Note: This page contains sample records for the topic magnetic field map from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Mapping Magnetic Field Lines  

NSDL National Science Digital Library

This is an activity about electromagnetism. Learners will use a compass to map the magnetic field lines surrounding a coil of wire that is connected to a battery. This activity requires a large coil or spool of wire, a source of electricity such as 3 D-cell batteries or an AC to DC power adapter, alligator-clipped wire, and magnetic compasses. This is the third lesson in the second session of the Exploring Magnetism teachers guide.

2

Mapping Magnetic Fields  

NSDL National Science Digital Library

This is an activity about bar magnets and their invisible magnetic fields. Learners will experiment with magnets and a compass to detect and draw magnetic fields. This is Activity 1 of a larger resource, entitled Exploring the Sun. The NASA spacecraft missions represented by this material include SOHO, TRACE, STEREO, Hinode, and SDO.

3

Mapping Magnetic Field Lines  

NSDL National Science Digital Library

This is a lesson about the magnetic field of a bar magnet. The lesson begins with an introductory discussion with learners about magnetism to draw out any misconceptions that may be in their minds. Then, learners freely experiment with bar magnets and various materials, such as paper clips, rulers, copper or aluminum wire, and pencils, to discover that magnets attract metals containing iron, nickel, and/or cobalt but not most other materials. Next, learners experiment with using a magnetic compass to discover how it is affected by the magnet and then draw the magnetic field lines of the magnet by putting dots at the location of the compass arrow. This is the first lesson in the first session of the Exploring Magnetism teacher guide.

4

Equivalent source mapping of lunar magnetic field  

NASA Astrophysics Data System (ADS)

JAXA (Japan Aerospace Exploration Agency) shall launch the SELENE (SELenological and ENgineering Explorer) spacecraft this autumn. Amongst many instruments, it has a magnetometer (LMAG: Lunar MAGnetomter) which will measure the magnetic field on the orbit around the Moon. The nominal orbit of the SELENE is about 100km in altitudes for 1 year observation. Although the extended mission is still not determined, LMAG team is requesting a low altitude (less than 50km) observation, if the remaining fuel allows. We are preparing data processing software for the mission. Here, we report an objective scheme for mapping the lunar crustal magnetic field from the orbital measurement data of unequal altitudes. In this study, the magnetic field is restored by solving a linear inverse-problem determining the sources distributed on the lunar surface to satisfy the observational data, which is known as the equivalent source method. Our scheme has three features improving the method: First, the source calculation is performed simultaneously with detrending. Second, magnetic charges (magnetic monopoles) are used as the equivalent sources. It reduces the density of the sources for the same smoothness in produced field, comparing to the dipole sauces. Third, the number of sources is taken large enough to avoid the problem of configuration of the sources, instead the damped least square assuming the strength of each charge is similar to the next one, and the smoothness factor is determined by minimizing Akaike's Bayesian Information Criterion (ABIC). It guarantees the objectivity of the calculation, in other words, there is no adjustable parameter which may depend of the researcher dealing the data analyses. For testing the scheme, we apply this method to the Lunar Prospector magnetometer data, and provide magnetic field map in the region centered at several regions of strong crustal field including the Reiner Gamma anomaly. The stability of the method and the resolution of the anomaly map are found to be satisfactory.

Toyoshima, M.; Shibuya, H.

2007-12-01

5

Residual Total Field Magnetic Anomaly Map of NOARL's Magnetic Observatory,  

National Technical Information Service (NTIS)

The purpose of this survey is to create an accurate residual magnetic contour map of the Magnetic Observatory area at Stennis Space Center. Measurements were completed covering the observatory grounds. A map of the magnetic residuals is presented.

C. R. Estes W. E. Avera

1991-01-01

6

Mapping the magnetic field vector in a fountain clock  

SciTech Connect

We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.

Gertsvolf, Marina; Marmet, Louis [National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

2011-12-15

7

Global Solar Magnetic Field Maps using ADAPT  

Microsoft Academic Search

Estimates of the global solar photospheric magnetic field distribution are critical for space weather forecasting. These global magnetic charts are the essential data input for accurate modeling of the corona and solar wind, which is vital for gaining the basic understanding necessary to improve forecasting models needed for Air Force operations. In this poster, we describe our efforts and progress

Carl John Henney; C. N. Arge; J. Koller; W. A. Toussaint; S. Young; D. MacKenzie; J. W. Harvey

2010-01-01

8

Mapping magnetic near-field distributions of plasmonic nanoantennas.  

PubMed

We present direct experimental mapping of the lateral magnetic near-field distribution in plasmonic nanoantennas using aperture scanning near-field optical microscopy (SNOM). By means of full-field simulations it is demonstrated how the coupling of the hollow-pyramid aperture probe to the nanoantenna induces an effective magnetic dipole which efficiently excites surface plasmon resonances only at lateral magnetic field maxima. This excitation in turn affects the detected light intensity enabling the visualization of the lateral magnetic near-field distribution of multiple odd and even order plasmon modes with subwavelength spatial resolution. PMID:23464670

Denkova, Denitza; Verellen, Niels; Silhanek, Alejandro V; Valev, Ventsislav K; Van Dorpe, Pol; Moshchalkov, Victor V

2013-04-23

9

Field Map Reconstruction in Magnetic Resonance Imaging Using Bayesian Estimation  

PubMed Central

Field inhomogeneities in Magnetic Resonance Imaging (MRI) can cause blur or image distortion as they produce off-resonance frequency at each voxel. These effects can be corrected if an accurate field map is available. Field maps can be estimated starting from the phase of multiple complex MRI data sets. In this paper we present a technique based on statistical estimation in order to reconstruct a field map exploiting two or more scans. The proposed approach implements a Bayesian estimator in conjunction with the Graph Cuts optimization method. The effectiveness of the method has been proven on simulated and real data.

Baselice, Fabio; Ferraioli, Giampaolo; Shabou, Aymen

2010-01-01

10

CN Zeeman Mapping of Magnetic Fields in Dense Molecular Cores  

NASA Astrophysics Data System (ADS)

The many possible roles of magnetic fields in star formation remain unclear, requiring observations of magnetic fields at all stages and conditions to further our understanding. Zeeman observations provide the only direct measurement of magnetic field strengths in molecular clouds and cores, and maps provide information about field structure. Of the Zeeman-sensitive species, CN offers the best opportunity to sample the higher density gas in molecular cores and their envelopes. Earlier single-dish CN Zeeman N=1-0 measurements were with 23" resolution; needed next are higher angular resolution CN Zeeman maps in order to explore magnetic field strengths and morphologies in dense cores and their envelopes. Here I report CARMA Zeeman-effect mapping of the N=2-1 CN transitions with ~3" resolution toward W3OH and DR21OH, both high-mass star formation regions that have previous single-dish Zeeman detections at 23” resolution. Toward W3OH the line-of-sight field strength reaches 4 mG (4 times higher than the single-dish result) with clear spatial structure. The analysis of DR21OH results will be completed by the meeting and presented also. These are the first interferometric CN Zeeman observations and detections of dense molecular cores. I discuss the implications for the role of magnetic fields in the formation and evolution of dense cores and the possibilities for future ALMA Zeeman work.

Crutcher, Richard

2014-07-01

11

Interferometric methods for mapping static electric and magnetic fields  

NASA Astrophysics Data System (ADS)

The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity Equation. Among these approaches, image-plane off-axis electron holography in the transmission electron microscope has acquired a prominent role thanks to its quantitative capabilities and broad range of applicability. After a brief overview of the main ideas and methods behind field mapping, we focus on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors and magnetization topographies in nanoparticles and other magnetic materials) and electron-optical geometries (including multiple biprism, amplitude and mixed-type set-ups). We conclude by highlighting the emerging perspectives of (i) three-dimensional field mapping using electron holographic tomography and (ii) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.

Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

2014-02-01

12

Studying ISM magnetic fields and turbulent regimes from polarimetric maps  

NASA Astrophysics Data System (ADS)

Polarimetric maps have been used for the characterization of the magnetic field in molecular clouds. However, it is difficult to determine the 3-dimensional properties of these regions from the projected maps. For that reason, numerical simulations can be used as benchmarks for polarimetric measurements, and eventually reveal more about the interplay of turbulence and the magnetic field lines. In this work we make a number of MHD numerical simulations of turbulent molecular clouds and created their synthetic dust emission polarization maps, varying the direction of the observer. We determined the correlation of intensity emitted and polarization degree for the simulated models. We were able to reproduce the decay of the polarization degree at denser regions without any assumption regarding the properties of the dusty component. The anti-correlation arises from the simple cancellation of the polarization vectors along the line of sight. This effect is amplified within denser regions as the magnetic field configuration becomes more complex. We studied the probability distribution function, the power spectrum, and the structure function of the polarization angles. This statistical analysis revealed strong differences depending on the turbulent regime (i.e. sub/supersonic and sub/super-Alfvenic). Therefore, these methods can be used on polarimetric observations to characterize the dynamics of molecular clouds. We also presented a modified Chandrashekhar-Fermi method to obtain the intensity of the local magnetic field. The proposed formulation showed no limitations regarding orientation or turbulent regime.

Falceta-Gonçalves, D.; Lazarian, A.; Kowal, G.

2009-08-01

13

Vacuum magnetic field mapping experiments for validated determination of the helical field coil location in stellarators  

SciTech Connect

Understanding the behavior of plasmas in magnetic confinement fusion devices typically requires accurate knowledge of the magnetic field structure. In stellarator-type confinement devices, the helical magnetic field is produced by currents in external coils and may be traced experimentally in the absence of plasma through the experimental technique of vacuum magnetic field mapping. Field mapping experiments, such as these, were performed on the recently constructed compact toroidal hybrid to verify the range of accessible magnetic configurations, compare the actual magnetic configuration with the design configuration, and identify any vacuum field errors that lead to perturbations of the vacuum magnetic flux surfaces. Furthermore, through the use of a new coil optimization routine, modifications are made to the simulation coil model such that better agreement exists between the experimental and simulation results. An outline of the optimization procedure is discussed in conjunction with the results of one such optimization process performed on the helical field coil.

Peterson, J.; Hanson, J.; Hartwell, G.; Knowlton, S. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

2010-03-15

14

Mapping of the magnetic field for the NPDGamma Experiment  

NASA Astrophysics Data System (ADS)

In the NPDGamma-experiment the parity-violating weak meson exchange forces in the reaction n + p ->d+ ? are studied by measuring the angular correlation A? of the emitted photons with respect to the direction of the neutron spin. The experiment is presently being setup at the Fundamental Physics Beam Line of the Spallation Neutron Source in Oak Ridge, TN. From the exit of the polarizer to the liquid Hydrogen target, the cold neutrons are moving in an almost vertical magnetic field. For the field calibration and adjustment a set of four guide coils and four shim coil systems are used. The strength and the direction of the field are measured using two magnetic flux gate sensors. The field magnitude is required to be 98 mT and the vertical field gradient less than 2.2 ?T/cm between the spin flipper and the end of the target. The magnetic field in the target volume has to be vertical better than 2 mrad, to decrease the systematic errors. The measuring procedure and the mapping of the B-field will be presented.

Jasmin Schaedler, S.; Baessler, Stefan; Balascuta, Septimiu; Pentilla, Seppo

2010-11-01

15

The spectra spectroheliograph system, section 1. [production of magnetic field maps direct from solar spectra  

NASA Technical Reports Server (NTRS)

A system capable of producing maps of the magnetic field straight from spectra was created. The theory of the extraction of magnetic field information by Fourier transform techniques is discussed. Contour maps of a high gradient magnetic field region are presented.

Title, A. M.

1974-01-01

16

Mapping of the Lunar Crustal Magnetic Field by Lunar Prospector  

NASA Technical Reports Server (NTRS)

Lunar Prospector data show that strong magnetic fields lie antipodal to large impact basins, while the basins are low. This suggests that physical mechanisms associated with the impacts are responsible for the large scale magnetization pattern.

Halekas, J. S.; Mitchell, D. L.; Lin, R. P.; Frey, S.; Acuna, M. H.; Hood, L. L.; Binder, A.

2000-01-01

17

Lunar Magnetic Field Observation and Initial Global Mapping of Lunar Magnetic Anomalies by MAP-LMAG Onboard SELENE (Kaguya)  

NASA Astrophysics Data System (ADS)

The magnetic field around the Moon has been successfully observed at a nominal altitude of ˜100 km by the lunar magnetometer (LMAG) on the SELENE (Kaguya) spacecraft in a polar orbit since October 29, 2007. The LMAG mission has three main objectives: (1) mapping the magnetic anomaly of the Moon, (2) measuring the electromagnetic and plasma environment around the Moon and (3) estimating the electrical conductivity structure of the Moon. Here we review the instrumentation and calibration of LMAG and report the initial global mapping of the lunar magnetic anomaly at the nominal altitude. We have applied a new de-trending technique of the Bayesian procedure to multiple-orbit datasets observed in the tail lobe and in the lunar wake. Based on the nominal observation of 14 months, global maps of lunar magnetic anomalies are obtained with 95% coverage of the lunar surface. After altitude normalization and interpolation of the magnetic anomaly field by an inverse boundary value problem, we obtained full-coverage maps of the vector magnetic field at 100 km altitude and the radial component distribution on the surface. Relatively strong anomalies are identified in several basin-antipode regions and several near-basin and near-crater regions, while the youngest basin on the Moon, the Orientale basin, has no magnetic anomaly. These features well agree with characteristics of previous maps based on the Lunar Prospector observation. Relatively weak anomalies are distributed over most of the lunar surface. The surface radial-component distribution estimated from the inverse boundary value problem in the present study shows a good correlation with the radial component distribution at 30 km altitude by Lunar Prospector. Thus these weak anomalies over the lunar surface are not artifacts but likely to be originated from the lunar crustal magnetism, suggesting possible existence of an ancient global magnetic field such as a dynamo field of the early Moon. The possibility of the early lunar dynamo and the mechanism of magnetization acquisition will be investigated by a further study using the low-altitude data of the magnetic field by Kaguya.

Tsunakawa, Hideo; Shibuya, Hidetoshi; Takahashi, Futoshi; Shimizu, Hisayoshi; Matsushima, Masaki; Matsuoka, Ayako; Nakazawa, Satoru; Otake, Hisashi; Iijima, Yuichi

2010-07-01

18

Fast inversion of magnetic field maps of unidirectional planar geological magnetization  

NASA Astrophysics Data System (ADS)

Scanning magnetic microscopes are being increasingly utilized in paleomagnetic studies of geological samples. These instruments typically map a single component of the sample's magnetic field at close proximity with submillimeter horizontal spatial resolution. However, in most applications, an image of the magnetization distribution within the sample is desired rather than its external magnetic field. This requires carefully solving an ill-posed inverse problem to obtain solutions that are nearly free of artifacts and consistent with both natural and laboratory magnetization processes. We present a new, fast inversion technique based on classic methods developed for the Fourier domain that retrieves planar unidirectional magnetization distributions from magnetic field maps. Whereas our approach considers the subtle peculiarities of scanning magnetic microscopy which otherwise can complicate this technique, much of the formalism and algorithms described in this work can also be directly applied to province-scale magnetic field data from aeromagnetic surveys and may be used as an initial step in the modeling of magnetic sources with complex three-dimensional geometries. We discuss sources of inaccuracy observed in practical implementations of the technique and present strategies to improve the quality of inversions. Numerous examples of inversion of both synthetic and experimental data demonstrate the performance of the technique under different conditions. In particular, we retrieve magnetization distributions of a Hawaiian basalt and compare it to inversions calculated in a previous work. We conclude by showing a reconstructed magnetization for the eucrite meteorite ALHA81001 that displays in high resolution the spatial distribution of high-coercivity grains within the sample.

Lima, Eduardo A.; Weiss, Benjamin P.; Baratchart, Laurent; Hardin, Douglas P.; Saff, Edward B.

2013-06-01

19

Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits  

Microsoft Academic Search

The Mars Global Surveyor (MGS) Magnetic Field Investigation was designed to provide fast vector measurements of the ambient magnetic field in the near-Mars environment and over a wide dynamic range. The fundamental objectives of this investigation were to (1) establish the nature of the magnetic field of Mars; (2) develop appropriate models for its representation; and (3) map the Martian

J. E. P. Connerney; P. Wasilewski; R. P. Lin; D. Mitchell; K. A. Anderson; C. W. Carlson; J. McFadden; H. Rème; C. Mazelle; D. Vignes; S. J. Bauer; P. Cloutier; N. F. Ness

2001-01-01

20

Mapping Magnetic Influence  

NSDL National Science Digital Library

This educatorâs guide details activities that allow students to explore magnets and the region of influence around a magnet called a magnetic field. Students learn that magnets exert a force on a magnetically-sensitive object without coming into direct contact with it. Students then create a map of the magnetic influence around the magnet.

2005-02-01

21

SOFIA/HAWC+: Mapping the Galactic center magnetic field  

NASA Astrophysics Data System (ADS)

Polarimetry of the far infrared emission from magnetically-aligned interstellar grains is one of the best ways of studying the magnetic field at the Galactic center. We describe the HAWC+ instrument, under development for flight on SOFIA starting in 2015, which will provide a major advance in capability for these critically important measurements.

Werner, Michael W.; Dowell, C. Darren; Chuss, D. T.; Morris, M. R.; Novak, G.; HAWC+ team

2014-05-01

22

Magnetic Fields  

NSDL National Science Digital Library

Students visualize the magnetic field of a strong permanent magnet using a compass. The lesson begins with an analogy to the effect of the earth's magnetic field on a compass. Students see the connection that the compass simply responds to the earth's magnetic field since it is the closest, strongest field, and therefore the compass will respond to the field of the permanent magnets, allowing them the ability to map the field of that magnet in the activity. This information will be important in designing a solution to the grand challenge in activity 4 of the unit.

Vu Bioengineering Ret Program

23

Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields  

NASA Technical Reports Server (NTRS)

A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.

Shihui, Y.; Jiehai, J.; Minhan, J.

1985-01-01

24

High-precision mapping of the magnetic field utilizing the harmonic function mean value property.  

PubMed

The spatial distributions of the static magnetic field components and MR phase maps in space with homogeneous magnetic susceptibility are shown to be harmonic functions satisfying Laplace's equation. A mean value property is derived and experimentally confirmed on phase maps: the mean value on a spherical surface in space is equal to the value at the center of the sphere. Based on this property, a method is implemented for significantly improving the precision of MR phase or field mapping. Three-dimensional mappings of the static magnetic field with a precision of 10(-11) approximately 10(-12) T are obtained in phantoms by a 1.5-T clinical MR scanner, with about three-orders-of-magnitude precision improvement over the conventional phase mapping technique. In vivo application of the method is also demonstrated on human leg phase maps. PMID:11237651

Li, L; Leigh, J S

2001-02-01

25

Regional Mapping of the Lunar Crustal Magnetic Field: Correlation of Strong Anomalies with Curvilinear Albedo Markings  

NASA Technical Reports Server (NTRS)

Using high-resolution regional Lunar Prospector magnetometer magnetic field maps, we report here a close correlation of the strongest individual crustal anomalies with unusual curvilinear albedo markings of the Reiner Gamma class.

Hood, L. L.; Yingst, A.; Zakharian, A.; Lin, R. P.; Mitchell, D. L.; Halekas, J.; Acuna, M. H.; Binder, A. B.

2000-01-01

26

High resolution mapping of the magnetic field of the solar corona  

NASA Technical Reports Server (NTRS)

The mapping of the current-free magnetic field of the solar corona and the reliability of the spherical harmonic analysis of the photospheric magnetic field pattern are improved by data with much greater dynamic range and spatial resolution than previously available and a new algorithm which permits spherical harmonic expansion to a much higher value of the principal index. Coronal field maps can be drawn for local regions, for just the open field lines, and for various spatial resolutions on a global scale.

Altschuler, M. D.; Levine, R. H.; Stix, M.; Harvey, J.

1977-01-01

27

Nanoscale magnetic field mapping with a single spin scanning probe magnetometer  

SciTech Connect

We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V. [Laboratoire de Photonique Quantique et Moleculaire, Ecole Normale Superieure de Cachan and CNRS UMR 8537, 94235 Cachan Cedex (France); Dal Savio, C.; Karrai, K. [Attocube systems AG, Koeniginstrasse 11A RGB, Munich 80539 (Germany); Dantelle, G. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique and CNRS UMR 7643, 91128 Palaiseau (France); Thiaville, A.; Rohart, S. [Laboratoire de Physique des Solides, Universite Paris-Sud and CNRS UMR 8502, 91405 Orsay (France)

2012-04-09

28

New Global Solar Magnetic Field Maps Using the ADAPT Data Assimilation and Flux Transport Model  

Microsoft Academic Search

As the primary input to all coronal and solar wind models, global estimates of the solar photospheric magnetic field distribution are critical to space weather forecasting. These global magnetic maps are essential for accurate modeling of the corona and solar wind, which is vital for gaining the basic understanding necessary to improve forecasting models needed for Air Force operations. In

C. N. Arge; C. Henney; J. Koller; S. L. Young; C. R. Compeau; D. MacKenzie; J. W. Harvey

2009-01-01

29

Vector magnetic field map at the photospheric level below and around a solar filament (neutral line)  

NASA Astrophysics Data System (ADS)

We present a vector magnetic field map obtained on 7 December 2003, below and around a filament located not so far from the active region NOAA 517, whose one spot is also found on the map of 240× 340 arcsec. This region was itself located near the disk center, so that the longitudinal (resp. transverse) field is nearly the vertical (resp. horizontal) one. The THEMIS telescope was used in its spectropolarimetric multiline mode MTR ("MulTiRaies"). The noise level is 5-10 Gauss in the longitudinal field and 50-100 Gauss in the transverse field, while the pixel size is 0.45 arcsec. Fundamental ambiguity is not solved, and the atmosphere is assumed to be homogeneous. The magnetic field derivation method described in this paper was validated on eight test points submitted to the UNNOFIT inversion code, and the results are found in agreement within 14% discrepancy. Two main results appear on the map: (i) a strong spatial correlation between the longitudinal and transverse field resulting in an inclined field vector (making a most probable angle of 60° or 120° with the line-of-sight in the filament region); and (ii) homogeneity of the field direction (inclination and azimuth) in the filament region. Parasitic polarities were also detected: first those located at the filament feet, as theoretically expected, on the one hand; and then weak opposite polarity regular patterns that appear between the network field (strong field at the frontiers of supergranules), on the other. The exact superimposition of the magnetic field map derived from the Fe I 6302.5 Å line and of the H? map, which enabled association of the parasitic polarities with the filament feet, was possible because these two maps were simultaneously obtained, thanks to a unique facility available in the multiline mode of THEMIS.

Bommier, V.; Rayrole, J.; Eff-Darwich, A.

2005-06-01

30

Making global map of the solar surface Br from the HMI vector magnetic field observations  

NASA Astrophysics Data System (ADS)

The Helioseismic Magnetic Imager (HMI) has made full-disk vector magnetic field measurements of the Sun with cadence of 12 minutes. The three-component solar surface magnetic field vector data are from the HMI observations with the data process pipeline modules, VFISV (Very Fast Inversion of the Stokes Vector, Borrero et al., 2011) for Milne-Eddington inversion and the minimum-energy disambiguation algorithm (Metcalf 1994, Leka et al, 2009). The models of the global corona and solar wind, such as the PFSS (potential-field source-surface) model and the MHD simulations, often use the maps of solar surface magnetic field, especially the radial component (Br) as the boundary condition. The HMI observation can provide new Br data for these model. Because of weak magnetic signals at the quiet regions of the Sun, the limb darkening, and geometric effects near solar poles, we need to apply an assumption to make a whole-surface map. In this paper, we tested two assumptions for determining Br at weak-field regions. The coronal structures calculated by the PFSS model with the vector-based Br are compared with those with the magnetogram-based Br and the corona observed by the SDO/AIA (Atmospheric Imaging Assembly). In the tested period, CR 2098, the vector-based Br map gives better agreements than the line-of-sight magnetogram data, though we need further investigation for evaluation.

Hayashi, K.; Liu, Y.; Sun, X.; Hoeksema, J. T.; Centeno, R.; Barnes, G.; Leka, K. D.

2013-06-01

31

Field mapping and temperature dependence of magnetic domain memory induced by exchange couplings  

NASA Astrophysics Data System (ADS)

Strong magnetic domain memory is achieved in [Co/Pd]IrMn exchange-biased ferromagnetic thin films when zero-field-cooled (ZFC) below their blocking temperature TB. By mapping out the amount of memory throughout the entire magnetization cycle, from nucleation to saturation, at different temperatures below and above TB, we discover how microscopic morphological changes in the magnetic domain patterns correlate with the macroscopic magnetic hysteresis, in the presence or absence of exchange couplings. Our unique inter-field correlation maps show that in the ZFC state, the film exhibits the highest amount of domain memory, exceeding 90%, when domain patterns are compared at the same field value, in the coercive region of the magnetization loop. However, domain patterns also cross-correlate surprisingly well when measured at different field values, on a wide field range centered about the coercive region. The shape and symmetry of the correlation maps provide further insights into the microscopic morphological changes in the domain patterns and the amount of reversibility in the reversal process, at the nanoscale.

Chesnel, Karine; Wilcken, Brian; Rytting, Matthew; Kevan, Steve D.; Fullerton, Eric E.

2013-02-01

32

A symplectic map for trajectories of magnetic field lines in double-null divertor tokamaks  

Microsoft Academic Search

The coordinates of the area-preserving map equations for integration of magnetic field line trajectories in tokamaks can be any coordinates for which a transformation to (psi,theta,phi) coordinates exists [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. psi is toroidal magnetic flux, theta is poloidal angle, and phi is toroidal angle. This freedom is

Willie Crank; Halima Ali; Alkesh Punjabi

2009-01-01

33

The symmetric quartic map for trajectories of magnetic field lines in elongated divertor tokamak plasmas  

Microsoft Academic Search

The coordinates of the area-preserving map equations for integration of magnetic field line trajectories in divertor tokamaks can be any coordinates for which a transformation to (psit,theta,phi) coordinates exists [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. psit is toroidal magnetic flux, theta is poloidal angle, and phi is toroidal angle. This freedom

Morgin Jones; Hasina Wadi; Halima Ali; Alkesh Punjabi

2009-01-01

34

New Robust 3-D Phase Unwrapping Algorithms: Application to Magnetic Field Mapping and Undistorting Echoplanar Images  

Microsoft Academic Search

The phase, as well as the magnitude, of MRI images can carry useful information. It may be used to encode flow or temperature, or to map the magnetic field for the undistorting of EPIs and automated shimming. In all cases, we measure the extra spin given to nuclei. Unfortunately, we can only measure the final phase of the spins: the

R. Cusack; N. Papadakis

2002-01-01

35

Magnetic field map around a wall with a complete lightning protection system  

Microsoft Academic Search

This paper presents a lumped element model suitable for the evaluation of the electromagnetic interference generated by a lightning protection system during a transient. The protection system considered, consisting of several downlead and potential equalization conductors, is complete. The proposed model accounts for possible ionization effects caused by high lightning currents. A map of the magnetic field near the wall

G. Casinovi; A. Geri; G. M. Veca

1989-01-01

36

A Global Map of Mars' Crustal Magnetic Field Based on Electron Reflectometry  

NASA Technical Reports Server (NTRS)

One of the great surprises of the Mars Global Surveyor mission was the discovery of intensely magnetized crust. Magnetic sources on Mars are at least ten times stronger than their terrestrial counterparts, probably requiring large volumes of coherently magnetized material, very strong remanence, or both. Although much of the attention so far has been placed on the strong crustal fields in the southern highlands, magnetic sources do exist in the younger low-lying plains. The strength and morphology of these sources could yield clues to the thermal and magnetic history of the northern plains. Low altitude (approx. 100 km) Magnetometer (MAG) data obtained during aerobraking have the greatest spatial resolution and sensitivity for identifying crustal magnetic sources from orbit, but those data are sparse and therefore limit the ability to discern morphology. Fully sampled MAG data obtained in the 400-km altitude mapping orbit have been differenced with respect to latitude (Br/Lat) to minimize the influence of induced fields from the solar wind interaction and thus enhance the sensitivity to weak crustal sources. Here we describe independent results from the Electron Reflectometer (ER), which remotely measures the magnetic field intensity at approx. 170 km altitude, and is roughly seven times more sensitive to crustal magnetic sources than measurements of Br from the mapping orbit.

Mitchell, D. L.; Lillis, R. J.; Lin, R. P.; Connerney, J. E. P.; Acuna, M. H.

2005-01-01

37

Detection of Magnetic Field Intensity Gradient by Homing Pigeons (Columba livia) in a Novel "Virtual Magnetic Map" Conditioning Paradigm  

PubMed Central

It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a “virtual magnetic map” during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain.

Mora, Cordula V.; Bingman, Verner P.

2013-01-01

38

Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits  

NASA Astrophysics Data System (ADS)

The Mars Global Surveyor (MGS) Magnetic Field Investigation was designed to provide fast vector measurements of the ambient magnetic field in the near-Mars environment and over a wide dynamic range. The fundamental objectives of this investigation were to (1) establish the nature of the magnetic field of Mars; (2) develop appropriate models for its representation; and (3) map the Martian crustal remanent field (if one existed) to a resolution consistent with the spacecraft orbit altitude and ground track separation. Important and complementary objectives were the study of the interaction of Mars with the solar wind and of its ionosphere. The instrumentation is a synergistic combination of a twin-triaxial, fluxgate magnetometer system and an electron reflectometer. The twin-magnetometer system allows the real-time detection of spacecraft-generated fields, while the electron reflectometer adds remote magnetic field sensing capabilities as well as information about the local electron population. After Mars orbit injection in September 1997 and through the aerobraking (AB) and science-phasing orbits (SPO) that followed, observations were acquired from more than 1000 elliptical orbits with periapses ranging from 85 to 170 km above Mars' surface. Following injection into the final ~400 km altitude circular-mapping orbit, data have been acquired from more than 6000 orbits in the fixed 0200-1400 local time plane. Major results obtained so far by the Magnetometer/Electron Reflectometer (MAG/ER) investigation in the course of the mission include (1) the determination that Mars does not currently possess a magnetic field of internal origin (dynamo), (2) the discovery of linear, strongly magnetized regions in its crust, closely associated with the ancient, cratered terrain of the highlands in the southern hemisphere, and (3) multiple magnetic ``cusps'' that connect the crustal magnetic sources to the Martian tail and shocked solar wind plasma. The solar wind interaction with Mars is therefore similar in many ways to that at Venus and at an active comet, primarily an ionospheric/atmospheric interaction. A comet-like ``magnetic pileup'' region and boundary develop that stand off the solar wind, and mass loading by pickup ions of planetary origin plays an important role in defining interaction regions and overall geometry. This paper focuses primarily on the results obtained by the magnetometer (MAG) portion of the investigation during the MGS aerobraking, science-phasing, and mapping orbits. A companion paper on this issue summarizes the results obtained from the Electron Reflectometer (ER) sensor.

Acuña, M. H.; Connerney, J. E. P.; Wasilewski, P.; Lin, R. P.; Mitchell, D.; Anderson, K. A.; Carlson, C. W.; McFadden, J.; Rème, H.; Mazelle, C.; Vignes, D.; Bauer, S. J.; Cloutier, P.; Ness, N. F.

2001-10-01

39

Magnetic Field Mapping and Biaxial Vector Operation for Biomagnetic Applications Using High-Sensitivity Optically Pumped Atomic Magnetometers  

NASA Astrophysics Data System (ADS)

Optically pumped alkali-metal atomic magnetometers are expected to be used not only for biomagnetic field measurements but also for magnetic resonance imaging because of their potential ultrahigh sensitivity. Here, we studied magnetic field mapping and biaxial vector operation using atomic magnetometers. A potassium atomic magnetometer was used in these measurements. First, we obtained sensor output signals by solving the Bloch equation. Next, we measured magnetic field distributions generated by a current dipole electrode that was placed in a spherical phantom, which simulated a group of simultaneously activated neurons in the human brain. We obtained vector contour maps of the magnetic field distributions from the dipoles oriented parallel and orthogonal to the pump laser beam and have found good agreement with theoretical magnetic field distributions. These results demonstrate practical applications of magnetic field mapping and biaxial vector operation using optically pumped atomic magnetometers.

Taue, Shuji; Sugihara, Yasuyuki; Kobayashi, Tetsuo; Ishikawa, Kiyoshi; Kamada, Keigo

2011-11-01

40

Coronal Loop Mapping to Infer the Best Magnetic Field Models for Active Region Prominences  

NASA Astrophysics Data System (ADS)

This article comments on the results of a new, rapid, and flexible manual method to map on-disk individual coronal loops of a two-dimensional EUV image into the three-dimensional coronal loops. The method by Gary, Hu, and Lee (2013) employs cubic Bézier splines to map coronal loops using only four free parameters per loop. A set of 2D splines for coronal loops is transformed to the best 3D pseudo-magnetic field lines for a particular coronal model. The results restrict the magnetic field models derived from extrapolations of magnetograms to those admissible and inadmissible via a fitness parameter. This method uses the minimization of the misalignment angles between the magnetic field model and the best set of 3D field lines that match a set of closed coronal loops. We comment on the implication of the fitness parameter in connection with the magnetic free energy and comment on extensions of our earlier work by considering the issues of employing open coronal loops or employing partial coronal loop.

Gary, G. Allen; Hu, Qiang; Lee, Jong Kwan

2014-01-01

41

Mapping of Ambient Magnetic Fields within Liquid Helium Dewar for Testing of a DC SQUID Magnetometer  

SciTech Connect

In an effort to explore the cavity lights phenomenon, Experimental Facilities Department at SLAC is testing a DC SQUID magnetometer. Due to the nature of the SQUID magnetometer and the intended tests, the earth's magnetic field must be negated. It is proposed to reduce ambient fields using bucking coils. First, however, an accurate map of the magnetic field inside the liquid helium Dewar where the experiment is going to take place needed to be made. This map was made using a three-axis fluxgate magnetometer mounted on a 3D positioning device made for this purpose. A ten inch tall volume within the Dewar was measured at data points approximately an inch from each other in all three axes. A LabVEIW program took readings from the magnetometer at 2 ms intervals for 1000 readings in such a way as to eliminate any ambient 60 Hz signals that may be present in the data. This data was stored in spreadsheet format and was analyzed to determine how the magnetic field within the Dewar was changing as a function of position.

Newhouse, Randal

2003-09-05

42

The Geopotential Research Mission - Mapping the near earth gravity and magnetic fields  

NASA Technical Reports Server (NTRS)

The Geopotential Research Mission (GRM), NASA's low-level satellite system designed to measure the gravity and magnetic fields of the earth, and its objectives are described. The GRM will consist of two, Shuttle launched, satellite systems (300 km apart) that will operate simultaneously at a 160 km circular-polar orbit for six months. Current mission goals include mapping the global geoid to 10 cm, measuring gravity-field anomalies to 2 mgal with a spatial resolution of 100 km, detecting crustal magnetic anomalies of 100 km wavelength with 1 nT accuracy, measuring the vectors components to + or - 5 arc sec and 5 nT, and computing the main dipole or core field to 5 nT with a 2 nT/year secular variation detection. Resource analysis and exploration geology are additional applications considered.

Taylor, P. T.; Keating, T.; Smith, D. E.; Langel, R. A.; Schnetzler, C. C.; Kahn, W. D.

1983-01-01

43

Cardiac magnetic field map topology quantified by Kullback-Leibler entropy identifies patients with hypertrophic cardiomyopathy  

NASA Astrophysics Data System (ADS)

Hypertrophic cardiomyopathy (HCM) is a common primary inherited cardiac muscle disorder, defined clinically by the presence of unexplained left ventricular hypertrophy. The detection of affected patients remains challenging. Genetic testing is limited because only in 50%-60% of all HCM diagnoses an underlying mutation can be found. Furthermore, the disease has a varied clinical course and outcome, with many patients having little or no discernible cardiovascular symptoms, whereas others develop profound exercise limitation and recurrent arrhythmias or sudden cardiac death. Therefore prospective screening of HCM family members is strongly recommended. According to the current guidelines this includes serial echocardiographic and electrocardiographic examinations. In this study we investigated the capability of cardiac magnetic field mapping (CMFM) to detect patients suffering from HCM. We introduce for the first time a combined diagnostic approach based on map topology quantification using Kullback-Leibler (KL) entropy and regional magnetic field strength parameters. The cardiac magnetic field was recorded over the anterior chest wall using a multichannel-LT-SQUID system. CMFM was calculated based on a regular 36 point grid. We analyzed CMFM in patients with confirmed diagnosis of HCM (HCM, n=33, 43.8+/-13 years, 13 women, 20 men), a control group of healthy subjects (NORMAL, n=57, 39.6+/-8.9 years; 22 women and 35 men), and patients with confirmed cardiac hypertrophy due to arterial hypertension (HYP, n=42, 49.7+/-7.9 years, 15 women and 27 men). A subgroup analysis was performed between HCM patients suffering from the obstructive (HOCM, n=19) and nonobstructive (HNCM, n=14) form of the disease. KL entropy based map topology quantification alone identified HCM patients with a sensitivity of 78.8% and specificity of 86.9% (overall classification rate 84.8%). The combination of the KL parameters with a regional field strength parameter improved the overall classification rate to 87.9% (sensitivity: 84.8%, specificity: 88.9%, area under ROC curve: 0.94). KL measures applied to discriminate between HOCM and HNCM patients showed a correct classification of 78.8%. The combination of one KL and one regional parameter again improved the overall classification rate to 97%. A preliminary prospective analysis in two HCM families showed the feasibility of this diagnostic approach with a correct diagnosis of all 22 screened family members (1 HOCM, 4 HNCM, 17 normal). In conclusion, Cardiac Magnetic Field Mapping including KL entropy based topology quantifications is a suitable tool for HCM screening.

Schirdewan, A.; Gapelyuk, A.; Fischer, R.; Koch, L.; Schütt, H.; Zacharzowsky, U.; Dietz, R.; Thierfelder, L.; Wessel, N.

