Sample records for magnetic field map

  1. Mapping Magnetic Field Lines

    NSDL National Science Digital Library

    This is an activity about electromagnetism. Learners will use a compass to map the magnetic field lines surrounding a coil of wire that is connected to a battery. This activity requires a large coil or spool of wire, a source of electricity such as 3 D-cell batteries or an AC to DC power adapter, alligator-clipped wire, and magnetic compasses. This is the third lesson in the second session of the Exploring Magnetism teachers guide.

  2. Mapping Magnetic Field Lines

    NSDL National Science Digital Library

    This is a lesson about the magnetic field of a bar magnet. The lesson begins with an introductory discussion with learners about magnetism to draw out any misconceptions that may be in their minds. Then, learners freely experiment with bar magnets and various materials, such as paper clips, rulers, copper or aluminum wire, and pencils, to discover that magnets attract metals containing iron, nickel, and/or cobalt but not most other materials. Next, learners experiment with using a magnetic compass to discover how it is affected by the magnet and then draw the magnetic field lines of the magnet by putting dots at the location of the compass arrow. This is the first lesson in the first session of the Exploring Magnetism teacher guide.

  3. Magnetic Field Mapping by Selective Equipotential Excitation

    Microsoft Academic Search

    Ouajdi Felfoul; Michelle Raimbert; Sylvain Martel

    2006-01-01

    A new magnetic field mapping method in MRI is presented. This technique is ideal for severe inhomogeneities where plane warp cannot be ignored. The present study employs a ferromagnetic ball to create a perturbation within the imaged volume. The magnetic moment and position of the device are acquired experimentally with a new technique that excites magnetic equipotentials within a volume.

  4. Field Mapping System for Solenoid Magnet

    NASA Astrophysics Data System (ADS)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  5. Mapping the magnetic field vector in a fountain clock

    SciTech Connect

    Gertsvolf, Marina; Marmet, Louis [National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2011-12-15

    We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.

  6. Global Solar Magnetic Field Maps using ADAPT

    Microsoft Academic Search

    Carl John Henney; C. N. Arge; J. Koller; W. A. Toussaint; S. Young; D. MacKenzie; J. W. Harvey

    2010-01-01

    Estimates of the global solar photospheric magnetic field distribution are critical for space weather forecasting. These global magnetic charts are the essential data input for accurate modeling of the corona and solar wind, which is vital for gaining the basic understanding necessary to improve forecasting models needed for Air Force operations. In this poster, we describe our efforts and progress

  7. The CMS Magnetic Field Map Performance

    Microsoft Academic Search

    V. I. Klyukhin; N. Amapane; V. Andreev; A. Ball; B. Cure; A. Herve; A. Gaddi; H. Gerwig; V. Karimaki; R. Loveless; M. Mulders; S. Popescu; L. I. Sarycheva; T. Virdee

    2010-01-01

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in

  8. Field map reconstruction in magnetic resonance imaging using Bayesian estimation.

    PubMed

    Baselice, Fabio; Ferraioli, Giampaolo; Shabou, Aymen

    2010-01-01

    Field inhomogeneities in Magnetic Resonance Imaging (MRI) can cause blur or image distortion as they produce off-resonance frequency at each voxel. These effects can be corrected if an accurate field map is available. Field maps can be estimated starting from the phase of multiple complex MRI data sets. In this paper we present a technique based on statistical estimation in order to reconstruct a field map exploiting two or more scans. The proposed approach implements a Bayesian estimator in conjunction with the Graph Cuts optimization method. The effectiveness of the method has been proven on simulated and real data. PMID:22315539

  9. Mapping of the lithospheric magnetic field using CHAMP satellite data

    NASA Astrophysics Data System (ADS)

    Saich, B.; Hamoudi, M.; Berguig, M. C.

    2013-09-01

    In this work, we will present a mapping of the magnetic field generated by the heterogeneities of magnetization of the lithospheric rocks. This field is so called the lithospheric field and it is the result of two contributions: the induced contribution and the remanent magnetization contribution. It therefore brings a crucial constraint on the magnetic properties of the crustal rocks. To map this field, we will use the scalar and vector data collected during CHAMP mission from July 15th, 2000 to September 19th, 2010. The sampling frequencies of 1 Hz at the average altitude of about 350 km of measurements allow us to obtain a high resolution mapping. The method used to reduce the effect of the other contributions of the Earth magnetic field is based on the separation of the internal field using models of 16th degrees. These models were calculated for each of three months in order to move secular variations. The use of these algorithms has permitted to map the strong lithospheric magnetic anomalies of large wavelength using only raw satellite observations.

  10. Large-scale solar magnetic field mapping: I.

    PubMed

    Schatten, Kenneth H

    2013-12-01

    This article focuses on mapping the Sun's large-scale magnetic fields. In particular, the model considers how photospheric fields evolve in time. Our solar field mapping method uses Netlogo's cellular automata software via algorithms to carry out the movement of magnetic field on the Sun via agents. This model's entities consist of two breeds: blue and red agents. The former carry a fixed amount of radially outward magnetic flux: 10(23) Mx, and the latter, the identical amount of inward directed flux. The individual agents are distinguished, for clarity, by various shades of blue and red arrows whose orientation indicates the direction the agents are moving, relative to the near-steady bulk fluid motions. The fluid motions generally advect the field with the well known meridional circulation and differential rotation. Our model predominantly focuses on spatial and temporal variations from the bulk fluid motions owing to magnetic interactions. There are but a few effects that agents have on each other: i) while at the poles, field agents are connected via the Babcock - Leighton (B - L) subsurface field to other latitudes. This allows them to undertake two duties there: A) the B - L subsurface field spawns the next generation of new magnetic field via new agents, and B) the B - L subsurface field attracts lower-latitude fields via the "long-range" magnetic stress tension; ii) nearby agents affect each other's motion by short-range interactions; and iii) through annihilation: when opposite field agents get too close to each other, they disappear in pairs. The behavior of the agents' long- and short-range magnetic forces is discussed within this paper as well as the model's use of internal boundary conditions. The workings of the model may be seen in the accompanying movies and/or by using the software available via SpringerPlus' website, or on the Netlogo (TM) community website, where help is readable available, and should all these fail, some help from the author. PMID:23518616

  11. Mapping Magnetic Influence

    NSDL National Science Digital Library

    This is an activity about mapping magnetic fields. Learners use a test magnet to create a map of the magnetic field region around a bar magnet. A Magnaprobe, or other similar test magnet, is required to do this activity. This is the third activity in the Mapping Magnetic Influence educators guide.

  12. Faraday rotation, stochastic magnetic fields, and CMB maps

    SciTech Connect

    Giovannini, Massimo [Section of Milan-Bicocca, INFN, 20126 Milan (Italy); Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland); Kunze, Kerstin E. [Departamento de Fisica Fundamental, Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain)

    2008-07-15

    The high- and low-frequency descriptions of the predecoupling plasma are deduced from the Vlasov-Landau treatment generalized to curved space-times and in the presence of the relativistic fluctuations of the geometry. It is demonstrated that the interplay between one-fluid and two-fluid treatments is mandatory for a complete and reliable calculation of the polarization observables. The Einstein-Boltzmann hierarchy is generalized to handle the dispersive propagation of the electromagnetic disturbances in the predecoupling plasma. Given the improved physical and numerical framework, the polarization observables are computed within the magnetized {lambda}CDM paradigm (m{lambda}CDM). In particular, the Faraday-induced B-mode is consistently estimated by taking into account the effects of the magnetic fields on the initial conditions of the Boltzmann hierarchy, on the dynamical equations, and on the dispersion relations. The complete calculations of the angular power spectra constitute the first step for the derivation of magnetized maps of the CMB temperature and polarization which are here obtained for the first time and within the minimal m{lambda}CDM model. The obtained results set the ground for direct experimental scrutiny of large-scale magnetism via the low- and high-frequency instruments of the Planck explorer satellite.

  13. Magnetic Fields

    NSDL National Science Digital Library

    2014-09-18

    Students visualize the magnetic field of a strong permanent magnet using a compass. The lesson begins with an analogy to the effect of the Earth's magnetic field on a compass. Students see the connection that the compass simply responds to the Earth's magnetic field since it is the closest, strongest field, and thus the compass responds to the field of the permanent magnets, allowing them the ability to map the field of that magnet in the activity. This information will be important in designing a solution to the grand challenge in activity 4 of the unit.

  14. A rotating coil transducer for magnetic field mapping

    NASA Astrophysics Data System (ADS)

    Arpaia, P.; Buzio, M.; De Matteis, E.; Russenschuck, S.

    2015-06-01

    A rotating coil transducer for local measurements of magnetic field quality in magnets is proposed. The transducer is based on (i) reduced-dimension rotating coils, as required e.g. for space charge computations, (ii) accurate transport, for longitudinal displacements inside the magnet aperture, and (iii) components with magnetic compatibility for negligible interference of the measurand field. This allows magnetic measurement requirements arisen from recently developed compact accelerator systems (with curvature radii of less than 5 m) for biomedical applications and physics research to be satisfied. In the paper, after presenting requirements and conceptual design, the architecture of the transducer is illustrated. Then, the experimental validation by tests of magnetic compatibility and rotation uniformity is reported. Finally, experimental results of repeatability, accuracy, and resolution in comparison with a reference system are discussed.

  15. SOFIA/HAWC+: Mapping the Galactic Center Magnetic Field

    NASA Technical Reports Server (NTRS)

    Werner, Michael W.; Dowell, C. Darren; Chuss, D. T.; Morris, M. R.; Novak, G.

    2013-01-01

    Polarimetry of the far infrared emission from magnetically-aligned interstellar grains is one of the best ways of studying the magnetic field at the Galactic Center. We describe the HAWC+ instrument, under development for flight on SOFIA starting in 2015, which will provide a major advance in capability for these critically important measurements.

  16. Far-field mapping of the longitudinal magnetic and electric optical fields

    E-print Network

    Ecoffey, C

    2013-01-01

    In this letter, we demonstrate the experimental mapping of the longitudinal magnetic and electric optical fields with a standard scanning microscope that involves a high numerical aperture far-field objective. The imaging concept relies upon the insertion of an azimuthal or a radial polarizer within the detection path of the microscope which acts as an optical electromagnetic filter aimed at transmitting selectively to the detector the signal from the magnetic or electric longitudinal fields present in the detection volume, respectively. The resulting system is thus versatile, non invasive, of high resolution, and shows high detection efficiencies. Magnetic optical properties of physical and biological micro and nano-structures may thus be revealed with a far-field microscope.

  17. Mapping Weak Crustal Magnetic Fields on Mars with Electron Reflectometry

    NASA Technical Reports Server (NTRS)

    Mitchell, D. L.; Lillis, R.; Lin, R. P.; Connerney, J. E. P.; Acuna, M. H.

    2004-01-01

    One of the great surprises of the Mars Global Surveyor (MGS) mission was the discovery of intensely magnetized crust. These magnetic sources are at least ten times stronger than their terrestrial counterparts, probably requiring large volumes of coherently magnetized material, very strong remanence, or both. Perhaps the most intriguing aspect of these fields is their large scale coherence and organization into east-west stripes thousands of kilometers long. The anomalies were almost certainly created by thermoremanent magnetization (TRM) in the presence of a strong Martian dynamo. With few exceptions, the crustal fields are associated with the oldest terrain on Mars. Much of the northern lowlands appears to be non-magnetic, except for the relatively weak north polar anomalies and a few sources adja-cent to the dichotomy boundary, which appear to be associated with strongly magnetized crust south of the boundary. There is clear evidence for impact demagnetization of the Hellas, Argyre, and Isidis basins. Thus, Mars' crustal magnetic fields are among the oldest preserved geologic features on the planet.

  18. Micron-Scale Mapping of Megagauss Magnetic Fields in Petawatt Laser-Solid Interactions

    E-print Network

    Chatterjee, Gourab; Robinson, A P L; Booth, N; Culfa, O; Dance, R J; Gizzi, L A; Gray, R J; Green, J S; Koester, P; Kumar, G Ravindra; Labate, L; Lad, Amit D; Lancaster, K L; Pasley, J; Woolsey, N C; Rajeev, P P

    2013-01-01

    We report spatially and temporally resolved measurements of magnetic fields generated by petawatt laser-solid interactions with high spatial resolution, using optical polarimetry. The polarimetric measurements map the megagauss magnetic field profiles generated by the fast electron currents at the target rear. The magnetic fields at the rear of a 50 $\\mu$m thick aluminum target exhibit distinct and unambiguous signatures of electron beam filamentation. These results are corroborated by hybrid simulations.

  19. Mapping Gravitational and Magnetic Fields with Children 9-11: Relevance, Difficulties and Prospects

    ERIC Educational Resources Information Center

    Bradamante, F.; Viennot, L.

    2007-01-01

    This paper presents an investigation centered on a guided conceptual path concerning magnetic and gravitational fields, proposed for children aged 9-11. The goal is to appreciate to what extent the idea of "mapping" two fields of interaction is accessible and fruitful for children of that age. The conceptual target is to link magnetic and…

  20. Robotic mapping assisted by local magnetic field Haiyang Zhang, Fred Martin

    E-print Network

    into the SLAM (Simultaneous Localization And Mapping) algorithm. One of the key problems of SLAM is loop closure allows us to incorporate different sensor data from both laser range finder, and magnetometer into SLAM, and continues to run. The SLAM assisted by local magnetic field anomaly data has generated more consistent maps

  1. Obtaining vector magnetic field maps from single-component measurements of geological samples

    NASA Astrophysics Data System (ADS)

    Lima, Eduardo A.; Weiss, Benjamin P.

    2009-06-01

    Maxwell's equations can be used to demonstrate that the components of a static magnetic field in a region of space devoid of sources are not independent. This means that magnetometers that measure a single component of the magnetic field can potentially obtain all of three components of the field external to a source. Here we present an improved technique in the Fourier domain which can obtain the complete vector field planar map from just the planar map of one component. This technique is fast, robust, does not rely on any specific source type or configuration, and does not require the formulation of an inverse problem. An in-depth analysis of the advantages and shortcomings of the technique is presented, demonstrating that high-quality three-component field maps with virtually no information loss can be obtained when proper sensor and mapping configurations are used. Several results derived from both synthetic and experimental data are presented. In particular, practical cases are shown where vector maps can assist the analysis of magnetic properties of geological samples. MATLAB® routines implementing the basic vector map calculation algorithm are available as auxiliary materials and can be readily adapted for processing magnetic data obtained from a variety of magnetic sensors.

  2. BTA Magnet Field Map Archive and MAD Model

    SciTech Connect

    Glenn,J.W.

    2008-04-01

    This note publishes some and information that has resided in private files. The attached tables were provided by Joseph Skelly from his archives. They show magnetic field measurements versus excitation current for the Booster to AGS transfer line quadrupoles and dipoles based on field measurements [we believe] were done by the Magnet Division. Also given are Ed Blesser's fifth order fits of field versus current. The results are given in 'Tesla' or T-M/M. These tables are attached to provide an archive of this data. The MAD model of the BTA line does have the same values as shown in the attached fits so the transfer was correct. MAD uses as its 'gradient' for quads Tesla per meter normalized to rigidity [B-rho]. The model of the BTA line in use uses the T-M/M given in the tables divided by the length to give T M which is then normalized by Brho. Thus, the input to the model appears to be correct. The original model is also attached as part of a memo by Skelly describing it.

  3. PREFACE: 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3)

    NASA Astrophysics Data System (ADS)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-07-01

    The 3rd International Workshop on Materials Analysis and Processing in Materials Fields (MAP3) was held on 14-16 May 2008 at the University of Tokyo, Japan. The first was held in March 2004 at the National High Magnetic Field Laboratory in Tallahassee, USA. Two years later the second took place in Grenoble, France. MAP3 was held at The University of Tokyo International Symposium, and jointly with MANA Workshop on Materials Processing by External Stimulation, and JSPS CORE Program of Construction of the World Center on Electromagnetic Processing of Materials. At the end of MAP3 it was decided that the next MAP4 will be held in Atlanta, USA in 2010. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. MAP3 focused on the magnetic field interactions involved in the study and processing of materials in all disciplines ranging from physics to chemistry and biology: Magnetic field effects on chemical, physical, and biological phenomena Magnetic field effects on electrochemical phenomena Magnetic field effects on thermodynamic phenomena Magnetic field effects on hydrodynamic phenomena Magnetic field effects on crystal growth Magnetic processing of materials Diamagnetic levitation Magneto-Archimedes effect Spin chemistry Application of magnetic fields to analytical chemistry Magnetic orientation Control of structure by magnetic fields Magnetic separation and purification Magnetic field-induced phase transitions Materials properties in high magnetic fields Development of NMR and MRI Medical application of magnetic fields Novel magnetic phenomena Physical property measurement by Magnetic fields High magnetic field generation> MAP3 consisted of 84 presentations including 16 invited talks. This volume of Journal of Physics: Conference Series contains the proceeding of MAP3 with 34 papers that provide a scientific record of the topics covered by the conference with the special topics (13 papers) in the journal Science and Technology of Advanced Materials. All articles have been refereed by experts in the field. Both of these journals are fully accessible electronically and can be cited and referenced in the usual way. It is our hope that the reader will enjoy and profit from the MAP3 Proceedings. Hitoshi Wada (Kashiwa, Japan) Chair Eric Beaugon (Grenoble, France) Hans J Schneider-Muntau (Tallahassee, USA) Co-chair Advisory Board Shigeo Asai (Nagoya, Japan) Koichi Kitazawa (Tokyo, Japan) Mitsuhiro Motokawa (Sendai, Japan) Shoogo Ueno (Fukuoka, Japan) Robert Tournier (Grenoble, France) Justin Schwartz (Tallahassee, USA) J C Maan (Nijmegen, Netherland) Scientific Committee Yoshifumi Tanimoto (Hiroshima, Japan) Masuhiro Yamaguchi (Yokohama, Japan) Tsunehisa Kimura (Kyoto, Japan) Yoshio Sakka (Tsukuba Japan) Ryoichi Aogaki (Tokyo, Japan) Jyunji Miyakoshi (Hirosaki, Japan) Kazuo Watanabe (Sendai, Japan) James M Valles Jr. (Providence, USA) Joon Pyo Park (Pohang, Korea) Qiang Wang (Shenyang, China) Nicole Pamme (Hull, UK) Sophie Rivoirard (Grenoble, France) P C M Christianen (Nijmegen, Netherland) Local Organizing Committee Isao Yamamoto Masafumi Yamato Shigeru Horii Norihito Sogoshi Masateru Ikehata Noriyuki Hirota Tsutomu Ando Proceedings Editorial Board Yoshio Sakka Noriyuki Hirota Shigeru Horii Tsutomu Ando Conference photograph

  4. Time-dependent mapping of the magnetic field at the core-mantle boundary

    Microsoft Academic Search

    Jeremy Bloxham; Andrew Jackson

    1992-01-01

    We consider the problem of constructing a time-dependent map of the magnetic field at the core-mantle boundary. We use almost all the available data from the last 300 years to produce two maps, one for the period 1690-1840 and the other for 1840-1990. We represent the spatial dependency of the field using spherical harmonics, the time dependency using a cubic

  5. PREFACE: 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3)

    Microsoft Academic Search

    Yoshio Sakka; Noriyuki Hirota; Shigeru Horii; Tsutomu Ando

    2009-01-01

    The 3rd International Workshop on Materials Analysis and Processing in Materials Fields (MAP3) was held on 14-16 May 2008 at the University of Tokyo, Japan. The first was held in March 2004 at the National High Magnetic Field Laboratory in Tallahassee, USA. Two years later the second took place in Grenoble, France. MAP3 was held at The University of Tokyo

  6. Twist mapping for the dynamics of magnetic field lines in a tokamak ergodic divertor

    NASA Astrophysics Data System (ADS)

    Abdullaev, S. S.; Finken, K. H.; Kaleck, A.; Spatschek, K. H.

    1998-01-01

    Symplectic twist mapping is proposed to model magnetic field line dynamics in the ergodic divertor at the tokamak plasma edge. The relationship between a perturbation function in the mapping and magnetic field perturbation in the tokamak is found. The mapping is specified for the Dynamic Ergodic Divertor being proposed for the Torus Experiment for Technology Oriented Research (TEXTOR-94) [Fusion Eng. Design, 37, 337 (1997)]. The spectrum of the poloidal harmonics of perturbation is assumed to be localized around the harmonics m=12. It creates the stochastic layer near the resonant magnetic surface q=3. The mapping is applied to the formation of the stochastic layer and field line diffusivity at the plasma edge. For the moderate magnetic field perturbations, the ergodic layer consists of a stochastic sea with regular Kolmogorov-Arnold-Mozer (KAM) -stability islands. The radial profiles of the Kolmogorov lengths and the field line diffusivity are studied for different perturbations. It is shown that the behavior of open field lines at the lower boundary of the stochastic layer is subdiffusive. For large perturbations a regular convective behavior of open field lines dominates over their diffusion at the large region of the ergodic layer.

  7. Large-scale Mapping of Magnetic Fields between the Sun and Earth

    NASA Astrophysics Data System (ADS)

    Li, B.; Cairns, I. H.; Francis, M. J.; Steward, G. A.; Neudegg, D.

    2014-12-01

    Magnetic field lines between the Sun and Earth in the solar equatorial plane are calculated and mapped, using near-Earth spacecraft data and a solar wind model. The model allows a nonzero azimuthal component of magnetic field at the source surface, contrasting with the Parker model. The mapping shows that, typically, but not always, the magnetic fields are open and Parker-like. Nevertheless, the predicted field lines sometimes deviate significantly from the Parker direction, corresponding to when the observed magnetic fields are more azimuthally-oriented than the Parker model. Examples of non-Parker-like and Parker-like cases are shown, both for solar maximum and minimum conditions. Often the predicted magnetic field configurations are stable over consecutive solar rotations. The mapping predictions have important implications for particle propagation studies and for estimates of the length of the actual field lines. The effects on the transport paths of solar energetic particles (SEPs) to Earth are demonstrated briefly for an unusually long-lived SEP event at Earth.

  8. Making global map of the solar surface Br from the HMI vector magnetic field observations

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Liu, Y.; Sun, X.; Hoeksema, J. T.; Centeno, R.; Barnes, G.; Leka, K. D.

    2013-06-01

    The Helioseismic Magnetic Imager (HMI) has made full-disk vector magnetic field measurements of the Sun with cadence of 12 minutes. The three-component solar surface magnetic field vector data are from the HMI observations with the data process pipeline modules, VFISV (Very Fast Inversion of the Stokes Vector, Borrero et al., 2011) for Milne-Eddington inversion and the minimum-energy disambiguation algorithm (Metcalf 1994, Leka et al, 2009). The models of the global corona and solar wind, such as the PFSS (potential-field source-surface) model and the MHD simulations, often use the maps of solar surface magnetic field, especially the radial component (Br) as the boundary condition. The HMI observation can provide new Br data for these model. Because of weak magnetic signals at the quiet regions of the Sun, the limb darkening, and geometric effects near solar poles, we need to apply an assumption to make a whole-surface map. In this paper, we tested two assumptions for determining Br at weak-field regions. The coronal structures calculated by the PFSS model with the vector-based Br are compared with those with the magnetogram-based Br and the corona observed by the SDO/AIA (Atmospheric Imaging Assembly). In the tested period, CR 2098, the vector-based Br map gives better agreements than the line-of-sight magnetogram data, though we need further investigation for evaluation.

  9. Magnetic field map around a wall with a complete lightning protection system

    Microsoft Academic Search

    G. Casinovi; A. Geri; G. M. Veca

    1989-01-01

    This paper presents a lumped element model suitable for the evaluation of the electromagnetic interference generated by a lightning protection system during a transient. The protection system considered, consisting of several downlead and potential equalization conductors, is complete. The proposed model accounts for possible ionization effects caused by high lightning currents. A map of the magnetic field near the wall

  10. Distributed fiber optic sensor for mapping of intense magnetic fields based on polarization sensitive reflectometry

    NASA Astrophysics Data System (ADS)

    Palmieri, Luca; Galtarossa, Andrea

    2012-02-01

    We describe a novel distributed fiber optic sensor, which is able to map both strength and orientation of intense static magnetic fields in the area spanned by the fiber. The sensor is based on Faraday rotation and on polarization analysis of the field backscattered by the fiber due to Rayleigh scattering. Owing to a specific theoretical model, it is possible to isolate and measure the effect of magnetic field along the fiber, independently of its intrinsic birefringence. The small Verdet constant of standard silica fibers makes the proposed technique most suited to intense magnetic fields. Two different sensors based on this approach have been built and successfully tested in a 1.5 T magnetic resonance imaging scanner.

  11. Detection of Magnetic Field Intensity Gradient by Homing Pigeons (Columba livia) in a Novel “Virtual Magnetic Map” Conditioning Paradigm

    PubMed Central

    Mora, Cordula V.; Bingman, Verner P.

    2013-01-01

    It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a “virtual magnetic map” during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain. PMID:24039812

  12. He I vector magnetic field maps of a sunspot and its superpenumbral fine-structure

    E-print Network

    Schad, T A; Lin, H; Tritschler, A

    2015-01-01

    Advanced inversions of high-resolution spectropolarimetric observations of the He I triplet at 1083 nm are used to generate unique maps of the chromospheric magnetic field vector across a sunspot and its superpenumbral canopy. The observations were acquired by the Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope (DST) on 29 January 2012. Multiple atmospheric models are employed in the inversions, as superpenumbral Stokes profiles are dominated by atomic-level polarization while sunspot profiles are Zeeman-dominated but also exhibit signatures perhaps induced by symmetry breaking effects of the radiation field incident on the chromospheric material. We derive the equilibrium magnetic structure of a sunspot in the chromosphere, and further show that the superpenumbral magnetic field does not appear finely structured, unlike the observed intensity structure. This suggests fibrils are not concentrations of magnetic flux but rather distinguished by individualized thermalization. We also dire...

  13. Far-field mapping of the longitudinal magnetic and electric optical fields C. Ecoffey, T. Grosjean

    E-print Network

    Boyer, Edmond

    of the longitudinal magnetic and electric optical fields with a standard scanning microscope that involves a high invasive, of high resolution, and shows high detection efficiencies. Magnetic optical properties of physical and biological micro and nano-structures may thus be revealed with a far-field microscope

  14. Lunar Magnetic Field and Plasma Experiment (MAP) Onboard the Japanese Lunar Orbiter SELENE

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Tsunakawa, H.; Yokota, S.

    2001-12-01

    SELENE(SELenological and Engineering satellite) is a Japanese lunar orbiter which will be launched in 2005. The main purpose of this satellite is to study the origin and evolution of the moon by means of global mapping of element abundances, mineralogical composition, and surface geographical mapping from 100km altitude. MAP(Magnetic field And Plasma experiment) is one of the scientific instruments onboard the SELENE satellite. MAP consists of LMAG(Lunar MAGnetometer) and PACE(Plasma energy Angle and Composition Experiment). LMAG is a triaxial flux gate magnetometer that is equipped at the top plate of a 12m long mast in order to avoid the interference magnetic fields caused by the spacecraft .LMAG measures the vector magnetic field in the frequency range below 10Hz with a resolution of 0.1nT. PACE consists of 4 sensors: ESA(Electron Spectrum Analyzer)-S1, ESA-S2, IMA(Ion Mass Analyzer) , and IEA(Ion Energy Analyzer) . ESA-S1 and S2 are two identical sensors that measure the three-dimensional distribution function of low energy electrons below 17keV around the moon. The ESA sensor basically employs a method of a top hat electrostatic analyzer with angular scanning deflectors at the entrance and toroidal electrodes inside. IMA and IEA measure the three-dimensional distribution function of low energy ions below 28keV/q around the moon. IMA has an ability to discriminate the ion mass with high mass resolution. The IMA sensor consists of the energy analyzer that is basically the same as the ESA sensor and the LEF(Linear Electric Field) TOF(Time Of Flight) ion mass analyzer. The IEA sensor consists of only the energy analyzer which is the same as that of the IMA.In order to minimize the mass and power consumption, the control electronics for the LMAG sensor and the PACE sensors are contained in one package, MAP-E. The scientific objectives of the LMAG are 1) to measure the magnetization structure of the lunar magnetic anomalies, 2) to measure the magnetic field environment caused by the moon-solar wind interaction, and 3) to estimate the electric conductivity structure of the lunar interior by measuring the induced magnetic field.The scientific objectives of the PACE are 1) to resolve the moon - solar wind interaction, 2) to resolve the moon - Earth's magnetosphere interaction, 3) to observe the Earth's magnetotail, 4) to measure the ions sputtered from the lunar surface and the lunar atmosphere, and 5) to measure the magnetic anomaly on the lunar surface using ESA and LMAG as an electron reflectometer.

  15. The field line map approach for simulations of magnetically confined plasmas

    E-print Network

    Stegmeir, Andreas; Maj, Omar; Hallatschek, Klaus; Lackner, Karl

    2015-01-01

    In the presented field line map approach the simulation domain of a tokamak is covered with a cylindrical grid, which is Cartesian within poloidal planes. Standard finite-difference methods can be used for the discretisation of perpendicular (w.r.t.~magnetic field lines) operators. The characteristic flute mode property $\\left(k_{\\parallel}\\ll k_{\\perp}\\right)$ of structures is exploited computationally by a grid sparsification in the toroidal direction. A field line following discretisation of parallel operators is then required, which is achieved via a finite difference along magnetic field lines. This includes field line tracing and interpolation or integration. The main emphasis of this paper is on the discretisation of the parallel diffusion operator. Based on the support operator method a scheme is constructed which exhibits only very low numerical perpendicular diffusion. The schemes are implemented in the new code GRILLIX, and extensive benchmarks are presented which show the validity of the approach ...

  16. Fast simulation of the whole-sky CMB map in the presence of primordial magnetic field

    E-print Network

    Pavel Naselsky; Jaiseung Kim

    2008-09-17

    We present a novel method for generation of sets of the Cosmic Microwave Background (CMB) anisotropy maps, which reproduces the $\\Delta \\l=2$ correlations associated with Alfv\\'en turbulence. The method is based on the non-linear transformation of the CMB maps, which is obtained from the Monte Carlo simulation of the statistically isotropic Gaussian signal. Our method is computationally fast and efficient. We have applied two estimators (the cross-correlation estimator in multipole domain for $\\l+1,m$ and $\\l-1,m$ modes and circular phase moments) to test the statistical properties of derived maps. Both of these statistics confirm the effectiveness of our generation method. We believe that our method can be useful for fast generation of the non-Gaussian maps in the presence of the primordial magnetic field, and be a valuable tool for the non-Gaussianity investigation of the CMB in the framework of the future PLANCK data analysis.

  17. The Geopotential Research Mission - Mapping the near earth gravity and magnetic fields

    NASA Technical Reports Server (NTRS)

    Taylor, P. T.; Keating, T.; Smith, D. E.; Langel, R. A.; Schnetzler, C. C.; Kahn, W. D.

    1983-01-01

    The Geopotential Research Mission (GRM), NASA's low-level satellite system designed to measure the gravity and magnetic fields of the earth, and its objectives are described. The GRM will consist of two, Shuttle launched, satellite systems (300 km apart) that will operate simultaneously at a 160 km circular-polar orbit for six months. Current mission goals include mapping the global geoid to 10 cm, measuring gravity-field anomalies to 2 mgal with a spatial resolution of 100 km, detecting crustal magnetic anomalies of 100 km wavelength with 1 nT accuracy, measuring the vectors components to + or - 5 arc sec and 5 nT, and computing the main dipole or core field to 5 nT with a 2 nT/year secular variation detection. Resource analysis and exploration geology are additional applications considered.

  18. Precision Magnetic Field Mapping for the 3He Neutron Spin Filter

    NASA Astrophysics Data System (ADS)

    Ino, Takashi; Arimoto, Yasushi; Kira, Hiroshi; Sakaguchi, Yoshifumi; Shinohara, Takenao; Sakai, Kenji; Oku, Takayuki; Kakurai, Kazuhisa; Ohoyama, Kenji

    3He neutron spin filters require a homogeneous magnetic field, otherwise the nuclear polarization of the 3He gas will easily be lost by small magnetic field gradients. Magnetic cavities with field gradients of 10-4/cm or better are often in demand, and many such cavities - Helmholtz coils, solenoids, permanent magnet circuits, etc - have been developed [1]. These magnetic cavities are designed mostly by using simulations, but the actual magnetic fields may differ from the calculations because of the presence of the environmental magnetic field as well as nearby magnetic materials. To evaluate the real magnetic fields, a precision magnetometry system with a precision of 10-5 was developed.

  19. Magnetic field mapping of the UCNTau magneto-gravitational trap: design study

    SciTech Connect

    Libersky, Matthew Murray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-04

    The beta decay lifetime of the free neutron is an important input to the Standard Model of particle physics, but values measured using different methods have exhibited substantial disagreement. The UCN r experiment in development at Los Alamos National Laboratory (LANL) plans to explore better methods of measuring the neutron lifetime using ultracold neutrons (UCNs). In this experiment, UCNs are confined in a magneto-gravitational trap formed by a curved, asymmetric Halbach array placed inside a vacuum vessel and surrounded by holding field coils. If any defects present in the Halbach array are sufficient to reduce the local field near the surface below that needed to repel the desired energy level UCNs, loss by material interaction can occur at a rate similar to the loss by beta decay. A map of the magnetic field near the surface of the array is necessary to identify any such defects, but the array's curved geometry and placement in a vacuum vessel make conventional field mapping methods difficult. A system consisting of computer vision-based tracking and a rover holding a Hall probe has been designed to map the field near the surface of the array, and construction of an initial prototype has begun at LANL. The design of the system and initial results will be described here.

  20. Design of a magnetic field mapping rover system for a neutron lifetime experiment

    NASA Astrophysics Data System (ADS)

    Libersky, Matthew; UCNTau Collaboration

    2014-09-01

    The beta decay lifetime of the free neutron is an important input to the Standard Model of particle physics, but values measured using different methods have exhibited substantial disagreement. The UCN ? experiment in development at Los Alamos National Laboratory (LANL) plans to explore better methods of measuring the neutron lifetime using ultracold neutrons (UCNs). In this experiment, UCNs are confined in a magneto-gravitational trap formed by a curved, asymmetric Halbach array placed inside a vacuum vessel and surrounded by holding field coils. If any defects present in the Halbach array are sufficient to reduce the local field near the surface below that needed to repel the desired energy level UCNs, loss by material interaction can occur at a rate similar to the loss by beta decay. A map of the magnetic field near the surface of the array is necessary to identify any such defects, but the array's curved geometry and placement in a vacuum vessel make conventional field mapping methods difficult. A system consisting of computer vision-based tracking and a rover holding a Hall probe has been designed to map the field near the surface of the array, and construction of an initial prototype has begun at LANL. A description of the design and prototype will be presented.

  1. The MHD simulation of the solar corona using the synoptic frame map of the solar photospheric magnetic field and the SOHO\\/EIT coronal temperature map

    Microsoft Academic Search

    K. Hayashi; X. P. Zhao; B. Benevolenskaya

    2006-01-01

    In simulation studies of the solar corona the synoptic map format data of the solar photospheric magnetic field have been used as the boundary value to specify the period of interest This approach successfully works however there remain two problems The first one is that the synoptic maps are constructed by collecting the data made at different date for example

  2. Experimental Mapping and Benchmarking of Magnetic Field Codes on the LHD Ion Accelerator

    SciTech Connect

    Chitarin, G. [Consorzio RFX, Associazione EURATOM-ENEA, Corso Stati Uniti 4, 35127 Padova (Italy); University of Padova, Dept. of Management and Engineering, strad. S. Nicola, 36100 Vicenza (Italy); Agostinetti, P.; Gallo, A.; Marconato, N.; Serianni, G. [Consorzio RFX, Associazione EURATOM-ENEA, Corso Stati Uniti 4, 35127 Padova (Italy); Nakano, H.; Takeiri, Y.; Tsumori, K. [National Institute for Fusion Science, Particle Beam Heated Research Div, 322-6, Oroshi-cho, Toki, Gifu, 509-5292 (Japan)

    2011-09-26

    For the validation of the numerical models used for the design of the Neutral Beam Test Facility for ITER in Padua [1], an experimental benchmark against a full-size device has been sought. The LHD BL2 injector [2] has been chosen as a first benchmark, because the BL2 Negative Ion Source and Beam Accelerator are geometrically similar to SPIDER, even though BL2 does not include current bars and ferromagnetic materials. A comprehensive 3D magnetic field model of the LHD BL2 device has been developed based on the same assumptions used for SPIDER. In parallel, a detailed experimental magnetic map of the BL2 device has been obtained using a suitably designed 3D adjustable structure for the fine positioning of the magnetic sensors inside 27 of the 770 beamlet apertures. The calculated values have been compared to the experimental data. The work has confirmed the quality of the numerical model, and has also provided useful information on the magnetic non-uniformities due to the edge effects and to the tolerance on permanent magnet remanence.

  3. Precision Mapping of Laser-Driven Magnetic Fields and Their Evolution in High-Energy-Density Plasmas

    NASA Astrophysics Data System (ADS)

    Gao, L.; Nilson, P. M.; Igumenshchev, I. V.; Haines, M. G.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2015-05-01

    The magnetic fields generated at the surface of a laser-irradiated planar solid target are mapped using ultrafast proton radiography. Thick (50 ? m ) plastic foils are irradiated with 4-kJ, 2.5-ns laser pulses focused to an intensity of 4 ×1014 W /cm2 . The data show magnetic fields concentrated at the edge of the laser-focal region, well within the expanding coronal plasma. The magnetic-field spatial distribution is tracked and shows good agreement with 2D resistive magnetohydrodynamic simulations using the code draco when the Biermann battery source, fluid and Nernst advection, resistive magnetic diffusion, and Righi-Leduc heat flow are included.

  4. New robust 3-D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images.

    PubMed

    Cusack, R; Papadakis, N

    2002-07-01

    The phase, as well as the magnitude, of MRI images can carry useful information. It may be used to encode flow or temperature, or to map the magnetic field for the undistorting of EPIs and automated shimming. In all cases, we measure the extra spin given to nuclei. Unfortunately, we can only measure the final phase of the spins: the rotation is wrapped into the range [-pi, +pi], and to obtain a measure of the parameter of interest the missing multiples of 2pi must be replaced--a process known as phase unwrapping. While simple in principle, standard phase unwrapping algorithms fail catastrophically in the presence of even small amounts of noise. Here we present a new algorithm for robust three-dimensional phase unwrapping, in which unwrapping is guided, so that it initially works on less noisy regions. We test the algorithm on simulated phase data, and on maps of magnetic field, which were then used to successfully undistort EPI images. The unwrapping algorithm could be directly applied to other kinds of phase data. PMID:12169259

  5. Mapping nanoscale light fields

    NASA Astrophysics Data System (ADS)

    Rotenberg, N.; Kuipers, L.

    2014-12-01

    The control of light fields on subwavelength scales in nanophotonic structures has become ubiquitous, driven by both curiosity and a multitude of applications in fields ranging from biosensing to quantum optics. Mapping these fields in detail is crucial, as theoretical modelling is far from trivial and highly dependent on nanoscale geometry. Recent developments of nanoscale field mapping, particularly with near-field microscopy, have not only led to a vastly increased resolution, but have also resulted in increased functionality. The phase and amplitude of different vector components of both the electric and magnetic fields are now accessible, as is the ultrafast temporal or spectral evolution of propagating pulses in nanostructures. In this Review we assess the current state-of-the-art of subwavelength light mapping, highlighting the new science and nanostructures that have subsequently become accessible.

  6. Pulsar-based Galactic Magnetic Map: A Large-Scale Clockwise Magnetic Field with an Anticlockwise Annulus

    NASA Astrophysics Data System (ADS)

    Vallée, Jacques P.

    2005-01-01

    The rotation measure RM and location L of over 350 pulsars in the Milky Way are used to constrain the structure of the large-scale magnetic field in the Milky Way disk. Various magnetic field directions in various concentric circles are employed in the mapping to fit the RM and L values, allowing the testing of various models. This approach can build up signal-to-noise ratios by averaging across large rings (of size 1 kpc); at worst, this approach may miss a (double) field reversal occurring within a ring. My current work here begins with the assumption of concentric rings. In the best pulsar-based fit, an overall clockwise-going magnetic field (as seen from the north Galactic pole) extends radially at least from 1 to 12 kpc from the Galactic center, except for a 2 kpc wide anticlockwise magnetic field located in an annulus between 4 and 6 kpc from the Galactic center. The best fit has a very special feature in the form of a string of H II regions located in the anticlockwise annulus. For the mean pulsar RM as averaged over radial rings, the system of a clockwise-going Galactic magnetic field with only one anticlockwise-going field in an annulus produces the lowest reduced ?2. All other fits with a different number of field-reversed annuli have a 4 times larger reduced ?2 or worse. Thus a completely clockwise fit (no reversed ring) has a 5 times larger reduced ?2. Fits do not support more than one magnetically reversed annulus in the Galaxy, coming up with an 8 times larger reduced ?2 for two opposite rings, 4 times larger for four opposite rings, 4 times larger for six opposite rings, and 9 times larger for 12 alternating zones. Splitting the pulsars above from those below the Galactic plane, the best fit with a single reversed ring holds true separately for pulsars above the plane and for pulsars below the plane. The origin of the anticlockwise annulus could be due to a number of factors (internal or external) or could be primordial (regular or chaotic).

  7. Magnetic Fields

    E-print Network

    Schöller, Markus

    2015-01-01

    In this chapter, we give a brief introduction into the use of the Zeeman effect in astronomy and the general detection of magnetic fields in stars, concentrating on the use of FORS2 for longitudinal magnetic field measurements.

  8. Rearing in a distorted magnetic field disrupts the ‘map sense’ of juvenile steelhead trout

    PubMed Central

    Putman, Nathan F.; Meinke, Amanda M.; Noakes, David L. G.

