capitalizes on recent advances in hardware/software co-design solutions to realize dynamic mapping and tracking of field-dependent phenomena in typically short time frame of pulsed measurements. The apparatus is capable of carrying out simultaneous dissimilar measurements such as resistivity, current-voltage characteristics, magnetic torque etc., both in pulse and continuous mode. The control logic can track and respond to changes in sample properties, such as onset of dissipation or changes in high-frequency oscillatory response, in sub- microsecond timescale. This research performed under the DOE BES `Science at 100 tesla' and supported at the NHMFL by NSF Cooperative Agreement No. DMR-1157490.

  1. Magnetic field effects in hybrid perovskite devices

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the ?g model. We validate this model by measuring large ?g (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  2. Magnetic field depression within electron holes

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F.; Artemyev, A. V.; Jovanovic, D.

    2015-04-01

    We analyze electron holes that are spikes of the electrostatic field (up to 500 mV/m) observed by Van Allen Probes in the outer radiation belt. The unexpected feature is the magnetic field depression of about several tens of picotesla within many of the spikes. The earlier observations showed amplification or negligible perturbations of the magnetic field within the electron holes. We suggest that the observed magnetic field depression is due to the diamagnetic current of hot and highly anisotropic population of electrons trapped within the electron holes. The required trapped population should have a density up to 65% of the background plasma density, a temperature up to several keV, and a temperature anisotropy T?/T?˜2. We argue that the observed electron holes could be generated due to injections of highly anisotropic plasma sheet electrons into the outer radiation belt. These electron holes may present a source of the seed population due to transport of trapped electrons to higher latitudes and can be potentially used for distant probing of plasma properties in their source region.

  3. Magnetic Fields in Population III Star Formation

    SciTech Connect

    Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom; Bryan, Greg

    2012-02-22

    We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement to be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.

  4. The main magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The main magnetic field of Jupiter has been measured by the Goddard Space Flight Center flux gate magnetometer on Pioneer 11. Analysis of the data yields a more detailed model than that obtained from Pioneer 10 results. In a spherical harmonic octupole representation the dipole term (with opposite polarity to earth's) has a magnitude of 4.28 G times the radial distance cubed at a tilt angle of 9.6 deg and a system 111 longitude of 232 deg. The quadrupole and octupole moments are 24% and 21% of the dipole, respectively. This leads to a significant deviation of the planetary magnetic field from a simple offset dipole topology at distances of less than three times the radial distance. The north polar field strength is 14 G, and in the Northern Hemisphere the 'footprint' of the Io associated flux tube traverses the magnetic polar region. Associated L shell splitting in the radiation belts, warping of the charged particle equatorial planes, and enhanced absorption effects due to the satellites Amalthea and Io are expected as a result of the field complexity.

  5. Magnetic susceptibility and magnetization properties of asymmetric nuclear matter under a strong magnetic field

    E-print Network

    A. Rabhi; M. A. Pérez-García; C. Providência; I. Vidaña

    2015-04-02

    We study the effect of a strong magnetic field on the proton and neutron spin polarization and magnetic susceptibility of asymmetric nuclear matter within a relativistic mean-field approach. It is shown that magnetic fields $B \\sim 10^{16} - 10^{17}$ G have already noticeable effects on the range of densities of interest for the study of the crust of a neutron star. Although the proton susceptibility is larger for weaker fields, the neutron susceptibility becomes of the same order or even larger for small proton fractions and subsaturation densities for $B > 10^{16}$ G. We expect that neutron superfluidity in the crust will be affected by the presence of magnetic fields.

  6. Magnetic-field-induced crystallographic texture enhancement in cold-deformed FePt nanostructured magnets

    E-print Network

    Garmestani, Hamid

    Magnetic-field-induced crystallographic texture enhancement in cold-deformed FePt nanostructured magnets B. Z. Cuia and K. Han National High Magnetic Field Laboratory, Florida State University Grenoble, France H. J. Schneider-Muntau National High Magnetic Field Laboratory, Florida State University

  7. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  8. Electron transport in argon in crossed electric and magnetic fields

    PubMed

    Ness; Makabe

    2000-09-01

    An investigation of electron transport in argon in the presence of crossed electric and magnetic fields is carried out over a wide range of values of electric and magnetic field strengths. Values of mean energy, ionization rate, drift velocity, and diffusion tensor are reported here. Two unexpected phenomena arise; for certain values of electric and magnetic field we find regions where the swarm mean energy decreases with increasing electric fields for a fixed magnetic field and regions where swarm mean energy increases with increasing magnetic field for a fixed electric field. PMID:11088933

  9. DIffusion of Plasma in Magnetic Fields APAM Research Conference

    E-print Network

    Mauel, Michael E.

    DIffusion of Plasma in Magnetic Fields APAM Research Conference September 11, 2009 Butterfly NebulaV T ~ 100 eV 2 #12;"Plasma Diffusion in Magnetic Fields" Outline · Gaseous diffusion vs. magnetized plasma;Magnetized Plasma Diffusion 5 Boris Kadomstev Boris Borisovich Kadomtsev (09.11.1928 ± 19.08.1998) [Early on

  10. Cusped magnetic field mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Wilbur, P. J.

    1976-01-01

    A residence time approach is used to explain the nonuniform beam current density profile of the SERT II thruster and to propose a magnetic field modification which should produce a highly uniform beam profile. Expressions are derived which relate the thruster performance parameters to the geometry and plasma properties of the discharge chamber. These relationships are applied to a cylindrical discharge chamber model of the SERT II thruster and suggest that, in addition to the magnetic field modification, the discharge chamber length of this thruster should be reduced. These modifications should result in a thruster which has a highly uniform beam profile, good performance, and a low double ion population. Experimental results indicate that at about the same thrust and performance levels the beam flatness parameter of the modified thruster is 40% higher than the SERT II thruster value.

  11. New Methods of Magnetic Field Measurements

    NASA Astrophysics Data System (ADS)

    Kholtygin, A. F.

    2015-04-01

    The standard methods of magnetic field measurements, based on the relation between the Stokes V parameter and the first derivative of the line profile intensity were modified by applying a linear integral transform to both sides of this relation. We used the wavelet integral transform with the DOG wavelets. The key advantage of the proposed method is the effective suppression of the noise contribution both to the line profile and the Stokes V parameter. To test the proposed method, spectropolarimetric observations of the young O star ?1 Ori C were used. We also demonstrate that the smoothed Time Variation Spectra (smTVS) can be used as a tool for detecting the local stellar magnetic fields.

  12. Modified methods of stellar magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Kholtygin, A. F.

    2014-12-01

    The standard methods of the magnetic field measurement, based on an analysis of the relation between the Stokes V-parameter and the first derivative of the total line profile intensity, were modified by applying a linear integral operator \\hat{L} to both sides of this relation. As the operator \\hat{L}, the operator of the wavelet transform with DOG-wavelets is used. The key advantage of the proposed method is an effective suppression of the noise contribution to the line profile and the Stokes parameter V. The efficiency of the method has been studied using model line profiles with various noise contributions. To test the proposed method, the spectropolarimetric observations of the A0 star ?2 CVn, the Of?p star HD 148937, and the A0 supergiant HD 92207 were used. The longitudinal magnetic field strengths calculated by our method appeared to be in good agreement with those determined by other methods.

  13. Comparing Magnetic Fields on Earth and Mars - Duration: 32 seconds.

    NASA Video Gallery

    This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

  14. Physics in Strong Magnetic Fields Near Neutron Stars.

    ERIC Educational Resources Information Center

    Harding, Alice K.

    1991-01-01

    Discussed are the behaviors of particles and energies in the magnetic fields of neutron stars. Different types of possible research using neutron stars as a laboratory for the study of strong magnetic fields are proposed. (CW)

  15. Transport in a stochastic magnetic field

    SciTech Connect

    White, R.B.; Wu, Yanlin; Rax, J.M.

    1992-09-01

    Collisional heat transport in a stochastic magnetic field configuration is investigated. Well above stochastic threshold, a numerical solution of a Chirikov-Taylor model shows a short-time nonlocal regime, but at large time the Rechester-Rosenbluth effective diffusion is confirmed. Near stochastic threshold, subdiffusive behavior is observed for short mean free paths. The nature of this subdiffusive behavior is understood in terms of the spectrum of islands in the stochastic sea.

  16. Heavy quarks in a magnetic field

    E-print Network

    Elias Kiritsis; George Pavlopoulos

    2012-03-26

    The motion of a heavy charged quark in a magnetic field is analyzed in the vacuum of strongly coupled CFT. The motion of the quark is dissipative. It moves in spiral until it eventually comes to rest. The world-sheet geometry is locally AdS_2 but has a time dependent horizon. The string profile in the static gauge extends from the boundary till a point where an embedding singularity exists. Connections with other circular string motions are established.

  17. Ambipolar filamentation of turbulent magnetic fields.

    NASA Astrophysics Data System (ADS)

    Tagger, M.; Falgarone, E.; Shukurov, A.

    1995-07-01

    We show that turbulence in a weakly ionized plasma can lead to a filamentation of magnetic flux tubes as it reaches the ambipolar scale, where the neutrals are imperfectly coupled to the ions. This results from an instability mechanism, forcing the neutrals outside of the more ionized regions and compressing the ions and the field in these regions. It might have important consequences in such astrophysical contexts as the solar atmosphere or the interstellar medium.