2007-03-01

44

Scaling results for the magnetic field line trajectories in the stochastic layer near the separatrix in divertor tokamaks with high magnetic shear using the higher shear map  

Microsoft Academic Search

Extra terms are added to the generating function of the simple map (Punjabi et al 1992 Phys. Rev. Lett. 69 3322) to adjust shear of magnetic field lines in divertor tokamaks. From this new generating function, a higher shear map is derived from a canonical transformation. A continuous analog of the higher shear map is also derived. The method of

Alkesh Punjabi; Halima Ali; Hamidullah Farhat

2009-01-01

45

The MHD simulation of the solar corona using the synoptic frame map of the solar photospheric magnetic field and the SOHO\\/EIT coronal temperature map  

Microsoft Academic Search

In simulation studies of the solar corona the synoptic map format data of the solar photospheric magnetic field have been used as the boundary value to specify the period of interest This approach successfully works however there remain two problems The first one is that the synoptic maps are constructed by collecting the data made at different date for example

K. Hayashi; X. P. Zhao; B. Benevolenskaya

2006-01-01

46

Investigation of Superconductor Uniformity in CC Tapes by Magnetic Field Mapping  

NASA Astrophysics Data System (ADS)

Uniformity of superconducting layer can play important role in various applications of coated conductor tapes. For example a degradation of critical current density at the tape edges causes significant elevation of transport AC loss compared to the uniform tape with the same critical current. Then the information about tape uniformity is essential when a valid AC loss prediction should be obtained by a numerical simulation. For this purpose we investigated experimentally the distributions of magnetic field above the tape surface obtained by Hall probe mapping. An advanced inversion procedure has been developed to resolve the critical current distribution across the tape width. The results obtained for SuperPower? CC tapes with non-magnetic substrate are presented and the implications on the AC loss behaviour are discussed.

Solovyov, Mykola; Šouc, Ján; Gömöry, Fedor

47

A model of the AGS based on stepwise ray-tracing through the measured field maps of the main magnets  

SciTech Connect

Two-dimensional mid-plane magnetic field maps of two of the main AGS magnets were produced, from Hall probe measurements, for a series of different current settings. The analysis of these data yielded the excitation functions [1] and the harmonic coefficients [2] of the main magnets which have been used so far in all the models of the AGS. The constant increase of the computation power makes it possible today to directly use a stepwise raytracing through these measured field maps with a reasonable computation time. We describe in detail how these field maps have allowed the generation of models of the 6 different types of AGS main magnets, and how they are being handled with the Zgoubi ray-tracing code [3]. We give and discuss a number of results obtained regarding both beam and spin dynamics in the AGS, and we provide comparisons with other numerical and analytical modelling methods.

Dutheil Y.; Meot, F.; Tsoupas, N.

2012-05-20

48

The DIII-D Map -- An Area-Preserving Map for Trajectories of Magnetic Field Lines in the DIII-D Tokamak  

Microsoft Academic Search

The EFIT data for the DIII-D shot 115467 3000 ms is used to calculate the generating function for an area-preserving map for trajectories of magnetic field lines in the DIII-D. We call this map the DIII-D map. The generating function is a bivariate polynomial in base vectors &1\\/2circ;cos(theta) and &1\\/2circ;sin(theta). psi is toroidal flux and theta is poloidal angle. The

Alkesh Punjabi; Halima Ali; Allen Boozer; Todd Evans

2007-01-01

49

Rearing in a distorted magnetic field disrupts the 'map sense' of juvenile steelhead trout.  

PubMed

We used simulated magnetic displacements to test orientation preferences of juvenile steelhead trout (Oncorhynchus mykiss) exposed to magnetic fields existing at the northernmost and southernmost boundaries of their oceanic range. Fish reared in natural magnetic conditions distinguished between these two fields by orienting in opposite directions, with headings that would lead fish towards marine foraging grounds. However, fish reared in a spatially distorted magnetic field failed to distinguish between the experimental fields and were randomly oriented. The non-uniform field in which fish were reared is probably typical of fields that many hatchery fish encounter due to magnetic distortions associated with the infrastructure of aquaculture. Given that the reduced navigational abilities we observed could negatively influence marine survival, homing ability and hatchery efficiency, we recommend further study on the implications of rearing salmonids in unnatural magnetic fields. PMID:24899681

Putman, Nathan F; Meinke, Amanda M; Noakes, David L G

2014-06-01

50

FIRST SYNOPTIC MAPS OF PHOTOSPHERIC VECTOR MAGNETIC FIELD FROM SOLIS/VSM: NON-RADIAL MAGNETIC FIELDS AND HEMISPHERIC PATTERN OF HELICITY  

SciTech Connect

We use daily full-disk vector magnetograms from Vector Spectromagnetograph on Synoptic Optical Long-term Investigations of the Sun system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of the observed radial field with the radial field estimate from line-of-sight magnetograms. Furthermore, we employ these maps to study the hemispheric pattern of current helicity density, H{sub c} , during the rising phase of solar cycle 24. The longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e., H{sub c} is predominantly negative in the north and positive in the south. Although our data include the early phase of cycle 24, there appears to be no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of the cycle as predicted by some dynamo models. Furthermore, we compute the hemispheric pattern in active region latitudes (-30 Degree-Sign {<=} {theta} {<=} 30 Degree-Sign ) separately for weak (100 G < |B{sub r} | < 500 G) and strong (|B{sub r} | > 1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., {theta} {center_dot} H{sub c} < 0), H{sub c} of weak fields exhibits an inverse hemispheric behavior (i.e., {theta} {center_dot} H{sub c} > 0), albeit with large statistical scatter. We discuss two plausible scenarios to explain the opposite hemispheric trend of helicity in weak and strong field regions.

Gosain, S.; Pevtsov, A. A. [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Rudenko, G. V.; Anfinogentov, S. A. [Institute of Solar-Terrestrial Physics (ISTP), Russian Academy of Sciences, Irkutsk (Russian Federation)

2013-07-20

51

High resolution mapping of the magnetic field of the solar corona  

Microsoft Academic Search

High resolution KPNO magnetograph measurements of the line-of-sight component of the photospheric magnetic field over the entire dynamic range from 0 to 4000 gauss are used as the basic data for a new analysis of the photospheric and coronal magnetic field distributions. The daily magnetograph measurements collected over a solar rotation are averaged onto a 180 × 360 synoptic grid

Martin D. Altschuler; Randolph H. Levine; Michael Stix; John Harvey

1977-01-01

52

First Synoptic Maps of Photospheric Vector Magnetic Field from SOLIS/VSM: Non-radial Magnetic Fields and Hemispheric Pattern of Helicity  

NASA Astrophysics Data System (ADS)

We use daily full-disk vector magnetograms from Vector Spectromagnetograph (VSM) on Solar Optical Long-term Investigations of the Sun (SOLIS) system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of observed radial field with the radial field estimate from LOS magnetograms. Further, we employ these maps to study the hemispheric pattern of current helicity density, Hc, during the rising phase of the solar cycle 24. Longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e. Hc is predominantly negative in the North and positive in South. The hemispheric pattern for individual Carrington rotations is statistically weak, consistent with previous studies of active regions’ helicity. Although our data include the early phase of cycle 24, there appears no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of cycle as predicted by some dynamo models. Further, we compute the hemispheric pattern in active region latitudes (-30 ? ? ? 30) separately for weak (100< |Br| <500 G)and strong (|Br| >1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., ?.Hc < 0), Hc of weak fields exhibits an inverse hemispheric behavior (i.e., ?.Hc > 0) albeit with large statistical scatter.Abstract (2,250 Maximum Characters): We use daily full-disk vector magnetograms from Vector Spectromagnetograph (VSM) on Solar Optical Long-term Investigations of the Sun (SOLIS) system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of observed radial field with the radial field estimate from LOS magnetograms. Further, we employ these maps to study the hemispheric pattern of current helicity density, Hc, during the rising phase of the solar cycle 24. Longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e. Hc is predominantly negative in the North and positive in South. The hemispheric pattern for individual Carrington rotations is statistically weak, consistent with previous studies of active regions’ helicity. Although our data include the early phase of cycle 24, there appears no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of cycle as predicted by some dynamo models. Further, we compute the hemispheric pattern in active region latitudes (-30 ? ? ? 30) separately for weak (100< |Br| <500 G)and strong (|Br| >1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., ?.Hc < 0), Hc of weak fields exhibits an inverse hemispheric behavior (i.e., ?.Hc > 0) albeit with large statistical scatter.

Gusain, Sanjay; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.

2013-07-01

53

Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons.  

PubMed

The theory of vortex electron beam electron energy loss spectroscopy (EELS), or vortex-EELS for short, is presented. This theory is applied, using Green function calculations within the finite-difference time-domain method, to calculate spatially resolved vortex-EELS maps of a metal split ring resonator (SRR). The vortex-EELS scattering cross section for the SRR structure is within an order of magnitude of conventional EELS typically for metal nanoparticles. This is promising in terms of feasibility for future measurements to map out the local magnetic response of metal nanostructures and to characterize their magnetic plasmon response in applications, including metamaterials. PMID:22772198

Mohammadi, Zeinab; Van Vlack, Cole P; Hughes, Stephen; Bornemann, Jens; Gordon, Reuven

2012-07-01

54

Magnetic Fields  

NSDL National Science Digital Library

This page and its annex describes, in trivial terms, the physics of magnetic fields and the history of its discovery. Included is the work of Halley, Oersted, Ampere and Maxwell. It also describes a way of demonstrating it in the classroom, using a vu-graph projector. Later sections #5, #5a and #6 extend this to magnetic field lines and electromagnetism.

Stern, David

2005-01-04

55

Mapping the earth's magnetic and gravity fields from space Current status and future prospects  

NASA Technical Reports Server (NTRS)

The principal magnetic fields encountered by earth orbiting spacecraft include the main (core) field, external fields produced by electrical currents within the ionosphere and magnetosphere, and the crustal (anomaly) field generated by variations in the magnetization of the outermost portions of the earth. The first orbital field measurements which proved to be of use for global studies of crustal magnetization were obtained by a series of three satellites launched and operated from 1965 to 1971. Each of the satellites, known as a Polar Orbiting Geophysical Observatory (POGO), carried a rubidium vapor magnetometer. Attention is also given to Magsat launched in 1979, the scalar anomaly field derived from the Magsat measurements, satellite tracking studies in connection with gravity field surveys, radar altimetry, the belt of positive free air gravity anomalies situated along the edge of the Pacific Ocean basin, future technological capabilities, and information concerning data availability.

Settle, M.; Taranik, J. V.

1983-01-01

56

A Statistical Examination of Magnetic Field Model Accuracy for Mapping Geosynchronous Solar Energetic Particle Observations to Lower Earth Orbits  

NASA Astrophysics Data System (ADS)

Operational specifications of space environmental hazards can be an important input used by decision makers. Ideally the specification would come from on-board sensors, but for satellites where that capability is not available another option is to map data from remote observations to the location of the satellite. This requires a model of the physical environment and an understanding of its accuracy for mapping applications. We present a statistical comparison between magnetic field model mappings of solar energetic particle observations made by NOAA's Geostationary Operational Environmental Satellites (GOES) to the location of the Combined Release and Radiation Effects Satellite (CRRES). Because CRRES followed a geosynchronous transfer orbit which precessed in local time this allows us to examine the model accuracy between LEO and GEO orbits across a range of local times. We examine the accuracy of multiple magnetic field models using a variety of statistics and examine their utility for operational purposes.

Young, S. L.; Kress, B. T.; Rodriguez, J. V.; McCollough, J. P.

2013-12-01

57

A Statistical Examination of Magnetic Field Model Accuracy for Mapping Solar Energetic Particle Observations to Remote Locations  

NASA Astrophysics Data System (ADS)

Operational specifications of space environmental hazards can be an important input used by decision makers. Ideally the specification would come from onboard sensors, but for satellites where that capability is not available another option is to map data from remote observations to the location of the satellite. This requires a model of the physical environment and an understanding of how accurately it can be used for mapping applications. We present a statistical comparison between magnetic field model mappings of solar energetic particle observations made by NOAA's Geostationary Operational Environmental Satellites (GOES) to the location of the Combined Release and Radiation Effects Satellite (CRRES). Because CRRES followed a geosynchronous transfer orbit which precessed in local time this allows us to examine the model accuracy between LEO and GEO orbits across a range of local times. We examine the accuracy of multiple magnetic field models using a variety of statistics and examine their utility for operational purposes.

Young, S. L.; Kress, B. T.; Rodriguez, J. V.; McCollough, J. P.

2012-12-01

58

Detecting Ferrite Nanobeads for Sentinel Lymph Node Mapping with a Highly Sensitive Hall Differential Magnetic Field Sensor  

NASA Astrophysics Data System (ADS)

We fabricated a novel type of Hall differential magnetic field sensor for anti-cancer sentinel lymph node (SLN) mapping using ferrofluid as a marker. A pair of Hall devices are mounted on both end surfaces of a ferrite core (10 mm phi ×32 mm) of an electromagnetic coil which generates an AC exciting magnetic field at 2.5 kHz. The signals are retrieved by a digital phase sensitive detection circuit. Mapping a ferrofluid (ResovistR) sample of l00?g in Fe atomic amount (comparable to that accumulated in human SLNs) was attained when the sample was placed within 6 mm distance from the sensor head. The detectable distance is limited primarily due to the magnetic induction effect of the metal XYZ stage which held the sample.

Abe, M.; Ueda, T.; Masaki, T.; Kitamoto, Y.; Matsushita, N.; Handa, H.

2012-03-01

59

Determination of error field sources by accurate mapping of the magnetic geometry of the H-1 heliac.  

SciTech Connect

High precision mapping of the vacuum flux surfaces of the H-1NF heliac is carried out using electron-beam multi-wire tomography for various magnetic configurations and field strengths. The extreme accuracy of this technique has been exploited to understand the nature of error fields and to determine the best-fit empirical values for the H-1NF coil parameters, by point-by-point matching experimental surface data with computer modelling results. This has helped in developing a highly accurate computer model for H-1NF magnetic configurations.

Harris, Jeffrey H [ORNL; Kumar, Santhosh [Univeristy of Wisconsson; Blackwell, B. [Australian National University, Canberra, Australia

2009-01-01

60

Precisely mapping the magnetic field gradient in vacuum with an atom interferometer  

SciTech Connect

The magnetic field gradient has been measured with an atom interferometer using the magnetic sublevels of {sup 87}Rb atoms. The Doppler-insensitive measurement effectively eliminates the contribution from gravity and background vibration noise, and the differential measurement also can reject some systematic errors. A resolution of 300 pT/mm has been demonstrated with a 90-s integration time and a spatial resolution of 1.4 mm. The gradiometer was then used to measure the magnetic field gradient in an ultrahigh-vacuum environment. The technique will also be very useful to subtract the systematic error arising from the magnetic field inhomogeneity in precision atom-interferometry experiments, such as gravity measurement.

Zhou Minkang; Hu Zhongkun; Duan Xiaochun; Sun Buliang; Zhao Jinbo; Luo Jun [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

2010-12-15

61

Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes  

Microsoft Academic Search

A novel method based on selective detection of rapidly chang- ing B0 magnetic fields and suppression of slowly changing B0 fields is presented. The ultimate goal of this work is to present a method that may allow detection of transient and subtle changes in B0 in cortical tissue associated with electrical currents produced by neuronal activity. The method involves the

Jerzy Bodurka; Peter A. Bandettini

2002-01-01

62

Drawing the treasure map: disentangling the structure of the magnetic field of the system BD+20 1790  

NASA Astrophysics Data System (ADS)

In this contribution we present the preliminary results of the study of the surface of the magnetic field of the system BD+20 1790 and its close-in giant planet. Previous results show a high level of stellar activity, with the presence of prominence-like structures, spots on the surface and strong flare events, despite the moderate rotational velocity of the star. The presence of the planet could be an interpretation for these, in terms of stellar-planet interactions (SPI) theory. To study the stellar activity we have carried out both echelle spectroscopic and photometric monitoring over the past few years. The aim of this work is to map the active regions at different atmospheric levels. The simultaneous study of photospheric and chromospheric active regions is a powerful tool that allows us to trace, reconstruct and model the puzzle of the magnetic field topology since the structure of magnetic flux tube breaking into the stellar atmosphere is traced by the configuration of these active regions at the different levels. In short, studying and drawing the map of the magnetic field of this system will enlarge our understanding of SPI, as well as magnetism and activity.

Hernan-Obispo, M.; Gálvez-Ortiz, M. C.; Anglada-Escude, G.; Kane, S. R.; Barnes, J. R.; Golovin, A.; de Castro, E.; Cornide, M.

2011-11-01

63

New Gravity and Magnetic Maps of the San Juan Volcanic Field, Southwestern Colorado  

Microsoft Academic Search

A very large simple Bouguer anomaly gravity low, about 100 km by 150 km in map view and reaching values less than -350 mGals, lies over the Oligocene San Juan volcanic field in southwestern Colorado. Roughly 15-18 different calderas represent the eruptive sources of the andesitic-rhyolitic rocks of this large volcanic field, and most are located within two swarms: the

B. J. Drenth; G. R. Keller

2004-01-01

64

Mapping the stability diagram of a quadrupole mass spectrometer with a static transverse magnetic field applied.  

PubMed

Previous experimental and theoretical work identified that the application of a static magnetic (B) field can improve the resolution of a quadrupole mass spectrometer (QMS) and this simple method of performance enhancement offers advantages for field deployment. Presented here are further data showing the effect of the transverse magnetic field upon the QMS performance. For the first time, the asymmetry in QMS operation with B x and B y is considered and explained in terms of operation in the fourth quadrant of the stability diagram. The results may be explained by considering the additional Lorentz force (v x B) experienced by the ion trajectories in each case. Using our numerical approach, we model not only the individual ion trajectories for a transverse B field applied in x and y but also the mass spectra and the effect of the magnetic field upon the stability diagram. Our theoretical findings, confirmed by experiment, show an improvement in resolution and ion transmission by application of magnetic field for certain operating conditions. PMID:23720050

Maher, Simon; Syed, Sarfaraz U; Hughes, David M; Gibson, John R; Taylor, Stephen

2013-08-01

65

Magnetic Field Mapping and Integral Transfer Function Matching of the Prototype Dipoles for the NSLS-II at BNL  

SciTech Connect

The National Synchrotron Light Source-II (NSLS-II) storage ring at Brookhaven National Laboratory (BNL) will be equipped with 54 dipole magnets having a gap of 35 mm, and 6 dipoles having a gap of 90 mm. Each dipole has a field of 0.4 T and provides 6 degrees of bending for a 3 GeV electron beam. The large aperture magnets are necessary to allow the extraction of long-wavelength light from the dipole magnet to serve a growing number of users of low energy radiation. The dipoles must not only have good field homogeneity (0.015% over a 40 mm x 20 mm region), but the integral transfer functions and integral end harmonics of the two types of magnets must also be matched. The 35 mm aperture dipole has a novel design where the yoke ends are extended up to the outside dimension of the coil using magnetic steel nose pieces. This design increases the effective length of the dipole without increasing the physical length. These nose pieces can be tailored to adjust the integral transfer function as well as the homogeneity of the integrated field. One prototype of each dipole type has been fabricated to validate the designs and to study matching of the two dipoles. A Hall probe mapping system has been built with three Group 3 Hall probes mounted on a 2-D translation stage. The probes are arranged with one probe in the midplane of the magnet and the others vertically offset by {+-}10 mm. The field is mapped around a nominal 25 m radius beam trajectory. The results of measurements in the as-received magnets, and with modifications made to the nose pieces are presented.

He, P.; Jain, A., Gupta, R., Skaritka, J., Spataro, C., Joshi, P., Ganetis, G., Anerella, M., Wanderer, P.

2011-03-28

66

High-Resolution Mapping of Lunar Crustal Magnetic Fields: Correlations with Albedo Markings of the Reiner Gamma Class  

NASA Technical Reports Server (NTRS)

During the last eight months of the Lunar Prospector mission (December 1999-July 1999), the spacecraft was placed in a relatively low-altitude (15-30-km perapsis), near-polar orbit that allowed high-resolution mapping of crustal magnetic fields. We report here initial studies of the correlation of locally strong magnetic anomalies with unusual, swirl-like albedo markings of the Reiner Gamma class. Based on this correlation, which is known from earlier studies of Apollo subsatellite magnetometer data, it has been proposed that the swirls represent regions whose higher albedos have been preserved via deflection of the solar-wind ion bombardment by strong crustal fields. This model in turn depends on the hypothesis that solar-wind implanted H is at least one component of the process that optically matures exposed silicate surfaces in the inner solar system . Specifically, it is hypothesized that implanted H acts as an effective reducing agent to enhance the rate of production of nanophase metallic Fe particles from preexisting silicates during micrometeoroid impacts. According to the model, the curvilinear shapes of these albedo markings are caused, at least in part, by the geometry of ion deflections in a magnetic field. The improved resolution and coverage of the Prospector data allow more detailed mapping of the fields, especially on the lunar farside. This permits a more quantitative test of whether all albedo markings of this class are associated with strong local magnetic fields.Only if the latter condition is met can the solar-wind deflection hypothesis he valid. The basic procedure for mapping crustal magnetic fields using Lunar Prospector magnetometer data follows that developed for analysis of Apollo subsatellite magnetometer data. The specific mapping steps are (1) selection of mission time intervals suitable for mapping crustal fields; these are limited essentially either to times when the Moon is in a lobe of the geomagnetic tail or to times when the Moon is in the solar wind but the spacecraft is in the lunar wake; the data are transformed to a radial, east, and north coordinate system with measurements given as a function of spacecraft latitude, longitude, and altitude; (2) visual editing of individual orbit segments selected for minimal external field disturbances; (3) minimization of remaining low-frequency external fields for individual orbit data segments by quadratic detrending; and (4) two-dimensional filtering of individual orbit segments to produce a vector field map along the slightly curved surface defined by the spacecraft altitude; maps of the three field components (radial, east, and north), the field magnitude, and the spacecraft altitude are constructed. For data obtained at low to middle latitudes, the horizontal resolution of the field maps is limited by the orbit-track separation (about 30 km at the equator). Maps of the field magnitude have been constructed within limited selenographic regions based mainly on data acquired in March, April, and May of 1999. This was a time period when the orbit plane was nearly aligned with the Sun-Moon line so that field mapping was possible at times when the Moon was in the solar wind as well as when the Moon was in the geomagnetic tail. Most of the coverage is across the lunar farside. However, a shows an example of a field map produced from solar-wind wake data for a region including Reiner Gamm on western Oceanus Procellarum (location: 58.5W, 7.5N). The contour interval is 3 nT and the mean spacecraft altitude is 18 km to within the accuracy allowed by the resolution of the map (30 km or about 1 deg.); strong magnetic anomalies correlate closely with swirl locations. Individual orbit profiles (whose resolution along the orbit track is comparable to the spacecraft altitude of 18 km) also demonstrate a good correlation of field magnitude with surface albedo. In order to investigate the correlation of magnetic fields with the location of swirl features, we have reexamined available lunar imagery (Lunar Orbiter, Apollo, and Clementine) to identify and map s

Hood, L. L.; Yingst, A.; Mitchell, D. L.; Lin, R. P.; Acuna, M.; Binder, A.

1999-01-01

67

Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping.  

PubMed

Quantitative susceptibility mapping (QSM) opens the door for measuring tissue magnetic susceptibility properties that may be important biomarkers, and QSM is becoming an increasingly active area of scientific and clinical investigations. In practical applications, there are sources of errors for QSM including noise, phase unwrapping failures, and signal model inaccuracy. To improve the robustness of QSM quality, we propose a nonlinear data fidelity term for frequency map estimation and dipole inversion to reduce noise and effects of phase unwrapping failures, and a method for model error reduction through iterative tuning. Compared with the previous phase based linear QSM method, this nonlinear QSM method reduced salt and pepper noise or checkerboard pattern in high susceptibility regions in healthy subjects and markedly reduced artifacts in patients with intracerebral hemorrhages. PMID:22488774

Liu, Tian; Wisnieff, Cynthia; Lou, Min; Chen, Weiwei; Spincemaille, Pascal; Wang, Yi

2013-02-01

68

New Gravity and Magnetic Maps of the San Juan Volcanic Field, Southwestern Colorado  

NASA Astrophysics Data System (ADS)

A very large simple Bouguer anomaly gravity low, about 100 km by 150 km in map view and reaching values less than -350 mGals, lies over the Oligocene San Juan volcanic field in southwestern Colorado. Roughly 15-18 different calderas represent the eruptive sources of the andesitic-rhyolitic rocks of this large volcanic field, and most are located within two swarms: the Silverton-Lake City (western) caldera complex, and the central complex that includes the Creede, Bachelor, and La Garita calderas. The prominent gravity low over the region has been previously interpreted to be due to the presence a low-density granitic batholith that underlies the volcanic field in the upper crust. However, there are complicating issues in this interpretation. First, many of the volcanic rocks are notably less dense than the Bouguer reduction density of 2.67 g/cc used for processing of the gravity data, meaning that those rocks exposed at the surface could account for a significant portion of the gravity low. Second, the extreme topographic relief in the region requires that terrain corrections (always positive algebraically) be applied. To meet these needs, a new complete Bouguer gravity map of the volcanic field has been prepared using the new traditionally terrain corrected U. S. gravity database. Modeling these data show that the caldera fill is a major contributor to the gravity low but that an upper crustal batholith is also required to satisfy the observed data. In addition, a second map is being prepared. It is derived by applying a new complex Bouguer correction that takes geologically reasonable surface densities and digital elevation data into account, and as a result will provide a much clearer picture of the nature of the subsurface batholith. A new aeromagnetic map of the region has also been completed. This represents a significant improvement over previous merging efforts in southwestern Colorado, as numerous and previously under-utilized high-resolution aeromagnetic datasets were used in the compilation. The new map is highly complex in detail, as it is largely dominated by numerous short-wavelength anomalies sourced by volcanic rocks. A pseudogravity transformation of the aeromagnetic anomalies reveals prominent highs associated with the western and central caldera swarms, possibly representing structural and/or petrologic variations within the sub-caldera upper crust.

Drenth, B. J.; Keller, G. R.

2004-12-01

69

Cortical mapping and frameless stereotactic navigation in the high-field intraoperative magnetic resonance imaging suite  

PubMed Central

Frameless stereotactic neuronavigation provides tracking of surgical instruments on radiographic images and orients the surgeon to tumor margins at surgery. Bipolar electrical stimulation mapping (ESM) delineates safe limits for resection of brain tumors adjacent to eloquent cortex. These standard techniques could complement the capability of intraoperative MR (iMR) imaging to evaluate for occult residual disease during surgery and promote more complete tumor removal. The use of frameless neuronavigation in the high-field iMR imaging suite requires that a few pieces of standard equipment be replaced by nonferromagnetic instruments. Specific use of ESM in a high-field iMR imaging suite has not been reported in the literature. To study whether frameless neuronavigation and electrical stimulation mapping could be successfully integrated in the high-field iMR imaging suite, the authors employed these modalities in 10 consecutive cases involving patients undergoing conscious craniotomy for primary brain tumors located in or adjacent to eloquent cortices. Equipment included a custom high-field MR imaging–compatible head holder and dynamic reference frame attachment, a standard MR imaging–compatible dynamic reference frame, a standard MR imaging machine with a table top that could be translated to a pedestal outside the 5-gauss line for the operative intervention, and standard neuronavigational and cortical stimulation equipment. Both ESM and frameless stereotactic guidance were performed outside the 5-gauss line. The presence of residual neoplasm was evaluated using iMR imaging; resection was continued until eloquent areas were encountered or iMR imaging confirmed complete removal of any residual tumor. Mapping identified essential language (5 patients), sensory (6), and motor (7) areas. The combined use of frameless stereotactic navigation, ESM, and iMR imaging resulted in complete radiographic resection in 7 cases and resection to an eloquent margin in 3 cases. Postoperative MR imaging confirmed final iMR imaging findings. No patient experienced a permanent new neurological deficit. Familiar techniques such as frameless navigation and ESM can be rapidly, inexpensively, safely, and effectively integrated into the high-field iMR imaging suite.

Weingarten, David M.; Asthagiri, Ashok R.; Butman, John A.; Sato, Susumu; Wiggs, Edythe A.; Damaska, Bonita; Heiss, John D.

2013-01-01

70

Mapping ultrahigh energy cosmic rays deflections through the turbulent galactic magnetic field with the latest rotation measure data  

NASA Astrophysics Data System (ADS)

We study the influence of the random part of the galactic magnetic field on the propagation of ultrahigh energy cosmic rays. Within very mild approximations about the properties of the electron density fluctuations in the Galaxy, we are able to derive a clear and direct relation between the observed variance of rotation measures and the predicted cosmic ray deflections. Remarkably, this is obtained bypassing entirely the detailed knowledge of the magnetic properties of the turbulent plasma. Depending on the parameters of the electron density spectrum, we can either directly estimate the expected deflection, or constrain it from above. Thanks to the latest observational data on rotation measures, we build a direction-dependent map of such deflections. We find that over most of the sky the random deflections of 40 EeV protons do not exceed 1°-2°, and can be as large as 5° close to the Galactic plane.

Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

2013-12-01

71

High resolution magnetic field mapping of complex magmatic rock suites and associated tectonic structures in the Southern Andes  

NASA Astrophysics Data System (ADS)

Magmatic and metamorphic rocks of the southernmost Andes (50 to 55°S) document a complex magmatic and tectonic history of an active continental margin during the past >140 Ma [1]. However, the regional distribution of the multiple magmatic intrusive rock suites and younger systems of basaltic dykes as well as the tectonic control of associated hydrothermal systems are widely unexplored. Since the rocks are often bare exposed they represent an ideal test site for a magnetic field investigation with significant implication for future aeromagnetic mapping. Thus we performed a high resolution near-surface grid of measurements with a scalar and vector magnetometer at selected sites which include different intrusive rocks, tectonic lineaments and hydrothermal alteration with an associated mineralization. The magnetic signature corresponding to the Natural Remanent Magnetisation (NRM) was measured on Mesozoic and Cenozoic gabbroid to granitic plutons with large range chemical and mineralogical variations [1], on distinct basaltic dykes, as well as on mylonites, gneisses and hornfels rocks. The whole-rock chemistry of the selected rock types was determined by Atomic Absorption Spectroscopy and X-ray Fluorescence. The analysed and mapped rocks include the SiO2 range from 45 to 76 wt.%, FeO (tot) contents from 2 to 18 wt.% and Ti2O contents from 0.2 to 2.5 wt.%. The mineral assemblages were analysed by polarization microscopy, with an electron microprobe and X-ray diffraction. In the plutonic rocks the whole rock chemistry often is related to the amount of magnetite and NRM intensities [2]. However, measured magnetic intensities let us estimate the degree of chloritization and associated demagnetisation by magnetite alteration and transformation to maghemite and/or iron-hydroxides. For Miocene basaltic dyke systems of decimetre to several meters extension within granitic plutons, a high resolution magnetic mapping has been also performed. We expected a relationship of distinct cooling histories and related grain size distribution of magnetites in these dyke, but most of them have been demagnetized by hydrothermal alteration. However, many dykes include thin zones (a few centimetres) with hydrothermal mineralization (e.g. pyrrhotite) which have been formed at the interfaces between mafic dykes and granites. This hydro-thermal re-magnetization along the dykes and sometimes within the granites are characterised by significant and sharp defined positive magnetic anomalies. The regional mapping of these anomalies shows the orientation of the hydrothermal pathways which follow typical neotectonic crustal lineaments. Our results should improve interpretation of aeromagnetic mapping of crystalline basement rocks and hydrothermal pathways, also on other planets. 1 - Hervé, F., Pankhurst, R.J., Fanning, C.M., Calderón, M., Yaxley, G.M. (2007). The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos 97, 373-394. 2 - Alva-Valdivia L. M. and López-Loera, H. (2011). A review of iron oxide transformations, rock magnetism and interpretation of magnetic anomalies: El Morro Mine (Brazil), a case study. Geofísica International 50-3: 341-362.

Díaz-Michelena, Marina; Kilian, Rolf

2013-04-01

72

A global magnetic anomaly map  

NASA Technical Reports Server (NTRS)

A subset of Pogo satellite magnetometer data has been formed that is suitable for analysis of crustal magnetic anomalies. Through the use of a thirteenth-order field model fit to these data, magnetic residuals have been calculated over the world to latitude limits of plus or minus 50 deg. These residuals, averaged over 1-degree latitude-longitude blocks, represent a detailed global magnetic anomaly map derived solely from satellite data. The occurrence of these anomalies on all individual satellite passes independent of local time and their decay as altitude increases imply a definite internal origin. Their wavelength structure and their correlation with known tectonic features further suggest that these anomalies are primarily of geologic origin and have their sources in the lithosphere.

Regan, R. D.; Davis, W. M.; Cain, J. C.

1975-01-01

73

Uncertainties in Solar Synoptic Magnetic Flux Maps  

NASA Astrophysics Data System (ADS)

Magnetic flux synoptic charts are critical for a reliable modeling of the corona and heliosphere. Until now, however, these charts were provided without uncertainty estimates. The uncertainties are due to instrumental noise in the measurements and to the spatial variance of the magnetic flux distribution that contributes to each bin in the synoptic chart. We describe here a simple method to compute synoptic magnetic flux maps and their corresponding magnetic flux spatial variance charts that can be used to estimate the uncertainty in the results of coronal models. We have tested this approach by computing a potential-field source-surface model of the coronal field for a Monte Carlo simulation of Carrington synoptic magnetic flux maps generated from the variance map. We show that these uncertainties affect both the locations of source-surface neutral lines and the distributions of coronal holes in the models.

Bertello, L.; Pevtsov, A. A.; Petrie, G. J. D.; Keys, D.

2014-07-01

74

Magnetic fields in astrophysics  

Microsoft Academic Search

The evidence of cosmic magnetism is examined, taking into account the Zeeman effect, beats in atomic transitions, the Hanle effect, Faraday rotation, gyro-lines, and the strength and scale of magnetic fields in astrophysics. The origin of magnetic fields is considered along with dynamos, the conditions for magnetic field generation, the topology of flows, magnetic fields in stationary flows, kinematic turbulent

Ia. B. Zeldovich; A. A. Ruzmaikin; D. D. Sokolov

1983-01-01

75

HMI Magnetic Field Products  

NASA Astrophysics Data System (ADS)

The Helioseismic and Magnetic Imager (HMI) on SDO has measured magnetic field, velocity, and intensity in the photosphere over the full disk continuously since May 2010 with arc-second resolution. Scalar images are measured every 45 seconds. From these basic observables the pipeline automatically identifies and tracks active regions on the solar disk. The vector magnetic field and a variety of summary quantities are determined every 720s in these tracked Space-weather HMI Active Region Patches (SHARPS). Synoptic and synchronic maps are constructed daily and after each Carrington Rotation Most data products are available with definitive scientific calibration after a few day deal at and in a quick-look near-real-time version a few minutes after the observations are made. Uncertainties are determined for the derived products. All of the magnetic field products along with movies and images suitable for browsing are available at http:://Hmi.stanford.edu/magnetic. Other products, e.g. coronal field over active regions, can be computed on demand.

Hoeksema, Jon T.; HMI Magnetic Field Team

2013-07-01

76

Initial vector magnetic anomaly map from Magsat  

NASA Technical Reports Server (NTRS)

Global magnetic component anomaly field maps have been derived from the Magsat vector magnetometer data obtained from November 1979 through May 1980. The amplitude of variations of the components over the maps are between 10 and 15 nT, well above the noise in the data. Averaged data, in 2-by-2 deg blocks, exhibit standard errors of the mean of about 1 nT over most of the X and Z maps, and about 2 nT over most of the Y maps. Errors rise to about twice these amounts near the auroral belts. Most of the anomalies in the component data are consistent with a crustal magnetization model which incorporates dipoles aligned only in the direction of the main field. However, there appear to be some regions which require dipoles aligned in some other direction i.e., remanent magnetization.

Langel, R. A.; Schnetzler, C. C.; Phillips, J. D.; Horner, R. J.

1982-01-01

77

Exploring Magnetic Field Lines  

NSDL National Science Digital Library

In this activity, learners explore the magnetic field of a bar magnet as an introduction to understanding Earth's magnetic field. First, learners explore and play with magnets and compasses. Then, learners trace the field lines of the magnet using the compass on a large piece of paper. This activity will also demonstrate why prominences are always "loops."

Nasa

2012-06-26

78

Coronal temperature, density, and magnetic field maps of a solar acitve region using the Owens Valley Solar Array  

NASA Technical Reports Server (NTRS)

We present the first results of solar active region observations with the recently completed five-element Owens Valley Solar Array. On 1991 October 24, maps of Active Region AR 6891 were obtained at 22 frequencies from 1.2-7.0 GHz to provide brightness temperature spectra at each point. This is the first time that both high spatial and frequency-resolution brightness temperature spectra have been available over such a broad radio-frequency range. We find that over most of the region the spectra fall into one of the two well-defined categories: thermal free-free or thermal gyroresonance. In these cases, we use the spectra to deduce the spatial variation of physical parameters-electron temperature, column emission measure (intergral n(sup 2)(sub e) dl), and the coronal magnetic field strength-in and around the active region. Over a limited area of the region, the spectra resemble neither of the simple types, and alternative interpretations are required. The possibilties include the presence of fine structure that is unresolved at low frequencies; the presence of a small number of nonthermal electrons; or the presence of overlying, cooler 10(exp 6) K material which at low frequencies absorbs the hot (3 x 10(exp 6) K) thermal emission generated below.

Gary, Dale E.; Hurford, G. J.

1994-01-01

79

An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps  

NASA Astrophysics Data System (ADS)

We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

Hayashi, K.

2013-11-01

80

Earth's Inconstant Magnetic Field  

NSDL National Science Digital Library

This NASA site describes long-term changes in Earth's magnetic field, and how magnetic stripes in the Atlantic seafloor provide evidence for reversals of this field. The site presents a model of Earth's interior that helps explain how Earth's magnetic field is generated and how the reversals occur. A computer-generated image shows the complicated magnetic field in-between reversals.

2007-04-27

81

Exploring Magnetic Fields  

NSDL National Science Digital Library

This is an activity about magnetic fields. Using iron filings, learners will observe magnets in various arrangements to investigate the magnetic field lines of force. This information is then related to magnetic loops on the Sun's surface and the magnetic field of the Earth. This is the second activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide.

82

THE GALACTIC MAGNETIC FIELD  

SciTech Connect

With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

Jansson, Ronnie; Farrar, Glennys R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

2012-12-10

83

Exploring Magnetic Fields  

NSDL National Science Digital Library

In this activity, students investigate the presence of magnetic fields around magnets, the sun and the earth. They will explore magnetic field lines, understand that magnetic lines of force show the strength and direction of magnetic fields, determine how field lines interact between attracting and repelling magnetic poles, and discover that the earth and sun have magnetic properties. They will also discover that magnetic force is invisible and that a "field of force" is a region or space in which one object can attract or repel another.