    2014-01-01

    We used simulated magnetic displacements to test orientation preferences of juvenile steelhead trout (Oncorhynchus mykiss) exposed to magnetic fields existing at the northernmost and southernmost boundaries of their oceanic range. Fish reared in natural magnetic conditions distinguished between these two fields by orienting in opposite directions, with headings that would lead fish towards marine foraging grounds. However, fish reared in a spatially distorted magnetic field failed to distinguish between the experimental fields and were randomly oriented. The non-uniform field in which fish were reared is probably typical of fields that many hatchery fish encounter due to magnetic distortions associated with the infrastructure of aquaculture. Given that the reduced navigational abilities we observed could negatively influence marine survival, homing ability and hatchery efficiency, we recommend further study on the implications of rearing salmonids in unnatural magnetic fields. PMID:24899681

  9. FIRST SYNOPTIC MAPS OF PHOTOSPHERIC VECTOR MAGNETIC FIELD FROM SOLIS/VSM: NON-RADIAL MAGNETIC FIELDS AND HEMISPHERIC PATTERN OF HELICITY

    SciTech Connect

    Gosain, S.; Pevtsov, A. A. [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Rudenko, G. V.; Anfinogentov, S. A. [Institute of Solar-Terrestrial Physics (ISTP), Russian Academy of Sciences, Irkutsk (Russian Federation)

    2013-07-20

    We use daily full-disk vector magnetograms from Vector Spectromagnetograph on Synoptic Optical Long-term Investigations of the Sun system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of the observed radial field with the radial field estimate from line-of-sight magnetograms. Furthermore, we employ these maps to study the hemispheric pattern of current helicity density, H{sub c} , during the rising phase of solar cycle 24. The longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e., H{sub c} is predominantly negative in the north and positive in the south. Although our data include the early phase of cycle 24, there appears to be no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of the cycle as predicted by some dynamo models. Furthermore, we compute the hemispheric pattern in active region latitudes (-30 Degree-Sign {<=} {theta} {<=} 30 Degree-Sign ) separately for weak (100 G < |B{sub r} | < 500 G) and strong (|B{sub r} | > 1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., {theta} {center_dot} H{sub c} < 0), H{sub c} of weak fields exhibits an inverse hemispheric behavior (i.e., {theta} {center_dot} H{sub c} > 0), albeit with large statistical scatter. We discuss two plausible scenarios to explain the opposite hemispheric trend of helicity in weak and strong field regions.

  10. Magnetic Dirac-harmonic maps

    NASA Astrophysics Data System (ADS)

    Branding, Volker

    2015-03-01

    We study a functional, whose critical points couple Dirac-harmonic maps from surfaces with a two form. The critical points can be interpreted as coupling the prescribed mean curvature equation to spinor fields. On the other hand, this functional also arises as part of the supersymmetric sigma model in theoretical physics. In two dimensions it is conformally invariant. We call critical points of this functional magnetic Dirac-harmonic maps. We study geometric and analytic properties of magnetic Dirac-harmonic maps including their regularity and the removal of isolated singularities.

  11. Detecting Ferrite Nanobeads for Sentinel Lymph Node Mapping with a Highly Sensitive Hall Differential Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Abe, M.; Ueda, T.; Masaki, T.; Kitamoto, Y.; Matsushita, N.; Handa, H.

    2012-03-01

    We fabricated a novel type of Hall differential magnetic field sensor for anti-cancer sentinel lymph node (SLN) mapping using ferrofluid as a marker. A pair of Hall devices are mounted on both end surfaces of a ferrite core (10 mm phi ×32 mm) of an electromagnetic coil which generates an AC exciting magnetic field at 2.5 kHz. The signals are retrieved by a digital phase sensitive detection circuit. Mapping a ferrofluid (ResovistR) sample of l00?g in Fe atomic amount (comparable to that accumulated in human SLNs) was attained when the sample was placed within 6 mm distance from the sensor head. The detectable distance is limited primarily due to the magnetic induction effect of the metal XYZ stage which held the sample.

  12. Precision Mapping of Laser-Driven Magnetic Fields and Their Evolution in High-Energy-Density Plasmas.

    PubMed

    Gao, L; Nilson, P M; Igumenshchev, I V; Haines, M G; Froula, D H; Betti, R; Meyerhofer, D D

    2015-05-29

    The magnetic fields generated at the surface of a laser-irradiated planar solid target are mapped using ultrafast proton radiography. Thick (50???m) plastic foils are irradiated with 4-kJ, 2.5-ns laser pulses focused to an intensity of 4×10^{14}??W/cm^{2}. The data show magnetic fields concentrated at the edge of the laser-focal region, well within the expanding coronal plasma. The magnetic-field spatial distribution is tracked and shows good agreement with 2D resistive magnetohydrodynamic simulations using the code draco when the Biermann battery source, fluid and Nernst advection, resistive magnetic diffusion, and Righi-Leduc heat flow are included. PMID:26066442

  13. He uc(i) Vector Magnetic Field Maps of a Sunspot and Its Superpenumbral Fine-Structure

    NASA Astrophysics Data System (ADS)

    Schad, T. A.; Penn, M. J.; Lin, H.; Tritschler, A.

    2015-06-01

    Advanced inversions of high-resolution spectropolarimetric observations of the He uc(i) triplet at 1083 nm are used to generate unique maps of the chromospheric magnetic field vector across a sunspot and its superpenumbral canopy. The observations were acquired by the Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope (DST) on 29 January 2012. Multiple atmospheric models are employed in the inversions because superpenumbral Stokes profiles are dominated by atomic-level polarization, while sunspot profiles are Zeeman-dominated, but also exhibit signatures that might be induced by symmetry-breaking effects of the radiation field incident on the chromospheric material. We derive the equilibrium magnetic structure of a sunspot in the chromosphere and furthermore show that the superpenumbral magnetic field does not appear to be finely structured, unlike the observed intensity structure. This suggests that fibrils are not concentrations of magnetic flux, but are instead distinguished by individualized thermalization. We also directly compare our inverted values with a current-free extrapolation of the chromospheric field. With improved measurements in the future, the average shear angle between the inferred magnetic field and the potential field may offer a means to quantify the non-potentiality of the chromospheric magnetic field to study the onset of explosive solar phenomena.

  14. Mapping the earth's magnetic and gravity fields from space Current status and future prospects

    NASA Technical Reports Server (NTRS)

    Settle, M.; Taranik, J. V.

    1983-01-01

    The principal magnetic fields encountered by earth orbiting spacecraft include the main (core) field, external fields produced by electrical currents within the ionosphere and magnetosphere, and the crustal (anomaly) field generated by variations in the magnetization of the outermost portions of the earth. The first orbital field measurements which proved to be of use for global studies of crustal magnetization were obtained by a series of three satellites launched and operated from 1965 to 1971. Each of the satellites, known as a Polar Orbiting Geophysical Observatory (POGO), carried a rubidium vapor magnetometer. Attention is also given to Magsat launched in 1979, the scalar anomaly field derived from the Magsat measurements, satellite tracking studies in connection with gravity field surveys, radar altimetry, the belt of positive free air gravity anomalies situated along the edge of the Pacific Ocean basin, future technological capabilities, and information concerning data availability.

  15. Magnetic Field Safety Magnetic Field Safety

    E-print Network

    McQuade, D. Tyler

    Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain fields will rapidly accelerate any magnetic material towards the magnet. § Magnetic material is commonly

  16. Obtaining vector magnetic field maps from single-component measurements of geological samples

    E-print Network

    Andrade Lima, Eduardo

    Maxwell's equations can be used to demonstrate that the components of a static magnetic field in a region of space devoid of sources are not independent. This means that magnetometers that measure a single component of the ...

  17. Addition of trim coils to the Tandem Mirror Experiment Upgrade (TMX-U) magnet system to improve the magnetic field mapping

    SciTech Connect

    Wong, R.L.; Pedrotti, L.R.; Baldwin, D.E.; Hibbs, S.M.; Hill, D.N.; Hornady, R.H.; Jackson, M.C.

    1985-11-14

    The mapping of the magnetic flux bundle from the center cell to the Plasma Potential Control plates (PPC) on the end fan of the Tandem Mirror Experiment Upgrade (TMX-U), was improved by the addition of trim coils (12,000 amp-turns) on each side of each end fan next to the pump beam magnetic shields. The coils' axes are oriented perpendicular to the machine centerline. These coils made the necessary corrections to the field-line mapping, while keeping the field in the nearby pump beam magnetic shield below the saturation threshold. This paper briefly describes the problem, discusses the design as it evolved, and presents the results of the field testing. The disturbance to the field mapping and the appropriate corrections were determined using the code GFUN (a three dimensional electromagnetic field analysis code that includes the presence of permeable materials). The racetrack-shaped coils have dimensions of 1.5 feet by 3 feet and are powered by a renovated 600 kW Bart-Messing power supply controlled by the machine's magnet control system. The magnets were fabricated from polyimide-coated magnet wire. They are rated to 200/sup 0/C, although in pulsed operation they rise only a few degrees centigrade. The coils are placed outside of the vacuum system, and thus are considerably simpler than the other machine magnets. The restraints are designed to withstand a force of 1000 pounds per coil and a turning moment of 1000 foot pounds. The calculated field strengths were verified on the machine by inserting a Hall probe along the axis. The perturbations to the neutral beam magnetic shields were also measured. A brief description of the improvement in the machine performance is also included.

  18. Detection of fiber damage in a graphite epoxy composite using current injection and magnetic field mapping

    NASA Technical Reports Server (NTRS)

    Blalock, T. N.; Yost, W. T.

    1986-01-01

    A novel NDE technique is reported for detecting fiber disruptions in graphite-epoxy composites. The technique involves injecting electric current along the graphite fibers of a composite and measuring the resulting magnetic fields. The disruptions in current paths, which occur in areas of fiber damage, are detectable as perturbations in the magnetic field. The experimental setup, the measurements, and the magnetic images of experimental samples are presented. A resistive model has been developed to be used in the modeling of two-dimensional conductivity patterns in graphite composites. Diagrams of the setup and the circuitry are included.

  19. Mapping the open/closed boundary in Jupiter’s polar cap with a 2-D equatorial magnetic field model

    NASA Astrophysics Data System (ADS)

    Vogt, M. F.; Kivelson, M. G.; Khurana, K. K.; Walker, R. J.

    2009-12-01

    The main auroral oval emissions at Jupiter are not associated with the open/closed flux boundary in the polar cap as they are at the Earth, but with the breakdown of plasma corotation in the middle magnetosphere. As a result, the boundary between open and closed flux in the ionosphere is not well defined, though the region of open flux is generally thought to be small. We have mapped contours of constant radial distance from the magnetic equator to the ionosphere with the objective of understanding how auroral features relate to magnetospheric sources. Instead of following along a model field, we map equatorial field lines to the ionosphere by requiring that the magnetic flux in some specified region at the equator equal the magnetic flux in the area to which it maps in the ionosphere. We represent the north-south component of the measured magnetic field (B?) at the equator as a function of radial distance and local time by fitting equatorial field measurements to a two-dimensional functional form. From the equatorial field function, we calculate the flux through the equator in pixels of radial increment 5 RJ and a fixed longitudinal. We start by identifying the ionospheric footprint of an equatorial curve at 20 RJ where field models are reasonably accurate. The pixels at 20 RJ are traced to the ionosphere using the field bend back from Khurana and Schwarzl (2005) to determine the corresponding surface longitude. Using a version of the VIP4 model (Connerney et al., 1998) that has been modified to include the effects of the current sheet (Khurana, 1997) to estimate the internal Jovian field in the ionosphere, we then displace the auroral boundary poleward until the ionospheric flux equals the flux in the equatorial pixel. With iteration, we obtain the ionospheric mapping of the 25 RJ circle at the equator. Further iteration provides the mapping of successively distant circles. Equating the fluxes in this way allows us to link a given position in the magnetosphere to a position in the ionosphere and to gain insight into the source of different auroral features. In particular, the approach allows us to identify the mapping of the dayside magnetopause and thereby establish possible locations of a portion of the open/closed flux boundary in Jupiter’s polar cap. The results should be useful in understanding models of dynamics and the open or closed nature of the Jovian magnetosphere.

  20. Magnetic Field Mapping and Integral Transfer Function Matching of the Prototype Dipoles for the NSLS-II at BNL

    SciTech Connect

    He, P.; Jain, A., Gupta, R., Skaritka, J., Spataro, C., Joshi, P., Ganetis, G., Anerella, M., Wanderer, P.

    2011-03-28

    The National Synchrotron Light Source-II (NSLS-II) storage ring at Brookhaven National Laboratory (BNL) will be equipped with 54 dipole magnets having a gap of 35 mm, and 6 dipoles having a gap of 90 mm. Each dipole has a field of 0.4 T and provides 6 degrees of bending for a 3 GeV electron beam. The large aperture magnets are necessary to allow the extraction of long-wavelength light from the dipole magnet to serve a growing number of users of low energy radiation. The dipoles must not only have good field homogeneity (0.015% over a 40 mm x 20 mm region), but the integral transfer functions and integral end harmonics of the two types of magnets must also be matched. The 35 mm aperture dipole has a novel design where the yoke ends are extended up to the outside dimension of the coil using magnetic steel nose pieces. This design increases the effective length of the dipole without increasing the physical length. These nose pieces can be tailored to adjust the integral transfer function as well as the homogeneity of the integrated field. One prototype of each dipole type has been fabricated to validate the designs and to study matching of the two dipoles. A Hall probe mapping system has been built with three Group 3 Hall probes mounted on a 2-D translation stage. The probes are arranged with one probe in the midplane of the magnet and the others vertically offset by {+-}10 mm. The field is mapped around a nominal 25 m radius beam trajectory. The results of measurements in the as-received magnets, and with modifications made to the nose pieces are presented.

  1. Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping.

    PubMed

    Liu, Tian; Wisnieff, Cynthia; Lou, Min; Chen, Weiwei; Spincemaille, Pascal; Wang, Yi

    2013-02-01

    Quantitative susceptibility mapping (QSM) opens the door for measuring tissue magnetic susceptibility properties that may be important biomarkers, and QSM is becoming an increasingly active area of scientific and clinical investigations. In practical applications, there are sources of errors for QSM including noise, phase unwrapping failures, and signal model inaccuracy. To improve the robustness of QSM quality, we propose a nonlinear data fidelity term for frequency map estimation and dipole inversion to reduce noise and effects of phase unwrapping failures, and a method for model error reduction through iterative tuning. Compared with the previous phase based linear QSM method, this nonlinear QSM method reduced salt and pepper noise or checkerboard pattern in high susceptibility regions in healthy subjects and markedly reduced artifacts in patients with intracerebral hemorrhages. PMID:22488774

  2. Detecting Exoplanetary Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Llama, Joe

    2015-01-01

    Asymmetries in exoplanet transits are proving to be a useful tool for furthering our understanding of magnetic activity on both stars and planets outside our Solar System.Near-UV observations of the WASP-12 system have revealed asymmetries in the timing of the transit when compared with the optical light curve. A number of possible explanations have been suggested for this variation, including the presence of a magnetospheric bow shock arising from the interaction of the planet's magnetic field with the stellar wind from it's host star. Such observations provide the first method for directly detecting the presence of a magnetic field on exoplanets.The shape and size of such asymmetries is highly dependent on the structure of the host stars magnetic field at the time of observation. This implies we may observe highly varying near-UV transit light curves for the same system. These variations can then be used to learn about the geometry of the host star's magnetic field.In this presentation I will show modelling a bow shock around an exoplanet can help us to not only detect, but also also place constraints on the magnetic field strength of hot Jupiters. For some systems, such as HD 189733, we have maps of the surface magnetic field of the star at various epochs. I will also show how incorporating these maps into a stellar wind model, I can model the formation of a bow shock around the planet and hence demonstrate the variability of the near-UV transits.

  3. Mapping magnetic fields in the cold dust at the Galactic center

    NASA Astrophysics Data System (ADS)

    Chuss, David Thomas

    We present polarimetry results of the Galactic center with two complementary instruments: SPARO (Submillimeter Polarimeter for Antarctic Remote Observing), a 450 ?m polarimeter with 6' resolution, and Hertz, a 350 ?m polarimeter with 20' resolution operating on the Caltech Submillimeter Observatory. The design of SPARO is reviewed. A description of the data acquisition and analysis for SPARO is included. Finally, results are presented for the two instruments that are consistent with a model for the Galactic center magnetosphere in which an initially poloidal field has been sheared into a toroidal configuration in regions in which the energy density of gravity dominates that of magnetic fields. The SPARO data show that at low latitudes over much of the central 200 pc of the Galactic center, the field is toroidal. The Hertz data focus on the central 30 pc and find a clumpy matter distribution in which the dense regions are dominated by a toroidal field, while in the less dense regions, the field is preferentially poloidal. We use this model to estimate a characteristic field strength in this region of ˜3 mG.

  4. Measuring the cluster magnetic field power spectra from Faraday rotation maps of Abell 400, Abell 2634 and Hydra A

    NASA Astrophysics Data System (ADS)

    Vogt, C.; Enßlin, T. A.

    2003-12-01

    We apply a novel technique of Faraday Rotation measure (RM) map analysis to three galaxy clusters, Abell 400, Abell 2634 and Hydra A, in order to estimate cluster magnetic field strengths, length scales and power spectra. This analysis - essentially a correlation analysis - is based on the assumption that the magnetic fields are statistically isotropically distributed across the Faraday screen. We investigate the difficulties involved in the application of the analysis to observational data. We derive magnetic power spectra for three clusters, i.e. Abell 400, Abell 2634 and Hydra A, and discuss influences on their shapes caused by the observational nature of the data such as limited source size and resolution. We successfully apply various tests to validate our assumptions. We show that magnetic fluctuations are probed on length scales ranging over at least one order of magnitude. Using this range for the determination of magnetic field strength of the central cluster gas yields 3 mu G in Abell 2634, 6 mu G in Abell 400 and 12 mu G in Hydra A as conservative estimates. The magnetic field autocorrelation length lambda_B was determined to be 4.9 kpc for Abell 2634, 3.6 kpc for Abell 400 and 0.9 kpc for Hydra A. We show that the RM autocorrelation length lambda RM is larger than the magnetic field autocorrelation length lambda_B - for the three clusters studied, we found lambda RM =~ 2...4lambda_B - and thus, they are not equal as often assumed in the literature. Furthermore, we investigate in a response analysis if it is possible to determine spectral slopes of the power spectra. We find that integrated numbers can be reliably determined from this analysis but differential parameters such as spectral slopes have to be treated differently. However, our response analysis results in spectral slopes of the power spectra of spectral indices alpha = 1.6 to 2.0 suggesting that Kolmogorov spectra (alpha = 5/3) are possible but flatter spectral slopes than alpha = 1.3 can be excluded.

  5. High resolution magnetic field mapping of complex magmatic rock suites and associated tectonic structures in the Southern Andes

    NASA Astrophysics Data System (ADS)

    Díaz-Michelena, Marina; Kilian, Rolf

    2013-04-01

    Magmatic and metamorphic rocks of the southernmost Andes (50 to 55°S) document a complex magmatic and tectonic history of an active continental margin during the past >140 Ma [1]. However, the regional distribution of the multiple magmatic intrusive rock suites and younger systems of basaltic dykes as well as the tectonic control of associated hydrothermal systems are widely unexplored. Since the rocks are often bare exposed they represent an ideal test site for a magnetic field investigation with significant implication for future aeromagnetic mapping. Thus we performed a high resolution near-surface grid of measurements with a scalar and vector magnetometer at selected sites which include different intrusive rocks, tectonic lineaments and hydrothermal alteration with an associated mineralization. The magnetic signature corresponding to the Natural Remanent Magnetisation (NRM) was measured on Mesozoic and Cenozoic gabbroid to granitic plutons with large range chemical and mineralogical variations [1], on distinct basaltic dykes, as well as on mylonites, gneisses and hornfels rocks. The whole-rock chemistry of the selected rock types was determined by Atomic Absorption Spectroscopy and X-ray Fluorescence. The analysed and mapped rocks include the SiO2 range from 45 to 76 wt.%, FeO (tot) contents from 2 to 18 wt.% and Ti2O contents from 0.2 to 2.5 wt.%. The mineral assemblages were analysed by polarization microscopy, with an electron microprobe and X-ray diffraction. In the plutonic rocks the whole rock chemistry often is related to the amount of magnetite and NRM intensities [2]. However, measured magnetic intensities let us estimate the degree of chloritization and associated demagnetisation by magnetite alteration and transformation to maghemite and/or iron-hydroxides. For Miocene basaltic dyke systems of decimetre to several meters extension within granitic plutons, a high resolution magnetic mapping has been also performed. We expected a relationship of distinct cooling histories and related grain size distribution of magnetites in these dyke, but most of them have been demagnetized by hydrothermal alteration. However, many dykes include thin zones (a few centimetres) with hydrothermal mineralization (e.g. pyrrhotite) which have been formed at the interfaces between mafic dykes and granites. This hydro-thermal re-magnetization along the dykes and sometimes within the granites are characterised by significant and sharp defined positive magnetic anomalies. The regional mapping of these anomalies shows the orientation of the hydrothermal pathways which follow typical neotectonic crustal lineaments. Our results should improve interpretation of aeromagnetic mapping of crystalline basement rocks and hydrothermal pathways, also on other planets. 1 - Hervé, F., Pankhurst, R.J., Fanning, C.M., Calderón, M., Yaxley, G.M. (2007). The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos 97, 373-394. 2 - Alva-Valdivia L. M. and López-Loera, H. (2011). A review of iron oxide transformations, rock magnetism and interpretation of magnetic anomalies: El Morro Mine (Brazil), a case study. Geofísica International 50-3: 341-362.

  6. Magnetic field mapping of the Belle solenoid N. Tan a M. Akatsu b A. Bozek c,2 K. Fujimoto b J. Haba c,1

    E-print Network

    of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan fDepartment of Physics, Faculty of Science Magnetic field mapping of the Belle solenoid N. Tan a M. Akatsu b A. Bozek c,2 K of IP inside the same cryostat as the quadrupole coils. The leakage field from the compensating

  7. THE EFFECT OF LIMITED SPATIAL RESOLUTION OF STELLAR SURFACE MAGNETIC FIELD MAPS ON MAGNETOHYDRODYNAMIC WIND AND CORONAL X-RAY EMISSION MODELS

    SciTech Connect

    Garraffo, C.; Cohen, O.; Drake, J. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA 02138 (United States); Downs, C. [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States)] [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States)

    2013-02-10

    We study the influence of the spatial resolution on scales of 5 Degree-Sign and smaller of solar surface magnetic field maps on global magnetohydrodynamic solar wind models, and on a model of coronal heating and X-ray emission. We compare the solutions driven by a low-resolution Wilcox Solar Observatory magnetic map, the same map with spatial resolution artificially increased by a refinement algorithm, and a high-resolution Solar and Heliospheric Observatory Michelson Doppler Imager map. We find that both the wind structure and the X-ray morphology are affected by the fine-scale surface magnetic structure. Moreover, the X-ray morphology is dominated by the closed loop structure between mixed polarities on smaller scales and shows significant changes between high- and low-resolution maps. We conclude that three-dimensional modeling of coronal X-ray emission has greater surface magnetic field spatial resolution requirements than wind modeling, and can be unreliable unless the dominant mixed polarity magnetic flux is properly resolved.

  8. Magnetic fields in astrophysics

    Microsoft Academic Search

    Ia. B. Zeldovich; A. A. Ruzmaikin; D. D. Sokolov

    1983-01-01

    The evidence of cosmic magnetism is examined, taking into account the Zeeman effect, beats in atomic transitions, the Hanle effect, Faraday rotation, gyro-lines, and the strength and scale of magnetic fields in astrophysics. The origin of magnetic fields is considered along with dynamos, the conditions for magnetic field generation, the topology of flows, magnetic fields in stationary flows, kinematic turbulent

  9. HMI Magnetic Field Products

    NASA Astrophysics Data System (ADS)

    Hoeksema, Jon T.; HMI Magnetic Field Team

    2013-07-01

    The Helioseismic and Magnetic Imager (HMI) on SDO has measured magnetic field, velocity, and intensity in the photosphere over the full disk continuously since May 2010 with arc-second resolution. Scalar images are measured every 45 seconds. From these basic observables the pipeline automatically identifies and tracks active regions on the solar disk. The vector magnetic field and a variety of summary quantities are determined every 720s in these tracked Space-weather HMI Active Region Patches (SHARPS). Synoptic and synchronic maps are constructed daily and after each Carrington Rotation Most data products are available with definitive scientific calibration after a few day deal at and in a quick-look near-real-time version a few minutes after the observations are made. Uncertainties are determined for the derived products. All of the magnetic field products along with movies and images suitable for browsing are available at http:://Hmi.stanford.edu/magnetic. Other products, e.g. coronal field over active regions, can be computed on demand.

  10. Magnetic field mapping of the Belle solenoid N. Tan a M. Akatsu b A. Bozek c;2 K. Fujimoto b J. Haba c;1

    E-print Network

    , as illustrated in Fig. 1. These are assembled from 47 mm thick iron slabs in a fifteen­layer structureMagnetic field mapping of the Belle solenoid N. Tan a M. Akatsu b A. Bozek c;2 K. Fujimoto b J and Technology, Koganei, Tokyo 184­8588, Japan f Department of Physics, Faculty of Science, University of Tokyo

  11. Vortex electron energy loss spectroscopy for near-field mapping of magnetic

    E-print Network

    Bornemann, Jens

    of vortex electron beam electron energy loss spectroscopy (EELS), or vortex-EELS for short, is presented, to calculate spatially resolved vortex-EELS maps of a metal split ring resonator (SRR). The vortex-EELS scattering cross section for the SRR structure is within an order of magnitude of conventional EELS typically

  12. Exploring Magnetic Field Lines

    NSDL National Science Digital Library

    NASA

    2012-06-26

    In this activity, learners explore the magnetic field of a bar magnet as an introduction to understanding Earth's magnetic field. First, learners explore and play with magnets and compasses. Then, learners trace the field lines of the magnet using the compass on a large piece of paper. This activity will also demonstrate why prominences are always "loops."

  13. Electric and magnetic fields

    Microsoft Academic Search

    K. B. Maracas

    1994-01-01

    Increasing electrification brings increased human exposures to electric and magnetic fields, commonly called EMFs, and growing evidence suggests that exposure to even low frequency, low energy, electric and magnetic fields may be related to adverse health effects. This paper focuses on magnetic fields and strategies that address them. The challenges faced by scientists in understanding magnetic field interactions with humans,

  14. Magnetic Fields Matter

    NSDL National Science Digital Library

    2014-09-18

    This lesson introduces students to the effects of magnetic fields in matter addressing permanent magnets, diamagnetism, paramagnetism, ferromagnetism, and magnetization. First students must compare the magnetic field of a solenoid to the magnetic field of a permanent magnet. Students then learn the response of diamagnetic, paramagnetic, and ferromagnetic material to a magnetic field. Now aware of the mechanism causing a solid to respond to a field, students learn how to measure the response by looking at the net magnetic moment per unit volume of the material.

  15. Exploring Magnetic Fields

    NSDL National Science Digital Library

    In this activity, students investigate the presence of magnetic fields around magnets, the sun and the earth. They will explore magnetic field lines, understand that magnetic lines of force show the strength and direction of magnetic fields, determine how field lines interact between attracting and repelling magnetic poles, and discover that the earth and sun have magnetic properties. They will also discover that magnetic force is invisible and that a "field of force" is a region or space in which one object can attract or repel another.

  16. What are Magnetic Fields?

    NSDL National Science Digital Library

    2012-08-03

    This is an activity about magnetic fields. Using iron filings, learners will observe magnets in various arrangements to investigate the magnetic field lines of force. This information is then related to magnetic loops on the Sun's surface and the magnetic field of the Earth. This is the second activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.

  17. Visualizing Magnetic Field Lines

    NSDL National Science Digital Library

    2014-09-18

    In this activity, students take the age old concept of etch-a-sketch a step further. Using iron filings, students begin visualizing magnetic field lines. To do so, students use a compass to read the direction of the magnet's magnetic field. Then, students observe the behavior of iron filings near that magnet as they rotate the filings about the magnet. Finally, students study the behavior of iron filings suspended in mineral oil which displays the magnetic field in three dimensions.

  18. Magnetic fields of galaxies

    Microsoft Academic Search

    Aleksandr A. Ruzmaikin; Dmitrii D. Sokolov; Anvar M. Shukurov

    1988-01-01

    The current state of the understanding of the magnetic fields of galaxies is reviewed. A simple model of the turbulent dynamo is developed which explains the main observational features of the global magnetic fields of spiral galaxies. The generation of small-scale chaotic magnetic fields in the interstellar medium is also examined. Attention is also given to the role of magnetic

  19. Addition of trim coils to the Tandem Mirror Experiment Upgrade (TMX-U) magnet system to improve the magnetic field mapping

    Microsoft Academic Search

    R. L. Wong; L. R. Pedrotti; D. E. Baldwin; S. M. Hibbs; D. N. Hill; R. H. Hornady; M. C. Jackson

    1985-01-01

    The mapping of the magnetic flux bundle from the center cell to the Plasma Potential Control plates (PPC) on the end fan of the Tandem Mirror Experiment Upgrade (TMX-U), was improved by the addition of trim coils (12,000 amp-turns) on each side of each end fan next to the pump beam magnetic shields. The coils' axes are oriented perpendicular to

  20. Facility Measures Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

    1991-01-01

    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  1. Primordial Magnetic Fields in Cosmology

    E-print Network

    Iain A. Brown

    2008-12-09

    Magnetic fields have been observed in galaxies, clusters of galaxies and probably in superclusters. While mechanisms exist to generate these in the late universe, it is possible that magnetic fields have existed since very early times. This thesis is concerned with methods to predict the form of such imprints. We review in detail a standard, linearised cosmology before introducing an electromagnetic field. We then consider the intrinsic statistics of the magnetic stresses in two ways, analytically and via static realisations. We construct the power spectra, some of which we present for the first time. At the one- and three-point level we find significant intrinsic non-Gaussianities. Finally we turn to the observable impacts a primordial magnetic field. Assuming coherence, the statistics of the source can be mapped onto the CMB in a simple manner. We demonstrate that our approach is valid by reproducing the signals for Gaussian power law fields on the microwave sky. [ABRIDGED

  2. The Declining Magnetic Field

    NSDL National Science Digital Library

    2012-08-03

    This is an activity about the declining strength of Earth's magnetic field. Learners will review a graph of magnetic field intensity and calculate the amount by which the field has changed its intensity in the last century, the rate of change of its intensity, and when the field should decrease to zero strength at the current rate of change. Learners will also use evidence from relevant sources to create a conjecture on the effects on Earth of a vanished magnetic field. Access to information sources about Earth's magnetic field strength is needed for this activity. This is Activity 7 in the Exploring Magnetism on Earth teachers guide.

  3. Magnetic Fields Analogous to electric field, a magnet

    E-print Network

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic characteristic of elementary particles such as an electron #12;Magnetic Fields Magnetic field lines Direction

  4. High-Field (9.4 T) MRI of Brain Dysmyelination by Quantitative Mapping of Magnetic Susceptibility

    PubMed Central

    Liu, Chunlei; Li, Wei; Johnson, G. Allan; Wu, Bing

    2011-01-01

    The multilayered myelin sheath wrapping around nerve axons is essential for proper functioning of the central nervous system. Abnormal myelination leads to a wide range of neurological diseases and developmental disorders. Non-invasive imaging of myelin content is of great clinical importance. The present work demonstrated that loss of myelin in the central nervous system of the shiverer mouse results in a dramatic reduction of magnetic susceptibility in white matter axons. The reduction resulted in a near extinction of susceptibility contrast between gray and white matter. Quantitative magnetic susceptibility imaging and diffusion tensor imaging were conducted on a group of control and shiverer mice at 9.4 T. We measured the resonance frequency distribution of the whole brain for each mouse. Magnetic susceptibility maps were computed and compared between the two groups. It was shown that the susceptibility contrast between gray and white matter was reduced by 96% in the shiverer compared to the controls. Diffusion measurements further confirmed intact fiber pathways in the shiverer mice, ruling out the possibility of axonal injury and its potential contribution to the altered susceptibility. As an autosomal recessive mutation, shiverer is characterized by an almost total lack of central nervous system myelin. Our data provides new evidences indicating that myelin is the predominant source of susceptibility differences between deep gray and white matter observed in magnetic resonance imaging. More importantly, the present study suggests that quantitative magnetic susceptibility is a potential endogenous biomarker for myelination. PMID:21320606

  5. The Magnetic Field

    NSDL National Science Digital Library

    Jeffrey Barker

    This demonstration of the magnetic field lines of Earth uses a bar magnet, iron filings, and a compass. The site explains how to measure the magnetic field of the Earth by measuring the direction a compass points from various points on the surface. There is also an explanation of why the north magnetic pole on Earth is actually, by definition, the south pole of a magnet.

  6. Electricity and Magnetic Fields

    NSDL National Science Digital Library

    VU Bioengineering RET Program,

    The grand challenge for this legacy cycle unit is for students to design a way to help a recycler separate aluminum from steel scrap metal. In previous lessons, they have looked at how magnetism might be utilized. In this lesson, students think about how they might use magnets and how they might confront the problem of turning the magnetic field off. Through the accompanying activity students explore the nature of an electrically induced magnetic field and its applicability to the needed magnet.

  7. Drawing Magnetic Fields

    NSDL National Science Digital Library

    VU Bioengineering RET Program,

    Students use a compass and a permanent magnet to trace the magnetic field lines produced by the magnet. By positioning the compass in enough spots around the magnet, the overall magnet field will be evident from the collection of arrows representing the direction of the compass needle. In activities 3 and 4 of this unit, students will use this information to design a way to solve the grand challenge of separating metal for a recycling company.

  8. Average field map image template for Echo-Planar image analysis

    Microsoft Academic Search

    Ali Gholipour; Nasser Kehtarnavaz; Kaundinya Gopinath; Richard Briggs; Issa Panahi

    2008-01-01

    Magnetic resonance field map images are normally used in characterizing the magnetic field inhomogeneity for distortion correction in Echo-Planar Imaging (EPI) and accurate localization in functional MRI (fMRI). In this paper, the computation and applications of an average field map image template is investigated based on real field maps. The introduced methodology and the obtained field map image templates may

  9. Circuits and Magnetic Fields

    NSDL National Science Digital Library

    VU Bioengineering RET Program,

    Students use the same method as in the activity from lesson 2 of this unit to explore the magnetism due to electric current instead of a permanent magnet. Students use a compass and circuit to trace the magnetic field lines induced by the electric current moving through the wire. Students develop an understanding of the effect of the electrical current on the compass needle through the induced magnetic field and understand the complexity of a three dimensional field system.

  10. Magnetic fields at Neptune

    Microsoft Academic Search

    N. F. Ness; M. H. Acuna; L. F. Burlaga; J. E. P. Connerney; R. P. Lepping; F. M. Neubauer

    1989-01-01

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10⁻⁵ gauss) was observed near closest approach, at a

  11. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  12. Magnetic Field Problem

    NSDL National Science Digital Library

    Wolfgang Christian

    The above animations represent two typical bar magnets each with a North and South pole. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You may drag either magnet and double-click anywhere inside the animation to add a magnetic field line, and mouse-down to read the magnitude of the magnetic field at that point.

  13. Mapping of LSU Field Camp

    NSDL National Science Digital Library

    Daniel Kelley

    Students, with knowledge of the stratigraphy of the field area will work with a partner to map contacts between adjacent units, measure and record attitudes, make detailed lithologic descriptions of strata across the field area. This data will then be analyzed by the students and a geologic interpretation of the mapping area will be developed. Students will create complete geologic maps along with two cross sections through the field area. Students will write a brief summary of how the geology which they have mapped in this field area fits into what they have been taught about the wider regional geology and geologic history of the area.

  14. The Magnetic Field

    NSDL National Science Digital Library

    Windows to the Universe

    1997-12-03

    This webpage is part of the University Corporation for Atmospheric Research (UCAR) Windows to the Universe program. It describes the nature and configuration of magnetic fields, which are the result of moving electric charges, including how they cause magnetic objects to orient themselves along the direction of the magnetic force points, which are illustrated as lines. Magnetic field lines by convention point outwards at the north magnetic pole and inward at the south magnetic pole. The site features text, scientific illustrations and an animation. Text and vocabulary are selectable for the beginning, intermediate, or advanced reader.

  15. Magnetic Fields on the Surface of the Sun

    NSDL National Science Digital Library

    This is a lesson about magnetism in solar flares. Learners will map magnetic fields around bar magnets and investigate how this configuration relates to magnetic fields of sunspots. This activity requires compasses, bar magnets, and a equipment for the instructor to project a PowerPoint or pdf lecture presentation. This is Activity 1 in the Exploring Magnetism in Solar Flares teachers guide.

  16. Melatonin and magnetic fields.

    PubMed

    Karasek, Michal; Lerchl, Alexander

    2002-04-01

    There is public health concern raised by epidemiological studies indicating that extremely low frequency electric and magnetic fields generated by electric power distribution systems in the environment may be hazardous. Possible carcinogenic effects of magnetic field in combination with suggested oncostatic action of melatonin lead to the hypothesis that the primary effects of electric and magnetic fields exposure is a reduction of melatonin synthesis which, in turn, may promote cancer growth. In this review the data on the influence of magnetic fields on melatonin synthesis, both in the animals and humans, are briefly presented and discussed. PMID:12019358

  17. A global magnetic anomaly map. [obtained from POGO satellite data

    NASA Technical Reports Server (NTRS)

    Regan, R. D.; Davis, W. M.; Cain, J. C.

    1974-01-01

    A subset of POGO satellite magnetometer data has been formed that is suitable for analysis of crustal magnetic anomalies. Using a thirteenth order field model, fit to these data, magnetic residuals have been calculated over the world to latitude limits of plus 50 deg. These residuals averaged over one degree latitude-longitude blocks represent a detailed global magnetic anomaly map derived solely from satellite data. Preliminary analysis of the map indicates that the anomalies are real and of geological origin.

  18. Global Map of Magnetic Anomalies (MAG/ER)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The radial magnetic field measured is color coded on a global map that slows the larger craters and volcanoes (dark green), spacecraft tracks below 200 km (light green), and the dichotomy boundary (solid line).

  19. Recurrent structures of the interplanetary magnetic field observed by ULYSSES

    Microsoft Academic Search

    G. Erdos; A. Balogh; R. J. Forsyth; E. J. Smith

    1995-01-01

    Since its launch in October 1990, Ulysses has provided good quality magnetic field data, practically covering the whole time interval until now. We have studied the very long time scale evolution of the interplanetary magnetic field, in particlular, we have search for recurrent disturbances in the magnetic field. The magnetic field vectors have been mapped back to the Sun along

  20. Division of Astronomy and Space Physics Stellar Magnetic Fields

    E-print Network

    Division of Astronomy and Space Physics Stellar Magnetic Fields Magnetic fields play a key role. Magnetic fields give rise to weak polarization signatures in stellar spectra, which can be detected mapping a distribution of magnetic fields and associated temperature and chemical spots on the stellar

  1. Spectral-Density Mapping of 13C ?- 1H ?Vector Dynamics Using Dipolar Relaxation Rates Measured at Several Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jarvet, Jüri; Allard, Peter; Ehrenberg, Anders; Gräslund, Astrid

    The spectral-density mapping of a 13C ?- 1H ?vector of Leu 10in the 22-residue peptide hormone motilin [P. Allard, J. Jarvet, A. Ehrenberg, and A. Gräslund, J. Biomol. NMR5,133-146 (1995)] is extended in this paper to three polarizing fields 9.4, 11.7, and 14.1 T in order to improve the accuracy of the calculated spectral-density function J(?) and to extend the sampling range up to 750 MHz. The problem with a usually large relative error in J(? H) is eliminated since the generally more precise J(? H- ? C) and J(? H+ ? C) determined at other fields appear at nearly the same frequencies. The fitting of dynamic models to the points of spectral density was made with error weighting, and the influence of J(? H) was found to be negligible. Therefore, the high-frequency part of the spectral-density function is determined essentially without influence from the two transverse-type relaxation rates. In the case of a carbon-proton vector, the relaxation is mainly determined by dipolar interaction and is only weakly influenced by other relaxation mechanisms, which makes it particularly suitable for the spectral-density mapping technique. The measured relaxation rates in the time domain are transformed into the frequency domain by spectral-density mapping, and the slopes in different frequency regions are important parameters when comparing experimental data with theoretical models of motion. Using an adjustable internuclear distance reff, combined with the model-free approach, it is possible to obtain a reasonable fit to measured spectral-density points at J(0) and around J(? C). At the same time, however, the high-frequency slope of the spectral-density function defined by J(? H- ? C) and J(? H+ ? C) could not be reproduced.

  2. Magnetic Field Viewing Cards

    NASA Astrophysics Data System (ADS)

    Kanim, Stephen; Thompson, John R.

    2005-09-01

    For some years now laminated cards containing a green, magnetically sensitive film have been available from science education suppliers. When held near a magnet, these cards appear dark green in regions where the field is perpendicular to the card and light green where the field is parallel to the card. The cards can be used to explore the magnetic field near a variety of magnets as well as near wire loops. In this paper we describe how to make these cards and how we have used them in our physics classrooms and labs.

  3. Magnetic field line Hamiltonian

    SciTech Connect

    Boozer, A.H.

    1984-03-01

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained.

  4. Cosmic Magnetic Fields

    Microsoft Academic Search

    Elisabete M. de Gouveia Dal Pino; Dal Pino

    2006-01-01

    Most of the visible matter in the Universe is in a plasma state, or more specifically is composed of ionized or partially ionized gas permeated by magnetic fields. Thanks to recent advances on the theory and detection of cosmic magnetic fields there has been a worldwide growing interest in the study of their role on the formation of astrophysical sources

  5. Magnetic Fields Classroom Activity

    NSDL National Science Digital Library

    Reinhart, Rose

    In this lesson from Math Machines, students will learn about the effects of magnetic fields on moving, electrically charged particles. The activity consists of two exercises. The first involves analyzing how a robot is controlled in a magnetic field. The second has students design and test a "magnetic bottle."A participant handout (including worksheets) and facilitator notes are made available for download in DOC file format. A link to a required calculator program is also provided.

  6. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  7. Interplanetary Magnetic Field Lines

    NSDL National Science Digital Library

    Mendez, J.

    This web page, authored and curated by David P. Stern, provides information and a graphical exercise for students regarding the interaction between magnetic field lines and a plasma. The activity involves tracing a typical interplanetary magnetic field line, dragged out of a location on the Sun by the radial flow of the solar wind. This illustrates the way magnetic field lines are "frozen to the plasma" and the wrapping of field lines due to the rotation of the sun. This is part of the work "The Exploration of the Earth's Magnetosphere". A Spanish translation is available.

  8. The outer magnetic field

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.; Suess, S. T.