  18. Geometric Phase in Fluctuating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wang, Z. S.

    2009-08-01

    Geometric phase in a two-level atom with a fluctuating magnetic field is calculated by a nonunit vector ray in a complex projective Hilbert space, where the nonunit vector is a map connecting with density matrices of a quantum open system. We find that the Pancharatnam phase oscillates with evolving time. The Berry phase depends on the fluctuating parameter but it is proportional to the area spanned in the Bloch parameter space.

  19. NMR in rotating magnetic fields: Magic angle field spinning

    SciTech Connect

    Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.

    2004-09-10

    Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.

  20. Cosmological magnetic fields from inflation and backreaction

    SciTech Connect

    Kanno, Sugumi; Soda, Jiro; Watanabe, Masa-aki E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2009-12-01

    We study the backreaction problem in a mechanism of magnetogenesis from inflation. In usual analysis, it has been assumed that the backreaction due to electromagnetic fields spoils inflation once it becomes important. However, there exists no justification for this assumption. Hence, we analyze magnetogenesis from inflation by taking into account the backreaction. On the contrary to the naive expectation, we show that inflation still continues even after the backreaction begins to work. Nevertheless, it turns out that creation of primordial magnetic fields is significantly suppressed due to the backreaction.

  1. Sodium in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    González-Férez, R.; Schmelcher, P.

    2003-05-01

    We investigate the effects of a magnetic field with low to intermediate strength on several spectroscopic properties of the sodium atom. A model potential is used to describe the core of sodium, reducing the study of the system to an effective one-particle problem. All states with principal quantum numbers n = 3, 4, 5, 6 and 7 are studied and analysed. A grid of twenty values for the field strength in the complete regime B = 0 - 0.02 a.u. is employed. Ionisation energies, transition wavelengths and their dipole oscillator strengths are presented.

  2. Magnetic hyperfine field at caesium in iron

    NASA Astrophysics Data System (ADS)

    Ashworth, C. J.; Back, P.; Ohya, S.; Stone, N. J.; White, J. P.

    1990-08-01

    We report temperature dependence of nuclear orientation (NO), and the first observation of NMR/ON on Cs in iron.132, 136Cs were implanted at room temperature into polycrystalline and single crystal iron. NO values for the (average) magnetic hyperfine field Bhf (Cs Fe) are close to 34T, intermediate between the value of 40.7T found in on-line samples made at mK temperatures and the NMR/ON value of 27.8 (2)T. The latter studies. The site/field distribution is briefly discussed.

  3. Topology, Magnetic Field, and Strongly Interacting Matter

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.

    2015-10-01

    Gauge theories with compact symmetry groups possess topologically nontrivial configurations of gauge field. This characteristic has dramatic implications for the vacuum structure of quantum chromodynamics (QCD) and for the behavior of QCD plasma, as well as for condensed matter systems with chiral quasi-particles. I review the current status of this problem with an emphasis both on the interplay between chirality and a background magnetic field and on the observable manifestations of topology in heavy-ion collisions, Dirac semimetals, neutron stars, and the early Universe.

  4. Exoplanet magnetic field: possible marker of habitability

    NASA Astrophysics Data System (ADS)

    Mogilevsky, Mikhail; Skalsky, Alexandre; Gotlib, Vladimir; Rothkaehl, Hanna; Gurvits, Leonid; Korepanov, Valeriy; Romantsova, Tatiana

    2013-04-01

    The intrinsic magnetic field shielding the planetary surface from most of space radiation is one of indicator on possible habitability of exoplanet. A search of exosolar terrestrial-like planets possessing the magnetic fields and developed magnetospheres seems to be the most intriguing objective of exoplanet studies. The interaction of planetary magnetosphere with the star wind results in generation of radioemissions (similar to AKR radiation of the terrestrial magnetosphere) which allows remote sensing of exoplanet magnetic field. However, frequency range of waves expected from terrestrial-like exoplanet is below, roughly, 10 MHz and, thus, these radioemissions can be hardly investigated by ground facilities due to conducting Earth's ionosphere. The Moon possessing a week atmosphere/ionosphere around its surface seems to be a perfect base for carrying out measurements of low frequency radio emissions originated from the space. The paper presents approaches to antenna design and a scenario of radio facility deployment at Moon's surface which is aimed on terrestrial-like planet search in exosolar system.

  5. Analytic representation of cyclotron magnetic field

    NASA Astrophysics Data System (ADS)

    Lee-Whiting, G. E.; Davies, W. G.

    1994-07-01

    A model has been developed for the rapid but accurate calculation of the static magnetic field in the Chalk River cyclotron. The field is expressed in terms of elementary functions which can be handled efficiently in differential-algebra trajectory integrations. Maxwell's equations are satisfied exactly. Each of seven subdivisions of the superconducting coils is treated by a moment expansion about a central circle. Each pole is modeled as a uniformly magnetized semi-infinite prism. Monopoles and dipoles at the vertices of the polygonal pole faces correct for departures from the true pole shape. Uniform distributions of dipole strength along the edges of the pole-face polygons correct for the local inappropriateness of the assumption of uniform magnetization. The contributions of the yoke and of other relatively distant parts of the structure to the field in the region of particle acceleration are represented by low-order polynomials. Some of the source parameters are obtained by fitting to the measured values of B(z) in the horizontal plane of symmetry.

  6. Analytical representation of cyclotron magnetic field

    SciTech Connect

    Lee-Whiting, G.E.; Davies, W.G.

    1994-07-01

    A model has been developed for the rapid but accurate calculation of the static magnetic field in the Chalk River cyclotron. The field is expressed in terms of elementary functions which can be handled efficiently in differential-algebra trajectory integrations. Maxwell`s equations are satisfied exactly. Each of seven subdivisions of the superconducting coils is treated by a moment expansion about a central circle. Each pole is modeled as a uniformly magnetized semi-infinite prism. Monopoles and dipoles at the vertices of the polygonal pole faces correct for departures from the true pole shape. Uniform distributions of dipole strength along the edges of the pole-face polygons correct for the local inappropriateness of the assumption of uniform magnetization. The contributions of the yoke and of other relatively distant parts of the structure to the field in the region of particle acceleration are represented by low-order polynomials. Some of the source parameters are obtained by fitting to the measured values of B{sub z} in the horizontal plane of symmetry.

  7. Magnetic Branes Supported by Nonlinear Electromagnetic Field

    E-print Network

    Seyed Hossein Hendi

    2010-07-31

    Considering the nonlinear electromagnetic field coupled to Einstein gravity in the presence of cosmological constant, we obtain a new class of $d$-dimensional magnetic brane solutions. This class of solutions yields a spacetime with a longitudinal nonlinear magnetic field generated by a static source. These solutions have no curvature singularity and no horizons but have a conic geometry with a deficit angle $\\delta \\phi$. We investigate the effects of nonlinearity on the metric function and deficit angle and also find that for the special range of the nonlinear parameter, the solutions are not asymptotic AdS. We generalize this class of solutions to the case of spinning magnetic solutions, and find that when one or more rotation parameters are nonzero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameters. Then, we use the counterterm method and compute the conserved quantities of these spacetimes. Finally, we obtain a constrain on the nonlinear parameter, such that the nonlinear electromagnetic field is conformally invariant.

  8. Hidden local symmetry of Eu3+ in xenotime-like crystals revealed by high magnetic fields

    NASA Astrophysics Data System (ADS)

    Han, Yibo; Ma, Zongwei; Zhang, Junpei; Wang, Junfeng; Du, Guihuan; Xia, Zhengcai; Han, Junbo; Li, Liang; Yu, Xuefeng

    2015-02-01

    The excellent optical properties of europium-doped crystals in visible and near infrared wavelength regions enable them to have broad applications in optoelectronics, laser crystals and sensing devices. The local site crystal fields can affect the intensities and peak positions of the photo-emission lines strongly, but they are usually difficult to be clarified due to magnetically degenerate 4f electronic levels coupling with the crystal fields. Here, we provide an effective way to explore the hidden local symmetry of the Eu3+ sites in different hosts by taking photoluminescence measurements under pulsed high magnetic fields up to 46 T. The zero-field photoluminescence peaks split further at high magnetic fields when the Zeeman splitting energy is comparable to or larger than that of the crystal field induced zero-field splitting. In particular, a magnetic field induced crossover of the local crystal fields has been observed in the GdVO4:Eu3+ crystal, which resulted from the alignment of Gd3+ magnetic moment in high magnetic fields; and a hexagonally symmetric local crystal fields was observed in the YPO4 nanocrystals at the Eu3+ sites characterized by the special axial and rhombic crystal field terms. These distinct Zeeman splitting behaviors uncover the crystal fields-related local symmetry of luminescent Eu3+ centers in different hosts or magnetic environments, which are significant for their applications in optics and optoelectronics.

  9. Improved Magnetic Field Generation Efficiency and Higher Temperature Spheromak Plasmas

    SciTech Connect

    Wood, R D; Hill, D N; McLean, H S; Hooper, E B; Hudson, B F; Moller, J M; Romero-Talamas, C A

    2008-09-15

    New understanding of the mechanisms governing the observed magnetic field generation limits on the sustained spheromak physics experiment has been obtained. Extending the duration of magnetic helicity injection during the formation of a spheromak and optimizing the ratio of injected current to bias flux produce higher magnetic field plasmas with record spheromak electron temperatures. To explore magnetic field buildup efficiency limits, the confinement region geometry was varied resulting in improved field buildup efficiencies.