84

Magnetic Fields Matter  

NSDL National Science Digital Library

This lesson introduces students to the effects of magnetic fields in matter addressing permanent magnets, diamagnetism, paramagnetism, ferromagnetism, and magnetization. First students must compare the magnetic field of a solenoid to the magnetic field of a permanent magnet. Students then learn the response of diamagnetic, paramagnetic, and ferromagnetic material to a magnetic field. Now aware of the mechanism causing a solid to respond to a field, students learn how to measure the response by looking at the net magnetic moment per unit volume of the material.

VU Bioengineering RET Program, School of Engineering,

85

Initial scalar magnetic anomaly map from Magsat  

NASA Technical Reports Server (NTRS)

Magsat data acquired during the November 1979-June 1980 mission was used to derive a scalar magnetic anomaly map covering +50 to -50 deg geographic latitude, and the separation of anomaly fields from core and external fields was accomplished by techniques developed for POGO satellite data. Except in the Atlantic and Pacific at latitudes south of -15 deg, comparison of the Magsat map with its POGO data-derived counterpart shows basic anomaly patterns to be reproducible, and higher resolution due to Magsat's lower measurement altitude. Color-coded scalar anomaly maps are presented for both satellites.

Langel, R. A.; Phillips, J. D.; Horner, R. J.

1982-01-01

86

Visualizing Magnetic Field Lines  

NSDL National Science Digital Library

In this activity, students take the age old concept of etch-a-sketch a step further. Using iron filings, students begin visualizing magnetic field lines. To do so, students use a compass to read the direction of the magnet's magnetic field. Then, students observe the behavior of iron filings near that magnet as they rotate the filings about the magnet. Finally, students study the behavior of iron filings suspended in mineral oil which displays the magnetic field in three dimensions.

VU Bioengineering RET Program, School of Engineering,

87

Magnetic field mapper  

NASA Technical Reports Server (NTRS)

Magnetic field mapper locates imperfections in cadmium sulphide solar cells by detecting and displaying the variations of the normal component of the magnetic field resulting from current density variations. It can also inspect for nonuniformities in other electrically conductive materials.

Masters, R. M.; Stenger, F. J.

1969-01-01

88

Magnetospheric mapping of the dayside UV auroral oval at Saturn using simultaneous HST images, Cassini IMF data, and a global magnetic field model  

NASA Astrophysics Data System (ADS)

We determine the field-aligned mapping of Saturn's auroras into the magnetosphere by combining UV images of the southern dayside oval obtained by the Hubble Space Telescope (HST) with a global model of the magnetospheric magnetic field. The model is tailored to simulate prevailing conditions in the interplanetary medium, corresponding to high solar wind dynamic pressure and variable interplanetary magnetic field (IMF) strength and direction determined from suitably lagged field data observed just upstream of Saturn's dayside bow shock by the Cassini spacecraft. Two out of four images obtained in February 2008 when such simultaneous data are available are examined in detail, exemplifying conditions for northward and southward IMF. The model field structure in the outer magnetosphere and tail is found to be very different in these cases. Nevertheless, the dayside UV oval is found to have a consistent location relative to the field structure in each case. The poleward boundary of the oval is located close to the open-closed field boundary and thus maps to the vicinity of the magnetopause, consistent with previous results. The equatorward boundary of the oval then maps typically near the outer boundary of the equatorial ring current appropriate to the compressed conditions prevailing. Similar results are also found for related images from the January 2004 HST data set. These new results thus show that the mapped dayside UV oval typically spans the outer magnetosphere between the outer part of the ring current and the magnetopause. It does not encompass the region of primary corotation flow breakdown within the inner Enceladus torus.

Belenkaya, E. S.; Cowley, S. W. H.; Nichols, J. D.; Blokhina, M. S.; Kalegaev, V. V.

2011-07-01

89

An area-preserving mapping in natural canonical coordinates for magnetic field line trajectories in the DIII-D tokamak  

Microsoft Academic Search

The new approach of integrating magnetic field line trajectories in natural canonical coordinates (Punjabi and Ali 2008 Phys. Plasmas 15 122502) in divertor tokamaks is used for the DIII-D tokamak (Luxon and Davis1985 Fusion Technol. 8 441). The equilibrium EFIT data (Evans et al 2004 Phys. Rev. Lett. 92 235003, Lao et al 2005 Fusion Sci. Technol. 48 968) for

Alkesh Punjabi

2009-01-01

90

PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS  

SciTech Connect

Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

Yamamoto, Tetsuya T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Chikusa-ku, Nagoya 464-8601 (Japan); Kusano, K., E-mail: tyamamot@stelab.nagoya-u.ac.jp [Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa 236-0001 (Japan)

2012-06-20

91

The Declining Magnetic Field  

NSDL National Science Digital Library

This is an activity about the declining strength of Earth's magnetic field. Learners will review a graph of magnetic field intensity and calculate the amount by which the field has changed its intensity in the last century, the rate of change of its intensity, and when the field should decrease to zero strength at the current rate of change. Learners will also use evidence from relevant sources to create a conjecture on the effects on Earth of a vanished magnetic field. Access to information sources about Earth's magnetic field strength is needed for this activity. This is Activity 7 in the Exploring Magnetism on Earth teachers guide.

92

Solar Magnetic Field  

NASA Astrophysics Data System (ADS)

Electrical currents flowing in the solar plasma generate a magnetic field, which is detected in the SOLAR ATMOSPHERE by spectroscopic and polarization measurements (SOLAR MAGNETIC FIELD: INFERENCE BY POLARIMETRY). The SOLAR WIND carries the magnetic field into interplanetary space where it can be measured directly by instruments on space probes....

Schüssler, M.; Murdin, P.

2000-11-01

93

High spatial resolution and temporally resolved T2* mapping of normal human myocardium at 7.0 Tesla: an ultrahigh field magnetic resonance feasibility study.  

PubMed

Myocardial tissue characterization using T(2)(*) relaxation mapping techniques is an emerging application of (pre)clinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T(2)(*) mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T(2)(*) imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T(2)(*) mapping. In phantom experiments single cardiac phase and dynamic (CINE) gradient echo imaging techniques provided similar T(2)(*) maps. In vivo studies showed that the peak-to-peak B(0) difference following volume selective shimming was reduced to approximately 80 Hz for the four chamber view and mid-ventricular short axis view of the heart and to 65 Hz for the left ventricle. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T(2)(*) weighting ranging from TE = 2.04 ms to TE = 10.2 ms. For TE >7 ms, a susceptibility weighting induced signal void was observed within the anterior and inferior myocardial segments. The longest T(2)(*) values were found for anterior (T(2)(*) = 14.0 ms), anteroseptal (T(2)(*) = 17.2 ms) and inferoseptal (T(2)(*) = 16.5 ms) myocardial segments. Shorter T(2)(*) values were observed for inferior (T(2)(*) = 10.6 ms) and inferolateral (T(2)(*) = 11.4 ms) segments. A significant difference (p = 0.002) in T(2)(*) values was observed between end-diastole and end-systole with T(2)(*) changes of up to approximately 27% over the cardiac cycle which were pronounced in the septum. To conclude, these results underscore the challenges of myocardial T(2)(*) mapping at 7.0 T but demonstrate that these issues can be offset by using tailored shimming techniques and dedicated acquisition schemes. PMID:23251708

Hezel, Fabian; Thalhammer, Christof; Waiczies, Sonia; Schulz-Menger, Jeanette; Niendorf, Thoralf

2012-01-01

94

High Spatial Resolution and Temporally Resolved T2* Mapping of Normal Human Myocardium at 7.0 Tesla: An Ultrahigh Field Magnetic Resonance Feasibility Study  

PubMed Central

Myocardial tissue characterization using T2* relaxation mapping techniques is an emerging application of (pre)clinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T2* mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T2* imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T2* mapping. In phantom experiments single cardiac phase and dynamic (CINE) gradient echo imaging techniques provided similar T2* maps. In vivo studies showed that the peak-to-peak B0 difference following volume selective shimming was reduced to approximately 80 Hz for the four chamber view and mid-ventricular short axis view of the heart and to 65 Hz for the left ventricle. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T2* weighting ranging from TE?=?2.04 ms to TE?=?10.2 ms. For TE >7 ms, a susceptibility weighting induced signal void was observed within the anterior and inferior myocardial segments. The longest T2* values were found for anterior (T2*?=?14.0 ms), anteroseptal (T2*?=?17.2 ms) and inferoseptal (T2*?=?16.5 ms) myocardial segments. Shorter T2* values were observed for inferior (T2*?=?10.6 ms) and inferolateral (T2*?=?11.4 ms) segments. A significant difference (p?=?0.002) in T2* values was observed between end-diastole and end-systole with T2* changes of up to approximately 27% over the cardiac cycle which were pronounced in the septum. To conclude, these results underscore the challenges of myocardial T2* mapping at 7.0 T but demonstrate that these issues can be offset by using tailored shimming techniques and dedicated acquisition schemes.

Hezel, Fabian; Thalhammer, Christof; Waiczies, Sonia; Schulz-Menger, Jeanette; Niendorf, Thoralf

2012-01-01

95

Drawing Magnetic Fields  

NSDL National Science Digital Library

Students use a compass and a permanent magnet to trace the magnetic field lines produced by the magnet. By positioning the compass in enough spots around the magnet, the overall magnet field will be evident from the collection of arrows representing the direction of the compass needle. In activities 3 and 4 of this unit, students will use this information to design a way to solve the grand challenge of separating metal for a recycling company.

Vu Bioengineering Ret Program

96

The Magnetic Field  

NSDL National Science Digital Library

This demonstration of the magnetic field lines of Earth uses a bar magnet, iron filings, and a compass. The site explains how to measure the magnetic field of the Earth by measuring the direction a compass points from various points on the surface. There is also an explanation of why the north magnetic pole on Earth is actually, by definition, the south pole of a magnet.

Barker, Jeffrey

97

Circuits and Magnetic Fields  

NSDL National Science Digital Library

In this activity, students use the same method as in the activity from lesson 2 to explore the magnetism due to electric current instead of a permanent magnet. Students use a compass and circuit to trace the magnetic field lines induced by the electric current moving through the wire. Students develop an understanding of the effect of the electrical current on the compass needle through the induced magnetic field and understand the complexity of a three dimensional field system.

Vu Bioengineering Ret Program

98

Photospheric magnetic fields  

NASA Technical Reports Server (NTRS)

Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

Howard, R.

1972-01-01

99

A Global Magnetic Anomaly MAP.  

National Technical Information Service (NTIS)

A subset of POGO satellite magnetometer data has been formed that is suitable for analysis of crustal magnetic anomalies. Using a thirteenth order field model, fit to these data, magnetic residuals have been calculated over the world to latitude limits of...

R. D. Regan W. M. Davis J. C. Cain

1974-01-01

100

USGS Topographic Mapping Field Camp  

USGS Multimedia Gallery

USGS topographic mapping field camp in the early 1900s. Note the USGS "pick and hammer" flag flying below the United States flag. It was common practice to fly both flags in USGS field camps. Also note the "US" on the tents. Much of the USGS field gear was obtained from army surplus....

2009-11-23

101

Spectral-Density Mapping of 13C ?- 1H ?Vector Dynamics Using Dipolar Relaxation Rates Measured at Several Magnetic Fields  

NASA Astrophysics Data System (ADS)

The spectral-density mapping of a 13C ?- 1H ?vector of Leu 10in the 22-residue peptide hormone motilin [P. Allard, J. Jarvet, A. Ehrenberg, and A. Gräslund, J. Biomol. NMR5,133-146 (1995)] is extended in this paper to three polarizing fields 9.4, 11.7, and 14.1 T in order to improve the accuracy of the calculated spectral-density function J(?) and to extend the sampling range up to 750 MHz. The problem with a usually large relative error in J(? H) is eliminated since the generally more precise J(? H- ? C) and J(? H+ ? C) determined at other fields appear at nearly the same frequencies. The fitting of dynamic models to the points of spectral density was made with error weighting, and the influence of J(? H) was found to be negligible. Therefore, the high-frequency part of the spectral-density function is determined essentially without influence from the two transverse-type relaxation rates. In the case of a carbon-proton vector, the relaxation is mainly determined by dipolar interaction and is only weakly influenced by other relaxation mechanisms, which makes it particularly suitable for the spectral-density mapping technique. The measured relaxation rates in the time domain are transformed into the frequency domain by spectral-density mapping, and the slopes in different frequency regions are important parameters when comparing experimental data with theoretical models of motion. Using an adjustable internuclear distance reff, combined with the model-free approach, it is possible to obtain a reasonable fit to measured spectral-density points at J(0) and around J(? C). At the same time, however, the high-frequency slope of the spectral-density function defined by J(? H- ? C) and J(? H+ ? C) could not be reproduced.

Jarvet, Jüri; Allard, Peter; Ehrenberg, Anders; Gräslund, Astrid

102

Flares and changing magnetic fields  

Microsoft Academic Search

An observational study of maps of the longitudinal component of the photospheric fields in flaring active regions leads to the following conclusions:(1)The broad-wing Ha kernels characteristic of the impulsive phase of flares occur within 10? of neutral lines encircling features of isolated magnetic polarity (‘satellite sunspots’).(2)Photospheric field changes intimately associated with several importance 1 flares and one importance 2B flare

David M. Rust

1972-01-01

103

Design, construction, and field mapping of the HISTRAP prototype dipole  

SciTech Connect

HISTRAP is a proposed 2.67 T-m synchrotron-cooler-storage ring having eight 45/degree/, C-design dipole magnets. A prototype dipole has been designed, fabricated, and mapped. The magnet design utilizes curved and angled coil ends to compensate for end effects in the field. Construction of the prototype dipole has been completed by the FNAL magnet factory. The magnetic field has been mapped using a Hall-effect probe afixed to a newly constructed, PC-based, horizontal positioning system. Results of the field mapping are presented. 6 refs., 7 figs., 1 tabs.

Tatum, B.A.; Dowling, D.T.; Lord, R.S.; Mosko, S.W.; Olsen, D.K.

1989-01-01

104

The DYNAMO Orbiter Project: High Resolution Mapping of Gravity/Magnetic Fields and In Situ Investigation of Mars Atmospheric Escape  

NASA Technical Reports Server (NTRS)

Dynamo is a small Mars orbiter planned to be launched in 2005 or 2007, in the frame of the NASA/CNES Mars exploration program. It is aimed at improving gravity and magnetic field resolution, in order to better understand the magnetic, geologic and thermal history of Mars, and at characterizing current atmospheric escape, which is still poorly constrained. These objectives are achieved by using a low periapsis orbit, similar to the one used by the Mars Global Surveyor spacecraft during its aerobraking phases. The proposed periapsis altitude for Dynamo of 120-130 km, coupled with the global distribution of periapses to be obtained during one Martian year of operation, through about 5000 low passes, will produce a magnetic/gravity field data set with approximately five times the spatial resolution of MGS. Low periapsis provides a unique opportunity to investigate the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, therefore atmospheric escape, which may have played a crucial role in removing atmosphere, and water, from the planet. There is much room for debate on the importance of current atmosphere escape processes in the evolution of the Martian atmosphere, as early "exotic" processes including hydrodynamic escape and impact erosion are traditionally invoked to explain the apparent sparse inventory of present-day volatiles. Yet, the combination of low surface gravity and the absence of a substantial internally generated magnetic field have undeniable effects on what we observe today. In addition to the current losses in the forms of Jeans and photochemical escape of neutrals, there are solar wind interaction-related erosion mechanisms because the upper atmosphere is directly exposed to the solar wind. The solar wind related loss rates, while now comparable to those of a modest comet, nonetheless occur continuously, with the intriguing possibility of important cumulative and/or enhanced effects over the several billion years of the solar system's life. If the detailed history of the Martian internal field could be traced back, and the current escape processes could be understood well enough to model the expected stronger losses under early Sun conditions, one could go a long way toward constraining this part of the mysterious history of Mars' atmosphere.

Smrekar, S.; Chassefiere, E.; Forget, F.; Reme, H.; Mazelle, C.; Blelly, P. -L.; Acuna, M.; Connerney, J.; Purucker, M.; Lin, R.

2000-01-01

105

SYNOPTIC MAPPING OF CHROMOSPHERIC MAGNETIC FLUX  

SciTech Connect

We used daily full-disk Ca II 854.2 nm magnetograms from the Synoptic Optical Long Term Investigations of the Sun (SOLIS) facility to study the chromospheric magnetic field from 2006 April through 2009 November. We determined and corrected previously unidentified zero offsets in the SOLIS magnetograms. By tracking the disk passages of stable unipolar regions, the measured net flux densities were found to systematically decrease from the disk center to the limb by a factor of about two. This decrease was modeled using a thin flux tube model with a difference in signal formation height between the center and limb sides. Comparison of photospheric and chromospheric observations shows that their differences are largely due to horizontal spreading of magnetic flux with increasing height. The north polar magnetic field decreased nearly linearly with time during our study period while the south polar field was nearly constant. We used the annual change in the viewing angle of the polar regions to estimate the radial and meridional components of the polar fields and found that the south polar fields were tilted away from the pole. Synoptic maps of the chromospheric radial flux density distribution were used as boundary conditions for extrapolation of the field from the chromosphere into the corona. A comparison of modeled and observed coronal hole boundaries and coronal streamer positions showed better agreement when using the chromospheric rather than the photospheric synoptic maps.

Jin, C. L. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Harvey, J. W.; Pietarila, A., E-mail: cljin@nao.cas.cn, E-mail: jharvey@nso.edu, E-mail: apietarila@nso.edu [National Solar Observatory, Tucson, AZ 85719 (United States)

2013-03-10

106

Melatonin and magnetic fields.  

PubMed

There is public health concern raised by epidemiological studies indicating that extremely low frequency electric and magnetic fields generated by electric power distribution systems in the environment may be hazardous. Possible carcinogenic effects of magnetic field in combination with suggested oncostatic action of melatonin lead to the hypothesis that the primary effects of electric and magnetic fields exposure is a reduction of melatonin synthesis which, in turn, may promote cancer growth. In this review the data on the influence of magnetic fields on melatonin synthesis, both in the animals and humans, are briefly presented and discussed. PMID:12019358

Karasek, Michal; Lerchl, Alexander

2002-04-01

107

Analysis of magnetic field levels at KSC  

NASA Technical Reports Server (NTRS)

The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

Christodoulou, Christos G.

1994-01-01

108

Beebook: light field mapping app  

NASA Astrophysics Data System (ADS)

In the last decade the mobile systems for field digital mapping were developed (see Wikipedia for "Digital geologic mapping"), also against many skeptic traditional geologists. Until now, hardware was often heavy (tablet PC) and software sometime difficult also for expert GIS users. At present, the advent of light tablet and applications makes things easier, but we are far to find a whole solution for a complex survey like the geological one where you have to manage complexities such information, hypothesis, data, interpretation. Beebook is a new app for Android devices, has been developed for fast ad easy mapping work in the field trying to try to solve this problem. The main features are: • off-line raster management, GeoTIFF ed other raster format using; • on-line map visualisation (Google Maps, OSM, WMS, WFS); • SR management and conversion using PROJ.4; • vector file mash-up (KML and SQLite format); • editing of vector data on the map (lines, points, polygons); • augmented reality using "Mixare" platform; • export of vector data in KML, CSV, SQLite (Spatialite) format; • note: GPS or manual point inserting linked to other application files (pictures, spreadsheet, etc.); • form: creation, edition and filling of customized form; • GPS: status control, tracker and positioning on map; • sharing: synchronization and sharing of data, forms, positioning and other information can be done among users. The input methods are different from digital keyboard to fingers touch, from voice recording to stylus. In particular the most efficient way of inserting information is the stylus (or pen): field geologists are familiar with annotation and sketches. Therefore we suggest the use of devices with stylus. The main point is that Beebook is the first "transparent" mobile GIS for tablet and smartphone deriving from previous experience as traditional mapping and different previous digital mapping software ideation and development (MapIT, BeeGIS, Geopaparazzi). Deriving from those experiences, we developed a tool which is easy to use and applicable not only for geology but also to every field survey.

De Donatis, Mauro; Di Pietro, Gianfranco; Rinnone, Fabio

2014-05-01

109

TROMBONE: T1-Relaxation-Oblivious Mapping of Transmit Radio-Frequency Field (B1) for MRI at High Magnetic Fields  

PubMed Central

Fast, 3D radio-frequency transmit field (B1) mapping is important for parallel transmission, spatially-selective pulse design and quantitative MRI applications. It has been shown that AFI — two interleaved spoiled gradient recalled echo (SPGR) images acquired in steady state with two very short time delays (T R1, T R2) — is an attractive method of B1 mapping. Herein, we describe the TROMBONE method which efficiently integrates AFI with EPI imaging, alleviates very short T R requirement of AFI and through their synergy yields up to 16 times higher precision in B1 estimation in the same experimental time. High precision of TROMBONE can be traded for faster scans. The map of B1 reconstructed from the ratio of intensities of two images is insensitive to longitudinal relaxation time (T1) in the physiologically relevant range. A table of the optimal acquisition protocol parameters for various target experimental conditions is provided.

Fleysher, Roman; Fleysher, Lazar; Inglese, Matilde; Sodickson, Daniel

2011-01-01

110

TROMBONE: T1-relaxation-oblivious mapping of transmit radio-frequency field (B1) for MRI at high magnetic fields.  

PubMed

Fast, 3D radio-frequency transmit field (B1) mapping is important for parallel transmission, spatially selective pulse design and quantitative MRI applications. It has been shown that actual flip angle imaging--two interleaved spoiled gradient recalled echo images acquired in steady state with two very short time delays (TR1, TR2)--is an attractive method of B1 mapping. Herein, we describe the TROMBONE method that efficiently integrates actual flip angle imaging with EPI imaging, alleviates very short TR requirement of actual flip angle imaging and through their synergy yields up to 16 times higher precision in B1 estimation in the same experimental time. High precision of TROMBONE can be traded for faster scans. The map of B1 reconstructed from the ratio of intensities of two images is insensitive to longitudinal relaxation time (T1) in the physiologically relevant range. A table of the optimal acquisition protocol parameters for various target experimental conditions is provided. PMID:21394765

Fleysher, Roman; Fleysher, Lazar; Inglese, Matilde; Sodickson, Daniel

2011-08-01

111

Magnetic Field Viewing Cards  

NASA Astrophysics Data System (ADS)

For some years now laminated cards containing a green, magnetically sensitive film have been available from science education suppliers. When held near a magnet, these cards appear dark green in regions where the field is perpendicular to the card and light green where the field is parallel to the card. The cards can be used to explore the magnetic field near a variety of magnets as well as near wire loops. In this paper we describe how to make these cards and how we have used them in our physics classrooms and labs.

Kanim, Stephen; Thompson, John R.

2005-09-01

112

The galactic magnetic field  

Microsoft Academic Search

Estimates for the scale, geometry and strength of the magnetic field in the galactic system can be derived from observations of polarization properties of radio emission from the Galaxy, extragalactic radio sources and pulsars, and polarization of starlight. Within distances of about 500 parsecs (1 parsec = 3.26 lightyears) from the solar system the magnetic field is directed towards galactic

T A Spoelstra; T. A. T

1977-01-01

113

Calibrating the magnetosphere-ionosphere mapping using the in-situ magnetic field-line curvature and ionospheric proton precipitation measurements  

NASA Astrophysics Data System (ADS)

Non-adiabatic motion of energetic ions under curved geomagnetic field geometry is one of the most recognized processes of the pitch-angle scattering of ions in the equatorial magnetosphere. The degree of such pitch-angle scattering is energy-dependent and controlled by the radii of curvature of the equatorial magnetic field line. Those energetic ions scatted into the equatorial loss cone can subsequently precipitate into the Earth's upper atmosphere and excite proton auroras there. Therefore, an in-situ estimation of the radii of curvature of the equtorial magnetci field, together with the particle and/or optical auroral measuments of the proton precipitations in the ionosphere, can help infer a proper mapping between the magnetosphere and ionosphere. In this study, we propose a technique to calculate the magnetic field-line curvature using THEMIS in-situ observations, when multiple THEMIS probes are closely-spaced and mainly separated in z-direction, and demostrate in a few event expamles the use of such novel technique. Based upon the estimated field-line curvature, we deduce the variation of the "critical energy" separating the strong and weak scattering conditions of plasma sheet ions, which determines the lower energy bound of precipitaing CPS ions. Combining with the ground optical measurements of proton auroras, as well as the low-Earth-orbit satellite observations of ion precipitation fluxes at various energy bands, we evaluate the ionospheric footprints of the THEMIS probes in those events, and compare with the maping inferred from empirical Tsygenanko magnetic field models as well as the event-adaptive models developed by Kubyshkina et al. [2009; 2010].

Liang, J.; Donovan, E.; Spanswick, E.; Kubyshkina, M.

2012-12-01

114

Interplanetary Magnetic Field Lines  

NSDL National Science Digital Library

This web page provides information and a graphical exercise for students regarding the interaction between magnetic field lines and a plasma. The activity involves tracing a typical interplanetary magnetic field line, dragged out of a location on the Sun by the radial flow of the solar wind. This illustrates the way magnetic field lines are "frozen to the plasma" and the wrapping of field lines due to the rotation of the sun. This is part of the work "The Exploration of the Earth's Magnetosphere". A Spanish translation is available.

Stern, David

2005-04-27

115

A global magnetic anomaly map. [obtained from POGO satellite data  

NASA Technical Reports Server (NTRS)

A subset of POGO satellite magnetometer data has been formed that is suitable for analysis of crustal magnetic anomalies. Using a thirteenth order field model, fit to these data, magnetic residuals have been calculated over the world to latitude limits of plus 50 deg. These residuals averaged over one degree latitude-longitude blocks represent a detailed global magnetic anomaly map derived solely from satellite data. Preliminary analysis of the map indicates that the anomalies are real and of geological origin.

Regan, R. D.; Davis, W. M.; Cain, J. C.

1974-01-01

116

Global Map of Magnetic Anomalies (MAG/ER)  

NASA Technical Reports Server (NTRS)

The radial magnetic field measured is color coded on a global map that slows the larger craters and volcanoes (dark green), spacecraft tracks below 200 km (light green), and the dichotomy boundary (solid line).

1999-01-01

117

Magnetic fields at Neptune  

SciTech Connect

The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10{sup {minus}5} gauss) was observed near closest approach, at a distance of 1.18 R{sub N}. The planetary magnetic field between 4 and 15 R{sub N} can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R{sub N} and inclined by 47{degrees} with respect to the rotation axis. Within 4 R{sub N}, the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an oblique rotator.

Ness, N.F. (Univ. of Delaware, Newark (USA)); Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P. (NASA, Greenbelt, MD (USA)); Neubauer, F.M. (Universitaet zu Koln (West Germany))

1989-12-15

118

Sonoluminescence in High Magnetic Fields  

Microsoft Academic Search

We have made a detailed study of sonoluminescence (SL) in high magnetic fields. In magnetic field sweeps at constant levels of acoustic drive, SL disappears above a pressure-dependent threshold magnetic field. Sweeps of acoustic drive at fixed magnetic fields show that the upper and lower bounds of forcing pressure that determine the region of SL increase dramatically with magnetic field.

J. B. Young; T. Schmiedel; Woowon Kang

1996-01-01

119

Magnetic Bar Field Model  

NSDL National Science Digital Library

The EJS Magnetic Bar Field Model shows the field of a bar magnet and has a movable compass that reports the magnetic field values. The bar magnet model is built by placing a group of magnetic dipoles along the bar magnet. You can modify this simulation if you have Ejs installed by right-clicking within the plot and selecting âOpen Ejs Modelâ from the pop-up menu item. The Magnetic Bar Field model was created using the Easy Java Simulations (Ejs) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. Double clicking the ejs_em_MagneticBarField.jar file will run the program if Java is installed. Ejs is a part of the Open Source Physics Project and is designed to make it easier to access, modify, and generate computer models. Additional Ejs models are available. They can be found by searching ComPADRE for Open Source Physics, OSP, or Ejs.

Christian, Wolfgang; Franciscouembre; Cox, Anne

2009-09-18

120

Opening the cusp. [using magnetic field topology  

NASA Technical Reports Server (NTRS)

This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.

Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.

1991-01-01

121

Magnetic Field Lines  

NSDL National Science Digital Library

This activity will introduce students to the idea of magnetic field lines--a concept they have probably encountered but may not fully grasp. Completing this activity and reading the corresponding background information should enable students to understand

Horton, Michael

2009-05-30

122

Solar Magnetic Fields.  

National Technical Information Service (NTIS)

The research work was directed towards the following: (1) Perform necessary laboratory experiments, including a study on the Zeeman effect in absorption. Make observations of the sunspot and general magnetic fields of the sun. (2) Conduct a program of int...

M. Cimino

1966-01-01

123

Coronal magnetic fields  

Microsoft Academic Search

The use of coronal X-ray emission in determining the configuration of the magnetic field lines in the corona is discussed. Spatially-resolved X-ray observations provided by Skylab and subsequently by missions such as OSO-8 and SMM show the solar corona to be inhomogeneous, with open and closed structures determined by the topology of the magnetic field. The scenario provided by observations

R. Pallavicini

1986-01-01

124

Solar Wind Magnetic Fields  

NASA Technical Reports Server (NTRS)

The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

Smith, E. J.

1995-01-01

125

The nonequilibrium of magnetic fields  

Microsoft Academic Search

The more subtle properties of magnetic fields which create nonequilibrium and lead to vigorous activity in otherwise sluggish gas-field systems are evaluated for gross hydromagnetic effects. The gentle manipulation of magnetic fields on a large scale leads to the production of small scale variations and discontinuities, providing intense dissipation of magnetic field in a large scale system. A magnetic field

E. N. Parker

1981-01-01

126

Helicopter electromagnetic and magnetic survey maps and data, East Poplar Oil Field area, August 2004, Fort Peck Indian Reservation, northeastern Montana  

USGS Publications Warehouse

This report is a data release for a helicopter electromagnetic and magnetic survey that was conducted during August 2004 in a 275-square-kilometer area that includes the East Poplar oil field on the Fort Peck Indian Reservation. The electromagnetic equipment consisted of six different coil-pair orientations that measured resistivity at separate frequencies from about 400 hertz to about 140,000 hertz. The electromagnetic resistivity data were converted to six electrical conductivity grids, each representing different approximate depths of investigation. The range of subsurface investigation is comparable to the depth of shallow aquifers. Areas of high conductivity in shallow aquifers in the East Poplar oil field area are being delineated by the U.S. Geological Survey, in cooperation with the Fort Peck Assiniboine and Sioux Tribes, in order to map areas of saline-water plumes. Ground electromagnetic methods were first used during the early 1990s to delineate more than 31 square kilometers of high conductivity saline-water plumes in a portion of the East Poplar oil field area. In the 10 years since the first delineation, the quality of water from some wells completed in the shallow aquifers in the East Poplar oil field changed markedly. The extent of saline-water plumes in 2004 likely differs from that delineated in the early 1990s. The geophysical and hydrologic information from U.S. Geological Survey studies is being used by resource managers to develop ground-water resource plans for the area.

Smith, Bruce D.; Thamke, Joanna N.; Cain, Michael J.; Tyrrell, Christa; Hill, Patricia L.

2006-01-01

127

Magnetic Fields in Molecular Clouds  

NASA Astrophysics Data System (ADS)

Maps of far-infrared and submillimeter polarization vectors have typically been examined one-at-a-time for magnetic field structure related to processes such as gravitational collapse, differential rotation, expanding H II regions, or tidal stripping. The same maps can be used to determine angular dispersion due to turbulence in molecular clouds, where the turbulent dispersion is distinguished from dispersion due to curvature of the large-scale structure or the apparent dispersion due to measurement error. Taking into account the differences between the dispersion due to magneto-hydrodynamic waves in the arms of the Galaxy and dispersion due to turbulence in molecular clouds, one can infer field strengths in dense clouds using a method analogous to that used by Chandresekhar & Fermi to determine field strengths in the Galactic plane. With an accurate archive of flux and polarization maps one can also determine three-dimensional cloud shapes and field orientations, or look for correlations between fields in molecular clouds and fields in the surrounding medium.

Hildebrand, R. H.

2009-12-01

128

Microinhomogeneities in Magnetic Fields  

Microsoft Academic Search

Small variations in the fields of magnets, caused by structures or domains in the pole faces, were investigated by moving a small coil in a circular path. It was found that for a given pole face the variations in the field were all about the same size, and decreased exponentially from the pole face. None of the materials tested as

H. H. Brown Jr.; F. Bitter

1956-01-01

129

Magnetic Field Solver  

NASA Technical Reports Server (NTRS)

The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

Ilin, Andrew V.

2006-01-01

130

Magnetic ionization fronts. I. Parallel magnetic fields  

NASA Astrophysics Data System (ADS)

We solve the continuity equations across an ionization front. By including a plane parallel magnetic field we find significant differences in the allowed velocities of the R- and D-type solutions between the magnetized and non-magnetized cases. These results may have implications for the study of ionization bounded diffuse sources where a moderate or strong magnetic field is expected.

Redman, M. P.; Williams, R. J. R.; Dyson, J. E.; Hartquist, T. W.; Fernandez, B. R.

1998-03-01

131

Large Scale Solar Magnetic Fields: Temporal Variations  

Microsoft Academic Search

The temporal evolution of the solar magnetic field during solar cycles 20 21 and 22 has been investigated by means of spherical harmonic decomposition and subsequent time series analysis. A 33 yr and a 25 yr time series of daily magnetic maps of the solar photosphere recorded at the Mount Wilson and NSO\\/Kitt Peak observatories respectively were used to calculate

R. Knaack; J. O. Stenflo

2004-01-01

132

Magnetostriction mapping of soft magnetic films on thick rigid substrates  

Microsoft Academic Search

A technique that permits the saturation magnetostriction constant ? to be measured for soft magnetic films that are deposited on thick rigid substrates is reported. Because the technique employs a magnetooptic Kerr sensor for the film magnetization, spatial resolution down to ≃100 ?m is easily achieved and maps of ? uniformity can thus be generated. The anisotropy field Hk of

C. S. Gudeman

1990-01-01

133

Eruptive solar magnetic fields  

NASA Technical Reports Server (NTRS)

The quasi-steady evolution of solar magnetic fields in response to gradual photospheric changes is considered, with particular attention given to the threshold of a sudden eruption in the solar atmosphere. The formal model of an evolving, force-free field dependent on two Cartesian coordinates is extended to a field which is not force free but in static equilibrium with plasma pressure and gravity. The basic physics is illustrated through the evolution of a loop-shaped electric current sheet enclosing a potential bipolar field with footpoints rooted in the photosphere. A free-boundary problem is posed and then solved for the equilibrium configuration of the current sheet in a hydrostatically supported isothermal atmosphere. As the footpoints move apart to spread a constant photospheric magnetic flux over a larger region, the equilibria available extend the field to increasing heights.

Low, B. C.

1981-01-01

134

The Sun and Magnetic Fields  

NSDL National Science Digital Library

In this activity about magnetic fields and their relation to the Sun, learners will simulate sunspots by using iron filings to show magnetic fields around a bar or cow magnet, and draw the magnetic field surrounding two dipole magnets, both in parallel and perpendicular alignments. Finally, learners examine images of sunspots to relate their magnetic field drawings and observations to what is seen on the Sun.

135

Magnetic Field and Life  

NSDL National Science Digital Library

This is a lesson where learners explore magnetic forces, fields, and the relationship between electricity. Learners will use this information to infer how the Earth generates a protective magnetic field. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes, prerequisite concepts, common misconceptions, student journal and reading. This is lesson seven in the Astro-Venture Geology Training Unit that were developed to increase students' awareness of and interest in astrobiology and the many career opportunities that utilize science, math and technology skills. The lessons are designed for educators to use with with the Astro-Venture multimedia modules.

136

Interstellar magnetic fields: An observational perspective  

SciTech Connect

The plausibility of magnetic molecular clouds is established. It is shown that the empirically known relations between spectral line width, density, and cloud size can be derived from a virial equilibrium model where gravity is balanced by the sum of magnetic and pressure support. It is shown that substitution of measured density, cloud size, and line width measurements into the model can predict observed field strength to within a factor of two. The Zeeman effect is discussed and new measurements are presented for magnetic field strength based on OH and HI Zeeman observations at the Arecibo and Green Bank telescopes. The Barnard 1 (B1) region, in the Perseus Molecular Cloud Complex, is discussed in detail. OH spectral line intensity maps are presented for the regions where the OH Zeeman effect was observed, which allow, for the first time, comparison of observed field strength values with predicted field strength values, using emission from a single molecular species. Spatial structure of magnetic fields in molecular clouds are investigated. New optical polarization maps are presented for the dark clouds in Perseus, Taurus, and Ophiuchus. The polarization observed is attributed to preferential extinction of background starlight by magnetically aligned dust grains in the clouds, and we analyze the polarization maps as maps of the projection of the magnetic field onto the plane of the sky.

Goodman, A.A.

1989-01-01

137

Downward Mapping of Equatorial Ionospheric Electric Fields.  

National Technical Information Service (NTIS)

The problem of downward mapping of equatorial ionospheric electric fields is studied in two dimensions. Numerical solutions are shown and are compared with the corresponding ones for high latitudes. It is found that ionospheric electric fields can map dow...

W. D. Gonzalez S. L. G. Dutra A. L. C. Gonzalez A. E. C. Pereira

1985-01-01

138

High field superconducting magnets  

NASA Technical Reports Server (NTRS)

A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

2011-01-01

139

The interplanetary magnetic field  

NASA Technical Reports Server (NTRS)

Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

Davis, L., Jr.

1972-01-01

140

Measurement of the magnetic field of the CDF magnet  

SciTech Connect

The magnetic field of the CDF (Collider Detector at Fermilab) superconducting solenoid has been measured using a newly designed field mapping device. NMR probes and a system of three orthogonal search coils were used as sensing elements. The central uniform region inside the solenoid coil and the fringing field in the conical end plugs were measured. The detailed field distribution and its characteristics are described.

Yamada, R.; Newman-Holmes, C.; Schmidt, E.E.