    1990-01-01

    The magnetic field of the sun extends outward through the photosphere into the corona. The resulting coronal and interplanetary magnetic fields therefore respond to and evolve with the solar cycle, as well as on shorter and longer time scales. These fields are modeled using photospheric magnetic field observations under the assumption that the coronal field is current free, becomes radial at a 'source surface' placed at 2.5 solar radii from the center of the sun, and is passively advected by the solar wind beyond the source surface. This review covers the computation of such models and their applications to characterize the morphology, evolution, and rotation of coronal and interplanetary magnetic fields using data collected between 1976 and the present at the Wilcox Solar Observatory.

  9. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  10. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Liu, Jiaen; Schmitter, Sebastian; He, Bin

    2014-12-01

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  11. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  12. Three-dimensional mapping of single-atom magnetic anisotropy.

    PubMed

    Yan, Shichao; Choi, Deung-Jang; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Loth, Sebastian

    2015-03-11

    Magnetic anisotropy plays a key role in the magnetic stability and spin-related quantum phenomena of surface adatoms. It manifests as angular variations of the atom's magnetic properties. We measure the spin excitations of individual Fe atoms on a copper nitride surface with inelastic electron tunneling spectroscopy. Using a three-axis vector magnet we rotate the magnetic field and map out the resulting variations of the spin excitations. We quantitatively determine the three-dimensional distribution of the magnetic anisotropy of single Fe atoms by fitting the spin excitation spectra with a spin Hamiltonian. This experiment demonstrates the feasibility of fully mapping the vector magnetic properties of individual spins and characterizing complex three-dimensional magnetic systems. PMID:25664924

  13. Magnetic field visualization of magnetic minerals and grain boundary regions using magneto-optical imaging

    E-print Network

    Podladchikov, Yuri

    Magnetic field visualization of magnetic minerals and grain boundary regions using magneto field visualization of magnetic minerals and grain boundary regions using magneto-optical imaging, J technique since the gray level on the images can be directly mapped to the local value of magnetic field

  14. Magnetic Field Problem: Current

    NSDL National Science Digital Library

    Wolfgang Christian

    A cross section of a circular wire loop carrying an unknown current is shown above. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You can double-click in the animation to add magnetic field lines, click-drag the center of the loop to reposition it, and click-drag the top or bottom of the loop to change its size.

  15. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    The origin and evolution of cosmic magnetic fields, their strength and structure in intergalactic space, their first occurrence in young galaxies, and their dynamical importance for galaxy evolution remain widely unknown. Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized radio synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 ?G) and in central starburst regions (50-100 ?G). Such fields are dynamically important; they can affect gas flows and drive gas inflows in central regions. Polarized radio emission traces ordered fields which can be regular or anisotropic turbulent, generated from isotropic turbulent fields by compression or shear. The strongest ordered fields of 10-15 ?G strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. In galaxies with strong density waves, ordered (anisotropic turbulent) fields are also observed at the inner edges of the spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Irregular galaxies host isotropic turbulent fields often of similar strength as in spiral galaxies, but only weak ordered fields. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several galaxies reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by a mean-field ? -? dynamo. So far no indications were found in external galaxies of large-scale field reversals, like the one in the Milky Way. Ordered magnetic fields are also observed in radio halos around edge-on galaxies out to large distances from the plane, with X-shaped patterns. In the outflow cone above a starburst region of NGC 253, RM data indicate a helical magnetic field.

  16. The next generation Antarctic digital magnetic anomaly map

    USGS Publications Warehouse

    von Frese, R.R.B; Golynsky, A.V.; Kim, H.R.; Gaya-Piqué, L.; Thébault, E.; Chiappinii, M.; Ghidella, M.; Grunow, A.; ADMAP Working Group

    2007-01-01

    S (Golynsky et al., 2001). This map synthesized over 7.1 million line-kms of survey data available up through 1999 from marine, airborne and Magsat satellite observations. Since the production of the initial map, a large number of new marine and airborne surveys and improved magnetic observations from the Ørsted and CHAMP satellite missions have become available. In addition, an improved core field model for the Antarctic has been developed to better isolate crustal anomalies in these data. The next generation compilation also will likely represent the magnetic survey observations of the region in terms of a high-resolution spherical cap harmonic model. In this paper, we review the progress and problems of developing an improved magnetic anomaly map to facilitate studies of the Antarctic crustal magnetic field

  17. Analytical formulae for magnetic fields in undulators

    Microsoft Academic Search

    V. A. Papadichev

    1991-01-01

    Analytical formulae are presented for the calculation of the magnetic field in various types of undulators, including plane (with and without ferromagnetic poles), helical and azimuthally symmetrical ones. The use of analytical rather than numerical methods allows one to calculate more rapidly undulator fields and to optimize them with respect to various parameters. Conformal mapping in the case of iron-pole

  18. Magnetic Field Measurements in Beam Guiding Magnets

    Microsoft Academic Search

    K. N. Henrichsen

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as

  19. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  20. The Earth's Magnetic Field

    NSDL National Science Digital Library

    Roberta Johnson

    2000-07-01

    This section of the Windows to the Universe website provides information and images about Earth's magnetic field (the magnetosphere), including detailed information about the aurora borealis, magnets, and solar wind. Windows to the Universe is a user-friendly learning system pertaining to the Earth and Space sciences. The objective of this project is to develop an innovative and engaging website that includes a rich array of documents, including images, movies, animations, and data sets that explore the Earth and Space sciences and the historical and cultural ties between science, exploration and the human experience. Links at the top of each page allow users to navigate between beginner, intermediate and advanced levels.

  1. Mapping the fluid flow and shear near the core surface using the radial and horizontal components of the magnetic field

    NASA Technical Reports Server (NTRS)

    Jackson, Andrew; Bloxham, Jeremy

    1991-01-01

    The problem of calculating the temporal evolution of both the radial and horizontal poloidal components of a field, given an initial field and the flow and shear, is first considered. Attention is then given to the inverse problem of determining the flow and shear, given an initial field and its temporal evolution. The nonuniqueness inherent in such inversions is discussed, and it is shown that part of the nonuniqueness in the shear is closely related to that in the flow derived from just the radial induction equation.

  2. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  3. Simulation of lightning magnetic field

    Microsoft Academic Search

    Chen Yazhou; Wu Xiaorong; Liu Shanghe; Zhang Feizhou

    2002-01-01

    The lightning magnetic field is simulated when a pulse current is injected into the loop from the lightning surge generator. Different waveforms of lightning magnetic field can be simulated by regulating the parameters of the loop according to the relation between the parameters of the loop and the simulated wave. The dot loop is made to measure the magnetic field

  4. The WIND magnetic field investigation

    Microsoft Academic Search

    R. P. Lepping; M. H. Ac?na; L. F. Burlaga; W. M. Farrell; J. A. Slavin; K. H. Schatten; F. Mariani; N. F. Ness; F. M. Neubauer; Y. C. Whang; J. B. Byrnes; R. S. Kennon; P. V. Panetta; J. Scheifele; E. M. Worley

    1995-01-01

    The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and

  5. AC Magnetic Field Survey Report

    E-print Network

    Krstic, Miroslav

    AC Magnetic Field Survey Report of Literature Building - 3000 University of California San Diego:..........................................................................................................2 ELF OR AC MAGNETIC FIELD CHARACTERISTICS:...............................................2 UNITS of California San Diego La Jolla, California PROJECT: AC Magnetic Field Survey SCOPE: The scope of this project

  6. Stray Field Magnetic Resonance Imaging

    Microsoft Academic Search

    K. Zick

    1994-01-01

    In many applications of magnetic resonance imaging large linewidths means that to achieve useful resolution in the image large magnetic field gradients should be employed. This paper outlines the principles of stray field imaging that utilises the large gradients intrinsic to the fringe field of superconducting solenoidal magnets. Examples of images from strongly broadened everyday objects are given.

  7. Analytical formulae for magnetic fields in undulators

    NASA Astrophysics Data System (ADS)

    Papadichev, V. A.

    1991-07-01

    Analytical formulae are presented for the calculation of the magnetic field in various types of undulators, including plane (with and without ferromagnetic poles), helical and azimuthally symmetrical ones. The use of analytical rather than numerical methods allows one to calculate more rapidly undulator fields and to optimize them with respect to various parameters. Conformal mapping in the case of iron-pole undulators is justified by the fact that with high stray fluxes iron saturation occurs first in the magnet yoke, and the poles are far from saturation and have high magnetic permeability.

  8. Mapping the energy spectrum of the spin states of mixed-valent [Fe8]n- via pulsed field magnetization

    SciTech Connect

    Mcdonald, Ross D [Los Alamos National Laboratory; Singleton, John [Los Alamos National Laboratory; Raptis, Raphel G [UNIV OF PUERTO RICO

    2011-01-14

    The electronic structure of a family of octanuclear Fe{sup III}-complexes of the general formula [Fe{sub 8}({mu}{sub 4}-O)4({mu}-{sub r}-R-pz){sub 12}X{sub 4}] ([Fe{sub 8}]{sup 0}) and its redox-modified, mixed-valence [Fe{sub 8}]{sup n-} derivatives, where R = H, Me, Et, F, CI, Sr, I, etc. and X = F, CI, Sr, NCS, NCO, N{sub 3}, has recently been modeled by a an effective Hamiltonian consisting of two dominant exchange interactions [1]. The ground state properties (from S{sub tot} = 0 to 7) and magnetic energy level spacing of the Hamiltonian, and hence predicted magnetic properties, are widely tunable via choice of J's. The corresponding [Fe{sub 8}]{sup n-} anionic complexes with n = 1 - 4 are accessible electrochemically, allowing their in situ spectroelectrochemical characterization. The singly-reduced anions [Fe{sub 8}]{sup 1-} of the R = H, Cl and X = Cl species have also been prepared chemically via reduction with a stoichiometric amount of [BH{sub 4}]-, and characterized crystallographically; the structure of the Fe{sub 8}-cluster remains unaffected by the reduction, with most bond lengths differences within experimental error. Their Moessbauer spectroscopic analysis has pointed to the reduction taking place primarily within the Fe{sub 4}O{sub 4}-cubane, with charges delocalized over the four Fe{sub c} sites in the Moessbauer timescale. In contrast, the [Fe{sub 8}]{sup 1-} and [Fe{sub 8}]{sup 2-} species with R = Cl and X = NCS show a reduction at the outer, Fe{sub o}-sites, generating one or two localized Fe{sub o}-centers.

  9. Interaction between solar wind and lunar magnetic anomalies observed by MAP-PACE on Kaguya

    Microsoft Academic Search

    Yoshifumi Saito; Shoichiro Yokota; Takaaki Tanaka; Kazushi Asamura; Masaki N. Nishino; Tadateru I. Yamamoto; Hideo Tsunakawa

    2010-01-01

    It is well known that the Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. MAgnetic field and Plasma experiment -Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its

  10. Radio frequency magnetic field mapping of a 3 Tesla birdcage coil: Experimental and theoretical dependence on sample properties

    Microsoft Academic Search

    Marcello Alecci; Christopher M. Collins; Michael B. Smith; Peter Jezzard

    2001-01-01

    The RF B1 distribution was studied, theoretically and experi- mentally, in phantoms and in the head of volunteers usin ga3T MRI system equipped with a birdcage coil. Agreement between numerical simulation and experiment demonstrates that B1 dis- tortion at high field can be explained with 3D full-Maxwell cal- culations. It was found that the B1 distribution in the transverse plane

  11. Autonomous Underwater Vehicle Magnetic Mapping System

    NASA Astrophysics Data System (ADS)

    Steigerwalt, R.; Johnson, R. M.; Trembanis, A. C.; Schmidt, V. E.; Tait, G.

    2012-12-01

    An Autonomous Underwater Vehicle (AUV) Magnetic Mapping (MM) System has been developed and tested for military munitions detection as well as pipeline locating, wreck searches, and geologic surveys in underwater environments. The system is comprised of a high sensitivity Geometrics G-880AUV cesium vapor magnetometer integrated with a Teledyne-Gavia AUV and associated Doppler enabled inertial navigation further utilizing traditional acoustic bathymetric and side scan imaging. All onboard sensors and associated electronics are managed through customized crew members to autonomously operate through the vehicles primary control module. Total field magnetic measurements are recorded with asynchronous time-stamped data logs which include position, altitude, heading, pitch, roll, and electrical current usage. Pre-planned mission information can be uploaded to the system operators to define data collection metrics including speed, height above seafloor, and lane or transect spacing specifically designed to meet data quality objectives for the survey. As a result of the AUVs modular design, autonomous navigation and rapid deployment capabilities, the AUV MM System provides cost savings over current surface vessel surveys by reducing the mobilization/demobilization effort, thus requiring less manpower for operation and reducing or eliminating the need for a surface support vessel altogether. When the system completes its mission, data can be remotely downloaded via W-LAN and exported for use in advanced signal processing platforms. Magnetic compensation software has been concurrently developed to accept electrical current measurements directly from the AUV to address distortions from permanent and induced magnetization effects on the magnetometer. Maneuver and electrical current compensation terms can be extracted from the magnetic survey missions to perform automated post-process corrections. Considerable suppression of system noise has been observed over traditional compensation methods that do not use electrical current terms. Recent demonstrations of the AUV MM System conducted at test plots seeded with inert munitions show reliable detection of 75mm and larger projectiles at altitudes of over 2 meters above the seafloor. Improvement ratios between 11 and 12.4 were observed in the survey data after magnetic compensation, reducing system noise to approximately ±0.25 nano-Tesla. Co-registered side scan sonar images were acquired with the magnetic data to augment target analysis and interpretation. No net drift of the navigation solution was observed during survey missions thus confirming target positional accuracy to better than 1 meter.;

  12. Magnetic nanoparticle motion in external magnetic field

    NASA Astrophysics Data System (ADS)

    Usov, N. A.; Liubimov, B. Ya

    2015-07-01

    A set of equations describing the motion of a free magnetic nanoparticle in an external magnetic field in a vacuum, or in a medium with negligibly small friction forces is postulated. The conservation of the total particle momentum, i.e. the sum of the mechanical and the total spin momentum of the nanoparticle is taken into account explicitly. It is shown that for the motion of a nanoparticle in uniform magnetic field there are three different modes of precession of the unit magnetization vector and the director that is parallel the particle easy anisotropy axis. These modes differ significantly in the precession frequency. For the high-frequency mode the director points approximately along the external magnetic field, whereas the frequency and the characteristic relaxation time of the precession of the unit magnetization vector are close to the corresponding values for conventional ferromagnetic resonance. On the other hand, for the low-frequency modes the unit magnetization vector and the director are nearly parallel and rotate in unison around the external magnetic field. The characteristic relaxation time for the low-frequency modes is remarkably long. This means that in a rare assembly of magnetic nanoparticles there is a possibility of additional resonant absorption of the energy of alternating magnetic field at a frequency that is much smaller compared to conventional ferromagnetic resonance frequency. The scattering of a beam of magnetic nanoparticles in a vacuum in a non-uniform external magnetic field is also considered taking into account the precession of the unit magnetization vector and director.

  13. Shear angle of magnetic fields.

    NASA Astrophysics Data System (ADS)

    Yanping, Lü; Wang, Jingxiu; Wang, Huaning

    1993-11-01

    The authors introduce a new parameter, the shear angle of vector magnetic fields, ??, to describe the non-potentiality of magnetic fields in active regions, which is defined as the angle between the observed vector magnetic field and its corresponding current-free field. In the case of highly inclined field configurations, this angle is approximately equal to the "angular shear", ??, defined by Hagyard et al. (1984). ?? can be considered as the projection of the shear angle, ??, on the photosphere. For the active region studied, the shear angle, ??, seems to have a better and neater correspondence with flare activity than does ??. It gives a clearer explanation of the non-potentiality of magnetic fields. It is a better measure of the deviation of the observed magnetic field from a potential field, and is directly related to the magnetic free energy stored in non-potential fields.

  14. (version 6/26/06) Magnetic Fields

    E-print Network

    Collins, Gary S.

    (version 6/26/06) Magnetic Fields GOALS (1) To visualize the magnetic fields produced by several to trace out the magnetic field lines of a single bar magnet on a large sheet of paper. (3) To calculate where the magnetic fields of the Earth and the bar magnet sum to zero. INTRODUCTION A magnetic field

  15. Magnetic properties and energy-mapping analysis.

    PubMed

    Xiang, Hongjun; Lee, Changhoon; Koo, Hyun-Joo; Gong, Xingao; Whangbo, Myung-Hwan

    2013-01-28

    The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, i.e., the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii-Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energy-mapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin-orbit coupling (SOC) as perturbation, that the DM exchange between adjacent spin sites can become comparable in strength to the Heisenberg spin exchange when the two spin sites are not chemically equivalent, and that the DM interaction between rare-earth and transition-metal cations is governed largely by the magnetic orbitals of the rare-earth cation. PMID:23128376

  16. Aeromagnetic map of Korea; Magnetic patterns and structural features

    NASA Astrophysics Data System (ADS)

    Park, Yeong-Sue; Rim, Hyoungrea; Lim, Mutaek; Shin, Young Hong

    2014-05-01

    Regional airborne magnetic survey is very cost-effective mapping tool. Magnetic anomaly maps have abundant information, which are an important tool for understanding the geological evolution and mineral exploration. The pattern of magnetic anomaly map is a powerful indicator of geologic structure and rock formation. Magnetic anomaly patterns primarily reflect the distribution and structural setting of magnetized material within the crust. These features including amplitude and orientation of individual anomalies or the texture of anomalous regions can provide useful constraints for geological interpretation. KIGAM has conducted airborne magnetic mapping programme since 1982, and has coverage of almost whole the country. The latest version of airborne magnetic anomaly map was published by compiling data acquired from 1982 to 2012. The helicopter-borne surveys were flown by a line spacing 1~2 km with control lines of 5~8 km. The flight altitude was tried to keep 100~150 m above ground surface with sampling distance of 30m. The data were continued to the reference level of 300 m above ground level, and regional field was reduced by 11th generation IGRF. This paper introduced the latest version of magnetic anomaly map of Korea, and briefly examined the magnetic characteristics, with geologic characteristics and structural features of tectonic zones. Furthermore, magnetic patterns were quantitatively analyzed by using skeletonization technique. Korea, southern part of the Korean peninsula, could be divided in 5 tectonic provinces, such as, Gyeonggi massif, Okcheon fold belt, Sobaeksan massif, Gyeongsang basin, and circum-Pacific alkali volcanic zone. Magnetic anomalies in Gyeonggi massif zone are broadly distributed with moderately high amplitude, and the dominant trend is NE, but not strong. Okcheon fold belt can be magnetically characterized as strong dominant NE trend (Sinian direction) and linear positive anomalies of high amplitude. Sobaeksan massif is magnetically characterized as diverse trend with strong amplitude in NE part and weak amplitude in SW part. In Gyeongsang basin, strong positive anomalies due to Cretaceous granites and volcanic rocks are distributed in the broad and weak field by Jurassic sedimentary rocks. Magnetic lineaments of NNE trend are disrupted by intense volcanic activities in Cretaceous period. Magnetic lineaments were plotted by using skeletonization algorithm. Skeletonization is a syntactic pattern recognition method that is applied to gridded data to produce an automatic line drawing. The algorithms were tailored for seismic reflection profiles at first. Eaton and Vasudevan (2004) modified the technique to render it more suitable for other types of gridded data, with particular emphasis on aeromagnetic maps. Magnetic first vertical derivative data calculated from pole-reduced aeromagnetic map were used as input of skeletonization algorithm. The event map was plotted by skeletonization process, and the orientation of the magnetic pattern was quantitatively analyzed by rose diagrams. They showed the distinguishing characteristics of magnetic pattern of tectonic provinces, which reflected their geological characteristics and structural features.

  17. The external magnetic field environment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Calculations were made to predict magnetic field intensities surrounding an aircraft following a lightning strike. Aircraft design and aircraft structural geometry were considered in the computations. A wire grid aircraft model was used to aid in magnetic flux estimation.

  18. Magnetic fields of degenerate stars

    NASA Astrophysics Data System (ADS)

    Chanmugam, G.

    The magnetic fields of degenerate stars are discussed with emphasis on such basic issues as how their magnetic field strengths are determined, their origin, and evolution. The magnetic fields of both white dwarfs and neutron stars are discussed together, and it is speculated that the origin and evolution of their fields may be related. It is also suggested that it may be possible to apply and test models for the evolution of the magnetic fields in neutron stars by using white dwarfs and vice versa.

  19. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  20. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  1. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  2. Evolution of twisted magnetic fields

    SciTech Connect

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  3. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 ?m) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  4. Magnetic field fluctuations in SC dipole magnet

    SciTech Connect

    Vladimir Shiltsev et al.

    2001-08-15

    Magnetic field fluctuations at the betatron frequency can lead to emittance growth in circular accelerators. Tolerances are extremely tight for large hadron colliders like LHC and VLHC[1]. We performed experimental studies of the fluctuations in a stand-alone superconducting Tevatron magnet. Here we give a general description of the experimental set-up, present main results and discuss consequences for the colliders.

  5. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  6. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  7. (Revised December 30, 2013) Magnetic Fields

    E-print Network

    Collins, Gary S.

    (Revised December 30, 2013) Magnetic Fields GOALS (1) To visualize the magnetic fields produced compasses to trace out the magnetic field lines of a single bar magnet on a large sheet of paper. (3 of the points where the magnetic fields of the Earth and the bar magnet sum to zero. INTRODUCTION A magnetic

  8. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  9. On sunspot magnetic field diffusion.

    NASA Astrophysics Data System (ADS)

    Krivodubskij, V. N.

    The efficiency of different mechanisms of sunspot magnetic field dissipation depending on the stage of sunspot decay and optical depth is investigated. The highest rate of the magnetic field diffusion has place at the initial stage of sunspot decay, when the turbulence motion in the sunspot umbra takes a two-dimensional structure due to the strong magnetic field (B ? 3000 G). The turbulence degeneracy withdraws at the later stage of the sunspot decay (B ? 2000 G) and the dissipation slows down.

  10. Ferrofilm in a magnetic field

    NASA Astrophysics Data System (ADS)

    Back, Randy; Beckham, J. Regan

    2012-10-01

    A vertically draining thin ferrofilm under the influence of gravity and a nonuniform magnetic field is considered. It is observed experimentally that the presence of the magnetic field greatly alters the drainage of the film. A mathematical model is developed to describe the behavior. Experiments are conducted for multiple magnetic field configurations. The model is solved for two different sets of boundary conditions and results are compared to experiments. It is shown that the magnetic field structure, the concentration of magnetite in the solution, and the boundary conditions all have noticeable affects on the evolution of the thinning film. Good qualitative agreement between the model and the experiments is observed.

  11. HMI Measurements Of The Solar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hoeksema, Jon Todd; HMI Magnetic Field Team

    2011-05-01

    The Helioseismic and Magnetic Imager (HMI) on NASA's Solar Dynamics Observatory (SDO) routinely produces a comprehensive array of magnetic field data products including 45-second line-of-sight magnetograms, synoptic maps and synchronic frames, 12-minute vector field time series in HMI Active Region Patches (HARPs), model calculations of the coronal field and solar wind, and near-real-time parameters for space weather. Other products, such as surface flow maps, can be produced on demand or on request. We present examples of data products generated during the first year of operations and compare some of these with measurements from other observatories, including the now-dormant MDI. The HMI Team is sponsored by NASA.

  12. The Sun's global magnetic field.

    PubMed

    Mackay, Duncan H

    2012-07-13

    Our present-day understanding of solar and stellar magnetic fields is discussed from both an observational and theoretical viewpoint. To begin with, observations of the Sun's large-scale magnetic field are described, along with recent advances in measuring the spatial distribution of magnetic fields on other stars. Following this, magnetic flux transport models used to simulate photospheric magnetic fields and the wide variety of techniques used to deduce global coronal magnetic fields are considered. The application and comparison of these models to the Sun's open flux, hemispheric pattern of solar filaments and coronal mass ejections are then discussed. Finally, recent developments in the construction of steady-state global magnetohydrodynamic models are considered, along with key areas of future research. PMID:22665897

  13. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  14. Axial magnetic field contacts with nonuniform distributed axial magnetic fields

    Microsoft Academic Search

    Zongqian Shi; Shenli Jia; Jun Fu; Zheng Wang

    2003-01-01

    It is well known that axial magnetic fields (AMFs) can keep vacuum arc in diffuse mode at high current. According to our recent research and other published papers, it has been found that vacuum arc can be maintained in high-current diffuse mode at much higher current if nonuniform AMF is applied, that the axial magnetic field is higher at contact

  15. CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Structure of Magnetic

    E-print Network

    Callen, James D.

    CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Chapter 3 Structure of Magnetic Fields Many of the most interesting plasmas are permeated by or imbedded in magnetic fields.1 As shown in Fig. 3.1, the magnetic field properties of magnetic fields in plasmas can be discussed without specifying a model for the plasma

  16. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  17. Mapping hydrothermal alteration in Yellowstone National Park using magnetic methods

    NASA Astrophysics Data System (ADS)

    Bouligand, C.; Glen, J. M.

    2010-12-01

    Yellowstone National Park (YNP) hosts a very large hydrothermal system with over 10,000 thermal features. Hydrothermal alteration in YNP has been mapped with field observations and remote-sensing imagery, but these methods can only detect alteration at the ground surface. Magnetic surveys are useful for detecting buried hydrothermal alteration as demonstrated by a recent high-resolution aeromagnetic survey in YNP (Finn and Morgan, J. Volcanol. Geotherm. Res., 115, 207-231, 2002). Results of this survey show that magnetic lows extend over and beyond areas of hydrothermal activity, suggesting large volumes of demagnetized rocks due to hydrothermal alteration of the volcanic substratum. Although results of this aeromagnetic survey were of relatively high resolution, they were insufficient for more detailed mapping of alteration. In September 2008, we collected ground magnetic profiles in four hydrothermal areas within YNP (Norris Geyser Basin, Lower Geyser Basin, Lone Star Geyser, and Smoke Jumper Hot-springs). These measurements were performed using a cesium-vapor magnetometer along several 4-5 km long transects crossing hydrothermal features. In addition, we collected gravity data to characterize the subsurface geologic structures. We also performed magnetic susceptibility, magnetic remanence and density measurements on rock samples collected in the field and from drill cores collected in 1967-1968 to characterize physical properties of fresh and altered geologic units. Ground magnetic profiles acquired over unaltered areas display large-amplitude short-wavelength anomalies due to the existence of many shallow contrasts of magnetization in the volcanic substratum. In contrast, the short-wavelength anomaly signal is of very low amplitude in altered areas supporting demagnetization of the shallow volcanic basement. These new geophysical and physical property data are being used to map the distribution of rock density and magnetic properties, model the subsurface geometry of altered areas and investigate the relationship of these areas with structures such as contacts, faults, and fractures that may facilitate the circulation of hydrothermal fluids.

  18. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-06-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  19. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  20. Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique

    Microsoft Academic Search

    K. Hemant; S. Maus

    2005-01-01

    Reliable global crustal field anomaly maps produced from magnetic measurements of the CHAMP satellite mission now allow for quantitative geological studies of crustal structure and composition. We have developed a GIS based forward modeling technique to model these anomaly maps. On the basis of the geologic and tectonic maps of the world, laboratory susceptibility values of the occurring rock types,

  1. Variability in Martian magnetic field topology

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Halekas, J. S.; Eastwood, J. P.; Ulusen, D.; Lillis, R. J.

    2013-12-01

    Martian crustal magnetic fields form localized mini-magnetosphere structures that extend in some regions well above the Martian ionosphere, interacting directly with the draped external interplanetary magnetic field (IMF). In some regions the crustal magnetic field lines are closed, locally shielding the ionosphere from external plasma. In other locations the crustal field lines are open, allowing exchange of plasma between the ionosphere and the surrounding plasma interaction region. The average magnetic topology as a function of geographic location has been mapped previously, using ~7 years of Mars Global Surveyor electron observations recorded at constant altitude and local time. In this previous work, pitch angle distributions of suprathermal electrons were examined for the presence of loss cones to determine whether field lines were open or closed. Here we apply the same technique to describe how magnetic topology varies with four external drivers: solar wind pressure, IMF orientation, solar EUV flux, and Martian season. We see that some locations on Mars change topology frequently depending upon external conditions, while others have a relatively static field topology.

  2. Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR.

    PubMed

    Lim, Issel Anne L; Li, Xu; Jones, Craig K; Farrell, Jonathan A D; Vikram, Deepti S; van Zijl, Peter C M

    2014-02-01

    The magnetic susceptibility of tissue within and around an image voxel affects the magnetic field and thus the local frequency in that voxel. Recently, it has been shown that spatial maps of frequency can be used to quantify local susceptibility if the contributions of surrounding tissue can be deconvolved. Currently, such quantitative susceptibility mapping (QSM) methods employ gradient recalled echo (GRE) imaging to measure spatial differences in the signal phase evolution as a function of echo time, from which frequencies can be deduced. Analysis of these phase images, however, is complicated by phase wraps, despite the availability and usage of various phase unwrapping algorithms. In addition, lengthy high-resolution GRE scanning often heats the magnet bore, causing the magnetic field to drift over several Hertz, which is on the order of the frequency differences between tissues. Here, we explore the feasibility of applying the WAter Saturation Shift Referencing (WASSR) method for 3D whole brain susceptibility imaging. WASSR uses direct saturation of water protons as a function of frequency irradiation offset to generate frequency maps without phase wraps, which can be combined with any image or spectroscopy acquisition. By utilizing a series of fast short-echo-time direct saturation images with multiple radiofrequency offsets, a frequency correction for field drift can be applied based on the individual image phases. Regions of interest were delineated with an automated atlas-based method, and the average magnetic susceptibilities calculated from frequency maps obtained from WASSR correlated well with those from the phase-based multi-echo GRE approach at 3T. PMID:24113625

  3. High latitude solar magnetic fields

    NASA Technical Reports Server (NTRS)

    Murray, Norman

    1992-01-01

    Kitt Peak magnetograms are used to measure polar magnetic fields. The polar mean absolute field increases at the same time as the polar mean field decreases. That is, the polar mean absolute field varies in phase with solar activity, in contrast to the out of phase variation of the mean polar field. It is found that the polar fields have a large bipolar component even at solar minimum, with a magnitude equal to that found at low latitudes outside the active latitude bands.

  4. Localized eddy current compensation using quantitative field mapping.

    PubMed

    Terpstra, M; Andersen, P M; Gruetter, R

    1998-03-01

    Eddy current effects induced by switched gradients in proximal conducting structures are traditionally reduced by applying preemphasis currents whose amplitudes and decay characteristics must be set to offset the eddy current fields. We present an expeditious, localized, and quantitative method for mapping and adjusting the parameters for eddy current compensation. Mapping is based on analysis of projections as used in the fast automatic shimming technique by mapping along projections (FASTMAP). Adjustment methods are demonstrated in high-field horizontal bore systems. The proposed localized eddy current mapping technique may also be used for localized measurements in situations where asymmetric conducting structures may cause nonlinear eddy current fields, such as in interventional MRI and open magnet designs. PMID:9533916

  5. Mapping hydrothermal alteration in Yellowstone National Park using magnetic methods

    Microsoft Academic Search

    C. Bouligand; J. M. Glen

    2010-01-01

    Yellowstone National Park (YNP) hosts a very large hydrothermal system with over 10,000 thermal features. Hydrothermal alteration in YNP has been mapped with field observations and remote-sensing imagery, but these methods can only detect alteration at the ground surface. Magnetic surveys are useful for detecting buried hydrothermal alteration as demonstrated by a recent high-resolution aeromagnetic survey in YNP (Finn and

  6. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  7. Low-magnetic-field magnetars

    E-print Network

    Turolla, R

    2013-01-01

    It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these `magnetar candidates' exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (~4.4E+13 G). The recent discovery of fully-qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, with dipole magnetic field well in the range of ordinary radio pulsars posed a challenge to the standard picture, showing that a very strong field is not necessary for the onset of magnetar activity (chiefly bursts and outbursts). Here we summarize the observational status of the low-magnetic-field magnetars and discuss their properties in the context of the mainstream magnetar model and its main alternatives.

  8. Low-Magnetic-Field Magnetars

    NASA Astrophysics Data System (ADS)

    Turolla, Roberto; Esposito, Paolo

    2013-11-01

    It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these "magnetar candidates" exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (? 4.4×1013 G). The recent discovery of fully qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, with dipole magnetic field well in the range of ordinary radio pulsars posed a challenge to the standard picture, showing that a very strong field is not necessary for the onset of magnetar activity (chiefly bursts and outbursts). Here we summarize the observational status of the low-magnetic-field magnetars and discuss their properties in the context of the mainstream magnetar model and its main alternatives.

  9. Investigating Magnetic Force Fields

    NSDL National Science Digital Library

    Daryl ("Tish") Monjeau, Bancroft Elementary School, Minneapolis, MN

    2012-03-18

    In this classroom activity, the students will investigate the magnetic pull of a bar magnet at varying distances with the use of paper clips. Students will hypothesize, conduct the experiment, collect the data, and draw conclusions that support their data. Each student will record the experiment and their findings in their science journals. As a class, students will compare each groups' data and their interpretation of the results.

  10. Magnetic field properties of the ISABELLE Project superconducting dipole magnets

    SciTech Connect

    Kirk, H.G.; Engelmann, R.; Herrera, J.; Jaeger, K.; Robins, K.; Willen, E.

    1981-01-01

    A series of prototype superconducting dipole magnets have been constructed and tested as part of the ISABELLE Project research and development program. Results of magnetic field measurements are presented with emphasis placed on the DC and AC components of the main field. Magnetization and the effects of the magnetic fields at the ends of the magnet are displayed.

  11. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  12. Modeling surface magnetic fields in stars with radiative envelopes

    NASA Astrophysics Data System (ADS)

    Kochukhov, Oleg

    2014-08-01

    Stars with radiative envelopes, specifically the upper main sequence chemically peculiar (Ap) stars, were among the first objects outside our solar system for which surface magnetic fields have been detected. Currently magnetic Ap stars remains the only class of stars for which high-resolution measurements of both linear and circular polarization in individual spectral lines are feasible. Consequently, these stars provide unique opportunities to study the physics of polarized radiative transfer in stellar atmospheres, to analyze in detail stellar magnetic field topologies and their relation to starspots, and to test different methodologies of stellar magnetic field mapping. Here I present an overview of different approaches to modeling the surface fields in magnetic A- and B-type stars. In particular, I summarize the ongoing efforts to interpret high-resolution full Stokes vector spectra of these stars using magnetic Doppler imaging. These studies reveal an unexpected complexity of the magnetic field geometries in some Ap stars.

  13. Mapping global cropland and field size.

    PubMed

    Fritz, Steffen; See, Linda; McCallum, Ian; You, Liangzhi; Bun, Andriy; Moltchanova, Elena; Duerauer, Martina; Albrecht, Fransizka; Schill, Christian; Perger, Christoph; Havlik, Petr; Mosnier, Aline; Thornton, Philip; Wood-Sichra, Ulrike; Herrero, Mario; Becker-Reshef, Inbal; Justice, Chris; Hansen, Matthew; Gong, Peng; Abdel Aziz, Sheta; Cipriani, Anna; Cumani, Renato; Cecchi, Giuliano; Conchedda, Giulia; Ferreira, Stefanus; Gomez, Adriana; Haffani, Myriam; Kayitakire, Francois; Malanding, Jaiteh; Mueller, Rick; Newby, Terence; Nonguierma, Andre; Olusegun, Adeaga; Ortner, Simone; Rajak, D Ram; Rocha, Jansle; Schepaschenko, Dmitry; Schepaschenko, Maria; Terekhov, Alexey; Tiangwa, Alex; Vancutsem, Christelle; Vintrou, Elodie; Wenbin, Wu; van der Velde, Marijn; Dunwoody, Antonia; Kraxner, Florian; Obersteiner, Michael

    2015-05-01

    A new 1 km global IIASA-IFPRI cropland percentage map for the baseline year 2005 has been developed which integrates a number of individual cropland maps at global to regional to national scales. The individual map products include existing global land cover maps such as GlobCover 2005 and MODIS v.5, regional maps such as AFRICOVER and national maps from mapping agencies and other organizations. The different products are ranked at the national level using crowdsourced data from Geo-Wiki to create a map that reflects the likelihood of cropland. Calibration with national and subnational crop statistics was then undertaken to distribute the cropland within each country and subnational unit. The new IIASA-IFPRI cropland product has been validated using very high-resolution satellite imagery via Geo-Wiki and has an overall accuracy of 82.4%. It has also been compared with the EarthStat cropland product and shows a lower root mean square error on an independent data set collected from Geo-Wiki. The first ever global field size map was produced at the same resolution as the IIASA-IFPRI cropland map based on interpolation of field size data collected via a Geo-Wiki crowdsourcing campaign. A validation exercise of the global field size map revealed satisfactory agreement with control data, particularly given the relatively modest size of the field size data set used to create the map. Both are critical inputs to global agricultural monitoring in the frame of GEOGLAM and will serve the global land modelling and integrated assessment community, in particular for improving land use models that require baseline cropland information. These products are freely available for downloading from the http://cropland.geo-wiki.org website. PMID:25640302

  14. The magnetic field of Mercury

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1977-01-01

    The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.

  15. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  16. Understanding modern magnets through conformal mapping

    SciTech Connect

    Halbach, K.

    1989-10-01

    I want to show with the help of a number of examples that conformal mapping is a unique and enormously powerful tool for thinking about, and solving, problems. Usually one has to write down only a few equations, and sometimes none at all When I started getting involved in work for which conformal mapping seemed to be a powerful tool, I did not think that I would ever be able to use that technique successfully because it seemed to require a nearly encyclopedic memory, an impression that was strengthened when I saw K. Kober's Dictionary of Conformal Representations. This attitude changed when I started to realize that beyond the basics of the theory of a function of a complex variable, I needed to know only about a handful of conformal maps and procedures. Consequently, my second goal for this talk is to show that in most cases conformal mapping functions can be obtained by formulating the underlying physics appropriately. This means particularly that encyclopedic knowledge of conformal maps is not necessary for successful use of conformal mapping techniques. To demonstrate these facts I have chosen examples from an area of physics/engineering in which I am active, namely accelerator physics. In order to do that successfully I start with a brief introduction into high energy charged particle storage ring technology, even though not all examples used in this paper to elucidate my points come directly from this particular field of accelerator technology.

  17. Primordial Magnetic Fields and Causality

    E-print Network

    Ruth Durrer; Chiara Caprini

    2003-10-29

    We discuss the implications of causality on a primordial magnetic field. We show that the residual field on large scales is much more suppressed than usually assumed and that a helical component is even more reduced. Due to this strong suppression, even maximal primordial fields generated at the electroweak phase transition can just marginally seed the fields in clusters, but they cannot leave any detectable imprint on the cosmic microwave background.

  18. Magnetic field induced dynamical chaos

    SciTech Connect

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra, E-mail: bidhanchandra.bag@visva-bharati.ac.in [Department of Chemistry, Visva-Bharati, Santiniketan 731 235 (India)

    2013-12-15

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  19. July 2007 Eruption Flow Field (Map)

    USGS Multimedia Gallery

    Map showing the extent of the July 2007 eruption flow field relative to surrounding communities. Light red is the extent of the July 2007 eruption flow field. Reddish-brown is the extent of the currently-active Quarry flow as of June 21, 2010, while bright red shows the flow field expansion of the Q...

  20. Field measurement of the magnet prototypes for the VSX project

    Microsoft Academic Search

    T. Koseki; Y. Kamiya; H. Kudo; N. Nakamura; T. Shibuya; K. Shinoe; H. Takaki; Y. Takiyama; Y. Kobayashi; K. Kuno

    1999-01-01

    Prototypes of the dipole and the fast steering magnet for the VSX project have been fabricated and measured. The field mapping and the end-shim correction were carried out for the dipole, and the frequency response was tested up to 2 kHz for the fast steering. The design of the magnets and measured results are presented

  1. Damping of cosmic magnetic fields

    SciTech Connect

    Jedamzik, K. [Max-Planck-Institut fuer Astrophysik, 85748 Garching bei Muenchen (Germany)] [Max-Planck-Institut fuer Astrophysik, 85748 Garching bei Muenchen (Germany); Katalinic, V.; Olinto, A.V. [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637 (United States)] [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637 (United States)

    1998-03-01

    We examine the evolution of magnetic fields in an expanding fluid composed of matter and radiation with particular interest in the evolution of cosmic magnetic fields. We derive the propagation velocities and damping rates for relativistic and non-relativistic fast and slow magnetosonic and Alfv{acute e}n waves in the presence of viscous and heat conducting processes. The analysis covers all magnetohydrodynamics modes in the radiation diffusion and the free-streaming regimes. When our results are applied to the evolution of magnetic fields in the early universe, we find that cosmic magnetic fields are damped from prior to the epoch of neutrino decoupling up to recombination. Similar to the case of sound waves propagating in a demagnetized plasma, fast magnetosonic waves are damped by radiation diffusion on all scales smaller than the radiation diffusion length. The characteristic damping scales are the horizon scale at neutrino decoupling (M{sub {nu}}{approx}10{sup {minus}4}M{sub {circle_dot}} in baryons) and the Silk mass at recombination (M{sub {gamma}}{approx}10{sup 13}M{sub {circle_dot}} in baryons). In contrast, the oscillations of slow magnetosonic and Alfv{acute e}n waves get overdamped in the radiation diffusion regime, resulting in frozen-in magnetic field perturbations. Further damping of these perturbations is possible only if before recombination the wave enters a regime in which radiation free-streams on the scale of the perturbation. The maximum damping scale of slow magnetosonic and Alfv{acute e}n modes is always smaller than or equal to the damping scale of fast magnetosonic waves, and depends on the magnetic field strength and its direction relative to the wave vector. Our findings have multifold implications for cosmology. The dissipation of magnetic field energy into heat during the epoch of neutrino decoupling ensures that most magnetic field configurations generated in the very early universe satisfy big bang nucleosynthesis constraints. Further dissipation before recombination constrains models in which primordial magnetic fields give rise to galactic magnetic fields or density perturbations. Finally, the survival of Alfv{acute e}n and slow magnetosonic modes on scales well below the Silk mass may be of significance for the formation of structure on small scales. {copyright} {ital 1998} {ital The American Physical Society}

  2. Safety concerns related to magnetic field exposure

    Microsoft Academic Search

    Amanda K. Andriola Silva; Érica L. Silva; E. Sócrates T. Egito; Artur S. Carriço

    2006-01-01

    The recent development of superconducting magnets has resulted in a huge increase in human exposure to very large static magnetic fields of up to several teslas (T). Considering the rapid advances in applications and the great increases in the strength of magnetic fields used, especially in magnetic resonance imaging, safety concerns about magnetic field exposure have become a key issue.

  3. Electric and magnetic field exposure

    Microsoft Academic Search

    S. S. Sussman

    1988-01-01

    The possible health hazards of low-level, power line frequency (50\\/60 Hz) electric and magnetic fields are considered. The historical background to this concern is briefly discussed. The types of studies being carried out and the results so far are summarized. It is concluded that while the scientific evidence on field effects is inconclusive, inferences of health effects justify further evaluation

  4. Magnetic fields and coronal heating

    NASA Technical Reports Server (NTRS)

    Golub, L.; Maxson, C.; Rosner, R.; Vaiana, G. S.; Serio, S.

    1980-01-01

    General considerations concerning the scaling properties of magnetic-field-related coronal heating mechanisms are used to build a two-parameter model for the heating of closed coronal regions. The model predicts the way in which coronal temperature and electron density are related to photospheric magnetic field strength and the size of the region, using the additional constraint provided by the scaling law of Rosner, Tucker, and Vaiana. The model duplicates the observed scaling of total thermal energy content with total longitudinal flux; it also predicts a relation between the coronal energy density (or pressure) and the longitudinal field strength modified by the region scale size.

  5. Magnetic fields in neutron stars

    NASA Astrophysics Data System (ADS)

    Viganò, Daniele

    2013-09-01

    This work aims at studying how magnetic fields affect the observational properties and the long-term evolution of isolated neutron stars, which are the strongest magnets in the universe. The extreme physical conditions met inside these astronomical sources complicate their theoretical study, but, thanks to the increasing wealth of radio and X-ray data, great advances have been made over the last years. A neutron star is surrounded by magnetized plasma, the so-called magnetosphere. Modeling its global configuration is important to understand the observational properties of the most magnetized neutron stars, magnetars. On the other hand, magnetic fields in the interior are thought to evolve on long time-scales, from thousands to millions of years. The magnetic evolution is coupled to the thermal one, which has been the subject of study in the last decades. An important part of this thesis presents the state-of-the-art of the magneto-thermal evolution models of neutron stars during the first million of years, studied by means of detailed simulations. The numerical code here described is the first one to consistently consider the coupling of magnetic field and temperature, with the inclusion of both the Ohmic dissipation and the Hall drift in the crust.

  6. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

    2004-10-03

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

  7. Magnetic space-based field measurements

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1981-01-01

    Because the near Earth magnetic field is a complex combination of fields from outside the Earth of fields from its core and of fields from its crust, measurements from space prove to be the only practical way to obtain timely, global surveys. Due to difficulty in making accurate vector measurements, early satellites such as Sputnik and Vanguard measured only the magnitude survey. The attitude accuracy was 20 arc sec. Both the Earth's core fields and the fields arising from its crust were mapped from satellite data. The standard model of the core consists of a scalar potential represented by a spherical harmonics series. Models of the crustal field are relatively new. Mathematical representation is achieved in localized areas by arrays of dipoles appropriately located in the Earth's crust. Measurements of the Earth's field are used in navigation, to map charged particles in the magnetosphere, to study fluid properties in the Earth's core, to infer conductivity of the upper mantels, and to delineate regional scale geological features.

  8. Unwrapping magnetic resonance phase maps with Chebyshev polynomials.

    PubMed

    Langley, Jason; Zhao, Qun

    2009-11-01

    A phase-unwrapping algorithm, based on the method of moments, is introduced in this work. The proposed algorithm expands the phase map in terms of a two-dimensional Chebyshev series. The expansion coefficients are calculated by exploiting the orthogonality of Chebyshev polynomials of the first kind. The performance of the proposed phase-unwrapping algorithm is tested on a synthetic phase map and experimental phase maps of a uniform phantom, a human brain and a mouse torso, all acquired from 3-T magnetic resonance (MR) scanners. To impose additional burdens on the algorithm, we introduced magnetic field inhomogeneities to the phantom and human brain data by an external gradient coil. The proposed phase-unwrapping algorithm is found to perform well on the phantom data set in a low signal-to-noise ratio (SNR) environment and on the synthetic data set. The proposed algorithm is also found to perform well in in vivo data sets of the human brain and mouse torso. Results obtained from the in vivo MR data sets show that the proposed algorithm produced unwrapped phase maps that are nearly identical to those produced by a widely used phase-unwrapping algorithm, PRELUDE 2D in the fMRI Software Library. PMID:19574009

  9. Magnetic shielding by soft magnetic materials in alternating magnetic field

    Microsoft Academic Search

    Yasuo Okazaki; Kiyoshi Ueno

    1992-01-01

    The magnetic shielding effect of an alternating field up to 20 kHz was examined in 3% Si steel sheets and amorphous ribbons. Not only the permeability but also the domain configuration was found to affect the shielding effects. The annealed Fe-based amorphous shield without field showed exceedingly high shielding effectiveness for higher frequencies.

  10. Magnetic field tracking with MCNP5.

    PubMed

    Bul, J S; Hughes, H G; Walstrom, P L; Zumbro, J D; Mokhov, N V

    2005-01-01

    With the introduction of continuous-energy heavy charged particle transport in MCNP5, the need for tracking charged particles in a magnetic field becomes increasingly important. Two methods for including magnetic field effects on charged particles are included in the proton transport version of the code. The first technique utilises transfer maps produced by the beam dynamics simulation and analysis code COSY INFINITY. This method is fast and accurate; however, its use is limited to void cells only and to ensembles of particles with a fairly small energy spread. The second technique, particle ray tracing, is based on an algorithm adopted from the MARS transport code. This method can be applied to both void and material cells and is valid over a very large range of particle energies. Results from tracking particles in a quadrupole 'identity lens' using the two techniques are compared. PMID:16604650

  11. Theorem on magnet fringe field

    Microsoft Academic Search

    Jie Wei; R. Talman

    1995-01-01

    Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b{sub n}) and skew (a{sub n}) multipoles, B{sub y} + iBâ = â(b{sub n} + ia{sub n})(x + iy)ⁿ, where x, y, and z denote horizontal, vertical, and longitudinal (along the

  12. Observations of Mercury's magnetic field

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  13. Tracing the Magnetic Field in Orion A

    NASA Technical Reports Server (NTRS)

    Dowell, C. Darren; Hildebrand, Roger H.; Dotson, Jessie L.; Vaillancourt, John E.; Phillips, Thomas G.; Peng, Rui-Sheng; Bastien, Pierre

    2003-01-01

    We use extensive 350 micron polarimetry and continuum maps obtained with Hertz and SHARC II along with HCN and HCO(sup +) spectroscopic data to trace the orientation of the magnetic field in the Orion A star-forming region. Using the polarimetry data, we find that the direction of the projection of the magnetic field in the plane of the sky relative to the orientation of the integral-shaped filament varies considerably as one moves from north to south. While in IRAS 05327-0457 and OMC-3 MMS 1-6 the projection of the field is primarily perpendicular to the filament it becomes better aligned with it at OMC-3 MMS 8-9 and well aligned with it at OMC-2 FIR 6. The OMC-2 FIR 4 cloud, located between the last two, is a peculiar object where we find almost no polarization. There is a relatively sharp boundary within its core where two adjacent regions exhibiting differing polarization angles merge. The projected angle of the field is more complicated in OMC-1 where it exhibits smooth variations in its orientation across the face of this massive complex. We also note that while the relative orientation of the projected angle of the magnetic field to the filament varies significantly in the OMC-3 and OMC-2 regions, its orientation relative to a fixed position on the sky shows much more stability. This suggests that, perhaps, the orientation of the field is relatively unaffected by the mass condensations present in these parts of the molecular cloud. By combining the polarimetry and spectroscopic data we were able to measure a set of average d u e s for the inclination angle of the magnetic field relative to the line of sight. We find that the field is oriented quite close to the plane of the sky in most places. More precisely, the inclination of the magnetic field is approx. = 73 deg around OMC-3 MMS 6, approx. = 74 deg at OMC-3 MMS 8-9, approx. = 80 deg at OMC-2 FIR 4, approx. = 65 deg in the northeastern part of OMC-1, and approx. = 49 deg in the Bas. The small difference in the inclination of the field between OMC-3 and OMC-2 seems to strengthen the idea that the orientation of the magnetic field is relatively unaffected by the agglomeration of matter located in these regions. We also present polarimetry data for the OMC-4 region located some 13 min. south of OMC-1.

  14. Tunneling in a magnetic field

    SciTech Connect

    Ivlev, B. [Department of Physics and Astronomy and NanoCenter, University of South Carolina, Columbia, South Carolina 29208 (United States) and Instituto de Fisica, Universidad Autonoma de San Luis Potosi, San Luis Potosi, San Luis Potosi 78000 Mexico

    2006-05-15

    Quantum tunneling across a static potential barrier in a static magnetic field is very sensitive to an analytical form of the potential barrier. Depending on that, the oscillatory structure of the modulus of the wave function can be formed in the direction of tunneling. Due to an underbarrier interference, the probability of tunneling through a higher barrier can be larger than through a lower one. For some barriers the quantum interference of underbarrier cyclotron paths results in a strong enhancement of tunneling. This occurs in the vicinity of the certain magnetic field and is referred to as Euclidean resonance. This strongly contrasts to the Wentzel, Kramers, and Brillouin type tunneling which occurs with no magnetic field.

  15. Magnetic induction maps in a magnetized spherical Couette flow experiment

    E-print Network

    Boyer, Edmond

    is a spherical Couette flow experiment with an imposed dipolar magnetic field. Liquid sodium is used as a working´e est du sodium liquide. Au cours d'une s´erie de campagnes de mesure, nous avons obtenu des donn, magnetohydrodynamics, omega effect, liquid sodium, DTS Mots-cl´es : magn´etohydrodynamique, effet om´ega, sodium

  16. Protogalactic evolution and magnetic fields

    E-print Network

    Harald Lesch; Masashi Chiba

    1994-11-17

    We show that the relatively strong magnetic fields ($\\ge 1 \\mu$G) in high redshift objects can be explained by the combined action of an evolving protogalactic fluctuation and electrodynamic processes providing the magnetic seed fields. Three different seed field mechanisms are reviewed and incorporated into a spherical "top-hat" model and tidal torque theory for the fate of a forming galaxy in an expanding universe. Very weak fields $10^{-19} \\sim 10^{-23}$G created in an expanding over-dense region are strongly enhanced due to the dissipative disk formation by a factor $\\sim 10^4$, and subsequently amplified by strong non-axisymmetric flow by a factor $\\sim 10^{6-10}$, depending on the cosmological parameters and the epoch of galaxy formation. The resulting field strength at $z \\sim 0.395$ can be of the order of a few $\\mu$G and be close to this value at $z \\sim 2$.

  17. Magnetic Forces and Field Line Density

    NSDL National Science Digital Library

    2012-08-03

    This is an activity about depicting the relative strength of magnetic fields using field line density. Learners will use the magnetic field line drawing of six magnetic poles created in a previous activity and identify the areas of strong, weak, and medium magnetic intensity using the density of magnetic field lines. This is the fifth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website. How to Draw Magnetic Fields - II in the Magnetic Math booklet must be completed prior to this activity.

  18. Simulations of magnetic fields in filaments

    E-print Network

    M. Bruggen; M. Ruszkowski; A. Simionescu; M. Hoeft; C. Dalla Vecchia

    2005-08-10

    The intergalactic magnetic field within filaments should be less polluted by magnetised outflows from active galaxies than magnetic fields in clusters. Therefore, filaments may be a better laboratory to study magnetic field amplification by structure formation than galaxy clusters which typically host many more active galaxies. We present highly resolved cosmological AMR simulations of magnetic fields in the cosmos and make predictions about the evolution and structure of magnetic fields in filaments. Comparing our results to observational evidence for magnetic fields in filaments suggests that amplification of seed fields by gravitational collapse is not sufficient to produce IGM fields. Finally, implications for cosmic ray transport are discussed.

  19. Bladder Wall Thickness Mapping for Magnetic Resonance Cystography

    PubMed Central

    Zhao, Yang; Liang, Zhengrong; Zhu, Hongbin; Han, Hao; Duan, Chaijie; Yan, Zengmin; Lu, Hongbing; Gu, Xianfeng

    2013-01-01

    Clinical studies have shown the evidence that the bladder wall thickness is an effective biomarker for bladder abnormalities. The clinical optical cystoscopy, the current gold standard, cannot show the wall thickness. The use of ultrasound by experts may generate some local thickness information, but the information is limited in field-of-view and is user dependent. Recent advances in magnetic resonance (MR) imaging technologies lead MR-based virtual cystoscopy or MR cystography toward a potential alternative to map the wall thickness for the entire bladder. From a high resolution structural MR volumetric image of the abdomen, a reasonable segmentation of the inner and outer borders of the bladder wall can be achievable. Starting from here, this paper reviews the limitation of a previous distance field-based approach of measuring the thickness between the two borders and then provides a solution to overcome the limitation by an electric field-based strategy. In addition, this paper further investigates a surface fitting strategy to minimize the discretization errors on the voxel-like borders and facilitate the thickness mapping on the three-dimensional patient-specific bladder model. The presented thickness calculation and mapping were tested on both phantom and human subject datasets. The results are preliminary but very promising with a noticeable improvement over the previous distance field-based approach. PMID:23835844

  20. Bladder wall thickness mapping for magnetic resonance cystography

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Liang, Zhengrong; Zhu, Hongbin; Han, Hao; Duan, Chaijie; Yan, Zengmin; Lu, Hongbing; Gu, Xianfeng

    2013-08-01

    Clinical studies have shown evidence that the bladder wall thickness is an effective biomarker for bladder abnormalities. Clinical optical cystoscopy, the current gold standard, cannot show the wall thickness. The use of ultrasound by experts may generate some local thickness information, but the information is limited in field-of-view and is user dependent. Recent advances in magnetic resonance (MR) imaging technologies lead MR-based virtual cystoscopy or MR cystography toward a potential alternative to map the wall thickness for the entire bladder. From a high-resolution structural MR volumetric image of the abdomen, a reasonable segmentation of the inner and outer borders of the bladder wall can be achievable. Starting from here, this paper reviews the limitation of a previous distance field-based approach of measuring the thickness between the two borders and then provides a solution to overcome the limitation by an electric field-based strategy. In addition, this paper further investigates a surface-fitting strategy to minimize the discretization errors on the voxel-like borders and facilitate the thickness mapping on the three-dimensional patient-specific bladder model. The presented thickness calculation and mapping were tested on both phantom and human subject datasets. The results are preliminary but very promising with a noticeable improvement over the previous distance field-based approach.

  1. Origin of primordial magnetic fields

    SciTech Connect

    Souza, Rafael S. de; Opher, Reuven [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)

    2008-02-15

    Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields {approx}{mu}G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) {approx}10 {mu}G over a comoving {approx}1 pc region are predicted at redshift z{approx}10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs {approx}10{sup -2} {mu}G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z{approx}10. In the collapse to a galaxy (comoving size {approx}30 kpc) at z{approx}10, the fields are amplified to {approx}10 {mu}G. This indicates that the MFs created immediately after the QHPT (10{sup -4} s), predicted by the fluctuation-dissipation theorem, could be the origin of the {approx}{mu}G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field predicted by our model in producing the first stars and in reionizing the Universe.

  2. Magnetic field tomography, helical magnetic fields and Faraday depolarization

    NASA Astrophysics Data System (ADS)

    Horellou, C.; Fletcher, A.

    2014-07-01

    Wide-band radio polarization observations offer the possibility to recover information about the magnetic fields in synchrotron sources, such as details of their three-dimensional configuration, that has previously been inaccessible. The key physical process involved is the Faraday rotation of the polarized emission in the source (and elsewhere along the wave's propagation path to the observer). In order to proceed, reliable methods are required for inverting the signals observed in wavelength space into useful data in Faraday space, with robust estimates of their uncertainty. In this paper, we examine how variations of the intrinsic angle of polarized emission ?0 with the Faraday depth ? within a source affect the observable quantities. Using simple models for the Faraday dispersion F(?) and ?0(?), along with the current and planned properties of the main radio interferometers, we demonstrate how degeneracies among the parameters describing the magneto-ionic medium can be minimized by combining observations in different wavebands. We also discuss how depolarization by Faraday dispersion due to a random component of the magnetic field attenuates the variations in the spectral energy distribution of the polarization and shifts its peak towards shorter wavelengths. This additional effect reduces the prospect of recovering the characteristics of the magnetic field helicity in magneto-ionic media dominated by the turbulent component of the magnetic field.

  3. Reduced MHD in Nearly Potential Magnetic Fields

    E-print Network

    Strauss, Hank

    Reduced MHD in Nearly Potential Magnetic Fields H.R. Strauss Courant Institute of Mathematical that the magnetic field is close to a potential field. The potential field can have an arbitrary three dimensional of equations have essentially the same structure. The main time dependent variables are the magnetic field

  4. Bosonic Casimir effect in external magnetic field

    NASA Astrophysics Data System (ADS)

    Cougo-Pinto, M. V.; Farina, C.; Negrão, M. R.; Tort, A. C.

    1999-06-01

    We compute the influence of an external magnetic field on the Casimir energy of a massive charged scalar field confined between two parallel infinite plates. For this case the obtained result shows that the magnetic field inhibits the Casimir effect.

  5. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. (USAF, Geophysics Laboratory, Hanscom AFB, MA (United States))

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  6. How to Draw Magnetic Fields - I

    NSDL National Science Digital Library

    2012-08-03

    This is an activity about depicting magnetic fields. Learners will observe two provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines for both orientations. This is the third activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.

  7. Simultaneous near field imaging of electric and magnetic field in photonic crystal nanocavities

    NASA Astrophysics Data System (ADS)

    Vignolini, Silvia; Intonti, Francesca; Riboli, Francesco; Wiersma, Diederik Sybolt; Balet, Laurent; Li, Lianhe H.; Francardi, Marco; Gerardino, Annamaria; Fiore, Andrea; Gurioli, Massimo

    2012-06-01

    The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity map directly gives the electric field distribution, to which the electric dipole of the QD is coupled. The magnetic field generates, via Faraday's law, a circular current in the apex of the metallized probe that can be schematized as a ring. The resulting magnetic perturbation of the photonic modes induces a blue shift, which can be used to map the magnetic field, within a single near-field scan.

  8. EXPLORER 10 MAGNETIC FIELD MEASUREMENTS

    Microsoft Academic Search

    J. P. Heppner; N. F. Ness; C. S. Scearce; T. L. Skillman

    1963-01-01

    Magnetic field measurements made by means of Explorer 10 over geocentric ; distances of 1.8 to 42.6R\\/sub e\\/ on March 25experiment on the same satellite are ; referenced in interpretations. The close-in data are consistent with the ; existence of a very weak ring current below 3R\\/sub e\\/ along the trajectory, but ; alternative explanations for the field deviations are

  9. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  10. Levin and Ernst, DC Magnetic Field Effects on Development Applied DC Magnetic Fields Cause Alterations in the

    E-print Network

    Levin, Michael

    Levin and Ernst, DC Magnetic Field Effects on Development Applied DC Magnetic Fields Cause urchin, static magnetic field, gastrulation, development, mitotic cycle, teratogenic effects running title: static Magnetic Field Effects on Development #12;Levin and Ernst, DC Magnetic Field Effects

  11. Separation of magnetic field lines

    SciTech Connect

    Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2012-11-15

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

  12. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At ?6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  13. LARGE-SCALE KINEMATICS, ASTROCHEMISTRY, AND MAGNETIC FIELD STUDIES OF MASSIVE STAR-FORMING REGIONS THROUGH HC{sub 3}N, HNC, AND C{sub 2}H MAPPINGS

    SciTech Connect

    Li Juan; Wang Junzhi; Gu Qiusheng; Zheng Xingwu [School of Astronomy and Space Science, Nanjing University, 22 Hankou RD, Nanjing 210093 (China); Zhang Zhiyu, E-mail: ljuan@nju.edu.cn [Purple Mountain Observatory, CAS, 2 West Beijing Road, Nanjing 210008 (China)

    2012-01-20

    We have mapped 27 massive star-forming regions associated with water masers using three dense gas tracers: HC{sub 3}N 10-9, HNC 1-0, and C{sub 2}H 1-0. The FWHM sizes of HNC clumps and C{sub 2}H clumps are about 1.5 and 1.6 times higher than those of HC{sub 3}N, respectively, which can be explained by the fact that HC{sub 3}N traces more dense gas than HNC and C{sub 2}H. We found evidence for an increase in the optical depth of C{sub 2}H with a 'radius' from the center to the outer regions in some targets, supporting the chemical model of C{sub 2}H. The C{sub 2}H optical depth is found to decline as molecular clouds evolve to a later stage, suggesting that C{sub 2}H might be used as a 'chemical clock' for molecular clouds. The large-scale kinematic structure of clouds was investigated with three molecular lines. All of these sources show significant velocity gradients. The magnitudes of gradient are found to increase toward the inner region, indicating the differential rotation of clouds. Both the ratio of rotational to gravitational energy and the specific angular momentum seem to decrease toward the inner region, implying the obvious angular momentum transfer, which might be caused by magnetic braking. The average magnetic field strength and number density of molecular clouds is derived using the uniform magnetic sphere model. The derived magnetic field strengths range from 3 to 88 {mu}G, with a median value of 13 {mu}G. The mass-to-flux ratio of the molecular cloud is calculated to be much higher than the critical value with derived parameters, which agrees well with numerical simulations.

  14. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  15. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according as the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 G. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  16. Standard map in magnetized relativistic systems: Fixed points and regular acceleration

    SciTech Connect

    Sousa, M. C. de; Steffens, F. M.; Pakter, R.; Rizzato, F. B. [Departamento de Fisica-NFC, Universidade Prebisteriana Mackenzie, Rua da Consolacao 930, 01302-906 Sao Paulo, SP (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970, Porto Alegre, RS (Brazil)

    2010-08-15

    We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.

  17. Magnetic Field Line Simulation Using a Microcomputer.

    ERIC Educational Resources Information Center

    Kirkup, L.

    1986-01-01

    Describes the implementation of a computer simulation of magnetic field lines. Discusses properties of magnetic fields and the calculation of magnetic fields at points. Provides a program listing (additional programs and teaching notes available from the author) and gives examples of several field plots. (JM)

  18. Magnetic fields, spots and weather in chemically peculiar stars

    E-print Network

    O. Kochukhov

    2007-11-30

    New observational techniques and sophisticated modelling methods has led to dramatic breakthroughs in our understanding of the interplay between the surface magnetism, atomic diffusion and atmospheric dynamics in chemically peculiar stars. Magnetic Doppler images, constructed using spectropolarimetric observations of Ap stars in all four Stokes parameters, reveal the presence of small-scale field topologies. Abundance Doppler mapping has been perfected to the level where distributions of many different chemical elements can be deduced self-consistently for one star. The inferred chemical spot structures are diverse and do not always trace underlying magnetic field geometry. Moreover, horizontal chemical inhomogeneities are discovered in non-magnetic CP stars and evolving chemical spots are observed for the first time in the bright mercury-manganese star alpha And. These results show that in addition to magnetic fields, another important non-magnetic structure formation mechanism acts in CP stars.

  19. Magnetic fields and gas in the cluster-influenced spiral galaxy NGC 4254 - II. Structures of magnetic fields

    E-print Network

    Krzysztof T. Chyzy

    2008-02-28

    The origin of asymmetric radio polarized emission and properties of magnetic fields in the Virgo Cluster spiral NGC4254 are investigated with help of "magnetic maps" presenting distributions of different magnetic field components over the entire galaxy, free of Faraday rotation and projection effects. We show that the dramatic variation of orientation of magnetic field vectors (from 0deg to more than 40deg) throughout the galaxy cannot arise from the dynamo process alone, but must be dominated by the effects like density waves and local gas flows. We determine within the galaxy the relation between the strength of total magnetic field and the local star-formation rate (SFR) as a power-law with an index of +0.18+-0.01. We find the opposite sense of relation of magnetic field regularity with SFR (-0.32+-0.03) and suggest that it results from efficient production of random field with rising turbulence in the regions with actively forming stars. The distribution of Faraday rotation measures in NGC4254 indicates a perturbed axisymmetrical mean-field dynamo mode or a mixture of axisymmetrical and bisymmetrical ones with regular field directed outwards the disk, which is contrary to most observed galaxies. The magnetic fields within two outer magnetic arms (shifted downstream of a density wave) are strong, up to 13muG in the regular field and 20muG in the total field. Our modeling of cluster influence on different magnetic field components indicates that within the outer magnetic arms the dynamo-induced magnetic fields are modified by stretching and shearing forces rather than by cluster ram pressure. Those forces, which are likely triggered by the galaxy's gravitational interaction, produce an anisotropic component of the regular field and enhance the polarized emission.(abridged)

  20. Effect of magnetic field on ball milled hard magnetic particles

    NASA Astrophysics Data System (ADS)

    Altuncevahir, B.; Poudyal, N.; Chakka, V. M.; Chen, K. H.; Black, T. D.; Liu, T. D.

    2004-03-01

    In this investigation, the powder particles of NdFeB and SmCo based alloys prepared by the ball milling in a uniform magnetic field are compared to those milled without an applied magnetic field. The ball milling was carried out for a total of 100 hours, and the powders were sampled every 25 hours. The particle size after 100 hours of milling was around 100 nm and the grain size in the particles was below 20 nm. The particles were then aligned in a magnetic field in hardening epoxy. It was found that the remanence ratios of the samples milled in an applied magnetic field were remarkably higher than those milled without field. XRD patterns also showed that the powder milled in magnetic field has better alignment than those milled without magnetic field. This technique is a novel approach to preparing anisotropic magnetic nanoparticles and has potential for producing high energy-product nanocomposite permanent magnets.

  1. Place fields and the cognitive map.

    PubMed

    Dudchenko, Paul A; Wood, Emma R

    2015-06-01

    The discovery of place cells by John O'Keefe in the early 1970s was a breakthrough not just for systems neuroscience, but also for psychology: place fields provided a clear neural substrate for the notion of a cognitive map, a construct devised to explain rat learning and spatial cognition. However, is the robust location-related firing of place cells still best conceptualised as a cognitive map? In this commentary, we reassess this view of hippocampus function in light of subsequent findings on place cells. We argue that as place fields encode local space, and as they are modulated by ongoing behavior, the representation they provide may be more cognitive than map-like. © 2015 Wiley Periodicals, Inc. PMID:25788229

  2. All-In-All-Out Magnetic Domains: X-Ray Diffraction Imaging and Magnetic Field Control

    NASA Astrophysics Data System (ADS)

    Tardif, Samuel; Takeshita, Soshi; Ohsumi, Hiroyuki; Yamaura, Jun-ichi; Okuyama, Daisuke; Hiroi, Zenji; Takata, Masaki; Arima, Taka-hisa

    2015-04-01

    Long-range noncollinear all-in-all-out magnetic order has been directly observed for the first time in real space in the pyrochlore Cd2Os2O7 using resonant magnetic microdiffraction at the Os L3 edge. Two different antiferromagnetic domains related by time-reversal symmetry could be distinguished and have been mapped within the same single crystal. The two types of domains are akin to magnetic twins and were expected—yet unobserved so far—in the all-in-all-out model. Even though the magnetic domains are antiferromagnetic, we show that their distribution can be controlled using a magnetic field-cooling procedure.

  3. Distortion of magnetic fields in the pre-stellar core Barnard 68

    NASA Astrophysics Data System (ADS)

    Kandori, Ryo; Tamura, Motohide; Tatematsu, Ken-ichi; Kusakabe, Nobuhiko; Nakajima, Yasushi; Nakajima

    2009-04-01

    Magnetic fields are believed to play an important role in controlling the stability and contraction of molecular cloud cores. In the present study, magnetic fields of a cold pre-stellar core, Barnard 68, have been mapped based on wide-field near-infrared polarimetric observations of background stars. A distinct “hourglass-shaped” magnetic field is identified toward the core, as the observational evidence of magnetic field structure distorted by mass accumulation in a pre-stellar core. Our findings on the geometry of magnetic fields as well as the mass-to-magnetic flux ratio are presented.

  4. The Magnetism of Meteorites and Early Solar System Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Collinson, D. W.

    1994-11-01

    The characteristics of the remanent magnetization of chondrite, achondrite and shergottite, nakhlite and chassignite (SNC) meteorites are described, and interpretation in terms of magnetizing fields in the ancient Solar System discussed. The magnetism of ordinary chondrites is commonly scattered in direction within samples, implying magnetization of constituent fragments before accumulation. The magnetic history of these meteorites is uncertain because of lack of knowledge of the origin and properties of tetrataenite, an ordered FeNi alloy often carrying the bulk of the magnetization. Achondrites also often possess scattered magnetization, the primary component probably being acquired during cooling after differentiation of the parent body. A magnetizing field of internal origin is possible. Estimates of magnetizing field strength are in the approximate range 5-100 ? T, with carbonaceous chondrites showing the highest values. The SNC meteorites, probably originating on Mars, provide evidence for a weak, ancient Martian magnetic field of the order 1 ? T.

  5. MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2

    E-print Network

    Fornberg, Bengt

    MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value to the formation of an azimuthal rope of twisted magnetic field embedded within the global field, and to the energy

  6. Magnetic map of the Irish Hills and surrounding areas, San Luis Obispo County, central California

    USGS Publications Warehouse

    Langenheim, V.E.; Watt, J.T.; Denton, K.M.

    2012-01-01

    A magnetic map of the Irish Hills and surrounding areas was created as part of a cooperative research and development agreement with the Pacific Gas and Electric Company and is intended to promote further understanding of the areal geology and structure by serving as a basis for geophysical interpretations and by supporting geological mapping, mineral and water resource investigations, and other topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on magnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals can be related to either lithologic or structural boundaries. Magnetic susceptibility measurements from the area indicate that bodies of serpentinite and other mafic and ultramafic rocks tend to produce the most intense magnetic anomalies, but such generalizations must be applied with caution because some sedimentary units also can produce measurable magnetic anomalies. Remanent magnetization does not appear to be a significant source for magnetic anomalies because it is an order of magnitude less than the induced magnetization. The map is a mosaic of three separate surveys collected by (1) fixed-wing aircraft at a nominal height of 305 m, (2) by boat with the sensor at sea level, and (3) by helicopter. The helicopter survey was flown by New-Sense Geophysics in October 2009 along flight lines spaced 150-m apart and at a nominal terrain clearance of 50 to 100 m. Tie lines were flown 1,500-m apart. Data were adjusted for lag error and diurnal field variations. Further processing included microleveling using the tie lines and subtraction of the reference field defined by International Geomagnetic Reference Field (IGRF) 2005 extrapolated to August 1, 2008.

  7. Evolution of magnetic field inclination in a forming penumbra

    NASA Astrophysics Data System (ADS)

    Jur?ák, Jan; Bello González, Nazaret; Schlichenmaier, Rolf; Rezaei, Reza

    2014-12-01

    As a sunspot penumbra forms, the magnetic field vector at the outer boundary of the protospot undergoes a transformation. We study the changes of the magnetic field vector at this boundary as a penumbral segment forms. We analyze a set of spectropolarimetric maps covering 2 hr during the formation of a sunspot in NOAA 11024. The data were recorded with the GFPI instrument attached to the German VTT. We observe a stationary umbra/quiet Sun boundary, where the magnetic field becomes more horizontal with time. The magnetic field inclination increases by 5°, reaching a maximum value of about 59°. The maximum inclination coincides with the onset of filament formation. In time, the penumbra filaments become longer and the penumbral bright grains protrude into the umbra, where the magnetic field is stronger and more vertical. Consequently, we observe a decrease in the magnetic field inclination at the boundary as the penumbra grows. In summary, in order to initiate the formation of the penumbra, the magnetic field at the umbral (protospot) boundary becomes more inclined. As the penumbra grows, the umbra/penumbra boundary migrates inwards, and at this boundary the magnetic field turns more vertical again, while it remains inclined in the outer penumbra.

  8. Explaining Mercury's peculiar magnetic field

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.

    2014-05-01

    MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken and we explore two scenarios. Increasing the heat flux through the northern hemisphere of the core-mantle boundary is an obvious choice but is not supported by current models for Mercury's mantle. We find that a combination of internal rather than bottom driving and an increased heat flux through the equatorial region of the core-mantle boundary also promotes the required symmetry breaking and results in very Mercury like fields. The reason is that the imposed heat flux pattern, though being equatorially symmetric, lowers the critical Rayleigh number for the onset of equatorially anti-symmetric convection modes. In both scenarios, a stably stratified layer or a feedback coupling to the magnetospheric field is required for lowering the field strength to Mercury-like values.

  9. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  10. Variability in Martian Magnetic Field Topology

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Halekas, J. S.; Eastwood, J. P.; Ulusen, D.; Lillis, R. J.

    2014-07-01

    We have determined the locations of open and closed magnetic field lines at Mars as a function of four different controlling influences: solar wind magnetic field direction, solar wind pressure, martian season, and solar EUV flux.

  11. Passive Magnetic Shielding in Gradient Fields

    E-print Network

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  12. Plasma stability in a dipole magnetic field

    E-print Network

    Simakov, Andrei N., 1974-

    2001-01-01

    The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field ...

  13. Magnetic field topology of the RS CVn star II Pegasi

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Mantere, M. J.; Hackman, T.; Ilyin, I.

    2013-02-01

    Context. The dynamo processes in cool active stars generate complex magnetic fields responsible for prominent surface stellar activity and variability at different time scales. For a small number of cool stars magnetic field topologies were reconstructed from the time series of spectropolarimetric observations using the Zeeman Doppler imaging (ZDI) method, often yielding surprising and controversial results. Aims: In this study we follow a long-term evolution of the magnetic field topology of the RS CVn binary star II Peg using a more self-consistent and physically more meaningful modelling approach compared to previous ZDI studies. Methods: We collected high-resolution circular polarisation observations of II Peg using the SOFIN spectropolarimeter at the Nordic Optical Telescope. These data cover 12 epochs spread over 7 years, comprising one of the most comprehensive spectropolarimetric data sets acquired for a cool active star. A multi-line diagnostic technique in combination with a new ZDI code is applied to interpret these observations. Results: We have succeeded in detecting clear magnetic field signatures in average Stokes V profiles for all 12 data sets. These profiles typically have complex shapes and amplitudes of ~10-3 of the unpolarised continuum, corresponding to mean longitudinal fields of 50-100 G. Magnetic inversions using these data reveals evolving magnetic fields with typical local strengths of 0.5-1.0 kG and complex topologies. Despite using a self-consistent magnetic and temperature mapping technique, we do not find a clear correlation between magnetic and temperature features in the ZDI maps. Neither do we confirm the presence of persistent azimuthal field rings found in other RS CVn stars. Reconstruction of the magnetic field topology of II Peg reveals significant evolution of both the surface magnetic field structure and the extended magnetospheric field geometry on the time scale covered by our observations. From 2004 to 2010 the total field energy drastically declined and the field became less axisymmetric. This also coincided with the transition from predominantly poloidal to mainly toroidal field topology. Conclusions: A qualitative comparison of the ZDI maps of II Peg with the prediction of dynamo theory suggests that the magnetic field in this star is produced mainly by the turbulent ?2 dynamo rather than the solar ?? dynamo. Our results do not show a clear active longitude system, nor is there evidence of the presence of an azimuthal dynamo wave. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, at the Spanish Observatorio del Roque de los Muchachos of the Instituto Astrofisica de Canarias.

  14. DIVERT: a divertor magnetic field line following code

    SciTech Connect

    Morris, R N; Bateman, G

    1980-05-01

    The computer code DIVERT has been written to trace magnetic field lines in the presence of a divertor. Its purpose is to allow a user to estimate the thickness of the plasma scrapeoff region and to provide a visual mapping of the magnetic field lines near the divertor. Included in the code is the capability to provide auxiliary graphics and compute the field ripple. The code can handle a divertor made up of any arrangement of straight line coil segments and will provide a graph of the field line configuration on output.

  15. Near-field magnetic communication

    Microsoft Academic Search

    R. Bansal

    2004-01-01

    Even as cell phones have shrunk in size while boasting an ever-increasing array of features, two things about them haven't changed much: they still sprout a stubby antenna and, if you want a headset, you have to put up with an unwieldy wire connecting the headset and the phone. Thanks to a patented technology called near-field magnetic communication (NFMC), from

  16. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208 016 (India)

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  17. Magnetic field effect for cellulose nanofiber alignment

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Chen, Yi; Kang, Kwang-Sun; Park, Young-Bin; Schwartz, Mark

    2008-11-01

    Regenerated cellulose formed into cellulose nanofibers under strong magnetic field and aligned perpendicularly to the magnetic field. Well-aligned microfibrils were found as the exposure time of the magnetic field increased. Better alignment and more crystalline structure of the cellulose resulted in the increased decomposition temperature of the material. X-ray crystallograms showed that crystallinity index of the cellulose increased as the exposure time of the magnetic field increased.

  18. Extraterrestrial magnetic fields - Achievements and opportunities

    Microsoft Academic Search

    E. J. Smith; C. P. Sonett

    1976-01-01

    The major scientific achievements associated with the measurement of magnetic fields in space over the past decade and a half are reviewed. Aspects of space technology relevant to magnetic-field observations are discussed: magnetometers and how they operate, problems arising from spacecraft-generated magnetic fields and appropriate countermeasures and on-board processing of magnetometer data. The solar wind and interplanetary magnetic field, the

  19. The magnetic fields of accreting T Tauri stars

    E-print Network

    S. G. Gregory; S. P. Matt; J. -F. Donati; M. Jardine

    2008-09-24

    Models of magnetospheric accretion on to classical T Tauri stars often assume that the stellar magnetic field is a simple dipole. Recent Zeeman-Doppler imaging studies of V2129 Oph and BP Tau have shown however that their magnetic fields are more complex. V2129 Oph is a high mass T Tauri star and despite its young age is believed to have already developed a radiative core. In contrast to this, the lower mass BP Tau is likely to be completely convective. As the internal structure and therefore the magnetic field generation process is different in both stars, it is of particular interest to compare the structure of their magnetic fields obtained by field extrapolation from magnetic surface maps. We compare both field structures to mulitpole magnetic fields, and calculate the disk truncation radius for both systems. We find that by considering magnetic fields with a realistic degree of complexity, the disk is truncated at, or within, the radius obtained for dipole fields.

  20. Pulsed-Field Gradient Nuclear Magnetic

    E-print Network

    Duncan, James S.

    Pulsed-Field Gradient Nuclear Magnetic Resonance as a Tool for Studying Translational Diffusion and biochemical systems. Pulsed-field gradient nuclear magnetic resonance pro- vides a convenient and noninvasive spin-echo pulse sequence contain- ing a magnetic field gradient pulse in each period is used to measure

  1. Primordial magnetic field limits from cosmological data

    SciTech Connect

    Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi, GE-0128 (Georgia); Sethi, Shiv K. [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Pandey, Kanhaiya [Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)

    2010-10-15

    We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

  2. Magnetic monopole and the nature of the static magnetic field

    E-print Network

    Xiuqing Huang

    2008-12-10

    We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

  3. Cluster Magnetic Fields from Galactic Outflows

    E-print Network

    J. Donnert; K. Dolag; H. Lesch; E. Müller

    2008-10-24

    We performed cosmological, magneto-hydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields are galactic outflows during the star-burst phase of galactic evolution. To do this we coupled a semi-analytical model for magnetized galactic winds as suggested by \\citet{2006MNRAS.370..319B} to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy clusters fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude that magnetized galactic outflows and their subsequent evolution within the intra-cluster medium can fully account for the observed magnetic fields in galaxy clusters. Our findings also suggest that measuring cosmological magnetic fields in low-density environments such as filaments is much more useful than observing cluster magnetic fields to infer their possible origin.

  4. Bats respond to very weak magnetic fields.

    PubMed

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 ?T; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 ?T), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  5. Suppression of magnetic relaxation by a transverse alternating magnetic field

    SciTech Connect

    Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. [All-Russia Electrical Engineering Institute (Russian Federation)], E-mail: fisher@vei.ru; Yampol'skii, V. A. [National Academy of Sciences of Ukraine, Institute of Radiophysics and Electronics (Ukraine)], E-mail: yam@vk.kharkov.ua

    2007-07-15

    The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.

  6. Magnetic field sources and their threat to magnetic media

    NASA Technical Reports Server (NTRS)

    Jewell, Steve

    1993-01-01

    Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

  7. Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field

    SciTech Connect

    Mauel, M; Ryutov, D; Kesner, J

    2003-12-02

    In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.

  8. FREQUENCY FILTERING OF TORSIONAL ALFVEN WAVES BY CHROMOSPHERIC MAGNETIC FIELD

    SciTech Connect

    Fedun, V.; Erdelyi, R. [School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom); Verth, G. [School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast University Road, Belfast BT7 1NN (United Kingdom)

    2011-10-20

    In this Letter, we demonstrate how the observation of broadband frequency propagating torsional Alfven waves in chromospheric magnetic flux tubes can provide valuable insight into their magnetic field structure. By implementing a full nonlinear three-dimensional magnetohydrodynamic numerical simulation with a realistic vortex driver, we demonstrate how the plasma structure of chromospheric magnetic flux tubes can act as a spatially dependent frequency filter for torsional Alfven waves. Importantly, for solar magnetoseismology applications, this frequency filtering is found to be strongly dependent on magnetic field structure. With reference to an observational case study of propagating torsional Alfven waves using spectroscopic data from the Swedish Solar Telescope, we demonstrate how the observed two-dimensional spatial distribution of maximum power Fourier frequency shows a strong correlation with our forward model. This opens the possibility of beginning an era of chromospheric magnetoseismology, to complement the more traditional methods of mapping the magnetic field structure of the solar chromosphere.

  9. Compact low field magnetic resonance imaging magnet: Design and optimization

    Microsoft Academic Search

    M. Sciandrone; G. Placidi; L. Testa; A. Sotgiu

    2000-01-01

    Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter.

  10. Magnetic Fields1 Increasingly, instruments that generate large static magnetic fields (e.g., NMR spectrometers,

    E-print Network

    Shull, Kenneth R.

    Magnetic Fields1 Increasingly, instruments that generate large static magnetic fields (e.g., NMR spectrometers, MRI) are present in research laboratories. Such magnets typically have fields of 14,000 to 235,000 G (1.4 to 23.5 T), far above that of Earth's magnetic field, which is approximately 0.5 G

  11. Magnetic field perturbations in the systems where only poloidal magnetic field is present*

    E-print Network

    1 Magnetic field perturbations in the systems where only poloidal magnetic field is present* D In some plasma confinement systems the confinement is provided by a poloidal magnetic field (no toroidal magnetic field is present). Examples include FRC, levitated dipoles, and long diffuse pinches. We consider

  12. How to Draw Magnetic Fields - II

    NSDL National Science Digital Library

    This is an activity about depicting magnetic polarity. Learners will observe several provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines and depict the polarities for several orientations, including an arrangement of six magnetic poles. This is the fourth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.

  13. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  14. Magnetic field driven domain-wall propagation in magnetic nanowires

    SciTech Connect

    Wang, X.R. [Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China); Yan, P. [Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)], E-mail: yanpeng@ust.hk; Lu, J.; He, C. [Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)

    2009-08-15

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  15. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    SciTech Connect

    Velas, K. M. [William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Box 352250, Seattle, Washington 98195-2250 (United States)] [William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Box 352250, Seattle, Washington 98195-2250 (United States); Milroy, R. D. [Plasma Science and Innovation-Center, William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Box 352250, Seattle, Washington 98195-2250 (United States)] [Plasma Science and Innovation-Center, William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Box 352250, Seattle, Washington 98195-2250 (United States)

    2014-01-15

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub ?}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10?kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.

  16. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Velas, K. M.; Milroy, R. D.

    2014-01-01

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure Br, B?, and Bz at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.

  17. Mapping of low flip angles in magnetic resonance

    NASA Astrophysics Data System (ADS)

    Balezeau, Fabien; Eliat, Pierre-Antoine; Bordelois Cayamo, Alejandro; Saint-Jalmes, Hervé

    2011-10-01

    Errors in the flip angle have to be corrected in many magnetic resonance imaging applications, especially for T1 quantification. However, the existing methods of B1 mapping fail to measure lower values of the flip angle despite the fact that these are extensively used in dynamic acquisition and 3D imaging. In this study, the nonlinearity of the radiofrequency (RF) transmit chain, especially for very low flip angles, is investigated and a simple method is proposed to accurately determine both the gain of the RF transmitter and the B1 field map for low flip angles. The method makes use of the spoiled gradient echo sequence with long repetition time (TR), such as applied in the double-angle method. It uses an image acquired with a flip angle of 90° as a reference image that is robust to B1 inhomogeneity. The ratio of the image at flip angle alpha to the image at a flip angle of 90° enables us to calculate the actual value of alpha. This study was carried out at 1.5 and 4.7 T, showing that the linearity of the RF supply system is highly dependent on the hardware. The method proposed here allows us to measure the flip angle from 1° to 60° with a maximal uncertainty of 10% and to correct T1 maps based on the variable flip angle method.

  18. Magnetic field measurement using chip-scale magnetometers in eLISA

    NASA Astrophysics Data System (ADS)

    Mateos, I.; Diaz-Aguiló, M.; Gesa, L.; Gibert, F.; Karnesis, N.; Lloro, I.; Lobo, A.; Martín, V.; Nofrarias, M.; Ramos-Castro, J.; Sopuerta, C. F.

    2015-05-01

    Magnetic sensors are necessary devices to map the magnetic field and gradient at eLISA test masses location. Their primary goal is assessing the contribution of the magnetic effects to the acceleration noise budget. Our experience, accumulated during the magnetic diagnostics system design for LISA Pathfinder, indicates that the accuracy of the magnetic field map interpolation at the test mass is critical issue. Therefore, taking into consideration eLISA increased performance demands, an enhancement of the LISA Pathfinder magnetic subsystem is deemed necessary. A goal pursued by using alternative magnetic sensing techniques. In this study, the accuracy improvements in the magnetic field map reconstruction obtained with the currently conceived instrumental layout are demonstrated.

  19. Magnetic fields of photosphere and interplanetary space: Imbalance between positive and negative polarities

    NASA Astrophysics Data System (ADS)

    Vernova, E. S.; Tyasto, M. I.; Baranov, D. G.

    2014-12-01

    Photospheric magnetic fields are studied in this work on the basis of synoptic maps from the Kitt Peak Observatory (1976-2003) and WSO (1976-2012). The imbalance between positive and negative fluxes is considered for strong magnetic fields in the sunspot zone. The imbalance sign coincides with the polar field sign in the Northern hemisphere; it depends on both the phase of the 11-year cycle and the solar cycle parity. These features of variation in the magnetic field can be explained by a strong quadrupole moment of the photospheric magnetic field, which is also seen in a change of the polarity of the interplanetary magnetic field.

  20. Chaotic electron trajectories in a realizable helical wiggler with axial magnetic field

    SciTech Connect

    Esmaeilzadeh, Mahdi; Fallah, Mohammad S.; Willett, Joseph E. [Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16844 (Iran, Islamic Republic of); Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2007-01-15

    Chaotic behavior of relativistic electron motion in a free-electron laser with realizable helical wiggler and axial magnetic field is investigated by using Pioncare maps and Liapunov exponents. It is shown that in the presence of low to medium axial magnetic field, the motion of the electron may be chaotic. The effect of high axial magnetic field on electron dynamics causes the motion to become regular and nonchaotic. The chaotic behavior of electron motion in the absence of self-fields and axial magnetic field is due to the spatial inhomogeneities of the realizable helical wiggler magnetic field.

  1. Magnetic field calculation and measurement of active magnetic bearings

    NASA Astrophysics Data System (ADS)

    Ding, Guoping; Zhou, Zude; Hu, Yefa

    2006-11-01

    Magnetic Bearings are typical devices in which electric energy and mechanical energy convert mutually. Magnetic Field indicates the relationship between 2 of the most important parameters in a magnetic bearing - current and force. This paper presents calculation and measurement of the magnetic field distribution of a self-designed magnetic bearing. Firstly, the static Maxwell's equations of the magnetic bearing are presented and a Finite Element Analysis (FEA) is found to solve the equations and get post-process results by means of ANSYS software. Secondly, to confirm the calculation results a Lakeshore460 3-channel Gaussmeter is used to measure the magnetic flux density of the magnetic bearing in X, Y, Z directions accurately. According to the measurement data the author constructs a 3D magnetic field distribution digital model by means of MATLAB software. Thirdly, the calculation results and the measurement data are compared and analyzed; the comparing result indicates that the calculation results are consistent with the measurement data in allowable dimension variation, which means that the FEA calculation method of the magnetic bearing has high precision. Finally, it is concluded that the magnetic field calculation and measurement can accurately reflect the real magnetic distribution in the magnetic bearing and the result can guide the design and analysis of the magnetic bearing effectively.

  2. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  3. Full 180° Magnetization Reversal with Electric Fields

    PubMed Central

    Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

  4. Full 180° magnetization reversal with electric fields.

    PubMed

    Wang, J J; Hu, J M; Ma, J; Zhang, J X; Chen, L Q; Nan, C W

    2014-01-01

    Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

  5. Full 180° Magnetization Reversal with Electric Fields

    NASA Astrophysics Data System (ADS)

    Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-12-01

    Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals.

  6. Vlasov Equation In Magnetic Field

    E-print Network

    Biao Wu

    1999-09-07

    The linearized Vlasov equation for a plasma system in a uniform magnetic field and the corresponding linear Vlasov operator are studied. The spectrum and the corresponding eigenfunctions of the Vlasov operator are found. The spectrum of this operator consists of two parts: one is continuous and real; the other is discrete and complex. Interestingly, the real eigenvalues are infinitely degenerate, which causes difficulty solving this initial value problem by using the conventional eigenfunction expansion method. Finally, the Vlasov equation is solved by the resolvent method.

  7. Modelling the hidden magnetic field of low-mass stars

    NASA Astrophysics Data System (ADS)

    Lang, P.; Jardine, M.; Morin, J.; Donati, J.-F.; Jeffers, S.; Vidotto, A. A.; Fares, R.

    2014-04-01

    Zeeman-Doppler imaging is a spectropolarimetric technique that is used to map the large-scale surface magnetic fields of stars. These maps in turn are used to study the structure of the stars' coronae and winds. This method, however, misses any small-scale magnetic flux whose polarization signatures cancel out. Measurements of Zeeman broadening show that a large percentage of the surface magnetic flux may be neglected in this way. In this paper we assess the impact of this `missing flux' on the predicted coronal structure and the possible rates of spin-down due to the stellar wind. To do this we create a model for the small-scale field and add this to the Zeeman-Doppler maps of the magnetic fields of a sample of 12 M dwarfs. We extrapolate this combined field and determine the structure of a hydrostatic, isothermal corona. The addition of small-scale surface field produces a carpet of low-lying magnetic loops that covers most of the surface, including the stellar equivalent of solar `coronal holes' where the large-scale field is opened up by the stellar wind and hence would be X-ray dark. We show that the trend of the X-ray emission measure with rotation rate (the so-called `activity-rotation relation') is unaffected by the addition of small-scale field, when scaled with respect to the large-scale field of each star. The addition of small-scale field increases the surface flux; however, the large-scale open flux that governs the loss of mass and angular momentum in the wind remains unaffected. We conclude that spin-down times and mass-loss rates calculated from surface magnetograms are unlikely to be significantly influenced by the neglect of small-scale field.

  8. Unpaired Floquet Majorana fermions without magnetic fields

    NASA Astrophysics Data System (ADS)

    Reynoso, Andres A.; Frustaglia, Diego

    2013-03-01

    Quantum wires subject to the combined action of spin-orbit and Zeeman coupling in the presence of s-wave pairing potentials (superconducting proximity effect in semiconductors or superfluidity in cold atoms) are one of the most promising systems for the developing of topological phases hosting Majorana fermions. The breaking of time-reversal symmetry is essential for the appearance of unpaired Majorana fermions. By implementing a time-dependent spin rotation, we show that the standard magnetostatic model maps into a nonmagnetic one where the breaking of time-reversal symmetry is guaranteed by a periodical change of the spin-orbit coupling axis as a function of time. This suggests the possibility of developing the topological superconducting state of matter driven by external forces in the absence of magnetic fields and magnetic elements. From a practical viewpoint, the scheme avoids the disadvantages of conjugating magnetism and superconductivity, even though the need of a high-frequency driving of spin-orbit coupling may represent a technological challenge. We describe the basic properties of this Floquet system by showing that finite samples host unpaired Majorana fermions at their edges despite the fact that the bulk Floquet quasienergies are gapless and that the Hamiltonian at each instant of time preserves time-reversal symmetry. Remarkably, we identify the mean energy of the Floquet states as a topological indicator. We additionally show that the localized Floquet Majorana fermions are robust under local perturbations. Our results are supported by complementary numerical Floquet simulations.

  9. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  10. Coupled Field Synthesis in Magnetic Fluid Hyperthermia

    Microsoft Academic Search

    Paolo Di Barba; Fabrizio Dughiero; Elisabetta Sieni; Alessandro Candeo

    2011-01-01

    AGNETIC fluid hyperthermia (MFH) uses magnetic nanoparticles (NPs) excited by an ac magnetic field to destroy cancer tissues (i.e., the target tissue) by means of induced heat [1]. In general, this kind of device exhibits a large iron core. For instance, at the Charité hospital in Berlin, Germany, the equipment for this kind of technique has a magnetic field source

  11. Field Corrections of Open MRI Superconducting Magnets

    Microsoft Academic Search

    Tetsuya Matsuda; Akihiko Ariyoshi; Hajime Tanabe

    2005-01-01

    We constructed open MRI superconducting magnets with an iron yoke that generates a 0.7T highly uniform magnetic field. A program that compensates for the error field of those magnets was developed that uses linear programming to achieve an optimal arrangement of a large number of small iron shims. Since additional homogeneity compensation near the target value becomes difficult, we also

  12. Neutrinos with Mixing in Twisting Magnetic Fields

    E-print Network

    E. Kh. Akhmedov; S. T. Petcov; A. Yu. Smirnov

    1993-01-06

    Transitions in a system of neutrinos with vacuum mixing and magnetic moments, propagating in matter and transverse magnetic field, are considered. It is shown that in the realistic case of magnetic field direction varying along the neutrino path qualitatively new phenomena become possible: permutation of neutrino conversion resonances, appearance of resonances in the neutrino-antineutrino ($\

  13. Helicity of the Solar Magnetic Field

    Microsoft Academic Search

    Sanjiv Kumar Tiwari

    2009-01-01

    Magnetic helicity is a physical quantity that measures the degree of linkages and twistedness in the field lines. It is given by a volume integral over the scalar product of magnetic field B and its vector potential A. Direct computation of magnetic helicity in the solar atmosphere is not possible due to two reasons. First, we do not have the

  14. ELECTRON SPECTROMETER WITH TOROIDAL MAGNETIC FIELD

    Microsoft Academic Search

    A. E. Dubinov; N. V. Minashkin; V. D. Selemir; N. V. Stepanov; V. E. Vatrunin

    1993-01-01

    The spectrometer allows to measure the spectrum of the electron beam, generated in the magnetized diode. Principle of the spectrometer's operation consists in spatial separation of Merent energies particles in gradient static magnetic field. Numerical integration of electron movement equations in the toroidal magnetic field %l\\/r -manner, is consistent with the experimental results received at 1-3000 accelerator. The results of

  15. Volume-based Representation of the Magnetic Field

    E-print Network

    Amapane, N; Drollinger, V; Karimäki, V; Klyukhin, V; Todorov, T

    2005-01-01

    Simulation and reconstruction of events in high-energy experiments require the knowledge of the value of the magnetic field at any point within the detector. The way this information is extracted from the actual map of the magnetic field and served to simulation and reconstruction applications has a large impact on accuracy and performance in terms of speed. As an example, the CMS high level trigger performs on-line tracking of muons within the magnet yoke, where the field is discontinuous and largely inhomogeneous. In this case the high level trigger execution time is dominated by the time needed to access the magnetic field map.For this reason, an optimized approach for the access to the CMS field was developed, based on a dedicated representation of thedetector geometry. The detector is modeled in terms of volumes, constructed in such a way that their boundaries correspond to the fiel d discontinuities due to changes in the magnetic permeability of the materials. The field within each volume is therefore c...

  16. Large-Scale Magnetic Field Structures and Coronal Holes on the Sun

    Microsoft Academic Search

    E. I. Mogilevsky; V. N. Obridko; N. S. Shilova

    1997-01-01

    This paper is aimed at establishing the relationship between the large-scale magnetic fields (LSMF), coronal holes (CH), and active regions (AR) in the Sun. The LSMF structure was analyzed by calculating the vector photospheric magnetic field under a potential approximation. Synoptic maps were drawn to study the distribution of the B? field component and to isolate regions where the open

  17. COORDINATES FOR MAPPING THE DISTRIBUTION OF MAGNETICALLY TRAPPED PARTICLES

    Microsoft Academic Search

    Carl E. McIlwain

    1961-01-01

    Dipole representations of the earth's magnetic field have insufficient ; accuracy for the study of magnetically trapped particles. A coordinate system ; consisting of the magnitude of the magnetic field B and the integral invariant I ; was organized adequately, measurements made at different geographic locations. A ; parameter L = f(B,I) is defined that retains most of the desirable

  18. Magnetic Fields in the Smith Cloud

    NASA Astrophysics Data System (ADS)

    Hill, Alex S.; Benjamin, R. A.; Mao, S.; McClure-Griffiths, N. M.; Lockman, F. J.; Gaensler, B. M.

    2013-01-01

    The Smith Cloud is a high velocity cloud (HVC) with a cometary morphology indicating an ongoing interaction with the Galactic interstellar medium. Although it is among the best-studied HVCs and the only large HVC mapped in both H I and Halpha, its origin remains unknown. Most formation scenarios have difficulty explaining its coherence after passage through the Galactic halo, but magnetic fields may help to stabilize HVCs against disruption. We present measurements of Faraday rotation of extragalactic radio sources behind the Smith Cloud derived from the NRAO VLA Sky Survey as well as new Karl G. Jansky Very Large Array observations of Faraday rotation. The data show evidence of Faraday rotation due to the cloud; the Faraday rotation is better correlated with the Halpha emission than with the H I emission.

  19. ECE 390 Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields.

    E-print Network

    ECE 390 ­ Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields. Credits: 4 Terms Offered: Fall Prerequisites: MTH 255, ENGR 203 (concurrent enrollment fields in free space, Ampere's circuital law, vector magnetic potential · Biot-Savart law, magnetic

  20. Continuous Depth Map Reconstruction From Light Fields.

    PubMed

    Li, Jianqiao; Lu, Minlong; Li, Ze-Nian

    2015-11-01

    In this paper, we investigate how the recently emerged photography technology-the light field-can benefit depth map estimation, a challenging computer vision problem. A novel framework is proposed to reconstruct continuous depth maps from light field data. Unlike many traditional methods for the stereo matching problem, the proposed method does not need to quantize the depth range. By making use of the structure information amongst the densely sampled views in light field data, we can obtain dense and relatively reliable local estimations. Starting from initial estimations, we go on to propose an optimization method based on solving a sparse linear system iteratively with a conjugate gradient method. Two different affinity matrices for the linear system are employed to balance the efficiency and quality of the optimization. Then, a depth-assisted segmentation method is introduced so that different segments can employ different affinity matrices. Experiment results on both synthetic and real light fields demonstrate that our continuous results are more accurate, efficient, and able to preserve more details compared with discrete approaches. PMID:26054068

  1. The flexible magnetic field thruster

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Wilbur, P. J.

    1982-01-01

    The thruster is designed so that ion currents to various internal surfaces can be measured directly; these measurements facilitate calculations of the distribution of ion currents inside the discharge chamber. Experiments are described suggesting that the distribution of ion currents inside the discharge chamber is strongly dependent on the shape and strength of the magnetic field but independent of the discharge current, discharge voltage, and neutral flow rate. Measurements of the energy cost per plasma ion suggest that this cost decreases with increasing magnetic field strength as a consequence of increased anode shielding from the primary electrons. Energy costs per argon plasma ion as low as 50 eV are measured. The energy cost per beam ion is found to be a function of the energy cost per plasma ion, extracted ion fraction, and discharge voltage. Part of the energy cost per beam ion has to do with creating many ions in the plasma and then extracting only a fraction of them into the beam. The balance of the energy goes into accelerating the remaining plasma ions into the walls of the discharge chamber.

  2. Circum-Arctic mapping project: new magnetic anomaly map of the Arctic (to 60 degrees N)

    NASA Astrophysics Data System (ADS)

    Gaina, Carmen

    2010-05-01

    An international effort to compile Circum-Arctic geophysical and bedrock data has been conducted by several national agencies (Russia-VSEGEI and VNIIO, Sweden-SGU, Finland-GTK, Denmark-GEUS, USA-USGS, Canada-GSC, Germany-BGR and Norway-NGU) since 2005. This project aims to produce an atlas that will comprise geological and geophysical digital maps at a scale of 1: 5 million scale for the Arctic region limited by the 60 degree North latitude. New published and classified magnetic anomaly gridded data from each participant group were gathered and converted to a common datum (WGS84) and format. The Greenland region magnetic anomaly grid (Verhoef et al., 1996) has been updated with new aeromagnetic surveys performed in West Greenland between 1992-2001 (Rasmussen, 2002), and in the Nares Strait area (Damaske & Oakey, 2006; Oakey & Damaske, 2006). The oceanic area east of Greenland (NE Atlantic) contains most of the aeromagnetic data used in the Verhoef et al., (1996)'s compilation (pre-1990) plus new aeromagnetic surveys over offshore Norway collected up to 2007 (Olesen et al., 1997; Olesen et al., 2007; Gernigon et al., 2008). The gridded data has been upward continued to 1 km above ground or sea-level and trimmed around the areas of major overlaps. The Alaska USGS aeromagnetic compilation has been used as the "master grid" for merging the major gridded data sets together and the downward continued lithospheric magnetic field model MF6 derived from satellite data (Maus et al., 2008) has been used as a regional reference surface. We have used a blending function over the area of overlap in order to smooth the transition from one grid to the other (GridKnit, GEOSOFT). The resulting grid has been re-sampled to a 2 km grid cell. In order to construct the final Circum-Arctic magnetic anomaly grid (CAMP-M) we have adopted the approach used by several research groups for compiling the World Digital Magnetic Anomaly Map (WDMAM) and used near-surface magnetic data for the short wavelength component of the compilation and the satellite derived magnetic anomalies for the long wavelength (Hemant et al., 2007; Maus et al., 2007). MF6 extends to spherical harmonics degree 120 (333 km wavelength) and therefore it is able to provide consistent long wavelength information between 300 and 400 km. This information is mainly related to regional deeper and/or thicker portions of the magnetic sources within the crust. We have prepared two versions for the CAMP-M magnetic anomaly grid. The first one combines short wavelength components of regional grids (less than 400 km) with long wavelengths (400 km) of the MF6 model. The second one combines short wavelengths of regional datasets (obtained by filtering with a cosine squared taper to remove the wavelengths in the waveband between 307 and 333 km and larger, with the MF6 model (to degree 120). We have selected Model 1 as the new Circum-Arctic Magnetic Anomaly Map.

  3. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S. (Oak Ridge, TN)

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  4. Doppler-Zeeman mapping of magnetic CP stars: The case of the CP star HD 215441

    E-print Network

    V. L. Khokhlova; D. V. Vasilchenko; V. V. Stepanov; V. V. Tsymbal

    1998-05-07

    When using a recently developed method of Doppler-Zeeman mapping (Vasilchenko et al., 1996) for analysis of a real star and real observational data, we are confronted with limitations due to the model simplifications and unavoidable errors in observed spectra. We discuss the errors introduced by probable inaccurracies of the mathematical model: analytical fit of the local Stokes parameters, influence of magneto-optical effect, ignorance of the true atmosphere model to compute local Stokes profiles, non-uniform surface brightness. The magnetic field configuration is found in the form of arbitrarily shifted dipole and sum of dipole and quadrupole, along with the distribution of Si, Ti, Cr and Fe over the surface of the star. Lines of different elements lead to the same magnetic field configuration, which is reliably determined for the part of the stellar surface which faces the observer. This allows to compare the magnetic field and chemical maps of the surface of HD 215441. A large-scale ring structure with the magnetic pole at its center is clearly seen on the abundance maps. Si, Cr and Ti are highly deficient where the magnetic field lines are vertical (near the magnetic pole) while Fe is highly overabundant there.

  5. Large scale magnetic susceptibility soil mapping: a proxy for geological mapping and exploration from Bogoso (Ghana)

    NASA Astrophysics Data System (ADS)

    Théveniaut, Hervé; Clarke, Brendan

    2013-01-01

    This paper describes the use of magnetic susceptibility measurements on a set of nearly 3000 soil samples (one sample per km2) collected for geochemical analyses within the framework of a geological mapping program in Ghana. The result is a map of soil magnetic susceptibility which has been compared with other maps. There is a good consistency with geological domains and lithologies, as well as with some of the geochemical soil analyses and also partly with the aeromagnetic data. In the tropical, deeply weathered lateritic context of the study area, soil magnetic susceptibility reveals similarities with magnetic and/or geochemical survey results, suggesting this rapid and easy to use technique can be an effective tool for exploration and geological mapping programs.

  6. Exploring Magnetic Fields in Your Environment

    NSDL National Science Digital Library

    This is a lesson about measuring magnetic field directions of Earth and in the environment. First, learners go outside, far away from buildings, power lines, or anything electrical or metal, and use compasses to identify magnetic North. Next, they use the compasses to probe whether there are any sources of magnetic fields in the local environment, including around electronic equipment such as a CD player and speakers. This is the first lesson in the second session of the Exploring Magnetism teacher guide.

  7. A carpet cloak for static magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Rongfeng; Lei Mei, Zhong; Jun Cui, Tie

    2013-05-01

    We present a two-dimensional carpet cloak for static magnetic field, a design that renders the magnetic response of a given volume invisible from its exterior, without altering the external magnetic fields. The device is designed using transformation optics method and can be implemented with alternating superconducting and magnetic material layers. Through the proper design of the constitutive tensors and relative thicknesses of each slab, we achieve the perfect performance of invisibility. Full wave numerical simulations confirm our design.

  8. Magnetic Fields and Rotations of Protostars

    E-print Network

    Masahiro N. Machida; Shu-ichiro Inutsuka; Tomoaki Matsumoto

    2007-07-21

    The evolution of the magnetic field and angular momentum in the collapsing cloud core is studied using three-dimensional resistive MHD nested grid simulations. Starting with a Bonnor-Ebert isothermal cloud rotating in a uniform magnetic field, we calculate the cloud evolution from the molecular cloud core (n=10^4 cm^-3) to the stellar core (n \\simeq 10^22 cm^-3). The magnetic field strengths at the center of the clouds converge to a certain value as the clouds collapse, when the clouds have the same angular momenta but different strengths of the magnetic fields at the initial state. For 10^12 cm^-3 magnetic field from the collapsing cloud core, and the magnetic field lines, which are strongly twisted for n magnetic field lines are twisted and amplified again for nc > 10^16 cm^-3, because the magnetic field is recoupled with the warm gas. Finally, protostars at their formation epoch have 0.1-1kG of the magnetic fields, which are comparable to observations. The magnetic field strength of protostar slightly depends on the angular momentum of the host cloud. The protostar formed from the slowly rotating cloud core has a stronger magnetic field. The evolution of the angular momentum is closely related to the evolution of the magnetic field. The angular momentum in the collapsing cloud is removed by the magnetic effect. The formed protostars have 0.1-2 days of the rotation period at their formation epoch, which are slightly shorter than the observation. This indicates that the further removal mechanism of the angular momentum such as interaction between the protostar and disk, wind gas or jet is important in further evolution of the protostar.

  9. Rapid Change of Field Line Connectivity and Reconnection in Stochastic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Huang, Y. M.; Bhattacharjee, A.; Boozer, A. H.

    2014-12-01

    Magnetic fields depending on three spatial coordinates generally have the feature that neighboring field lines exponentiate away from each other and become stochastic. Such a generic condition usually occurs in space and astrophysical plasmas, such as coronal magnetic field entangled by photospheric footpoint shuffling, as well as in fusion plasmas in the presence of multiple tearing modes. Under the condition of large exponentiation, the ideal constraint of preserving magnetic field line connectivity becomes exponentially sensitive to small deviations from ideal Ohm's law, which may potentially lead to rapid magnetic reconnection. This idea of breaking field line connectivity by stochasticity is tested with numerical simulations based on reduced magnetohydrodynamics equations with a strong guide field line-tied to two perfectly conducting end plates. Starting from an ideally stable force-free equilibrium, the system is allowed to undergo resistive relaxation. Two distinct phases are identified in the process of resistive relaxation. During the quasi-static phase, it is found that regions of high field line exponentiation (akin to quasi-separatrix-layers) are associated with rapid change of field line connectivity and strong induced flow. However, although the field line connectivity of individual field lines can change rapidly, the overall pattern of footpoint mapping appears to deform gradually. From this perspective, field line exponentiation appears to cause enhanced diffusion rather than reconnection. In some cases, it is found that resistive quasi-static evolution can cause the ideally stable initial equilibrium to cross a stability threshold. Onset of the instability leads to formation of intense current filaments, followed by rapid change of field line mapping into a qualitatively different pattern. It is in this onset phase that the change of field line connectivity may be more appropriately designated as magnetic reconnection. Our results reveal and address the difficulty in distinguishing magnetic reconnection from enhanced diffusion in the presence of field line stochasticity. Rapid change of field line connectivity appears to be a necessary, but may not be sufficient, condition for fast reconnection.

  10. Plasma and Magnetic Field Inside Magnetic Clouds: a Global Study

    Microsoft Academic Search

    C. Cid; M. A. Hidalgo; T. Nieves-Chinchilla; J. Sequeiros; A. F. Viñas

    2002-01-01

    Data observed during spacecraft encounters with magnetic clouds have been extensively analyzed in the literature. Moreover, several models have been proposed for the magnetic topology of these events, and fitted to the observations. Although these interplanetary events present well-defined plasma features, none of those models have included a simultaneous analysis of magnetic field and plasma data. Using as a starting

  11. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  12. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  13. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  14. Static uniform magnetic fields and amoebae

    SciTech Connect

    Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A. [Tennessee Technological Univ., Cookeville, TN (United States)] [Tennessee Technological Univ., Cookeville, TN (United States)

    1997-03-01

    Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

  15. Intrinsic Signal Changes Accompanying Sensory Stimulation: Functional Brain Mapping with Magnetic Resonance Imaging

    Microsoft Academic Search

    Seiji Ogawa; David W. Tank; Ravi Menon; Jutta M. Ellermann; Seong-Gi Kim; Hellmut Merkle; Kamil Ugurbil

    1992-01-01

    We report that visual stimulation produces an easily detectable (5-20%) transient increase in the intensity of water proton magnetic resonance signals in human primary visual cortex in gradient echo images at 4-T magnetic-field strength. The observed changes predominantly occur in areas containing gray matter and can be used to produce high-spatial-resolution functional brain maps in humans. Reducing the image-acquisition echo

  16. Polymer gel dosimetry of an electron beam in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; De Deene, Y.

    2013-06-01

    The effect of a strong external magnetic field on 4 MeV electron beam was measured with polymer gel dosimetry. The measured entrance dose distribution was compared with a calculated fluence map. The magnetic field was created by use of two permanent Neodymium (NdFeB) magnets that were positioned perpendicular to the electron beam. The magnetic field between the magnets was measured with Hall sensors. Based on the magnetic field measurement and the law of Biot-Savart, the magnetic field distribution was extrapolated. Electron trajectories were calculated using a relativistic Lorentz force operator. Although the simplified computational model that was applied, the shape and position of the calculated entrance fluence map are found to be in good agreement with the measured dose distribution in the first layer of the phantom. In combination with the development of low density polymer gel dosimeters, these preliminary results show the potential of 3D gel dosimetry in MRI-linac applications.

  17. Extraterrestrial Magnetic Fields: Achievements and Opportunities

    Microsoft Academic Search

    EDWARD J. SMITHAND; Charles Sonett

    1976-01-01

    The major scientific achievements associated with the measurement of magnetic fields in space over the past decade and a half are reviewed. Aspects of space technology relevant to magnetic-field observations are discussed, including the different types of magnetometers used and how they operate, problems arising from spacecraft-generated magnetic fields and the appropriate countermeasures that have been developed and on-board processing

  18. Magnetic field effects on plasma ionization balance

    SciTech Connect

    Weisheit, J.C.

    1995-12-31

    Magnetic fields give rise to several phenomena that can significantly affect ionization balance in a plasma. Theoretical models commonly used to determine the charge state distribution (viz., ) of ions in non-magnetized plasmas are reviewed first, for both equilibrium and non-equilibrium situations. Then, after a brief survey of laboratory and cosmic plasmas with strong fields, B > 10{sup 6} Gauss, some of the ways such magnetic fields influence are highlighted. Most key problems have yet to be tackled.

  19. Origin of magnetic fields in galaxies

    Microsoft Academic Search

    Rafael S. de Souza; Reuven Opher

    2010-01-01

    Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation -dissipation theorem, predicts ˜0.034muG fields over ˜0.3kpc regions in galaxies. If the dipole magnetic

  20. Digital Technology for Geological Field Mapping

    NASA Astrophysics Data System (ADS)

    Rourke, Peter; Smith, Stuart; Vaughan, Alan; Ellis, Jenny

    2014-05-01

    The amount of time that students and professionals spend in the field has reduced over the past 25 years (Gibbs, 2012). Recent advances in technology are changing the way students and professionals are able to conduct geological field study. Applications such as Midland Valley Exploration's FieldMove Clino now allow the geologist to use their smartphone as a fast, georeferenced measuring device compared with a traditional compass-clinometer. Although we support the view that an understanding of field mapping and model building, taught at university level, is essential to give the geologist the ability to think in three and four dimensions, new technologies that automate the ability to digitise and visualise data in the field lead to a better appreciation of the geometry, scale, and evolution of geological structures and trapping mechanisms that will be encountered during a career in industry. The majority of future industry professionals own a smartphone or tablet device: A recent study found that four-fifths of new students own a smartphone and one-fifth own a tablet device (UCAS Media, 2013). This figure is increasing with each new intake of geoscience students. With the increased availability and affordability of smartphone and tablet devices, new techniques are being examined for digital data collection in the field. If the trend continues that geoscience students are likely to spend less time in the field than their predecessors, then the time available must be spent as effectively as possible. Digital devices allow students and professionals alike to optimise the time spent in the field, allowing more time to think about geological relationships, and highlighting areas of uncertainty that can be studied further. This poster will examine the use of new digital smartphone and tablet devices for the collection of geological field data.

  1. New gravity and magnetics map of eastern part of Azores

    NASA Astrophysics Data System (ADS)

    Dehghani, A.

    2013-12-01

    The Azores are of volcanic origin and the volcanic activities are still occurs in the area. The main tectonic features in the eastern part of Azores are the Gloria Fault (GF) and São Miguel volcanic Island. The GF is an E-W strike-slip fault and can be traced by bathymetry. In the past decade many geological and geophysical investigations were dedicated to the study of tectonic features in the eastern part of Azores. Two of these cruises were organized by the Institute of Geophysics, University of Hamburg, Germany, in the years 2009 and 2012. In 2009 during the Meteor cruise M79-2 a total of 5500 km new Gravity and 2000 km new magnetic data were collected along some 60 Profiles. During the Poseidon cruise in the year 2012 some 2000 km new gravity and magnetic data were collected along two E-W profiles in the eastern part of Azores. The new gravity data were recorded with the modern Air-Sea-Gravimeter of Bodenseewerk KSS 31M and the new magnetic date with the Gradiometer SeaSpy. All new potential date were combined with the available data of the data base GEODAS and the new gravity anomaly maps (Free-Air and Bouguer) and the new magnetic anomaly map were produced. The maps show clearly the tectonic features in the area. The GF can be traced very well on both gravity and magnetic anomaly maps. Most of the small hills around the São Miguel Island are shown up in the magnetic anomaly map as strong magnetic anomaly. The new gravity and magnetic maps and the interpretation of them will be presented. The results of some 2-D modeling along some interesting profiles will be also presented and discussed.

  2. Magnetic field sensor utilizing bent fiber taper and magnetic fluid

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tian, Zhuang; Sun, Li-Peng; Guan, Bai-Ou

    2014-05-01

    A magnetic field sensor is demonstrated by placing a bent-fiber taper modal interferometer inside a magnetic fluid sealed with an organic glass base. Owing to the strong refractive index dependency of the interferometer and magneto-optics property of the fluid, our sensor exhibits high sensitivity to the external magnetic field change. A linear wavelength dependency of ~58pm/Oe is experimentally obtained within a magnetic field range from 30 to 80 Oe. Our structure is featured of high sensitivity, fiber-compatibility, compactness, and robustness.

  3. Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor

    Microsoft Academic Search

    G. Bison; R. Wynands; A. Weis

    2003-01-01

    The magnetic field produced by the human heart carries valuable information for medical research, as well as for diagnostics and screening for disease. We have developed an optical method that allows us to produce movies of the temporal dynamics of the human cardiomagnetic field map. While such movies have been generated before with the help of SQUIDmagnetometers, our technique operates

  4. Precision absolute measurements of strong and highly inhomogeneous magnetic fields.

    PubMed

    Honig, A; Moroz, M

    1978-02-01

    The low-temperature ([similar or less than]4 K) dependence of the photoconductance in n-type silicon on the conduction electron and bound donor electron spin state serves as the basis of a high-precision, wide-range magnetic field measuring probe, which by virtue of its very small dimensions is well suited for spatial mapping of highly inhomogeneous fields produced by superconducting magnets. The probe may also be adapted to power and frequency measurement of microwave sources operating at approximately mW power levels and frequencies up to approximately 500 GHz. PMID:18699056

  5. Minimizing magnetic fields for precision experiments

    NASA Astrophysics Data System (ADS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  6. Minimizing magnetic fields for precision experiments

    E-print Network

    Altarev, I; Lins, T; Marino, M G; Nießen, B; Petzoldt, G; Reisner, M; Stuiber, S; Sturm, M; Singh, J T; Taubenheim, B; Rohrer, H K; Schläpfer, U

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a linear improvement in the systematic reach and a 40 % improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  7. Chromospheric magnetic fields of an active region filament

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  8. Magnetic field properties of SSC model dipole magnets

    SciTech Connect

    Wake, M.; Bossert, R.; Carson, J.; Delchamps, S.; Jaffery, T.S.; Kinney, W.; Koska, W.; Lamm, M.J.; Strait, J. (Fermi National Accelerator Lab., Batavia, IL (United States)); Butteris, J.; Sims, R.; Winters, M. (Superconducting Super Collider Lab., Dallas, TX (United States))

    1992-09-01

    SSC 1.5m model dipole magnets were built and tested at Fermilab. Magnetic field properties were studied in term of transfer function variation and multipole components. The results were satisfactory. Observation of periodicity of remanent field along the axis is also reported.

  9. Magnetic Resonance Imaging System Based on Earth's Magnetic Field

    E-print Network

    Stepi?nik, Janez

    of the magnetic field enables scanning of very large volume samples. Reduction in S/N ratio due to the weak in the case of strong magnetic fields, detection and processing of low frequency signal are less 655 DOI: 10 Vol. 32, No. 6, pp. 655­667, 2004 #12;demanding for the electronics. The techniques used

  10. Airborne magnetic mapping of volcanic areas - state-of-the-art and future perspectives

    NASA Astrophysics Data System (ADS)

    Supper, Robert; Paoletti, Valeria; Okuma, Shigeo

    2015-04-01

    Traditionally airborne magnetics surveys in volcanology are used for mapping regional geological features, fault zones and to develop a magnetic model of the volcanic subsurface. Within an Austrian-Italian-Japanese cooperation, several volcanic areas including Mt. Vesuvius, Ischia, Campi Flegreii and Aeolian Islands in Italy and Socorro Island in Mexico were mapped by high-resolution magnetic mapping during the last 15 years. In this paper, general conclusions from this long-term cooperation project on airborne magnetics in volcanic areas will be summarised. Basically the results showed the results from airborne magnetics could be used for three major purposes: 1. Developing a rough model for the magnetisation below the volcano down to several kilometres by applying advanced magnetic inversion algorithms helped to define the possible depth of the current or past magma chamber. Due to the complexity of the subsurface of volcanic areas, inversion of data was much dependent on constraints coming from other geoscientific disciplines. 2. After applying certain steps of reduction (topographic correction, field transformation) and a combination of source selective filtering, important regional structural trends could be derived from the alignment of the residual magnetic anomalies. 3. On the other hand during recent years, research has also focused on repeated measurements of the magnetic field of volcanic areas (differential in respect of time = differential magnetic measurements - DMM) using airborne sensors. Long-term temporal magnetic field variations in active volcanic areas can be caused by a changing size of the magma chamber or a general rise in temperature. This is caused by the fact that magnetization disappears, when a magnetic material is warmed up over a certain temperature (Curie- temperature). In consequence the resulting total magnetic field changes. Therefore, determining areas showing changes in the magnetic field could help to select areas where a possible renewal of eruptive activity could be expected. Such areas could then be targets for further detailed monitoring using ground-based methods. Since large areas could be covered by airborne magnetics within short time, this method is very cost effective. Consequently, if successful, this method could have a significant relevance for the prediction of future unrest and civil protection. However to make datasets comparable, delicate field transformation algorithms had to be developed in order not to lose the required high resolution. First promising results from Italy and Japan so far proved the seminal character of this approach.

  11. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1991-01-01

    The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

  12. Magnetic monopole field exposed by electrons

    NASA Astrophysics Data System (ADS)

    Béché, Armand; van Boxem, Ruben; van Tendeloo, Gustaaf; Verbeeck, Jo

    2014-01-01

    The experimental search for magnetic monopole particles has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study. Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle. We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole. This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.

  13. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  14. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  15. Magnetic fields in anisotropic relativistic stars

    NASA Astrophysics Data System (ADS)

    Folomeev, Vladimir; Dzhunushaliev, Vladimir

    2015-02-01

    Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.

  16. Magnetic Fields in the Milky Way

    NASA Astrophysics Data System (ADS)

    Haverkorn, Marijke

    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.

  17. Magnetic fields in anisotropic relativistic stars

    E-print Network

    Vladimir Folomeev; Vladimir Dzhunushaliev

    2015-02-28

    Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.

  18. Magnetic field spectrum at cosmological recombination revisited

    NASA Astrophysics Data System (ADS)

    Saga, Shohei; Ichiki, Kiyotomo; Takahashi, Keitaro; Sugiyama, Naoshi

    2015-06-01

    If vector type perturbations are present in the primordial plasma before recombination, the generation of magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard cosmological perturbation theory, nonlinear couplings of first-order scalar perturbations create second-order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and extend it by newly taking into account the time evolution of purely second-order vector perturbations with a newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the product-terms of the first-order scalar modes is consistent with the result in our previous study. However, we find, both numerically and analytically, that the magnetic fields from the purely second-order vector perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the magnetic fields on small scales, k ?10 h Mpc-1 , is smaller than the previous estimates. The amplitude of the generated magnetic fields at cosmological recombination is about Brec=5.0 ×10-24 Gauss on k =5.0 ×10-1 h Mpc-1 . Finally, we discuss the reason for the discrepancies that exist in estimates of the amplitude of magnetic fields among other authors.

  19. Nuclear magnetic resonances in weak fields

    E-print Network

    Mitchell, Richard Warren

    1953-01-01

    ?s technique involves ~ su41ng a molecular beam through tuo sueeessive static magnetic fields shish have gradients in opposite direotions, While passing from ene magnetic field ts tho other~ the beam is irradiated eith electro-mag- nstio ?nsrgy? When tho...Lgneto The ssmple was placed in, the best pert of the field Then a permanent magnet was brought close to the solenoid& snd pointed to a spot gust beyond the sample in such a manner that, the field of the permanent magnet was roughly opposibx to that...

  20. A laser-pumped magnetometer for the mapping of human cardiomagnetic fields

    Microsoft Academic Search

    G. Bison; R. Wynands; A. Weis

    2003-01-01

    .   Magnetic fields produced by biological organisms contain valuable information on the underlying physiological processes and\\u000a their pathologies. Currently, superconducting detectors cooled far below room temperature are required to measure these generally\\u000a weak biomagnetic signals. We have developed a sensitive laser magnetometer based on optical pumping of cesium atoms that makes\\u000a it possible to map the magnetic field produced by

  1. Magnetic Mapping and Classification of Contaminant Impact Levels in Lake Sediments

    NASA Astrophysics Data System (ADS)

    Boyce, J. I.; Morris, W. A.; Pozza, M. R.

    2004-05-01

    Magnetic property measurements of Hamilton Harbour cores show that concentrations of hydrocarbons (PAH) and some heavy metals (Pb, Zn, Fe) in an upper contaminated sediment layer are strongly correlated with magnetic susceptibility. The magnetic contrast between contaminated and `clean' pre-colonial sediments is sufficient to generate a total field anomaly (ca. 2-20 nT) that can be measured with a magnetometer towed above the lake bottom. Systematic magnetic surveying (> 500 line km) of the harbour using an Overhauser marine magnetometer clearly identifies a number of localized magnetic anomalies that coincide with known accumulations of contaminated sediments on the harbour bottom. Apparent susceptibility maps calculated from the total field data provide a further attribute for classifying contaminant impact levels, as susceptibility is directly linked to pollutant levels. Magnetic detection of near-surface anomalies requires a closely-spaced survey grid and careful post-cruise processing to remove diurnal, regional and water-depth related variations in the magnetic field intensity. These results demonstrate the potential of lake-based magnetic surveying as a rapid reconnaissance method for mapping large areas of bottom contamination prior to detailed coring work.

  2. Generation of the magnetic field in jets

    E-print Network

    V. Urpin

    2006-05-22

    We consider dynamo action under the combined influence of turbulence and large-scale shear in sheared jets. Shear can stretch turbulent magnetic field lines in such a way that even turbulent motions showing mirror symmetry become suitable for generation of a large-scale magnetic field. We derive the integral induction equation governing the behaviour of the mean field in jets. The main result is that sheared jets may generate a large-scale magnetic field if shear is sufficiently strong. The generated mean field is mainly concentrated in a magnetic sheath surrounding the central region of a jet, and it exhibits sign reversals in the direction of the jet axis. Typically, the magnetic field in a sheath is dominated by the component along the jet that can reach equipartition with the kinetic energy of particles, The field in the central region of jets has a more disordered structure.

  3. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  4. On the accuracy of the symmetric ergodic magnetic limiter map in tokamaks

    NASA Astrophysics Data System (ADS)

    Sohrabi, A. R.; Jazayeri, S. M.; Mollabashi, M.

    2010-10-01

    A new symmetric symplectic map for an ergodic magnetic limiter (EML) is proposed. A rigorous mapping technique based on the Hamilton-Jacobi equation is used for its derivation. The system is composed of the equilibrium field, which is fully integrable, and a Hamiltonian perturbation. The equilibrium poloidal flux function is a solution of the Grad-Schlüter-Shafranov equation. This equation is written in polar toroidal coordinate in order to take into account the outward Shafranov shift. The static perturbation field breaks the exact axisymmetry of the equilibrium field and creates a region of chaotic field lines near the plasma edge. The new symmetric EML map is compared with the conventional (asymmetric) EML map which is derived by applying delta-function method. The accuracy of the maps is considered through mean energy error criterion and maximal Lyapunov exponents. For asymmetric and symmetric maps the approximate location of the main cantorus near the edge of plasma is determined with high accuracy by using mean energy error. The forward-backward error criterion is applied to show the relation between the accuracy of the symmetric EML map and the number of EML rings. We also report on the effect of the number of EML rings on the maximal Lyapunov exponent of the symmetric EML map.

  5. Magnetic phase control by an electric field

    Microsoft Academic Search

    Thomas Lottermoser; Thomas Lonkai; Uwe Amann; Dietmar Hohlwein; Jörg Ihringer; Manfred Fiebig

    2004-01-01

    The quest for higher data density in information storage is motivating investigations into approaches for manipulating magnetization by means other than magnetic fields. This is evidenced by the recent boom in magnetoelectronics and `spintronics', where phenomena such as carrier effects in magnetic semiconductors and high-correlation effects in colossal magnetoresistive compounds are studied for their device potential. The linear magnetoelectric effect-the

  6. LABORATORY VI MAGNETIC FIELDS AND FORCES

    E-print Network

    Minnesota, University of

    . · Calculate the motion of a particle with a constant acceleration. · Calculate the motion of a particle of the universe, the atomic structure of materials, and the quark structure of elementary particles. Magnetic; · Calculate the magnetic force on a charged particle moving in a uniform magnetic field and describe its

  7. The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Nakotte, Heinz

    2001-11-01

    The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

  8. Self-magnetic-field-limiting current of intense relativistic electron beam under externally applied magnetic field

    Microsoft Academic Search

    Liu Guo-zhi; Song Xiao-xin

    1998-01-01

    The self-magnetic-field-limiting current of intense relativistic electron beam (IREB) without an externally applied magnetic field is reported and briefly commented in this paper. By using dynamic balance method the self-magnetic-field-limiting current of IREB under externally applied magnetic field is derived, showing that in this case it will increase. This result is obtained for the first time, so far as we

  9. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  10. Graphene Nanoribbon in Sharply Localized Magnetic Fields

    E-print Network

    Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal

    2013-03-20

    We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.

  11. B0 mapping with multi-channel RF coils at high field.

    PubMed

    Robinson, Simon; Jovicich, Jorge

    2011-10-01

    Mapping the static magnetic field via the phase evolution over gradient echo scans acquired at two or more echo times is an established method. A number of possibilities exist, however, for combining phase data from multi-channel coils, denoising and thresholding field maps for high field applications. Three methods for combining phase images when no body/volume coil is available are tested: (i) Hermitian product, (ii) phase-matching over channels, and (iii) a new approach based on calculating separate field maps for each channel. The separate channel method is shown to yield field maps with higher signal-to-noise ratio than the Hermitian product and phase-matching methods and fewer unwrapping errors at low signal-to-noise ratio. Separate channel combination also allows unreliable voxels to be identified via the standard deviation over channels, which is found to be the most effective means of denoising field maps. Tests were performed using multichannel coils with between 8 and 32 channels at 3 T, 4 T, and 7 T. For application in the correction of distortions in echo-planar images, a formulation is proposed for reducing the local gradient of field maps to eliminate signal pile-up or swapping artifacts. Field maps calculated using these techniques, implemented in a freely available MATLAB toolbox, provide the basis for an effective correction for echo-planar imaging distortions at high fields. PMID:21608027

  12. Inclination angle of vector magnetic fields.

    NASA Astrophysics Data System (ADS)

    Yanping, Lü; Wang, Jingxiu

    1994-11-01

    The authors further elaborate on an empirical method to improve the consistency of the line-of-sight and transverse field calibration. The method can also be used to check the transverse field calibration. Furthermore, based on the correction, the authors calculate the inclination angle of the vector magnetic field related to the solar surface, which can give some information on how the vector magnetic field is distributed in space.

  13. Coronal magnetic fields produced by photospheric shear

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Yang, W.-H.

    1987-01-01

    The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear, by a simple functional form.

  14. Single-layer high field dipole magnets

    SciTech Connect

    Vadim V. Kashikhin and Alexander V. Zlobin

    2001-07-30

    Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good field quality and minimum number of turns.

  15. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  16. Field Corrections of Open MRI Superconducting Magnets

    NASA Astrophysics Data System (ADS)

    Matsuda, Tetsuya; Ariyoshi, Akihiko; Tanabe, Hajime

    We constructed open MRI superconducting magnets with an iron yoke that generates a 0.7T highly uniform magnetic field. A program that compensates for the error field of those magnets was developed that uses linear programming to achieve an optimal arrangement of a large number of small iron shims. Since additional homogeneity compensation near the target value becomes difficult, we also used nonlinear programming. We must evaluate all shim magnetizations precisely by making a 3D finite element shim model. Since, it is impossible to make such shims in a large magnet model, we describe a fast calculation method of shim magnetizations without that model. Homogeneity of 0.35ppm (Vrms) at 35cm Diameter Spherical Volume (DSV), which is the top value of an open MRI magnet, is obtained by applying these methods. The number of correction times were reduced by half of initial manufactured magnets.

  17. Equivalence of periodic magnetic field to uniform magnetic field in electron beam focusing

    Microsoft Academic Search

    K. Ura; M. Terada

    1966-01-01

    The general solution of the electron trajectory equation in a periodic magnetic field is derived in the form of series expansion, assuming laminar electron flow and small perturbation. It is concluded that if the cathode is not very heavily immersed in a magnetic field, beam focusing by a periodic magnetic field would be almost equivalent to that by a uniform

  18. Magnetic shielding of an inhomogeneous magnetic field source by a bulk superconducting tube

    NASA Astrophysics Data System (ADS)

    Hogan, K.; Fagnard, J.-F.; Wéra, L.; Vanderheyden, B.; Vanderbemden, P.

    2015-03-01

    Bulk type-II irreversible superconductors can act as excellent passive magnetic shields, with a strong attenuation of low frequency magnetic fields. Up to now, the performances of superconducting magnetic shields have mainly been studied in a homogenous magnetic field, considering only immunity problems, i.e. when the field is applied outside the tube and the inner field should ideally be zero. In this paper, we aim to investigate experimentally and numerically the magnetic response of a high-Tc bulk superconducting hollow cylinder at 77 K in an emission problem, i.e. when subjected to the non-uniform magnetic field generated by a source coil placed inside the tube. A bespoke 3D mapping system coupled with a three-axis Hall probe is used to measure the magnetic flux density distribution outside the superconducting magnetic shield. A finite element model is developed to understand how the magnetic field penetrates into the superconductor and how the induced superconducting shielding currents flow inside the shield in the case where the emitting coil is placed coaxially inside the tube. The finite element modelling is found to be in excellent agreement with the experimental data. Results show that a concentration of the magnetic flux lines occurs between the emitting coil and the superconducting screen. This effect is observed both with the modelling and the experiment. In the case of a long tube, we show that the main features of the field penetration in the superconducting walls can be reproduced with a simple analytical 1D model. This model is used to estimate the maximum flux density of the emitting coil that can be shielded by the superconductor.

  19. The National High Magnetic Field Laboratory

    NASA Astrophysics Data System (ADS)

    Jaime, M.; Lacerda, A.; Takano, Y.; Boebinger, G. S.

    2006-11-01

    The National High Magnetic Field Laboratory, established in 1990 with support from the National Science Foundation, the State of Florida, and the US Department of Energy, is a facility open to external users around the world. The experimental capabilities are distributed in three campuses. In Tallahassee, Florida, continuous magnetic fields are produced by means of superconducting and resistive magnets reaching fields of up to 33T (resistive), and 45T (hybrid). EMR, ICR, and a 900MHz wide bore NMR magnet are also available. The facility in Gainesville, Florida, is devoted to generating extremely low temperatures in the presence of external magnetic fields (15T, down to 0.4mK), and large MRI imaging capabilities. In Los Alamos, New Mexico, a 9 kV-capable capacitor bank and a number of different liquid Nitrogen-cooled resistive magnets produce repetitive pulses up to 75 T and now a single-shot pulsed up to 300T.

  20. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  1. Coronal holes and solar magnetic fields

    NASA Technical Reports Server (NTRS)

    Harvey, J. W.; Sheeley, N. R., Jr.

    1979-01-01

    Since 1972 nearly continuous observations of coronal holes and their associated photospheric magnetic fields have been made using a variety of satellite and ground-based equipment. The present paper reviews the results of comparisons of these data and shows that the structure and evolution of coronal holes is basically governed by the large-scale distribution of photospheric magnetic flux. Nonpolar holes form in the decaying remnants of bipolar magnetic regions in areas with a large-scale flux imbalance. In addition, there is strong indirect evidence that the magnetic field in coronal holes is always open to interplanetary space, but not all open-field regions have associated coronal holes.

  2. Magnetic fields and rotation of spiral galaxies

    E-print Network

    E. Battaner; H. Lesch; E. Florido

    1998-02-02

    We present a simplified model in which we suggest that two important galactic problems -the magnetic field configuration at large scales and the flat rotation curve- may be simultaneously explained. A highly convective disc produces a high turbulent magnetic diffusion in the vertical direction, stablishing a merging of extragalactic and galactic magnetic fields. The outer disc may then adquire a magnetic energy gradient very close to the gradient required to explain the rotation curve, without the hypothesis of galactic dark matter. Our model predicts symmetries of the galactic field in noticeable agreement with the large scale structure of our galaxy.

  3. High concentration ferronematics in low magnetic fields

    E-print Network

    T. Tóth-Katona; P. Salamon; N. Éber; N. Tomašovi?ová; Z. Mitróová; P. Kop?anský

    2014-09-05

    We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field $B_{bias}$, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that $B_{bias}$ is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role.

  4. Application of Magnetic Mapping to Proterozoic Continental Reconstruction

    NASA Astrophysics Data System (ADS)

    Fry, B. N.; Morgan, P.

    2002-12-01

    Models of the Neoproterozoic (1.0-0.8 Ga) assembly of the supercontinent Rodinia include the SWEAT hypothesis, which places Proterozoic eastern Australia adjacent to the Proterozoic western margin of Canada, and the AUSWUS hypothesis, which juxtaposes the Proterozoic southwestern U.S. and Proterozoic eastern Australia. The disparity between the two models is largely due to an inability to correlate different basement mapping techniques used for the two continents. A thick weathering regolith in Australia has required the use of magnetic signature maps to define the Precambrian basement. Because of abundant basement exposure in the western U.S., isotopic methods have been used to define Precambrian terrane boundaries and little magnetic mapping has been done. The eastern margin of Proterozoic Australia is defined by magnetic mapping as the Tasman line. SWEAT places the eastern Proterozoic margin of Australia, west of the Tasman line against the northwestern margin of Proterozoic Canada. This model is mainly based on geologic piercing points and stratigraphic/isotopic correlations. The AUSWUS model connects the Tasman line to the western margin of the Proterozoic U.S., adjacent to the 87Sr/86Sr line. The 87Sr/86Sr line has been suggested to divide Proterozoic basement to the east and younger accreted terranes to the west. Magnetic mapping of the Proterozoic margin of the southwestern U.S. through the reduction of aeromagnetic data allows comparison with the magnetically defined margin of Proterozoic Australia. Preliminary evaluation of magnetic styles (amplitude and wavelength) and linear trends of the southwestern U.S. suggest that both Proterozoic and Phanerozoic igneous rocks greatly influence the total magnetic signature. Isolation of the Proterozoic component from the total aeromagnetic signal requires understanding the character, distribution, and magnitude of the magnetism in the Proterozoic rocks. The magnetic signatures of two suites of granites in the southwestern U.S. could provide substantial support for the AUSWUS reconstruction. First, numerous Proterozoic granites crop out in western Arizona in the boundary between the Mojave and Yavapai provinces. The AUSWUS reconstruction suggests that the boundary zone is correlative with the Broken Hill block in Australia and that Proterozoic rocks in the boundary may correlate with the Arunta arc assemblage in Australia. Understanding the magnetic signature of the Mojave/Yavapai boundary will aid in resolving possible magnetic lineaments across the AUSWUS reconstruction. Second, a band of ~1.4 Ga, possibly anorogenic granites transects the continental U.S. If continued along strike in the AUSWUS reconstruction, this band may be cogenetic with rocks in the Gawler craton of Australia. Magnetic susceptibilities of both suites of Proterozoic granites will be presented and contrasted with magnetic trends from the Australian craton.

  5. Fluctuating magnetic field induced resonant activation.

    PubMed

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (?) increases under the fixed field strength then the mean first passage time rapidly grows at low ? and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers' turn over phenomenon may occur in the presence of a fluctuating magnetic field. PMID:25494726

  6. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  7. Decay of positronium in strong magnetic fields

    Microsoft Academic Search

    G. Wunner; H. Herold

    1979-01-01

    We investigate the decay of bound electron-positron pairs (positronium) in strong magnetic fields (of order 1012 Gauss, which are assumed for neutron stars) on the basis of a correct treatment of the two-body problem, thus improving previous work by Carr and Sutherland (1978). We find that, even in the presence of a strong magnetic field, the decay of the ground

  8. Ensemble Solar Global Magnetic Field Modeling

    Microsoft Academic Search

    C. J. Henney; C. N. Arge; J. Koller; W. A. Toussaint; S. L. Young; J. W. Harvey

    2010-01-01

    The ability to forecast geoeffective space weather events is critically dependent on the estimation of the global solar photospheric magnetic field distribution as input to coronal and heliospheric models. Currently, the solar magnetic field can only be recorded for approximately half of the solar surface at any given time. Since the rotation period of the Sun as observed from Earth

  9. Photon-neutrino interactions in magnetic fields

    E-print Network

    Shaisultanov R

    1998-02-28

    The low-energy two neutrino-two photon interactions in the presence of homogeneous magnetic field are studied. The cross sections in external magnetic field are shown to be larger than in vacuum by factor $\\sim (m_W /m_e) ^4(B/B_c) ^2$. The energy-loss rate due to the process $\\gamma \\gamma \\to \

  10. Lengthwise field variation in CBA magnets

    Microsoft Academic Search

    Willen

    1984-01-01

    The multipole content of the magnetic field in accelerator superconducting magnets built with a cos theta current distribution inside an iron yoke is determined by the placement of the individual current-carrying turns in the coil, by the location of the coil inside the iron yoke and by the amount of iron saturation at high field. Differences in these parameters cause

  11. Coulomb crystals in the magnetic field

    SciTech Connect

    Baiko, D. A. [A.F. Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation)

    2009-10-15

    The body-centered-cubic Coulomb crystal of ions in the presence of a uniform magnetic field is studied using the rigid electron background approximation. The phonon mode spectra are calculated for a wide range of magnetic-field strengths and for several orientations of the field in the crystal. The phonon spectra are used to calculate the phonon contribution to the crystal energy, entropy, specific heat, Debye-Waller factor of ions, and the rms ion displacements from the lattice nodes for a broad range of densities, temperatures, chemical compositions, and magnetic fields. Strong magnetic field dramatically alters the properties of quantum crystals. The phonon specific heat increases by many orders of magnitude. The ion displacements from their equilibrium positions become strongly anisotropic. The results can be relevant for dusty plasmas, ion plasmas in Penning traps, and especially for the crust of magnetars (neutron stars with superstrong magnetic fields B > or approx. 10{sup 14} G). The effect of the magnetic field on ion displacements in a strongly magnetized neutron star crust can suppress the nuclear reaction rates and make them extremely sensitive to the magnetic-field direction.

  12. Line Sink in Uniform Magnetic Field

    Microsoft Academic Search

    Jai Prakash Narain; Mahinder S. Uberoi

    1971-01-01

    The motion of an inviscid, incompressible, and conducting fluid due to a line sink in a uniform strong magnetic field is considered. The solutions show that motion is confined in a narrow region parallel to the magnetic field. Such a motion for a point sink has erroneously been named as a wake or backward jet flow. Finally, the known solution

  13. Directional discontinuities in the interplanetary magnetic field

    Microsoft Academic Search

    Leonard F. Burlaga

    1969-01-01

    It is shown that the interplanetary magnetic field has different characteristics on different scales, and it is noted that a given physical theory may not be applicable or relevant on all scales. Four scales are defined in terms of time intervals on which the data may be viewed. Many discontinuities in the magnetic-field direction are seen on the mesoscale (˜

  14. On the origins of galactic magnetic fields

    E-print Network

    A. Borzou; H. R. Sepangi; R. Yousefi; A. H. Ziaie

    2009-11-18

    We present a five dimensional unified theory of gravity and electromagnetism which leads to modified Maxwell equations, suggesting a new origin for galactic magnetic fields. It is shown that a region with nonzero scalar curvature would amplify the magnetic fields under certain conditions.

  15. Magnetic fields, branes, and noncommutative geometry

    Microsoft Academic Search

    Daniela Bigatti; Leonard Susskind

    2000-01-01

    We construct a simple physical model of a particle moving on the infinite noncommutative 2-plane. The model consists of a pair of opposite charges moving in a strong magnetic field. In addition, the charges are connected by a spring. In the limit of large magnetic field, the charges are frozen into the lowest Landau levels. Interactions of such particles include

  16. Lake-based magnetic mapping of urban-sourced contaminated sediment, Lake Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Boyce, J. I.; Pozza, M. R.; Morris, W. A.

    2003-04-01

    The remediation of toxic sediments in harbours and urban waterways requires detailed mapping of contaminated sediment distribution and thickness. Conventional methods rely on interpolation of pollutant concentrations from widely spaced core samples but can lead to significant errors in estimating sediment distribution. An improved approach, as demonstrated by recent work in Hamilton Harbour in Lake Ontario, is to estimate pollutant levels from 'proxy' measurements of sediment magnetic properties. Measurements from 40 core samples collected within the harbour show that the magnetic susceptibility of a contaminated upper layer of sediment is one to two orders of magnitude greater than in the underlying uncontaminated 'pre-colonial' sediments. The susceptibility contrast results from elevated levels of urban-sourced magnetic oxides and is sufficient to generate a total field anomaly (ca. 5-40 nT) that can be measured with a towed magnetometer. Systematic lake-based magnetic surveying (> 500 line km) of the harbour using a towed Overhauser marine magnetometer clearly identifies a number of well defined magnetic anomalies that coincide with known accumulations of contaminated sediments on the harbour bottom. Apparent susceptibility maps calculated from total field data show a close spatial correspondence with core-derived susceptibility values and provide a means for identifying areas of urban impacted sediments. Detection of low amplitude magnetic anomalies is dependent upon a closely spaced survey grid (< 70 m line spacing) and careful post-cruise processing to remove diurnal, regional and water-depth related variations in the magnetic field intensity.

  17. Magnetic Fields in Stars: Origin and Impact

    NASA Astrophysics Data System (ADS)

    Langer, N.

    2014-08-01

    Various types of magnetic fields occur in stars: small scale fields, large scale fields, and internal toroidal fields. While the latter may be ubiquitous in stars due to differential rotation, small scale fields (spots) may be associated with envelop convection in all low and high mass stars. The stable large scale fields found in only about 10% of intermediate mass and massive stars may be understood as a consequence of dynamical binary interaction, e.g., the merging of two stars in a binary. We relate these ideas to magnetic fields in white dwarfs and neutron stars, and to their role in core-collapse and thermonuclear supernova explosions.

  18. Solar Mean Magnetic Field Observed by GONG

    Microsoft Academic Search

    J. W. Harvey; G. Petrie; R. Clark

    2009-01-01

    The average line-of-sight (LOS) magnetic field of the Sun has been observed for decades, either by measuring the circular polarization across a selected spectrum line using integrated sunlight or by averaging such measurements in spatially resolved images. The GONG instruments produce full-disk LOS magnetic images every minute, which can be averaged to yield the mean magnetic field nearly continuously. Such

  19. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O. (Mountain View, CA)

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  20. Magnetic Fields with the Atacama Large Millimeter/Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Vlemmings, Wouter

    The Atacama Large Millimeter/submillimeter Array (ALMA) is one of the largest radio telescopes and is located at 5, 000 m altitude in the Atacama desert in Chile. Its unprecedented sensitivity at extremely high angular and spectral resolution in the (sub-)millimetre wavelength regime, allows for countless advances in astrophysics. One of the areas in which ALMA can make unique contributions, is in that of the study of astrophysical magnetic fields. ALMA is expected to map the magnetic field geometry, and in some cases strength, in a large number of star forming regions, around evolved stars and planetary nebulae, and in nearby galaxies. This chapter provides examples of the amount of improvement ALMA offers the study of magnetic fields based on the current state-of-the-art and shortly introduces new tools that will be available to analyse (sub-)millimetre polarimetric observations.

  1. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    PubMed

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns. PMID:21568716

  2. Manipulation of Raman Resonances Using Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Desavage, Sara A.; Davis, Jon P.; Narducci, Frank A.

    2012-06-01

    We have theoretically and experimentally studied Raman resonances in multi-level atoms (specifically ^85Rb). Our emphasis has been on varying the relative orientation of the magnetic field with respect to the propagation direction of the Raman fields. We find that, in general, the spectrum consists of up to 11 peaks. By considering selection rules, we show that it is possible to orient the magnetic field so that either a 6 peak spectrum or 5 peak spectrum results, depending on whether the Raman fields contain a polarization component along the magnetic field direction or not. Furthermore, we find that the spectrum is not always symmetric with respect to the magnetically insensitive transition (clock transition). We explore the origins of the asymmetry and the overall shape of the spectra. We will discuss applications to magnetically sensitive atom interferometry.

  3. Processing of polymers in high magnetic fields

    SciTech Connect

    Douglas, E.P.; Smith, M.E.; Benicewicz, B.C. [Los Alamos National Lab., NM (United States); Earls, J.D.; Priester, R.D. Jr. [Dow Chemical Co., Freeport, TX (United States)

    1996-05-01

    Many organic molecules and polymers have an anisotropic diamagnetic susceptibility, and thus can be aligned in high magnetic fields. The presence of liquid crystallinity allows cooperative motions of the individual molecules, and thus the magnetic energy becomes greater than the thermal energy at experimentally obtainable field strengths. This work has determined the effect of magnetic field alignment on the thermal expansion and mechanical properties of liquid crystalline thermosets in the laboratory. Further advances in magnet design are needed to make magnetic field alignment a commercially viable approach to polymer processing. The liquid crystal thermoset chosen for this study is the diglycidyl ether of dihydroxy-{alpha}-methylstilbene cured with the diamine sulfamilamide. This thermoset has been cured at field strengths up to 18 Tesla.

  4. Inverse field-based approach for simultaneous B1 mapping at high fields - A phantom based study

    NASA Astrophysics Data System (ADS)

    Jin, Jin; Liu, Feng; Zuo, Zhentao; Xue, Rong; Li, Mingyan; Li, Yu; Weber, Ewald; Crozier, Stuart

    2012-04-01

    Based on computational electromagnetics and multi-level optimization, an inverse approach of attaining accurate mapping of both transmit and receive sensitivity of radiofrequency coils is presented. This paper extends our previous study of inverse methods of receptivity mapping at low fields, to allow accurate mapping of RF magnetic fields (B1) for high-field applications. Accurate receive sensitivity mapping is essential to image domain parallel imaging methods, such as sensitivity encoding (SENSE), to reconstruct high quality images. Accurate transmit sensitivity mapping will facilitate RF-shimming and parallel transmission techniques that directly address the RF inhomogeneity issue, arguably the most challenging issue of high-field magnetic resonance imaging (MRI). The inverse field-based approach proposed herein is based on computational electromagnetics and iterative optimization. It fits an experimental image to the numerically calculated signal intensity by iteratively optimizing the coil-subject geometry to better resemble the experiments. Accurate transmit and receive sensitivities are derived as intermediate results of the optimization process. The method is validated by imaging studies using homogeneous saline phantom at 7T. A simulation study at 300 MHz demonstrates that the proposed method is able to obtain receptivity mapping with errors an order of magnitude less than that of the conventional method. The more accurate receptivity mapping and simultaneously obtained transmit sensitivity mapping could enable artefact-reduced and intensity-corrected image reconstructions. It is hoped that by providing an approach to the accurate mapping of both transmit and receive sensitivity, the proposed method will facilitate a range of applications in high-field MRI and parallel imaging.

  5. Chaotic magnetic fields: Particle motion and energization

    SciTech Connect

    Dasgupta, Brahmananda [CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Ram, Abhay K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Li, Gang [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Li, Xiaocan [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2014-02-11

    Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

  6. MAGSAT satellite magnetic anomaly map over South America

    NASA Technical Reports Server (NTRS)

    Ridgway, J. R.

    1985-01-01

    A scalar magnetic anomaly map was prepared for South America and adjacent marine areas directly from original MAGSAT orbits. Special problems associated with the separation of external field and crustal anomalies, and the reduction of data to a common altitude are addressed. External fields are manifested in a long-wavelength ring current effect, a medium-wavelength equatorial electrojet, and short-wavelength noise. The noise is reduced by selecting profiles from quiet periods (Kp or = 3), and the effect of the electrojet is minimized by drawing the data set from dawn profiles only. The ring current is corrected through the use of a standard equation, augmented by further digital band-pass filtering. Profiles thus filtered differ primarily in amplitude due solely to satellite altitude differences. These differences are normalized by an inversion of the profile data onto a grid of equivalent point dipoles, and recalculated at an altitude of 350 km. The low altitudes in the study area cause instability in the inversion, necessitating separate inversions of several sub-areas which are subsequently merged. Crustal anomalies reduced-to-the-pole exhibit marked correlations to known tectonic features.

  7. Lake-based magnetic mapping of contaminated sediment distribution, Hamilton Harbour, Lake Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Pozza, M. R.; Boyce, J. I.; Morris, W. A.

    2004-12-01

    The remediation of toxic sediment in harbours and urban waterways requires detailed mapping of contaminated sediment distribution and thickness. Conventional methods rely on interpolation of pollutant concentrations from widely spaced core samples but can lead to significant errors in estimating sediment distribution. An improved approach, as demonstrated by recent work in Hamilton Harbour in Lake Ontario, is to estimate pollutant levels from proxy measurements of sediment magnetic properties. Measurements from 40 core samples collected within the harbour show that the magnetic susceptibility of a contaminated upper layer of sediment is one to two orders of magnitude greater than in the underlying uncontaminated 'pre-colonial' sediments. The susceptibility contrast results from elevated levels of urban-source magnetic oxides and is sufficient to generate a total field anomaly (ca. 5-40 nT) that can be measured with a towed magnetometer. Systematic lake-based magnetic surveying (>500 line km) of the harbour using an Overhauser marine magnetometer identifies well-defined positive magnetic anomalies that coincide with mapped accumulations of contaminated sediments on the harbour bottom. Forward modelling of the anomalies shows that the magnetic response is consistent with a contaminated upper layer thickness of up to 5 m. Apparent susceptibility maps calculated from magnetic survey data show a close spatial correspondence with core-derived magnetic susceptibilities and provide a rapid means for classifying contaminated sediments. Detection of shallow magnetic anomalies is dependent upon a closely spaced survey grid (<75 m line spacing) and careful post-cruise processing to remove diurnal, regional and water-depth related variations in the magnetic field intensity.

  8. Quark condensate in a magnetic field

    E-print Network

    Shushpanov, I A

    1997-01-01

    We study the dependence of quark condensate $\\Sigma$ on an external magnetic field. For weak fields, it rises linearly with the field. Pion mass and residue are also shifted so that the Gell-Mann - Oakes - Renner relation is satisfied. In the strong field region, $\\Sigma(H) \\propto (eH)^{3/2}$.

  9. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  10. Warm inflation in presence of magnetic fields

    SciTech Connect

    Piccinelli, Gabriella [Centro Tecnológico, FES Aragón, Universidad Nacional Autónoma de México, Avenida Rancho Seco S/N, Bosques de Aragón, Nezahualcóyotl, Estado de México 57130 (Mexico)] [Centro Tecnológico, FES Aragón, Universidad Nacional Autónoma de México, Avenida Rancho Seco S/N, Bosques de Aragón, Nezahualcóyotl, Estado de México 57130 (Mexico); Sánchez, Ángel [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968 (United States)] [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ayala, Alejandro; Mizher, Ana Julia [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico)] [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico)

    2013-07-23

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.

  11. Vector magnetic field and currents at the footpoint of a loop prominence

    Microsoft Academic Search

    A. Hofmann; V. Ruždjak; B. Vrsnak

    1989-01-01

    Using H -filtergrams and vector magnetograms we study the structure of the magnetic field at the footpoint of a loop prominence rooting deep in the penumbral photosphere of a sunspot. In the region investigated the footpoint -field is well marked in the transversal field map. The field has a predominantly transverse character and is directed parallel to the axis of

  12. Vector Magnetic Field and Currents at the Footpoint of a Loop Prominence

    Microsoft Academic Search

    A. Hofmann; V. Ruzdjak; B. Vrsnak

    1990-01-01

    Using H -filtergrams and vector magnetograms we study the structure of the magnetic field at the footpoint of a loop prominence rooting deep in the penumbral photosphere of a sunspot. In the region investigated the footpoint -field is well marked in the transversal field map. The field has a predominantly transverse character and is directed parallel to the axis of

  13. Magnetic-field-controlled reconfigurable semiconductor logic.

    PubMed

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

    2013-02-01

    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices. PMID:23364687

  14. Compact low field magnetic resonance imaging magnet: Design and optimization

    NASA Astrophysics Data System (ADS)

    Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.

    2000-03-01

    Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.

  15. NMR probes for measuring magnetic fields and field dynamics in MR systems.

    PubMed

    De Zanche, Nicola; Barmet, Christoph; Nordmeyer-Massner, Jurek A; Pruessmann, Klaas P

    2008-07-01

    High-resolution magnetic field probes based on pulsed liquid-state NMR are presented. Static field measurements with an error of 10 nanotesla or less at 3 tesla are readily obtained in 100 ms. The further ability to measure dynamic magnetic fields results from using small ( approximately 1 microL) droplets of MR-active liquid surrounded by susceptibility-matched materials. The consequent high field homogeneity allows free induction decay signals lasting 100 ms or more to be readily achieved. The small droplet dimensions allow the magnetic field to be measured even in the presence of large gradients. Highly sensitive detection yields sufficient SNR to follow the relevant field evolution without signal averaging and at bandwidths up to hundreds of kHz. Transient, nonreproducible effects and drifts are thus readily monitored. The typical application of k-space trajectory mapping has been demonstrated. Potential further applications include characterization, tuning, and maintenance of gradient systems as well as the mapping of the static field distribution of MRI magnets. Connection of the probes to a standard MR spectrometer is similar to that used for imaging coils. PMID:18581363

  16. Casimir Effect in External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ostrowski, M.

    2006-06-01

    In this paper we examine the Casimir effect for charged fields in presence of external magnetic field. We consider scalar field (connected with spinless particles) and the Dirac field (connected with 1/2-spin particles). In both cases we describe quantum field using the canonical formalism. We obtain vacuum energy by direct solving field equations and using the mode summation method. In order to compute the renormalized vacuum energy we use the Abel--Plana formula.

  17. Origin of magnetic fields in galaxies

    SciTech Connect

    Souza, Rafael S. de; Opher, Reuven [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)

    2010-03-15

    Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation -dissipation theorem, predicts {approx}0.034 {mu}G fields over {approx}0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation-dissipation theorem are not completely random, microgauss fields over regions > or approx. 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in < or approx. 10{sup 9} years in high redshift galaxies.

  18. Decay of Resonaces in Strong Magnetic Field

    E-print Network

    Peter Filip

    2015-04-27

    We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of $K^{\\pm *}\\!$, $K^{0*}$ vector mesons as well as $\\Lambda^*(1520)$ and $\\Xi^{0*}$ baryonic states is considered in static fields $10^{13}$-\\,$10^{15}$ T. In particular, $n=0$ Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from $\\rho^0(770)$ mesons may occur if strong decay channel $\\rho^0 \\rightarrow \\pi^+\\pi^-$ is significantly suppressed. CP - violating $\\pi^+\\pi^-$ decays of pseudoscalar $\\eta_c$ and $\\eta(547)$ mesons in the magnetic field are discussed, and superpositions of quarkonium states $\\eta_{c,b}$ and $\\chi_{c,b}(nP)$ with $\\Psi(nS), \\Upsilon(nS)$ mesons in the external field are considered.

  19. Magnetic phase control by an electric field.

    PubMed

    Lottermoser, Thomas; Lonkai, Thomas; Amann, Uwe; Hohlwein, Dietmar; Ihringer, Jörg; Fiebig, Manfred

    2004-07-29

    The quest for higher data density in information storage is motivating investigations into approaches for manipulating magnetization by means other than magnetic fields. This is evidenced by the recent boom in magnetoelectronics and 'spintronics', where phenomena such as carrier effects in magnetic semiconductors and high-correlation effects in colossal magnetoresistive compounds are studied for their device potential. The linear magnetoelectric effect-the induction of polarization by a magnetic field and of magnetization by an electric field-provides another route for linking magnetic and electric properties. It was recently discovered that composite materials and magnetic ferroelectrics exhibit magnetoelectric effects that exceed previously known effects by orders of magnitude, with the potential to trigger magnetic or electric phase transitions. Here we report a system whose magnetic phase can be controlled by an external electric field: ferromagnetic ordering in hexagonal HoMnO3 is reversibly switched on and off by the applied field via magnetoelectric interactions. We monitor this process using magneto-optical techniques and reveal its microscopic origin by neutron and X-ray diffraction. From our results, we identify basic requirements for other candidate materials to exhibit magnetoelectric phase control. PMID:15282600

  20. Polarized radiation diagnostics of stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Mathys, Gautier

    The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the geometric structure of these fields. How this can possibly be achieved is briefly discussed. An overview of the current status of polarimetric studies of magnetic fields in non-degenerate stars of other types is presented. The final section is devoted to magnetic fields of white dwarfs. Current knowledge of magnetic fields of isolated white dwarfs is briefly reviewed. Diagnostic techniques are discussed, with particular emphasis on the variety of physical processes to be considered for understanding of spectral line formation over the broad range of magnetic field strengths encountered in these stars.

  1. Sources of Magnetic Field Magnetic Phenomena

    E-print Network

    Tobar, Michael

    + y2 6 Force between two bits of wire Field from bottom wire at top wire: F = Itop LBB = µ0Ibottom 2r Force on top wire: F/L = µ0IbottomItop 2r F = 1 4 0 q1q2 r2viz. 7 SI definition of the ampere: "One

  2. Radiative processes in strong magnetic fields

    Microsoft Academic Search

    A. K. Harding

    1991-01-01

    The behavior of electromagnetic processes in strong magnetic fields is currently of great interest in high-energy astrophysics. Strong magnetic fields affect the physics in several fundamental ways: energies perpendicular to the field are quantized, transverse momentum is not conserved and electron\\/positron spin is important. The relaxation of transverse momentum conservation allows first order processes and their inverses: one-photon pair production

  3. Origin of magnetic fields in galaxies

    Microsoft Academic Search

    Rafael S. de Souza; Reuven Opher

    2010-01-01

    Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation -dissipation theorem, predicts â0.034 μG fields over â0.3 kpc regions in galaxies. If the

  4. Emittance measurement in a magnetic field

    SciTech Connect

    Boyd, J.K.

    1991-04-15

    Emittance can be measured by intercepting an electron beam on a range thick plate and then observing the expansion of beamlets transmitted through small holes. The hole size is selected to minimize space charge effects. In the presence of a magnetic field the beamlets have a spiral trajectory and the usual field free formulation must be modified. To interpret emittance in the presence of a magnetic field an envelope equation is derived in the appropriate rotating frame. 1 ref.

  5. Turbulence and Magnetic Fields in Astrophysical Plasmas

    Microsoft Academic Search

    Alexander A. Schekochihin; Steven C Cowley

    2007-01-01

    Magnetic fields permeate the Universe. They are found in planets, stars, accretion discs, galaxies, clusters of galaxies,\\u000a and the intergalactic medium. While there is often a component of the field that is spatially coherent at the scale of the\\u000a astrophysical object, the field lines are tangled chaotically and there are magnetic fluctuations at scales that range over\\u000a orders of magnitude.

  6. Single-layer high field dipole magnets

    Microsoft Academic Search

    Vadim V. Kashikhint; Alexander V. Zlobin

    2001-01-01

    Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good

  7. MHD Simulations of the Solar Corona in Early August 2010 Using the HMI Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    Hayashi, Keiji; Zhao, X.; Liu, Y.; Sun, X.; Hoeksema, J.; HMI Team

    2011-05-01

    The HMI is observing the line-of-sight magnetic field, vector field and the Doppler plasma velocity. The full-disk magnetogram observation with high temporal and spatial resolution provides better global solar magnetic field map, in that the data gap is minimized and the noise level is quite low. To utilize the benefit of the HMI's magnetogram observation, we conducted the MHD simulation of the global solar corona using the HMI data. We chose a period around August 1st, 2010, to see how the magnetic field connectivity in the global scale had changed around the period: In early August period, the changes of the global coronal magnetic field seen at the entire Earth-side hemisphere seem to be well related with the emergence of the sunspot at the north-east part of the full disk images, though the dynamics involving both magnetic field and plasma will be retrieved by means of the MHD simulation models. We used the synchronic frame format to make the global solar surface magnetic field maps so that the magnetic field distribution at the time of interest will be better specified thus the simulated situation will be more realistic. In addition, we used the daily-updated global maps that are made by regularly replacing the portion of the global map with the meridional slip of the full-disk data on regular (daily) basis as well as the standard ones that are well low-nose dataset made with better-calibrated data.

  8. Magnetic fields around BOK globules: CCD polarimetry of CB 4

    NASA Astrophysics Data System (ADS)

    Kane, Brian D.; Clemens, Dan P.; Leach, Robert W.; Barvainis, Richard

    1995-05-01

    The small Bok globule CB 4 was probed using a CCD imaging polarimeter in order to create a detailed map of the magnetic field associated with this cloud. Stars as faint as 17th mag at V band were measured polarimetrically with uncertainties less than 1%. Sky transmission variations were minimized via a system of synchronous polaroid rotation and bidirectional charge shifting. In all, 80 stars behind the periphery of the globule were accurately analyzed polarimetrically. The large-scale (1-2 pc) magnetic field direction around CB 4 was found to be very uniform (P.A. = 63.3 deg +/- 1.1 deg). Double-Gaussian fitting of the polarization position angle histogram gave a dispersion of 10 deg about the primary field direction. Possible field-line compression was found inward of approximately 0.2 pc from the cloud center. No appreciable twisting of field lines was found. By plotting stellar separations against differences of polarization angles, CB 4 was found to have a magnetic field decorrelation length of approximately 0.1 pc, similar to the size of the visually opaque cire, but much smaller than the size of the bright optical rim or CO half-power contour of approximately 0.5 pc. The magnetic field decorrelation length may be related to a characteristic transient clumping size, or perhaps even to clumps of a more permanent nature.

  9. Earth-directed ICME magnetic field configuration

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, Teresa; Vourlidas, Angelos; Adam, Szabo; Neel, Savani; Mays Leila, M.; Hidalgo Miguel, A.; Wenyuan, Yu

    2015-04-01

    It is known that the geoeffectiveness of interplanetary coronal mass ejections (ICMEs) depends on their magnetic field configuration. However, it remains unclear how the ICME interactions with the solar wind or other solar transient structures affect their magnetic configuration through, say, distortion of their cross-section, or deformation of their front. Obviously, precise space weather forecasting is depended on precise understanding of the evolution of the ICME internal magnetic topology. The goal of this study is to identify the ambient solar wind parameters that affect the flux-rope geometry and magnetic field configuration.

  10. Tuning permanent magnets with adjustable field clamps

    SciTech Connect

    Schermer, R.I.

    1987-01-01

    The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius.

  11. Influence of Magnetic Fields on Magneto-Aerotaxis

    PubMed Central

    Bennet, Mathieu; McCarthy, Aongus; Fix, Dmitri; Edwards, Matthew R.; Repp, Felix; Vach, Peter; Dunlop, John W. C.; Sitti, Metin; Buller, Gerald S.; Klumpp, Stefan; Faivre, Damien

    2014-01-01

    The response of cells to changes in their physico-chemical micro-environment is essential to their survival. For example, bacterial magnetotaxis uses the Earth's magnetic field together with chemical sensing to help microorganisms move towards favoured habitats. The studies of such complex responses are lacking a method that permits the simultaneous mapping of the chemical environment and the response of the organisms, and the ability to generate a controlled physiological magnetic field. We have thus developed a multi-modal microscopy platform that fulfils these requirements. Using simultaneous fluorescence and high-speed imaging in conjunction with diffusion and aerotactic models, we characterized the magneto- aerotaxis of Magnetospirillum gryphiswaldense. We assessed the influence of the magnetic field (orientation; strength) on the formation and the dynamic of a micro-aerotactic band (size, dynamic, position). As previously described by models of magnetotaxis, the application of a magnetic field pointing towards the anoxic zone of an oxygen gradient results in an enhanced aerotaxis even down to Earth's magnetic field strength. We found that neither a ten-fold increase of the field strength nor a tilt of 45° resulted in a significant change of the aerotactic efficiency. However, when the field strength is zeroed or when the field angle is tilted to 90°, the magneto-aerotaxis efficiency is drastically reduced. The classical model of magneto-aerotaxis assumes a response proportional to the cosine of the angle difference between the directions of the oxygen gradient and that of the magnetic field. Our experimental evidence however shows that this behaviour is more complex than assumed in this model, thus opening up new avenues for research. PMID:24983865

  12. Influence of magnetic fields on magneto-aerotaxis.

    PubMed

    Bennet, Mathieu; McCarthy, Aongus; Fix, Dmitri; Edwards, Matthew R; Repp, Felix; Vach, Peter; Dunlop, John W C; Sitti, Metin; Buller, Gerald S; Klumpp, Stefan; Faivre, Damien

    2014-01-01

    The response of cells to changes in their physico-chemical micro-environment is essential to their survival. For example, bacterial magnetotaxis uses the Earth's magnetic field together with chemical sensing to help microorganisms move towards favoured habitats. The studies of such complex responses are lacking a method that permits the simultaneous mapping of the chemical environment and the response of the organisms, and the ability to generate a controlled physiological magnetic field. We have thus developed a multi-modal microscopy platform that fulfils these requirements. Using simultaneous fluorescence and high-speed imaging in conjunction with diffusion and aerotactic models, we characterized the magneto-aerotaxis of Magnetospirillum gryphiswaldense. We assessed the influence of the magnetic field (orientation; strength) on the formation and the dynamic of a micro-aerotactic band (size, dynamic, position). As previously described by models of magnetotaxis, the application of a magnetic field pointing towards the anoxic zone of an oxygen gradient results in an enhanced aerotaxis even down to Earth's magnetic field strength. We found that neither a ten-fold increase of the field strength nor a tilt of 45° resulted in a significant change of the aerotactic efficiency. However, when the field strength is zeroed or when the field angle is tilted to 90°, the magneto-aerotaxis efficiency is drastically reduced. The classical model of magneto-aerotaxis assumes a response proportional to the cosine of the angle difference between the directions of the oxygen gradient and that of the magnetic field. Our experimental evidence however shows that this behaviour is more complex than assumed in this model, thus opening up new avenues for research. PMID:24983865

  13. 3D analysis of applied field effect on trapped magnetic field during pulsed field magnetization of bulk superconductor

    NASA Astrophysics Data System (ADS)

    Lotfi Khene, Mohamed; Alloui, Lotfi; Mimoune, Souri Mohamed; Bouillault, Frédéric; Feliachi, Mouloud

    2014-04-01

    External applied field effect in magnetization process by pulsed field (PFM) method of rectangular bulk superconductor is analysed by solving the A-V magnetic equation coupled to the thermal one in order to show the influence of the amplitude of the external field on the trapped magnetic field of bulk superconductor. A numerical model based on the control volume method (CVM) has been developed, which uses a power-law model with temperature dependency and magnetic field dependence on critical current density. For low cooling temperature Tco = 20 K, a good distribution of the trapped magnetic field of the bulk superconductor is obtained when we applied high external field.

  14. Effect of magnetic field on ball milled hard magnetic particles

    Microsoft Academic Search

    B. Altuncevahir; N. Poudyal; V. M. Chakka; K. H. Chen; T. D. Black; T. D. Liu

    2004-01-01

    In this investigation, the powder particles of NdFeB and SmCo based alloys prepared by the ball milling in a uniform magnetic field are compared to those milled without an applied magnetic field. The ball milling was carried out for a total of 100 hours, and the powders were sampled every 25 hours. The particle size after 100 hours of milling

  15. Polarization Diagnostics of Solar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Manso Sainz, R.

    2011-12-01

    The solar atmosphere is a highly ionized medium which is the playground of magnetic fields. In the deepest layer (the photosphere), magnetic fields disturb the 'normal' fluid motions forcing the plasma to behave incounterintuitive ways; in the outer layers (the chromosphere and the corona) magnetic fields rule, making the plasma levitate or even ejecting it out of the gravitational well of the Sun, with important consequences for us here on Earth. However, magnetic fields are elusive. The only quantitative evidence of their presence is through the polarization state of the light emitted by the plasma they are playing with. Remote sensing of magnetic fields from 150 million km away through spectropolarimetry is a challenge on applied physics as well as an art. It requires the application of quantum mechanics, radiative transfer theory, and advanced optics to the interpretation and analysis of spectropolarimetric observations. I will review standard diagnostic techniques and recent developments on this field. I will discuss their limitations and how to overcome them through the complementary aspects of different diagnostic techniques, spectral regions, and statistical analysis. Finally, I will review what are the main areas for progress in this regard: most notably, the 'measurement' of magnetic fields in the extremely dilute and weakly magnetized outer layers of the sun.

  16. Superconducting tubular wires in transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Mawatari, Yasunori

    2011-04-01

    The electromagnetic response of a round tubular wire of superconducting film to a transverse magnetic field is investigated theoretically. For a superconducting tubular wire (STW) in which the thickness d of the superconducting layer is much smaller than the radius R of the wire, analytical expressions for the magnetic-field and current distributions are obtained on the basis of the critical state model with constant critical current density jc. When an applied transverse magnetic field Ha increases monotonically from zero, the penetration of the magnetic field into an STW occurs in two stages: for 0magnetic field in the interior of an STW is shielded, whereas for Ha>jcd/2 the magnetic field extends into the interior. Analytical expressions of the hysteretic ac loss Qtube of an STW in a transverse ac magnetic field of amplitude H0 are also obtained, and Qtube(H0) is found to have an abrupt change at H0?jcd/2.

  17. The sun and interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Smith, Edward J.

    1991-01-01

    The interplanetary magnetic field (IMF) serves as a link between the sun, the response of the earth to solar activity and variations in galactic cosmic radiation. The IMF originates as a solar-coronal magnetic field that is transported into space by the solar wind. The close connection between solar magnetic fields and the origin and structure of the solar wind is described. The solar wind forms the heliosphere, a cavity containing the magnetized solar plasma from which the interstellar plasma and field are excluded. The entry of galactic cosmic rays into the heliosphere and their strong interaction with the IMF are discussed, this topic being of primary importance to the production and temporal variations of radiogenic elements. The profound influence of the IMF on geomagnetic activity and the aurora is discussed within the context of merging or reconnection with the planetary field. The physical connection is thus established between solar magnetic fields, magnetic storms and aurora. The state of the solar wind and IMF during the Maunder minimum is considered and an explanation for the (relative) absence of sunspots and aurora is proposed. The mechanism is an interruption of the oscillatory solar dynamo, a consequent reduction in the heating of the corona, a cessation of the supersonic solar wind and a weakening or absence of southward-directed magnetic fields in the vicinity of the earth.

  18. Scanning localized magnetic fields in a microfluidic device with a single nitrogen vacancy center.

    PubMed

    Lim, Kangmook; Ropp, Chad; Shapiro, Benjamin; Taylor, Jacob M; Waks, Edo

    2015-03-11

    Nitrogen vacancy (NV) color centers in diamond enable local magnetic field sensing with high sensitivity by optical detection of electron spin resonance (ESR). The integration of this capability with microfluidic technology has a broad range of applications in chemical and biological sensing. We demonstrate a method to perform localized magnetometry in a microfluidic device with a 48 nm spatial precision. The device manipulates individual magnetic particles in three dimensions using a combination of flow control and magnetic actuation. We map out the local field distribution of the magnetic particle by manipulating it in the vicinity of a single NV center and optically detecting the induced Zeeman shift with a magnetic field sensitivity of 17.5 ?T Hz(-1/2). Our results enable accurate nanoscale mapping of the magnetic field distribution of a broad range of target objects in a microfluidic device. PMID:25654268

  19. Magnetic resonance imaging mapping of brain function. Human visual cortex

    Microsoft Academic Search

    J. W. Belliveau; K. K. Kwong; D. N. Kennedy; J. R. Baker; C. E. Stern; R. Benson; D. A. Chesler; R. M. Weisskoff; M. S. Cohen; R. B. Tootell; P. T. Fox; T. J. Brady

    1992-01-01

    Magnetic resonance imaging (MRI) studies of human brain activity are described. Task-induced changes in brain cognitive state were measured using high-speed MRI techniques sensitive to changes in cerebral blood volume (CBV), blood flow (CBF), and blood oxygenation. These techniques were used to generate the first functional MRI maps of human task activation, by using a visual stimulus paradigm. The methodology

  20. Mercury's Internal Magnetic Field: Results from MESSENGER's Search for Remanent Crustal Magnetization Associated with Impact Basins

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.; Johnson, C. L.; Nicholas, J. B.; Philpott, L. C.; Korth, H.; Anderson, B. J.; Head, J. W., III; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Magnetic field measurements obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft in orbit around Mercury have entered a new phase since April 2014, with periapsis altitudes below 200 km. MESSENGER is now obtaining magnetic profiles across large impact features at altitudes less than the horizontal scale of those features. We use data from this latest phase to investigate evidence for remanent crustal magnetization specifically associated with impact basins and large craters. The spatial resolution of magnetic field measurements for investigating crustal magnetization is approximately equal to the altitude of the observations. We focus on large impact features because their relative ages provide a powerful chronological tool for interpreting any associated magnetic signatures. We examine profiles across large impact basins such as Caloris, Shakespeare, Budh-Sobkou and Goethe. For example, coverage over Caloris during the last year of the mission will be largely at night and will comprise 18 profiles with altitudes between 125 and 200 km and 12 profiles with altitudes between 50 and 125 km over the northern part of the basin. We use large-scale magnetospheric models developed with MESSENGER data to remove contributions from the offset axial dipole, magnetopause, and magnetotail. The residual magnetic fields above 200 km are still dominated by poorly understood magnetospheric fields such as those from the cusp and from Birkeland currents. We empirically average, or exclude observations from these local times, in order to search for repeatable internal field signals. We use local basis functions such as equivalent source dipoles, applied with regularization tools, in order to map the altitude-normalized magnetic field from internal sources. These internal sources may comprise both crustal and core contributions, and we use the information from the along-track magnetic gradient in order to separate these contributions.

  1. Magnetic Field Measurement with Ground State Alignment

    NASA Astrophysics Data System (ADS)

    Yan, Huirong; Lazarian, A.

    Observational studies of magnetic fields are crucial. We introduce a process "ground state alignment" as a new way to determine the magnetic field direction in diffuse medium. The alignment is due to anisotropic radiation impinging on the atom/ion. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1 G ? B ? 10^{-15} G). In fact, the effects of atomic/ionic alignment were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this chapter, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields in the Epoch of Reionization.

  2. Analytical expressions for fringe fields in multipole magnets

    NASA Astrophysics Data System (ADS)

    Muratori, B. D.; Jones, J. K.; Wolski, A.

    2015-06-01

    Fringe fields in multipole magnets can have a variety of effects on the linear and nonlinear dynamics of particles moving along an accelerator beam line. An accurate model of an accelerator must include realistic models of the magnet fringe fields. Fringe fields for dipoles are well understood and can be modeled at an early stage of accelerator design in such codes as mad8, madx, gpt or elegant. Existing techniques for quadrupole and higher order multipoles rely either on the use of a numerical field map, or on a description of the field in the form of a series expansion about a chosen axis. Usually, it is not until the later stages of a design project that such descriptions (based on magnet modeling or measurement) become available. Furthermore, series expansions rely on the assumption that the beam travels more or less on axis throughout the beam line; but in some types of machines (for example, Fixed Field Alternating Gradients or FFAGs) this is not a good assumption. Furthermore, some tracking codes, such as gpt, use methods for including space charge effects that require fields to vary smoothly and continuously along a beam line: in such cases, realistic fringe field models are of significant importance. In this paper, a method for constructing analytical expressions for multipole fringe fields is presented. Such expressions allow fringe field effects to be included in beam dynamics simulations from the start of an accelerator design project, even before detailed magnet design work has been undertaken. The magnetostatic Maxwell equations are solved analytically and a solution that fits all orders of multipoles is derived. Quadrupole fringe fields are considered in detail as these are the ones that give the strongest effects. The analytic expressions for quadrupole fringe fields are compared with data obtained from numerical modeling codes in two cases: a magnet in the high luminosity upgrade of the Large Hadron Collider inner triplet, and a magnet in the nonscaling FFAG EMMA. In both examples, the analytical expressions provide a good approximation to the numerical field maps.

  3. The magnetic field of Mercury, part 1

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1974-01-01

    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

  4. Theory of cosmological seed magnetic fields

    SciTech Connect

    Saleem, H. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P. O. Nilore, Islamabad (Pakistan)

    2007-07-15

    A theory for the generation of seed magnetic field and plasma flow on cosmological scales driven by externally given baroclinic vectors is presented. The Beltrami-like plasma fields can grow from zero values at initial time t=0 from a nonequilibrium state. Exact analytical solutions of the set of two-fluid equations are obtained that are valid for large plasma {beta}-values as well. Weaknesses of previous models for seed magnetic field generation are also pointed out. The analytical calculations predict the galactic seed magnetic field generated by this mechanism to be of the order of 10{sup -14} G, which may be amplified later by the {alpha}{omega} dynamo (or by some other mechanism) to the present observed values of the order of {approx}(2-10) {mu}G. The theory has been applied to laser-induced plasmas as well and the estimate of the magnetic field's magnitude is in agreement with the experimentally observed values.

  5. Vector magnetic field camera for permanent magnets inspection

    NASA Astrophysics Data System (ADS)

    Chady, T.; Psuj, G.; Todaka, T.; Enokizono, M.

    2013-01-01

    Permanent magnets are widely used in many applications. A fast and reliable system for online evaluation of permanent magnets is required for their quality assurance. Therefore, a new measurement system has been developed to measure the spatial distribution of the vector magnetic field. The system consists of a complex Hall transducer, an analog multiplexer, a mechanical XYZ scanner and a control computer. The matrix of Hall sensors is designed in this way that all 3 components can be measured at once in multiple points. Such kind of transducer enables to reduce the time needed for inspection. The similar matrix transducer was also utilized to evaluate state of magnetized ferromagnetic materials.

  6. The formation of sunspot penumbra. Magnetic field properties

    NASA Astrophysics Data System (ADS)

    Rezaei, R.; Bello González, N.; Schlichenmaier, R.

    2012-01-01

    Aims: We study the magnetic flux emergence and formation of a sunspot penumbra in the active region NOAA 11024. Methods: We simultaneously observed the Stokes parameters of the photospheric iron lines at 1089.6 nm with the TIP and 617.3 nm with the GFPI spectropolarimeters along with broad-band images using G-band and Ca ii K filters at the German VTT. The photospheric magnetic field vector was reconstructed from an inversion of the measured Stokes profiles. Using the AZAM code, we converted the inclination from line-of-sight (LOS) to the local reference frame (LRF). Results: Individual filaments are resolved in maps of magnetic parameters. The formation of the penumbra is intimately related to the inclined magnetic field. No penumbra forms in areas with strong magnetic field strength and small inclination. Within 4.5 h observing time, the LRF magnetic flux of the penumbra increases from 9.7 × 1020 to 18.2 × 1020 Mx, while the magnetic flux of the umbra remains constant at ~3.8 × 1020 Mx. Magnetic flux in the immediate surroundings is incorporated into the spot, and new flux is supplied via small flux patches (SFPs), which on average have a flux of 2-3 × 1018 Mx. The spot's flux increase rate of 4.2 × 1016 Mx s-1 corresponds to the merging of one SFP per minute. We also find that, during the formation of the spot penumbra, a) the maximum magnetic field strength of the umbra does not change; b) the magnetic neutral line keeps the same position relative to the umbra; c) the new flux arrives on the emergence side of the spot while the penumbra forms on the opposite side; d) the average LRF inclination of the light bridges decreases from 50° to 37°; and e) as the penumbra develops, the mean magnetic field strength at the spot border decreases from 1.0 to 0.8 kG. Conclusions: The SFPs associated with elongated granules are the building blocks of structure formation in active regions. During the sunspot formation, their contribution is comparable to the coalescence of pores. Besides a set of critical parameters for the magnetic field, a quiet environment in the surroundings is important for penumbral formation. As remnants of trapped granulation between merging pores, the light bridges are found to play a crucial role in the formation process. They seem to channel the magnetic flux through the spot during its formation. Light bridges are also the locations where the first penumbral filaments form.

  7. The earth's magnetic field: Its history, origin and planetary perspective

    Microsoft Academic Search

    R. T. Merrill; M. W. McElhinny

    1983-01-01

    The history of geomagnetism and palaeomagnetism is examined, and an analysis and description of the present geomagnetic field is presented. The magnetic compass is discussed along with declination, inclination, secular variation, magnetic charts and the search for the poles, fossil magnetism and the magnetic field in the past, transient magnetic variations regarding the external magnetic field, the origin of the

  8. Hyperon Stars in Strong Magnetic Fields

    E-print Network

    R. O. Gomes; V. Dexheimer; C. A. Z. Vasconcellos

    2013-07-29

    We investigate the effects of strong magnetic fields on the properties of hyperon stars. The matter is described by a hadronic model with parametric coupling. The matter is considered to be at zero temperature, charge neutral, beta-equilibrated, containing the baryonic octet, electrons and muons. The charged particles have their orbital motions Landau-quantized in the presence of strong magnetic fields (SMF). Two parametrisations of a chemical potential dependent static magnetic field are considered, reaching $1-2 \\times 10^{18}\\,G$ in the center of the star. Finally, the Tolman-Oppenheimer-Volkov (TOV) equations are solved to obtain the mass-radius relation and population of the stars.

  9. Ultracold atoms in strong synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    2015-03-01

    The Harper Hofstadter Hamiltonian describes charged particles in the lowest band of a lattice at high magnetic fields. This Hamiltonian can be realized with ultracold atoms using laser assisted tunneling which imprints the same phase into the wavefunction of neutral atoms as a magnetic field dose for electrons. I will describe our observation of a bosonic superfluid in a magnetic field with half a flux quantum per lattice unit cell, and discuss new possibilities for implementing spin-orbit coupling. Work done in collaboration with C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton, and Woo Chang Chung.

  10. Relativistic stars with purely toroidal magnetic fields

    SciTech Connect

    Kiuchi, Kenta [Department of Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Yoshida, Shijun [Astronomical Institute, Tohoku University, Sendai 980-8578 (Japan)

    2008-08-15

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  11. TRANSITION REGION MAGNETIC FIELD AND POLAR MAGNETIC DISTURBANCES

    Microsoft Academic Search

    D. H. Fairfield; L. J. Jr. Cahill

    1966-01-01

    The Explorer 12 measurements of the magnetic field outside the magnetosphere are compared with ground magnetograms from arctic observatories. Results indicate that an exterior field with a southerly component tends to be associated with ground disturbance, whereas a northward field is associated with quiet conditions. Examples are presented show- ing how a north-to-south field-direction change accompanies an increase in ground

  12. Impact of punctual flat magnetic shear on the field line transport

    NASA Astrophysics Data System (ADS)

    Abud, C. V.; Caldas, I. L.

    2015-06-01

    We investigate the magnetic field line transport for tokamak equilibria with monotonic magnetic shear perturbed by resonant fields. We show that when the local profile is flat at the plasma edge a transport barrier can be created leading to a field line transport reduction. This transport reduction is due to the field lines topological modifications, caused by a local flattened profile that reduces the global field lines escape pattern. The results are obtained by applying a symplectic map that describes perturbed magnetic field lines in large aspect ratio tokamaks.

  13. Symmetry protected topological states in antiferromagnets with magnetic field

    NASA Astrophysics Data System (ADS)

    Takayoshi, Shintaro; Totsuka, Keisuke; Tanaka, Akihiro

    2015-03-01

    A symmetry protected topological (SPT) phase is a short-range entangled state that cannot be adiabatically deformed into a direct product state under some symmetry. We show that magnetization plateau states of one-dimensional antiferromagnets in external magnetic field is in an SPT phase when S - m is odd, where S and m represent a spin quantum number and magnetization per site, respectively, if the system respects a bond-center inversion symmetry. We map the antiferromagnets into a field theory of a nonlinear sigma model with a Berry phase term which has a coefficient proportional to the quantity S - m . This term appears in the functional form of the ground state wave function and dictates whether or not the system is in the SPT phase. We verify this prediction through numerical calculations of the entanglement spectra and an analysis using a matrix product state representation.

  14. Large scale reconstruction of the solar coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Amari, T.; Aly, J.-J.; Chopin, P.; Canou, A.; Mikic, Z.

    2014-10-01

    It is now becoming necessary to access the global magnetic structure of the solar low corona at a large scale in order to understand its physics and more particularly the conditions of energization of the magnetic fields and the multiple connections between distant active regions (ARs) which may trigger eruptive events in an almost coordinated way. Various vector magnetographs, either on board spacecraft or ground-based, currently allow to obtain vector synoptic maps, composite magnetograms made of multiple interactive ARs, and full disk magnetograms. We present a method recently developed for reconstructing the global solar coronal magnetic field as a nonlinear force-free magnetic field in spherical geometry, generalizing our previous results in Cartesian geometry. This method is implemented in the new code XTRAPOLS, which thus appears as an extension of our active region scale code XTRAPOL. We apply our method by performing a reconstruction at a specific time for which we dispose of a set of composite data constituted of a vector magnetogram provided by SDO/HMI, embedded in a larger full disk vector magnetogram provided by the same instrument, finally embedded in a synoptic map provided by SOLIS. It turns out to be possible to access the large scale structure of the corona and its energetic contents, and also the AR scale, at which we recover the presence of a twisted flux rope in equilibrium.

  15. Conformal mapping of the field and charge distributions in multilayered substrate CPWs

    Microsoft Academic Search

    Erik Carlsson; Spartak Gevorgian

    1999-01-01

    Conformal mapping (CM) and partial capacitance techniques are used for analytical evaluation of charge\\/current and electric- and magnetic-field distributions in a multilayered substrate coplanar waveguide (CPW) in the quasi-TEM approximation. The results, compared with finite-element method simulations, show that the magnetic wall assumed at the dielectric-dielectric interfaces in CM is a good approximation for many practical cases. The method is

  16. Mean magnetic field generation in sheared rotators

    E-print Network

    Eric G. Blackman

    1999-08-31

    A generalized mean magnetic field induction equation for differential rotators is derived, including a compressibility, and the anisotropy induced on the turbulent quantities from the mean magnetic field itself and a mean velocity shear. Derivations of the mean field equations often do not emphasize that there must be anisotropy and inhomogeneity in the turbulence for mean field growth. The anisotropy from shear is the source of a term involving the product of the mean velocity gradient and the cross-helicity correlation of the isotropic parts of the fluctuating velocity and magnetic field, $\\lb{\\bfv}\\cdot{\\bfb}\\rb^{(0)}$. The full mean field equations are derived to linear order in mean fields, but it is also shown that the cross-helicity term survives to all orders in the velocity shear. This cross-helicity term can obviate the need for a pre-existing seed mean magnetic field for mean field growth: though a fluctuating seed field is necessary for a non-vanishing cross-helicity, the term can produce linear (in time) mean field growth of the toroidal field from zero mean field. After one vertical diffusion time, the cross-helicity term becomes sub-dominant and dynamo exponential amplification/sustenance of the mean field can subsequently ensue. The cross-helicity term should produce odd symmetry in the mean magnetic field, in contrast to the usually favored even modes of the dynamo amplification in sheared discs. This may be important for the observed mean field geometries of spiral galaxies. The strength of the mean seed field provided by the cross- helicity depends linearly on the magnitude of the cross-helicity.

  17. Observation of the Faraday effect via beam deflection in a longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Ghosh, Ambarish; Hill, Winfield; Fischer, Peer

    2007-11-01

    We show that magnetic-field-induced circular differential deflection of light can be observed in reflection or refraction at a single interface. The difference in the reflection or refraction angles between the two circular polarization components is a function of the magnetic-field strength and the Verdet constant, and permits the observation of the Faraday effect not via polarization rotation in transmission, but via changes in the propagation direction. Deflection measurements do not suffer from n-? ambiguities and are shown to be another means to map magnetic fields with high axial resolution, or to determine the sign and magnitude of magnetic-field pulses in a single measurement.

  18. Observation of the Faraday effect via beam deflection in a longitudinal magnetic field

    SciTech Connect

    Ghosh, Ambarish; Hill, Winfield; Fischer, Peer [Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142 (United States)

    2007-11-15

    We show that magnetic-field-induced circular differential deflection of light can be observed in reflection or refraction at a single interface. The difference in the reflection or refraction angles between the two circular polarization components is a function of the magnetic-field strength and the Verdet constant, and permits the observation of the Faraday effect not via polarization rotation in transmission, but via changes in the propagation direction. Deflection measurements do not suffer from n-{pi} ambiguities and are shown to be another means to map magnetic fields with high axial resolution, or to determine the sign and magnitude of magnetic-field pulses in a single measurement.

  19. Intergalactic Magnetic Fields from Quasar Outflows

    E-print Network

    Steven Furlanetto; Abraham Loeb

    2001-02-05

    Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and calculate their distribution as a function of size and magnetic field strength at different redshifts. We generically find that by a redshift z=3, about 5-20% of the IGM volume is filled by magnetic fields with an energy density >10% of the mean thermal energy density of a photo-ionized IGM (at T=10^4 K). As massive galaxies and X-ray clusters condense out of the magnetized IGM, the adiabatic compression of the magnetic field could result in the field strength observed in these systems without a need for further dynamo amplification. The intergalactic magnetic field could also provide a nonthermal contribution to the pressure of the photo-ionized gas that may account for the claimed discrepancy between the simulated and observed Doppler width distributions of the Ly-alpha forest.

  20. Discovery of a magnetic field on Vega

    E-print Network

    Lignières, F; Böhm, T; Aurière, M

    2009-01-01

    We report the detection of a magnetic field on Vega through spectropolarimetric observations. We acquired 257 Stokes V high signal-to-noise and high-resolution echelle spectra during four consecutive nights with NARVAL spectropolarimeter at the 2-m Telescope Bernard Lyot of Observatoire du Pic du Midi (France). A circularly polarized signal in line profiles is detected after gathering the contribution of about 1200 spectral lines for each spectrum and summing up the signal over the 257 spectra. Interpreting this polarization as a Zeeman signature leads to a value of $-0.6 \\pm 0.3$ G for the disk-averaged line-of-sight component of the surface magnetic field. This is the first time a magnetic field is unambiguously detected in an A-type star which is not an Ap chemically peculiar star. Moreover, the Vega longitudinal magnetic field is smaller by about two orders of magnitude than the longitudinal magnetic field (taken at its maximum phase) of the most weakly magnetic Ap stars. Magnetic fields similar to the Ve...

  1. The topological description of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Berger, Mitchell A.

    1986-01-01

    Determining the structure and behavior of solar coronal magnetic fields is a central problem in solar physics. At the photosphere, the field is believed to be strongly localized into discrete flux tubes. After providing a rigorous definition of field topology, how the topology of a finite collection of flux tubes may be classified is discussed.

  2. Prediction of the interplanetary magnetic field strength

    NASA Technical Reports Server (NTRS)

    Zhao, Xuepu; Hoeksema, J. Todd

    1995-01-01

    A new model of the coronal and interplanetary magnetic field can predict both the interplanetary magnetic field strength and its polarity from measurements of the photospheric magnetic field. The model includes the effects of the large-scale horizontal electric currents flowing in the inner corona, of the warped heliospheric current sheet in the upper corona, and of volume currents flowing in the region where the solar wind plasma totally controls the magnetic field. The model matches the MHD solution for a simple dipole test case better than earlier source surface and current sheet models. The strength and polarity of the radial interplanetary magnetic field component predicted for quiet time samples in each year from 1977 to 1986 agree with observations made near the Earth's orbit better than the hybrid MHD-source surface model (Wang and Sheeley, 1988). The results raise the question of whether coronal holes are the only solar source of the interplantary magnetic field in the solar wind. If some interplanetary flux originates outside coronal holes, the model can match the observed field using the accepted 1.8 saturation correction factor for lambda 5250 A magnetograph observations. Requiring open flux to come exclusively from coronal holes requires and additional factor of two.

  3. OH masers and the Galactic magnetic field

    SciTech Connect

    Reid, M.J.; Silverstein, E.M. (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA))

    1990-10-01

    Zeeman splitting of OH maser lines yields the line-of-sight direction and the full magnitude of the magnetic field in the molecular gas in which the maser action occurs. The line-of-sight direction of the magnetic field from 17 maser sources indicates a systematic magnetic field over large regions of the Galaxy. This result suggests that the magnetic field direction is largely preserved during contraction from interstellar densities (about 1/cu cm), through those of giant molecular clouds (about 1000/cu cm), to those of OH masers (about 10 to the 7th/cu cm) near newly formed massive stars, and that the Galactic magnetic field is a dominant force in the process of collapse toward stellar densities. Also, this result confirms conclusions based on rotation measures of pulsars and extragalactic radio sources that there is a large-scale Galactic field, and it offers a new and powerful method to determine the magnetic field structure in the entire disk of the Galaxy. 31 refs.

  4. Reversals of the Earth's Magnetic Field

    Microsoft Academic Search

    J. A. Jacobs

    2005-01-01

    This book deals with the particular case of reversals of the Earth's magnetic field. These have played a major role in the development of plate tectonics and in establishing a geological time scale. The magnetism of rocks is discussed in some detail with a warning of possible misinterpretations of the record. The latest observational results and theories are reviewed with

  5. Reversals of the Earth's Magnetic Field

    Microsoft Academic Search

    J. A. Jacobs

    1995-01-01

    This book deals with the particular case of reversals of the Earth's magnetic field. These have played a major role in the development of plate tectonics and in establishing a geological time scale. The magnetism of rocks is discussed in some detail with a warning of possible misinterpretations of the record. The latest observational results and theories are reviewed with

  6. Pulsed-Field Gradient Nuclear Magnetic

    E-print Network

    Duncan, James S.

    , under software control, which can send current pulses to a gradient coil placed around Z .the sample FigGradient Nuclear Magnetic Resonance as a Tool for Studying Translational Diffusion the theoretical basis behind the pulsed-field gradient nuclear magnetic resonance method for measuring diffusion

  7. Bloch electrons in electric and magnetic fields

    E-print Network

    Alejandro Kunold; Manuel Torres

    2000-04-29

    We investigate Bloch electrons in two dimensions subject to constant electric and magnetic fields. The model that results from our pursuit is governed by a finite difference equation with a quasienergy spectrum that interpolates between a butterfly-like structure and a Stark ladder structure. These findings ensued from the use of electric and magnetic translation operators.

  8. Control of stochasticity in magnetic field lines

    Microsoft Academic Search

    Cristel Chandre; Michel Vittot; Guido Ciraolo; Philippe Ghendrih; Ricardo Lima

    2006-01-01

    We present a method of control which is able to create barriers to magnetic field line diffusion by a small modification of the magnetic perturbation. This method of control is based on a localized control of chaos in Hamiltonian systems. The aim is to modify the perturbation (of order ?) locally by a small control term (of order ?2) which

  9. Instantaneous magnetic field distribution in brushless permanent magnet DC motors. II. Armature-reaction field

    Microsoft Academic Search

    Z. Q. Zhu; David Howe

    1993-01-01

    For pt.I see ibid., vol.29, no.1, p.124-135 (1993). An analytical technique for predicting the open-circuit magnetic field distribution in the airgap\\/magnet region of a brushless permanent-magnet DC motor equipped with a surface mounted magnet rotor and a slotless stator was presented in Pt.I. In the present work, the analysis is extended to the prediction of the armature reaction field produced

  10. Estimating the magnetic field strength from magnetograms

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.; Martínez González, M. J.; Manso Sainz, R.

    2015-05-01

    A properly calibrated longitudinal magnetograph is an instrument that measures circular polarization and gives an estimation of the magnetic flux density in each observed resolution element. This usually constitutes a lower bound of the field strength in the resolution element, given that it can be made arbitrarily large as long as it occupies a proportionally smaller area of the resolution element and/or becomes more transversal to the observer while still produce the same magnetic signal. However, we know that arbitrarily stronger fields are less likely - hG fields are more probable than kG fields, with fields above several kG virtually absent - and we may even have partial information about their angular distribution. Based on a set of sensible considerations, we derive simple formulae based on a Bayesian analysis to give an improved estimation of the magnetic field strength for magnetographs.

  11. Cosmic Magnetic Fields and the CMB

    E-print Network

    Ruth Durrer

    2006-09-08

    I describe the imprint of primordial magnetic fields on the CMB. I show that these are observable only if the field amplitude is of the order of $B\\gsim 10^{-9}G$ on Mpc scale. I further argue that such fields are strongly constrained by the stochastic background of gravity waves which they produce. Primordial magnetic fields, which are strong enough to be seen in the CMB, are compatible with the nucleosynthesis bound, only if their spectrum is close to scale invariant, or maybe if helical magnetic fields provoke an inverse cascade. For helical fields, the CMB signature is especially interesting. It contains parity violating T-B and E--B correlations.

  12. Tracing Magnetic Fields by Atomic Alignment in Extended Radiation Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong; Dong, Le

    2015-05-01

    Tracing magnetic field is crucial as magnetic field plays an important role in many astrophysical processes. Earlier studies have demonstrated that ground state alignment (GSA) is an effective way to detect a weak magnetic field (1G? B? {{10}-15} G) in a diffuse medium. We explore the atomic alignment in the presence of an extended radiation field for both absorption lines and emission lines. The alignment in the circumstellar medium, binary systems, disks, and the local interstellar medium are considered in order to study the alignment in the radiation field where the pumping source has a clear geometric structure. Furthermore, the multipole expansion method is adopted to study GSA induced in the radiation field with unidentified pumping sources. We study the alignment in the dominant radiation components of the general radiation field: the dipole and quadrupole radiation field. We discuss the approximation of GSA in a general radiation field by summing the contribution from the dipole and quadrupole radiation field. We conclude that GSA is a powerful tool for detecting weak magnetic fields in the diffuse medium in general radiation fields.

  13. Vacuum Birefringence in a Rotating Magnetic Field

    E-print Network

    Stephen L. Adler

    2007-04-10

    We calculate the vacuum polarization-induced ellipticity acquired by a linearly polarized laser beam of angular frequency $\\bar \\omega$ on traversing a region containing a transverse magnetic field rotating with a small angular velocity $\\Omega$ around the beam axis. The transmitted beam contains the fundamental frequency $\\bar \\omega$ and weak sidebands of frequency $\\bar \\omega \\pm 2 \\Omega$, but no other sidebands. To first order in small quantities, the ellipticity acquired by the transmitted beam is independent of $\\Omega$, and is the same as would be calculated in the approximation of regarding the magnetic field as fixed at its instantaneous angular orientation, using the standard vacuum birefringence formulas for a static magnetic field. Also to first order, there is no rotation of the polarization plane of the transmitted beam. Analogous statements hold when the magnetic field strength is slowly varying in time.

  14. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  15. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  16. Discontinuities in the Magnetic Field near Enceladus

    NASA Astrophysics Data System (ADS)

    Simon, S.; Saur, J.; van Treeck, S.; Kriegel, H.; Dougherty, M. K.

    2014-12-01

    The plasma interaction of Saturn's icy moon Enceladus generates a hemisphere coupling current system that directly connects the giant planet's northern and southern polar magnetosphere. Based on Cassini magnetometer observations from all 20 targeted Enceladus flybys between 2004 and 2014, we study the magnetic field discontinuities associated with these hemisphere coupling currents. We identify a total number of 11 events during which the magnetic field was discontinuous at the surface of the Enceladus fluxtube (defined by the bundle of magnetic field lines tangential to the solid body of the moon). A Minimum Variance Analysis is applied to calculate the surface normals of these discontinuities. In agreement with theoretical expectations, the normals are found to be perpendicular to the surface of the Enceladus fluxtube. The variation of the hemisphere coupling currents with Enceladean longitude leaves a clear imprint in the strengths of the observed magnetic field jumps as well.

  17. Lunar magnetic field measurements with a cubesat

    E-print Network

    Garrick-Bethell, Ian

    We have developed a mission concept that uses 3-unit cubesats to perform new measurements of lunar magnetic fields, less than 100 meters above the Moon’s surface. The mission calls for sending the cubesats on impact ...

  18. Revisiting holographic superconductor with Magnetic Fields

    E-print Network

    Momeni, Davood

    2014-01-01

    We study the effect of the bulk magnetic field (charge) on scalar condensation using an analytical approach of matching. An AdS-magnetized black hole solution has been used as a probe solution of normal phase of a strongly coupled condensed matter system on boundary. In the zero temperature limit of the black hole and infinite temperature, we show that there exists a critical magnetic field and so, the Meissner's effect presented. We compare this analytical result with our previous variational approach. By studying the different between heat capacities of the normal and superconducting phases near the critical point, we show that this thermodynamic quantity becomes divergent as the Rutgers formula predicted. Mathematical pole of Rutgers formula gives us a maximum for magnetic field which at this value, the system backs to the normal phase. In zero temperature we investigate exact series solutions of the field equations using an appropriate boundary conditions set. We show that conformal dimension is fixed by ...

  19. Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires.

    PubMed

    Huang, Hao-Ting; Lai, Mei-Feng; Hou, Yun-Fang; Wei, Zung-Hang

    2015-05-13

    We investigated the influence of magnetic domain walls and magnetic fields on the thermal conductivity of suspended magnetic nanowires. The thermal conductivity of the nanowires was obtained using steady-state Joule heating to measure the change in resistance caused by spontaneous heating. The results showed that the thermal conductivity coefficients of straight and wavy magnetic nanowires decreased with an increase in the magnetic domain wall number, implying that the scattering between magnons and domain walls hindered the heat transport process. In addition, we proved that the magnetic field considerably reduced the thermal conductivity of a magnetic nanowire. The influence of magnetic domain walls and magnetic fields on the thermal conductivity of polycrystalline magnetic nanowires can be attributed to the scattering of long-wavelength spin waves mediated by intergrain exchange coupling. PMID:25839230

  20. Energy Efficient Map Interpolation for Sensor Fields Using Kriging

    E-print Network

    Huang, Yan

    current sensor work focuses on in-network aggregations Aggregates, e.g., sum, min, max, are of limited the sensor field, e.g.: Temperature Hydraulic head Soil moisture Ocean current velocity Energy Efficient MapEnergy Efficient Map Interpolation for Sensor Fields Using Kriging Brian Harrington, Yan Huang, Jue

  1. Palynological mapping of vertical microseepage over Dragoon and Pollen fields

    Microsoft Academic Search

    Groth; P. K. H

    1986-01-01

    Fossil pollen was recovered from multiple shallow boreholes in Colorado's D-J basin. Detailed light transmissibility of a particular pollen species was obtained, and the data were contoured. Extensions to Dragoon and Byers fields were mapped, and new fields Pollen and Quill were mapped and predicted. The patented technique recognizes mineral oxidation surrounding reduced or reduction-maintained areas of microseepage above reservoirs

  2. Record 97.4 T non-destructive magnetic field Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-print Network

    Weston, Ken

    Record 97.4 T non-destructive magnetic field Gregory S. Boebinger, National High Magnetic Field the angle-averaged belly. Record 97.4 T non-destructive magnetic field Gregory S. Boebinger, National High

  3. Movements and magnetic fields on the sun

    Microsoft Academic Search

    V. A. Krat

    1977-01-01

    Studies of mass motions and magnetic-field configurations on the sun are reviewed. The intensity of the photospheric magnetic field is estimated from photographs of the granulation network obtained during stratospheric flights, and the behavior of the H-alpha line in stratospheric spectrograms is compared with that of metallic lines and the continuum. H-alpha filtergrams are also used to discern the forms

  4. Effects of static magnetic fields on plants

    Microsoft Academic Search

    O. Kuznetsov

    2004-01-01

    In our recent experiment on STS-107 (MFA-Biotube) we took advantage of the magnetic heterogeneity of the gravity receptor cells of flax roots, namely stronger diamagnetism of starch-filled amyloplasts compared to cytoplasm (Delta ≊ < 0). High gradient magnetic fields (HGMF, grad(H2\\/2) up to 109-1010 Oe2\\/cm) of the experimental chambers (MFCs) repelled amyloplasts from the zones of stronger field thus providing

  5. Magnetic fields of the W4 superbubble

    NASA Astrophysics Data System (ADS)

    Gao, X. Y.; Reich, W.; Reich, P.; Han, J. L.; Kothes, R.

    2015-06-01

    Context. Superbubbles and supershells are the channels for transferring mass and energy from the Galactic disk to the halo. Magnetic fields are believed to play a vital role in their evolution. Aims: We study the radio continuum and polarized emission properties of the W4 superbubble to determine its magnetic field strength. Methods: New sensitive radio continuum observations were made at ?6 cm, ?11 cm, and ?21 cm. The total intensity measurements were used to derive the radio spectrum of the W4 superbubble. The linear polarization data were analysed to determine the magnetic field properties within the bubble shells. Results: The observations show a multi-shell structure of the W4 superbubble. A flat radio continuum spectrum that stems from optically thin thermal emission is derived from 1.4 GHz to 4.8 GHz. By fitting a passive Faraday screen model and considering the filling factor fne, we obtain the thermal electron density ne = 1,0/??ne (±5%) cm-3 and the strength of the line-of-sight component of the magnetic field B// = 5,0/??ne (±10%) ?G (i.e. pointing away from us) within the western shell of the W4 superbubble. When the known tilted geometry of the W4 superbubble is considered, the total magnetic field Btot in its western shell is greater than 12 ?G. The electron density and the magnetic field are lower and weaker in the high-latitude parts of the superbubble. The rotation measure is found to be positive in the eastern shell but negative in the western shell of the W4 superbubble, which is consistent with the case where the magnetic field in the Perseus arm is lifted up from the plane towards high latitudes. Conclusions: The magnetic field strength and the electron density we derived for the W4 superbubble are important parameters for evolution models of superbubbles breaking out of the Galactic plane.

  6. Scalar magnetic anomaly maps of Earth derived from POGO and Magsat data

    Microsoft Academic Search

    Jafar Arkani-Hamed; Robert A. Langel; Mike Purucker

    1994-01-01

    A new Polar Orbit Geophysical Observatory (POGO) scalar magnetic anomaly map at 400 km altitude is presented which consists of spherical harmonics of degree 15-60. On the basis of the common features of this map with two new Magsat anomaly maps, dawn and dusk, two scalar magnetic anomaly maps of the Earth are presented using two selection criteria with different

  7. Magnetic Field Problem: Mesuring Current in Wire

    NSDL National Science Digital Library

    Wolfgang Christian

    A wire carrying an unknown current is shown above. An external magnetic field that has constant magnitude and direction is applied to the top half of the simulation (The gray rectangle is at the boundary for your reference). In addition, there is the magnetic field produced by the current in the wire. The direction arrows show the vector sum of these two fields. (The color of the direction arrows represents the magnitude of the field as before.) Observe the force vector and the force/length in the yellow message box in the lower left hand corner.

  8. Magnetic field imaging with atomic Rb vapor

    NASA Astrophysics Data System (ADS)

    Mikhailov, Eugeniy E.; Novikova, I.; Havey, M. D.; Narducci, F. A.

    2009-11-01

    We demonstrate the possibility of dynamic imaging of magnetic fields using electromagnetically induced transparency in an atomic gas. As an experimental demonstration we employ an atomic Rb gas confined in a glass cell to image the transverse magnetic field created by a long straight wire. In this arrangement, which clearly reveals the essential effect, the field of view is about 2 x 2 mm^2 and the field detection uncertainty is 0.14 mG per 10 um x 10 um image pixel.

  9. Fully relativistic self-consistent field under a magnetic field.

    PubMed

    Reynolds, Ryan D; Shiozaki, Toru

    2015-05-27

    We present a gauge-invariant implementation of the four-component Dirac-Hartree-Fock method for simulating the electronic structure of heavy element complexes in magnetic fields. The additional cost associated with the magnetic field is shown to be only 10-13% of that at zero field. The Dirac-Hartree-Fock wave function is constructed from gauge-including atomic orbitals. The so-called restricted magnetic balance is used to generate 2-spinor basis functions for the small component. The molecular integrals for the Coulomb and Gaunt interactions are computed using density fitting. Our efficient, parallel implementation allows for simulating the electronic structure of molecules containing more than 100 atoms with a few heavy elements under magnetic fields. PMID:25310527

  10. Solar Mean Magnetic Field Observed by GONG

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Petrie, G.; Clark, R.; GONG Team

    2009-05-01

    The average line-of-sight (LOS) magnetic field of the Sun has been observed for decades, either by measuring the circular polarization across a selected spectrum line using integrated sunlight or by averaging such measurements in spatially resolved images. The GONG instruments produce full-disk LOS magnetic images every minute, which can be averaged to yield the mean magnetic field nearly continuously. Such measurements are well correlated with the heliospheric magnetic field observed near Earth about 4 days later. They are also a measure of solar activity on long and short time scales. Averaging a GONG magnetogram, with nominal noise of 3 G per pixel, results in a noise level of about 4 mG. This is low enough that flare-related field changes have been seen in the mean field signal with time resolution of 1 minute. Longer time scales readily show variations associated with rotation of magnetic patterns across the solar disk. Annual changes due to the varying visibility of the polar magnetic fields may also be seen. Systematic effects associated with modulator non-uniformity require correction and limit the absolute accuracy of the GONG measurements. Comparison of the measurements with those from other instruments shows high correlation but suggest that GONG measurements of field strength are low by a factor of about two. The source of this discrepancy is not clear. Fourier analysis of 2007 and 2008 time series of the GONG mean field measurements shows strong signals at 27.75 and 26.84/2 day (synodic) periods with the later period showing more power. The heliospheric magnetic field near Earth shows the same periods but with reversed power dominance. The Global Oscillation Network Group (GONG) project is managed by NSO, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation.

  11. Dynamic signatures of quiet sun magnetic fields

    NASA Technical Reports Server (NTRS)

    Martin, S. F.

    1983-01-01

    The collision and disappearance of opposite polarity fields is observed most frequently at the borders of network cells. Due to observational limitations, the frequency, magnitude, and spatial distribution of magnetic flux loss have not yet been quantitatively determined at the borders or within the interiors of the cells. However, in agreement with published hypotheses of other authors, the disapperance of magnetic flux is speculated to be a consequence of either gradual or rapid magnetic reconnection which could be the means of converting magnetic energy into the kinetic, thermal, and nonthermal sources of energy for microflares, spicules, the solar wind, and the heating of the solar corona.

  12. Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open-circuit field

    Microsoft Academic Search

    Z. Q. Zhu; David Howe; Ekkehard Bolte; Bemd Ackermann

    1993-01-01

    An analytical technique for predicting the instantaneous magnetic field distribution in the airgap region of radial-field topologies of brushless permanent-magnet DC motors, under any specified load condition and accounting implicitly for the stator winding current waveform and the effect of stator-slot-openings, has been developed. It is based on the superposition of the component fields due to the permanent magnet and

  13. Mean-field quantum dynamics with magnetic fields

    E-print Network

    Jonas Luhrmann

    2012-07-15

    We consider a system of $N$ bosons in three dimensions interacting through a mean-field Coulomb potential in an external magnetic field. For initially factorized states we show that the one-particle density matrix associated with the solution of the $N$-body Schr\\"odinger equation converges to the projection onto the solution of the magnetic Hartree equation in trace norm and in energy as $N \\rightarrow \\infty$. Estimates on the rate of convergence are provided.

  14. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    NASA Astrophysics Data System (ADS)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  15. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  16. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R. (Coram, NY)

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  17. 22-year periodicity in the changes of the photospheric magnetic field distribution

    NASA Astrophysics Data System (ADS)

    Vernova, Elena; Tyasto, Marta; Baranov, Dmitrii

    2015-04-01

    Photospheric magnetic fields are studied using synoptic maps for 1976 - 2003 (NSO, Kitt Peak). Synoptic maps were averaged over the period of nearly 3 solar cycles (cycles 21 - 23). The change of latitudinal distribution was considered for the following groups of magnetic fields: B = 0 - 5 G; B = 5 - 15 G; B = 15 - 50 G and B > 50 G. Magnetic fields in each of the groups have common features of latitudinal distribution, while for different field groups these features change significantly. Each of the groups is closely related to a certain manifestation of the solar activity. Strong magnetic fields are connected with two manifestations of activity on the Sun: active regions (magnetic fields B>15 G) occupy sunspots zones and polar faculae (magnetic fields 50 G > B > 15 G) occupy latitudes around 65° - 75°. Fields from 5 to 15 G occupy the polar regions and are connected with polar coronal holes (solar global dipole). Fields with B<5 G occupy: a) equatorial region; b) latitudes 40° - 60° - connected with the solar global dipole. Time-dependence of the magnetic flux for different groups of magnetic fields was studied as well as imbalance of positive and negative fluxes. When each of solar hemispheres is considered separately the imbalance displays 22-year periodicity for all field groups. For magnetic fields B<50 G (latitudes 40° - 90°) the imbalance changes its sign near the polar field reversal. The sign of the imbalance coincides with the sign of the polar magnetic field following the change of the solar global dipole sign. Imbalance of strong magnetic fields B>50 G (0° - 40°) changes its sign during solar minimum. The sign of the imbalance coincides with the sign of the leading sunspots which confirms the domination of the leading sunspot flux over the flux of the following ones. For two hemispheres considered together imbalance of magnetic fluxes both of strong and weak magnetic fields changes with the 22-year solar cycle. The sign of the weak field imbalance (B<50 G) in the high latitude region (from +40° to +90° and from -40° to -90°) coincides with the sign of the polar field in the southern hemisphere. The sign of the strong field imbalance in the sunspot zone (B>50 G, from -40° to +40°) changes during the magnetic field reversal and always coincides with the sign of the polar magnetic field in the northern hemisphere. This asymmetry of positive and negative fluxes can be explained by the presence of the strong quadrupole component of the photospheric magnetic field.

  18. The spatial distribution and time evolution of impact-generated magnetic fields

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Schultz, P. H.

    1991-01-01

    The production of magnetic fields was revealed by laboratory hypervelocity impacts in easily vaporized targets. As quantified by pressure measurements, high frame-rate photography, and electrostatic probes, these impacts tend to produce large quantities of slightly ionized vapor, which is referred to as impact-generated plasma. Nonaligned electron density and temperature gradients within this plasma may lead to production of the observed magnetic fields. Past experiments were limited to measuring a single component of the impact-generated magnetic fields at only a few locations about the developing impact crater and consequently gave little information about the field production mechanism. To understand this mechanism, the techniques were extended to map the three components of the magnetic field both in space and time. By conducting many otherwise identical experiments with arrayed magnetic detectors, a preliminary 3-D picture was produced of impact-generated magnetic fields as they develop through time.

  19. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect

    Canabal, A.; Tajima, T.; /Los Alamos; Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  20. Fast Reconnection of Weak Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1998-01-01

    Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.

  1. Dynamical Field Line Connectivity in Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Ruffolo, D.; Matthaeus, W. H.

    2015-06-01

    Point-to-point magnetic connectivity has a stochastic character whenever magnetic fluctuations cause a field line random walk, but this can also change due to dynamical activity. Comparing the instantaneous magnetic connectivity from the same point at two different times, we provide a nonperturbative analytic theory for the ensemble average perpendicular displacement of the magnetic field line, given the power spectrum of magnetic fluctuations. For simplicity, the theory is developed in the context of transverse turbulence, and is numerically evaluated for the noisy reduced MHD model. Our formalism accounts for the dynamical decorrelation of magnetic fluctuations due to wave propagation, local nonlinear distortion, random sweeping, and convection by a bulk wind flow relative to the observer. The diffusion coefficient DX of the time-differenced displacement becomes twice the usual field line diffusion coefficient Dx at large time displacement t or large distance z along the mean field (corresponding to a pair of uncorrelated random walks), though for a low Kubo number (in the quasilinear regime) it can oscillate at intermediate values of t and z. At high Kubo number the dynamical decorrelation decays mainly from the nonlinear term and DX tends monotonically toward 2Dx with increasing t and z. The formalism and results presented here are relevant to a variety of astrophysical processes, such as electron transport and heating patterns in coronal loops and the solar transition region, changing magnetic connection to particle sources near the Sun or at a planetary bow shock, and thickening of coronal hole boundaries.

  2. Mapping individual electromagnetic field components inside a photonic crystal

    E-print Network

    Denis, T; Lee, J H H; van der Slot, P J M; Vos, W L; Boller, K -J

    2012-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing waves and a subwavelength spherical scatterer is scanned inside the resulting resonator. The resonant Bloch frequencies shift depending on the electric field at the position of the scatterer. To map the electric field component Ez we measure the frequency shift in the reflection and transmission spectrum of the slab versus the scatterer position. Very good agreement is found between measurements and calculations without any adjustable parameters.

  3. Strong interplanetary magnetic field By-related plasma convection in the ionosphere and cusp field-aligned currents under northward

    E-print Network

    California at Berkeley, University of

    Strong interplanetary magnetic field By-related plasma convection in the ionosphere and cusp field and the assimilative mapping of ionospheric electrodynamics (AMIE) model during a prolonged interval with large procedure provides a reasonably good description of plasma circulations in the ionosphere during

  4. Charged Particles in Chaotic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Vega Recalde, C. L.; Heerikhuisen, J.; Dasgupta, B.

    2013-12-01

    As new questions arise as of how particles travel through space, new methods of answering these questions can be implemented. By using chaotic streamlines in the Arnold-Beltrami-Childress (ABC) flows, particles can be set in motion at any point on an imaginary 2? x 2? x 2? cube. Trough computer codes written to track the different paths these particles can take, the paths can be observed. A chaotic magnetic field is recreated and introduced through a computer code as well as the magnetic field that has a determined start and end position. Histograms and Poincaré sections are created to record the information. The purpose of this experiment is to observe the charged particles on the chaotic magnetic field and on the constant magnetic field. Through tracking the distances the particle traveled during an allocated time the diffusion of particles in magnetic fields can be further understood, however, not completely. Furthermore these fields can widely occur in nature, in astrophysical environments, such as solar fares, solar corona, solar wind, and also in laboratory plasmas, thus, with further studies these fields can help understand them. Figure 1. Six principal vortexes Figure 2. Poincare Section of Vortexes

  5. Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field

    E-print Network

    Qin, Lu-Chang

    Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field ZHEN Liang( )1 properties of Fe-25Cr-12Co-1Si alloy thermo-magnetically treated under different external magnetic field of external magnetic field during isothermal magnetic ageing. Approximately 28% of the total coercivity can

  6. Magnetic resonance elastography detected with a SQUID in microtesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Kelso, Nathan; Koski, Kristie; Reimer, Jeffrey

    2005-03-01

    We have used a SQUID-based microtesla magnetic resonance imaging (MRI) system to perform magnetic resonance elastography (MRE) experiments in a measurement field of 132 microtesla. Magnetic resonance elastography is based on MRI and measures three-dimensional displacement and strain fields in a sample. With appropriate data processing this allows for a quantitative map of the physical response of a material to an applied deformation. In the past, MRE experiments using conventional (1.5 tesla and above) MRI systems have demonstrated that MRE may be used as a non-invasive method for measuring stiffness of human tissues, which may aid in the detection and diagnosis of breast cancer and other cancers. Our MRE experiment consists of applying a small axial deformation to a cylindrical sample of 0.5% agarose gel. For samples approximately 30 mm in height, we were able to measure displacements on the order of 500 micrometers. Supported by USDOE.

  7. Aerial radiometric and magnetic survey: San Antonio National Topographic Map, Texas. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the San Antonio National Topographic Map NH14-8 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium, and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  8. Picosecond precessional magnetization reversal by magnetic field pulse shaping

    Microsoft Academic Search

    Th. Gerrits; H. A. M. van den Berg; J. Hohlfeld; O. Gielkens; K. J. Veenstra; L. Bar; Th. Rasing

    2002-01-01

    We have developed a method to vary the shape of magnetic field pulses on a picosecond time scale and to monitor the magnetization response in all three dimensions by using time-resolved linear and nonlinear magneto-optical techniques. With this, we have measured the temporal response of rectangular 10×20 ?m and elliptical 8×16 ?m, 8 nm thin Permalloy (Ni80Fe20) elements due to

  9. Wideband optical fiber magnetic field sensor

    SciTech Connect

    Martin, S.J.; Butler, M.A.

    1985-01-01

    The attractive features of fiber optic telemetry, including large signal bandwidth and electrical isolation, may be maintained while eliminating the disadvantages of fiber sensing. This can be accomplished by incorporating a sensing element having the appropriate characteristics. In this paper we will discuss the use of the semi-magnetic semiconductor Cd/sub 1-x/Mn/sub x/Te as a magnetic field sensing element taking into account the Verdet constant, the band gap, and the sensitivity of the material. The manner in which a magnetic semiconductor, such as Cd/sub 1-x/Mn/sub x/Te, could be used to implement a sensor is shown. This sensor system is particularly appropriate for measurement of rapidly varying magnetic fields in electrically noisy environments and may find application in the detection of intense RF fields. 5 refs., 5 figs.

  10. The magnetic fields of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1981-01-01

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

  11. Reconstruction of two-dimensional magnetization and susceptibility distributions from the magnetic field of soft magnetic materials

    Microsoft Academic Search

    Shaofen Tan; Yu Pei Ma; I. M. Thomas

    1996-01-01

    We apply a spatial filtering technique to solve the two-dimensional magnetization imaging problem. This allows us to reconstruct the magnetization distribution from the measured magnetic field above a planar soft magnetic sample exposed to an applied magnetic field. Knowledge of the magnetizing field distribution can then be used to determine the susceptibility distribution and hence to obtain information about the

  12. Magnetic field error in twin depolarized interferometric fiber optic gyroscopes induced by vertical magnetic field

    NASA Astrophysics Data System (ADS)

    Tian, Hui; Chen, Lei; Zhao, Yuxiang; Zhang, Dengwei; Shu, Xiaowu; Liu, Cheng; Che, Shuangliang

    2015-01-01

    We put forward a theory that the magnetic field vertical to the sensing coil plane may induce a nonreciprocal phase error (NPE) in twin depolarized interferometric fiber optic gyroscopes (TD-IFOGs). A related mathematical model is established. The simulation analysis and experimental result show that the magnetic field error induced by a vertical magnetic field in a TD-IFOG is relatively stable. The error arising from the bending of the fiber is closely related with the radius of an optical fiber coil, fiber's diameter, fiber's length, the strength of the vertical magnetic field and so on. And as for a manufactured TD-IFOG, the vertical magnetic error is proportional to the magnitude of the vertical magnetic field.

  13. Magnetic nanoparticle sensing: decoupling the magnetization from the excitation field

    PubMed Central

    Reeves, Daniel B.; Weaver, John B.

    2014-01-01

    Remote sensing of magnetic nanoparticles has exciting applications for magnetic nanoparticle hyperthermia and molecular detection. We introduce, simulate, and experimentally demonstrate an innovation—a sensing coil that is geometrically decoupled from the excitation field—for magnetic nanoparticle spectroscopy that increases the flexibility and capabilities of remote detection. The decoupling enhances the sensitivity absolutely; to small amounts of nanoparticles, and relatively; to small changes in the nanoparticle dynamics. We adapt a previous spectroscopic method that measures the relaxation time of nanoparticles and demonstrate a new measurement of nanoparticle temperature that could potentially be used concurrently during hyperthermia. PMID:24610961

  14. Magnetic nanoparticles for applications in oscillating magnetic field

    SciTech Connect

    Peeraphatdit, Chorthip

    2010-12-15

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific loss power of PNIPAM-coated Fe{sub 3}O{sub 4} was peculiarly high, and the heat loss mechanism of this material remains to be elucidated. Since thermocatalysis is a long-term goal of this project, we also investigated the effects of the oscillating magnetic field system for the synthesis of 7-hydroxycoumarin-3-carboxylic acid. Application of an oscillating magnetic field in the presence of magnetic particles with high thermal response was found to effectively increase the reaction rate of the uncatalyzed synthesis of the coumarin derivative compared to the room temperature control.

  15. Mercury's magnetic field - A thermoelectric dynamo?

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.

    1987-03-01

    Permanent magnetism and conventional dynamo theory are possible but problematic explanations for the magnitude of the Mercurian magnetic field. A new model is proposed in which thermoelectric currents driven by temperature differences at a bumpy core-mantle boundary are responsible for the (unobserved) toroidal field, and the helicity of convective motions in a thin outer core (thickness of about 100 km) induces the observed poloidal field from the toroidal field. The observed field of about 3 x 10 to the -7th T can be reproduced provided the electrical conductivity of Mercury's semiconducting mantle approaches 1000/ohm per m. This model may be testable by future missions to Mercury because it predicts a more complicated field geometry than conventional dynamo theories. However, it is argued that polar wander may cause the core-mantle topography to migrate so that some aspects of the rotational symmetry may be reflected in the observed field.

  16. Magnetic field gradients from the ST-5 constellation: Improving magnetic and thermal models of the lithosphere

    E-print Network

    Busby, Cathy

    Magnetic field gradients from the ST-5 constellation: Improving magnetic and thermal models. The measurements reported here represent the first systematic measurements of lithospheric magnetic field gradients are dominated by lithospheric magnetic fields. Using a seismic starting model, and magnetic field observations

  17. Magnetic field production after inflation

    E-print Network

    Andres Diaz-Gil; J. Garcia-Bellido; M. Garcia Perez; A. Gonzalez-Arroyo

    2005-09-22

    We study the electromagnetic field production during preheating after hybrid inflation in a model with the field content of the Standard Model, coupled to a singlet inflaton. We find that very soon after symmetry breaking our system enters a regime of kinetic turbulence, characterized by a self-similar behaviour of the energy spectra and a power-like dependence on time of the inflaton and Higgs field variances.

  18. Direct Neural Imaging using Ultra-Low Field Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Maskaly, Karlene; Espy, Michelle; Flynn, Mark; Gomez, John; Kraus, Robert; Matlashov, Andrei; Mosher, John; Newman, Shaun; Owens, Tuba; Peters, Mark; Sandin, J.; Schultz, Larry; Urbaitis, Algis; Volegov, Petr; Zotev, Vadim

    2009-03-01

    An enduring challenge in neuroscience is the accurate in vivo mapping of neural activity with high spatial and temporal resolution. A method being developed by our group tries to meet this challenge by using Ultra-Low Field (ULF) MRI. Other groups have attempted direct neural imaging (DNI) using high field MRI. However, the use of ULF presents two advantages. First, the susceptibility artifact at high fields, which masks the DNI signal, is negligible at low fields. Second, the reduced Larmor frequency at ULF may overlap with the frequency spectrum of the neural magnetic field, resonantly enhancing the MRI signal. In this presentation, I will first show our custom-built ULF MRI setups that have successfully produced ULF anatomical images. I will then highlight the numerous studies we have done to investigate the feasibility of DNI with these systems, including both experimental and theoretical studies.

  19. Passive magnetic shielding in static gradient fields

    NASA Astrophysics Data System (ADS)

    Bidinosti, C. P.; Martin, J. W.

    2014-04-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied for two idealized shield models: concentric spherical and infinitely-long cylindrical shells of linear material. It is found that higher-order multipoles of an externally applied magnetic field are always shielded progressively better for either geometry by a factor related to the order of the multipole. In regard to the design of internal coil systems, we determine reaction factors for the general multipole field and provide examples of how one can take advantage of the coupling of the coils to the innermost shell to optimize the uniformity of the field. Furthermore, we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields close to the outermost shell. Overall this work provides a comprehensive framework that is useful for the analysis and optimization of dc magnetic shields, serving as a theoretical and conceptual design guide as well as a starting point and benchmark for finite-element analysis.

  20. Ionospheric magnetic fields at Venus and Mars

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Zhang, T. L.; Woch, J.; Wei, Y.

    2014-04-01

    Mars Global Surveyor (MGS) and Venus Express(VEX) spacecraft have provided us a wealth of insitu observations of characteristics of induced magnetospheres of Mars and Venus at low altitudes during the periods of solar minimum. At such conditions the interplanetary magnetic field (IMF) penetrates deeply inside the ionosphere while the solar wind is terminated at higher altitudes. We present the measurements made by MGS and VEX in the ionospheres of both planets which reveal similar features of the magnetization. The arising magnetic field pattern occurs strongly asymmetrical with respect to the direction of the cross-flow component of the IMF revealing either a sudden straightening of the field lines with a release of the magnetic field stresses or a sudden rotation of the magnetic field vector with a reversal of the sign of the cross-flow component. Such an asymmetrical response is observed at altitudes where the motion of ions and electrons is decoupled and collisional effects become important for generation of the electric currents Asymmetry in the field topology significantly modifies a plasma transport to the night side.

  1. Quantum processes in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1975-01-01

    Quantum-mechanical processes that occur in a piece of matter embedded in a magnetic field with a strength of the order of 10 to the 13th power G are described which either are entirely due to the presence of the field or become modified because of it. The conversion of rotational energy into electromagnetic energy in pulsars is analyzed as a mechanism for producing such a field, and it is shown that a strong magnetic field is not sufficient for quantum effects to play a significant role; in addition, the density must be adjusted to be as low as possible. The pressure and energy density of a free electron gas in a uniform magnetic field are evaluated, neutron beta-decay in the presence of a strong field is examined, and the effect of such a field on neutrino reactions is discussed. The thermal history of a neutron star is studied, and it is concluded that a strong magnetic field helps to increase the cooling rate of the star by producing new channels through which neutrinos can carry away energy.

  2. A deep dynamo generating Mercury's magnetic field

    NASA Astrophysics Data System (ADS)

    Christensen, Ulrich R.

    2006-12-01

    Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field-about 1% the strength of the Earth's field-cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned.

  3. Galactic magnetic fields and hierarchical galaxy formation

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. F. S.; Shukurov, A.; Fletcher, A.; Baugh, C. M.

    2015-07-01

    A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulent magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic field strengths obtained for the satellite and central galaxy populations as well as the typical strength of the large-scale magnetic field in galaxies of different mass.

  4. The production of Ganymede's magnetic field

    Microsoft Academic Search

    Michael T. Bland; Adam P. Showman; Gabriel Tobie

    2008-01-01

    One of the great discoveries of NASA's Galileo mission was the presence of an intrinsically produced magnetic field at Ganymede. Generation of the relatively strong (750 nT) field likely requires dynamo action in Ganymede's metallic core, but how such a dynamo has been maintained into the present epoch remains uncertain. Using a one-dimensional, three layer thermal model of Ganymede, we

  5. Galactic magnetic fields and hierarchical galaxy formation

    E-print Network

    Rodrigues, Luiz Felippe S; Fletcher, Andrew; Baugh, Carlton

    2015-01-01

    A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in the cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulence magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic fields strengths obtained for the satellite and central galaxies populations as well as the typical strength of the large-scale magnetic field in galax...

  6. A deep dynamo generating Mercury's magnetic field.

    PubMed

    Christensen, Ulrich R

    2006-12-21

    Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned. PMID:17183319

  7. High Field Solenoid Magnets for Muon Cooling

    Microsoft Academic Search

    S. A. Kahn; M. Alsharo; P. Hanlet; R. P. Johnson; M. Kuchnir; D. Newsham; R. C. Gupta; R. B. Palmer; E. Willen

    Magnets made with high-temperature superconducting (HTS) coils operating at low temperatures have the potential to produce extremely high fields for use in accelerators and beam lines. The specific application of interest that we are proposing is to use a very high field (of the order of 50 Tesla) solenoid to provide a very small beta region for the final stages

  8. Folding Digital Mapping into a Traditional Field Camp Program

    NASA Astrophysics Data System (ADS)

    Kelley, D. F.

    2011-12-01

    Louisiana State University runs a field camp with a permanent fixed-base which has continually operated since 1928 in the Front Range just to the south of Colorado Springs, CO. The field camp program which offers a 6-credit hour course in Field Geology follows a very traditional structure. The first week is spent collecting data for the construction of a detailed stratigraphic column of the local geology. The second week is spent learning the skills of geologic mapping, while the third applies these skills to a more geologically complicated mapping area. The final three weeks of the field camp program are spent studying and mapping igneous and metamorphic rocks as well as conducting a regional stratigraphic correlation exercise. Historically there has been a lack of technology involved in this program. All mapping has been done in the field without the use of any digital equipment and all products have been made in the office without the use of computers. In the summer of 2011 the use of GPS units, and GIS software were introduced to the program. The exercise that was chosen for this incorporation of technology was one in which metamorphic rocks are mapped within Golden Gate Canyon State Park in Colorado. This same mapping exercise was carried out during the 2010 field camp session with no GPS or GIS use. The students in both groups had the similar geologic backgrounds, similar grade point averages, and similar overall performances at field camp. However, the group that used digital mapping techniques mapped the field area more quickly and reportedly with greater ease. Additionally, the students who used GPS and GIS included more detailed rock descriptions with their final maps indicating that they spent less time in the field focusing on mapping contacts between units. The outcome was a better overall product. The use of GPS units also indirectly caused the students to produce better field maps. In addition to greater ease in mapping, the use of GIS software to create maps was rewarding to the students and gave them mapping experience that is in line with industry standards.

  9. Varying Electromagnetic Coupling and Primordial Magnetic Fields

    E-print Network

    O. Bertolami; R. Monteiro

    2005-04-08

    We study the effect of variations of the electromagnetic coupling on the process of generation of primordial magnetic fields. We find that only through a significant growth of the electromagnetic coupling minimum seed fields can be produced. We also show that, if through some process in the early Universe the photon acquires a mass that leads, thanks to inflation, to the generation of primordial magnetic fields, then the influence of variations of the electromagnetic coupling amounts essentially to the results due to the photon effective mass alone.

  10. Plasma heating in a variable magnetic field

    SciTech Connect

    Kichigin, G. N., E-mail: king@iszf.irk.ru [Russian Academy of Sciences, Institute of Solar-Terrestrial Physics (Russian Federation)

    2013-05-15

    The problem of particle acceleration in a periodically variable magnetic field that either takes a zero value or passes through zero is considered. It is shown that, each time the field [0]passes through zero, the particle energy increases abruptly. This process can be regarded as heating in the course of which plasma particles acquire significant energy within one field period. This mechanism of plasma heating takes place in the absence of collisions between plasma particles and is analogous to the mechanism of magnetic pumping in collisional plasma considered by Alfven.

  11. Field-Coupled Nano-Magnetic Logic Systems

    NASA Astrophysics Data System (ADS)

    Pulecio, Javier F.

    The following dissertation addresses the study of nano-magnetic devices configured to produce logic machines through magnetostatic coupling interactions. The ability for single domain magnets to reliably couple through magnetostatic interactions is essential to the proper functionality of Magnetic Cellular Automata (MCA) devices (p. 36). It was significant to explore how fabrication defects affected the coupling reliability of MCA architectures. Both ferromagnetic and anti-ferromagnetic coupling architectures were found to be robust to common fabrication defects. Experiments also verified the functionality of the previously reported MCA majority gate [1] and a novel implementation of a ferromagnetic MCA majority gate is reported. From these results, the study of clocking Magnetic Cellular Automata (MCA) interconnect architectures was investigated (p. 54). The wire architectures were saturated under distinct directions of an external magnetic field. The experimental results suggested ferromagnetic coupled wires were able to mitigate magnetic frustrations better than anti-ferromagnetic coupled wires. Simulations were also implemented supporting the experimental results. Ferromagnetic wires were found to operate more reliably and will likely be the primary interconnects for MCA. The first design and implementation of a coplanar cross wire system for MCA was constructed which consisted of orthogonal ferromagnetic coupled wires (p. 68). Simulations were implemented of a simple crossing wire junction to analyze micro-magnetic dynamics, data propagation, and associated energy states. Furthermore, two systems were physically realized; the first system consisted of two coplanar crossing wires and the second was a more complex system consisting of over 120 nano-magnetic cells. By demonstrating the combination of all the possible logic states of the first system and the low ground state achieved by the second system, the data suggested coplanar cross wire systems would indeed be a viable architecture in MCA technology. Finally, ongoing research of an unconventional method for image processing using nano-magnetic field-based computation is presented (p. 79). In magnetic field-based computing (MFC), nano-disks were mapped to low level segments of an image, and the magnetostatic coupling of magnetic dipole moments was directly related to the saliency of a low level segment for grouping. A proof of concept model for two MFC systems was implemented. Details such as the importance of fabricating circular nano-magnetic cells to mitigate shape anisotropy, experimental coupling analysis via Magnetic Force Microscopy, and current results from a complex MFC system is outlined.

  12. Inversion of Gravity and Magnetic Field Data for Tyrrhena Patera

    NASA Technical Reports Server (NTRS)

    Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.

    2011-01-01

    Tyrrhena Patera is located to the southeast/northeast of the Isidis/Hellas impact basin. It was geologically active into the Late Amazonian, although the main edifice was formed in the Noachian(approximately 3.7-4.0 Ga). Tyrrhena Patera and the surrounding area contain gravity and magnetic anomalies that appear to be correlated. The results presented here are for the anomalies 1a and 1b (closest to Tyrrhena Patera), however other anomalies in this region have been modeled and will be presented at the conference.The Mars Global Surveyor (MGS) free-air gravity signature of Tyrrhena Patera has been studied by Kiefer, who inferred the existence of an extinct magma chamber below it. The magnetic signature has been mapped by Lillis R. J. et al., who compared electron reflectometer data, analogous to the total magnetic field, for Syrtis Major and Tyrrhena Patera and argued for demagnetization of both volcanoes.

  13. A Holographic Bound on Cosmic Magnetic Fields

    E-print Network

    Brett McInnes

    2015-01-01

    Magnetic fields large enough to be observable are ubiquitous in astrophysics, even at extremely large length scales. This has led to the suggestion that such fields are seeded at very early (inflationary) times, and subsequently amplified by various processes involving, for example, dynamo effects. Many such mechanisms give rise to extremely large magnetic fields at the end of inflationary reheating, and therefore also during the quark-gluon plasma epoch of the early universe. Such plasmas have a well-known holographic description in terms of a thermal asymptotically AdS black hole. We show that holography imposes an upper bound on the intensity of magnetic fields ($\\approx \\; 3.6 \\times 10^{18}\\;\\; \\text{gauss}$ at the hadronization temperature) in these circumstances; this is above, but not far above, the values expected in some models of cosmic magnetogenesis.

  14. Magnetic field dissipation in D-sheets

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Scudder, J. D.

    1973-01-01

    The effects of magnetic field annihilation at a tangential or rotational discontinuity in a resistive plasma are examined. The magnetic field intensity profile depends on (1) the field intensities far from the current sheet (+ and - infinity), (2) the angle between the two intensities, and (3) the electrical resistivity. For a tangential discontinuity, the theory predicts a depression in B, centered at the discontinuity, and it predicts a monotonic transition. The theory provides satisfactory fits to the magnetic field intensity and proton temperature profiles observed for two extremely broad D-sheets in the solar wind. Assuming a diffusion time 10 days, one obtains effective resistivities or approximately = 3 x 10 to the 12th power and 2 x 10 to the 13th power emu for the D-sheets. Either resistivity at directional discontinuities is much lower than 10 to the 12th power emu or annihilation does not always occur at discontinuities.

  15. Studying the magnetic fields of cool stars

    NASA Astrophysics Data System (ADS)

    Lynch, Christene Rene

    Magnetic fields are prevalent in a wide variety of low mass stellar systems and play an important role in their evolution. Yet the process through which these fields are generated is not well understood. To understand how such systems can generate strong field structures characterization of these fields is required. Radio emission traces the fields directly and the properties of this emission can be modeled leading to constraints on the field geometry and magnetic parameters. The new Karl Jansky Very Large Array (VLA) provides highly sensitive radio observations. My thesis involves combining VLA observations with the development of magnetospheric emission models in order to characterize the magnetic fields in two fully convective cool star systems: (1) Young Stellar Objects (YSOs); (2) Ultracool dwarf stars. I conducted multi epoch observations of DG Tau, a YSO with a highly active, collimated outflow. The radio emission observed from this source was found to be optically thick thermal emission with no indication of the magnetic activity observed in X-rays. I determined that the outflow is highly collimated very close to the central source, in agreement with jet launching models. Additionally, I constrained the mass loss of the ionized component of the jet and found that close to the central source the majority of mass is lost through this component. Using lower angular resolution observations, I detected shock formations in the extended jet of DG Tau and modeled their evolution with time. Taking full advantage of the upgraded bandwidth on the VLA, I made wideband observations of two UCDs, TVLM513-46 and 2M 0746+20. Combining these observations with previously published and archival VLA observations I was able to fully characterize the spectral and temporal properties of the radio emission. I found that the emission is dominated by a mildly polarized, non-thermal quiescent component with periodic strongly polarized flare emission. The spectral energy distribution and polarization of the quiescent emission is well modeled using gyrosynchrotron emission with a mean field B ˜100 G, mildly relativistic power-law electrons with a density ne ˜ 105-6 cm-3, and source size of R ˜ 2R*. We were able to model the pulsed emission by coherent electron cyclotron radiation from a small number of isolated loops of high magnetic field (2-3 kG) with scale heights˜1.2-2.7 stellar radii. The loops are well-separated in magnetic longitude, and are not part of a single dipolar magnetosphere. The overall magnetic configuration of both stars appears to confirm recent suggestions that radio over-luminous UCD's have `weak field' non-axisymmetric topologies, but with isolated regions of high magnetic field.

  16. Coronal magnetic fields produced by photospheric shear

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.; Sturrock, P. A.; Yang, W.-H.

    1988-01-01

    The magnetofrictional method for computing force-free fields is used to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It is found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear amplitude, by a simple functional form. The fit parameters depend only on the distribution of normal field in the photosphere and the form of the shearing displacement. They show that the energy is relatively more enhanced if the shear occurs: (1) where the normal field is strongest; and/or (2) in the inner region of the dipole, near the axis; and/or (3) over a large fraction of the dipole area.

  17. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2010-01-01

    The Spiral Magnetic Motor, which can accelerate a magnetized rotor through 90% of its cycle with only permanent magnets, was an energy milestone for the 20th century patents by Kure Tekkosho in the 1970's. However, the Japanese company used old ferrite magnets which are relatively weak and an electrically-powered coil to jump start every cycle, which defeated the primary benefit of the permanent magnet motor design. The principle of applying an inhomogeneous, anisotropic magnetic field gradient force Fz = ? cos ? dB/dz, with permanent magnets is well-known in physics, e.g., Stern-Gerlach experiment, which exploits the interaction of a magnetic moment with the aligned electron spins of magnetic domains. In this case, it is applied to dB/d? in polar coordinates, where the force F? depends equally on the magnetic moment, the cosine of the angle between the magnetic moment and the field gradient. The radial magnetic field increases in strength (in the attractive mode) or decreases in strength (in the repulsive mode) as the rotor turns through one complete cycle. An electromagnetic pulsed switching has been historically used to help the rotor traverse the gap (detent) between the end of the magnetic stator arc and the beginning (Kure Tekko, 1980). However, alternative magnetic pulse and switching designs have been developed, as well as strategic eddy current creation. This work focuses on the switching mechanism, novel magnetic pulse methods and advantageous angular momentum improvements. For example, a collaborative effort has begun with Toshiyuki Ueno (University of Tokyo) who has invented an extremely low power, combination magnetostrictive-piezoelectric (MS-PZT) device for generating low frequency magnetic fields and consumes "zero power" for static magnetic field production (Ueno, 2004 and 2007a). Utilizing a pickup coil such as an ultra-miniature millihenry inductor with a piezoelectric actuator or simply Wiegand wire geometry, it is shown that the necessary power for magnetic field switching device can be achieved in order to deflect the rotor magnet in transit. The Wiegand effect itself (bistable FeCoV wire called "Vicalloy") invented by John Wiegand (Switchable Magnetic Device, US Patent ?4,247,601), utilizing Barkhausen jumps of magnetic domains, is also applied for a similar achievement (Dilatush, 1977). Conventional approaches for spiral magnetic gradient force production have not been adequate for magnetostatic motors to perform useful work. It is proposed that integrating a magnetic force control device with a spiral stator inhomogeneous axial magnetic field motor is a viable approach to add a sufficient nonlinear boundary shift to apply the angular momentum and potential energy gained in 315 degrees of the motor cycle.

  18. Magnetic field stabilization by temperature control of an azimuthally varying field cyclotron magnet

    SciTech Connect

    Okumura, S.; Arakawa, K.; Fukuda, M.; Nakamura, Y.; Yokota, W.; Ishimoto, T.; Kurashima, S.; Ishibori, I.; Nara, T.; Agematsu, T.; Sano, M.; Tachikawa, T. [Japan Atomic Energy Research Institute (JAERI), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Sumitomo Heavy Industries, Ltd. (SHI), 5-2 Soubiraki, Niihama, Ehime 792-8588 (Japan)

    2005-03-01

    A magnetic field drift, gradual decrease of the order of 10{sup -4} in several tens of hours, was observed with the beam intensity decrease in an operation of an azimuthally varying field (AVF) cyclotron. From our experimental results, we show that the temperature increase of the magnet iron by the heat transfer from the excitation coils can induce such change of the magnetic field as to deteriorate the beam quality. The temperature control of the magnet iron was realized by thermal isolation between the main coil and the yoke and by precise control of the cooling water temperature of the trim coils attached to the pole surfaces in order to prevent temperature change of the magnet iron. The magnetic field stability of {+-}5x10{sup -6} and the beam intensity stability of {+-}2% have been achieved by this temperature control.

  19. The Magnetic Field in Tapia's Globule 2

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Carretti, Ettore; Bhat, Ramesh; Robishaw, Timothy; Crutcher, Richard; Vaillancourt, John

    2014-04-01

    We propose to measure the magnetic field in the Southern Coalsack using the Zeeman effect in OH at 1665 and 1667 MHz. This is motivated by (1) the measurement of a large magnetic field (B~90 uG) in the Coalsack region from optical and near infrared polarimetry and (2) a very low magnetic field (B~1 uG) measured ~30' from the cloud edge using pulsar Faraday rotation measurements. While the derived field strength in the cloud is significantly larger than usually seen in the interstellar medium, the existence of an X-ray emitting envelope around the cloud that contains significant amounts of O VI ions puts the magnetic pressure at approximate equipartition with the thermal pressure of such gas. A chain of observational results indicate that the Coalsack might be a unique, nearby example of externally triggered star formation. This chain starts with the passage of the Upper Centaurus-Lupus super bubble over the cloud, eventually causing triggered star formation. Probing the high magnetic field strength and providing accurate constraints for the interpretation of the observations of the cloud is therefore of great importance for testing this hypothesis.

  20. Iowa magnetic and gravity maps and data: a web site for distribution of data

    USGS Publications Warehouse

    Kucks, Robert P.; Hill, Patricia L.

    2005-01-01

    Magnetic anomalies are due to variations in the Earth's magnetic field caused by the uneven distribution of magnetic minerals (primarily magnetite) in the rocks that make up the upper part of the Earth's crust. The features and patterns of the magnetic anomalies can be used to delineate details of subsurface geology, including the locations of buried faults and magnetite-bearing rocks and the depth to the base of sedimentary basins. This information is valuable for mineral exploration, geologic mapping, and environmental studies. The Iowa magnetic map is constructed from grids that combine information collected in nine separate magnetic surveys conducted between 1953 and 1972. The data from these surveys are of varying quality. The design and specifications (terrain clearance, sampling rates, line spacing, and reduction procedures) varied from survey to survey depending on the purpose of the project and the technology of that time. Every attempt was made to acquire the data in digital form. All survey grids have been continued to 305 m (1,000 ft) above ground and merged together to form the State compilation.