  10. Quark matter under strong magnetic fields in chiral models

    SciTech Connect

    Rabhi, Aziz; Providencia, Constanca

    2011-05-15

    The chiral model is used to describe quark matter under strong magnetic fields and is compared to other models, the MIT bag model and the two-flavor Nambu-Jona-Lasinio model. The effect of vacuum corrections due to the magnetic field is discussed. It is shown that if the magnetic-field vacuum corrections are not taken into account explicitly, the parameters of the models should be fitted to low-density meson properties in the presence of the magnetic field.

  11. Photon Splitting and Pair Conversion in Strong Magnetic Fields

    E-print Network

    Matthew G. Baring

    2008-04-05

    The magnetospheres of neutron stars provide a valuable testing ground for as-yet unverified theoretical predictions of quantum electrodynamics (QED) in strong electromagnetic fields. Exhibiting magnetic field strengths well in excess of a TeraGauss, such compact astrophysical environments permit the action of exotic mechanisms that are forbidden by symmetries in field-free regions. Foremost among these processes are single-photon pair creation, where a photon converts to an electron-positron pair, and magnetic photon splitting, where a single photon divides into two of lesser energy via the coupling to the external field. The pair conversion process is exponentially small in weak fields, and provides the leading order contribution to vacuum polarization. In contrast, photon splitting possesses no energy threshold and can operate in kinematic regimes where the lower order pair conversion is energetically forbidden. This paper outlines some of the key physical aspects of these processes, and highlights their manifestation in neutron star magnetospheres. Anticipated observational signatures include profound absorption turnovers in pulsar spectra at gamma-ray wavelengths. The shapes of these turnovers provide diagnostics on the possible action of pair creation and the geometrical locale of the photon emission region. There is real potential for the first confirmation of strong field QED with the new GLAST mission, to be launched by NASA in 2008. Suppression of pair creation by photon splitting and its implications for pulsars is also discussed.

  12. Photon Splitting and Pair Conversion in Strong Magnetic Fields

    SciTech Connect

    Baring, Matthew G.

    2008-10-17

    The magnetospheres of neutron stars provide a valuable testing ground for as-yet unverified theoretical predictions of quantum electrodynamics (QED) in strong electromagnetic fields. Exhibiting magnetic field strengths well in excess of a TeraGauss, such compact astrophysical environments permit the action of exotic mechanisms that are forbidden by symmetries in field-free regions. Foremost among these processes are single-photon pair creation, where a photon converts to an electron-positron pair, and magnetic photon splitting, where a single photon divides into two of lesser energy via the coupling to the external field. The pair conversion process is exponentially small in weak fields, and provides the leading order contribution to vacuum polarization. In contrast, photon splitting possesses no energy threshold and can operate in kinematic regimes where the lower order pair conversion is energetically forbidden. This paper outlines some of the key physical aspects of these processes, and highlights their manifestation in neutron star magnetospheres. Anticipated observational signatures include profound absorption turnovers in pulsar spectra at gamma-ray wavelengths. The shapes of these turnovers provide diagnostics on the possible action of pair creation and the geometrical locale of the photon emission region. There is real potential for the first confirmation of strong field QED with the new GLAST gamma-ray mission, recently launched by NASA in June 2008. The suppression of pair creation by photon splitting and its implications for pulsars are also discussed.

  13. Using Strong Magnetic Fields to Control Solutal Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity , we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions.

  14. Magnetic space-based field measurements

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1981-01-01

    Because the near Earth magnetic field is a complex combination of fields from outside the Earth of fields from its core and of fields from its crust, measurements from space prove to be the only practical way to obtain timely, global surveys. Due to difficulty in making accurate vector measurements, early satellites such as Sputnik and Vanguard measured only the magnitude survey. The attitude accuracy was 20 arc sec. Both the Earth's core fields and the fields arising from its crust were mapped from satellite data. The standard model of the core consists of a scalar potential represented by a spherical harmonics series. Models of the crustal field are relatively new. Mathematical representation is achieved in localized areas by arrays of dipoles appropriately located in the Earth's crust. Measurements of the Earth's field are used in navigation, to map charged particles in the magnetosphere, to study fluid properties in the Earth's core, to infer conductivity of the upper mantels, and to delineate regional scale geological features.

  15. The scientific case for magnetic field satellites

    NASA Technical Reports Server (NTRS)

    Backus, George E. (editor); Benton, Edward R.; Harrison, Christopher G. A.; Heirtzler, James R.

    1987-01-01

    To make full use of modern magnetic data and the paleomagnetic record, we must greatly improve our understanding of how the geodynamo system works. It is clearly nonlinear, probably chaotic, and its dimensionless parameters cannot yet be reproduced on a laboratory scale. It is accessible only to theory and to measurements made at and above the earth's surface. These measurements include essentially all geophysical types. Gravity and seismology give evidence for undulations in the core-mantle boundary (CMB) and for temperature variations in the lower mantle which can affect core convection and hence the dynamo. VLBI measurements of the variations in the Chandler wobble and length of day are affected by, among other things, the electromagnetic and mechanical transfer of angular momentum across the CMB. Finally, measurements of the vector magnetic field, its intensity, or its direction, give the most direct access to the core dynamo and the electrical conductivity of the lower mantle. The 120 gauss coefficients of degrees up to 10 probably come from the core, with only modest interference by mantle conductivity and crustal magnetization. By contrast, only three angular accelerations enter the problem of angular momentum transfer across the CMB. Satellite measurements of the vector magnetic field are uniquely able to provide the spatial coverage required for extrapolation to the CMB, and to isolate and measure certain magnetic signals which to the student of the geodynamo represent noise, but which are of great interest elsewhere in geophysics. Here, these claims are justified and the mission parameters likely to be scientifically most useful for observing the geodynamo system are described.

  16. Lorentz and "apparent" transformations of the electric and magnetic fields

    E-print Network

    Tomislav Ivezic

    2006-07-21

    It is recently discovered that the usual transformations of the three-dimensional (3D) vectors of the electric and magnetic fields differ from the Lorentz transformations (LT) (boosts) of the corresponding 4D quantities that represent the electric and magnetic fields. In this paper, using geometric algebra formalism, this fundamental difference is examined representing the electric and magnetic fields by bivectors.

  17. Superconducting Sphere in an External Magnetic Field Revisited

    ERIC Educational Resources Information Center

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  18. From the Gyration of Electrons to Cosmic Magnetic Fields

    ERIC Educational Resources Information Center

    Wang, Xia-Wei

    2010-01-01

    Employing Bohr's quantum theory, the author deduces three limits, which correspond to the magnetic fields of white dwarfs, neutron stars and the strongest in the universe. The author discusses the possible origins of magnetic fields due to collapse of stars, which produces a magnetic field of 10[superscript 8] T. Although the complete analysis…

  19. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  20. Mapping the magnetic field vector in a fountain clock

    SciTech Connect

    Gertsvolf, Marina; Marmet, Louis

    2011-12-15

    We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.

  1. Fluorescent lamp with static magnetic field generating means

    DOEpatents

    Moskowitz, Philip E. (Peabody, MA); Maya, Jakob (Brookline, MA)

    1987-01-01

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.

  2. NASA Computational Case Study: Modeling Planetary Magnetic and Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Simpson, David G.; Vinas, Adolfo F.

    2014-01-01

    In this case study, we model a planet's magnetic and gravitational fields using spherical harmonic functions. As an exercise, we analyze data on the Earth's magnetic field collected by NASA's MAGSAT spacecraft, and use it to derive a simple magnetic field model based on these spherical harmonic functions.

  3. Magnetic Nozzle Far-Field Simulation and E. Ahedo

    E-print Network

    Carlos III de Madrid, Universidad

    Magnetic Nozzle Far-Field Simulation M. Merino and E. Ahedo Universidad Polit´ecnica de Madrid, Madrid 28040 Spain An analysis of the far-field plasma plume generated by a magnetic nozzle is presented the magnetic field and free-plume formation, and (3) a preliminary inves- tigation of secondary physical

  4. Fluorescent lamp with static magnetic field generating means

    DOEpatents

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  5. The formation of regular interarm magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Stepanov, R.; Krause, M.; Beck, R.; Sokoloff, D.

    2015-06-01

    Context. Observations of regular magnetic fields in several nearby galaxies reveal magnetic arms situated between the material arms. The nature of these magnetic arms is a topic of active debate. Previously, we found a hint that taking into account the effects of injections of small-scale magnetic fields (e.g. generated by turbulent dynamo action) into the large-scale galactic dynamo can result in magnetic arm formation. Aims: We now investigate the joint roles of an arm/interarm turbulent diffusivity contrast and injections of small-scale magnetic field on the formation of large-scale magnetic field ("magnetic arms") in the interarm region. Methods: We use the relatively simple "no-z" model for the galactic dynamo. This involves projection onto the galactic equatorial plane of the azimuthal and radial magnetic field components; the field component orthogonal to the galactic plane is estimated from the solenoidality condition. Results: We find that the addition of diffusivity gradients to the effects of magnetic field injections makes the magnetic arms much more pronounced. In particular, the regular magnetic field component becomes larger in the interarm space than that within the material arms. Conclusions: The joint action of the turbulent diffusivity contrast and small-scale magnetic field injections (with the possible participation of other effects previously suggested) appears to be a plausible explanation for the phenomenon of magnetic arms.

  6. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments.