1985-11-01

141

Sheared Plasma Rotation in Partially Stochastic Magnetic Fields  

Microsoft Academic Search

It is shown that resonant magnetic perturbations generate sheared flow velocities in magnetized plasmas. Stochastic magnetic fields in incomplete chaos influence the drift motion of electrons and ions differently. Using a fast mapping technique, it is demonstrated that a radial electric field is generated due to the different behavior of passing particles (electrons and ions) in tokamak geometry; magnetic trapping

A. Wingen; K. H. Spatschek

2009-01-01

142

A neural network study of the mapping from solar magnetic fields to the daily average solar wind velocity  

Microsoft Academic Search

Predictions of the daily solar wind velocity (V) at 1 AU from the flux tube expansion factor fs are examined with radial basis function neural networks. The flux tube expansion factor is calculated from the potential field model, using Wilcox Solar Observatory magnetograms, with the source surface placed at 2.5 solar radii. The time series extend over 20 years from

Peter Wintoft; Henrik Lundstedt

1999-01-01

143

The remanent magnetic field of the moon  

Microsoft Academic Search

Measurements of the moon's remanent magnetic field near the Apollo landing sites and from lunar orbit with the Apollo subsatellites are reviewed. Contour maps are presented for the intensity of the radial, eastward, and northward components of the remanent field as measured with Apollo subsatellite magnetometers at altitudes of 10 to 170 km. Attempts to fit the subsatellite measurements to

P. J. Coleman Jr.; C. T. Russell

1977-01-01

144

Mapping the energy spectrum of the spin states of mixed-valent [Fe8]n- via pulsed field magnetization  

SciTech Connect

The electronic structure of a family of octanuclear Fe{sup III}-complexes of the general formula [Fe{sub 8}({mu}{sub 4}-O)4({mu}-{sub r}-R-pz){sub 12}X{sub 4}] ([Fe{sub 8}]{sup 0}) and its redox-modified, mixed-valence [Fe{sub 8}]{sup n-} derivatives, where R = H, Me, Et, F, CI, Sr, I, etc. and X = F, CI, Sr, NCS, NCO, N{sub 3}, has recently been modeled by a an effective Hamiltonian consisting of two dominant exchange interactions [1]. The ground state properties (from S{sub tot} = 0 to 7) and magnetic energy level spacing of the Hamiltonian, and hence predicted magnetic properties, are widely tunable via choice of J's. The corresponding [Fe{sub 8}]{sup n-} anionic complexes with n = 1 - 4 are accessible electrochemically, allowing their in situ spectroelectrochemical characterization. The singly-reduced anions [Fe{sub 8}]{sup 1-} of the R = H, Cl and X = Cl species have also been prepared chemically via reduction with a stoichiometric amount of [BH{sub 4}]-, and characterized crystallographically; the structure of the Fe{sub 8}-cluster remains unaffected by the reduction, with most bond lengths differences within experimental error. Their Moessbauer spectroscopic analysis has pointed to the reduction taking place primarily within the Fe{sub 4}O{sub 4}-cubane, with charges delocalized over the four Fe{sub c} sites in the Moessbauer timescale. In contrast, the [Fe{sub 8}]{sup 1-} and [Fe{sub 8}]{sup 2-} species with R = Cl and X = NCS show a reduction at the outer, Fe{sub o}-sites, generating one or two localized Fe{sub o}-centers.

Mcdonald, Ross D [Los Alamos National Laboratory; Singleton, John [Los Alamos National Laboratory; Raptis, Raphel G [UNIV OF PUERTO RICO

2011-01-14

145

The next generation Antarctic digital magnetic anomaly map  

USGS Publications Warehouse

S (Golynsky et al., 2001). This map synthesized over 7.1 million line-kms of survey data available up through 1999 from marine, airborne and Magsat satellite observations. Since the production of the initial map, a large number of new marine and airborne surveys and improved magnetic observations from the Ørsted and CHAMP satellite missions have become available. In addition, an improved core field model for the Antarctic has been developed to better isolate crustal anomalies in these data. The next generation compilation also will likely represent the magnetic survey observations of the region in terms of a high-resolution spherical cap harmonic model. In this paper, we review the progress and problems of developing an improved magnetic anomaly map to facilitate studies of the Antarctic crustal magnetic field

von Frese, R.R.B; Golynsky, A.V.; Kim, H.R.; Gaya-Piqué, L.; Thébault, E.; Chiappinii, M.; Ghidella, M.; Grunow, A.; ADMAP Working Group

2007-01-01

146

The Earth's Magnetic Field  

NSDL National Science Digital Library

This section of the Windows to the Universe website provides information and images about Earth's magnetic field (the magnetosphere), including detailed information about the aurora borealis, magnets, and solar wind. Windows to the Universe is a user-friendly learning system pertaining to the Earth and Space sciences. The objective of this project is to develop an innovative and engaging website that includes a rich array of documents, including images, movies, animations, and data sets that explore the Earth and Space sciences and the historical and cultural ties between science, exploration and the human experience. Links at the top of each page allow users to navigate between beginner, intermediate and advanced levels.

Johnson, Roberta

2000-07-01

147

The Heliospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The Heliospheric Magnetic Field (HMF) is the physical framework in which energetic particles and cosmic rays propagate. Changes in the large scale structure of the magnetic field lead to short- and long term changes in cosmic ray intensities, in particular in anti-phase with solar activity. The origin of the HMF in the corona is well understood and inner heliospheric observations can generally be linked to their coronal sources. The structure of heliospheric magnetic polarities and the heliospheric current sheet separating the dominant solar polarities are reviewed here over longer than a solar cycle, using the three dimensional heliospheric observations by Ulysses. The dynamics of the HMF around solar minimum activity is reviewed and the development of stream interaction regions following the stable flow patterns of fast and slow solar wind in the inner heliosphere is described. The complex dynamics that affects the evolution of the stream interaction regions leads to a more chaotic structure of the HMF in the outer heliosphere is described and discussed on the basis of the Voyager observations. Around solar maximum, solar activity is dominated by frequent transients, resulting in the interplanetary counterparts of Coronal Mass Ejections (ICMEs). These produce a complex aperiodic pattern of structures in the inner heliosphere, at all heliolatitudes. These structures continue to interact and evolve as they travel to the outer heliosphere. However, linking the observations in the inner and outer heliospheres is possible in the case of the largest solar transients that, despite their evolutions, remain recognizably large structures and lead to the formation of Merged Interaction Regions (MIRs) that may well form a quasi-spherical, "global" shell of enhanced magnetic fields around the Sun at large distances. For the transport of energetic particles and cosmic rays, the fluctuations in the magnetic field and their description in alternative turbulent models remains a very important research topic. These are also briefly reviewed in this paper.

Balogh, André; Erdõs, Géza

2013-06-01

148

Extraction of 3D field maps of magnetic multipoles from 2D surface measurements with applications to the optics calculations of the large-acceptance superconducting fragment separator BigRIPS  

NASA Astrophysics Data System (ADS)

The fringing fields of magnets with large apertures and short lengths greatly affect ion-optical calculations. In particular, for a high magnetic field where the iron core becomes saturated, the effective lengths and shapes of the field distribution must be considered because they change with the excitation current. Precise measurement of the three-dimensional magnetic fields and the correct application of parameters in the ion-optical calculations are necessary. First we present a practical numerical method of extracting full 3D magnetic field maps of magnetic multipoles from 2D field measurements of the surface of a cylinder. Using this novel method, we extracted the distributions along the beam axis for the coefficient of the first-order quadrupole component, which is the leading term of the quadrupole components in the multipole expansion of magnetic fields and proportional to the distance from the axis. Higher order components of the 3D magnetic field can be extracted from the leading term via recursion relations. The measurements were done for many excitation current values for the large-aperture superconducting triplet quadrupole magnets (STQs) in the BigRIPS fragment separator at the RIKEN Nishina Center RI Beam Factory. These distributions were parameterized using the Enge functions to fit the fringe field shapes at all excitation current values, so that unmeasured values are interpolated. The extracted distributions depend only on the position along the beam axis, and thus the measured three-dimensional field can easily be parameterized for ion-optical calculations. We implemented these parameters in the ion-optical calculation code COSY INFINITY and realized a first-order calculation that incorporates the effect of large and varying fringe fields more accurately. We applied the calculation to determine the excitation current settings of the STQs to realize various optics modes of BigRIPS and the effectiveness of this approach has been demonstrated.

Takeda, Hiroyuki; Kubo, Toshiyuki; Kusaka, Kensuke; Suzuki, Hiroshi; Inabe, Naohito; Nolen, Jerry A.

2013-12-01

149

3D numerical simulations of negative hydrogen ion extraction using realistic plasma parameters, geometry of the extraction aperture and full 3D magnetic field map.  

PubMed

Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed. PMID:24593578

Mochalskyy, S; Wünderlich, D; Ruf, B; Franzen, P; Fantz, U; Minea, T

2014-02-01

150

The 3-dimensional radio mapping experiment /SBH/ on ISEE-C. [interplanetary magnetic field structure for solar wind flow studies using type 3 bursts  

NASA Technical Reports Server (NTRS)

The SBH experiment on ISEE-C will provide maps of the large scale structure of the interplanetary magnetic field from ten solar radii altitude to the earth orbit, in and out of the ecliptic. The SBH instrument will track type III solar radio bursts at 24 frequencies in the range 30 kHz-2 MHz thus providing the positions of 24 points along the line of force which guides the electrons producing the radio radiation. The antennas are two dipoles: one (90 m long) in the spin plane, the other (15 m long) along the spin axis. The receiver was designed for high sensitivity (0.3 microV in 3 kHz BW), high intermodulation rejection (80 dB/1 microV input for order 2 products), large dynamic range (70 dB), high selectivity (-30-dB response 6.5 kHz away from the center frequency of 10.7 MHz for the 3 kHz BW channels), and high reliability (expected orbital life: 3 years).

Knoll, R.; Epstein, G.; Hoang, S.; Huntzinger, G.; Steinberg, J. L.; Fainberg, J.; Grena, F.; Stone, R. G.; Mosier, S. R.

1978-01-01

151

Magnetic Field of the Earth  

NSDL National Science Digital Library

Students can learn about how the magnetic field of the earth is similar to magnets. Go to the following link: Magnetic Field of the Earth 1. What makes the earth like a magnet? 2. How do we measure magnetism? Be sure to check out the fun games and activities on this web site too!! Now click on the following link and listen to a 2 minute presentation about magnetism: Pulse Planet Next go to ...

Merritt, Mrs.

2005-10-18

152

Radio frequency magnetic field mapping of a 3 Tesla birdcage coil: experimental and theoretical dependence on sample properties.  

PubMed

The RF B(1) distribution was studied, theoretically and experimentally, in phantoms and in the head of volunteers using a 3 T MRI system equipped with a birdcage coil. Agreement between numerical simulation and experiment demonstrates that B(1) distortion at high field can be explained with 3D full-Maxwell calculations. It was found that the B(1) distribution in the transverse plane is strongly dependent on the dielectric properties of the sample. We show that this is a consequence of RF penetration effects combined with RF standing wave effects. In contrast, along the birdcage coil z-axis the B(1) distribution is determined mainly by the coil geometry. In the transverse plane, the region of B(1) uniformity (within 10% of the maximum) was 15 cm with oil, 6 cm with distilled water, 11 cm with saline, and 10 cm in the head. Along z the B(1) uniformity was 9 cm with phantoms and 7 cm in the head. PMID:11477643

Alecci, M; Collins, C M; Smith, M B; Jezzard, P

2001-08-01

153

Atoms in Crossed Electric and Magnetic Fields  

NASA Astrophysics Data System (ADS)

In this dissertation, extensive experimental and theoretical work pertaining to three interesting aspects of the interaction of atoms with crossed electric and magnetic fields is presented. The first experiment discussed deals with the effects of weak crossed fields on sodium atoms. A fluorescence spectrum of laser excited sodium n = 11 states in an electric field of 2560 V/cm perpendicular to a magnetic field of 4.4 kG is presented, along with a comparison to theory. The data show the important effects of m-mixing and residual degeneracies which remain in the crossed fields. The next topic presented is the theoretical prediction of novel resonances, termed "quasi-Penning resonances," corresponding to electron states localized away from the nucleus at the Stark saddlepoint in strong crossed electric and magnetic fields. The stability and possibility for observation of these resonances is explored. Finally, extensive experimental maps of data are presented which compare laser induced ionization spectra of sodium atoms in crossed electric and magnetic fields to spectra in an electric field atone. The experiment explores the energy region of the electric field saddlepoint, where quasi-Penning resonances are predicted to occur. The magnetic field is too weak for the observation of these resonances, but the experiment provides important groundwork for the understanding of future experiments in strong crossed fields. The magnetic field is seen to cause splitting of some transitions due to the interaction of the electron spin with the magnetic field. Also, magnetic field induced state mixing causes a redistribution of oscillator strengths leading to changes in peak heights and auto-ionizing line widths. On the whole, however, the effect of the weak crossed magnetic field on the sodium Stark spectra remains small.

Korevaar, Eric John

1987-09-01

154

Magnetic Field Topology in Jets  

NASA Technical Reports Server (NTRS)

We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

Gardiner, T. A.; Frank, A.

2000-01-01

155

The WIND magnetic field investigation  

Microsoft Academic Search

The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and

R. P. Lepping; M. H. Ac?na; L. F. Burlaga; W. M. Farrell; J. A. Slavin; K. H. Schatten; F. Mariani; N. F. Ness; F. M. Neubauer; Y. C. Whang; J. B. Byrnes; R. S. Kennon; P. V. Panetta; J. Scheifele; E. M. Worley

1995-01-01

156

Low field magnetic resonance imaging  

DOEpatents

A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

2010-07-13

157

Magnetic map will define Antarctica's structure  

NASA Astrophysics Data System (ADS)

A new, multinational, Antarctic Digital Magnetic Anomaly Project (ADMAP) has been launched to compile near-surface and satellite magnetic anomaly data into a digital map and database for the Antarctic continent and surrounding oceans. The unified data set will be a powerful tool for determining the structure, geologic processes, and tectonic evolution of the continent.

ADMAP Working Group; Johnson, A. C.; von Frese, R. R. B.

158

Electric and magnetic fields  

NASA Technical Reports Server (NTRS)

A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

1982-01-01

159

Mapping the magnetic mayhem in the heliosheath  

NASA Astrophysics Data System (ADS)

When Voyager 1 passed into the heliosheath in 2004, it became the first human-made object to explore the remote edge of the Sun's magnetic influence. The heliosheath, between 1.5 and 15 billion kilometers thick and starting roughly 14 billion kilometers from the Sun, is where the outgoing flows of solar wind start to be pushed back by interstellar particles and magnetic fields that are heading toward the solar system. While passing through the heliosheath, Voyager 1 experienced many sudden and drastic changes in the surrounding magnetic field driven by structures called current sheets. Using Voyager 1's ongoing measurements of the magnetic field, Burlaga and Ness identified three distinct types of current sheets. The structures, appearing as proton boundary layers (PBLs), magnetic holes or humps, or sector boundaries, were identified by characteristic fluctuations in either magnetic field strength or direction as the spacecraft crossed nearly 500 million kilometers of heliosheath in 2009. PBLs are defined by a rapid jump in magnetic field strength, with one observed event resulting in a doubling of the field strength in just half an hour. Passing through a sector boundary led to a sudden change in direction of the magnetic field. Magnetic holes saw the field strength drop to near zero before returning to the original background strength. Magnetic humps consisted of a sudden spike in strength and then a return to initial levels. (Journal of Geophysical Research-Space Physics, doi:10.1029/ 2010JA016309, 2011)

Schultz, Colin

2011-07-01

160

Fast superconducting magnetic field switch  

SciTech Connect

The superconducting magnetic switch or fast kicker magnet is employed with an electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater than the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. Magnetic switches and particularly fast kicker magnets are used in the accelerator industry to quickly deflect particle beams into and out of various transport lines, storage rings, dumps, and specifically to differentially route individual bunches of particles from a train of bunches which are injected or ejected from a given ring.

Goren, Y.; Mahale, N.K.

1995-12-31

161

The magnetic map of hatchling loggerhead sea turtles.  

PubMed

Young loggerhead sea turtles (Caretta caretta) from eastern Florida, U.S.A., undertake a transoceanic migration in which they gradually circle the North Atlantic Ocean before returning to the North American coast. Hatchlings in the open sea are guided at least partly by a 'magnetic map' in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial locations along the migratory route. The magnetic map exists in turtles that have never migrated and thus appears to be inherited. Turtles derive both longitudinal and latitudinal information from the Earth's field, most likely by exploiting unique combinations of field inclination and intensity that occur in different geographic areas. Similar mechanisms may function in the migrations of diverse animals. PMID:22137566

Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F

2012-04-01

162

A Magnetic MAP of the Brazilian Anomaly.  

National Technical Information Service (NTIS)

Satellites 'Cosmos 49' and 'Cosmos 26' conducted measurements of the magnetic field by means of the proton magneto-meters according to the program of the world magnetic survey. The area of the Brazilian magnetic anomaly was covered by a dense network of m...

L. V. Konovalova V. I. Nalivaiko

1967-01-01

163

Photonic Magnetic Field Sensor  

NASA Astrophysics Data System (ADS)

Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

Wyntjes, Geert

2002-02-01

164

The Heliospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

Owens, Mathew J.; Forsyth, Robert J.

2013-11-01

165

Magnetic Fields: Visible and Permanent.  

ERIC Educational Resources Information Center

Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

Winkeljohn, Dorothy R.; Earl, Robert D.

1983-01-01

166

Atoms in crossed electric and magnetic fields  

SciTech Connect

Extensive experimental and theoretical work pertaining to three interesting aspects of the interaction of atoms with crossed electric and magnetic fields is presented. The first experiment discussed deals with the effects of weak crossed fields on sodium atoms. A fluorescence spectrum of laser-excited sodium n = 11 states in an electric field of 2560 V/cm perpendicular to a magnetic field of 4.4 kG is presented, along with a comparison to theory. The data show the important effects of m-mixing and residual degeneracies that remain in the crossed fields. The next topic presented is the theoretical prediction of novel resonances, termed quasi-Penning resonances, corresponding to electron states localized away from the nucleus at the Stark saddlepoint in strong crossed electric and magnetic fields. The stability and possibility for observation of these resonances is explored. Finally, extensive experimental maps of data are presented that compare laser-induced ionization spectra of sodium atoms in crossed electric and magnetic fields to spectra in an electric field atone. The experiment explores the energy region of the electric-field saddlepoint, where quasi-Penning resonances are predicted to occur. The magnetic field is too weak for the observation of these resonances, but the experiment provides important groundwork for the understanding of future experiments in strong crossed fields.

Korevaar, E.J.

1987-01-01

167

Fast superconducting magnetic field switch  

DOEpatents

The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

1996-01-01

168

Fast superconducting magnetic field switch  

DOEpatents

The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

Goren, Y.; Mahale, N.K.

1996-08-06

169

Evolution of twisted magnetic fields  

SciTech Connect

The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

Zweibel, E.G.; Boozer, A.H.

1985-02-01

170

Reconnection of Magnetic Fields  

NASA Astrophysics Data System (ADS)

Preface; Part I. Introduction: 1.1 The Sun E. R. Priest; 1.2 Earth's magnetosphere J. Birn; Part II. Basic Theory of MHD Reconnection: 2.1 Classical theory of two-dimensional reconnection T. G. Forbes; 2.2 Fundamental concepts G. Hornig; 2.3 Three-dimensional reconnection in the absence of magnetic null points G. Hornig; 2.4 Three-dimensional reconnection at magnetic null points D. Pontin; 2.5 Three-dimensional flux tube reconnection M. Linton; Part III. Basic Theory of Collisionless Reconnection: 3.1 Fundamentals of collisionless reconnection J. Drake; 3.2 Diffusion region physics M. Hesse; 3.3 Onset of magnetic reconnection P. Pritchett; 3.4 Hall-MHD reconnection A. Bhattacharjee and J. Dorelli; 3.5 Role of current-aligned instabilities J. Büchner and W. Daughton; 3.6 Nonthermal particle acceleration M. Hoshino; Part IV. Reconnection in the Magnetosphere: 4.1 Reconnection at the magnetopause: concepts and models J. G. Dorelli and A. Bhattacharjee; 4.2 Observations of magnetopause reconnection K.-H. Trattner; 4.3 On the stability of the magnetotail K. Schindler; 4.4 Simulations of reconnection in the magnetotail J. Birn; 4.5 Observations of tail reconnection W. Baumjohann and R. Nakamura; 4.6 Remote sensing of reconnection M. Freeman; Part V. Reconnection in the Sun's Atmosphere: 5.1 Coronal heating E. R. Priest; 5.2 Separator reconnection D. Longcope; 5.3 Pinching of coronal fields V. Titov; 5.4 Numerical experiments on coronal heating K. Galsgaard; 5.5 Solar flares K. Kusano; 5.6 Particle acceleration in flares: theory T. Neukirch; 5.7 Fast particles in flares: observations L. Fletcher; 6. Open problems J. Birn and E. R. Priest; Bibliography; Index.

Birn, J.; Priest, E. R.

2007-01-01

171

A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique  

Microsoft Academic Search

We examine 65 ionospheric convection changes associated with changes in the Y and Z components of the interplanetary magnetic field (IMF). We measure the IMF reorientations (for all but six of the events) at the Wind satellite. For 22 of the events the IMF reorientation is clearly observed by both Wind and IMP 8. Various methods are used to estimate

A. J. Ridley; Gang Lu; C. R. Clauer; V. O. Papitashvili

1998-01-01

172

Aeromagnetic map of Korea; Magnetic patterns and structural features  

NASA Astrophysics Data System (ADS)

Regional airborne magnetic survey is very cost-effective mapping tool. Magnetic anomaly maps have abundant information, which are an important tool for understanding the geological evolution and mineral exploration. The pattern of magnetic anomaly map is a powerful indicator of geologic structure and rock formation. Magnetic anomaly patterns primarily reflect the distribution and structural setting of magnetized material within the crust. These features including amplitude and orientation of individual anomalies or the texture of anomalous regions can provide useful constraints for geological interpretation. KIGAM has conducted airborne magnetic mapping programme since 1982, and has coverage of almost whole the country. The latest version of airborne magnetic anomaly map was published by compiling data acquired from 1982 to 2012. The helicopter-borne surveys were flown by a line spacing 1~2 km with control lines of 5~8 km. The flight altitude was tried to keep 100~150 m above ground surface with sampling distance of 30m. The data were continued to the reference level of 300 m above ground level, and regional field was reduced by 11th generation IGRF. This paper introduced the latest version of magnetic anomaly map of Korea, and briefly examined the magnetic characteristics, with geologic characteristics and structural features of tectonic zones. Furthermore, magnetic patterns were quantitatively analyzed by using skeletonization technique. Korea, southern part of the Korean peninsula, could be divided in 5 tectonic provinces, such as, Gyeonggi massif, Okcheon fold belt, Sobaeksan massif, Gyeongsang basin, and circum-Pacific alkali volcanic zone. Magnetic anomalies in Gyeonggi massif zone are broadly distributed with moderately high amplitude, and the dominant trend is NE, but not strong. Okcheon fold belt can be magnetically characterized as strong dominant NE trend (Sinian direction) and linear positive anomalies of high amplitude. Sobaeksan massif is magnetically characterized as diverse trend with strong amplitude in NE part and weak amplitude in SW part. In Gyeongsang basin, strong positive anomalies due to Cretaceous granites and volcanic rocks are distributed in the broad and weak field by Jurassic sedimentary rocks. Magnetic lineaments of NNE trend are disrupted by intense volcanic activities in Cretaceous period. Magnetic lineaments were plotted by using skeletonization algorithm. Skeletonization is a syntactic pattern recognition method that is applied to gridded data to produce an automatic line drawing. The algorithms were tailored for seismic reflection profiles at first. Eaton and Vasudevan (2004) modified the technique to render it more suitable for other types of gridded data, with particular emphasis on aeromagnetic maps. Magnetic first vertical derivative data calculated from pole-reduced aeromagnetic map were used as input of skeletonization algorithm. The event map was plotted by skeletonization process, and the orientation of the magnetic pattern was quantitatively analyzed by rose diagrams. They showed the distinguishing characteristics of magnetic pattern of tectonic provinces, which reflected their geological characteristics and structural features.

Park, Yeong-Sue; Rim, Hyoungrea; Lim, Mutaek; Shin, Young Hong

2014-05-01

173

Matter in strong magnetic fields  

Microsoft Academic Search

The properties of matter are drastically modified by strong magnetic fields, B>>m2ee3c\\/h3=2.35×109 G (1 G=10-4 T), as are typically found on the surfaces of neutron stars. In such strong magnetic fields, the Coulomb force on an electron acts as a small perturbation compared to the magnetic force. The strong-field condition can also be mimicked in laboratory semiconductors. Because of the

Dong Lai

2001-01-01

174

Magnetic resonance elastography detected with a SQUID in microtesla magnetic fields  

Microsoft Academic Search

We have used a SQUID-based microtesla magnetic resonance imaging (MRI) system to perform magnetic resonance elastography (MRE) experiments in a measurement field of 132 microtesla. Magnetic resonance elastography is based on MRI and measures three-dimensional displacement and strain fields in a sample. With appropriate data processing this allows for a quantitative map of the physical response of a material to

Nathan Kelso; Kristie Koski; Jeffrey Reimer

2005-01-01

175

Magnetic fields of the terrestrial planets  

NASA Technical Reports Server (NTRS)

The four terrestrial planets, together with the Earth's Moon, provide a significant range of conditions under which dynamo action could occur. All five bodies have been visited by spacecraft, and from three of the five bodies (Earth, Moon and Mars) we have samples of planetary material upon which paleomagnetic studies have been undertaken. At the present time, only the Earth and Mercury appear to have a significant dipole magnetic field. However, the Moon, and possibly Mars, appear to have had ancient planetary dynamos. Venus does not now have a significant planetary magnetic field, and the high surface temperatures should have prevented the recording of evidence of any ancient magnetic field. Since the solidification of the solid inner core is thought to be the energy source for the terrestrial magnetic field, and since smaller bodies evolve thermally more rapidly than larger bodies, we conjecture that the terrestrial planets are today in three different phases of magnetic activity. Venus is in a predynamo phase, not having cooled to the point of core solidification. Mercury and the Earth are in the middle of their dynamo phase, with Mercury perhaps near the end of its activity. Mars and the Moon seem to be well past their dynamo phase. Much needs to be done in the study of the magnetism of the terrestrial planets. We need to characterize the multipole harmonic structure of the Mercury magnetic field plus its secular variation, and we need to analyze returned samples to attempt to unfold the long-term history of Mercury's dynamo. We need to more thoroughly map the magnetism of the lunar surface and to analyze samples obtained from a wider area of the lunar surface. We need a more complete survey of the present Martian magnetic field and samples from a range of different ages of Martian surface material. Finally, a better characterization of the secular variation of the terrestrial magnetic field is needed in order to unfold the workings of the terrestrial dynamo.

Russell, C. T.

1993-01-01

176

Magnetic fields around evolved stars  

NASA Astrophysics Data System (ADS)

A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

2014-04-01

177

The Sun's global magnetic field.  

PubMed

Our present-day understanding of solar and stellar magnetic fields is discussed from both an observational and theoretical viewpoint. To begin with, observations of the Sun's large-scale magnetic field are described, along with recent advances in measuring the spatial distribution of magnetic fields on other stars. Following this, magnetic flux transport models used to simulate photospheric magnetic fields and the wide variety of techniques used to deduce global coronal magnetic fields are considered. The application and comparison of these models to the Sun's open flux, hemispheric pattern of solar filaments and coronal mass ejections are then discussed. Finally, recent developments in the construction of steady-state global magnetohydrodynamic models are considered, along with key areas of future research. PMID:22665897

Mackay, Duncan H

2012-07-13

178

Magnetic response to applied electrostatic field in external magnetic field  

NASA Astrophysics Data System (ADS)

We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

Adorno, T. C.; Gitman, D. M.; Shabad, A. E.

2014-04-01

179

The Extended Coronal Magnetic Field.  

National Technical Information Service (NTIS)

The coronal magnetic field should contain many field lines connecting the photosphere to interplanetary space. A sharp boundary separates two adjacent sectors of opposite polarity. The large-scale structure of the corona is related to the photospheric sec...

J. M. Wilcox

1970-01-01

180

Flares and Changing Magnetic Fields.  

National Technical Information Service (NTIS)

One of the principal objectives of the magnetic field observing program at the Sacramento Peak Observatory has been to discover whether there are any observable changes in the photospheric fields at the time of flares.

D. M. Rust

1972-01-01

181

Dresden pulsed magnetic field facility  

NASA Astrophysics Data System (ADS)

We report on the status quo of the Dresden High Magnetic Field Laboratory (HLD) that is being set up at the Forschungszentrum Dresden-Rossendorf in Dresden, Germany. First pulsed-field coils reaching up to 71 T with a pulse duration of about 100 ms have been designed, constructed, and tested. A two-coil 100 T magnet and a long-pulse (1000 ms) 60 T magnet are under construction. Electrical-transport and magnetization experiments are running routinely in the pilot laboratory at the IFW Dresden. The feasibility of NMR experiments in pulsed-field environments has been proven.

Wosnitza, J.; Bianchi, A. D.; Freudenberger, J.; Haase, J.; Herrmannsdörfer, T.; Kozlova, N.; Schultz, L.; Skourski, Y.; Zherlitsyn, S.; Zvyagin, S. A.

2007-03-01

182

Origin of cosmic magnetic fields.  

PubMed

We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)??G if the energy scale of inflation is few×10(16)??GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

Campanelli, Leonardo

2013-08-01

183

Magnetic field sensor by orthoferrites  

Microsoft Academic Search

Among all ferromagnets orthoferrites possess the highest velocities of domain wall motion. Dynamic properties of a magnetic field meter based on domain wall dynamics in yttrium orthoferrite are reported. It is shown that at low driving magnetic fields and at frequencies up to the MHz band domain wall dynamics can be adequately described by linear equations. In a wide range

Y. S. Didosyan; V. Y. Barash; N. A. Bovarin; H. Hauser; P. Fulmek

1997-01-01

184

THE CLUSTER MAGNETIC FIELD INVESTIGATION  

Microsoft Academic Search

The Cluster mission provides a new opportunity to study plasma processes and structures in the near-Earth plasma environment. Four-point measurements of the magnetic field will enable the analysis of the three dimensional structure and dynamics of a range of phenomena which shape the macroscopic properties of the magnetosphere. Difference measurements of the magnetic field data will be combined to derive

A. Balogh; M. W. Dunlop; S. W. H. Cowley; D. J. Southwood; J. G. Thomlinson; K. H. Glassmeier; G. Musmann; H. Luhr; S. Buchert; M. H. AcuÑA; D. H. Fairfield; J. A. Slavin; W. Riedler; K. Schwingenschuh; M. G. Kivelson

1997-01-01

185

Some Structural Properties of Solar Magnetic Fields  

NASA Astrophysics Data System (ADS)

We discuss some results of the study of spatial characteristics of solar magnetic fields. The analysis is based on the magnetic field data obtained with a new spectromagnetograph installed on the IZMIRAN Tower Telescope (Fe I 6302.5 Å) (Kozhevatov et al., 2002), the data of the MSFC solar vector magnetograph (Fe I 5250.2 Å) and the data of longitudinal magnetic 96 m daily maps of SOHO/MDI magnetograph (Ni I 6768 Å) downloaded through Internet. Our study was directed in some different ways: the fractal properties of sunspots; fractal properties of space distribution of the magnetic fields along great distances comparable with the size of active regions or active complexes; fractal properties of active and quiet regions as global entities. To do it we used some different methods, particularly, the well known method using the relation between the area and the perimeter of magnetic field lines (see (Feder, 1988; Meunier, 1999; Nesme-Ribes at al., 1996; Balke et al., 1993)) and technique developed by Higuchi (1988), who applied it to the investigation of long time series. Note also that magnetic structure in terms of the fractal models was developed earlier in (Zelenyi & Milovanov, 1991; Milovanov & Zelenyi, 1993; Mogilevskii, 1994; Mogilevskii, 2001; Abramenko et al., 2002; Abramenko, 2005; Salakhudinova & Golovko, 2005). The main results are: 1. Fractal analysis of sunspot magnetic field indicated the existence of three families of self-similar contour lines roughly belonging to the umbra, penumbra and the ambient photosphere correspondingly. The greatest fractal dimension corresponds to the regions of weakest fields (ambient photosphere), the least one corresponds to the intermediate region (penumbra). 2. More detailed analysis shows that the fractal coefficient has a maximum (about 1.50) near the umbra--penumbra interface. 3. The global fractal numbers of space distribution of magnetic field on solar surface is closely connected with the mean absolute values of the longitudinal magnetic field for this surface. The fractal numbers diminish with the rising of mean magnetic field (from values about 2.0 for the relatively quiet region to 1- 1.2 for very active regions). 4. The dependences of fractal numbers of the space distribution of longitudinal and transversal fields versus mean longitudinal field are similar by their character but the fractal values for transversal field are higher than the corresponding factor values for longitudinal field by factor about 1.5. This means that the distribution of transversal field along the space is more chaotic than the distribution of longitudinal field.

Ioshpa, B.; Mogilevskii, E.; Obridko, V.

2007-05-01

186

Dresden pulsed magnetic field facility  

Microsoft Academic Search

We report on the status quo of the Dresden High Magnetic Field Laboratory (HLD) that is being set up at the Forschungszentrum Dresden-Rossendorf in Dresden, Germany. First pulsed-field coils reaching up to 71T with a pulse duration of about 100ms have been designed, constructed, and tested. A two-coil 100T magnet and a long-pulse (1000ms) 60T magnet are under construction. Electrical-transport

J. Wosnitza; A. D. Bianchi; J. Freudenberger; J. Haase; T. Herrmannsdörfer; N. Kozlova; L. Schultz; Y. Skourski; S. Zherlitsyn; S. A. Zvyagin

2007-01-01

187

Superconductivity at High Magnetic Fields  

Microsoft Academic Search

Using pulsed-magnetic-field techniques, we have studied the magnetic-field-induced superconducting transitions of alloys in the systems Ti-V, Ti-Nb, Ti-Ta, Ti-Mo, Zr-Nb, Hf-Nb, Hf-Ta, U-Nb, and U-Mo. For concentrated alloys the low-current-density resistive critical field Hr(J<~10 A\\/cm2) is nearly independent of the amount of cold working and the relative orientations of magnetic field, current, and anisotropic defect structure. The observed values of

T. G. Berlincourt; R. R. Hake

1963-01-01

188

High latitude solar magnetic fields  

NASA Technical Reports Server (NTRS)

Kitt Peak magnetograms are used to measure polar magnetic fields. The polar mean absolute field increases at the same time as the polar mean field decreases. That is, the polar mean absolute field varies in phase with solar activity, in contrast to the out of phase variation of the mean polar field. It is found that the polar fields have a large bipolar component even at solar minimum, with a magnitude equal to that found at low latitudes outside the active latitude bands.

Murray, Norman

1992-01-01

189

Magnetic mapping and interpretation of an archaeological site in Syria  

NASA Astrophysics Data System (ADS)

Among the subsurface methods of exploration that have been developed to meet the new requirements of archaeological research, geophysical methods offer a very wide range of applications in the study of buried deposits. In their latest developments, the prospecting method based on the measurement of the magnetic field is particularly effective at very different types of sites, ranging from prehistoric times to the most recent. The measured magnetic field observed at a place and at a time, results from the vector sum of the main regional field, the effect of subsurface structures, local disturbances such as power lines, buildings, fences, and the diurnal variation (solar influence). The principle of the magnetic method is, from magnetic measurements on a flat plane above the prospected surface, to study the three-dimensional variations of magnetization producing the magnetic anomalies. The use of magnetic surveys for archaeological prospecting is a well-established and versatile technique, and wide ranges of data processing routines are often applied to further enhance acquired data or derive source parameters. The main purpose of this work was to acquire new magnetic data on the field and to propose quantitative interpretations of magnetic maps obtained on three archaeological sites of Bronze Age in Syria (Badiyah ANR program). More precisely, some results are presented concerning one of the three sites, the Tell Al-Rawda-site which corresponds to a circular city of Early Bronze Age with a radius of about 200 m. Several profiles are used to characterize magnetizations. A large portion of archaeological geophysical data are concerned primarily with identifying the location and spatial extent of buried remains, although the data collected are likely to contain further information relating to the depth and geometry of anomalous features. A simple magnetic model corresponding to rectangular structures uniformly magnetized associated to walls cannot explain the magnetic anomalies. On contrary, the shape of the magnetic anomalies implies to propose magnetized or non-magnetized structures with a width of several meters. To fit completely the shape of the magnetic anomaly, an iterative algorithm is used consisting of modifying the shape of the top of the magnetized layer.

khatib alkontar, Rozan AL; Munschy, Marc; Castel, Corinne; Quenet, Philippe

2014-05-01

190

Mapping hydrothermal alteration in Yellowstone National Park using magnetic methods  

NASA Astrophysics Data System (ADS)

Yellowstone National Park (YNP) hosts a very large hydrothermal system with over 10,000 thermal features. Hydrothermal alteration in YNP has been mapped with field observations and remote-sensing imagery, but these methods can only detect alteration at the ground surface. Magnetic surveys are useful for detecting buried hydrothermal alteration as demonstrated by a recent high-resolution aeromagnetic survey in YNP (Finn and Morgan, J. Volcanol. Geotherm. Res., 115, 207-231, 2002). Results of this survey show that magnetic lows extend over and beyond areas of hydrothermal activity, suggesting large volumes of demagnetized rocks due to hydrothermal alteration of the volcanic substratum. Although results of this aeromagnetic survey were of relatively high resolution, they were insufficient for more detailed mapping of alteration. In September 2008, we collected ground magnetic profiles in four hydrothermal areas within YNP (Norris Geyser Basin, Lower Geyser Basin, Lone Star Geyser, and Smoke Jumper Hot-springs). These measurements were performed using a cesium-vapor magnetometer along several 4-5 km long transects crossing hydrothermal features. In addition, we collected gravity data to characterize the subsurface geologic structures. We also performed magnetic susceptibility, magnetic remanence and density measurements on rock samples collected in the field and from drill cores collected in 1967-1968 to characterize physical properties of fresh and altered geologic units. Ground magnetic profiles acquired over unaltered areas display large-amplitude short-wavelength anomalies due to the existence of many shallow contrasts of magnetization in the volcanic substratum. In contrast, the short-wavelength anomaly signal is of very low amplitude in altered areas supporting demagnetization of the shallow volcanic basement. These new geophysical and physical property data are being used to map the distribution of rock density and magnetic properties, model the subsurface geometry of altered areas and investigate the relationship of these areas with structures such as contacts, faults, and fractures that may facilitate the circulation of hydrothermal fluids.

Bouligand, C.; Glen, J. M.

2010-12-01

191

Magnetic field structure evolution in rotating magnetic field plasmas  

SciTech Connect

A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.

Petrov, Yuri; Yang Xiaokang; Huang, T.-S. [Prairie View A and M University, Prairie View, Texas 77446 (United States)

2008-07-15

192

Spinning magnetic fields  

Microsoft Academic Search

A possible electrical charge model based on the spinning time invariant point magnetic dipole within the framework of classical physics is outlined, as suggested by the admissible circular trajectory of a test charge around the magnetic dipole in its equatorial plane. The model depends on the moving force line hypothesis which has been claimed to have been disproved. The controversy

Jovan Djuric

1975-01-01

193

The Origin of Mercury's Magnetic Field and Its Multipolar Structure  

Microsoft Academic Search

The origin of Mercury's planetary magnetic field is still unclear and likely to remain an unsolved problem at least until the currently planned space missions, BepiColombo and Messenger perform a full magnetic mapping of the planet. However, the likely generation mechanisms have a common feature. It is unlikely that the planetary field is dominated by the dipolar term; multipolar terms

A. Balogh; G. Giampieri

2002-01-01

194

Design of a large area magnetic field sensor array  

Microsoft Academic Search

The circuit design of a Large Area Magnetic Field Sensor Array (LAMFSA) using CMOS 3 ?m process is described. This prototype is developed mainly for application in magnetic field mapping and tactile array sensors. In order to enable the production of such a device, redundancy schemes are implemented and a laser interconnection post fabrication technique is used. The basic sensing

Yves Audet; Glenn H. Chapman

1994-01-01

195

DIVERT: A Divertor Magnetic Field Line Following Code.  

National Technical Information Service (NTIS)

The computer code DIVERT has been written to trace magnetic field lines in the presence of a divertor. Its purpose is to allow a user to estimate the thickness of the plasma scrapeoff region and to provide a visual mapping of the magnetic field lines near...

R. N. Morris G. Bateman

1980-01-01

196

Venus Deep Nightside Magnetic Fields Revisited  

NASA Astrophysics Data System (ADS)

We reexamined the near-Venus deep nightside magnetic fields observed by the Pioneer Venus Orbiter(PVO) over two decades ago. This analysis was in part inspired by recent discussions of the possibilities of identifying a weak planetary dynamo or remanent magnetic field, and in part by the availability of numerical simulations of weak field plasma interactions using the BATS-R-US MHD code. The data were first scrutinized for statistically significant regions of radial field in the near-midnight low altitude wake from the prime mission periapsis of ~150km up to about 450 km. Radial field 'maps' were constructed for a range of altitudes in both solar wind interaction and planetary geographical coordinate systems. The results suggested the presence of weak radial fields above ~250km that show a persistent North-South sign bias. This behavior is not seen at the lowest altitudes probed, and is present regardless of the interplanetary magnetic field sector. The MHD simulations provided basic pictures of what might be expected for a hypothetical planet with a weak but still detectable dipole field that is comparable to the solar wind interaction-related draped interplanetary field. These show similar tendencies, illustrating that models are essential to the interpretation of potential weak intrinsic field signatures at planets such as Venus. Further modeling specific to Venus is needed to make further progress.

Villarreal, M. N.; Luhmann, J. G.; Ma, Y.; Russell, C. T.; Wei, H.; Zhang, T.

2011-12-01

197

Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR.  

PubMed

The magnetic susceptibility of tissue within and around an image voxel affects the magnetic field and thus the local frequency in that voxel. Recently, it has been shown that spatial maps of frequency can be used to quantify local susceptibility if the contributions of surrounding tissue can be deconvolved. Currently, such quantitative susceptibility mapping (QSM) methods employ gradient recalled echo (GRE) imaging to measure spatial differences in the signal phase evolution as a function of echo time, from which frequencies can be deduced. Analysis of these phase images, however, is complicated by phase wraps, despite the availability and usage of various phase unwrapping algorithms. In addition, lengthy high-resolution GRE scanning often heats the magnet bore, causing the magnetic field to drift over several Hertz, which is on the order of the frequency differences between tissues. Here, we explore the feasibility of applying the WAter Saturation Shift Referencing (WASSR) method for 3D whole brain susceptibility imaging. WASSR uses direct saturation of water protons as a function of frequency irradiation offset to generate frequency maps without phase wraps, which can be combined with any image or spectroscopy acquisition. By utilizing a series of fast short-echo-time direct saturation images with multiple radiofrequency offsets, a frequency correction for field drift can be applied based on the individual image phases. Regions of interest were delineated with an automated atlas-based method, and the average magnetic susceptibilities calculated from frequency maps obtained from WASSR correlated well with those from the phase-based multi-echo GRE approach at 3T. PMID:24113625

Lim, Issel Anne L; Li, Xu; Jones, Craig K; Farrell, Jonathan A D; Vikram, Deepti S; van Zijl, Peter C M

2014-02-01

198

Saturn's planetary magnetic field as observed by Cassini Saturn's planetary magnetic field as observed by Cassini  

Microsoft Academic Search

In the 18 months since Saturn Orbit Insertion (SOI) in July 2004, Cassini has flown within 10 Rs of the planet on numerous occassions. These passes occurred at different distances and local times, and within a +\\/- 20 degrees range in latitude, allowing a good three-dimensional mapping of the magnetic field in the inner magnetosphere to be carried out. We

G. Giampieri; M. K. Dougherty; E. J. Smith; C. T. Russell

2005-01-01

199

Magnetic fields in galaxy clusters  

NASA Astrophysics Data System (ADS)

While it is established that galaxy clusters host magnetic fields of the order of a few ?G, both, their origin as well as their role in the intracluster medium (ICM) remain unclear. I will review the observational evidence for magnetic fields in galaxy clusters and present various lines of research that study the effects of magnetic fields in the ICM. Magnetic fields affect the way in which galaxies interact with the ICM, they may render the ICM buoyantly unstable in the presence of anisotropic thermal conduction, and they affect the thermal structure of the gas in cluster cores. Finally, opportunities for future research in this field, in particular in light of new radio telescopes is highlighted.

Brüggen, M.

2013-06-01

200

Preflare magnetic and velocity fields  

NASA Technical Reports Server (NTRS)

A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

1986-01-01

201

Human brain somatic representation: a functional magnetic resonance mapping  

NASA Astrophysics Data System (ADS)

Central nervous system studies of injury and plasticity for the reorganization in the phantom limb sensation area presented. In particular functional magnetic resonance imaging (fMRI) mapping of the somatic and motor cortex of amputee patients, in the case of referred sensations. Using fMRI we can show the correlation between structure and functional field and study the reorganization due to plasticity in the brain. .

Romero-Romo, Juan; Rojas, Rafael; Salgado, Perla; Sánchez-Cortázar, Julián; Vazquez-Vela, Arturo; Barrios, Fernando A.

2001-10-01

202

Magnetic Field Effect Transistors.  

National Technical Information Service (NTIS)

It has been demonstrated that magnetic Cr02 can be selectively deposited on semiconductor substrates and polymide resin plastics with feature resolution smaller than micron. In addition, hard coatings have been fabricated to protect active devices as well...

J. T. Spencer P. A. Dowben

1990-01-01

203

Magnetic Fields in the Sun.  

National Technical Information Service (NTIS)

The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas a...

D. J. Mullan

1974-01-01

204

Magnetic fields of the outer planets  

NASA Technical Reports Server (NTRS)

It is difficult to imagine a group of planetary dynamos more diverse than those visited by the Pioneer and Voyager spacecraft. The magnetic field of Jupiter is large in magnitude and has a dipole axis within 10 deg of its rotation axis, comfortably consistent with the paleomagnetic history of the geodynamo. Saturn's remarkable (zonal harmonic) magnetic field has an axis of symmetry that is indistinguishable from its rotation axis (mush less than 1 deg angular separation); it is also highly antisymmetric with respect to the equator plane. According to one hypothesis, the spin symmetry may arise from the differential rotation of an electrically conducting and stably stratified layer above the dynamo. The magnetic fields of Uranus and Neptune are very much alike, and equally unlike those of the other known magnetized planets. These two planets are characterized by a large dipole tilts (59 deg and 47 deg, respectively) and quadrupole moments (Schmidt-normalized quadrupole/dipole ratio approximately equal 1.0). These properties may be characteristic of dynamo generation in the relatively poorly conducting 'ice' interiors of Uranus and Neptune. Characteristics of these planetary magnetic fields are illustrated using contour maps of the field on the planet's surface and discussed in the context of planetary interiors and dynamo generation.

Connerney, J. E. P.

1993-01-01

205

The polar heliospheric magnetic field  

NASA Technical Reports Server (NTRS)

It is suggested that the polar heliospheric magnetic field, at large heliocentric distances, may deviate considerably from the generally accepted Archimedean spiral. Instead, it is suggested that the large-scale field near the poles may be dominated by randomly-oriented transverse magnetic fields with magnitude much larger than the average spiral. The average vector field is still the spiral, but the average magnitude may be much larger. In addition, the field direction is transverse to the radial direction most of the time instead of being nearly radial. This magnetic-field structure has important consequences for the transport of cosmic rays. Preliminary model calculations suggest changes in the radial gradient of galactic cosmic rays which may improve agreement with observations.

Jokipii, J. R.; Kota, J.

1989-01-01

206

An altitude-normalized magnetic map of Mars and its interpretation  

NASA Astrophysics Data System (ADS)

Techniques developed for the reduction and analysis of terrestrial satellite magnetic field data are used to better understand the magnetic field observations made by Mars Global Surveyor. A global distribution of radial (Br) magnetic field observations and associated uncertainties is inverted for an equivalent source magnetization distribution and then used to generate an altitude-normalized map of Br at 200 km. The observations are well-represented by a potential function of crustal origin, consistent with a remanent origin for the Martian magnetic features. The correlation between the 40546 Br observations and Br calculated from the magnetization solution at observation locations is 0.978. For a magnetization distribution confined to a 50 km layer, calculated magnetizations range from -22 to +17 A/m. We see correlations with tectonics that were only hinted at in earlier maps. Magnetic features appear to be truncated against Valles Marineris and Ganges Chasma, suggestive of a major change in crustal properties associated with faulting.

Purucker, M.; Ravat, D.; Frey, H.; Voorhies, C.; Sabaka, T.; Acuña, M.

207

Theorem on magnet fringe field.  

National Technical Information Service (NTIS)

Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b(sub n)) and skew (a(sub n)) multipoles, B(sub y) + iB(sub x)...

J. Wei R. Talman

1995-01-01

208

Majorana Neutrinos and Magnetic Fields.  

National Technical Information Service (NTIS)

It is stressed that if neutrinos are massive they are probably of Majorana type. This implies that their magnetic moment form factor vanishes identically so that the previously discussed phenomenon of spin rotation in a magnetic field would not appear to ...

J. Schechter J. W. F. Valle

1981-01-01

209

Measuring Earth's Magnetic Field Simply.  

ERIC Educational Resources Information Center

Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

Stewart, Gay B.

2000-01-01

210

Neutron in Strong Magnetic Fields  

NASA Astrophysics Data System (ADS)

A relativistic world-line Hamiltonian for strongly interacting 3q systems in a magnetic field is derived from the path integral for the corresponding Green's function. The neutral baryon Hamiltonian in the magnetic field obeys the pseudomomentum conservation and allows a factorization of the c.m. and internal motion. The resulting expression for the baryon mass in the magnetic field is written explicitly with the account of hyperfine, one pion exchange, and one gluon exchange (color Coulomb) interaction. The neutron mass is fast decreasing with the magnetic field, losing 1/2 of its value at eB ˜0.25 GeV2 and is nearly zero at eB ˜0.5 GeV2. Possible physical consequences of the calculated mass trajectory of the neutron, Mn(B), are presented and discussed.

Andreichikov, M. A.; Kerbikov, B. O.; Orlovsky, V. D.; Simonov, Yu. A.

2014-04-01

211

Solar magnetic fields and convection  

Microsoft Academic Search

The flux-rope model of solar magnetic fields is developed further by the use of a variety of observational results.(i)It is confirmed that magnetic fields emerging to form active regions are already in the form of helically twisted flux ropes.(ii)A flux rope is not a homogeneous structure but is made up of hundreds or thousands of flux fibres. These are individually

J. H. Piddington

1976-01-01

212

Solar magnetic fields: an introduction  

Microsoft Academic Search

The magnetic field of the Sun is thought to be produced by a dynamo in the solar interior and exhibits its greatest influence\\u000a on the solar plasma in the tenuous outer layers of the solar atmosphere, where it lies at the heart of almost every major\\u000a phenomenon. Most direct observations of the magnetic field are restricted to the solar surface,

S. K. Solanki

213

Spontaneous thermal magnetic field fluctuation  

SciTech Connect

In recent days, the relativistic version of the classic Weibel instability received renewed attention for its potential role as a mechanism to generate cosmic magnetic fields. However, one of the key conceptual foundations in association with the Weibel instability has not been addressed in the literature. Namely, the spontaneous emission of magnetic field fluctuation, which is supposed to provide the seed perturbation for the Weibel instability, has not been adequately discussed. The present Brief Communication addresses this issue.

Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)

2007-06-15

214

Effect of Dipole Perturbation on Area of Footprint of Field Lines on Collector Plate Using Maps  

Microsoft Academic Search

Symmetric Simple Map is employed to represent unperturbed magnetic topology of single-null divertor tokamak. Dipole Map represents the effects of externally applied high MN perturbation. Purpose of the study is to investigate if the area of footprint of magnetic field lines on the divertor plate can be increased by dipole perturbation. Results of this study are presented.

Halima Ali; Alkesh Punjabi; Allen Boozer

2001-01-01

215

Theorem on magnet fringe field  

SciTech Connect

Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b{sub n}) and skew (a{sub n}) multipoles, B{sub y} + iB{sub x} = {summation}(b{sub n} + ia{sub n})(x + iy){sup n}, where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ``field integrals`` such as {bar B}L {equivalent_to} {integral} B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For {bar a}{sub n}, {bar b}{sub n}, {bar B}{sub x}, and {bar B}{sub y} defined this way, the same expansion Eq. 1 is valid and the ``standard`` approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell`s equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of {vert_bar}{Delta}p{sub {proportional_to}}{vert_bar}, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to {vert_bar}{Delta}p{sub 0}{vert_bar}, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field B{sub x} from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC.

Wei, Jie [Brookhaven National Lab., Upton, NY (United States); Talman, R. [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies

1995-12-31

216

Optical sensor of magnetic fields  

DOEpatents

An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

Butler, M.A.; Martin, S.J.

1986-03-25

217

Chiral transition with magnetic fields  

NASA Astrophysics Data System (ADS)

We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses—taken as functions of the order parameter—can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling constants, and the number of fermions. We show that the critical temperature for the restoration of chiral symmetry monotonically increases from small to intermediate values of the magnetic field and that this temperature is always above the critical temperature for the case when the magnetic field is absent.

Ayala, Alejandro; Hernández, Luis Alberto; Mizher, Ana Júlia; Rojas, Juan Cristóbal; Villavicencio, Cristián

2014-06-01

218

Longitude perception and bicoordinate magnetic maps in sea turtles.  

PubMed

Long-distance animal migrants often navigate in ways that imply an awareness of both latitude and longitude. Although several species are known to use magnetic cues as a surrogate for latitude, it is not known how any animal perceives longitude. Magnetic parameters appear to be unpromising as longitudinal markers because they typically vary more in a north-south rather than an east-west direction. Here we report, however, that hatchling loggerhead sea turtles (Caretta caretta) from Florida, USA, when exposed to magnetic fields that exist at two locations with the same latitude but on opposite sides of the Atlantic Ocean, responded by swimming in different directions that would, in each case, help them advance along their circular migratory route. The results demonstrate for the first time that longitude can be encoded into the magnetic positioning system of a migratory animal. Because turtles also assess north-south position magnetically, the findings imply that loggerheads have a navigational system that exploits the Earth's magnetic field as a kind of bicoordinate magnetic map from which both longitudinal and latitudinal information can be extracted. PMID:21353561

Putman, Nathan F; Endres, Courtney S; Lohmann, Catherine M F; Lohmann, Kenneth J

2011-03-22

219

Magnetic field analysis and optimal design of magnetic bearing  

Microsoft Academic Search

Magnetic field distribution of a radial magnetic bearing with sixteen-pole was analyzed by using finite element method. It was verified by magnetic field measurement. Magnetic bearing structure was optimized based on finite element analysis (FEA) and magnetic circuit method. Optimization was done in object of maximum magnetic force. Two optimizations had similar results. Analysis showed that FEA-based optimization is more

Han Wu; Chunguang Xu; Dingguo Xiao; Juan Hao

2009-01-01

220

Magnetic fields in quiescent prominences  

SciTech Connect

The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered. 29 refs.

Van Ballegooijen, A.A.; Martens, P.C.H. (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA))

1990-09-01

221

MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.  

SciTech Connect

Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

2004-10-03

222

11-year and 22-year periodicities in the photospheric magnetic field changes  

Microsoft Academic Search

We study changes of the photospheric magnetic field using synoptic maps for 1976 - 2003 (NSO Kitt Peak). The positive and negative magnetic fluxes were considered for the Northern and the Southern hemispheres separately. The presence of either 11-year or 22-year solar cycles was found for different magnitudes of the photospheric magnetic fields. For weak magnetic fields (|B| 100 G)

Elena Vernova; Dmitry Baranov; Marta Tyasto

2010-01-01

223

Magnetic fields in neutron stars  

NASA Astrophysics Data System (ADS)

This work aims at studying how magnetic fields affect the observational properties and the long-term evolution of isolated neutron stars, which are the strongest magnets in the universe. The extreme physical conditions met inside these astronomical sources complicate their theoretical study, but, thanks to the increasing wealth of radio and X-ray data, great advances have been made over the last years. A neutron star is surrounded by magnetized plasma, the so-called magnetosphere. Modeling its global configuration is important to understand the observational properties of the most magnetized neutron stars, magnetars. On the other hand, magnetic fields in the interior are thought to evolve on long time-scales, from thousands to millions of years. The magnetic evolution is coupled to the thermal one, which has been the subject of study in the last decades. An important part of this thesis presents the state-of-the-art of the magneto-thermal evolution models of neutron stars during the first million of years, studied by means of detailed simulations. The numerical code here described is the first one to consistently consider the coupling of magnetic field and temperature, with the inclusion of both the Ohmic dissipation and the Hall drift in the crust.

Viganò, Daniele

2013-09-01

224

Alternating magnetic field assisted magnetization reversal in ferromagnetic antidot  

NASA Astrophysics Data System (ADS)

Although the effects of high-frequency electromagnetic waves on magnetization reversal have been extensively studied, the influence of a low-frequency ac field on magnetization reversal has seldom been examined. In this study, we measured the magnetoresistance and examined the magnetic switching process of Permalloy antidot thin films under an alternating magnetic field with a frequency of 25 kHz. When no alternating magnetic field was present, the transitional field of the antidot thin films decreased as the angle of the direct magnetic field increased. When an alternating magnetic field was present, the transitional field exhibited the same trend. We compared the magnetization process of the antidot thin films with and without the alternating magnetic field and determined that the alternating field can facilitate the transition of magnetization, specifically, by lowering the transitional field with the highest variation rate (33.73%).

Huang, Hao-Ting; Ger, Tzong-Rong; Huang, Chen-Yu; Liao, Kuei-Tien; Wang, Pei-Jen; Lai, Jun-Yang; Chen, Jiann-Yeu; Lai, Mei-Feng

2014-05-01

225

Is the Earth's lithospheric magnetic field globally self-similar?  

NASA Astrophysics Data System (ADS)

We derive two theoretical expressions for the lithospheric magnetic field spatial power spectrum in Schmidt normalized spherical harmonics (SH), one in terms of laterally varying susceptibility in a shell of constant thickness, and one in terms of laterally varying magnetic crustal thickness but constant susceptibility. These forms differ from previously published works. The direct evidences for the scaling of the magnetized crust at the global scale are limited. Therefore, we start with the common assumption that the magnetic lithospheric field power spectrum should be "white". Using the most recent SH lithospheric magnetic field models, we show that this field is most likely self-similar at large degrees because some physical properties of the magnetic sources, such as the magnetic susceptibility and the depth at which rocks loose their magnetic property, are themselves scale invariant. Our theoretical forms for the lithospheric magnetic field power spectrum predict that the power law of the magnetic susceptibility at the global scale ranges between -1.3 and -1.4 and that of the magnetic crustal thickness between -1.4 and -1.7. They predict a magnetic crustal thickness in the range from 10 to 30 km, an average susceptibility between 0.02 and 0.04 SI, and a magnetic field root mean square between 200 and 250 nT at the Earth's mean radius. We then transform in Schmidt normalized SH two independent geophysical maps, one for the world magnetic susceptibility distribution of rocks, and one for the seismic crustal thickness. We find that their spectra follow a power law equal to -1.34±0.02 for the susceptibility and equal to -1.65±0.03 for the crustal thickness. The mean crustal thickness inferred from the seismic map is about 21 km and the mean magnetic susceptibility is about 0.03 SI from the susceptibility map. These values are fully consistent with the results of our theoretical analyses conducted on the lithospheric field models. We confirm that the lithospheric magnetic field seems comparably sensitive to lateral variations in susceptibility or in magnetic crustal thickness. Nevertheless, although we could not resolve this non-uniqueness, we prefer the expression of the magnetic field power spectrum in terms of lateral susceptibility variations because its assumptions are less restrictive than the ones for the laterally varying magnetic thickness. We suggest that the property of the self-similarity of the lithospheric magnetic field could be used to reduce noise contamination in SH models or to prepare magnetic anomaly grid so useful for geological exploration.

Thebault, E.; Vervelidou, F.

2012-12-01

226

Spherical Cap Harmonic Modeling of the Antarctic Magnetic Anomaly Map  

NASA Astrophysics Data System (ADS)

During the last decade the Antarctic Digital Magnetic Anomaly Project (ADMAP) produced a representation of the Antarctic crustal magnetic anomalies. All the ground, marine and aeromagnetic data collected south of 60°S since the IGY 1957-58 were compiled and reprocessed to produce a regional crustal magnetic anomaly map with a 5-km grid interval. Satellite-altitude crustal anomalies from the CHAMP (400 km) and Ørsted (700 km altitude) missions were also processed and used to fill in regional gaps in the near-surface survey coverage. In this paper, we report on our efforts to develop a Spherical Cap Harmonic (SCH) model of the multi-altitude crustal magnetic observations. The purpose of our work is to produce a regional model that will depict the crustal magnetic anomalies anywhere between the surface and satellite altitude with an accuracy not achieved by global-Earth models. The new SCH model synthesizes almost 50 years of magnetic survey observations to facilitate our future studies of the Antarctic magnetic field.

Gaya-Pique, L. R.; Kim, H.; von Frese, R. R.; Chiappini, M.; Taylor, P. T.; Golynsky, A. V.

2005-05-01

227

Gravitational field maps and navigational errors  

Microsoft Academic Search

It has been proposed to use gravitational field maps to correct navigational errors inherent in some navigational systems presently in use on unmanned underwater vehicles (UUV) and that such a technology might form the basis for a new UUV navigational system. However, the accuracy and usefulness of the navigational solution depends, among other things, on the accuracy of the gravitational

Garner C. Bishop

2000-01-01

228

Flow field mapping in data rack model  

NASA Astrophysics Data System (ADS)

The main objective of this study was to map the flow field inside the data rack model, fitted with three 1U server models. The server model is based on the common four-processor 1U server. The main dimensions of the data rack model geometry are taken fully from the real geometry. Only the model was simplified with respect to the greatest possibility in the experimental measurements. The flow field mapping was carried out both experimentally and numerically. PIV (Particle Image Velocimetry) method was used for the experimental flow field mapping, when the flow field has been mapped for defined regions within the 2D/3D data rack model. Ansys CFX and OpenFOAM software were used for the numerical solution. Boundary conditions for numerical model were based on data obtained from experimental measurement of velocity profile at the output of the server mockup. This velocity profile was used as the input boundary condition in the calculation. In order to achieve greater consistency of the numerical model with experimental data, the numerical model was modified with regard to the results of experimental measurements. Results from the experimental and numerical measurements were compared and the areas of disparateness were identified. In further steps the obtained proven numerical model will be utilized for the real geometry of data racks and data.

Manoch, L.; Mat?cha, J.; Pohan, P.

2013-04-01

229

Conditional Random Fields for Outdoor Object Mapping  

Microsoft Academic Search

In this paper we discuss a novel approach to building object type maps of outdoor environments. Our approach applies standard scan matching techniques to align 2D laser scans collected by a vehicle driving through urban environments (2). We use conditional random fields (CRF) to classify each laser re turn into the seven object types car, wall, tree trunk, folia ge,

Bertrand Douillard; Dieter Fox; Fabio Ramos

230

Multi robot mapping using force field simulation  

Microsoft Academic Search

This paper describes a novel approach, called Force Field Simulation, to multi robot map- ping that works under the constraints given in autonomous search and rescue robotics. Extremely poor prealignment, lack of landmarks, and minimal overlap between scans are the main challenges. The presented algorithm solves the alignment problem of such laser scans utilizing a gradient descent approach motivated by

Rolf Lakaemper; Nagesh Adluru; Longin Jan Latecki; Raj Madhavan

2007-01-01

231

High-field magnets and high-field superconductors  

Microsoft Academic Search

This paper gives a brief historical review of the development of high magnetic fields and high field superconductors including brief summaries of the early developments of high magnetic fields and the Francis Bitter National Magnet Laboratory (FBNML). The start of the first revolution (when large critical currents in Nb3Sn were observed in high magnetic fields) and the development of practical

Simon Foner; Francis Bitter

1995-01-01

232

Magnetic Fields in Irregular Galaxies: NGC 4214  

Microsoft Academic Search

Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in

Amanda A. Kepley; E. M. Wilcots; T. Robishaw; C. Heiles; E. Zweibel

2006-01-01

233

Solar magnetic fields - The Italian contribution  

Microsoft Academic Search

A short account is given of the methods of observation, the characteristics of solar magnetic fields, the relationships between velocity and magnetic fields, the theoretical approaches, and the possibilities opened by studies of stellar activity of the solar type. In discussing the classification and characteristics of solar magnetic fields, attention is given to normal bipolar regions, large-scale unipolar magnetic fields,

D. Fabbri; G. Godoli; F. Mazzucconi

1982-01-01

234

Progress in Solar Magnetic Field Extrapolation  

Microsoft Academic Search

Solar magnetic field is the predominant factor of the solar activities. Precise measurements of solar magnetic fields so far are still confined to the thin layer of the solar photosphere. In order to understand the nature of the coronal magnetic fields, it becomes necessary to extrapolate the coronal magnetic fields based on theoretical models using observed photospheric magnetograms as boundary

Juan Hao; Mei Zhang

2007-01-01

235

Satellite to study earth's magnetic field  

NASA Technical Reports Server (NTRS)

The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

1979-01-01

236

Observations of Mercury's magnetic field  

NASA Technical Reports Server (NTRS)

Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

1975-01-01

237

Dispersion of Magnetic Fields in Molecular Clouds  

NASA Astrophysics Data System (ADS)

Chandrasekhar & Fermi (1953) used the dispersion of starlight polarization vectors about contours of Galactic latitude to determine the strength of the magnetic field in the arms of the Galaxy. The same technique, the Chandrasekhar Fermi (CF) method, has been applied to estimates of field strengths in the relatively dense medium of molecular clouds. The basis for deriving field strengths from dispersion measurements is the same for observations of Galactic arms or molecular clouds: in either case dispersion decreases as the field strengthens. But in the case of the Galactic arms, the dispersion is due to magnetohydrodynamic (MHD) waves; the displacements are perpendicular to the direction of propagation. In the case of turbulent dispersion in molecular clouds, there is no preferred direction. The turbulent component can be in any orientation and may have structure due to effects such as differential rotation, gravitational collapse, or expanding H II regions. Consequently, dispersion measured about mean fields, assumed straight, may be much larger than should be attributed to MHD waves or turbulence. Dispersion measured about model large-scale fields that give approximate fits to a polarization map will result in better estimates but still give inaccurate values of the turbulent component. Here we describe a method for determining magnetic field dispersion about local structured fields, without assuming any model for the large-scale field. To do this, we use the second-order structure function of the measured polarization vectors to separate the turbulent component of the dispersion from the large-scale field. Our study incorporates the effect on the measured dispersion of signal integration through the thickness of the cloud as well as across the area subtended by the telescope beam. Our method provides accurate, independent estimates of the turbulent to mean magnetic field strength ratio. We discuss applications to the molecular clouds Orion, M17, and DR21.

Vaillancourt, John E.; Hildebrand, R. H.; Houde, M.

2009-05-01

238

Dispersion of Magnetic Fields in Molecular Clouds  

NASA Astrophysics Data System (ADS)

Chandrasekhar & Fermi (1953) used the dispersion of starlight polarization vectors about contours of Galactic latitude to determine the strength of the magnetic field in the arms of the Galaxy. The same technique, the Chandrasekhar-Fermi (CF) method, has been applied to estimates of field strengths in the relatively dense medium of molecular clouds. The basis for deriving field strengths from dispersion measurements is the same for observations of Galactic arms or molecular clouds: in either case dispersion decreases as the field strengthens. But in the case of the Galactic arms, the dispersion is due to magnetohydrodynamic (MHD) waves; the displacements are perpendicular to the direction of propagation. In the case of turbulent dispersion in molecular clouds, there is no preferred direction. The turbulent component can be in any orientation and may have structure due to effects such as differential rotation, gravitational collapse, or expanding H II regions. Consequently, dispersion measured about mean fields, assumed straight, may be much larger than should be attributed to MHD waves or turbulence. Dispersion measured about model large-scale fields that give approximate fits to a polarization map will result in better estimates but still give inaccurate values of the turbulent component. Here we describe a method for determining magnetic field dispersion about local structured fields, without assuming any model for the large-scale field. To do this, we use the second-order structure function of the measured polarization vectors to separate the turbulent component of the dispersion from the large-scale field. Our study incorporates the effect on the measured dispersion of signal integration through the thickness of the cloud as well as across the area subtended by the telescope beam. Our method provides accurate, independent estimates of the turbulent to mean magnetic field strength ratio. We discuss applications to the molecular clouds Orion, M17, and DR21.

Vaillancourt, John E.; Houde, M.; Hildebrand, R. H.

2010-01-01

239

Deflections in magnet fringe fields.  

PubMed

A transverse multipole expansion is derived, including the longitudinal components necessarily present in regions of varying magnetic field profile. It can be used for exact numerical orbit following through the fringe-field regions of magnets whose end designs introduce no extraneous components, i.e., fields not required to be present by Maxwell's equations. Analytic evaluations of the deflections are obtained in various approximations. Mainly emphasized is a "straight-line approximation," in which particle orbits are treated as straight lines through the fringe-field regions. This approximation leads to a readily-evaluated figure of merit, the ratio of rms end deflection to nominal body deflection, that can be used to determine whether or not a fringe field can be neglected. Deflections in "critical" cases (e.g., near intersection regions) are analyzed in the same approximation. PMID:12786502

Papaphilippou, Y; Wei, J; Talman, R

2003-04-01

240

Vector field electron tomography of magnetic materials: theoretical development.  

PubMed

The theory of vector field electron tomography, the reconstruction of the three-dimensional magnetic induction around a magnetized object, is derived within the framework of Lorentz transmission electron microscopy. The tomographic reconstruction method uses as input two orthogonal tilt series of magnetic phase maps and is based on the vector slice theorem. An analytical reconstruction of the magnetic induction of a single magnetic dipole is presented as a proof-of-concept. The method is compared to two previously reported approaches: a reconstruction starting from the gradient of the magnetic phase maps, and a direct reconstruction of the magnetic vector potential. Numerical examples as well as estimates of the reconstruction errors for a range of magnetic particle shapes are reported. PMID:17804165

Phatak, C; Beleggia, M; De Graef, M

2008-05-01

241

Correction of Marine Magnetic Data to Make a Magnetic Anomaly Map for Shatsky Rise  

NASA Astrophysics Data System (ADS)

Shatsky Rise oceanic plateau was formed near a triple junction during a period of geomagnetic reversals, so magnetic lineations formed at the spreading ridges are important observations reflecting on its tectonic history. Shatsky Rise covers a large area (4.8 x 105 km2) and magnetic data in the area are sparse and irregularly spaced, posing a challenge for defining the magnetic anomalies. Original trackline data contain both natural and artificial artifacts that hinder their effective use. In this study, shipborne magnetic data from 101 cruises over and around Shatsky Rise were examined for errors, corrected and gridded. The data set was collected over a period of 51 years, during which the International Geomagnetic Reference Field (IGRF) changed many times. So the first and main correction was to reduce the total magnetic field data to anomalies by subtracting the most recent International Geomagnetic Reference Field (IGRF11). To correct for regular patterns of external field variations, the anomalies were recalculated by the use of Comprehensive Model: phase 4 (CM4). Observation outliers, usually caused by instrumental and transcription errors, are identifiable due to their extremely large differences from the nearby points. Most of these outliers are excluded and for only a few was it possible to recover reasonable anomaly values. Noisy segments were identified and deleted through inspection by their disagreement with the draft magnetic anomaly map. Position offsets were tested to find corrections for navigation errors for several cruises with poor navigation. After cleaning each cruise data track-by-track, or even segment-by-segment, crossover analysis was implemented and line-leveling is used to correct for systematic offsets between track lines. Comparisons of magnetic anomaly maps before and after these corrections show an apparent improvement of the quality and consistency of the data set. The Hawaiian magnetic lineations, Japanese magnetic lineations, and the trace of the Pacific-Izanagi-Farallon triple junction are identifiable in the magnetic anomaly map. The distribution of magnetic anomalies around and within Shatsky rise shows that magnetic anomalies penetrate most of Shatsky Rise, documenting its history of formation near the spreading ridges.

Huang, Y.; Sager, W. W.

2013-12-01

242

Magnetic field tomography, helical magnetic fields and Faraday depolarization  

NASA Astrophysics Data System (ADS)

Wide-band radio polarization observations offer the possibility to recover information about the magnetic fields in synchrotron sources, such as details of their three-dimensional configuration, that has previously been inaccessible. The key physical process involved is the Faraday rotation of the polarized emission in the source (and elsewhere along the wave's propagation path to the observer). In order to proceed, reliable methods are required for inverting the signals observed in wavelength space into useful data in Faraday space, with robust estimates of their uncertainty. In this paper, we examine how variations of the intrinsic angle of polarized emission ?0 with the Faraday depth ? within a source affect the observable quantities. Using simple models for the Faraday dispersion F(?) and ?0(?), along with the current and planned properties of the main radio interferometers, we demonstrate how degeneracies among the parameters describing the magneto-ionic medium can be minimized by combining observations in different wavebands. We also discuss how depolarization by Faraday dispersion due to a random component of the magnetic field attenuates the variations in the spectral energy distribution of the polarization and shifts its peak towards shorter wavelengths. This additional effect reduces the prospect of recovering the characteristics of the magnetic field helicity in magneto-ionic media dominated by the turbulent component of the magnetic field.

Horellou, C.; Fletcher, A.

2014-07-01

243

The vector structure of active magnetic fields  

NASA Technical Reports Server (NTRS)

Observations are needed to show the form of the strains introduced into the fields above the surface of the Sun. The longitudinal component alone does not provide the basic information, so that it has been necessary in the past to use the filamentary structure observed in H sub alpha to supplement the longitudinal information. Vector measurements provide the additional essential information to determine the strains, with the filamentary structure available as a check for consistency. It is to be expected, then, that vector measurements will permit a direct mapping of the strains imposed on the magnetic fields of active regions. It will be interesting to study the relation of those strains to the emergence of magnetic flux, flares, eruptive prominences, etc. In particular we may hope to study the relaxation of the strains via the dynamical nonequilibrium.

Parker, E. N.

1985-01-01

244

Stellar magnetic fields: observations and nonlinear modeling  

NASA Astrophysics Data System (ADS)

Magnetic fields on a global scale are observed in a wide variety of astrophysical objects, spanning from planets, stars, and accretion disks to galaxies. These magnetic fields are anything but passive, taking part in the dynamics of their hosts, resulting for example in the familiar activity phenomena of the Sun, which also affect life here on the Earth. We have a long time series of temperature mapping and photometry of an active late-type star II Peg. II Peg is known as one of the most active RS Cvn stars representing the Sun at a younger age. We are trying to establish the link between the Sun and the more active rapidly rotating stars and compare the results to the dynamo models of the Sun. Preliminary results show some resemblance to the dynamo solutions.

Lindborg, M.; Korpi, M.; Tuominen, I.; Hackman, T.; Ilyin, I.; Käpylä, P.

2009-12-01

245

Dilation of force-free magnetic flux tubes. [solar magnetic field profiles  

NASA Technical Reports Server (NTRS)

A general study is presented of the mapping functions which relate the magnetic-field profiles across a force-free rope in segments subjected to various external pressures. The results reveal that if the external pressure falls below a certain critical level (dependent on the flux-current relation which defines the tube), the magnetic profile consists of an invariant core sheathed in a layer permeated by an azimuthal magnetic field.

Frankenthal, S.

1977-01-01

246

MIT Phyics 8.02: Vector Fields - Mapping Fields Applet  

NSDL National Science Digital Library

This item is an interactive Java simulation that illustrates the structure of two-dimensional vector fields using the "grass seeds" (or "iron filings") representation. Users enter x and y components for a field, then choose from a variety of field examples: two-point charges, dipole in constant or no field, two-line currents, radiating dipole, and dipole in a field with gradient. The applet will display the chosen field in either a grass seeds electric field or as equipotential lines. For more advanced users, the applet provides functions for yielding polar coordinates. This item is part of a collection of visualizations developed by the MIT TEAL project to supplement an introductory course in calculus-based electricity and magnetism. Lecture notes, labs, and presentations are also available as part of MIT's Open Courseware Repository: MIT Open Courseware: Electricity and Magnetism

2010-03-31

247

Tracing the Magnetic Field in Orion A  

NASA Technical Reports Server (NTRS)

We use extensive 350 micron polarimetry and continuum maps obtained with Hertz and SHARC II along with HCN and HCO(sup +) spectroscopic data to trace the orientation of the magnetic field in the Orion A star-forming region. Using the polarimetry data, we find that the direction of the projection of the magnetic field in the plane of the sky relative to the orientation of the integral-shaped filament varies considerably as one moves from north to south. While in IRAS 05327-0457 and OMC-3 MMS 1-6 the projection of the field is primarily perpendicular to the filament it becomes better aligned with it at OMC-3 MMS 8-9 and well aligned with it at OMC-2 FIR 6. The OMC-2 FIR 4 cloud, located between the last two, is a peculiar object where we find almost no polarization. There is a relatively sharp boundary within its core where two adjacent regions exhibiting differing polarization angles merge. The projected angle of the field is more complicated in OMC-1 where it exhibits smooth variations in its orientation across the face of this massive complex. We also note that while the relative orientation of the projected angle of the magnetic field to the filament varies significantly in the OMC-3 and OMC-2 regions, its orientation relative to a fixed position on the sky shows much more stability. This suggests that, perhaps, the orientation of the field is relatively unaffected by the mass condensations present in these parts of the molecular cloud. By combining the polarimetry and spectroscopic data we were able to measure a set of average d u e s for the inclination angle of the magnetic field relative to the line of sight. We find that the field is oriented quite close to the plane of the sky in most places. More precisely, the inclination of the magnetic field is approx. = 73 deg around OMC-3 MMS 6, approx. = 74 deg at OMC-3 MMS 8-9, approx. = 80 deg at OMC-2 FIR 4, approx. = 65 deg in the northeastern part of OMC-1, and approx. = 49 deg in the Bas. The small difference in the inclination of the field between OMC-3 and OMC-2 seems to strengthen the idea that the orientation of the magnetic field is relatively unaffected by the agglomeration of matter located in these regions. We also present polarimetry data for the OMC-4 region located some 13 min. south of OMC-1.