    PubMed

    Herranz, Raul; Manzano, Ana I; van Loon, Jack J W A; Christianen, Peter C M; Medina, F Javier

    2013-03-01

    Earth-based microgravity simulation techniques are required due to space research constraints. Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to environments with different levels of effective gravity and magnetic field strengths (B) simultaneously. The environments included simulated 0 g* at B=10.1 T, an internal 1 g* control (B=16.5 T), and hypergravity (2 g* at B=10.1 T). Furthermore, samples were also exposed to altered gravity environments that were created with mechanical devices, such as the Random Positioning Machine (simulated ?g) and the Large Diameter Centrifuge (2 g). We have determined the proteomic signature of cell cultures exposed to these altered-gravity environments by means of the difference gel electrophoresis (DiGE) technique, and we have compared the results with microarray-based transcriptomes from the same samples. The magnetic field itself produced a low number of proteomic alterations, but the combination of gravitational alteration and magnetic field exposure produced synergistic effects on the proteome of plants (the number of significant changes is 3-7 times greater). Tandem mass spectrometry identification of 19 overlapping spots in the different conditions corroborates a major role of abiotic stress and secondary metabolism proteins in the molecular adaptation of plants to unusual environments, including microgravity. PMID:23510084

  7. Interaction of magnetic resonators studied by the magnetic field enhancement

    SciTech Connect

    Hou, Yumin

    2013-12-15

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  8. The Use of Small Coolers in a Magnetic Field

    SciTech Connect

    Green, Michael A.; Witte, Holger

    2007-07-25

    Small 4 K coolers are used to cool superconducting magnets.These coolers are usually used with high temperature suerconductor (HTS)leads. In most cases, magnet is shielded with iron or active shieldcoils. Thus the field at the cooler is low. There are instances when thecooler must be in a magnetic field. Gifford McMahon (GM) coolers or pulsetube coolers are commercially available to cool the magnets. This paperwill discuss how the two types of coolers are affected by the straymagnetic field. Strategies for using coolers on magnets that generatestray magnetic fields are discussed.

  9. Magnetic field abnormality caused by welding residual stress

    NASA Astrophysics Data System (ADS)

    Luming, Li; Songling, Huang; Xiaofeng, Wang; Keren, Shi; Su, Wu

    2003-05-01

    Residual stresses in ferromagnetic material affect the direction and structure of domains and generate the magnetic flux abnormality on the surface. Three-dimensional magnetic field on the surface of a circular-welding pipe specimen was inspected with 8 mm lift-off before and after low-temperature annealing aimed for residual stress releasing. Small hole stress testing was also carried out with a contrast to the magnetic testing before annealing. The magnetic field characteristics and the residual stress distribution were compared and discussed. The normal component of magnetic field correlated with residual stress. The magnetic field abnormality on ferromagnetic material could be used for residual stress inspection.

  10. Numerical evaluation of uniform magnetic field within superconducting Swiss roll

    NASA Astrophysics Data System (ADS)

    Tsuchimoto, M.; Demachi, K.; Itoh, I.

    2004-10-01

    Uniform and high magnetic field is required for medical apparatus such as magnetic resonance imaging. The homogeneous magnetic field in a solenoid magnet can be enhanced with superconducting Swiss roll, where NbTi/Nb/Cu multilayer sheet is rolled inside the magnet. Experimental magnetic field measurement is evaluated with a numerical simulation code based on the finite element circuit method. Shielding current distribution in the superconductor is obtained by using the critical state model. Numerical results agree well with experimental results. Uniformity of the field is discussed from the shielding current distribution of the superconducting Swiss roll.

  11. Pressure, Chaotic Magnetic Fields and MHD Equilibria

    SciTech Connect

    S.R. Hudson & N. Nakajima

    2010-05-12

    Analyzes of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, ?p = j x B. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic Field are continuous, the only non-trivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the Field-lines, B • ?p = 0. A simple method to ameliorate the singularities is to include a small but Finite perpendicular diffusion. A self-consistent set of equilibrium equations is described and some algorithmic approaches aimed at solving these equations are discussed.

  12. THE OUTER MAGNETIC FIELD OF L183

    SciTech Connect

    Clemens, Dan P.

    2012-03-20

    The L183 (= L134N) dark molecular cloud has been probed using deep near-infrared imaging polarimetry of stars to beyond 14 mag in H band (1.6 {mu}m), using the Mimir instrument on the 1.83 m Perkins Telescope. Nearly 400 arcmin{sup 2} were surveyed, including the dense core in L183, as seen in WISE Band 3 (12 {mu}m) extinction, and the near surroundings, revealing 35 stars with either detected polarizations or significant upper limits. Stars with detected polarizations are reddened if closer than 8 arcmin (0.25 pc at the 110 pc cloud distance) and unreddened beyond. The polarimetric sample probes as close to the core as 3 arcmin (0.1 pc), where A{sub V} {approx} 14 mag. Compared to the relatively unextincted surrounding stars, the reddened stars show no increase in polarization with extinction, suggesting that all of the polarization is induced in the outer layers of the cloud. This 0.25 pc radius envelope magnetic field does show a strong interaction with the L183 dark cloud. The envelope field is also virtually perpendicular, on the plane of the sky, to the field seen at 850 {mu}m, though more closely aligned with the rotation axis of the dense gas core. The physical size scale at which the envelope and the core magnetic fields either decouple from each other or strongly modify their directions must be inside the 0.1 pc region probed here.

  13. Fault Tolerant Magnetic Bearing Testing and Conical Magnetic Bearing Development for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Clark, Daniel

    2004-01-01

    During the six month tenure of the grant, activities included continued research of hydrostatic bearings as a viable backup-bearing solution for a magnetically levitated shaft system in extreme temperature environments (1000 F), developmental upgrades of the fault-tolerant magnetic bearing rig at the NASA Glenn Research Center, and assisting in the development of a conical magnetic bearing for extreme temperature environments, particularly turbomachinery. It leveraged work from the ongoing Smart Efficient Components (SEC) and the Turbine-Based Combined Cycle (TBCC) program at NASA Glenn Research Center. The effort was useful in providing technology for more efficient and powerful gas turbine engines.

  14. Interpretation of Solar Magnetic Field Strength Observations

    NASA Astrophysics Data System (ADS)

    Ulrich, R. K.; Bertello, L.; Boyden, J. E.; Webster, L.

    2009-03-01

    This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have compared the synoptic program ?5250 Å line of Fe i to the line of Fe i at ?5233 Å since this latter line has a broad shape with a profile that is nearly linear over a large portion of its wings. The present study uses five pairs of sampling points on the ?5233 Å line. Line profile observations show that the determination of the field strength from the Stokes V parameter or from line bisectors in the circularly polarized line profiles lead to similar dependencies on the spectral sampling of the lines, with the bisector method being the less sensitive. We recommend adoption of the field determined with the line bisector method as the best estimate of the emergent photospheric flux and further recommend the use of a sampling point as close to the line core as is practical. The combination of the line profile measurements and the cross-correlation of fields measured simultaneously with ?5250 Å and ?5233 Å yields a formula for the scale factor ? -1 that multiplies the MWO synoptic magnetic fields. By using ? as the center-to-limb angle (CLA), a fit to this scale factor is ? -1=4.15-2.82sin 2( ?). Previously ? -1=4.5-2.5sin 2( ?) had been used. The new calibration shows that magnetic fields measured by the MDI system on the SOHO spacecraft are equal to 0.619±0.018 times the true value at a center-to-limb position 30°. Berger and Lites (2003, Solar Phys. 213, 213) found this factor to be 0.64±0.013 based on a comparison using the Advanced Stokes Polarimeter.

  15. Photon Magnetic Moment and Vacuum Magnetization in an Asymptotically Large Magnetic Field

    E-print Network

    Selym Villalba Chavez

    2010-08-09

    We consider the effect of the photon radiative correction on the vacuum energy in a superstrong magnetic field. The notion of a photon anomalous magnetic moment is analyzed and its connection with the quasiparticle character of the electromagnetic radiation is established. In the infrared domain the magnetic moment turns out to be a vector with two orthogonal components in correspondence with the cylindrical symmetry imposed by the external field. The possibility of defining such quantity in the high energy limit is studied as well. Its existence suggests that the electromagnetic radiation is a source of magnetization to the whole vacuum and thus its electron-positron zero-point energy is slightly modified. The corresponding contribution to the vacuum magnetization density is determined by considering the individual contribution of each vacuum polarization eigenmode in the Euler-Heisenberg Lagrangian. A paramagnetic response is found in one of them, whereas the remaining ones are diamagnetic. Additional issues concerning the transverse pressures are analyzed.

  16. Engineered Ceramic Insulators for High Field Magnets

    NASA Astrophysics Data System (ADS)

    Rice, J. A.

    2006-03-01

    High field magnet coils made from brittle A15 superconductors need to be rigidly contained by their support structure but yet be electrically insulated from it. Current insulators (end shoes, pole pieces, spacers, mandrels, etc.) are often made from coated metallic shapes that satisfy the mechanical and thermal requirements but are electrically unreliable. The insulating coating on the metal core too often chips or flakes, causing electrical shorts. Any replacement insulator materials must manage the thermal expansion mismatch to control the stress within the coil enabling the achievement of ultimate magnet performance. A novel ceramic insulator has been developed that eliminates the potential for shorting while maintaining high structural integrity and thermal performance. The insulator composition can be engineered to provide a thermal expansion that matches the coil expansion, minimizing detrimental stress on the superconductor. These ceramic insulators are capable of surviving high temperature heat treatments and are radiation resistant. The material can withstand high mechanical loads generated during magnet operation. These more robust insulators will lower the magnet production costs, which will help enable future devices to be constructed within budgetary restrictions.