Dowell, C. Darren; Hildebrand, Roger H.; Dotson, Jessie L.; Vaillancourt, John E.; Phillips, Thomas G.; Peng, Rui-Sheng; Bastien, Pierre

2003-01-01

248

Formation of Magnetic Particle Chains in Ultra High Magnetic Field  

Microsoft Academic Search

Magnetic particles form chain-like clusters in the magnetic field. This phenomenon is of interest in two separate fields, one is a development system of the laser printer and another is an electromagnetic manipulation of biological cells. Experiments on the chain formation in air and oil have been performed in the ultra high magnetic field created by a superconducting magnet. It

Hiroyuki Kawamoto; Masatomo Teshima; Hiroyuki Takahashi; Nobuyuki Nakayama; Noriyuki Hirota

2007-01-01

249

Photospheric and coronal magnetic fields  

SciTech Connect

Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

Sheeley, N.R., Jr. (USAF, Geophysics Laboratory, Hanscom AFB, MA (United States))

1991-01-01

250

Magnetic Forces and Field Line Density  

NSDL National Science Digital Library

This is an activity about depicting the relative strength of magnetic fields using field line density. Learners will use the magnetic field line drawing of six magnetic poles created in a previous activity and identify the areas of strong, weak, and medium magnetic intensity using the density of magnetic field lines. This is the fifth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website. How to Draw Magnetic Fields - II in the Magnetic Math booklet must be completed prior to this activity.

251

Magnetic Fields of the Earth and Sun  

NSDL National Science Digital Library

This is an activity that compares the magnetic field of the Earth to the complex magnetic field of the Sun. Using images of the Earth and Sun that have magnets attached in appropriate orientations, learners will use a handheld magnetic field detector to observe the magnetic field of the Earth and compare it to that of the Sun, especially in sunspot areas. For each group of students, this activity requires use of a handheld magnetic field detector, such as a Magnaprobe or a similar device, a bar magnet, and ten small disc magnets.

252

Bladder wall thickness mapping for magnetic resonance cystography  

NASA Astrophysics Data System (ADS)

Clinical studies have shown evidence that the bladder wall thickness is an effective biomarker for bladder abnormalities. Clinical optical cystoscopy, the current gold standard, cannot show the wall thickness. The use of ultrasound by experts may generate some local thickness information, but the information is limited in field-of-view and is user dependent. Recent advances in magnetic resonance (MR) imaging technologies lead MR-based virtual cystoscopy or MR cystography toward a potential alternative to map the wall thickness for the entire bladder. From a high-resolution structural MR volumetric image of the abdomen, a reasonable segmentation of the inner and outer borders of the bladder wall can be achievable. Starting from here, this paper reviews the limitation of a previous distance field-based approach of measuring the thickness between the two borders and then provides a solution to overcome the limitation by an electric field-based strategy. In addition, this paper further investigates a surface-fitting strategy to minimize the discretization errors on the voxel-like borders and facilitate the thickness mapping on the three-dimensional patient-specific bladder model. The presented thickness calculation and mapping were tested on both phantom and human subject datasets. The results are preliminary but very promising with a noticeable improvement over the previous distance field-based approach.

Zhao, Yang; Liang, Zhengrong; Zhu, Hongbin; Han, Hao; Duan, Chaijie; Yan, Zengmin; Lu, Hongbing; Gu, Xianfeng

2013-08-01

253

Bladder Wall Thickness Mapping for Magnetic Resonance Cystography  

PubMed Central

Clinical studies have shown the evidence that the bladder wall thickness is an effective biomarker for bladder abnormalities. The clinical optical cystoscopy, the current gold standard, cannot show the wall thickness. The use of ultrasound by experts may generate some local thickness information, but the information is limited in field-of-view and is user dependent. Recent advances in magnetic resonance (MR) imaging technologies lead MR-based virtual cystoscopy or MR cystography toward a potential alternative to map the wall thickness for the entire bladder. From a high resolution structural MR volumetric image of the abdomen, a reasonable segmentation of the inner and outer borders of the bladder wall can be achievable. Starting from here, this paper reviews the limitation of a previous distance field-based approach of measuring the thickness between the two borders and then provides a solution to overcome the limitation by an electric field-based strategy. In addition, this paper further investigates a surface fitting strategy to minimize the discretization errors on the voxel-like borders and facilitate the thickness mapping on the three-dimensional patient-specific bladder model. The presented thickness calculation and mapping were tested on both phantom and human subject datasets. The results are preliminary but very promising with a noticeable improvement over the previous distance field-based approach.

Zhao, Yang; Liang, Zhengrong; Zhu, Hongbin; Han, Hao; Duan, Chaijie; Yan, Zengmin; Lu, Hongbing; Gu, Xianfeng

2013-01-01

254

BEC manipulation with fictitious magnetic fields  

Microsoft Academic Search

The interaction of Bose-Einstein condensate (BEC) atoms with counterpropagating laser beams can often be represented by fictitious magnetic fields [1]. These fictitious fields can be combined with ordinary magnetic fields to produce total fields whose amplitudes vary in space on the scale of the laser wavelength. When the strengths of such magnetic fields are positioned in the neighborhood of a

Jeffrey Heward; Mark Edwards; Charles W. Clark

2010-01-01

255

Ohm's Law for Mean Magnetic Fields.  

National Technical Information Service (NTIS)

The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it ...

A. H. Boozer

1986-01-01

256

Magnetic fields in nearby normal galaxies: energy equipartition  

NASA Astrophysics Data System (ADS)

We present maps of total magnetic field using `equipartition' assumptions for five nearby normal galaxies at sub-kpc spatial resolution. The mean magnetic field is found to be ˜ 11 ?G. The field is strongest near the central regions where mean values are ˜ 20-25 ?G and fall to ˜ 15 ?G in disc and ˜ 10 ?G in the outer parts. There is little variation in the field strength between arm and interarm regions, such that, in the interarms, the field is ?20 per cent weaker than in the arms. There is no indication of variation in magnetic field as one moves along arm or interarm after correcting for the radial variation of magnetic field. We also studied the energy densities in gaseous and ionized phases of the interstellar medium and compared to the energy density in the magnetic field. The energy density in the magnetic field was found to be similar to that of the gas within a factor of ?2 at sub-kpc scales in the arms, and thus magnetic field plays an important role in pressure balance of the interstellar medium. Magnetic field energy density is seen to dominate over the kinetic energy density of gas in the interarm regions and outer parts of the galaxies and thereby helps in maintaining the large-scale ordered fields seen in those regions.

Basu, Aritra; Roy, Subhashis

2013-08-01

257

Flux Transport and the Sun's Global Magnetic Field  

NASA Technical Reports Server (NTRS)

The Sun s global magnetic field is produced and evolved through the emergence of magnetic flux in active regions and its transport across the solar surface by the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective flows of granulation, supergranulation, and giant cell convection. Maps of the global magnetic field serve as the inner boundary condition for space weather. The photospheric magnetic field and its evolution determine the coronal and solar wind structures through which CMEs must propagate and in which solar energetic particles are accelerated and propagate. Producing magnetic maps which best represent the actual field configuration at any instant requires knowing the magnetic field over the observed hemisphere as well as knowing the flows that transport flux. From our Earth-based vantage point we only observe the front-side hemisphere and each pole is observable for only six months of the year at best. Models for the surface magnetic flux transport can be used to provide updates to the magnetic field configuration in those unseen regions. In this presentation I will describe successes and failures of surface flux transport and present new observations on the structure, the solar cycle variability, and the evolution of the flows involved in magnetic flux transport. I find that supergranules play the dominant role due to their strong flow velocities and long lifetimes. Flux is transported by differential rotation and meridional flow only to the extent that the supergranules participate in those two flows.

Hathaway, David H.

2010-01-01

258

Crystal field and magnetic properties  

NASA Technical Reports Server (NTRS)

Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

Flood, D. J.

1977-01-01

259

Swarm: ESA's Magnetic Field Mission  

Microsoft Academic Search

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The Mission shall deliver data that allow access to new insights into the Earth system by improving our understanding of the Earth's interior and near-Earth electro-magnetic environment.

R. Haagmans; Y. Menard; R. Floberghagen; G. Plank; M. R. Drinkwater

2010-01-01

260

Transverse Magnetic Field Propellant Isolator  

NASA Technical Reports Server (NTRS)

An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

Foster, John E.

2000-01-01

261

Scalar magnetic anomaly maps of Earth derived from POGO and Magsat data  

NASA Technical Reports Server (NTRS)

A new Polar Orbit Geophysical Observatory (POGO) scalar magnetic anomaly map at 400 km altitude is presented which consists of spherical harmonics of degree 15-60. On the basis of the common features of this map with two new Magsat anomaly maps, dawn and dusk, two scalar magnetic anomaly maps of the Earth are presented using two selection criteria with different levels of stringency. These selection criteria suppress the noncrustal components of the original maps by different amounts. The more stringent selection criteria seek to eliminate as much contamination as possible, at the expense of suppressing some anomaly signal. This map is represented by spherical harmonics of degree 15-60. The less stringent selection criteria seek to retain as much crustal signal as possible, at the expense of also retaining some contaminating fields. This map is represented by spherical harmonics of degree 15-65. The resulting two maps are highly correlated with degree correlation coefficients greater than 0.8.

Arkani-Hamed, Jafar; Langel, Robert A.; Purucker, Mike

1994-01-01

262

Mapping the Evolution of Scientific Fields  

PubMed Central

Despite the apparent cross-disciplinary interactions among scientific fields, a formal description of their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific fields using a network-based analysis. We build an idea network consisting of American Physical Society Physics and Astronomy Classification Scheme (PACS) numbers as nodes representing scientific concepts. Two PACS numbers are linked if there exist publications that reference them simultaneously. We locate scientific fields using a community finding algorithm, and describe the time evolution of these fields over the course of 1985–2006. The communities we identify map to known scientific fields, and their age depends on their size and activity. We expect our approach to quantifying the evolution of ideas to be relevant for making predictions about the future of science and thus help to guide its development.

Herrera, Mark; Roberts, David C.; Gulbahce, Natali

2010-01-01

263

Large-scale solar magnetic fields  

Microsoft Academic Search

Topics discussed in this review of large-scale solar magnetic fields include large-scale magnetic surface features, the solar activity cycle and the large-scale patterns, and magnetic fields in the corona. Features considered include the decay of active regions, the background field pattern, the polar fields, giant regular structures, expansion of the field in surface harmonics, and the average inclination of magnetic-field

R. Howard

1977-01-01

264

Mapping of Daedalia Planum Lava Field  

NASA Astrophysics Data System (ADS)

Daedalia Planum is one of the Tharsis volcanic plains and is located southwest of the Arsia Mons. MOLA, THEMIS, MOC and OMEGA data have been analysed, providing a multi-scale characterisation of this Martian lava field. According to Mars Global Surveyor's MOLA data, the flanks of Arsia have an average slope <5°, while the surrounding regions, including Daedalia Planum, have slopes <0,5° and commonly <0,1°. Mars Odyssey/THEMIS VIS and IR images show a plain covered by a huge number of lava flows. Older and larger lava flows on the field have a length greater than ~1500 km. Moreover most of the Daedalia flows are associated to wrinkly and ropy surfaces, typical of pahoehoe lavas. On the base of the morphology differences among the flows and through stratigraphic relationships we performed a geological map of the area. MEX/OMEGA spectra were collected in different areas of the lava field. Besides the similar absorption bands OMEGA spectra showed also some differences in reflectance and spectral slope. The spectral map created using the SAM classification reveals that these spectral variations are generally in agreement with the lava flows mapped previously on the base of the flows morphology and stratigraphy. This suggested that such variability is related with different surface textures of the lava flow. Moreover in some cases spectral map highlighted the presence of spectral subunits inside the same stratigraphic unit, due likely to a different mineralogy or rock textures. Therefore spectral analysis revealed useful to improve the geological mapping of the Daedalia Planum region.

Giacomini, Lorenza; Carli, Cristian; Massironi, Matteo; Pasquarè, Giorgio; Sgavetti, Maria

2010-05-01

265

Magnetic fields in the sun  

NASA Technical Reports Server (NTRS)

The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

Mullan, D. J.

1974-01-01

266

Polar plumes' orientation and the Sun's global magnetic field  

NASA Astrophysics Data System (ADS)

Aims: We characterize the orientation of polar plumes as a tracer of the large-scale coronal magnetic field configuration. We monitor in particular the north and south magnetic pole locations and the magnetic opening during 2007-2008 and provide some understanding of the variations in these quantities. Methods: The polar plume orientation is determined by applying the Hough-wavelet transform to a series of EUV images and extracting the key Hough space parameters of the resulting maps. The same procedure is applied to the polar cap field inclination derived from extrapolating magnetograms generated by a surface flux transport model. Results: We observe that the position where the magnetic field is radial (the Sun's magnetic poles) reflects the global organization of magnetic field on the solar surface, and we suggest that this opens the possibility of both detecting flux emergence anywhere on the solar surface (including the far side) and better constraining the reorganization of the corona after flux emergence.

de Patoul, Judith; Inhester, Bernd; Cameron, Robert

2013-10-01

267

Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data  

Microsoft Academic Search

Maps of relatively strong crustal magnetic field anomalies detected at low altitudes with the magnetometer instrument on Lunar Prospector are presented. On the lunar nearside, relatively strong anomalies are mapped over the Reiner Gamma Formation on western Oceanus Procellarum and over the Rima Sirsalis rille on the southwestern border of Oceanus Procellarum. The main Rima Sirsalis anomaly does not correlate

L. L. Hood; A. Zakharian; J. Halekas; D. L. Mitchell; R. P. Lin; M. H. Acuña; A. B. Binder

2001-01-01

268

Magnetic field of the Earth  

NASA Astrophysics Data System (ADS)

The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws of electromagnetism. According to a rule of the left hand: if the magnetic field in a kernel is directed to drawing, electric current are directed to an axis of rotation of the Earth, - a action of force clockwise (to West). Definition of the force causing drift a kernel according to the law of Ampere F = IBlsin. Powerful force 3,5 × 1012 Nyton, what makes drift of the central part of a kernel of the Earth on 0,2 the longitude in year to West, and also it is engine of the mechanism of movement of slabs together with continents. Movement of a core of the Earth carry out around of a terrestrial axis one circulation in the western direction in 2000 of years. Linear speed of rotation of a kernel concerning a mantle on border the mantle a kernel: V = × 3,471 × 10 = 3,818 × 10 m/s = 33 m/day = 12 km/years. Considering greater viscosity of a mantle, the powerful energy at rotation of a kernel seize a mantle and lithospheric slabs and makes their collisions as a result of which there are earthquakes and volcano. Continents Northern and Southern America every year separate from the Europe and Africa on several centimeters. Atlantic ocean as a result of movement of these slabs with such speed was formed for 200 million years, that in comparison with the age of the Earth - several billions years, not so long time. Drift of a kernel in the western direction is a principal cause of delay of speed of rotation of the Earth. Flow of radial electric currents allot according to the law of Joule - Lenz, the quantity of warmth : Q = I2Rt = IUt, of thermal energy 6,92 × 1017 calories/year. This defines heating of a kernel and the Earth as a whole. In the valley of the median-Atlantic ridge having numerous volcanos, the lava flow constantly thus warm up waters of Atlantic ocean. It is a fact the warm current Gulf Stream. Thawing of a permafrost and ices of Arctic ocean, of glaciers of Greenland and Antarctica is acknowledgement: the warmth of earth defines character of thawing of glaciers and a permafrost. This is a global warming. The version of the author: the period

Popov, Aleksey

2013-04-01

269

Electron dynamics in inhomogeneous magnetic fields.  

PubMed

This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. PMID:21393794

Nogaret, Alain

2010-06-30

270

Oxide superconductors under magnetic field  

NASA Technical Reports Server (NTRS)

One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

Kitazawa, K.

1990-01-01

271

Oxide superconductors under magnetic field  

NASA Technical Reports Server (NTRS)

One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

Kitazawa, K.

1991-01-01

272

Non-contacting near-field mapping of planar circuits in microwave frequency band  

Microsoft Academic Search

An ultra-wideband near-field mapping system has been setup to scan the electromagnetic (EM) surface field above planar\\/PCB circuits. A semi-rigid coaxial electric probe is employed to measure the electric field up to 18 GHz and an improved CPW loop-type magnetic probe with self-resonance-suppression characteristics is used to measure the magnetic field up to more than 10 GHz. In order to

Chun-Ping Chen; Kohei Sugawara; Keren Li; Hiroshige Nihei; Tetsuo Anada; C. Christopoulos

2008-01-01

273

Equivalent magnetization over the World's Ocean and the World Digital Magnetic Anomaly Map  

NASA Astrophysics Data System (ADS)

As a by-product of our recent work to build a candidate model over the oceans for the second version of the World Digital Magnetic Anomaly Map (WDMAM), we derived global distributions of the equivalent magnetization in oceanic domains. In a first step, we use classic point source forward modeling on a spherical Earth to build a forward model of the marine magnetic anomalies at sea-surface. We estimate magnetization vectors using the age map of the ocean floor, the relative plate motions, the apparent polar wander path for Africa, and a geomagnetic reversal time scale. We assume two possible magnetized source geometry, involving both a 1 km-thick layer bearing a 10 A/m magnetization either on a regular spherical shell with a constant, 5 km-deep, bathymetry (simple geometry) or following the topography of the oceanic basement as defined by the bathymetry and sedimentary thickness (realistic geometry). Adding a present-day geomagnetic field model allows the computation of our initial magnetic anomaly model. In a second step, we adjust this model to the existing marine magnetic anomaly data, in order to make it consistent with these data. To do so, we extract synthetic magnetic along the ship tracks for which real data are available and we compare quantitatively the measured and computed anomalies on 100, 200 or 400 km-long sliding windows (depending the spreading rate). Among the possible comparison criteria, we discard the maximal range - too dependent on local values - and the correlation and coherency - the geographical adjustment between model and data being not accurate enough - to favor the standard deviation around the mean value. The ratio between the standard deviations of data and model on each sliding window represent an estimate of the magnetization ratio causing the anomalies, which we interpolate to adjust the initial magnetic anomaly model to the data and therefore compute a final model to be included in our WDMAM candidate over the oceanic regions lacking data. The above ratio, after division by the magnetization of 10 A/m used in the model, represents an estimate of the equivalent magnetization under the considered magnetized source geometry. The resulting distributions of equivalent magnetization are further discussed in terms of mid-ocean ridges, presence of hotspots and oceanic plateaus, and the age of the oceanic lithosphere. Global marine magnetic data sets and models represent a useful tool to assess first order magnetic properties of the oceanic lithosphere.

Dyment, Jerome; Choi, Yujin; Hamoudi, Mohamed; Thébault, Erwan; Quesnel, Yoann; Roest, Walter; Lesur, Vincent

2014-05-01

274

Dynamics of Magnetic Bubbles in Acoustic and Magnetic Fields  

Microsoft Academic Search

We report on shelled bubbles that can be manipulated with magnetic fields. The magnetic shell consists of self-assembled magnetic nanoparticles. The magnetic susceptibility of the bubbles is proportional to the surface area, chib=(9±3×10-6m)r2 where r is the radius. Magnetic bubbles are compressible in moderate acoustic fields. A bubble with a radius of 121mum oscillates in resonance in a sound field

Xue Zhao; Pedro A. Quinto-Su; Claus-Dieter Ohl

2009-01-01

275

Diagnostics of vector magnetic fields  

NASA Technical Reports Server (NTRS)

It is shown that the vector magnetic fields derived from observations with a filter magnetograph will be severely distorted if the spatially unresolved magnetic structure is not properly accounted for. Thus the apparent vector field will appear much more horizontal than it really is, but this distortion is strongly dependent on the area factor and the temperature line weakenings. As the available fluxtube models are not sufficiently well determined, it is not possible to correct the filter magnetograph observations for these effects in a reliable way, although a crude correction is of course much better than no correction at all. The solution to this diagnostic problem is to observe simultaneously in suitable combinations of spectral lines, and/or use Stokes line profiles recorded with very high spectral resolution. The diagnostic power of using a Fourier transform spectrometer for polarimetry is shown and some results from I and V spectra are illustrated. The line asymmetries caused by mass motions inside the fluxtubes adds an extra complication to the diagnostic problem, in particular as there are indications that the motions are nonstationary in nature. The temperature structure appears to be a function of fluxtube diameter, as a clear difference between plage and network fluxtubes was revealed. The divergence of the magnetic field with height plays an essential role in the explanation of the Stokes V asymmetries (in combination with the mass motions). A self consistent treatment of the subarcsec field geometry may be required to allow an accurate derivation of the spatially averaged vector magnetic field from spectrally resolved data.

Stenflo, J. O.

1985-01-01

276

Explaining Mercury's peculiar magnetic field  

NASA Astrophysics Data System (ADS)

MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken and we explore two scenarios. Increasing the heat flux through the northern hemisphere of the core-mantle boundary is an obvious choice but is not supported by current models for Mercury's mantle. We find that a combination of internal rather than bottom driving and an increased heat flux through the equatorial region of the core-mantle boundary also promotes the required symmetry breaking and results in very Mercury like fields. The reason is that the imposed heat flux pattern, though being equatorially symmetric, lowers the critical Rayleigh number for the onset of equatorially anti-symmetric convection modes. In both scenarios, a stably stratified layer or a feedback coupling to the magnetospheric field is required for lowering the field strength to Mercury-like values.

Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.

2014-05-01

277

Magnetic domain structure in thin film under alternate magnetic field  

Microsoft Academic Search

Magnetic domain structures in a garnet thin film under alternate magnetic fields have been investigated. In alternate magnetic fields, a labyrinth structure approaches a parallel-stripe structure. The competition among the segment clusters, in which stripes have different directions, causes stable dynamical domain structures. With the increase of the amplitude of alternate fields, the segment clusters become small.

M. Mino; H. Yamazaki

2004-01-01

278

Magnetic domain structure in thin film under alternate magnetic field  

NASA Astrophysics Data System (ADS)

Magnetic domain structures in a garnet thin film under alternate magnetic fields have been investigated. In alternate magnetic fields, a labyrinth structure approaches a parallel-stripe structure. The competition among the segment clusters, in which stripes have different directions, causes stable dynamical domain structures. With the increase of the amplitude of alternate fields, the segment clusters become small.

Mino, M.; Yamazaki, H.

279

Magnetic domain structure in thin film under alternate magnetic field  

NASA Astrophysics Data System (ADS)

Magnetic domain structures in a garnet thin film under alternate magnetic fields have been investigated. In alternate magnetic fields, a labyrinth structure approaches a parallel-stripe structure. The competition among the segment clusters, in which stripes have different directions, causes stable dynamical domain structures. With the increase of the amplitude of alternate fields, the segment clusters become small.

Mino, M.; Yamazaki, H.

2004-05-01

280

Mapping the stability field of Jupiter Trojans  

NASA Technical Reports Server (NTRS)

Jupiter Trojans are a remnant of outer solar system planetesimals captured into stable or quasistable libration about the 1:1 resonance with the mean motion of Jupiter. The observed swarms of Trojans may provide insight into the original mass of condensed solids in the zone from which the Jovian planets accumulated, provided that the mechanisms of capture can be understood. As the first step toward this understanding, the stability field of Trojans were mapped in the coordinate proper eccentricity, e(sub p), and libration amplitude, D. To accomplish this mapping, the orbits of 100 particles with e(sub p) in the range of 0 to 0.8 and D in the range 0 to 140 deg were numerically integrated. Orbits of the Sun, the four Jovian planets, and the massless particles were integrated as a full N-body system, in a barycentric frame using fourth order symplectic scheme.

Levison, H. F.; Shoemaker, E. M.; Wolfe, R. F.

1991-01-01

281

Quantitative stray field imaging of a magnetic vortex core  

NASA Astrophysics Data System (ADS)

Thin-film ferromagnetic disks present a vortex spin structure whose dynamics, added to the small size (?10 nm) of their core, has earned them intensive study. Here we use a scanning nitrogen-vacancy (NV) center microscope to quantitatively map the stray magnetic field above a 1-?m-diameter disk of permalloy, unambiguously revealing the vortex core. Analysis of both probe-to-sample distance and tip motion effects through stroboscopic measurements allows us to compare directly our quantitative images to micromagnetic simulations of an ideal structure. Slight perturbations with respect to the perfect vortex structure are clearly detected either due to an applied in-plane magnetic field or imperfections of the magnetic structures. This work demonstrates the potential of scanning NV microscopy to map tiny stray field variations from nanostructures, providing a nanoscale, nonperturbative detection of their magnetic texture.

Tetienne, J.-P.; Hingant, T.; Rondin, L.; Rohart, S.; Thiaville, A.; Roch, J.-F.; Jacques, V.

2013-12-01

282

Comparing Magnetic Fields on Earth and Mars  

NASA Video Gallery

This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

283

Measurements of Solar Vector Magnetic Fields  

NASA Technical Reports Server (NTRS)

Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

Hagyard, M. J. (editor)

1985-01-01

284

Anisotropic Magnetism in Field-Structured Composites  

SciTech Connect

Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

1999-06-24

285

Magnetic mapping of (carbonated) oceanic crust-mantle boundary: New insights from Linnajavri, northern Norway  

NASA Astrophysics Data System (ADS)

The contribution of lower oceanic crust and upper mantle to marine magnetic anomalies has long been recognized, but the detailed magnetic character of this non-volcanic source layer remains to be fully defined. Here, we report preliminary results of a magnetic survey and source characterization of a "carbonated" oceanic Moho (petrological "Mohorovicic discontinuity") sequence observed at the Linnajavri Serpentinite Complex (LSC), northern Norway. The LSC is located at 67° 36'N and 16° 24'E within the upper Allochthon of the Norwegian Caledonides and represents a dismembered ophiolite. Particularly in the southern ("Ridoalggicohkka") area of the LSC, gabbro, serpentinite and its talc-carbonate (soapstone) and quartz-carbonate (listvenite) altered equivalents are extraordinarily well-exposed [1]. An intact oceanic Moho is exposed here, despite its complex tectonic setting. The small degree of arctic rock weathering (? 2 mm weathering surface) allowed for detailed regional-scale surface magnetic mapping across alteration fronts (serpentinite-soapstone; soapstone-listvenite) and lithological contacts (soapstone-gabbro). Magnetic mapping was conducted using a handheld 3-axis magnetometer, surface-towed resistivity meter and Teka surface magnetic susceptometer with sample spacing of 1 m. Geophysical field mapping was combined with petrological observations and scanning SQUID microscopy (SM) mapping conducted on thin sections from rock samples that were drilled along the survey lines. Regional scale magnetic mapping indicates that the total magnetic field across both the "carbonated" Moho and the soapstone-serpentinite interfaces show higher frequency changes in their magnetic anomaly character and amplitudes than the surface-towed resistivity data. SQUID microscopy mapping of both natural remanence magnetization (NRM) and anhysteretic remanence magnetization (ARM) on gabbro, serpentinite, soapstone, and listvenite samples, with a sensor-sample separation of ?190 ?m, show that the distribution of microscopically measurable ferromagnetic and possibly sulfide minerals produces a different bulk intensity for each of the rock types. SM vector magnetic field maps of these samples also reveal that the magnetization associated with these grains (observed as dipole-like fields in SM maps) is variable in direction from grain to grain, which may result from different alteration histories for each grain. These complex magnetization patterns acquired through thermal and chemical alteration history may explain the short wavelength magnetic anomalies observed along our traverse lines. [1] Beinlich, A., Plümper, O., Hövelmann, J., Austrheim, H. and Jamtveit, B. (2012), Terra Nova, in press.

Tominaga, M.; Beinlich, A.; Tivey, M.; Andrade Lima, E.; Weiss, B. P.

2012-12-01

286

Mapping Geomagnetic Field Variations With Unmanned Airborne Vehicles  

NASA Astrophysics Data System (ADS)

Unmanned airborne vehicles (UAVs) are increasingly being used for a variety of commercial and research applications. The small (wingspan ~3 meters), fully autonomous aircraft are well suited for use in remote areas or dangerous settings. UAVs that are launched and recovered on land are being used for atmospheric chemistry and surface imaging studies and for aeromagnetic surveys [Curry et al., 2004; Ramanathan et al., 2007; Funaki et al., 2007]. We report here on the first deployment of UAVs launched from a marine research vessel. The UAVs mapped fluctuations in the magnetic field in a remote area of the southwestern Pacific Ocean.

Gee, Jeffrey S.; Cande, Steven C.; Kent, Dennis V.; Partner, Richard; Heckman, Kate

2008-05-01

287

Magnetic order of UPt3 in high magnetic fields  

NASA Astrophysics Data System (ADS)

The weak magnetic order of the heavy-fermion superconductor UPt3 has been investigated by elastic neutron-scattering measurements in magnetic fields up to 12 T along the a and c axes of the hexagonal crystal structure. The small antiferromagnetically ordered moment of 0.02?B/(U atom) shows only a weak dependence on the applied magnetic field and no sign of a domain repopulation for B?a. In high magnetic fields an increase in the magnetic correlation length is observed for magnetic fields along the c axis.

van Dijk, N. H.; Fåk, B.; Regnault, L. P.; Huxley, A.; Fernández-Díaz, M.-T.

1998-08-01

288

Mapping and Modeling of Major Martian Magnetic Anomalies  

NASA Astrophysics Data System (ADS)

As summarized recently by Connerney et al. (GRL, v. 28, p. 4015, 2001), the Mars Global Surveyor magnetometer experiment has obtained nearly uniform global measurements of the Martian crustal magnetic field at mapping orbit altitudes (370 - 438 km) since March 1999. In this paper, we report mapping of these data and modeling of selected magnetic anomalies using methods introduced earlier by Hood and Zakharian (J. Geophys. Res., v. 206, p. 14601, 2001). Major goals are to estimate lower limits on bulk intensities of magnetization, approximate bulk directions of magnetization, and corresponding paleomagnetic pole positions for relatively isolated anomaly sources. A single, relatively isolated, anomaly located at 14oS, 166oW (194oE) was selected for detailed modeling. This anomaly has a total field magnitude at 383 km altitude of 240 nT and is therefore one of the strongest on Mars. As a source model, we assume a uniformly magnetized circular plate located at the martian surface with an unknown thickness and radius. Results show that the surface plate required to produce these fields has a radius of 390 +/- 60 km and a dipole moment per unit area of 1.9 +/- 0.5 x 105 Amperes (19000 +/- 5000 G-cm). The inferred bulk magnetization vector has direction angles of ? =25o+/- 15o, ? =270o+/- 30o, where ? is the angle between the local radial direction and the moment vector and ? is the azimuth of the surface projection of the moment vector measured counterclockwise (looking down) about the radius vector from the local eastward direction. The corresponding north paleomagnetic pole (calculated following Hood and Zakharian) is centered on 28o +/- 10oN, 200o +/- 30o E longitude (160o +/- 30o W longitude). For comparison, we have previously modeled two anomalies in the northern polar region (ref. 2) with south paleomagnetic poles centered at 38oN, 141oW and at 61oN, 136oW, respectively. Thus, the north paleomagnetic pole position estimated for the anomaly studied here is in the same region as the south paleomagnetic poles estimated earlier for the two anomalies studied by Hood and Zakharian.

Richmond, N.; Hood, L. L.

2002-05-01

289

Crustal Magnetic Fields of Terrestrial Planets  

Microsoft Academic Search

Magnetic field measurements are very valuable, as they provide constraints on the interior of the telluric planets and Moon.\\u000a The Earth possesses a planetary scale magnetic field, generated in the conductive and convective outer core. This global magnetic\\u000a field is superimposed on the magnetic field generated by the rocks of the crust, of induced (i.e. aligned on the current main

Benoit Langlais; Vincent Lesur; Michael E. Purucker; Jack E. P. Connerney; Mioara Mandea

2010-01-01

290

Magnetic holes in the solar wind. [(interplanetary magnetic fields)  

NASA Technical Reports Server (NTRS)

An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

1976-01-01

291

Modal symmetries at the nanoscale: a route toward a complete vectorial near-field mapping.  

PubMed

We use symmetry considerations to understand and unravel near-field measurements, ultimately showing that we can spatially map three distinct fields using only two detectors. As an example, we create 2D field maps of the out-of-plane magnetic field and two in-plane fields for a silicon ridge waveguide. Furthermore, we are able to identify and remove polarization mixing of less than 1/30 of our experimental signals. Since symmetries are prevalent in nanophotonic structures and their near-fields, our method can have an impact on many future near-field measurements. PMID:24784107

le Feber, Boris; Rotenberg, Nir; van Oosten, Dries; Kuipers, L

2014-05-01

292

Digital Technology for Geological Field Mapping  

NASA Astrophysics Data System (ADS)

The amount of time that students and professionals spend in the field has reduced over the past 25 years (Gibbs, 2012). Recent advances in technology are changing the way students and professionals are able to conduct geological field study. Applications such as Midland Valley Exploration's FieldMove Clino now allow the geologist to use their smartphone as a fast, georeferenced measuring device compared with a traditional compass-clinometer. Although we support the view that an understanding of field mapping and model building, taught at university level, is essential to give the geologist the ability to think in three and four dimensions, new technologies that automate the ability to digitise and visualise data in the field lead to a better appreciation of the geometry, scale, and evolution of geological structures and trapping mechanisms that will be encountered during a career in industry. The majority of future industry professionals own a smartphone or tablet device: A recent study found that four-fifths of new students own a smartphone and one-fifth own a tablet device (UCAS Media, 2013). This figure is increasing with each new intake of geoscience students. With the increased availability and affordability of smartphone and tablet devices, new techniques are being examined for digital data collection in the field. If the trend continues that geoscience students are likely to spend less time in the field than their predecessors, then the time available must be spent as effectively as possible. Digital devices allow students and professionals alike to optimise the time spent in the field, allowing more time to think about geological relationships, and highlighting areas of uncertainty that can be studied further. This poster will examine the use of new digital smartphone and tablet devices for the collection of geological field data.

Rourke, Peter; Smith, Stuart; Vaughan, Alan; Ellis, Jenny

2014-05-01

293

Gravity and magnetic maps of the Santa Maria province, California  

Microsoft Academic Search

In this paper the authors display an isostatic residual gravity map, contour interval 5 mGal, and an aeromagnetic map, which is a mosaic of existing data . Two computer-derived maps, also at a scale of 1:250,000 display the locations of the steepest gravity gradients and of the steepest gradients on the pseudogravity transform of the magnetic map. These gradients indicate

A. Griscom; P. E. Sauer

1991-01-01

294

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA’s Living Planet Programme. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The Mission shall deliver data that allow access to new insights into the Earth system by improving our understanding of the Earth’s interior and near-Earth electro-magnetic environment. After release from a single launcher, a side-by-side flying slowly decaying lower pair of satellites will be released at an initial altitude of about 490 km together with a third satellite that will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations that are required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission aims to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the development phase, will be addressed. The mission is scheduled for launch in 2012.

Haagmans, R.; Menard, Y.; Floberghagen, R.; Plank, G.; Drinkwater, M. R.

2010-12-01

295

Magnetic field sensors using GMR multilayer  

Microsoft Academic Search

Wheatstone bridge magnetic field sensors using giant magnetoresistive ratio (GMR) multilayers were designed, fabricated, and evaluated. The GMR ranged from 10% to 20% with saturation fields of 60 Oe to 300 Oe. The multilater resistances decreased linearly with magnetic field and showed little hysteresis. In one sensor configuration, a permanent magnet bias was placed between two pairs of magnetoresistors, each

J. Daughton; J. Brown; E. Chen; R. Beech; A. Pohm; W. Kude

1994-01-01

296

The measurement of solar magnetic fields  

Microsoft Academic Search

Methods for studying solar magnetic fields are examined, taking into account Zeeman and Hanle effects, radio observations, the influence of magnetic fields in solar structures, theoretical extrapolations of photospheric measurements, in situ measurements in the solar-wind region, and meteorite records of the primordial solar magnetic field. Instrumental techniques for optical polarization measurements are considered and an interpretation of optical polarization

J. O. Stenflo

1978-01-01

297

MR imaging at high magnetic fields  

Microsoft Academic Search

Recently, more investigators have been applying higher magnetic field strengths (3–4 Tesla) in research and clinical settings. Higher magnetic field strength is expected to afford higher spatial resolution and\\/or a decrease in the length of total scan time due to its higher signal intensity. Besides MR signal intensity, however, there are several factors which are magnetic field dependent, thus the

Masaya Takahashi; Hidemasa Uematsu; Hiroto Hatabu

2003-01-01

298

Magnetic field navigation in an indoor environment  

Microsoft Academic Search

This paper describes a method that has been developed to aid an inertial navigation system when GNSS signals are not available, by taking advantage of the uniqueness of magnetic field variations. Most indoor environments have many different features (ferrous structural materials or contents, electrical currents, etc.) which perturb the Earths natural magnetic field. The variations in the magnetic field in

William Storms; Jeremiah Shockley; John Raquet

2010-01-01

299

PLASMA CONFINEMENT USING ROTATING MAGNETIC FIELDS  

Microsoft Academic Search

An investigation was made of the current distribution set up by a ; magnetic field rotating about the axis of a cylindrical plasma. If the plasma ; resistivity was sufficiently small electrons rotated with the magnetic field ; producing a steady azimuthal current. In conjunction with an externally applied ; axial magnetic field such a system can be used to

H. Blevin; P. C. Thonemann

1961-01-01

300

Magnetic field quality analysis using ANSYS.  