  17. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  18. Monitoring the Earth's Dynamic Magnetic Field

    USGS Publications Warehouse

    Love, Jeffrey J.; Applegate, David; Townshend, John B.

    2008-01-01

    The mission of the U.S. Geological Survey's Geomagnetism Program is to monitor the Earth's magnetic field. Using ground-based observatories, the Program provides continuous records of magnetic field variations covering long timescales; disseminates magnetic data to various governmental, academic, and private institutions; and conducts research into the nature of geomagnetic variations for purposes of scientific understanding and hazard mitigation. The program is an integral part of the U.S. Government's National Space Weather Program (NSWP), which also includes programs in the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the National Oceanic and Atmospheric Administration (NOAA), and the National Science Foundation (NSF). The NSWP works to provide timely, accurate, and reliable space weather warnings, observations, specifications, and forecasts, and its work is important for the U.S. economy and national security. Please visit the National Geomagnetism Program?s website, http://geomag.usgs.gov, where you can learn more about the Program and the science of geomagnetism. You can find additional related information at the Intermagnet website, http://www.intermagnet.org.

  19. Blind Stereoscopy of the Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Schrijver, Carolus J.; Malanushenko, Anna

    2015-10-01

    We test the feasibility of 3D coronal-loop tracing in stereoscopic EUV image pairs, with the ultimate goal of enabling efficient 3D reconstruction of the coronal magnetic field that drives flares and coronal mass ejections (CMEs). We developed an automated code designed to perform triangulation of coronal loops in pairs (or triplets) of EUV images recorded from different perspectives. The automated (or blind) stereoscopy code includes three major tasks: i) automated pattern recognition of coronal loops in EUV images, ii) automated pairing of corresponding loop patterns from two different aspect angles, and iii) stereoscopic triangulation of 3D loop coordinates. We perform tests with simulated stereoscopic EUV images and quantify the accuracy of all three procedures. In addition we test the performance of the blind-stereoscopy code as a function of the spacecraft-separation angle and as a function of the spatial resolution. We also test the sensitivity to magnetic non-potentiality. The automated code developed here can be used for analysis of existing Solar TErrestrial RElationship Observatory (STEREO) data, but primarily serves for a design study of a future mission with dedicated diagnostics of non-potential magnetic fields. For a pixel size of 0.6^'' (corresponding to the Solar Dynamics Observatory (SDO)/ Atmospheric Imaging Assembly (AIA) spatial resolution of 1.4^''), we find an optimum spacecraft-separation angle of ?s ?5°.

  20. Blind Stereoscopy of the Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Schrijver, Carolus J.; Malanushenko, Anna

    2015-10-01

    We test the feasibility of 3D coronal-loop tracing in stereoscopic EUV image pairs, with the ultimate goal of enabling efficient 3D reconstruction of the coronal magnetic field that drives flares and coronal mass ejections (CMEs). We developed an automated code designed to perform triangulation of coronal loops in pairs (or triplets) of EUV images recorded from different perspectives. The automated (or blind) stereoscopy code includes three major tasks: i) automated pattern recognition of coronal loops in EUV images, ii) automated pairing of corresponding loop patterns from two different aspect angles, and iii) stereoscopic triangulation of 3D loop coordinates. We perform tests with simulated stereoscopic EUV images and quantify the accuracy of all three procedures. In addition we test the performance of the blind-stereoscopy code as a function of the spacecraft-separation angle and as a function of the spatial resolution. We also test the sensitivity to magnetic non-potentiality. The automated code developed here can be used for analysis of existing Solar TErrestrial RElationship Observatory (STEREO) data, but primarily serves for a design study of a future mission with dedicated diagnostics of non-potential magnetic fields. For a pixel size of 0.6^'' (corresponding to the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) spatial resolution of 1.4^''), we find an optimum spacecraft-separation angle of ?s ?5°.

  1. Mean-field theory for Bose-Hubbard model under a magnetic field

    SciTech Connect

    Oktel, M. Oe.; Tanatar, B.; Nita, M.

    2007-01-15

    We consider the superfluid-insulator transition for cold bosons under an effective magnetic field. We investigate how the applied magnetic field affects the Mott transition within mean-field theory and find that the critical hopping strength (t/U){sub c} increases with the applied field. The increase in the critical hopping follows the bandwidth of the Hofstadter butterfly at the given value of the magnetic field. We also calculate the magnetization and superfluid density within mean-field theory.

  2. Qualifying the Sunpower M-87N Cryocooler for Operation in the AMS-02 Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Banks, Stuart; Shirey, Kimberly; Warner, Brent; Leidecker, Henning; Breon, Susan; Boyle, Rob

    2003-01-01

    The Alpha Magnetic Spectrometer-02 (AMs-02) experiment consists of a superfluid helium dewar. The outer vapor cooled shields of the dewar are to be held at 77 K by four Sunpower M87N cryocoolers. These cryocoolers have magnetic components that might interact with the external applied field generated by the superconducting magnet, thereby degrading the cryocoolers' performance. Engineering models of the Sunpower M87N are being tested at NASA Goddard Space Flight in order to qualify them to operate in a magnetic environment similar to the AMS-02 magnetic environment. AMS-02 will be a space station based particle detector studying the properties and origin of cosmic particles including antimatter and dark matter. It uses a superconducting magnet that is cooled by the superfluid helium dewar. Highly sensitive detector plates inside the magnet will measure a particle's momentum and charge.

  3. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOEpatents

    Jiles, David C. (Ames, IA)

    1991-04-16

    A multiparameter magnetic inspection system for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material.

  4. Magnetic field decay in normal radio pulsars

    NASA Astrophysics Data System (ADS)

    Igoshev, A. P.; Popov, S. B.

    2015-11-01

    We analyse the origin of the magnetic field decay in normal radio pulsars found by us in a recent study. This decay has a typical time scale ˜ 4 × 105 yr and operates in the range ˜ 105 - few × 105 yr. We demonstrate that this field evolution may be either due to the Ohmic decay related to the scattering from phonons, or due to the Hall cascade which reaches the Hall attractor. According to our analysis, the first possibility seems to be more reliable. So, we attribute the discovered field decay mainly to the Ohmic decay by phonons, which is saturated at the age of a few× 105 yr when a neutron star cools down to the critical temperature below which the phonon scattering does not contribute much to the resistivity of the crust. Some role of the Hall effect and attractor is not excluded, and will be analysed in our further studies.

  5. Photoneutrino energy losses in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Previously computed rates of energy losses (Petrosian et al., 1967) ignored the presence of strong magnetic fields, hence the change brought in when such a field (about 10 to the 12th to 10 to the 13th power G) is included is studied. The results indicate that for T about 10 to the 8th power K and densities rho of about 10,000 g/cu cm, the presence of a strong H field decreases the energy losses by at the most a factor between 10 and 100 in the region up to rho = 1,000,000 g/cu cm. At higher densities the neutrino emissivities are almost identical.

  6. Braided magnetic fields: equilibria, relaxation and heating

    E-print Network

    Pontin, D I; Russell, A J B; Hornig, G

    2015-01-01

    We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling. The key results obtained from recent modelling efforts are summarised, in the context of testable predictions for the laboratory. We discuss the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity - as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We discuss the properties of this relaxation, and in particular the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor's hypo...

  7. Using Magnetic Fields to Control Convection during Protein Crystallization: Analysis and Validation Studies

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.

  8. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  9. Performance of HPGe Detectors in High Magnetic Fields

    E-print Network

    A. Sanchez Lorente; P. Achenbach; M. Agnello; T. Bressani; S. Bufalino; B. Cederwall; A. Feliciello; F. Ferro; J. Gerl; F. Iazzi; M. Kavatsyuk; I. Kojouharov; L. Majling; A. Pantaleo; M. Palomba; J. Pochodzalla; G. Raciti; N. Saito; T. R. Saito; H. Schaffner; C. Sfienti; K. Szymanska; P. -E. Tegnér

    2006-12-18

    A new generation of high-resolution hypernuclear gamma$-spectroscopy experiments with high-purity germanium detectors (HPGe) are presently designed at the FINUDA spectrometer at DAPhiNE, the Frascati phi-factory, and at PANDA, the antiproton proton hadron spectrometer at the future FAIR facility. Both, the FINUDA and PANDA spectrometers are built around the target region covering a large solid angle. To maximise the detection efficiency the HPGe detectors have to be located near the target, and therefore they have to be operated in strong magnetic fields B ~ 1 T. The performance of HPGe detectors in such an environment has not been well investigated so far. In the present work VEGA and EUROBALL Cluster HPGe detectors were tested in the field provided by the ALADiN magnet at GSI. No significant degradation of the energy resolution was found, and a change in the rise time distribution of the pulses from preamplifiers was observed. A correlation between rise time and pulse height was observed and is used to correct the measured energy, recovering the energy resolution almost completely. Moreover, no problems in the electronics due to the magnetic field were observed.

  10. Torsional oscillations of neutron stars with highly tangled magnetic fields

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime

    2015-11-01

    To determine the frequencies of magnetic oscillations in neutron stars with highly tangled magnetic fields, we derive the perturbation equations. We assume that the field strength of the global magnetic structure is so small that such fields are negligible compared with tangled fields, which may still be far from a realistic configuration. Then, we systematically examine the spectra of the magnetic oscillations, as varying the magnetic field strength and stellar mass. The frequencies without crust elasticity are completely proportional to the strength of the magnetic field, whose proportionality constant depends strongly on the stellar mass. On the other hand, the oscillation spectra with crust elasticity become more complicated, where the frequencies even for weak magnetic fields are different from the crustal torsional oscillations without magnetic fields. For discussing spectra, the critical field strength can play an important role, and it is determined in such a way that the shear velocity is equivalent to the Alfvén velocity at the crust basis. Additionally, we find that the effect of the crust elasticity can be seen strongly in the fundamental oscillations with a lower harmonic index, ?. Unlike the stellar models with a pure dipole magnetic field, we also find that the spectra with highly tangled magnetic fields become discrete, where one can expect many of the eigenfrequencies. Maybe these frequencies could be detected after the violent phenomena breaking the global magnetic field structure.

  11. Characterizing and predicting the magnetic environment leading to solar eruptions

    NASA Astrophysics Data System (ADS)

    Amari, Tahar; Canou, Aurélien; Aly, Jean-Jacques

    2014-10-01

    The physical mechanism responsible for coronal mass ejections has been uncertain for many years, in large part because of the difficulty of knowing the three-dimensional magnetic field in the low corona. Two possible models have emerged. In the first, a twisted flux rope moves out of equilibrium or becomes unstable, and the subsequent reconnection then powers the ejection. In the second, a new flux rope forms as a result of the reconnection of the magnetic lines of an arcade (a group of arches of field lines) during the eruption itself. Observational support for both mechanisms has been claimed. Here we report modelling which demonstrates that twisted flux ropes lead to the ejection, in support of the first model. After seeing a coronal mass ejection, we use the observed photospheric magnetic field in that region from four days earlier as a boundary condition to determine the magnetic field configuration. The field evolves slowly before the eruption, such that it can be treated effectively as a static solution. We find that on the fourth day a flux rope forms and grows (increasing its free energy). This solution then becomes the initial condition as we let the model evolve dynamically under conditions driven by photospheric changes (such as flux cancellation). When the magnetic energy stored in the configuration is too high, no equilibrium is possible and the flux rope is `squeezed' upwards. The subsequent reconnection drives a mass ejection.

  12. Assessing compliance with power-frequency magnetic-field guidelines.

    PubMed

    Bracken, T Dan

    2002-09-01

    Several organizations have established guidelines for occupational exposure to power-frequency magnetic fields. At 60 hertz, exposure limits are 1.0 millitesla (mT) for the American Conference of Governmental Industrial Hygienists, 0.42 mT for the International Committee on Non-ionizing Radiation Protection, and 1.6 mT for the National Radiation Protection Board guidelines. Adoption of the current guidelines as mandatory standards could dramatically affect electric-utility work practices. Two large personal-exposure monitoring projects have characterized exposures of overhead lineworkers and cable splicers while they perform various tasks near energized conductors. Personal exposure measurements indicate that these two groups are very likely the most highly exposed among utility workers and often experience fields above guideline levels. In addition, survey measurements in utility environments have identified locations where other workers may experience exposures at guideline levels. The nature of high-field exposure scenarios in the utility industry suggests a simple practical method for determining compliance with basic restrictions on internal induced current density [< 10 milliamperes per square meter (mA m(-2))] in the presence of fields that exceed limits to magnetic fields external to the body. PMID:12199555

  13. Attenuation of Coronal Magnetic Fields in Solar Microwave Bursts

    NASA Astrophysics Data System (ADS)

    Huang, Guangli; Li, Jianping; Song, Qiwu; Tan, Baolin; Huang, Yu; Wu, Zhao

    2015-06-01

    Based on the observed data by the Nobeyama Radio Observatory and the nonthermal gyrosynchrotron theory, the calculated magnetic field in a loop-like radio source of the 2001 October 23 flare attenuates from hundreds to tens of Gauss, except in the region with very weak magnetic fields. Meanwhile, the viewing angle between the magnetic field and line of sight has a similar attenuation from tens to around ten degrees, implying that the transverse magnetic component attenuates much faster than the longitudinal one. All of these results can be understood by the magnetic energy release process in solar flares. Moreover, the column density of nonthermal electrons decreases from 109-10 to 107-8 cm-2 during the flare, except in the region with very weak magnetic fields, where its value is larger than that with strong magnetic fields due to the mirroring effect. The calculated error and harmonic number of gyrofrequency better suit the region with strong magnetic fields.

  14. Magnetic field evolution in superconducting neutron stars

    NASA Astrophysics Data System (ADS)

    Graber, Vanessa; Andersson, Nils; Glampedakis, Kostas; Lander, Samuel K.

    2015-10-01

    The presence of superconducting and superfluid components in the core of mature neutron stars calls for the rethinking of a number of key magnetohydrodynamical notions like resistivity, the induction equation, magnetic energy and flux-freezing. Using a multifluid magnetohydrodynamics formalism, we investigate how the magnetic field evolution is modified when neutron star matter is composed of superfluid neutrons, type-II superconducting protons and relativistic electrons. As an application of this framework, we derive an induction equation where the resistive coupling originates from the mutual friction between the electrons and the vortex/fluxtube arrays of the neutron and proton condensates. The resulting induction equation allows the identification of two time-scales that are significantly different from those of standard magnetohydrodynamics. The astrophysical implications of these results are briefly discussed.

  15. Blind Stereoscopy of the Coronal Magnetic Field

    E-print Network

    Aschwanden, Markus J; Malanushenko, Anna

    2015-01-01

    We test the feasibility of 3D coronal-loop tracing in stereoscopic EUV image pairs, with the ultimate goal of enabling efficient 3D reconstruction of the coronal magnetic field that drives flares and coronal mass ejections (CMEs). We developed an automated code designed to perform triangulation of coronal loops in pairs (or triplets) of EUV images recorded from different perspectives. The automated (or blind) stereoscopy code includes three major tasks: (i) automated pattern recognition of coronal loops in EUV images, (ii) automated pairing of corresponding loop patterns from two different aspect angles, and (iii) stereoscopic triangulation of 3D loop coordinates. We perform tests with simulated stereoscopic EUV images and quantify the accuracy of all three procedures. In addition we test the performance of the blind stereoscopy code as a function of the spacecraft-separation angle and as a function of the spatial resolution. We also test the sensitivity to magnetic non-potentiality. The automated code develo...

  16. Detecting solar axions using Earth's magnetic field.

    PubMed

    Davoudiasl, Hooman; Huber, Patrick

    2006-10-01

    We show that solar axion conversion to photons in the Earth's magnetosphere can produce an x-ray flux, with average energy omega approximately 4 keV, which is measurable on the dark side of the Earth. The smallness of the Earth's magnetic field is compensated by a large magnetized volume. For axion masses m(a) less, similar10(-4) eV, a low-Earth-orbit x-ray detector with an effective area of 10(4) cm(2), pointed at the solar core, can probe the photon-axion coupling down to 10(-11) GeV-1, in 1 yr. Thus, the sensitivity of this new approach will be an order of magnitude beyond current laboratory limits. PMID:17155238

  17. Generation and behavior of solar system magnetic fields

    NASA Technical Reports Server (NTRS)

    Levy, Eugene H.

    1991-01-01

    A range of problems aimed primarily at elucidating the character and consequences of magnetic-field generation in the solar system and at testing ideas against known properties of natural magnetic fields are covered. Among the specific subjects currently under investigation are the magnetohydrodynamic (MHD) character of the protosolar nebula, including the generation and behavior of magnetic fields, the electrical conductivity of dusty nebular gas, transient magnetodynamic and electrodynamic nebular phenomena, and the generation and dynamical behavior of planetary magnetic fields. During the past year, the focus of this research was on disk magnetic field generation and transient MHD heating events possibly associated with the protoplanetary nebula.

  18. Magnetic field gradients from the ST-5 constellation: Improving magnetic and thermal models of the lithosphere

    E-print Network

    Busby, Cathy

    Magnetic field gradients from the ST-5 constellation: Improving magnetic and thermal models. Busby (2007), Magnetic field gradients from the ST-5 constellation: Improving magnetic and thermal] Satellite constellations enable the efficient collection of in situ measurements over large volumes of space

  19. Heating of magnetic fluid systems driven by circularly polarized magnetic field

    E-print Network

    Atalar, Ergin

    to calculate the heat dissipation of a magnetic suspension, a ferrofluid, driven by circularly polarizedHeating of magnetic fluid systems driven by circularly polarized magnetic field Osman O. Ahsen Received in revised form 3 May 2010 Available online 27 May 2010 Keywords: Circular magnetic field

  20. A magnetic disturbance index for Mercury's magnetic field derived from MESSENGER

    E-print Network

    Johnson, Catherine Louise

    of magnetic disturbance for each orbit. Composite disturbance indices incorporate disturbance levels in all sciences: comets and small bodies; 5440 Magnetic fields and magnetism: Plane- tary sciences: Solid surface] presented a challenge to theories of planetary magnetic field generation because the dipole moment is too

  1. Magnetic field and angular momentum evolution models

    NASA Astrophysics Data System (ADS)

    Gallet, F.

    2013-11-01

    The magnetic field in young stellar object is clearly the most important component when one dealing with the angular momentum evolution of solar-like stars. It controls this latter one from the pre-main sequence, during the ``disk locking'' phase where the stars magnetically interact with their surrounding disk, to the main-sequence through powerful stellar winds that remove angular momentum from the stellar surface. We present new models for the rotational evolution of solar-like stars between 1 Myr and 10 Gyr with the aim to reproduce the distributions of rotational periods observed for star forming regions and young open clusters within this age range. Our simulations are produced by a recent model dedicated to the study of the angular momentum evolution of solar-type stars. This model include a new wind braking law based on recent numerical simulations of magnetized stellar winds and a specific dynamo and mass-loss prescription are used to link the angular momentum loss-rate to angular velocity evolution. The model additionally allows for a core/envelope decoupling with an angular momentum transfer between these two regions. Since this former model didn't include any physical star/disk interaction description, two star/disk interaction processes are eventually added to it in order to reproduce the apparent small angular velocities to which the stellar surface is subject during the disk accretion phase. We have developed rotational evolution models for slow, median and fast rotators including two star/disk interaction scenarios that are the magnetospheric ejection and the accretion powered stellar winds processes. The models appear to fail at reproducing the rotational behaviour of solar-type stars except when a more intense magnetic field is used during the disk accretion phase.

  2. Magnetic environment of hydrogen in Fe from muon precession measurements

    NASA Technical Reports Server (NTRS)

    Heiman, N.; Foy, M. L. G.; Kossler, W. J.; Stronach, C. E.

    1974-01-01

    Polarized positive muon radiation was stopped in an ellipsoidal iron target and its precession was observed in a transverse magnetic field. Results indicate that the conduction electron polarization in the 77 K-Fe Curie point region is less than expected, and that the relaxation time of the muon polarization is dominated by the static inhomogeneity to 900 K, at which point magnetization fluctuations become important.

  3. Generation of Local Magnetic Field by Nano Electro-Magnets H. K. Kim1,2

    E-print Network

    Hwang, Sung Woo

    Generation of Local Magnetic Field by Nano Electro-Magnets H. K. Kim1,2 , S. H. Hong1 , B. C. Kim1, an electro-magnet with the diameter of several tens of µm has been fabricated and been used to manipulate magnetic particles [2]. In this work, we reduce the size of the electro-magnet into nano-meter regime

  4. The research and analysis of the uniformity of the magnetic field of the square Helmholtz coil

    NASA Astrophysics Data System (ADS)

    Pan, Xin; Liu, Jun; Wu, Chen; Lu, Jun

    2015-10-01

    A three-dimensional magnetic field generator has been constructed taking advantage of three groups of square Helmholtz coils in order to do research on the magnetic susceptibility of optical sensors. Whether the uniformity in the center of the magnetic field is standard has to be analyzed to ensure the accuracy of test data from the optical sensor. Regarding square Helmholtz coil as four current-carrying conductor, three-dimensional space magnetic intensity and its uniformity of square Helmholtz coil were analyzed, and the result of simulating data were given. Due to that two coils may partly produce magnetic-field component possibly cancelling each other out, Bx, By, which can have an effect on the uniformity of the magnetic field, so that we need to evaluate the effects. First, we build a mathematical model of the magnetic field intensity of the square Helmholtz coil in the three-dimensional space. Then, some related analysis data and structural models of the three-dimensional uniform magnetic field of the square Helmholtz coil are given by Using the computer software MATLAB and LABVIEW. Finally, that square Helmholtz coils can be applied to study the magnetic susceptibility of optical sensors is proven to be feasible with the standardized testing environments of the magnetic susceptibility and evaluation methods proposed.

  5. Micromagnetic simulation of CNT-MFM probes under magnetic field

    NASA Astrophysics Data System (ADS)

    Manago, Takashi; Asada, Hironori; Kuramochi, Hiromi

    2013-06-01

    On the ferromagnetic-film-coated carbon nanotube for a magnetic force microscope (CNT-MFM) probe, the stability of the magnetic structure in an external magnetic field was investigated using a three-dimensional micromagnetic simulation. When a magnetic field was applied along the longitudinal direction, in the direction opposite that of the magnetization of the probe, the direction of the magnetic moments of the probe remained the same up to -200 mT and then reversed all at once. When a magnetic field was applied along horizontal direction, the direction of the magnetic moments gradually tilts with increasing field. MFM observations seem to be possible for magnetic fields up to 100 ˜ 150 mT, judging from the magnetic structure of the probe. In contrast, the magnetic structures of pyramidal probes show vortex-like magnetic structure and low tolerance to an external magnetic field. The CNT-MFM probe is relatively robust under an external magnetic field due to the strong shape anisotropy attributed to its cylindrical shape.

  6. Comment on 'Primordial magnetic seed field amplification by gravitational waves'

    SciTech Connect

    Tsagas, Christos G.

    2007-04-15

    We consider the amplification of cosmological magnetic fields by gravitational waves as it was recently presented by Betschart et al. That study confined to infinitely conductive environments, arguing that on spatially flat Friedmann backgrounds the gravito-magnetic interaction proceeds always as if the Universe were a perfect conductor. We explain why this claim is not correct and then reexamine the Maxwell-Weyl coupling at the limit of ideal magnetohydrodynamics. We find that the scales of the main results of Betschart et al. were not properly assessed and that the incorrect scale assessment has compromised both the physical and the numerical results of the paper. This comment aims to clarify these issues on the one hand, while on the other it takes a closer look at the gauge invariance and the nonlinearity of the formalism proposed by Betschart et al.

  7. High-field magnetization of Dy2O3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1974-01-01

    The magnetization of powdered samples of Dy2O3 has been measured at temperatures between 1.45 and 4.2 K, in applied magnetic fields ranging to 70 kilogauss. A linear dependence of magnetization on applied field is observable in the high-field region, the slope of which is independent of temperature over the range investigated. The extrapolated saturation magnetic moment is about 2.77 Bohr magnetons per ion.

  8. High-field magnetization of Dy2O3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1974-01-01

    The magnetization of powdered samples of Dy2O3 has been measured at temperatures between 1.45 deg and 4.2 K, in applied magnetic fields ranging to 7 Teslas. A linear dependence of magnetization on applied field is observable in high field region, the slope of which is independent of temperature over the range investigated. The extrapolated saturation magnetic moment is 2.77 + or - 0.08 Bohr magnetons per ion.

  9. SOLIS/VSM Polar Magnetic Field Data

    E-print Network

    Bertello, Luca

    2015-01-01

    The Vector Spectromagnetograph (VSM) instrument on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) telescope is designed to obtain high-quality magnetic field observations in both the photosphere and chromosphere by measuring the Zeeman-induced polarization of spectral lines. With 1$^{\\prime \\prime}$ spatial resolution (1.14$^{\\prime \\prime}$ before 2010) and 0.05\\AA\\ spectral resolution, the VSM provides, among other products, chromospheric full-disk magnetograms using the CaII 854.2 nm spectral line and both photospheric full-disk vector and longitudinal magnetograms using the FeI 630.15 nm line. Here we describe the procedure used to compute daily weighted averages of the photospheric radial polar magnetic field at different latitude bands from SOLIS/VSM longitudinal full-disk observations. Time series of these measurements are publicly available from the SOLIS website at http://solis.nso.edu/0/vsm/vsm\\_plrfield.html. Future plans include the calculation of the mean polar field strength fr...

  10. Graphene transparency in weak magnetic fields

    E-print Network

    David Valenzuela; Saúl Hernández-Ortiz; Marcelo Loewe; Alfredo Raya

    2014-10-20

    We carry out an explicit calculation of the vacuum polarization tensor for an effective low-energy model of monolayer graphene in the presence of a weak magnetic field of intensity $B$ perpendicularly aligned to the membrane. By expanding the quasiparticle propagator in the Schwinger proper time representation up to order $(eB)^2$, where $e$ is the unit charge, we find an explicitly transverse tensor, consistent with gauge invariance. Furthermore, assuming that graphene is radiated with monochromatic light of frequency $\\omega$ along the external field direction, from the modified Maxwell's equations we derive the intensity of transmitted light and the angle of polarization rotation in terms of the longitudinal ($\\sigma_{xx}$) and transverse ($\\sigma_{xy}$) conductivities. Corrections to these quantities, both calculated and measured, are of order $(eB)^2/\\omega^4$. Our findings generalize and complement previously known results reported in literature regarding the light absorption problem in graphene from the experimental and theoretical points of view, with and without external magnetic fields.

  11. MRI using radiofrequency magnetic field phase gradients.

    PubMed

    Sharp, Jonathan C; King, Scott B

    2010-01-01

    Conventionally, MR images are formed by applying gradients to the main static magnetic field (B0). However, the B0 gradient equipment is expensive, power-hungry, complex, and noisy and can induce eddy currents in nearby conducting structures, including the patient. Here, we describe a new silent, B0 gradient-free MRI principle, Transmit Array Spatial Encoding (TRASE), based on phase gradients of the radio-frequency (RF) field. RF phase gradients offer a new method of k-space traversal. Echo trains using at least two different RF phase gradients allow spin phase to accumulate, causing k-space traversal. Two such RF fields provide one-dimensional imaging and three are sufficient for two-dimensional imaging. Since TRASE is a k-space method, analogues of many conventional pulse sequences are possible. Experimental results demonstrate one-dimensional and two-dimensional RF MRI and slice selection using a single-channel, transmit/receive, 0.2 T, permanent magnet, human MR system. The experimentally demonstrated spatial resolution is much higher than that provided by RF receive coil array sensitivity encoding alone but lower than generally achievable with B0 gradients. Potential applications are those in which one or more of the features of simplified equipment, lower costs, silent MRI, or the different physics of the image formation process are particularly advantageous. PMID:19918899

  12. Relativistic generation of vortex and magnetic field

    SciTech Connect

    Mahajan, S. M.; Yoshida, Z.

    2011-05-15

    The implications of the recently demonstrated relativistic mechanism for generating generalized vorticity in purely ideal dynamics [Mahajan and Yoshida, Phys. Rev. Lett. 105, 095005 (2010)] are worked out. The said mechanism has its origin in the space-time distortion caused by the demands of special relativity; these distortions break the topological constraint (conservation of generalized helicity) forbidding the emergence of magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. After delineating the steps in the ''evolution'' of vortex dynamics, as the physical system goes from a nonrelativistic to a relativistically fast and hot plasma, a simple theory is developed to disentangle the two distinct components comprising the generalized vorticity--the magnetic field and the thermal-kinetic vorticity. The ''strength'' of the new universal mechanism is, then, estimated for a few representative cases; in particular, the level of seed fields, created in the cosmic setting of the early hot universe filled with relativistic particle-antiparticle pairs (up to the end of the electron-positron era), are computed. Possible applications of the mechanism in intense laser produced plasmas are also explored. It is suggested that highly relativistic laser plasma could provide a laboratory for testing the essence of the relativistic drive.

  13. Estimation of the Influence on the LHC Beam of Parasitic Magnetic Fields Resulting from Magnet Interconnections

    E-print Network

    Völlinger, C

    2008-01-01

    The Large Hadron Collider (LHC) is equipped with 1232 main superconducting dipole magnets, 474 superconducting quadrupole magnets and more than 7400 superconducting corrector magnets that are distributed around the eight sectors of the accelerator. Each of the magnets is powered via superconducting power cables, the so-called main busbars for the main magnets and auxiliary busbars for the corrector magnets. Within the main magnets, the field produced by the superconducting busbars is shielded by the magnet's iron yoke. However, in the numerous magnet interconnections, the busbars are magnetically unshielded with respect to the beam pipes and produce parasitic fields that can affect the beam. Extensive analyses have been carried out in the past to assess the field quality of the individual magnets and its influence on the two counter-rotating beams. However, no detailed evaluation of the influence of the parasitic fields of the main and auxiliary busbars and their effect on beam optics had been performed so fa...

  14. Convective intensification of magnetic fields in the quiet Sun

    NASA Astrophysics Data System (ADS)

    Bushby, P. J.; Houghton, S. M.; Proctor, M. R. E.; Weiss, N. O.

    2008-06-01

    Kilogauss-strength magnetic fields are often observed in intergranular lanes at the photosphere in the quiet Sun. Such fields are stronger than the equipartition field Be, corresponding to a magnetic energy density that matches the kinetic energy density of photospheric convection, and comparable with the field Bp that exerts a magnetic pressure equal to the ambient gas pressure. We present an idealized numerical model of three-dimensional compressible magnetoconvection at the photosphere, for a range of values of the magnetic Reynolds number. In the absence of a magnetic field, the convection is highly supercritical and characterized by a pattern of vigorous, time-dependent, `granular' motions. When a weak magnetic field is imposed upon the convection, magnetic flux is swept into the convective downflows where it forms localized concentrations. Unless this process is significantly inhibited by magnetic diffusion, the resulting fields are often much greater than Be and the high magnetic pressure in these flux elements leads to their being partially evacuated. Some of these flux elements contains ultraintense magnetic fields that are significantly greater than Bp. Such fields are contained by a combination of the thermal pressure of the gas and the dynamic pressure of the convective motion, and they are constantly evolving. These ultraintense fields develop owing to non-linear interactions between magnetic fields and convection; they cannot be explained in terms of `convective collapse' within a thin flux tube that remains in overall pressure equilibrium with its surroundings.

  15. The origin, evolution and signatures of primordial magnetic fields

    E-print Network

    Subramanian, Kandaswamy

    2015-01-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak $\\sim 10^{-16}$ Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and other phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, ...

  16. On the confinement of lunar induced magnetic fields

    NASA Astrophysics Data System (ADS)

    Fatemi, S.; Fuqua, H. A.; Poppe, A. R.; Delory, G. T.; Halekas, J. S.; Farrell, W. M.; Holmström, M.

    2015-09-01

    We examine the confinement of induced magnetic fields on the lunar dayside and nightside, when the Moon is in the solar wind. We use a three-dimensional hybrid model of plasma and place a dipole magnetic field at the center of the Moon to mimic the induced magnetic field, which is the response of the lunar interior to the time-varying interplanetary magnetic field. Consistent with previous observations and theoretical predictions, we show that the induced magnetic fields on the dayside are confined within the lunar surface through a dayside current sheet. In contrast to previous work, we show that the induced magnetic fields are not confined in the lunar wake, and they leak out, sometimes even appearing as lunar limb compressions. Finally, we identify favorable places to observe induced magnetic fields by electromagnetic sounding techniques, which will help to better constrain the lunar electrical conductivity profile, and interior structure.

  17. Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field

    NASA Astrophysics Data System (ADS)

    Tan, D.; Leng, Y. G.; Gao, Y. J.

    2015-11-01

    In piezoelectric cantilever energy harvesters with external magnetic field, one of the difficulties is the impact of the external magnetic field or magnetic force on vibration response and energy harvesting efficiency. Here we use the magnetizing current and magnetic dipoles approaches to analyze the magnetic force. The two calculation models are proposed for the energy harvesters. The calculation results of the two methods are compared with a set of experimental data. It has been proved that errors are produced with both methods while the magnet interval is sufficiently small. However, the calculation result achieved from magnetic dipoles approach is closer to experimental measurements than the one of magnetizing current approach. Consequently, the magnetic dipoles approach can be chosen preferably to calculate the magnetic force of piezoelectric cantilever energy harvesters with external magnetic field.

  18. Primordial magnetic field generated in natural inflation

    NASA Astrophysics Data System (ADS)

    AlMuhammad, Anwar S.; Lopez-Mobilia, Rafael

    2015-11-01

    We study the simple gauge invariant model {f^2}FF as a way to generate primordial magnetic fields (PMF) in natural inflation (NI). We compute both magnetic and electric spectra generated by the {f^2}FF model in NI for different values of model parameters and find that both de Sitter and power law expansion lead to the same results at sufficiently large number of e-foldings. We also find that the necessary scale invariance property of the PMF cannot be obtained in NI in first order of slow roll limits under the constraint of inflationary potential, V( 0 ) ˜eq 0. Furthermore, if this constraint is relaxed to achieve scale invariance, then the model suffers from the backreaction problem for the co-moving wave number, k ? 8.0× 10^{-7} {Mpc^{-1}} and Hubble parameter, H_i ? 1.25× 10^{-3} {M_{Pl}}. The former can be considered as a lower bound of k and the later as an upper bound of H_i for a model which is free from the backreaction problem. Further, we show that there is a narrow range of the height of the potential ? around {? _{min}} ? 0.00874{M_{{Pl}}} and of k around {k_{min}} ˜ 0.0173{Mp}{{c}^{ - 1}}, at which the energy of the electric field can fall below the energy of the magnetic field. The range of k lies within some observable scales. However, the relatively short range of k presents a challenge to the viability of this model.

  19. Magnetic fields in relativistic collisionless shocks

    SciTech Connect

    Santana, Rodolfo; Kumar, Pawan; Barniol Duran, Rodolfo E-mail: pk@astro.as.utexas.edu

    2014-04-10

    We present a systematic study on magnetic fields in gamma-ray burst (GRB) external forward shocks (FSs). There are 60 (35) GRBs in our X-ray (optical) sample, mostly from Swift. We use two methods to study ? {sub B} (fraction of energy in magnetic field in the FS): (1) for the X-ray sample, we use the constraint that the observed flux at the end of the steep decline is ? X-ray FS flux; (2) for the optical sample, we use the condition that the observed flux arises from the FS (optical sample light curves decline as ?t {sup –1}, as expected for the FS). Making a reasonable assumption on E (jet isotropic equivalent kinetic energy), we converted these conditions into an upper limit (measurement) on ? {sub B} n {sup 2/(p+1)} for our X-ray (optical) sample, where n is the circumburst density and p is the electron index. Taking n = 1 cm{sup –3}, the distribution of ? {sub B} measurements (upper limits) for our optical (X-ray) sample has a range of ?10{sup –8}-10{sup –3} (?10{sup –6}-10{sup –3}) and median of ?few × 10{sup –5} (?few × 10{sup –5}). To characterize how much amplification is needed, beyond shock compression of a seed magnetic field ?10 ?G, we expressed our results in terms of an amplification factor, AF, which is very weakly dependent on n (AF?n {sup 0.21}). The range of AF measurements (upper limits) for our optical (X-ray) sample is ?1-1000 (?10-300) with a median of ?50 (?50). These results suggest that some amplification, in addition to shock compression, is needed to explain the afterglow observations.

  20. Non-Magnetic Stainless Steels Reinvestigated a Small Effective Field Component in External Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ericsson, T.; Abdu, Y. A.; Annersten, H.; Nordblad, P.

    2004-12-01

    Three standard non-magnetic stainless steels of composition (wt%) Fe70Cr19Ni11, Fe70Cr17Ni13 and Fe69Cr18.5Ni10.3Mn1.8Ti0.4 have been investigated by Mössbauer spectroscopy (5 295 K and in external fields ?7 T at room temperature) and magnetization measurements (10 300 K) using a SQUID magnetometer. There are indications of a field induced ferromagnetic interaction in the samples at room temperature.