National Technical Information Service (NTIS)

The design of superconducting magnets for particles accelerators requires a high quality of the magnetic field. This paper presents an ANSYS 4.4A Post 1 macro that computes the field quality performing a Fourier analysis of the magnetic field. The results...

D. Dell'Orco Y. Chen

1991-01-01

301

Magnetic field effect for cellulose nanofiber alignment  

Microsoft Academic Search

Regenerated cellulose formed into cellulose nanofibers under strong magnetic field and aligned perpendicularly to the magnetic field. Well-aligned microfibrils were found as the exposure time of the magnetic field increased. Better alignment and more crystalline structure of the cellulose resulted in the increased decomposition temperature of the material. X-ray crystallograms showed that crystallinity index of the cellulose increased as the

Jaehwan Kim; Yi Chen; Kwang-Sun Kang; Young-Bin Park; Mark Schwartz

2008-01-01

302

An ancient lunar magnetic dipole field  

Microsoft Academic Search

Theories giving the source of the previously hypothesized ancient strong lunar magnetic field and reasons for its disappearance are presented. It is suggested that since it was demonstrated that the moon possessed a small iron core, a dynamo process within this core may have accounted for the field. The disappearance of this magnetizing field can be explained; either the magnetic

S. K. Runcorn

1975-01-01

303

Magnetic-field-dependent excitation transfer in quantum wells of diluted magnetic semiconductor  

NASA Astrophysics Data System (ADS)

We studied the excitation transfer in double quantum wells of a diluted magnetic semiconductor using a scanning near-field optical microscope at 7 K in external magnetic fields up to 9 T. In each quantum well, local energy minima are generated by local fluctuation of layer thickness and doping concentration of magnetic components. Excitons relax into the local energy minima and transfer between the minima via near-field optical interactions even across quantum wells toward stable sites at which to localize. We measured the intensity maps of near-field photoluminescence with spatial resolution estimated to be 30 nm under varying external magnetic fields. The measurement position reproducibility was confirmed by scanning tunneling microscope images. Analysis of the maps derived the magnetic-field dependence of the typical size of exciton-localization sites for each quantum well. Based on these results, we investigated the excitation transfer between the two quantum wells lying in different layers of the double quantum well system, and showed that the exciton transfer takes place at the two specific applied magnetic-field intensities that result in the crossing of Zeeman-split energy levels of the two different wells. We concluded that both the localization and the inter-quantum-well transfer of excitons are able to be controlled by an external magnetic field. This provides the basis for functional devices operating without any wiring.

Uchiyama, K.; Kubota, S.; Matsumoto, T.; Kobayashi, K.; Hori, H.

2014-04-01

304

Magnetic field gradient measurement on magnetic cards using magnetic force microscopy  

NASA Astrophysics Data System (ADS)

The magnetic field gradients of magnetic stripe cards, which are developed for classifying magnetic particles used in magnetic particle inspections, have been measured using a magnetic force microscope (MFM). The magnetic force exerted on a MFM probe by the stray field emanating from the card was measured to determine the field gradients. The results are in good agreement with the field gradients estimated from the magnetizing field strengths used in the encoding process. .

Lo, C. C. H.; Leib, J.; Jiles, D. C.; Chedister, W. C.

2002-05-01

305

Magnetic field topology of the RS CVn star II Pegasi  

NASA Astrophysics Data System (ADS)

Context. The dynamo processes in cool active stars generate complex magnetic fields responsible for prominent surface stellar activity and variability at different time scales. For a small number of cool stars magnetic field topologies were reconstructed from the time series of spectropolarimetric observations using the Zeeman Doppler imaging (ZDI) method, often yielding surprising and controversial results. Aims: In this study we follow a long-term evolution of the magnetic field topology of the RS CVn binary star II Peg using a more self-consistent and physically more meaningful modelling approach compared to previous ZDI studies. Methods: We collected high-resolution circular polarisation observations of II Peg using the SOFIN spectropolarimeter at the Nordic Optical Telescope. These data cover 12 epochs spread over 7 years, comprising one of the most comprehensive spectropolarimetric data sets acquired for a cool active star. A multi-line diagnostic technique in combination with a new ZDI code is applied to interpret these observations. Results: We have succeeded in detecting clear magnetic field signatures in average Stokes V profiles for all 12 data sets. These profiles typically have complex shapes and amplitudes of ~10-3 of the unpolarised continuum, corresponding to mean longitudinal fields of 50-100 G. Magnetic inversions using these data reveals evolving magnetic fields with typical local strengths of 0.5-1.0 kG and complex topologies. Despite using a self-consistent magnetic and temperature mapping technique, we do not find a clear correlation between magnetic and temperature features in the ZDI maps. Neither do we confirm the presence of persistent azimuthal field rings found in other RS CVn stars. Reconstruction of the magnetic field topology of II Peg reveals significant evolution of both the surface magnetic field structure and the extended magnetospheric field geometry on the time scale covered by our observations. From 2004 to 2010 the total field energy drastically declined and the field became less axisymmetric. This also coincided with the transition from predominantly poloidal to mainly toroidal field topology. Conclusions: A qualitative comparison of the ZDI maps of II Peg with the prediction of dynamo theory suggests that the magnetic field in this star is produced mainly by the turbulent ?2 dynamo rather than the solar ?? dynamo. Our results do not show a clear active longitude system, nor is there evidence of the presence of an azimuthal dynamo wave. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, at the Spanish Observatorio del Roque de los Muchachos of the Instituto Astrofisica de Canarias.

Kochukhov, O.; Mantere, M. J.; Hackman, T.; Ilyin, I.

2013-02-01

306

Magnetic field gradient measurement on magnetic cards using magnetic force microscopy  

Microsoft Academic Search

The magnetic field gradients of magnetic stripe cards, which are developed for classifying magnetic particles used in magnetic particle inspections, have been measured using a magnetic force microscope (MFM). The magnetic force exerted on a MFM probe by the stray field emanating from the card was measured to determine the field gradients. The results are in good agreement with the

C. C. H. Lo; J. Leib; D. C. Jiles; W. C. Chedister

2002-01-01

307

Magnetic Mapping of Geosynchronous Orbit to the Ionosphere  

NASA Astrophysics Data System (ADS)

A previously compiled database of magnetic conjunctions between geosynchronous satellites and low-altitude, polar-orbiting DMSP satellites is compared with the predictions of the most recently available Tsyganenko model of the geomagnetic field. The conjunctions were identified on the basis of the spectral match between the plasma-sheet electron distributions observed at low altitudes and those observed simultaneously at geosynchronous altitudes [Weiss et al., J. Geophys. Res., 100, 4911, 1997.]. The input parameters of the latest Tsyganenko model include the Dst-index, the instantaneous solar wind conditions (speed, density, and IMF components), and the time history of those conditions during the preceding 1-hour interval. (See http://www-istp.gsfc.nasa.gov/Modeling/group.html). The conjunctions identified by Weiss et al. showed that the magnetic connectivity between geosynchronous orbit and the auroral ionosphere is highly dynamic and spans a wide range of possible latitudes. We compare the connectivity predicted by the latest Tsyganenko model with the observed satellite conjunctions and with the mapping predicted using previous magnetic field models.

Weiss, L. A.; Reeves, G. D.; Henderson, M. G.; Thomsen, M. F.

2001-12-01

308

Force-free coronal magnetic field modeling using vector fields from Hinode and SDO  

NASA Astrophysics Data System (ADS)

Given the lack of routine direct measurements of the magnetic field in the solar corona, force-free reconstruction methods are a promising tool for the diagnostics of the magnetic structure there. Routine photospheric magnetic field measurements which monitor the temporal evolution of an active region and contain information on the non-potentiality of the field above are used as an input. Based on the assumption that magnetic forces dominate the solar atmosphere, these models allow estimates of the total and free magnetic energy content and the structure of the magnetic field above active regions. The outcome of force-free field modeling strongly depends on the vector magnetic field data used as boundary condition. We compare the model results based on simultaneously observed vector maps from the Helioseismic and Magnetic Imager (HMI) on board Solar Dynamics Observatory and from the Solar Optical Telescope Spectropolarimeter (SP) on board Hinode. We find substantial differences in the absolute estimates of the magnetic field energy but very similar relative estimates, e.g., the fraction of energy to be set free during an eruption or the fraction of flux linking distinct areas within an active region. Our study reveals that only relative estimates of coronal physical quantities from force-free models might be save and conclusions about the magnetic field topology might be drawn with caution.

Thalmann, Julia K.; Tiwari, Sanjiv K.; Wiegelmann, Thomas

2013-04-01

309

Interplanetary magnetic field data book  

NASA Technical Reports Server (NTRS)

An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

King, J. H.

1975-01-01

310

The Giotto magnetic field investigation  

NASA Technical Reports Server (NTRS)

The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.

Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.

1983-01-01

311

On transport barriers in a nontwist map model of a reversed magnetic shear tokamak with ergodic magnetic limiter  

NASA Astrophysics Data System (ADS)

Recently, the magnetic field line structure of reversed magnetic shear tokamaks has been modeled by an area preserving nontwist map that includes non-integrable perturbations describing ergodic magnetic limiters.[1] An expansion around the equilibrium shearless curve (corresponding to the main transport barrier in the model) showed that the map is locally equivalent to the standard nontwist map with an additional perturbation due to the limiter.[2] We investigate the effect of this perturbation on the resilience of transport barriers and separatrix reconnection scenarios that have been studied extensively in the case of the standard nontwist map.[1] K. Ullmann and I.L. Caldas, Chaos, Solitons and Fractals, 11, 2129 (2000)[2] J.S.E. Portala, I.L. Caldas, R.L. Viana, and P.J. Morrison, preprint (2005).

Wurm, Alexander; Fuchss, Kathrin; Morrison, P. J.

2006-04-01

312

Magnetospheric convection in the nondipolar magnetic field of Uranus  

NASA Technical Reports Server (NTRS)

A method for determining the magnetospheric convection electric field, using simple analytic approximations under the assumption of uniform ionospheric conductivity, is described and applied to Uranus. Magnetic field models including quadrupole and octupole moments are used to determine the shape of the polar caps and the mapping of the electric field and parallel currents between ionosphere and magnetosphere. The model predictions are compared with plasma data taken by Voyager 2 in the inner Uranian magnetosphere.

Selesnick, Richard S.

1988-01-01

313

Graphene in high magnetic fields  

NASA Astrophysics Data System (ADS)

Carbon-based nano-materials, such as graphene and carbon nanotubes, represent a fascinating research area aiming at exploring their remarkable physical and electronic properties. These materials not only constitute a playground for physicists, they are also very promising for practical applications and are envisioned as elementary bricks of the future of the nano-electronics. As for graphene, its potential already lies in the domain of opto-electronics where its unique electronic and optical properties can be fully exploited. Indeed, recent technological advances have demonstrated its effectiveness in the fabrication of solar cells and ultra-fast lasers, as well as touch-screens and sensitive photo-detectors. Although the photo-voltaic technology is now dominated by silicon-based devices, the use of graphene could very well provide higher efficiency. However, before the applied research to take place, one must first demonstrates the operativeness of carbon-based nano-materials, and this is where the fundamental research comes into play. In this context, the use of magnetic field has been proven extremely useful for addressing their fundamental properties as it provides an external and adjustable parameter which drastically modifies their electronic band structure. In order to induce some significant changes, very high magnetic fields are required and can be provided using both DC and pulsed technology, depending of the experimental constraints. In this article, we review some of the challenging experiments on single nano-objects performed in high magnetic and low temperature. We shall mainly focus on the high-field magneto-optical and magneto-transport experiments which provided comprehensive understanding of the peculiar Landau level quantization of the Dirac-type charge carriers in graphene and thin graphite.

Orlita, Milan; Escoffier, Walter; Plochocka, Paulina; Raquet, Bertrand; Zeitler, Uli

2013-01-01

314

Suppression of magnetic relaxation by a transverse alternating magnetic field  

SciTech Connect

The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.

Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. [All-Russia Electrical Engineering Institute (Russian Federation)], E-mail: fisher@vei.ru; Yampol'skii, V. A. [National Academy of Sciences of Ukraine, Institute of Radiophysics and Electronics (Ukraine)], E-mail: yam@vk.kharkov.ua

2007-07-15

315

Magnetic field sources and their threat to magnetic media  

NASA Technical Reports Server (NTRS)

Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

Jewell, Steve

1993-01-01

316

Magnetic nanostructures as amplifiers of transverse fields in magnetic resonance.  

PubMed

We introduce the concept of amplifying the transverse magnetic fields produced and/or detected with inductive coils in magnetic resonance settings by using the reversible transverse susceptibility properties of magnetic nanostructures. First, we describe the theoretical formalism of magnetic flux amplification through the coil in the presence of a large perpendicular DC magnetic field (typical of magnetic resonance systems) achieved through the singularity in the reversible transverse susceptibility in anisotropic single domain magnetic nanoparticles. We experimentally demonstrate the concept of transverse magnetic flux amplification in an inductive coil system using oriented nanoparticles with uni-axial magnetic anisotropy. We also propose a composite ferromagnetic/anti-ferromagnetic core/shell nanostructure system with uni-directional magnetic anisotropy that, in principle, provides maximal transverse magnetic flux amplification. PMID:16039099

Barbic, Mladen; Scherer, Axel

2005-09-01

317

Thinned fiber Bragg grating magnetic field sensor with magnetic fluid  

Microsoft Academic Search

The refractive index of magnetic fluid may be changed by external magnetic field. Therefore, through measuring its refractive index, the intensity of the magnetic field can be obtained. Fiber Bragg grating (FBG) is sensitive to the refractive index surrounding its cladding when the diameter of cladding is reduced to a certain degree. In order to prove the sensitivity of the

Ciming Zhou; Li Ding; Dongli Wang; Yaqi Kuang; Desheng Jiang

2011-01-01

318

ALIGNMENT BETWEEN FLATTENED PROTOSTELLAR INFALL ENVELOPES AND AMBIENT MAGNETIC FIELDS  

SciTech Connect

We present 350 {mu}m polarization observations of four low-mass cores containing Class 0 protostars: L483, L1157, L1448-IRS2, and Serp-FIR1. This is the second paper in a larger survey aimed at testing magnetically regulated models for core-collapse. One key prediction of these models is that the mean magnetic field in a core should be aligned with the symmetry axis (minor axis) of the flattened young stellar object inner envelope (aka pseudodisk). Furthermore, the field should exhibit a pinched or hourglass-shaped morphology as gravity drags the field inward toward the central protostar. We combine our results for the four cores with results for three similar cores that were published in the first paper from our survey. An analysis of the 350 {mu}m polarization data for the seven cores yields evidence of a positive correlation between mean field direction and pseudodisk symmetry axis. Our rough estimate for the probability of obtaining by pure chance a correlation as strong as the one we found is about 5%. In addition, we combine together data for multiple cores to create a source-averaged magnetic field map having improved signal-to-noise ratio, and this map shows good agreement between mean field direction and pseudodisk axis (they are within 15 Degree-Sign ). We also see hints of a magnetic pinch in the source-averaged map. We conclude that core-scale magnetic fields appear to be strong enough to guide gas infall, as predicted by the magnetically regulated models. Finally, we find evidence of a positive correlation between core magnetic field direction and bipolar outflow axis.

Chapman, Nicholas L.; Matthews, Tristan G.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Davidson, Jacqueline A. [School of Physics, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Goldsmith, Paul F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 264-782, Pasadena, CA 91109 (United States); Houde, Martin [Department of Physics and Astronomy, University of Western Ontario, London, ON (Canada); Kwon, Woojin; Looney, Leslie W. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Li Zhiyun [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Matthews, Brenda [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Peng Ruisheng [Caltech Submillimeter Observatory, 111 Nowelo Street, Hilo, HI 96720 (United States); Vaillancourt, John E. [SOFIA Science Center, Universities Space Research Association, NASA Ames Research Center, MS 232-11, Moffett Field, CA 94035-0001 (United States); Volgenau, Nikolaus H. [California Institute of Technology, Owens Valley Radio Observatory, Big Pine, CA 93513 (United States)

2013-06-20

319

Saturn's planetary magnetic field as observed by Cassini Saturn's planetary magnetic field as observed by Cassini  

NASA Astrophysics Data System (ADS)

In the 18 months since Saturn Orbit Insertion (SOI) in July 2004, Cassini has flown within 10 Rs of the planet on numerous occassions. These passes occurred at different distances and local times, and within a +/- 20 degrees range in latitude, allowing a good three-dimensional mapping of the magnetic field in the inner magnetosphere to be carried out. We report on our cumulative analysis of all of the available data and in particular of the vector data from the Fluxgate magnetometer. This analysis provides the first few harmonics of the internal field, and allows disentangling of the planetary magnetic field from that due to external sources. We compare the internal field model with past models based on flyby data. In addition, the current disk, the most important external contribution close to the planet, can be studied and its time evolution monitored. We also look for periodic terms in the magnetic field components, particularly relevant for their role in determining the rotation rate of the planet.

Giampieri, G.; Dougherty, M. K.; Smith, E. J.; Russell, C. T.

2005-12-01

320

FREQUENCY FILTERING OF TORSIONAL ALFVEN WAVES BY CHROMOSPHERIC MAGNETIC FIELD  

SciTech Connect

In this Letter, we demonstrate how the observation of broadband frequency propagating torsional Alfven waves in chromospheric magnetic flux tubes can provide valuable insight into their magnetic field structure. By implementing a full nonlinear three-dimensional magnetohydrodynamic numerical simulation with a realistic vortex driver, we demonstrate how the plasma structure of chromospheric magnetic flux tubes can act as a spatially dependent frequency filter for torsional Alfven waves. Importantly, for solar magnetoseismology applications, this frequency filtering is found to be strongly dependent on magnetic field structure. With reference to an observational case study of propagating torsional Alfven waves using spectroscopic data from the Swedish Solar Telescope, we demonstrate how the observed two-dimensional spatial distribution of maximum power Fourier frequency shows a strong correlation with our forward model. This opens the possibility of beginning an era of chromospheric magnetoseismology, to complement the more traditional methods of mapping the magnetic field structure of the solar chromosphere.

Fedun, V.; Erdelyi, R. [School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom); Verth, G. [School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast University Road, Belfast BT7 1NN (United Kingdom)

2011-10-20

321

Magnetic field in a turbulent galactic disk  

Microsoft Academic Search

A simple kinematic model has been applied to simulate the evolution of the interstellar magnetic field permanently twisted by turbulent gas motions accompanied by effects of the field diffusion. The magnetic field was found to develop well-ordered twisted structures over the whole gas parcel analyzed. This field configuration has a preferred sense of twisting dependent on the helicity of the

Katarzyna Otmianowska-Mazur; Marek Urbanik; Artur Terech

1992-01-01

322

Quantitative model of the magnetospheric magnetic field  

Microsoft Academic Search

Quantitative representations of the magnetic fields associated with the magnetopause currents and the distributed currents (tail and quiet time ring currents) have been developed. These fields are used together with a dipole representation of the main field of the earth to model the total vector magnetospheric magnetic field. The model is based on quiet time data averaged over all 'tilt

W. P. Olson; K. A. Pfitzer

1974-01-01

323

Spin dephasing in a magnetic dipole field.  

PubMed

Transverse relaxation by dephasing in an inhomogeneous field is a general mechanism in physics, for example, in semiconductor physics, muon spectroscopy, or nuclear magnetic resonance. In magnetic resonance imaging the transverse relaxation provides information on the properties of several biological tissues. Since the dipole field is the most important part of the multipole expansion of the local inhomogeneous field, dephasing in a dipole field is highly important in relaxation theory. However, there have been no analytical solutions which describe the dephasing in a magnetic dipole field. In this work we give a complete analytical solution for the dephasing in a magnetic dipole field which is valid over the whole dynamic range. PMID:23004789

Ziener, C H; Kampf, T; Reents, G; Schlemmer, H-P; Bauer, W R

2012-05-01

324

Recent results on magnetic fields in the Milky Way  

Microsoft Academic Search

Of all the methods available to observe magnetic fields in the Milky Way, the mapping of linear polarization at cm wavelengths has proven to be most successful. The instruments that have contributed most of the new data are the 100 m Effelsberg telescope and the Parkes 64 m dish. Their Galactic plane surveys gave us a new conception of the

R. Wielebinski; W. Reich; E. Fürst

2002-01-01

325

Magnetic field effects on microwave absorbing materials  

NASA Technical Reports Server (NTRS)

The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

1991-01-01

326

Ground state alignment as a tracer of interplanetary magnetic field  

NASA Astrophysics Data System (ADS)

We demonstrate a new way of studying interplanetary magnetic field -- spectropolarimetry based on ground state alignment. Ground state alignment is a new promising way of sub-gausian magnetic fields in radiation-dominated environment. The polarization of spectral lines that are pumped by the anisotropic radiation from the sun is influenced by the magnetic alignment, which happens for sub-gausian magnetic field. As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic obser- vation of the Jupiter's Io and comet Halley. A uniform density distribution of Na was considered and polar- ization at each point was then constructed. Both spa- tial and temporal variations of turbulent magnetic field can be traced with this technique as well. Instead of sending thousands of space probes, ground state alignment allows magnetic mapping with any ground telescope facilities equipped with spectrometer and polarimeter. For remote regions like the the boundary of interstellar medium, ground state alignment provides a unique diagnostics of magnetic field, which is crucial for understanding the physical processes such as the IBEX ribbons.

Yan, H.

2012-12-01

327

The Wind Magnetic Field Investigation  

NASA Astrophysics Data System (ADS)

The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and associated electronics. The dual configuration provides redundancy and also permits accurate removal of the dipolar portion of the spacecraft magnetic field. The instrument provides (1) near real-time data at nominally one vector per 92 s as key parameter data for broad dissemination, (2) rapid data at 10.9 vectors s-1 for standard analysis, and (3) occasionally, snapshot (SS) memory data and Fast Fourier Transform data (FFT), both based on 44 vectors s-1. These measurements will be precise (0.025%), accurate, ultra-sensitive (0.008 nT/step quantization), and where the sensor noise level is <0.006 nT r.m.s. for 0 10 Hz. The digital processing unit utilizes a 12-bit microprocessor controlled analogue-to-digital converter. The instrument features a very wide dynamic range of measurement capability, from ±4 nT up to ±65 536 nT per axis in eight discrete ranges. (The upper range permits complete testing in the Earth's field.) In the FTT mode power spectral density elements are transmitted to the ground as fast as once every 23 s (high rate), and 2.7 min of SS memory time series data, triggered automatically by pre-set command, requires typically about 5.1 hours for transmission. Standard data products are expected to be the following vector field averages: 0.0227-s (detail data from SS), 0.092 s (‘detail’ in standard mode), 3 s, 1 min, and 1 hour, in both GSE and GSM coordinates, as well as the FFT spectral elements. As has been our team's tradition, high instrument reliability is obtained by the use of fully redundant systems and extremely conservative designs. We plan studies of the solar wind: (1) as a collisionless plasma laboratory, at all time scales, macro, meso and micro, but concentrating on the kinetic scale, the highest time resolution of the instrument (=0.022 s), (2) as a consequence of solar energy and mass output, (3) as an external source of plasma that can couple mass, momentum, and energy to the Earth's magnetosphere, and (4) as it is modified as a consequence of its imbedded field interacting with the moon. Since the GEOTAIL Inboard Magnetometer (GIM), which is similar to the MFI instrument, was developed by members of our team, we provide a brief discussion of GIM related science objectives, along with MFI related science goals.

Lepping, R. P.; Ac?na, M. H.; Burlaga, L. F.; Farrell, W. M.; Slavin, J. A.; Schatten, K. H.; Mariani, F.; Ness, N. F.; Neubauer, F. M.; Whang, Y. C.; Byrnes, J. B.; Kennon, R. S.; Panetta, P. V.; Scheifele, J.; Worley, E. M.

1995-02-01

328

Interaction of an accelerated FRC in a transverse magnetic field  

NASA Astrophysics Data System (ADS)

The interaction and penetration of an accelerated FRC into a transverse magnetic field is studied for Tokamak refueling purposes. FRC penetration and interaction in the transverse magnetic field chamber is observed using visible light emission arrays, visible light imaging cameras, and several swept thermocouple probes. The FRC density and translation velocity are varied while monitoring the effect on penetration depth, deformation, tilt interaction and plasma deposition. The plasma penetration is observed using axial magnetic probes, while the plasma deformation is recorded with the visible light emission arrays and the swept thermocouple probes. 2 and 3-D magnetic field codes are used for field mapping for probe locations as well as translation and deformation simulations. Simple models are used to examine the effect that plasma deformation has on penetration as compared to the simple 1/2 pU2 = B 2/2?0 model.

Gurevich, Peter Alexi

329

Topological Description of Coronal Magnetic Fields.  

National Technical Information Service (NTIS)

Determining the structure and behavior of solar coronal magnetic fields is a central problem in solar physics. At the photosphere, the field is believed to be strongly localized into discrete flux tubes. After providing a rigorous definition of field topo...

M. A. Berger

1986-01-01

330

Structured electrodeposition in magnetic gradient fields  

NASA Astrophysics Data System (ADS)

Electrodeposition in superimposed magnetic gradient fields is a new and promising method of structuring metal deposits while avoiding masking techniques. The magnetic properties of the ions involved, their concentrations, the electrochemical deposition parameters, and the amplitude of the applied magnetic gradient field determine the structure generated. This structure can be thicker in regions of high magnetic field gradients. It can also be free-standing or inversely structured. The complex mechanism of structured electrodeposition of metallic layers in superimposed magnetic gradient fields was studied by different experimental methods, by analytical methods and by numerical simulation and will be discussed comprehensively.

Uhlemann, Margitta; Tschulik, Kristina; Gebert, Annett; Mutschke, Gerd; Fröhlich, Jochen; Bund, Andreas; Yang, Xuegeng; Eckert, Kerstin

2013-03-01

331

Deformation of Water by a Magnetic Field  

ERIC Educational Resources Information Center

After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

Chen, Zijun; Dahlberg, E. Dan

2011-01-01

332

Anhysteretic Remanent Magnetization in Small Steady Fields  

Microsoft Academic Search

The phenomenon called anhysteretic remanent magnetization, ARM, has been known for a long time, but it has received relatively little attention. A knowledge of this type of magnetization is required in proper application of alternating field demagnetization tech- niques to rock magnetism problems. Over a wide range of low values of the steady field Ho, the ARM intensity is a

Bob J. Patton; John L. Fitch

1962-01-01

333

On Magnetic Field Generation Mechanisms in Astrophysics  

Microsoft Academic Search

Magnetic chemically peculiar stars (CP stars) are characterized by a strong magnetic field, peculiar chemical composition and slow rotation. Since the origin and evolution of CP stars may be responsible for such unusual features, understanding the mechanisms of generation of the magnetic field is one of the ways to learn more about the CP star characteristics. At present there are

O. G. Cherny

2011-01-01

334

Orienting Paramecium with intense static magnetic fields  

Microsoft Academic Search

Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic

James M. Valles Jr.; Karine Guevorkian; Carl Quindel

2004-01-01

335

Baking a magnetic-field display  

NASA Astrophysics Data System (ADS)

Copy machine developer powder is an alternative for creating permanent displays of magnetic fields. A thin layer of developer powder on a sheet of paper placed over a magnet can be baked in the oven, producing a lasting image of a magnetic field.

Cavanaugh, Terence; Cavanaugh, Catherine

1998-02-01

336

The structure of helical interplanetary magnetic fields  

NASA Technical Reports Server (NTRS)

The interplanetary magnetic field is known to be highly helical. Although the detailed spatial structure of the fields has yet to be elucidated, the helicity spectrum has been conjectured to result from a random walk in the direction of a constant magnitude magnetic field vector. A model using three-dimensional fluctuations with variations in B is demonstrated giving a good fit to the helicity spectrum as well as to other properties of the interplanetary magnetic field.

Goldstein, M. L.; Roberts, D. A.; Fitch, C. A.

1991-01-01

337

Rotating magnetic beacons magnetic field strength size in SAGD  

Microsoft Academic Search

Rotation magnetic beacons magnetic field strength is very important to drill parallel horizontal twin wells in steam assisted\\u000a gravity drainage (SAGD). This paper analyzes a small magnet with a diameter of 25.4 mm. At each end, there is a length of\\u000a 12.6 mm with permanent magnet, and in the middle, there is a length of 78mm with magnetic materials. The

Bing Tu; Desheng Li; Enhuai Lin; Bin Luo; Jian He; Lezhi Ye; Jiliang Liu; Yuezhong Wang

2010-01-01

338

Magnetizing technique for permanent magnets by intense static fields generated by HTS bulk magnets: Numerical Analysis  

NASA Astrophysics Data System (ADS)

A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.

N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.

339

Magnetic Fields in the Smith Cloud  

NASA Astrophysics Data System (ADS)

The Smith Cloud is a high velocity cloud (HVC) with a cometary morphology indicating an ongoing interaction with the Galactic interstellar medium. Although it is among the best-studied HVCs and the only large HVC mapped in both H I and Halpha, its origin remains unknown. Most formation scenarios have difficulty explaining its coherence after passage through the Galactic halo, but magnetic fields may help to stabilize HVCs against disruption. We present measurements of Faraday rotation of extragalactic radio sources behind the Smith Cloud derived from the NRAO VLA Sky Survey as well as new Karl G. Jansky Very Large Array observations of Faraday rotation. The data show evidence of Faraday rotation due to the cloud; the Faraday rotation is better correlated with the Halpha emission than with the H I emission.

Hill, Alex S.; Benjamin, R. A.; Mao, S.; McClure-Griffiths, N. M.; Lockman, F. J.; Gaensler, B. M.

2013-01-01

340

Circum-Arctic mapping project: new magnetic anomaly map of the Arctic (to 60 degrees N)  

NASA Astrophysics Data System (ADS)

An international effort to compile Circum-Arctic geophysical and bedrock data has been conducted by several national agencies (Russia-VSEGEI and VNIIO, Sweden-SGU, Finland-GTK, Denmark-GEUS, USA-USGS, Canada-GSC, Germany-BGR and Norway-NGU) since 2005. This project aims to produce an atlas that will comprise geological and geophysical digital maps at a scale of 1: 5 million scale for the Arctic region limited by the 60 degree North latitude. New published and classified magnetic anomaly gridded data from each participant group were gathered and converted to a common datum (WGS84) and format. The Greenland region magnetic anomaly grid (Verhoef et al., 1996) has been updated with new aeromagnetic surveys performed in West Greenland between 1992-2001 (Rasmussen, 2002), and in the Nares Strait area (Damaske & Oakey, 2006; Oakey & Damaske, 2006). The oceanic area east of Greenland (NE Atlantic) contains most of the aeromagnetic data used in the Verhoef et al., (1996)'s compilation (pre-1990) plus new aeromagnetic surveys over offshore Norway collected up to 2007 (Olesen et al., 1997; Olesen et al., 2007; Gernigon et al., 2008). The gridded data has been upward continued to 1 km above ground or sea-level and trimmed around the areas of major overlaps. The Alaska USGS aeromagnetic compilation has been used as the "master grid" for merging the major gridded data sets together and the downward continued lithospheric magnetic field model MF6 derived from satellite data (Maus et al., 2008) has been used as a regional reference surface. We have used a blending function over the area of overlap in order to smooth the transition from one grid to the other (GridKnit, GEOSOFT). The resulting grid has been re-sampled to a 2 km grid cell. In order to construct the final Circum-Arctic magnetic anomaly grid (CAMP-M) we have adopted the approach used by several research groups for compiling the World Digital Magnetic Anomaly Map (WDMAM) and used near-surface magnetic data for the short wavelength component of the compilation and the satellite derived magnetic anomalies for the long wavelength (Hemant et al., 2007; Maus et al., 2007). MF6 extends to spherical harmonics degree 120 (333 km wavelength) and therefore it is able to provide consistent long wavelength information between 300 and 400 km. This information is mainly related to regional deeper and/or thicker portions of the magnetic sources within the crust. We have prepared two versions for the CAMP-M magnetic anomaly grid. The first one combines short wavelength components of regional grids (less than 400 km) with long wavelengths (400 km) of the MF6 model. The second one combines short wavelengths of regional datasets (obtained by filtering with a cosine squared taper to remove the wavelengths in the waveband between 307 and 333 km and larger, with the MF6 model (to degree 120). We have selected Model 1 as the new Circum-Arctic Magnetic Anomaly Map.

Gaina, Carmen

2010-05-01

341

Effects of magnetic fields on mosquitoes.  

PubMed

Phylogenetically diverse organisms, including some insects, are able to detect and respond to magnetic fields comparable to the Earth's magnetic field. Because of their tremendous importance to public health, mosquitoes were tested for the presence of remanent ferromagnetic material indicative of a biological compass and also tested for behavioral responses to magnetic fields. Using a superconducting quantum interferometry device, we found that significant remnant was probably due to attraction of ferromagnetic dust onto the surface of live or dead mosquitoes. Most mosquitoes placed in a 1.0-gauss, uniform magnetic field moved until they were oriented parallel to the field. Two of 3 species of mosquitoes tested took fewer blood meals in a rotating magnetic field than in the Earth's normal magnetic field. PMID:10901636

Strickman, D; Timberlake, B; Estrada-Franco, J; Weissman, M; Fenimore, P W; Novak, R J

2000-06-01

342

PCA-Based Magnetic Field Modeling : Application for On-Line MR Temperature Monitoring  

Microsoft Academic Search

Magnetic Resonance (MR) temperature mapping can be used to monitor temperature changes during minimally invasive thermal therapies.\\u000a However, MR-thermometry contains artefacts caused by phase errors induced by organ motion in inhomogeneous magnetic fields.\\u000a \\u000a This paper proposes a novel correction strategy based on a Principal Component Analysis (PCA) to estimate magnetic field perturbation\\u000a assuming a linear magnetic field variation with organ

Gregory Maclair; Baudouin Denis De Senneville; Mario Ries; Bruno Quesson; Pascal Desbarats; Jenny Benois-pineau; Chrit T. W. Moonen

2007-01-01

343

Boston University Physics Applets: Magnetic Field Demonstration  

NSDL National Science Digital Library

This web page is an interactive physics simulation that explores magnetic fields. The user can add currents coming into or out of a simulated grid, and see the fields created. There is also a selection of pre-created fields, including bar magnets, loops, opposing magnets, and coils in uniform fields. Double-clicking on any point displays the full loop created by the magnetic field. This item is part of a larger collection of introductory physics simulations developed by the author. This is part of a collection of similar simulation-based student activities.

Duffy, Andrew

2008-08-23

344

Magnetic fields in the early Universe  

NASA Astrophysics Data System (ADS)

We give a pedagogical introduction to two aspects of magnetic fields in the early Universe. We first focus on how to formulate electrodynamics in curved space time, defining appropriate magnetic and electric fields and writing Maxwell equations in terms of these fields. We then specialize to the case of magnetohydrodynamics in the expanding Universe. We emphasize the usefulness of tetrads in this context. We then review the generation of magnetic fields during the inflationary era, deriving in detail the predicted magnetic and electric spectra for some models. We discuss potential problems arising from back reaction effects and from the large variation of the coupling constants required for such field generation.

Subramanian, K.

2010-01-01

345

Near-Field Magnetic Dipole Moment Analysis.  

National Technical Information Service (NTIS)

This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective...

P. K. Harris

2003-01-01

346

Bipolar pulse field for magnetic refrigeration  

DOEpatents

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

Lubell, M.S.

1994-10-25

347

MAGNETIC BRAIDING AND PARALLEL ELECTRIC FIELDS  

SciTech Connect

The braiding of the solar coronal magnetic field via photospheric motions-with subsequent relaxation and magnetic reconnection-is one of the most widely debated ideas of solar physics. We readdress the theory in light of developments in three-dimensional magnetic reconnection theory. It is known that the integrated parallel electric field along field lines is the key quantity determining the rate of reconnection, in contrast with the two-dimensional case where the electric field itself is the important quantity. We demonstrate that this difference becomes crucial for sufficiently complex magnetic field structures. A numerical method is used to relax a braided magnetic field toward an ideal force-free equilibrium; the field is found to remain smooth throughout the relaxation, with only large-scale current structures. However, a highly filamentary integrated parallel current structure with extremely short length-scales is found in the field, with the associated gradients intensifying during the relaxation process. An analytical model is developed to show that, in a coronal situation, the length scales associated with the integrated parallel current structures will rapidly decrease with increasing complexity, or degree of braiding, of the magnetic field. Analysis shows the decrease in these length scales will, for any finite resistivity, eventually become inconsistent with the stability of the coronal field. Thus the inevitable consequence of the magnetic braiding process is a loss of equilibrium of the magnetic field, probably via magnetic reconnection events.

Wilmot-Smith, A. L.; Hornig, G.; Pontin, D. I. [Division of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom)], E-mail: antonia@maths.dundee.ac.uk

2009-05-10

348

A laser-pumped magnetometer for the mapping of human cardiomagnetic fields  

Microsoft Academic Search

.   Magnetic fields produced by biological organisms contain valuable information on the underlying physiological processes and\\u000a their pathologies. Currently, superconducting detectors cooled far below room temperature are required to measure these generally\\u000a weak biomagnetic signals. We have developed a sensitive laser magnetometer based on optical pumping of cesium atoms that makes\\u000a it possible to map the magnetic field produced by

G. Bison; R. Wynands; A. Weis

2003-01-01

349

Exploring Magnetic Fields in Your Environment  

NSDL National Science Digital Library

This is a lesson about measuring magnetic field directions of Earth and in the environment. First, learners go outside, far away from buildings, power lines, or anything electrical or metal, and use compasses to identify magnetic North. Next, they use the compasses to probe whether there are any sources of magnetic fields in the local environment, including around electronic equipment such as a CD player and speakers. This is the first lesson in the second session of the Exploring Magnetism teacher guide.

350

Horizontal magnetic fields in the solar photosphere  

Microsoft Academic Search

Two-dimensional simulations of time-dependent solar magnetogranulation are used to analyze the horizontal magnetic fields and the response of the synthesized Stokes profiles of the IR FeI lambda1564.85 nm line to the magnetic fields. The 1.5-h series of MHD models used for the analyses reproduces a region of the magnetic network in the photosphere with an unsigned magnetic flux density of

V. A. Sheminova

2009-01-01

351

Horizontal magnetic fields in the solar photosphere  

Microsoft Academic Search

Two-dimensional simulations of time-dependent solar magnetogranulation are used to analyze the horizontal magnetic fields\\u000a and the response of the synthesized Stokes profiles of the IR FeI ?1564.85 nm line to the magnetic fields. The 1.5-h series of MHD models used for the analyses reproduces a region of the magnetic\\u000a network in the photosphere with an unsigned magnetic flux density of

V. A. Sheminova

2009-01-01

352

Fiber Bragg Grating Magnetic Field Sensor  

Microsoft Academic Search

In this paper we demonstrate experimentally a magnetic field sensor using a fiber Bragg grating. The shift in the Bragg condition as a result of strain applied on the fiber mounted on a nickel base by the magnetic field gives an indirect measure of the field. The proposed method overcomes the need for long fiber lengths required in methods such

K. V. Madhav; K. Ravi Kumar; T. Srinivas; S. Asokan

2006-01-01

353

The National High Magnetic Field Laboratory  

Microsoft Academic Search

The National High Magnetic Field Laboratory (NHMFL) was established in 1990, on the basis of a collaboration between Florida State University (FSU), the University of Florida (UF) and Los Alamos National Laboratory (LANL). The main campus for the NHMFL is located in Tallahassee, Florida, and its general purpose DC magnetic field facility is described in this paper. The pulsed field

B. L. Brandt; S. Hannahs; H. J. Schneider-Muntau; G. Boebinger; N. S. Sullivan

2001-01-01

354

Representation of magnetic fields in space  

NASA Technical Reports Server (NTRS)

Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

Stern, D. P.

1975-01-01

355

Primordial magnetic fields from superconducting cosmic strings  

Microsoft Academic Search

This paper explores the possibility of generation of a primordial magnetic field by a network of charged-current carrying cosmic strings. The field is created by vorticity, generated in the primordial plasma due to the strings' motion and gravitational pull. In the case of superconducting strings formed at the breaking of grand unification, it is found that strong magnetic fields of

Konstantinos Dimopoulos

1998-01-01

356

DC-based magnetic field controller  

DOEpatents

A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

1994-01-01

357

Manipulating Cells with Static Magnetic Fields  

Microsoft Academic Search

We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their

J. M. Valles; K. Guevorkian

2005-01-01

358

Possible Generation of Self-Magnetic Fields  

SciTech Connect

The earth generates its own magnetic field via a dynamo effect in a conducting fluid. The sun and some other stars also generate self-magnetic fields on large spatial scales and long timescales. Laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Could similar phenomena occur on intermediate spatial scales and timescales, such as in a laboratory plasma? Two questions are posed for consideration: (a) At high electromagnetic wave power input into a low-pressure gas could a significant self-magnetic field be generated? (b) If a self-magnetic field were generated, would it evolve toward a minimum-energy state? If the answers turned out to be affirmative, then the use of self-magnetic fields could have interesting applications.

Dolan, Thomas J. [International Atomic Energy Agency, Vienna (Austria)

2001-09-15

359

Static uniform magnetic fields and amoebae  

SciTech Connect

Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A. [Tennessee Technological Univ., Cookeville, TN (United States)] [Tennessee Technological Univ., Cookeville, TN (United States)

1997-03-01

360

Probing interstellar magnetic fields with Supernova remnants  

NASA Astrophysics Data System (ADS)

As Supernova remnants expand, their shock waves are freezing in and compressing the magnetic field lines they encounter; consequently we can use Supernova remnants as magnifying glasses for their ambient magnetic fields. We will describe a simple model to determine emission, polarization, and rotation measure characteristics of adiabatically expanding Supernova remnants and how we can exploit this model to gain information about the large scale magnetic field in our Galaxy. We will give two examples: The SNR DA530, which is located high above the Galactic plane, reveals information about the magnetic field in the halo of our Galaxy. The SNR G182.4+4.3 is located close to the anti-centre of our Galaxy and reveals the most probable direction where the large-scale magnetic field is perpendicular to the line of sight. This may help to decide on the large-scale magnetic field configuration of our Galaxy. But more observations of SNRs are needed.

Kothes, Roland; Brown, Jo-Anne

2009-04-01

361

Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane  

NASA Technical Reports Server (NTRS)

A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

2001-01-01

362

Observational testing of magnetospheric magnetic field models at geosynchronous orbit  

SciTech Connect

Empirical mode which estimate the magnetic field direction and magnitude at any point within the magnetosphere under a variety of conditions play an important role in space weather forecasting. We report here on a number of different studies aimed at quantitatively evaluating these models, and in particular the Tsyganenko T89a model. The models are evaluated in two basic ways: (1) by comparing the range of magnetic field tilt angles observed at geosynchronous orbit with the ranges predicted for the same locations by the models; and (2) by comparing the observed magnetic field mapping between the ionosphere and geosynchronous orbit (using two-satellite magnetic field conjunctions) with the model predictions at the same locations. We find that while the T89a model predicts reasonably well the basic variation in tilt angle with local time and permits a range of field inclinations adequate to encompass the majority of observed angles on the dawn, dusk, and night sides, it is unable to reproduce the range of inclinations on the dayside. The model also predicts a smaller magnetic latitude range of geosynchronous field line footpoints than the observed two-satellite mapping indicate. Together, these results suggest that the next generation of field models should allow a greater range of stretching, especially in local time sectors away from midnight. It is important to note, however, that any increased range should encompass less-stretched configurations: although there are certainly cases where the models are not sufficiently stretched, we find that on average all magnetic field models tested, including T89a, are too stretched. Finally, in investigating how well the observed degree of field stretch was ordered by various magnetospheric indices, we find that the tilt of the field at geosynchronous orbit is a promising candidate for the incorporation into future models.

Weiss, L.A.; Thomsen, M.F.; Reeves, G.D.; McComas, D.J.

1996-09-01

363

Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization  

NASA Astrophysics Data System (ADS)

For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

2010-06-01

364

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently approaching the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products to the Swarm user community. The setup of Swarm ground segment and the contents of the data products will be addressed. More information on the Swarm mission can be found at the mission web site (see URL below).

Drinkwater, M. R.; Haagmans, R.; Floberghagen, R.; Plank, G.; Menard, Y.

2011-12-01

365

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given.

Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

2012-12-01

366

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

2013-12-01

367

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

Plank, Gernot; Haagmans, Roger; Floberghagen, Rune; Menard, Yvon

2013-04-01

368

Plasma behaviour in a rotating magnetic field  

Microsoft Academic Search

A system was constructed and used to study the behavior of a plasma in a rotating magnetic field in a toroidal system. The plasma density is first formed by RF pre-ionization at low pressure in the presence of a quasi-steady toroidal magnetic field of 0.4 T. The 1.85 MHz rotating magnetic field is generated by two perpendicular four-turn coils driven

M. R. Shubaly

1974-01-01

369

Magnetic-field variations and solar flare activity  

NASA Astrophysics Data System (ADS)

Solar filtergrams obtained at the Crimean Astrophysical Observatory at the center and wings of the H ? line are used to study variations in filaments, in particular, in arch filament systems (AFSs). These are considered as an indicator of emerging new magnetic flux, providing information about the spatial locations of magnetic-field elements. Magnetic-field maps for the active region NOAA 10030 are analyzed as an example. A method developed earlier for detecting elements of emerging flux using SOHO/MDI magnetograms indicates a close link between the increase in flare activity in theNOAA 10030 group during July 14-18, 2002 and variations in the topological disconnectedness of the magnetograms. Moreover, variations in the flare activity one day before a flare event are correlated with variations in the topological complexity of the field (the Euler characteristic) in regions with high field strengths (more than 700 G). Analysis of multi-wavelength polarization observations on the RATAN-600 radio telescope during July 13-17, 2002 indicate dominance of the radio emission above the central spot associated with the increase in flare activity. In addition to the flare site near the large spot in the group, numerous weak flares developed along an extended local neutral line, far from the central line of the large-scale field. The statistical characteristics of the magnetic-field maps analyzed were determined, and show flare activity of both types, i.e., localized in spot penumbras and above the neutral line of the field.

Grigor'eva, I. Yu.; Shakhovskaya, A. N.; Livshits, M. A.; Knyazeva, I. S.

2012-11-01

370

Destruction of transport barriers in a nontwist map model of a reversed magnetic shear tokamak with an ergodic magnetic limiter  

NASA Astrophysics Data System (ADS)

Recently, the magnetic field line structure of reversed magnetic shear tokamaks has been modeled by an area preserving nontwist map that includes non-integrable perturbations describing ergodic magnetic limiters.[1] An expansion around the equilibrium shearless curve (corresponding to the main transport barrier in the model) showed that the map is locally equivalent to the standard nontwist map with an additional perturbation due to the limiter.[2] I report results of the investigation into the effect of the perturbation on the resilience of the shearless curve. [1] K. Ullmann and I.L. Caldas, Chaos, Solitons and Fractals, 11, 2129 (2000).[2] J.S.E. Portela, I.L. Caldas, R.L. Viana, and P.J. Morrison, to appear in J. Bifur. Chaos (2007).

Wurm, Alexander

2007-11-01

371

Magnet calculations at the Grenoble High Magnetic Field Laboratory  

Microsoft Academic Search

An axisymmetrical constrained semi-analytic optimization process is our basic tool for designing magnets. Developments of 3-D numerical models are undertaken to complement this approach. Such models are needed to investigate the overall behavior of our magnets. They are likely to provide suitable insights to solve the design problems arising from the demand for high magnetic field with both great spatial

Christophe Trophime; Konstantin Egorov; François Debray; W. Joss; G. Aubert

2002-01-01

372

Magnetization curve of spin ice in a [111] magnetic field  

Microsoft Academic Search

Spin ice in a magnetic field in the [111] direction displays two magnetization plateaus: one at saturation and an intermediate one with finite entropy. We study the crossovers between the different regimes from a point of view of (entropically) interacting defects. We develop an analytical theory for the nearest-neighbor spin ice model, which covers most of the magnetization curve. We

S. V. Isakov; K. S. Raman; R. Moessner; S. L. Sondhi

2004-01-01

373

Flow Transitions in a Rotating Magnetic Field  

NASA Technical Reports Server (NTRS)

Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

Volz, M. P.; Mazuruk, K.

1996-01-01

374

Horizontal magnetic fields in the solar photosphere  

NASA Astrophysics Data System (ADS)

Two-dimensional simulations of time-dependent solar magnetogranulation are used to analyze the horizontal magnetic fields and the response of the synthesized Stokes profiles of the IR FeI ?1564.85 nm line to the magnetic fields. The 1.5-h series of MHD models used for the analyses reproduces a region of the magnetic network in the photosphere with an unsigned magnetic flux density of 192 G at the solar surface. According to the magnetic-field distribution obtained, the most probable absolute strength of the horizontal magnetic field at an optical depth of ? 5 = 1( ? 5 denotes ? at ? = 500 nm) is 50 G, while the mean value is 244 G. On average, the horizontal magnetic fields are stronger than the vertical fields to heights of about 400 km in the photosphere due to their higher density and the larger area they occupy. The maximum factor by which the horizontal fields are greater is 1.5. Strong horizontal magnetic flux tubes emerge at the surface as spots with field strengths of more than 500 G. These are smaller than granules in size, and have lifetimes of 3-6 min. They form in the photosphere due to the expulsion of magnetic fields by convective flows coming from deep subphotospheric layers. The data obtained qualitatively agree with observations with the Hinode space observatory.

Sheminova, V. A.

2009-05-01

375

Ferroelectric Cathodes in Transverse Magnetic Fields  

SciTech Connect

Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

2002-07-29

376

Five years of magnetic field management  

SciTech Connect

The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors` experiences and shows the results of the specific projects completed in recent years.

Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

1995-01-01

377

Magnetic monopole field exposed by electrons  

NASA Astrophysics Data System (ADS)

The experimental search for magnetic monopole particles has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study. Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle. We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole. This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.

Béché, Armand; van Boxem, Ruben; van Tendeloo, Gustaaf; Verbeeck, Jo

2014-01-01

378

The Magnetic Fields of the Quiet Sun  

NASA Astrophysics Data System (ADS)

This work reviews our understanding of the magnetic fields observed in the quiet Sun. The subject has undergone a major change during the last decade (quiet revolution), and it will remain changing since the techniques of diagnostic employed so far are known to be severely biased. Keeping these caveats in mind, our work covers the main observational properties of the quiet Sun magnetic fields: magnetic field strengths, unsigned magnetic flux densities, magnetic field inclinations, as well as the temporal evolution on short time-scales (loop emergence), and long time-scales (solar cycle). We also summarize the main theoretical ideas put forward to explain the origin of the quiet Sun magnetism. A final prospective section points out various areas of solar physics where the quiet Sun magnetism may have an important physical role to play (chromospheric and coronal structure, solar wind acceleration, and solar elemental abundances).

Sánchez Almeida, J.; Martínez González, M.

2011-04-01

379

Concentrator of magnetic field of light  

NASA Astrophysics Data System (ADS)

In the recent decade metamaterials with magnetic permeability different than unity and unusual response to the magnetic field of incident light have been intensively explored. Existence of magnetic artificial materials created an interest in a scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of those metamaterials. We present a method of measuring magnetic responses of such elementary cells within a wide range of optical frequencies with single probes of two types. The first type probe is made of a tapered silica fiber with radial metal stripes separated by equidistant slits of constant angular width. The second type probe is similar to metal coated, corrugated, tapered fiber apertured SNOM probe, but in this case corrugations are radially oriented. Both types of probes have internal illumination with azimuthally polarized light. In the near-field they concentrate into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one.

Wróbel, Piotr; Stefaniuk, Tomasz; Antosiewicz, Tomasz J.; Szoplik, Tomasz

2012-05-01

380

Evaluation of the magnetic field near a crack with application to magnetic particle inspection  

Microsoft Academic Search

In this paper, the magnetic field at the mouth of a crack in ferromagnetic steel is determined by means of a two-dimensional, linear model. The solution is found by employing an analytical method in which one complex variable is transformed into another by means of a mapping function. An approximate boundary condition, based on the fact that the steel permeability

John R. Bowler; Nicola Bowler

2002-01-01

381

New gravity and magnetics map of eastern part of Azores  

NASA Astrophysics Data System (ADS)

The Azores are of volcanic origin and the volcanic activities are still occurs in the area. The main tectonic features in the eastern part of Azores are the Gloria Fault (GF) and São Miguel volcanic Island. The GF is an E-W strike-slip fault and can be traced by bathymetry. In the past decade many geological and geophysical investigations were dedicated to the study of tectonic features in the eastern part of Azores. Two of these cruises were organized by the Institute of Geophysics, University of Hamburg, Germany, in the years 2009 and 2012. In 2009 during the Meteor cruise M79-2 a total of 5500 km new Gravity and 2000 km new magnetic data were collected along some 60 Profiles. During the Poseidon cruise in the year 2012 some 2000 km new gravity and magnetic data were collected along two E-W profiles in the eastern part of Azores. The new gravity data were recorded with the modern Air-Sea-Gravimeter of Bodenseewerk KSS 31M and the new magnetic date with the Gradiometer SeaSpy. All new potential date were combined with the available data of the data base GEODAS and the new gravity anomaly maps (Free-Air and Bouguer) and the new magnetic anomaly map were produced. The maps show clearly the tectonic features in the area. The GF can be traced very well on both gravity and magnetic anomaly maps. Most of the small hills around the São Miguel Island are shown up in the magnetic anomaly map as strong magnetic anomaly. The new gravity and magnetic maps and the interpretation of them will be presented. The results of some 2-D modeling along some interesting profiles will be also presented and discussed.

Dehghani, Ali

2014-05-01

382

New gravity and magnetics map of eastern part of Azores  

NASA Astrophysics Data System (ADS)

The Azores are of volcanic origin and the volcanic activities are still occurs in the area. The main tectonic features in the eastern part of Azores are the Gloria Fault (GF) and São Miguel volcanic Island. The GF is an E-W strike-slip fault and can be traced by bathymetry. In the past decade many geological and geophysical investigations were dedicated to the study of tectonic features in the eastern part of Azores. Two of these cruises were organized by the Institute of Geophysics, University of Hamburg, Germany, in the years 2009 and 2012. In 2009 during the Meteor cruise M79-2 a total of 5500 km new Gravity and 2000 km new magnetic data were collected along some 60 Profiles. During the Poseidon cruise in the year 2012 some 2000 km new gravity and magnetic data were collected along two E-W profiles in the eastern part of Azores. The new gravity data were recorded with the modern Air-Sea-Gravimeter of Bodenseewerk KSS 31M and the new magnetic date with the Gradiometer SeaSpy. All new potential date were combined with the available data of the data base GEODAS and the new gravity anomaly maps (Free-Air and Bouguer) and the new magnetic anomaly map were produced. The maps show clearly the tectonic features in the area. The GF can be traced very well on both gravity and magnetic anomaly maps. Most of the small hills around the São Miguel Island are shown up in the magnetic anomaly map as strong magnetic anomaly. The new gravity and magnetic maps and the interpretation of them will be presented. The results of some 2-D modeling along some interesting profiles will be also presented and discussed.

Dehghani, A.

2013-12-01

383

Ohm's Law for Mean Magnetic Fields.  

National Technical Information Service (NTIS)

Spatially complicated magnetic fields are frequently treated as the sum of a large, slowly varying, mean field and a small, rapidly varying, field. The primary effect of the small field is to modify the Ohm's law of the mean field. A set of plausible assu...

A. H. Boozer

1984-01-01

384

Magnetic field evolution in interacting galaxies  

NASA Astrophysics Data System (ADS)

Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 ?G, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 ?G) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 ?G), and decreases again, down to 5-6 ?G, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to morphological distortions induced by tidal interactions than are the random fields. As a result the polarized emission could be yet another indicator of an ongoing merging process. The found evolution of magnetic field with advancing interaction would definitely imply a stronger effect of magnetic fields on the galaxy surroundings in the earlier cosmological epochs. The process of strong gravitational interactions can efficiently magnetize the merger's surroundings, having a similar magnetizing effect on intergalactic medium as supernova explosions or galactic winds. If interacting galaxies generate some ultra-high energy cosmic rays (UHECRs), the disk or magnetized outflows can deflect them (up to 23°), and make an association of the observed UHECRs with the sites of their origin very uncertain.

Drzazga, R. T.; Chy?y, K. T.; Jurusik, W.; Wiórkiewicz, K.

2011-09-01

385

Magnetic field properties of SSC model dipole magnets  

SciTech Connect

SSC 1.5m model dipole magnets were built and tested at Fermilab. Magnetic field properties were studied in term of transfer function variation and multipole components. The results were satisfactory. Observation of periodicity of remanent field along the axis is also reported.

Wake, M.; Bossert, R.; Carson, J.; Delchamps, S.; Jaffery, T.S.; Kinney, W.; Koska, W.; Lamm, M.J.; Strait, J. (Fermi National Accelerator Lab., Batavia, IL (United States)); Butteris, J.; Sims, R.; Winters, M. (Superconducting Super Collider Lab., Dallas, TX (United States))

1992-09-01

386

Enhancement of thermal conductivity of magnetic nanofluids in magnetic field  

Microsoft Academic Search

Ahstract- This paper investigated the enhancement of thermal conductivity of engine oil based magnetite (Fe304) nanofluids, which were prepared via a co-precipitation method with and without ultrasound assistance, in the presence of external magnetic field. The thermal conductivity was determined using a thermal constants analyzer. Effects of particle size, particle volume fraction and magnetic field on the thermal conductivity ratio

Innocent Nkurikiyimfura; Yanmin Wangl; Zhidong Panl; Dawei Hul

2011-01-01

387

Study of interplanetary magnetic field with atomic realignment  

NASA Astrophysics Data System (ADS)

We demonstrate a new way of studying interplanetary magnetic field - atomic alignment. Instead of sending thousands of space probes, atomic alignment allows magnetic mapping with any ground telescope facilities equipped with spectrometer and polarimeter. The polarization of spectral lines that are pumped by the anisotropic radiation from the sun is influenced by the magnetic alignment, which happens for weak magnetic field (<1G). As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic observations of Iofootnote{The third largest moon of Jupiter.} and comet Halley. A uniform density distribution of Na was considered and polarization at each point was then constructed. Both spatial and temporal variations of turbulent magnetic field can be traced with this technique as well. For remote regions like the boundary of interstellar medium, atomic alignment provides a unique diagnostics of magnetic field, which is crucial for understanding the physical processes such as the IBEX ribbons discovered recently.

Yan, H.; Shangguan, J.

2011-12-01

388

The AGN origin of cluster magnetic fields  

NASA Astrophysics Data System (ADS)

The origin of magnetic fields in galaxy clusters is one of the most fascinating but challenging problems in astrophysics. In this dissertation, the possibility of an Active Galactic Nucleus (AGN) origin of cluster magnetic fields is studied through state of the art simulations of magnetic field evolution in large scale structure formation using a newly developed cosmological Adaptive Mesh Refinement (AMR) Magnetohydrodynamics (MHD) code -- EnzoMHD. After presenting a complete but concise description and verification of the code, we discuss the creation of magnetic fields through the Biermann Battery effect during first star formation and galaxy cluster formation. We find that magnetic fields are produced as predicted by theory in both cases. For the first star formation, we obtain a lower limit of (~ 10 -9 G) for magnetic fields when the first generation stars form. On the other hand, we find that the magnetic energy is amplified 4 orders of magnitude within ~ 10 Gyr during cluster formation. We then study magnetic field injection from AGN into the Intra- Cluster Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as well as weak shocks seen in observations in the simulation, and further confirm the idea that AGN outburst must contain lots of magnetic energy (up to 10 61 ergs) and the magnetic fields play an important part in the formation of jet/lobe system. We present high resolution simulations of cluster formation with magnetic fields injected from high redshift AGN. We find that these local magnetic fields are spread quickly throughout the whole cluster by cluster mergers. The ICM is in a turbulent state with a Kolmogorov-like power spectrum. Magnetic fields are amplified to and maintained at the observational level of a few mG by bulk flows at large scale and the ICM turbulence at small scale. The total magnetic energy increases about 25 times to ~ 1.2 × 10^61 ergs at the present time. We conclude that magnetic fields from AGN at high redshift may provide sufficient initial magnetic fields to magnetize the whole cluster.

Xu, Hao

389

A field-sweep/field-lock system for superconducting magnets--Application to high-field EPR.  

PubMed

We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of +/-0.4 T and a resolution of up to 10(-5) T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306

Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G

2006-12-01

390

A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR  

PubMed Central

We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR.

Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.

2007-01-01

391

Inverse field-based approach for simultaneous B1 mapping at high fields - A phantom based study  

NASA Astrophysics Data System (ADS)

Based on computational electromagnetics and multi-level optimization, an inverse approach of attaining accurate mapping of both transmit and receive sensitivity of radiofrequency coils is presented. This paper extends our previous study of inverse methods of receptivity mapping at low fields, to allow accurate mapping of RF magnetic fields (B1) for high-field applications. Accurate receive sensitivity mapping is essential to image domain parallel imaging methods, such as sensitivity encoding (SENSE), to reconstruct high quality images. Accurate transmit sensitivity mapping will facilitate RF-shimming and parallel transmission techniques that directly address the RF inhomogeneity issue, arguably the most challenging issue of high-field magnetic resonance imaging (MRI). The inverse field-based approach proposed herein is based on computational electromagnetics and iterative optimization. It fits an experimental image to the numerically calculated signal intensity by iteratively optimizing the coil-subject geometry to better resemble the experiments. Accurate transmit and receive sensitivities are derived as intermediate results of the optimization process. The method is validated by imaging studies using homogeneous saline phantom at 7T. A simulation study at 300 MHz demonstrates that the proposed method is able to obtain receptivity mapping with errors an order of magnitude less than that of the conventional method. The more accurate receptivity mapping and simultaneously obtained transmit sensitivity mapping could enable artefact-reduced and intensity-corrected image reconstructions. It is hoped that by providing an approach to the accurate mapping of both transmit and receive sensitivity, the proposed method will facilitate a range of applications in high-field MRI and parallel imaging.

Jin, Jin; Liu, Feng; Zuo, Zhentao; Xue, Rong; Li, Mingyan; Li, Yu; Weber, Ewald; Crozier, Stuart

2012-04-01

392

Chromospheric magnetic fields of an active region filament  

NASA Astrophysics Data System (ADS)

Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

Xu, Z.; Solanki, S.; Lagg, A.

2012-06-01

393

Magnetism and local molecular field.  

PubMed

Despite its somewhat naive simplicity, the method of the local molecular field has had undeniable success in satisfactorily explaining a large number of previously known facts and in opening the way for the discovery of new facts. Let us note, however, that all the structures that have been discussed above are collinear structures: on the average (in time) all the atomic magnets pointing in one or the opposite direction are parallel to a single direction. However, the local molecular field method can also be extended to noncollinear structures such as that of helimagnetism, which Yoshimori and Villain discovered independently in an absolutely unexpected manner; one can thus interpret phenomena in a remarkably simple and concrete manner. Nevertheless, the method can hardly be recommended for more complex structures such as the umbrella structure, which requires the decomposition of the principal crystal lattice into a large number of sublattices. Indeed, under these conditions an atom belonging to a given sublattice has only a very small number of neighbors (one or two) in each of the other sublattices, and the molecular field method, which consists in replacing the instantaneous action of an atom by that of an average atom, will be more likely to yield a correct result, the larger the number of atoms to which it is applied. Its correctness probably also increases as the atomic spin becomes larger. Independently of this problem, the method applied to a large number of sublattices completely loses its chief advantage, simplicity. The method also involves more insidious traps. If a judicious choice of parameters is made, the method can lead one to calculate curves and thermal variations of the spontaneous magnetization or paramagnetic susceptibility that coincide remarkably well with the experimental results, for example, to within a few thousandths. Under these conditions, one could expect that the elementary interaction energies deduced from these parameters would correspond to the actual values with the same accuracy. This is not so; errors of 10 to 20 percent and even greater are frequently made in this manner. A certain amount of caution thus becomes imperative. On the other hand, recourse to the local molecular field seems indispensable since more rigorous methods lead to insurmountable complications. Consider for example that the rigorous solution is not yet known for the simplest case, that of a simple cubic lattice with identical atoms of spin 1/2, and interactions reduced to those present between nearest-neighbor atoms. How then should one treat the case of garnets with 160 atoms in the unit cell, spins up to 5/2, and at least six different coupling constants? One must therefore be lenient toward the imperfections of the molecular field methods, considering the simplicity with which the successes recalled in the first few lines of these conclusions were obtained. PMID:17757022

Néel, L

1971-12-01

394

Photospheric magnetic field rotation: Rigid and differential  

Microsoft Academic Search

An autocorrelation of the direction of the large-scale photospheric magnetic field observed during 1959–1967 has yielded evidence that the field structure at some heliographic latitudes can display both differential rotation and rigid rotation properties.

John M. Wilcox; Kenneth H. Schatten; Andrew S. Tanenbaum; Robert Howard

1970-01-01

395

Photospheric Magnetic Field Rotation: Rigid And Differential.  

National Technical Information Service (NTIS)

An autocorrelation of the direction of the large-scale photospheric magnetic field observed during 1959-1967 has yielded evidence that the field structure at a given heliographic latitude can display both differential rotation and rigid rotation propertie...

J. M. Wilcox K. H. Schatten A. S. Tanenbaum R. Howard

1970-01-01

396

Cosmic Rays in the Earth'S Magnetic Field.  

National Technical Information Service (NTIS)

Studies are presented of the behavior of cosmic rays in the earth's magnetic field. It discusses the theory of motion of charged particles in an idealized field model and presents results of trajectory calculations of asymptotic directions and cutoff rigi...

L. I. Dorman V. S. Smirnov M. I. Tyasto

1973-01-01

397

Magnetohydrodynamics of the Earth'S Magnetic Field.  

National Technical Information Service (NTIS)

A survey of observational and theoretical work pertaining to the origin of planetary magnetic fields is given with special emphasis on the dynamo theory which attempts to explain these fields as arising from magnetohydrodynamic regenerative action. Some p...

G. Venezian

1967-01-01

398

The Evolution of the Earth's Magnetic Field.  

ERIC Educational Resources Information Center

Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

Bloxham, Jeremy; Gubbins, David

1989-01-01

399

Global map of Titan's dune fields  

NASA Astrophysics Data System (ADS)

Introduction Methane is the second major constituent of Titan's atmosphere; but it should be totally removed at least in ten million years by photochemistry in the stratosphere and condensation in the troposphere [1]. The first process produces hydrocarbons which form the haze and can condensate onto the surface. The second process causes methane rains on the surface, which carve channels networks. The loss of methane is possibly balanced by outgassing during cryovolcanic event [2]. But hydrocarbons grains deposited onto the surface cannot be recycled. They may be stored in the dunes [3], which were first seen by SAR (Synthetic Aperture Radar) [4]. We focus our study on the mapping of the dune fields in order to determine their global distribution. The aim is to constrain the amount of hydrocarbon material existing in the dunes, and to relate it to the duration of the methane cycle. Data from the Visual and Infrared Mapping Spectrometer (VIMS) and RADAR instruments onboard Cassini spacecraft can be used to map Titan's surface. Infrared images, which are mainly sensitive to composition and grain size, are very complementary to the microwave measurements which depend mainly on roughness and topography. We used spectral criteria after empirical correction of aerosols to map the distribution of heterogeneous units on Titan [5]. These units are compared with SAR images in overlapping regions. Titan's surface mosaics with VIMS VIMS probes the first ten of microns of the ground in seven narrow atmospheric windows in the 0.88 to 5.11 ?m wavelength range. We built infrared mosaics with cubes sorted by spatial resolution, by keeping cubes corresponding to favorable observing conditions (incidence, emergence, phase and time exposure). Band ratios were computed and combined in false color composite images (red as 1.59/1.27-?m, green as 2.03/1.27-?m and blue as 1.27/1.08-?m). Band ratios are useful to minimize the effect of illuminating conditions and albedo variations [6]. Mosaics of Titan's surface were created using images acquired during 42 flybys from Ta (October 26th 2004) to T42 (March 25th 2008). These images have been integrated into a Geographic Information System (GIS). Global maps of band ratios appear fuzzy at high latitudes due to a low spatial resolution and to the presence of haze and clouds. The unfavorable observing geometry, with high incidence angles, induces a very strong scattering by the aerosols in these regions. On the contrary, equatorial and mid-latitudes regions have been covered at a medium resolution, in better observing conditions. In our color composites, most of Titan surface appears either in brown units, bluish units or bright units. We observed that brown units cover 18% of the whole Titan's surface and are found in equatorial regions. Dark blue units cover roughly 2% of Titan's surface. They are systematically associated with bright terrains and are never found isolated within brown units (Fig. 1a). Dune patterns were first observed in the infrared with VIMS during the closest approach at T4 and T20 flybys [7, 8]. The detailed study of dune fields by [8] shows that dune patterns are found mainly in brown units and interdunes can account for the observed spectral variability. Dunes with Radar SAR dataset We also use the RADAR data in SAR mode, mainly sensitive to roughness, surface topography and dielectric constant variations. It is independent of solar light conditions and of the presence of clouds. We retrieved the radar swaths from Ta to T25 (February 22nd 2007) flybys from the PDS website and reprojected the data using the ISIS2 software. The spatial resolution of the SAR images allows the direct imaging of the dunes. Most of Titan's dunes appear longitudinal and resemble terrestrial dunes, such as the ones found in Namibia [4]. Detailed morphologic analysis was performed in [9], who inferred a dominant wind eastward to account for their formation. Two kinds of dunes have been observed: sand seas and small dunes in low sand supply zones. Most of the aeolian sand deposits are found in sand

Le Corre, L.; Le Mouélic, S.; Sotin, C.; Barnes, J. W.; Brown, R. H.; Baines, K.; Buratti, B.; Clark, R.; Nicholson, P.

2008-09-01

400

Thinned fiber Bragg grating magnetic field sensor with magnetic fluid  

NASA Astrophysics Data System (ADS)

The refractive index of magnetic fluid may be changed by external magnetic field. Therefore, through measuring its refractive index, the intensity of the magnetic field can be obtained. Fiber Bragg grating (FBG) is sensitive to the refractive index surrounding its cladding when the diameter of cladding is reduced to a certain degree. In order to prove the sensitivity of the thinned fiber Bragg grating to refractive index, series of experiments, such as the fabrication of thinned FBG, tuning magnetic field and obtaining spectral characterizations, are carried out. After the FBG is etched for 193 minutes by HF solution at 22%, the FBG starts to be sensitive to the surrounding refractive index and the Bragg wavelength decreases sharply with the etching process. The thinned FBG has been packaged to a container filled with MF. Using a tunable magnetic field the refractive index of magnetic fluid could be changed and the Bragg wavelength of FBG shifts correspondingly. Both the wavelength and the light power are sensitive to magnetic field and the sensitivity of wavelength is 2.3 pm/mT at least in the condition of proposed experiment. The obtained results show that the thinned FBG sensor with magnetic fluid could be applicable for magnetic field and current sensing.

Zhou, Ciming; Ding, Li; Wang, Dongli; Kuang, Yaqi; Jiang, Desheng

2011-05-01

401

Intrinsic Signal Changes Accompanying Sensory Stimulation: Functional Brain Mapping with Magnetic Resonance Imaging  

Microsoft Academic Search

We report that visual stimulation produces an easily detectable (5-20%) transient increase in the intensity of water proton magnetic resonance signals in human primary visual cortex in gradient echo images at 4-T magnetic-field strength. The observed changes predominantly occur in areas containing gray matter and can be used to produce high-spatial-resolution functional brain maps in humans. Reducing the image-acquisition echo

Seiji Ogawa; David W. Tank; Ravi Menon; Jutta M. Ellermann; Seong-Gi Kim; Hellmut Merkle; Kamil Ugurbil

1992-01-01

402

Protecting SQUID metamaterials against stray magnetic fields  

NASA Astrophysics Data System (ADS)

Using superconducting quantum interference devices (SQUIDs) as the basic, low-loss elements of thin-film metamaterials has one main advantage: their resonance frequency is easily tunable by applying a weak magnetic field. The downside, however, is a strong sensitivity to stray and inhomogeneous magnetic fields. In this work, we demonstrate that even small magnetic fields from electronic components destroy the collective, resonant behaviour of the SQUID metamaterial. We also show how the effect of these fields can be minimized. As a first step, magnetic shielding decreases any initially present fields, including the earth’s magnetic field. However, further measures such as improvements in the sample geometry have to be taken to avoid the trapping of Abrikosov vortices.

Butz, S.; Jung, P.; Filippenko, L. V.; Koshelets, V. P.; Ustinov, A. V.

2013-09-01

403

Coronal magnetic fields and the solar wind  

NASA Technical Reports Server (NTRS)

Current information is presented on coronal magnetic fields as they bear on problems of the solar wind. Both steady state fields and coronal transient events are considered. A brief critique is given of the methods of calculating coronal magnetic fields including the potential (current free) models, exact solutions for the solar wind and field interaction, and source surface models. These solutions are compared with the meager quantitative observations which are available at this time. Qualitative comparisons between the shapes of calculated magnetic field lines and the forms visible in the solar corona at several recent eclipses are displayed. These suggest that: (1) coronal streamers develop above extended magnetic arcades which connect unipolar regions of opposite polarity; and (2) loops, arches, and rays in the corona correspond to preferentially filled magnetic tubes in the approximately potential field.

Newkirk, G., Jr.

1972-01-01

404

Solar magnetic fields measurements with a magneto-optical filter  

NASA Technical Reports Server (NTRS)

The presence of a magnetic field at different levels inside the sun has crucial implications for helioseismology. The solar oscillation observing program carried out since 1983 at Mt. Wilson with Cacciani magneto-optical filter has recently been modified to acquire full-disk magnetograms with 2 arcsec spatial resolution. A method for the correct determination of magnetic maps which are free of contamination by velocity signal is presented. It is shown that no cross-talk exists between the Doppler and Zeeman shifts of the Na D lines, provided that instrumental polarization effects are taken into account. The observed line-of-sight photospheric field was used to map the vector field in the inner corona, above active regions, in the current free approximation.

Cacciani, A.; Ricci, D.; Rosati, P.; Rhodes, E. J.; Smith, E.

1990-01-01

405

Capillary hydrodynamic effects in high magnetic fields  

Microsoft Academic Search

A set of hydrodynamic equations has been applied to processes occurring in nonconductive fluids placed into magnetic fields. The equations are valid for equilibrium magnetization within the framework of a continuous medium. The ranges of physical parameters have been evaluated for which magnetization of a fluid should be taken into account in problems concerning the determination of equilibrium forms, and

B. M. Berkovskii; N. N. Smirnov

1988-01-01

406

Magnetic Dipole Fields in Unsaturated Cubic Crystals  

Microsoft Academic Search

The mean value of the randomly directed local magnetic field at a lattice point in each of two cubic arrays, (I) and (F), of equal magnetic dipoles is computed under the following restrictions: (a) The orientation of neighboring dipoles is independent. (b) The direction of each dipole axis is one of the easy directions of magnetization for a ferromagnetic metal

L. W. McKeehan

1933-01-01

407

Magnetic-field measurements for the Lewis Research Center cyclotron  

NASA Technical Reports Server (NTRS)

The magnetic field of the Lewis Center cyclotron was mapped by using a Hall-effect magnetic-field transducer. Main-field Fourier coefficients were determined on a polar mesh of 40 radii for each of seven levels of main-field coil current. Incremental fields for eight sets of trim coils and two sets of harmonic coils were also determined at four of these main-field levels. A stored-program, digital computer was used to perform the measurements. The process was entirely automatic; all data-taking and data-reduction activities were specified by the computer programs. A new method for temperature compensation of a Hall element was used. This method required no temperature control of the element. Measurements of the Hall voltage and Hall-element resistance were sufficient to correct for temperature effects.

Fessler, T. E.

1973-01-01

408

Earthward directed CMEs seen in largerscale coronal magnetic field changes, SOHO LASCO coronagraph and  

Microsoft Academic Search

One picture of coronal mass ejection (CME) initiation relates these events to the expansion into space of previously closed coronal magnetic fields, often part of the helmet streamer belt. The work described here makes use of the potential field source surface model based on updated synoptic photospheric field maps to study the large-scale coronal field changes. We isolate those field

Yan Li; Janet G. Luhmann; T. Mulligan; S. P. Plunkett; J. Todd Hoeksema; C. Nick

2001-01-01

409

Coronal magnetic fields produced by photospheric shear  

SciTech Connect

The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear, by a simple functional form.

Sturrock, P.A.; Yang, W.H.

1987-10-01

410

Coronal magnetic fields produced by photospheric shear  

NASA Technical Reports Server (NTRS)

The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared