These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Optical sensor of magnetic fields  

DOEpatents

An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

Butler, M.A.; Martin, S.J.

1986-03-25

2

Optical pumping magnetic resonance in high magnetic fields: Characterization of nuclear relaxation during pumping  

E-print Network

Optical pumping magnetic resonance in high magnetic fields: Characterization of nuclear relaxation exchange with optically pumped Rb vapor is investigated in high magnetic field. Operation in a high field. INTRODUCTION Optical pumping has been researched extensively in the past few decades following the pioneering

Augustine, Mathew P.

3

Optically induced spin-orbit effective magnetic fields in all-optical magnetic recording  

NASA Astrophysics Data System (ADS)

In this work, effective magnetic fields relevant to all-optical magnetic recording (AOMR) are analyzed considering, specifically, optically-induced spin-orbit (OSO) coupling and the Inverse Faraday Effect. Computing these fields with reasonable estimations of the required parameters, it is shown that OSO fields developed in typical rare earth alloys have a distribution with exterior rings of maximum amplitude in the perpendicular component, in contrast to the IFE field which has its maximum in the center. These observations may correlate to experimental observations that have revealed exterior rings in the recorded spots during the AOMR process.

Eason, K.; Vienne, G.; Li, J. M.

2010-06-01

4

Pulsed magnetic field fiber optic sensor  

Microsoft Academic Search

In order to the fiber linear birefringence compensation a promising method was chosen for pulsed current sensor design. The method employs orthogonal polarization conjugation by the back direction propagation of the light wave in the fiber. The Jones calculus analysis presents its propriety. An experimental fiber optic current sensor has been designed and realized. The advantage of the proposed method

Petr Drexler; Radek Kubasek

2009-01-01

5

Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings  

NASA Astrophysics Data System (ADS)

An intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings is proposed and experimentally demonstrated. The sensor is formed by a tilted-fiber Bragg grating (TFBG) coated by magnetic fluid (MF) and cascaded by a chirped-fiber Bragg grating (CFBG). Transmission of the TFBG is modulated by refractive index of the MF, which is sensitive to external magnetic field. The CFBG is well designed to reflect a broadband of light spectrally located at the cladding mode resonances region of the TFBG. Therefore, reflected optical power is modulated twice by the magnetic field and measurement is realized in reflection manner.

Zheng, Jie; Dong, Xinyong; Zu, Peng; Ji, Junhua; Su, Haibin; Ping Shum, Perry

2013-10-01

6

Optical fiber magnetic field sensors with ceramic magnetostrictive jackets.  

PubMed

Optical fibers coated by magnetostrictive ceramic films were tested with a Mach-Zehnder interferometer in an open-loop mode. The sensors exhibited excellent linearity and good sensitivity. The response of ceramic-jacketed fibers was not affected by small dc fluctuations that are due to the linear behavior of tested ceramic coatings in low magnetic fields. Tested ceramic materials included magnetite, ?-Fe(2) O(3), nickel ferrite, and cobalt-doped nickel ferrite (NCF2) jackets. The latter showed the best performance. A minimum detectable field of 3.2 × 10(-3) A/m for optical fiber jacketed with 2-?m-thick and 1-m-long NCF2 material has been achieved. The capability of detecting magnetic fields as low as 2.6 × 10(-7) A/m with a 10-?m-thick cobalt-doped nickel ferrite jacket is proposed. PMID:21127528

Sedlar, M; Paulicka, I; Sayer, M

1996-09-20

7

Magnetic field sensitivity of depolarized fiber optic gyros  

NASA Astrophysics Data System (ADS)

Results are presented of experimental measurements and an analysis of the magnetic field sensitivity of several types of depolarized fiber-optic gyros. It was found that depolarized gyros of the Bohm et al. (1981) and Fredricks and Ulrich (1984) configuration (having one depolarizer in the loop) can be highly sensitive to magnetic fields, while depolarized gyros incorporating Pavlath and Shaw concept (i.e., having unpolarized light enter and exit the loop) are insensitive to magnetic fields. It is shown that a gyro having all the advantages of both designs can be obtained by incorporating two depolarizers, one between the polarizer and the loop coupler and the other within the loop. A scheme of this type of fiber gyro is presented.

Blake, James N.

1991-02-01

8

Zero-field optical manipulation of magnetic ions in semiconductors  

NASA Astrophysics Data System (ADS)

For coherent spin information processing, spin coherence times must be long enough to perform multiple state operations, thus requiring a balance between gating time and spin lifetime. Because single magnetic spins in semiconductors can be strongly coupled to both itinerant carriers and to other magnetic ions, these interactions can be rapidly manipulated optically and electrically. We show that small numbers of magnetic spins in III-V GaAs quantum wells can be polarized by optical spin injection without the need for applied magnetic fields, and exhibit unusually long coherence times ootnotetextR. C. Myers, M. H. Mikkelsen, J.-M. Tang, M. E. Flatt'e, A. C. Gossard, and D. D. Awschalom, submitted (2007).. Mn ions provide acceptor states within the bandgap of GaAs ootnotetextJ. Schneider, U. Kaufmann, W. Wilkening, M. Baeumler, and F. Köhl, Phys. Rev. Lett. 59, 240 (1987)., enabling optical readout and control of the magnetic ions in a manner distinct from paramagnetic II-VI materials. Spin polarized electrons created within the quantum well dynamically orient the Mn spins in a manner analogous to dynamic nuclear polarization, generating a dynamic exchange splitting of the magnetic spins. The Mn ions are manipulated at zero field solely by changing the excitation helicity or energy. Ion spin lifetimes increase sharply as the concentration is reduced exhibiting T2^* times exceeding 6 ns at the lowest doping, longer than is typically observed in other magnetic semiconductors. These results indicate that hole-mediated Mn-Mn interactions dominate the decoherence, and suggest that long lifetimes may be expected for single Mn spins in GaAs.

Myers, Roberto C.

2008-03-01

9

Magnetic field visualization of magnetic minerals and grain boundary regions using magneto-optical imaging  

Microsoft Academic Search

Magneto-optical imaging based on the Faraday effect has been used to characterize magnetic minerals embedded in a nonmagnetic matrix. We have studied magnetite grains and magnetite-magnetite grain boundary regions in samples of skarns and serpentinites. Distributions of the remanent magnetic field were measured across at the surface of polished thin sections kept at room temperature. The magneto-optical images resolve directly

Alexander V. Bobyl; Yuri Y. Podladchikov; Håkon Austrheim; Bjørn Jamtveit; Tom H. Johansen; Daniel V. Shantsev

2007-01-01

10

Laser optical pumping of potassium in a high magnetic field using linearly polarized light  

Microsoft Academic Search

It is shown experimentally that in a high magnetic field a potassium vapor can be optically pumped to a high electron spin polarization by light polarized parallel to the magnetic field and incident normal to the magnetic field. The polarization of the K vapor is measured both by observing the fluorescence and by the Faraday effect. This method of optical

Cody Martin; T. Walker; L. W. Anderson; D. R. Swenson

1993-01-01

11

Magnetic-field sensor based on core-offset tapered optical fiber and magnetic fluid  

NASA Astrophysics Data System (ADS)

A magnetic field sensor based on an asymmetrical fiber modal Mach-Zehnder interferometer (MMZI) is achieved by cascading tapered fiber with the core-offset structure. The MMZI is sealed by the magnetic fluid and its spectral dependence on magnetic field has been investigated. The results show that the transmission variations of the two dips are about 8 dB and 10 dB for a magnetic intensity range from 0 Oe to 400 Oe, respectively. The highest magnetic sensitivity reaches 0.03407 dB Oe-1. The proposed sensor based on the intensity demodulation is cost-effective and robust; therefore, the device is beneficial to the magnetic field sensing applications and other magneto-optical tunable photonics devices.

Wu, Jixuan; Miao, Yinping; Lin, Wei; Song, Binbin; Zhang, Kailiang; Zhang, Hao; Liu, Bo; Yao, Jianquan

2014-07-01

12

Polarization dependence of optical bistability in the presence of external magnetic field  

NASA Astrophysics Data System (ADS)

In this paper, a four-level inverted Y type atomic system for controlling the optical bistability and multistability is proposed. An elliptically polarized probe field and a coherent coupling field in the presence of external magnetic field are interacted by this medium. It is shown that the external magnetic field and relative phase between two electric field components of the probe field can influence the threshold of optical bistability. Moreover, it is found that optical bistability can be converted to the optical multistability by external magnetic field and relative phase.

Asadpour, Seyyed Hossein; Rahimpour Soleimani, Hamid

2014-01-01

13

High-resolution optically-detected magnetic resonance imaging in an ambient magnetic field  

NASA Astrophysics Data System (ADS)

Magnetic resonance imaging (MRI) in an ultralow magnetic field usually has poor spatial resolution compared to its high-field counterpart. The concomitant field effect and low signal level are among the major causes that limit the spatial resolution. Here, we report a novel imaging method, a zoom-in scheme, to achieve a reasonably high spatial resolution of 0.6 mm × 0.6 mm without suffering the concomitant field effect. This method involves multiple steps of spatial encoding with gradually increased spatial resolution but reduced field-of-view. This method takes advantage of the mobility of ultralow-field MRI and the large physical size of the ambient magnetic field. We also demonstrate the use of a unique gradient solenoid to improve the efficiency of optical detection with an atomic magnetometer. The enhanced filling factor improved the signal level and consequently facilitated an improved spatial resolution.

Ruangchaithaweesuk, Songtham; Chintamsetti, Vasudeva; Yao, Li; Tsai, Te-Wei; Xu, Shoujun

2013-08-01

14

Molecules in optical, electric, and magnetic fields: a personal perspective.  

PubMed

Physical chemistry and theoretical chemistry have advanced over the past 50 years from being largely qualitative to having a mature status based firmly on the principles of quantum and statistical mechanics. My interest in the chemical elements and their compounds has prompted me to learn more about the nature of matter through the measurement and interpretation of optical, electric, and magnetic properties of molecules. In addition to holding intrinsic interest, such properties tell us about charge and current distributions and form the basis of electro-optics, magneto-optics, and nonlinear optics. They also help us understand the nature and strength of long-range intermolecular forces, the hydrogen bond, and molecular biology-topics that are apparently forever young. PMID:15012437

Buckingham, A D

1998-01-01

15

Combined nonlinear-optical electric and magnetic field response in a cadmium manganese telluride crystal  

NASA Astrophysics Data System (ADS)

Utilizing experimental results, which demonstrate the presence of both Faraday rotation and electric-field-induced linear birefringence in a diluted-magnetic-semiconductor crystal of cadmium manganese telluride (CMT), a single probe that is capable of sensing both electric and magnetic fields independently has been developed. A higher field sensitivity and greater accuracy are observed for the CMT crystal when compared to a lithium tantalate electro-optic crystal and terbium gallium garnet magneto-optic crystal. The linear electro-optic coefficient r41 for CMT has been calculated from electric-field measurements to be 3.5±0.2pm/V.

Chen, Chia-Chu; Whitaker, John F.

2008-03-01

16

A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber  

NASA Astrophysics Data System (ADS)

We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

Candiani, A.; Argyros, A.; Leon-Saval, S. G.; Lwin, R.; Selleri, S.; Pissadakis, S.

2014-03-01

17

Optical bistability and multistability via magnetic field intensities in a solid.  

PubMed

Optical bistability (OB) and optical multistability (OM) behavior in molecular magnets is theoretically studied. It is demonstrated that the OB of the system can be controlled via adjusting the magnetic field intensity. In addition, it is shown that the frequency detuning of probe and coupling fields, as well as the cooperation parameter, has remarkable effects on the OB behavior of the system. Also, we find that OB can be converted to OM through the magnitude of control-field detuning. Our results can be used as a guideline for optimizing and controlling the switching process in the crystal of molecular magnets. PMID:25321110

Hamedi, Hamid Reza

2014-08-20

18

Laser Optical Pumping of Potassium in a High Magnetic Field Using Linearly Polarized Light  

Microsoft Academic Search

This thesis reports the demonstration, of the optical pumping of a potassium vapor to a high electron spin polarization, in a high magnetic field, with linearly polarized light. The method of optical pumping with linearly polarized light, is used to produce a polarized potassium vapor for the study of the diffusion constant D _0 of potassium in argon, and the

Cody Marshall Martin

1995-01-01

19

Magnetic field visualization of magnetic minerals and grain boundary regions using magneto-optical imaging  

E-print Network

Magnetic field visualization of magnetic minerals and grain boundary regions using magneto to characterize magnetic minerals embedded in a nonmagnetic matrix. We have studied magnetite grains and magnetite-magnetite grain boundary regions in samples of skarns and serpentinites. Distributions of the remanent magnetic

Podladchikov, Yuri

20

Optical Photometry of BY Cam Modeled Using a Multipolar Magnetic Field Structure  

NASA Astrophysics Data System (ADS)

We present new high-speed broad-band optical photometry of the asynchronous polar (magnetic cataclysmic variable) BY Cam. Observations were obtained at the 2.1-m Otto Struve Telescope of McDonald observatory with 3s integration times. In an attempt to understand the complex changes in accretion flow geometry, we performed full 3D MHD simulations assuming a variety of white dwarf magnetic field structures including both aligned and non-aligned dipole plus quadrupole field components. We compare model predictions with photometry and various phases of the beat cycle and find that synthetic light curves derived from a multipolar field structure are consistent with the optical photometry.

Morales, John; Mason, P. A.; Zhilkin, A.; Bisikalo, D. V.; Robinson, E. L.

2014-01-01

21

Optical multichannel room temperature magnetic field imaging system for clinical application.  

PubMed

Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820

Lembke, G; Erné, S N; Nowak, H; Menhorn, B; Pasquarelli, A

2014-03-01

22

The Parsec-Scale Magnetic Field Properties of Low-Optical Polarization Blazars  

NASA Technical Reports Server (NTRS)

Past variability studies of flat-spectrum, compact extra-galactic radio sources have suggested that low- and high-optically polarized quasars (LPQ/HPQ) are the same type of object, differing only in the angle their relativistic jets make to the line of sight. This view has been challenged, however, by recent millimeter-wave polarization observations which indicate intrinsic differences in the inner magnetic field properties of the two classes. The inner jets of LPQs tend to have lower fractional polarizations than HPQs, and inferred magnetic field directions that are mostly parallel to the jet. The magnetic fields of HPQs, on the other hand, lie mainly in a transverse direction. The latter configuration is a prediction of the standard shock-in-jet model, in which a portion of a jet undergoes a strong transverse compression, thereby enhancing the perpendicular components of an originally tangled magnetic field. The main goal of this study is to establish a connection between the optical polarization and magnetic field properties of the inner jets of blazars. The magnetic field orientations of several HPQs have been shown to be stable over many years, which may be due to standing shock(s) located close to the base of the jet. Since these shocks are able to produce large amounts of optically polarized synchrotron radiation, their presence may very well determine whether an object is classified as an HPQ or LPQ. We have imaged the parsec-scale jet regions and magnetic fields of 11 LPQs with the Very Long Baseline Array (VLBA) at 43 and 22 GHz, and have obtained near- simultaneous optical polarization data for the sample. We discuss correlations between the optical and radio polarization data, and compare the LPQ properties to those of a sample of HPQs presently being monitored with the VLBA and JCMT at mm and sub-mm wavelengths, respectively. This research was performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

Lister, Matthew L.; Smith, Paul

1998-01-01

23

Magneto-optic imaging: Normal and parallel field components of in-plane magnetized samples  

NASA Astrophysics Data System (ADS)

Magneto-optical (MO) imaging has become a powerful tool for determining magnetic properties of materials by detecting the stray magnetic fields. The technique consists in measuring the Faraday rotation, ?F, in the light polarization plane when light travels through a transparent sensitive garnet (ferrite garnet film, FGF) placed in close contact to the sample. For in-plane magnetized samples, the MO image is not trivially related to the sample magnetization, and to contribute to this understanding we have imaged commercial audio tapes in which computer-generated functions were recorded. We present MO images of periodically in-plane magnetized tapes with square, sawtooth, triangular and sinusoidal waveforms, for which we analytically calculate the perpendicular and parallel stray magnetic field components generated by the tape. As a first approach we correlate the measured light intensity with the perpendicular magnetic field component at the FGF, and we show that it can be approximated to the gradient of the sample magnetization. A more detailed calculation, taking into account the effect of both field components in the Faraday rotation, is presented and satisfactorily compared with the obtained MO images. The presence of magnetic domains in the garnet is shown to be related to the change in sign of the parallel component of the stray magnetic field, which can be approximated to the second derivative of the sample magnetization.

Ferrari, H.; Bekeris, V.; Thibeault, M.; Johansen, T. H.

2007-06-01

24

Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field  

E-print Network

We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with, and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film.

Sladkov, Maksym; Chaubal, A U; Reuter, D; Wieck, A D; van der Wal, C H

2010-01-01

25

Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field  

E-print Network

We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with, and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film.

Maksym Sladkov; M. P. Bakker; A. U. Chaubal; D. Reuter; A. D. Wieck; C. H. van der Wal

2010-10-09

26

Intrinsic magnetic field sensitivities of sensor head housing for all-fiber optic current sensors  

NASA Astrophysics Data System (ADS)

Full-fiber optical current sensors utilize the effects of magnetic-field imposed on the change of polarization azimuth of light in the fibers. Due to the sensitivities to external perturbations, the sensing fiber head in practical applications is usually packed in a fixed metallic housing majorly for protection purposes. However, the housing material itself tends to influence the magnetic field distributions of the current carrying wire in question. In this paper, the intrinsic effect and influence of fiber sensor head housing made of different magnetic materials on the magnetic field distributions around the current-carrying wire have been investigated. Simulation and virtual experimentation was carried out in the COMSOL environment. From the results, the housings made of single magnetic material are found to have magnetic disturbances on the magnetic field distribution around the wire. Housing made of some alloy materials has no influence on the magnetic distributions outside the wire. After experimenting with several materials, the former materials inclusive, steel is preferred as the protective housing and/or casing of fiber sensor head in optical fiber current sensors. This is on the basis of both technical and non-technical consideration of low cost of material though biased toward technical aspect of little or no influence on magnetic distribution around the wire.

Zhang, Xuedian; Chang, Min; Mao, Chenfei; Lu, Dunke; Kamagara, Abel

2014-10-01

27

A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud  

SciTech Connect

We present a study of the magnetic field of the Small Magellanic Cloud (SMC), carried out using radio Faraday rotation and optical starlight polarization data. Consistent negative rotation measures (RMs) across the SMC indicate that the line-of-sight magnetic field is directed uniformly away from us with a strength 0.19 {+-} 0.06 {mu}G. Applying the Chandrasekhar-Fermi method to starlight polarization data yields an ordered magnetic field in the plane of the sky of strength 1.6 {+-} 0.4 {mu}G oriented at a position angle 4deg {+-} 12deg , measured counterclockwise from the great circle on the sky joining the SMC to the Large Magellanic Cloud (LMC). We construct a three-dimensional magnetic field model of the SMC, under the assumption that the RMs and starlight polarization probe the same underlying large-scale field. The vector defining the overall orientation of the SMC magnetic field shows a potential alignment with the vector joining the center of the SMC to the center of the LMC, suggesting the possibility of a 'pan-Magellanic' magnetic field. A cosmic-ray-driven dynamo is the most viable explanation of the observed field geometry, but has difficulties accounting for the observed unidirectional field lines. A study of Faraday rotation through the Magellanic Bridge is needed to further test the pan-Magellanic field hypothesis.

Mao, S. A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Gaensler, B. M. [School of Physics, The University of Sydney, NSW 2006 (Australia); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Haverkorn, M. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); McClure-Griffiths, N. M. [Australia Telescope National Facility, CSIRO, Epping, NSW 1710 (Australia); Staveley-Smith, L. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia); Dickey, J. M., E-mail: samao@cfa.harvard.edu [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia)

2008-12-01

28

Experimental realization of strong effective magnetic fields in an optical lattice  

E-print Network

We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of one flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for non-interacting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.

Aidelsburger, Monika; Nascimbène, Sylvain; Trotzky, Stefan; Chen, Yu-Ao; Bloch, Immanuel

2011-01-01

29

Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice  

SciTech Connect

We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.

Aidelsburger, M.; Atala, M.; Trotzky, S.; Chen, Y.-A.; Bloch, I. [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet, Schellingstrasse 4, 80799 Muenchen (Germany); Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany); Nascimbene, S. [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet, Schellingstrasse 4, 80799 Muenchen (Germany); Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany); Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)

2011-12-16

30

Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice  

NASA Astrophysics Data System (ADS)

We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.

Aidelsburger, M.; Atala, M.; Nascimbène, S.; Trotzky, S.; Chen, Y.-A.; Bloch, I.

2011-12-01

31

Generation of uniform synthetic magnetic fields by split driving of an optical lattice  

NASA Astrophysics Data System (ADS)

We describe a method to generate a synthetic gauge potential for ultracold atoms held in an optical lattice. Our approach uses a time-periodic driving potential based on quickly alternating two Hamiltonians to engineer the appropriate Aharonov-Bohm phases, and permits the simulation of a uniform tunable magnetic field. We explicitly demonstrate that our split-driving scheme reproduces the behavior of a charged quantum particle in a magnetic field over the complete range of field strengths, and obtain the Hofstadter butterfly band structure for the Floquet quasienergies.

Creffield, C. E.; Sols, F.

2014-08-01

32

Development of a scanned near-field optical microscope for magneto-optic Kerr imaging of magnetic domains with 10nm resolution  

Microsoft Academic Search

Work is described on the development of a scanning near-field optical microscope (SNOM) for the primary purpose of imaging magnetic systems with resolution on the order of 10 nm. Since many magnetic materials are optically opaque, it is desired to have a probe which is appropriate for reflection mode. In addition, the near-field probe must be linearly polarizable, since the

Thomas J. Silva; Sheldon Schultz

1993-01-01

33

Ultra-sensitive broad-dynamic range optical magnetometer with instance response to magnetic field changes  

E-print Network

We investigate one of the most sensitive devices for measuring magnetic fields, the, so-called, AMOR magnetometer. The device exploits a specific nonlinear optical phenomenon (amplitude-modulated nonlinear magneto-optical rotation) for ultra-precise magnetic field detection. It allows measuring the field with a sensitivity of 10^-14 T/Hz^-1/2 within a dynamic range of 10-4 T. Such high sensitivity and the dynamic range covering the Earth magnetic field are desired in context of many practical application of the device. By elaborating the electronic model of the magnetometer we study its different characteristics in various arrangements. It allows us to optimize the device regarding different requirements, e.g., technical simplicity, data processing, etc. It is shown that the device may be automated operating it in the self-oscillation mode. Particularly, we show that the magnetometer instantly responses to the magnetic field change. Our numerical analyses are confirmed with experimental results obtained in on...

Wlodarczyk, Przemyslaw; Zachorowski, Jerzy; Lipinski, Marcin

2012-01-01

34

Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation  

SciTech Connect

We describe a room-temperature alkali-metal atomic magnetometer for detection of small, high-frequency magnetic fields. The magnetometer operates by detecting optical rotation due to the precession of an aligned ground state in the presence of a small oscillating magnetic field. The resonance frequency of the magnetometer can be adjusted to any desired value by tuning the bias magnetic field. Based on experimentally measured signal-to-noise ratio, we demonstrate a sensitivity of 100 pG/{radical}(Hz) (rms) in a 3.5-cm-diameter paraffin coated cell. Assuming detection at the photon shot-noise limit, we project a sensitivity as low as 25 pG/{radical}(Hz) (rms)

Ledbetter, M. P.; Acosta, V. M.; Rochester, S. M.; Budker, D.; Pustelny, S.; Yashchuk, V. V. [Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300 (United States); Centrum Badan Magnetooptycznych, Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, Reymonta 4, 30-059 Krakow (Poland); Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2007-02-15

35

Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity  

NASA Astrophysics Data System (ADS)

We report a systematic study of the magnetic field sensitivity of a magnetic sensor consisting of a single nitrogen-vacancy (NV) defect in diamond, by using continuous optically detected electron spin resonance (ESR) spectroscopy. We first investigate the behavior of the ESR contrast and linewidth as a function of the microwave and optical pumping power. The experimental results are in good agreement with a simplified model of the NV defect spin dynamics, leading to an optimized sensitivity around 2?T/Hz for a single NV defect in a high-purity diamond crystal grown by chemical vapor deposition. We then demonstrate an enhancement of the magnetic sensitivity by one order of magnitude by using a simple pulsed-ESR scheme. This technique is based on repetitive excitation of the NV defect with a resonant microwave ? pulse followed by an optimized readout laser pulse, allowing to fully eliminate power broadening of the ESR linewidth. The achieved sensitivity is similar to that obtained by using Ramsey-type sequences, which is the optimal magnetic field sensitivity for the detection of a dc magnetic field.

Dréau, A.; Lesik, M.; Rondin, L.; Spinicelli, P.; Arcizet, O.; Roch, J.-F.; Jacques, V.

2011-11-01

36

Electric field induced optical absorption and refractive index changes in a diluted magnetic quantum well  

NASA Astrophysics Data System (ADS)

Binding energy of a confined exciton is investigated in a CdMnTe/CdMnTe/CdMnTe diluted magnetic quantum well in the influence of electric field. Calculations are performed for various Mn incorporation in Cd1-xMnxTe material within a single band effective mass approximation using variational method. Spin polaronic shifts are estimated using mean field theory for different Mn concentration and the well sizes. A theoretical study of diluted magnetic semiconductors treating local sp-d exchange interaction J between the itinerant carriers and the Mn electrons is treated within a realistic band structure. The optical absorption and the refractive index changes as a function of normalized photon energy in the presence of electric field strength and the Mn ion content are analysed. Our results show that the occurred red shift of the absorption resonant peak due to the electric field gives the information about the variation of two energy levels in the quantum well. The optical absorption coefficients and the refractive index changes strongly depend on the incident optical intensity, the electric field strength and Mn content.

Leonora, J. Merciline; Peter, A. John; Yoo, ChangKyoo

2013-01-01

37

Optical conductivity of topological insulator thin films in a quantizing magnetic field.  

PubMed

We determine the optical response of topological insulator thin films in the presence of a quantizing, external magnetic field. We explicitly take into account hybridization between the states of top and bottom surface. The interplay between hybridization and Zeeman energies gives rise to topological and normal insulator phases and phase transitions between them. The optical response in the two phases and at the phase transition point is investigated. We show that the difference in magneto-optical response can be used to distinguish the topological phase from the normal phase of the system. Further, the optical response also allows us to determine the gap generated by hybridization between top and bottom surface states of topological insulator thin films. PMID:25419699

Ullah, A; Sabeeh, K

2014-12-17

38

Magnetic Fields  

NSDL National Science Digital Library

This page and its annex describes, in trivial terms, the physics of magnetic fields and the history of its discovery. Included is the work of Halley, Oersted, Ampere and Maxwell. It also describes a way of demonstrating it in the classroom, using a vu-graph projector. Later sections #5, #5a and #6 extend this to magnetic field lines and electromagnetism.

Stern, David

2005-01-04

39

Magnetic Field Mapping and Biaxial Vector Operation for Biomagnetic Applications Using High-Sensitivity Optically Pumped Atomic Magnetometers  

NASA Astrophysics Data System (ADS)

Optically pumped alkali-metal atomic magnetometers are expected to be used not only for biomagnetic field measurements but also for magnetic resonance imaging because of their potential ultrahigh sensitivity. Here, we studied magnetic field mapping and biaxial vector operation using atomic magnetometers. A potassium atomic magnetometer was used in these measurements. First, we obtained sensor output signals by solving the Bloch equation. Next, we measured magnetic field distributions generated by a current dipole electrode that was placed in a spherical phantom, which simulated a group of simultaneously activated neurons in the human brain. We obtained vector contour maps of the magnetic field distributions from the dipoles oriented parallel and orthogonal to the pump laser beam and have found good agreement with theoretical magnetic field distributions. These results demonstrate practical applications of magnetic field mapping and biaxial vector operation using optically pumped atomic magnetometers.

Taue, Shuji; Sugihara, Yasuyuki; Kobayashi, Tetsuo; Ishikawa, Kiyoshi; Kamada, Keigo

2011-11-01

40

Optical pumping and spectroscopy of Cs vapor at high magnetic field  

SciTech Connect

We have measured changes in the ground-state populations of Cs vapor induced by optical pumping at high magnetic field. The 2.7-T field of our experiments is strong enough to decouple the nuclear and electronic spins, allowing us to independently measure each population. The spatial dependence of the Cs populations in small amounts of buffer gas obeys a simple coupled diffusion model and the relative populations reveal the details of relaxation within the vapor cell. Optical pumping can produce high nuclear polarization in the Cs vapor due to perturbations of the hyperfine interaction during collisions with buffer-gas particles and depending on the pumping transition, radiation trapping can strongly influence the electronic and nuclear polarizations in the vapor.

Olsen, B. A.; Patton, B.; Jau, Y.-Y.; Happer, W. [Joseph Henry Laboratory, Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

2011-12-15

41

Magnetic fields and beam optics studies of a 250 MeV superconducting proton radiotherapy cyclotron  

NASA Astrophysics Data System (ADS)

A 250 MeV superconducting cyclotron for the proton radiation therapy was designed at the Michigan State University (MSU) for use at the Paul Scherrer Institut. This work was based on the conceptual design carried out at the MSU in 1994. The previous design was refined to finalize the magnet configuration and to optimally arrange cyclotron elements for the actual construction. The spiral angle of the pole was reduced, the new hill-edges and valley shims being introduced. The magnetic fields were highly isochronized using a least square fitting routine involving a schematic shimming scheme. The resulting reference field was adequate for the elaborate study of beam optics. The optics simulation predicted that extraction efficiency of above 80% was achievable for a beam with the initial phase width of 20°. The vertical deflector was investigated located in the central region to control the beam intensity with tracking of beam phase spaces. Some measurement results for the constructed cyclotron were found in a good agreement with those of the optics study.

Kim, Jong-Won

2007-11-01

42

Conductivity of strongly correlated bosons in optical lattices in an Abelian synthetic magnetic field  

NASA Astrophysics Data System (ADS)

Topological phase engineering of neutral bosons loaded in an optical lattice opens a new window for manipulating of transport phenomena in such systems. Exploiting the Bose-Hubbard model and using the magnetic Kubo formula proposed in this paper we show that the optical conductivity abruptly changes for different flux densities in the Mott phase. Especially, when the frequency of the applied field corresponds to the on-site boson interaction energy, we observe insulator or metallic behavior for a given Hofstadter spectrum. We also prove that for different synthetic magnetic-field configurations the critical conductivity at the tip of the lobe is nonuniversal and depends on the energy minima of the spectrum. In the case of 1/2 and 1/3 flux per plaquette, our results are in good agreement with those of the previous Monte Carlo study. Moreover, we show that for half magnetic flux through the cell the critical conductivity suddenly changes in the presence of a superlattice potential with uniaxial periodicity.

Sajna, A. S.; Polak, T. P.; Micnas, R.

2014-02-01

43

Solar coronal magnetic field topology inferred from high resolution optical and x-ray movies  

SciTech Connect

The authors are using high resolution digital movies of solar active regions in optical and X-ray wavelengths to study solar flares and other transients. The optical movies were collected at the Swedish Solar Observatory on La Palma using the Lockheed tunable filtergraph system, in May-July, 1992. They include longitudinal and transverse magnetograms, H-alpha Doppler and intensity images at many wavelengths, Ca K, Na D, and white light images. Simultaneous X-ray images from Yohkoh are available much of the time. Several ways to establish the connectivity of some coronal magnetic field lines are being explored. Some of the clues available are: magnetic footpoint polarities and transverse field direction; H-alpha fibrils and loops seen in several wavelengths; proper motion and Dopper shifts of blobs moving along field lines; footprint brightening in micro-flares; spreading of flare ribbons during gradual phases of flares; X-ray morphology and correlations with H-alpha; and draining of flare loops. Examples of each of these will be shown on video.

Tarbell, T.; Frank, Z.; Hurlburt, N.; Morrison, M.; Shine, R.; Title, A.; Acton, L.

1993-01-01

44

Magnetic Field Safety Magnetic Field Safety  

E-print Network

Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

McQuade, D. Tyler

45

An investigation on the magneto-optic properties of terbium gallium garnet under high magnetic field  

Microsoft Academic Search

The superexchange interaction on a magnetic ion may be represented by an effective field Hm = lambdaM in some paramagnetic materials, here lambda is the coefficient of effective field and M = chiHe with chi being the magnetic susceptibility and He being the applied field. The variation of the equivalent lambdachi with the dynamic applied field is given and the

Guo Yang; Guo-Ying Zhang; Jiao Gao; Liu-Ping Xue; Tian Xia; Xue-Long Zhang

2011-01-01

46

Defect-induced magneto-optic properties of MgO nanoparticles realized as optical-fiber-based low-field magnetic sensor  

NASA Astrophysics Data System (ADS)

The spintronic applications of defect-magnetism in oxides have been explored for a long time. However, limited success has been obtained. We report on FCC-structured, magnesium oxide nanoparticles (20 nm) deposited on the mirror-surface of single-mode-optical-fiber as an effective low-field magnetic sensor. These show magnetic behavior and good magneto-optic-Kerr-effect signal. Red-shift phenomenon has been found in the birefringence pattern, when a magnetic field is applied. The sensitivity of red-shift is 202.4 pm/mT. Such red-shift phenomenon is ascribed to the influences of defect-induced magnetism on the optical-wave propagation.

Rao, Ch. N.; Nakate, Umesh T.; Choudhary, R. J.; Kale, S. N.

2013-10-01

47

Ultra-low field magnetic resonance using optically pumped noble gases and SQUID detection  

E-print Network

of nuclei. Polarizations and therefore magnetic moments aremagnetic moment induced by the static field. In order to excite the nucleimoment: increase the number of nuclei (more sample), decrease the temperature, or increase the magnetic

Wong-Foy, Annjoe G.

2010-01-01

48

Spin-orbit effects on the nonlinear optical properties of a quantum dot in simultaneous electric and magnetic fields  

NASA Astrophysics Data System (ADS)

We report on the nonlinear optical properties of a quantum dot including the Rashba spin-orbit interaction (RSOI) with external electric and magnetic fields. The effect of dot size is considered. We do not make any assumptions about the strength of the confinement. We use the numerical diagonalization of the Hamiltonian to determine the electronic structure. The confining potential is taken to be of the Woods-Saxon type. We find the effect of RSOI on nonlinear optical coefficients.

Aytekin, O.; Turgut, S.; Tomak, M.

2014-11-01

49

Accurate magneto-optic sensitivity measurements of some diamagnetic glasses and ferrimagnetic bulk crystals using small applied AC magnetic fields  

Microsoft Academic Search

Many materials exhibit a relatively large Faraday effect. A plane polarized optical beam passing through these materials has its plane of polarization rotated by a measurable amount proportional to the applied magnetic field strength parallel to the propagation direction of the beam. Some of the most sensitive materials of this kind are diamagnetic glasses and ferrimagnetic crystals. We have made

Richard B. Wagreich; Christopher C. Davis

1997-01-01

50

An investigation on the magneto-optic properties of terbium gallium garnet under high magnetic field  

NASA Astrophysics Data System (ADS)

The superexchange interaction on a magnetic ion may be represented by an effective field Hm = ?M in some paramagnetic materials, here ? is the coefficient of effective field and M = ?He with ? being the magnetic susceptibility and He being the applied field. The variation of the equivalent ?? with the dynamic applied field is given and the crystal field-splitting levels of the excited configuration 4f75d1 of the Tb3+ ion are calculated in the Tb3Ga5O12. By means of the effective field Hm and the applied field He, the Faraday rotation of Tb3Ga5O12 at 6 K and 41 K, under the high magnetic field and at 0.63 ?m wavelength, are presented. Our calculated results are in agreement with the experimental data.

Yang, Guo; Zhang, Guo-Ying; Gao, Jiao; Xue, Liu-Ping; Xia, Tian; Zhang, Xue-Long

2011-01-01

51

Combined nonlinear-optical electric and magnetic field response in a cadmium manganese telluride crystal  

Microsoft Academic Search

Utilizing experimental results, which demonstrate the presence of both Faraday rotation and electric-field-induced linear birefringence in a diluted-magnetic-semiconductor crystal of cadmium manganese telluride (CMT), a single probe that is capable of sensing both electric and magnetic fields independently has been developed. A higher field sensitivity and greater accuracy are observed for the CMT crystal when compared to a lithium tantalate

Chia-Chu Chen; John F. Whitaker

2008-01-01

52

Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5  

NASA Astrophysics Data System (ADS)

The influence of the anisotropic Zeeman effect on optical decoherence was studied for the 1.54?m telecom transition in Er3+:Y2SiO5 using photon echo spectroscopy as a function of applied magnetic field orientation and strength. The decoherence strongly correlates with the Zeeman energy splittings described by the ground- and excited-state g factor variations for all inequivalent Er3+ sites, with the observed decoherence times arising from the combined effects of the magnetic dipole-dipole coupling strength and the ground- and excited-state spin-flip rates, along with the natural lifetime of the upper level. The decoherence time was maximized along a preferred magnetic field orientation that minimized the effects of spectral diffusion and that enabled the measurement of an exceptionally narrow optical resonance in a solid—demonstrating a homogeneous linewidth as narrow as 73 Hz.

Böttger, Thomas; Thiel, C. W.; Cone, R. L.; Sun, Y.

2009-03-01

53

Interband Magneto-Optics in Carbon Nanotubes in Pulsed High Magnetic Fields  

Microsoft Academic Search

To extend our earlier work ootnotetextS. Zaric et al., Science 304, 1129 (2004). on the Aharonov-Bohm effect in carbon nanotubes to higher fields, we have performed interband magneto-absorption and magneto-photoluminescence experiments in micelle-suspended single-walled carbon nanotubes in pulsed high magnetic fields up to 71 T. Because of their anisotropic magnetic susceptibilities, the nanotubes dynamically align in response to the pulsed

S. Zaric; O. Portugall; S. A. Crooker; X. Wei; H. U. Mueller; V. C. Moore

2005-01-01

54

Optical soliton in dielectric fibers and self-organization of turbulence in plasmas in magnetic fields  

PubMed Central

One important discovery in the twentieth century physics is the natural formation of a coherent or a well-ordered structure in continuous media, in contrary to degradation of the state as predicted earlier from the second law of thermodynamics. Here nonlinearity plays the essential role in its process. The discovery of soliton, a localized stable wave in a nonlinear and dispersive medium and the self-organization of fluid turbulence are of the major examples. A soliton is formed primarily in one-dimensional medium where the dispersion and nonlinearity play the essential role. Here the temporal evolution can be described by an infinite dimensional Hamiltonian system that is integrable. While a self-organization appears in an infinite dimensional non-Hamiltonian (or dissipative) system where more than two conservative quantities exist in the limit of no dissipation. In this manuscript, by showing examples of the optical soliton in dielectric fibers and self-organization of turbulence in a toroidal plasma in a magnetic field, we demonstrate these interesting discoveries. The manuscript is intended to describe these discoveries more on philosophical basis with some sacrifice on mathematical details so that the idea is conveyed to those in the wide area of sciences. PMID:19145067

Hasegawa, Akira

2009-01-01

55

Optical velocity measurements of electrolytic boundary layer flows influenced by magnetic fields  

NASA Astrophysics Data System (ADS)

Magnetic fields are applied to electrically conducting fluids in order to influence electrochemical processes through the magnetohydrodynamic effect. Various phenomena, e.g. on electrodeposited metal layers, which can be attributed to forced convections were observed. To provide information about acting forces, the laser Doppler velocity profile sensor was applied to measure the transition layer of a Lorentz force influenced flow over a backward-facing step and the velocity boundary layer during copper deposition. With this sensor, the electrolyte convection within < 500 ?m of the front of an electrode is measured with a spatial resolution down to 15 ?m. The interaction of buoyancy, Lorentz and magnetic field gradient forces is studied by measuring the velocities down to 10 ?m in front of the cathode. Inside the concentration boundary layer, complex electrolyte convection is induced, which varies not only in time but also in its structure, depending on the forces present and their influence over time. In inhomogeneous magnetic field configurations, the magnetic field gradient force dominates the velocity boundary layer at steady state and transports electrolyte toward regions of high magnetic gradients, where maximum deposit thicknesses are found. In this way, the measurements confirm the predicted influence of the magnetic field gradient force on the structuring of copper deposits.

König, J.; Neumann, M.; Mühlenhoff, S.; Tschulik, K.; Albrecht, T.; Eckert, K.; Uhlemann, M.; Weier, T.; Büttner, L.; Czarske, J.

2013-03-01

56

Design of a silicon-based plasmonic optical sensor for magnetic field monitoring in the infrared  

NASA Astrophysics Data System (ADS)

Surface plasmon resonance (SPR) sensor chip is proposed for magnetic field monitoring in the infrared wavelength region. The structure is based on silicon substrate and gold as SPR-active metal used with an appropriate magnetic fluid film. The angular interrogation method has been used to study the sensor's performance in terms of large shift and small width of the SPR curve for a wide range of magnetic field between 30 and 220 Oe. The effect of field incidence angle is also studied on the proposed sensor's performance, and it is observed that the field should be incident as parallel to the magnetic fluid surface as possible. Any possibility of oxidation problem to the proposed SPR sensor is addressed by using a stable buffer layer. All the performance parameters were found to be significantly large for the above field incidence condition. The proposed sensor is able to achieve a resolution of the order as high as 0.18 Oe for magnetic field detection.

Sharma, Anuj K.; Nagao, Tadaaki

2014-10-01

57

arXiv:physics/0609196v122Sep2006 Detection of radio frequency magnetic fields using nonlinear magneto-optical rotation  

E-print Network

magneto-optical rotation M. P. Ledbetter, V. M. Acosta, S. M. Rochester, and D. Budker Department for detection of small, high frequency magnetic fields. The magnetometer operates by detecting optical rotation), magnetic resonance imaging (MRI), nuclear quadrupole resonance (NQR) [1] and has been used in tests

58

Fractal diabolo antenna for enhancing and confining the optical magnetic field  

NASA Astrophysics Data System (ADS)

We introduce fractal geometry to diabolo nanoantenna for higher magnetic field intensity enhancement, i.e. the Sierpi?ski triangle diabolo antenna (STDA). Numerical results show that higher iteration of the STDA is responsible for the higher enhancement and the red shift of the resonant wavelength. Further investigation demonstrates the enhancement can be improved by increasing the length of the antenna or its central strip. By designing diabolo antennas with fractal geometry, improving the magnetic field intensity enhancement and varying the resonance conditions can be achieved while keeping the constant antenna dimensions.

Yang, Y.; Dai, H. T.; Sun, X. W.

2014-01-01

59

Optical properties of plasmons in a multiple quantum well semiconductor superlattice under electric and magnetic fields  

NASA Astrophysics Data System (ADS)

The behavior of multiple quantum well GaAs/AlxGa1-xAs semiconductor superlattices with different dielectric interfaces are considered under magnetic and electric fields perpendicular and parallel to the superlattice axis, respectively. The parabolic confining potential well was varied with the compositional rate of the AlxGa1-xAs barrier. Taking into account intrasubband and intersubband transitions and using random phase approximation, the density-density correlation function is calculated as a function of the magnetic field strength, compositional rate, and averaged electric field strength over the quantum well. In this way, the dispersion of the surface and bulk state energies are obtained. The Raman intensities for these states are also obtained as a function of incoming light energy for various averaged electric field strengths over the quantum well.

Soo Ahn, Hyung; Chil Lee, Sang; Whan Kim, Suck

2014-10-01

60

Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics.  

PubMed

X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3+/-2.5nmrms to 5.7+/-0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics. PMID:20563204

Riveros, Raul E; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

2010-06-20

61

Magnetic fields in astrophysics  

Microsoft Academic Search

The evidence of cosmic magnetism is examined, taking into account the Zeeman effect, beats in atomic transitions, the Hanle effect, Faraday rotation, gyro-lines, and the strength and scale of magnetic fields in astrophysics. The origin of magnetic fields is considered along with dynamos, the conditions for magnetic field generation, the topology of flows, magnetic fields in stationary flows, kinematic turbulent

Ia. B. Zeldovich; A. A. Ruzmaikin; D. D. Sokolov

1983-01-01

62

Optical Auroral Observations at High Latitudes to Investigate Processes at the Foot of Magnetic Field Lines That Map Into the Interplanetary Medium  

Microsoft Academic Search

At high magnetic latitudes the magnetic field lines, are open and they map from the ground into the interplanetary medium. Due to the larger offset between the geographic and geomagnetic poles in the Southern hemisphere the Antarctic Continent is especially suitable for making visible wavelength optical observations of the foot of such field lines. Near the Austral winter solstice the

S. B. Mende

2005-01-01

63

Magnetic field sensor  

NASA Astrophysics Data System (ADS)

Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

Silva, Nicolas

2012-09-01

64

Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications  

NASA Astrophysics Data System (ADS)

In this paper we investigate, in the visible range, the behavior of the electromagnetic near-field, perturbed by a metal nanoring. The vectorial study which is based on FDTD simulation, consists of comparing in the near zone, the electric and magnetic field distributions while interacting with the metal nanoring, according to the incident polarization state. Both image distributions and chromatic spectra are computed and analyzed. The purpose of this work is the enhancement of either the electric or the magnetic emission/detection capability of nanoring according to illumination conditions. Such nano-objects can be seen as particular selective nanodevices playing the role of nano-antennas usable in near-field microscopy as an alternative solution to usual tips.

Suarez, M. A.; Grosjean, T.; Charraut, D.; Courjon, D.

2007-02-01

65

Exploring Magnetic Fields  

NSDL National Science Digital Library

In this activity, students investigate the presence of magnetic fields around magnets, the sun and the earth. They will explore magnetic field lines, understand that magnetic lines of force show the strength and direction of magnetic fields, determine how field lines interact between attracting and repelling magnetic poles, and discover that the earth and sun have magnetic properties. They will also discover that magnetic force is invisible and that a "field of force" is a region or space in which one object can attract or repel another.

66

Electric Field Measurements of the Capacitively Coupled Magnetized RF Sheath Utilizing Passive Optical Emission Spectroscopy  

NASA Astrophysics Data System (ADS)

A major challenge facing magnetic confinement fusion is the implementation of reliable plasma heating systems. Ion cyclotron resonance heating (ICRH) is a key technique utilized to achieve the ion temperatures necessary for desirable fusion reaction rates. ICRH systems are designed to couple energy into the core plasma ions through a resonant interaction with an electromagnetic wave in the radio frequency range. The interaction of the wave with the scrape off layer plasma establishes an electric field which terminates directly on the plasma facing surfaces and is referred to as the near-field. In order to bridge the gap between the theoretical and actual performance of ICRF antennas, experimental measurement of this electric field is highly desired. However, due to the large amount of power launched by ICRF antennas only non-local measurements have thus far been obtained. The research presented in this dissertation is centered on the development of a non-perturbative diagnostic to locally measure the near-field with high spatial and temporal resolution. The main objective of the research presented in this dissertation is to develop and validate a spectroscopic diagnostic capable of measuring local time periodic electric fields. The development phase of the diagnostic consisted of atomic physics formulation and was carried out in two steps. The first involved the calculation of the electronic structure of the one and two-electron atom utilizing the hydrogenic wave function. The second involved the calculation of the spectral line profile based on the electric dipole connection operator. The validate phase of the diagnostic consisted of implementation of the atomic physics to measure the electric field topology associated with the capacitively coupled magnetized RF sheath using passive OES. The experimental measurements are then compared to a simple one-dimensional analytical model providing the validation of the developed atomic physics.

Martin, Elijah Henry

67

Magnetic fields of galaxies  

Microsoft Academic Search

The current state of the understanding of the magnetic fields of galaxies is reviewed. A simple model of the turbulent dynamo is developed which explains the main observational features of the global magnetic fields of spiral galaxies. The generation of small-scale chaotic magnetic fields in the interstellar medium is also examined. Attention is also given to the role of magnetic

Aleksandr A. Ruzmaikin; Dmitrii D. Sokolov; Anvar M. Shukurov

1988-01-01

68

Magnetic field studies of elastic scattering and optic-phonon emission in resonant-tunneling devices  

Microsoft Academic Search

The current-voltage characteristics of a series of double-barrier structures based on n-type GaAs\\/(Al,Ga)As are investigated in the presence of a quantizing magnetic-field perpendicular to the barriers. Landau-level structure arising from elastic scattering and LO-phonon-assisted tunneling into the quantum well is clearly resolved. For well widths less than 6 nm, emission processes involving both the AlAs- and GaAs-like LO-phonon modes of

M. L. Leadbeater; E. S. Alves; L. Eaves; M. Henini; O. H. Hughes; A. C. Celeste; J. C. Portal; G. Hill; M. A. Pate

1989-01-01

69

Photonic Magnetic Field Sensor  

NASA Astrophysics Data System (ADS)

Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

Wyntjes, Geert

2002-02-01

70

From Quantum Field Theory to Nano-Optics : Refractive Properties of Graphene in a Medium-Strong Magnetic field  

E-print Network

1-loop quantum corrections are shown to induce large effects on the refraction index n inside a graphene strip in the presence of an external magnetic field B orthogonal to it. To this purpose, we use the tools of Quantum Field Theory to calculate the photon propagator at 1-loop inside graphene in position space, which leads to an effective vacuum polarization in a brane-like theory of photons interacting with massless electrons at locations confined inside the thin strip (its longitudinal spread is considered to be infinite). The effects factorize into quantum ones, controlled by the value of B and that of the electromagnetic coupling alpha, and a "transmittance function" U in which the geometry of the sample and the resulting confinement of electrons play the major roles. We consider photons inside the visible spectrum and magnetic fields in the range 1-20 Teslas. At B=0, quantum effects depend very weakly on alpha and n is essentially controlled by U; we recover, then, an opacity for visible light of the same order of magnitude pi * alpha_{vac} as measured experimentally.

Olivier Coquand; Bruno Machet

2014-07-08

71

From Quantum Field Theory to Nano-Optics : Refractive Properties of Graphene in a Medium-Strong Magnetic field  

E-print Network

1-loop quantum corrections are shown to induce large effects on the refraction index n inside a graphene strip in the presence of an external magnetic field B orthogonal to it. To this purpose, we use the tools of Quantum Field Theory to calculate the photon propagator at 1-loop inside graphene in position space, which leads to an effective vacuum polarization in a brane-like theory of photons interacting with massless electrons at locations confined inside the thin strip (its longitudinal spread is considered to be infinite). The effects factorize into quantum ones, controlled by the value of B and that of the electromagnetic coupling alpha, and a "transmittance function" U in which the geometry of the sample and the resulting confinement of electrons play the major roles. We consider photons inside the visible spectrum and magnetic fields in the range 1-20 Teslas. At B=0, quantum effects depend very weakly on alpha and n is essentially controlled by U; we recover, then, an opacity for visible light of the s...

Coquand, Olivier

2014-01-01

72

Facility Measures Magnetic Fields  

NASA Technical Reports Server (NTRS)

Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

1991-01-01

73

Optical characterization of Bi2Se3 in a magnetic field: Infrared evidence for magnetoelectric coupling in a topological insulator material  

NASA Astrophysics Data System (ADS)

We present an infrared magneto-optical study of the highly thermoelectric narrow-gap semiconductor Bi2Se3 . Far-infrared and midinfrared (IR) reflectance and transmission measurements have been performed in magnetic fields oriented both parallel and perpendicular to the trigonal c axis of this layered material and supplemented with UV-visible ellipsometry to obtain the optical conductivity ?1(?) . With lowering of temperature we observe narrowing of the Drude conductivity due to reduced quasiparticle scattering, as well as an increase in the absorption edge due to direct electronic transitions. Magnetic fields H?c dramatically renormalize and asymmetrically broaden the strongest far-IR optical phonon, indicating interaction of the phonon with the continuum free-carrier spectrum and significant magnetoelectric coupling. For the perpendicular field orientation, electronic absorption is enhanced, and the plasma edge is slightly shifted to higher energies. In both cases the direct transition energy is softened in magnetic field.

Laforge, A. D.; Frenzel, A.; Pursley, B. C.; Lin, Tao; Liu, Xinfei; Shi, Jing; Basov, D. N.

2010-03-01

74

Earths magnetic field  

Microsoft Academic Search

Recent studies of the Paleosecular Variation of lavas (PSVL) by the authors and others, shows that the variability of Earth's magnetic field over the last several million years is less than the variability of the present Earth's magnetic field. The present magnetic field is asymmetric between the northern and southern hemispheres. The dispersion in the southern hemisphere being much greater

N. Opdyke; V. Mejia

2003-01-01

75

Gilbert damping and critical real-space trajectory of L10-ordered FePt films investigated by magnetic-field-induction and all-optical methods  

NASA Astrophysics Data System (ADS)

The magnetization dynamics of perpendicularly magnetized FePt films is studied using both magnetic-field-induction and all-optical methods. A critically damped trajectory was observed in this system, where the precession ended within subnanoseconds after a single large oscillation. Using the Landau–Lifshitz–Gilbert (LLG) calculation with an experimental configuration, the effective anisotropy and damping constant were obtained. A damping constant of approximately 0.2 was determined after both a magnetic field and a laser pulse were used. The laser-induced real-space trajectory was well explained by the modified LLG calculation taking into account the demagnetization and time-dependent anisotropy.

Lee, Kyeong-Dong; Song, Hyon-Seok; Kim, Ji-Wan; Ko, Hyun Seok; Sohn, Jeong-Woo; Park, Byong-Guk; Shin, Sung-Chul

2014-11-01

76

Influence of a Magnetic Field on the Nonlinear Optical Susceptibility of NiI2-Doped CdI2 Single Crystals  

Microsoft Academic Search

The influence of “treatment” in a magnetic field at low temperatures on the nonlinear optical properties of NiI2-doped CdI2 single crystals is investigated. The impurity ions in the interlayer space or more complex centers into which these ions enter can align on exposure to a magnetic field due to the interaction with the membrane vibrations of the lattice and create

O. N. Yurchenko; S. A. Piroga; I. D. Olekseyuk

2001-01-01

77

The Magnetic Field  

NSDL National Science Digital Library

This demonstration of the magnetic field lines of Earth uses a bar magnet, iron filings, and a compass. The site explains how to measure the magnetic field of the Earth by measuring the direction a compass points from various points on the surface. There is also an explanation of why the north magnetic pole on Earth is actually, by definition, the south pole of a magnet.

Barker, Jeffrey

78

Magnetic Fields Analogous to electric field, a magnet  

E-print Network

Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic characteristic of elementary particles such as an electron #12;Magnetic Fields Magnetic field lines Direction

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

79

Magnetic-Field Control of Photon Echo from the Electron-Trion System in a CdTe Quantum Well: Shuffling Coherence between Optically Accessible and Inaccessible States  

NASA Astrophysics Data System (ADS)

We report on magnetic field-induced oscillations of the photon echo signal from negatively charged excitons in a CdTe/(Cd,Mg)Te semiconductor quantum well. The oscillatory signal is due to Larmor precession of the electron spin about a transverse magnetic field and depends sensitively on the polarization configuration of the exciting and refocusing pulses. The echo amplitude can be fully tuned from the maximum down to zero depending on the time delay between the two pulses and the magnetic-field strength. The results are explained in terms of the optical Bloch equations accounting for the spin level structure of electrons and trions.

Langer, L.; Poltavtsev, S. V.; Yugova, I. A.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Kossut, J.; Akimov, I. A.; Bayer, M.

2012-10-01

80

Mapping Magnetic Field Lines  

NSDL National Science Digital Library

This is a lesson about the magnetic field of a bar magnet. The lesson begins with an introductory discussion with learners about magnetism to draw out any misconceptions that may be in their minds. Then, learners freely experiment with bar magnets and various materials, such as paper clips, rulers, copper or aluminum wire, and pencils, to discover that magnets attract metals containing iron, nickel, and/or cobalt but not most other materials. Next, learners experiment with using a magnetic compass to discover how it is affected by the magnet and then draw the magnetic field lines of the magnet by putting dots at the location of the compass arrow. This is the first lesson in the first session of the Exploring Magnetism teacher guide.

81

The Magnetic Field  

NSDL National Science Digital Library

This webpage is part of the University Corporation for Atmospheric Research (UCAR) "Windows to the Universe" program. It describes the nature and configuration of magnetic fields, which are the result of moving electric charges, including how they cause magnetic objects to orient themselves along the direction of the magnetic force points, which are illustrated as lines. Magnetic field lines by convention point outwards at the north magnetic pole and inward at the south magnetic pole. The site features text, scientific illustrations and an animation. Text and vocabulary are selectable for the beginning, intermediate, or advanced reader.

82

Magnetic Field Example 1  

NSDL National Science Digital Library

Clicking on the different links below will produce different magnetic fields in the box above. The wires (perpendicular to the screen) or coils (in and out of the screen) are not visible, but you can determine what they are from the field. You can also click on a point to read off the magnetic field at that place.

Christian, Wolfgang; Belloni, Mario

2008-02-19

83

Controlled morphology and optical properties of n-type porous silicon: effect of magnetic field and electrode-assisted LEF  

PubMed Central

Fabrication of photoluminescent n-type porous silicon (nPS), using electrode-assisted lateral electric field accompanied with a perpendicular magnetic field, is reported. The results have been compared with the porous structures fabricated by means of conventional anodization and electrode-assisted lateral electric field without magnetic field. The lateral electric field (LEF) applied across the silicon substrate leads to the formation of structural gradient in terms of density, dimension, and depth of the etched pores. Apart from the pore shape tunability, the simultaneous application of LEF and magnetic field (MF) contributes to a reduction of the dimension of the pores and promotes relatively more defined pore tips as well as a decreased side-branching in the pore walls of the macroporous structure. Additionally, when using magnetic field-assisted etching, within a certain range of LEF, an enhancement of the photoluminescence (PL) response was obtained. PMID:25313298

2014-01-01

84

Magneto-optic study of spatial magnetic-field distribution relaxation in an HTSC film strip after transport current turn-on  

E-print Network

Magneto-optic study of spatial magnetic-field distribution relaxation in an HTSC film strip after in high-quality HTSC films jc(T Tc) 107 ­108 A/cm2 , one has to use nar- row strips with a width 100 m

Johansen, Tom Henning

85

Magnetic Field Distribution of Permanent Magnet Magnetized by Static Magnetic Field Generated by HTS Bulk Magnet  

Microsoft Academic Search

Demagnetized rare earth magnets (Nd-Fe-B) can be fully magnetized by scanning them in the intense static fields over 3 T of a HTS bulk magnet which was cooled to the temperature range lower than 77K with use of cryo-coolers and activated by the field of 5 T. We precisely examined the magnetic field distributions of magnetized permanent magnets. The magnetic

Tetsuo Oka; Nobutaka Kawasaki; Satoshi Fukui; Jun Ogawa; Takao Sato; Toshihisa Terasawa; Yoshitaka Itoh; Ryohei Yabuno

2012-01-01

86

Abstract: Quasistatic magnetic fields  

Microsoft Academic Search

A prototype switching system has been developed which can switch 20 kA at 230 V for short periods of time through inductive loads. High power silicon controlled rectifiers are used to switch the National Magnet Laboratory dc generators on and off into a liquid N2 cooled, low impedance high field magnet so that high fields can be generated for a

H. C. Praddaude; S. Foner

1979-01-01

87

Cosmic Magnetic Fields  

Microsoft Academic Search

Most of the visible matter in the Universe is in a plasma state, or more specifically is composed of ionized or partially ionized gas permeated by magnetic fields. Thanks to recent advances on the theory and detection of cosmic magnetic fields there has been a worldwide growing interest in the study of their role on the formation of astrophysical sources

Elisabete M. de Gouveia Dal Pino; Dal Pino

2006-01-01

88

Magnetic Fields in Galaxies  

NASA Astrophysics Data System (ADS)

Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

Beck, Rainer

89

Interplanetary Magnetic Field Lines  

NSDL National Science Digital Library

This web page provides information and a graphical exercise for students regarding the interaction between magnetic field lines and a plasma. The activity involves tracing a typical interplanetary magnetic field line, dragged out of a location on the Sun by the radial flow of the solar wind. This illustrates the way magnetic field lines are "frozen to the plasma" and the wrapping of field lines due to the rotation of the sun. This is part of the work "The Exploration of the Earth's Magnetosphere". A Spanish translation is available.

Stern, David

2005-04-27

90

Gauge Field Optics with Anisotropic Media  

E-print Network

By considering gauge transformations on the macroscopic Maxwell's equations, a two dimensional gauge field, with its pseudo magnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that optical spin Hall effect and one-way edge states become possible simply by using anisotropic media with broadband response. The proposed gauge field also allows us to design an optical isolator based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices.

Liu, Fu

2014-01-01

91

Aharonov-Bohm exciton splitting in the optical absorption of chiral-specific single-walled carbon nanotubes in magnetic fields up to 78 T  

NASA Astrophysics Data System (ADS)

The Ajiki-Ando (A-A) splitting of single-walled carbon nanotubes (SWNTs) originating from the Aharanov-Bohm effect was observed in chiral-specific SWNTs by the magneto-absorption measurements conducted at magnetic fields of up to 78 T. The absorption spectra from each chirality showed clear A-A splitting of the E11 optical excitonic transitions. The parameters of both the dark-bright exciton energy splitting and the rate of A-A splitting in a magnetic field were determined for the first time from the well-resolved absorption spectra.

Takeyama, Shojiro; Suzuki, Hirofumi; Yokoi, Hiroyuki; Murakami, Yoichi; Maruyama, Shigeo

2011-06-01

92

A layered erbium phosphonate in pseudo-D(5h) symmetry exhibiting field-tunable magnetic relaxation and optical correlation.  

PubMed

A layered erbium(III) phosphonate compound, [Er(notpH4)(H2O)]ClO4·3H2O (1), in which the Er(III) ion has a pseudo-D5h symmetry exhibits field tunable multiple magnetic relaxation. The near-IR emission spectrum of 1, excited at 1064 nm (Nd:YAG laser), provides a direct probe of the crystal field splitting correlated to the magnetic data. PMID:24889410

Ren, Min; Bao, Song-Song; Ferreira, Rute A S; Zheng, Li-Min; Carlos, Luis D

2014-07-21

93

Magnetic Bar Field Model  

NSDL National Science Digital Library

The EJS Magnetic Bar Field Model shows the field of a bar magnet and has a movable compass that reports the magnetic field values. The bar magnet model is built by placing a group of magnetic dipoles along the bar magnet. You can modify this simulation if you have Ejs installed by right-clicking within the plot and selecting âOpen Ejs Modelâ from the pop-up menu item. The Magnetic Bar Field model was created using the Easy Java Simulations (Ejs) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. Double clicking the ejs_em_MagneticBarField.jar file will run the program if Java is installed. Ejs is a part of the Open Source Physics Project and is designed to make it easier to access, modify, and generate computer models. Additional Ejs models are available. They can be found by searching ComPADRE for Open Source Physics, OSP, or Ejs.

Christian, Wolfgang; Franciscouembre; Cox, Anne

2009-09-18

94

The effects of the electric and magnetic fields on the nonlinear optical properties in the step-like asymmetric quantum well  

NASA Astrophysics Data System (ADS)

In the present work, total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change for transition between two first lower-lying electronic levels in the step-like GaAs/Ga1-xAlxAs quantum well under the electric and magnetic fields are investigated and also the effect of relaxation time on saturation is investigated. A compact density-matrix approach is applied to investigate optical properties. The obtained results show that both total absorption coefficient and refractive index change are sensitive to well dimensions more than external fields. With the increase of quantum well width, total absorption coefficient and refractive index change shift to lower photon energies (red shift), the magnitude of total refractive index increases significantly while total absorption coefficient is reduced. Furthermore, the electric and magnetic fields induce a blue-shift on absorption coefficient and refractive index change.

Kasapoglu, E.; Ungan, F.; Duque, C. A.; Yesilgul, U.; Mora-Ramos, M. E.; Sari, H.; So¨kmen, I.

2014-07-01

95

Magnetic Fields, Flares & Forecasts  

Microsoft Academic Search

A 2D wavelet transform modulus maxima (WTMM) method is used to characterise the complexity of the distribution of the photospheric magnetic field of active regions. The WTMM method offers increased accuracy and reliability over previous fractal and multifractal methods. The multifractal spectrum of both quiet Sun and active region magnetic features are presented. It is shown that the multifractal nature

Paul A. Conlon; P. Kestener; R. McAteer; P. Gallagher

2009-01-01

96

The First Magnetic Fields  

E-print Network

We demonstrate that the Biermann battery mechanism for the creation of large scale magnetic fields can arise in a simple model protogalaxy. Analytic calculations and numerical simulations follow explicitly the generation of vorticity (and hence magnetic field) at the outward-moving shock that develops as the protogalactic perturbation collapses. Shear angular momentum then distorts this field into a dipole-like configuration. The magnitude of the field created in the fully formed disk galaxy is estimated to be 10^(-17) Gauss, approximately what is needed as a seed for the galactic dynamo.

George Davies; Lawrence M. Widrow

1999-12-14

97

Solar Wind Magnetic Fields  

NASA Technical Reports Server (NTRS)

The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

Smith, E. J.

1995-01-01

98

Planetary magnetic fields  

Microsoft Academic Search

The past several years have seen dramatic developments in the study of planetary magnetic fields, including a wealth of new data, mainly from the Galilean satellites and Mars, together with major improvements in our theoretical modeling effort of the dynamo process believed responsible for large planetary fields. These dynamos arise from thermal or compositional convection in fluid regions of large

David J. Stevenson

2003-01-01

99

Aharonov-Bohm exciton splitting in the optical absorption of chiral-specific single-walled carbon nanotubes in magnetic fields up to 78 T  

Microsoft Academic Search

The Ajiki-Ando (A-A) splitting of single-walled carbon nanotubes (SWNTs) originating from the Aharanov-Bohm effect was observed in chiral-specific SWNTs by the magneto-absorption measurements conducted at magnetic fields of up to 78 T. The absorption spectra from each chirality showed clear A-A splitting of the E11 optical excitonic transitions. The parameters of both the dark-bright exciton energy splitting and the rate

Shojiro Takeyama; Hirofumi Suzuki; Hiroyuki Yokoi; Yoichi Murakami; Shigeo Maruyama

2011-01-01

100

Graphene Magnetic Field Sensors  

Microsoft Academic Search

Graphene extraordinary magnetoresistance (EMR) devices have been fabricated and characterized in varying magnetic fields at room temperature. The atomic thickness, high carrier mobility and high current carrying capabilities of graphene are ideally suited for the detection of nanoscale sized magnetic domains. The device sensitivity can reach 10 mV\\/Oe, larger than state of the art InAs 2DEG devices of comparable size

Simone Pisana; Patrick M. Braganca; Ernesto E. Marinero; Bruce A. Gurney

2010-01-01

101

Magnetic Field and Life  

NSDL National Science Digital Library

This is a lesson where learners explore magnetic forces, fields, and the relationship between electricity. Learners will use this information to infer how the Earth generates a protective magnetic field. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes, prerequisite concepts, common misconceptions, student journal and reading. This is lesson seven in the Astro-Venture Geology Training Unit that were developed to increase students' awareness of and interest in astrobiology and the many career opportunities that utilize science, math and technology skills. The lessons are designed for educators to use with with the Astro-Venture multimedia modules.

102

Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields  

NASA Astrophysics Data System (ADS)

We report a high-field magneto-optical study on first and second subband transitions of single-chirality single-walled carbon nanotubes. The ordering and relative energy splitting between bright and dark excitonic states were found to be inverse between the first and second subbands. We verified that the zero-momentum dark singlet exciton lies below the bright exciton for the first subband transitions, while for the second subband transitions, it was found to have higher energy than the bright excitonic state. The effect of this peculiar excitonic structure was found to manifest itself in distinctive Aharonov-Bohm splitting in ultrahigh magnetic fields up to 190 T.

Zhou, Weihang; Sasaki, Tatsuya; Nakamura, Daisuke; Liu, Huaping; Kataura, Hiromichi; Takeyama, Shojiro

2013-06-01

103

High concentration ferronematics in low magnetic fields  

E-print Network

We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field $B_{bias}$, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that $B_{bias}$ is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role.

T. Tóth-Katona; P. Salamon; N. Éber; N. Tomašovi?ová; Z. Mitróová; P. Kop?anský

2014-09-05

104

High concentration ferronematics in low magnetic fields  

NASA Astrophysics Data System (ADS)

We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field Bbias, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that Bbias is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role.

Tóth-Katona, T.; Salamon, P.; Éber, N.; Tomašovi?ová, N.; Mitróová, Z.; Kop?anský, P.

2014-12-01

105

High field superconducting magnets  

NASA Technical Reports Server (NTRS)

A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

2011-01-01

106

Concentrator of magnetic field of light  

NASA Astrophysics Data System (ADS)

In the recent decade metamaterials with magnetic permeability different than unity and unusual response to the magnetic field of incident light have been intensively explored. Existence of magnetic artificial materials created an interest in a scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of those metamaterials. We present a method of measuring magnetic responses of such elementary cells within a wide range of optical frequencies with single probes of two types. The first type probe is made of a tapered silica fiber with radial metal stripes separated by equidistant slits of constant angular width. The second type probe is similar to metal coated, corrugated, tapered fiber apertured SNOM probe, but in this case corrugations are radially oriented. Both types of probes have internal illumination with azimuthally polarized light. In the near-field they concentrate into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one.

Wróbel, Piotr; Stefaniuk, Tomasz; Antosiewicz, Tomasz J.; Szoplik, Tomasz

2012-05-01

107

Quantum mechanics on a Möbius ring: Energy levels, symmetry, optical transitions, and level splitting in a magnetic field  

NASA Astrophysics Data System (ADS)

We investigate the quantum mechanical energy levels of an electron constrained to motion on a nanoscale Möbius ring by solving the Schrödinger equation on the curved surface. The dimensions of the ring in terms of the lateral and transverse parameters {u,v} for the Möbius ring allow us to identify the quantum numbers for the levels by (nu,nv). We show that the energy levels can still be labeled using the quantum numbers of the cylindrical ring of the same dimensions. While the Hamiltonian has invariance under parity in parameter space, the rotational symmetry about any axis in configuration space is lost, so that the double degeneracy of energy levels for azimuthal quantum number nu?1, that exists in cylindrical rings, is lifted by a small amount in the Möbius ring. The pattern of level splitting has been identified in terms of the number of twists ? to be 2nu=s? where s is an integer. The scaling properties of the energy levels with respect to the dimensions of the ring are derived; using these properties, our numerical results which are given for a specific geometry can be extended to rings of other commensurate dimensions. The absence of rotational invariance for the Möbius ring manifests itself through the orbital angular momentum Lz not commuting with the Hamiltonian. Its expectation values are found to have nearly integral as well as half-integral values of ?, and its variances are small. The energy levels with half-integral azimuthal quantum numbers (nu) are also close to the approximate formula for the equivalent cylindrical ring, provided such half-integral quantum numbers are allowed for the cylindrical geometry. The Zeeman splitting of the energy levels in an external magnetic field is displayed, together with wave functions at a level anticrossing. The optical transitions between electronic states on the Möbius ring are obtained, and a table of oscillator strengths is provided. The results for energy levels for rings with multiple twists are presented. In view of recent technological advances in the production of graphene sheets, we may anticipate the making of such twisted rings with graphene strips of finite width. Graphene strips of finite width have an open band gap at the K points in the Brillouin zone, so that a nonrelativistic treatment with a small effective mass is appropriate. For Möbius rings of graphene, our results would be directly relevant, and we may anticipate their experimental verification in the near future.

Li, Zehao; Ram-Mohan, L. R.

2012-05-01

108

On magnetic field ``reconstruction''  

NASA Astrophysics Data System (ADS)

Context: Solanki and colleagues have presented intriguing 3D “reconstructions” of magnetic fields from the vector polarimetry of the He I 1083 nm multiplet. Aims: In this Research Note I re-examine the reconstruction technique used. Methods: Using a simple dipole field, I examine the reconstruction technique as applied to the theoretical fields. I assume that the He line forms in two locations, (1) along the magnetic loops and (2) in a horizontal plane. Results: The planar interpretation can account for all aspects of the data, but the loop interpretation has geometrical and physical problems. Conclusions: The data by themselves are not sufficient to determine which picture is more applicable. Nevertheless I argue that the planar interpretation makes more physical sense and that the early reconstructions lead to spurious results. I suggest additional tests that might help constrain the problem further.

Judge, P. G.

2009-01-01

109

Nuclear Magnetic Resonance and Magnetic Field Measurements  

NSDL National Science Digital Library

This laboratory is designed for students to become familiar with the principles and detection techniques of Nuclear Magnetic Resonance (NMR), examine the relationship between current and magnetic field in an electromagnet, and gain experience in the use of magnetic field measurement techniques.

2012-01-04

110

The Earth's Magnetic Field  

NSDL National Science Digital Library

This section of the Windows to the Universe website provides information and images about Earth's magnetic field (the magnetosphere), including detailed information about the aurora borealis, magnets, and solar wind. Windows to the Universe is a user-friendly learning system pertaining to the Earth and Space sciences. The objective of this project is to develop an innovative and engaging website that includes a rich array of documents, including images, movies, animations, and data sets that explore the Earth and Space sciences and the historical and cultural ties between science, exploration and the human experience. Links at the top of each page allow users to navigate between beginner, intermediate and advanced levels.

Johnson, Roberta

2000-07-01

111

The Heliospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The Heliospheric Magnetic Field (HMF) is the physical framework in which energetic particles and cosmic rays propagate. Changes in the large scale structure of the magnetic field lead to short- and long term changes in cosmic ray intensities, in particular in anti-phase with solar activity. The origin of the HMF in the corona is well understood and inner heliospheric observations can generally be linked to their coronal sources. The structure of heliospheric magnetic polarities and the heliospheric current sheet separating the dominant solar polarities are reviewed here over longer than a solar cycle, using the three dimensional heliospheric observations by Ulysses. The dynamics of the HMF around solar minimum activity is reviewed and the development of stream interaction regions following the stable flow patterns of fast and slow solar wind in the inner heliosphere is described. The complex dynamics that affects the evolution of the stream interaction regions leads to a more chaotic structure of the HMF in the outer heliosphere is described and discussed on the basis of the Voyager observations. Around solar maximum, solar activity is dominated by frequent transients, resulting in the interplanetary counterparts of Coronal Mass Ejections (ICMEs). These produce a complex aperiodic pattern of structures in the inner heliosphere, at all heliolatitudes. These structures continue to interact and evolve as they travel to the outer heliosphere. However, linking the observations in the inner and outer heliospheres is possible in the case of the largest solar transients that, despite their evolutions, remain recognizably large structures and lead to the formation of Merged Interaction Regions (MIRs) that may well form a quasi-spherical, "global" shell of enhanced magnetic fields around the Sun at large distances. For the transport of energetic particles and cosmic rays, the fluctuations in the magnetic field and their description in alternative turbulent models remains a very important research topic. These are also briefly reviewed in this paper.

Balogh, André; Erdõs, Géza

2013-06-01

112

Miniaturized deformable magnetic mirror for adaptive optics  

Microsoft Academic Search

An alternative approach to more compact deformable mirrors for adaptive optics is developed. A thin and flexible reflective membrane is coated with a magnetic layer and locally deformed by the field created by an array of planar microcoils. This novel technology should enable higher resolution with smaller, lighter integrated mirrors. Several complementary modeling tools are used to study the electromagnetic,

Claire Divoux; Orphee Cugat; Skandar Basrour; P. Mounaix; Pierre Y. Kern; Jumana Boussey-Said

1998-01-01

113

Near Field Magneto-Optical Microscope  

DOEpatents

A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

Vlasko-Vlasov, Vitalii K. (Downers Grove, IL); Welp, Ulrich (Lisle, IL); Crabtree, George W. (Chicago, IL)

2005-12-06

114

Near-Field Magneto-Optical Microscope  

DOEpatents

A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.

2005-12-06

115

Magnetic Fields, Flares & Forecasts  

NASA Astrophysics Data System (ADS)

A 2D wavelet transform modulus maxima (WTMM) method is used to characterise the complexity of the distribution of the photospheric magnetic field of active regions. The WTMM method offers increased accuracy and reliability over previous fractal and multifractal methods. The multifractal spectrum of both quiet Sun and active region magnetic features are presented. It is shown that the multifractal nature of the quiet Sun is significantly different from that of an active region. As such, a method is proposed to seperate the information corresponding to the multifractal spectrum of an active region from the surrounding quite Sun texture. The WTMM method and segmentation procedure are shown to detect the internal restructuring of active region magnetic features prior to flaring. We detect two thresholds (Haussdorf dimension > 1.2 and Holder Exponent > -0.7) as possible indicators for conditions favourable to flaring.

Conlon, Paul A.; Kestener, P.; McAteer, R.; Gallagher, P.

2009-05-01

116

Magnetic fields and cancer  

SciTech Connect

This letter is a response to an article by Savitz and Kaune, EHP 101:76-80. W-L wire code was applied to data from a 1988 Denver study, and an association was reported between high W-L wire code and childhood cancer. This author discusses several studies and provides explanations which weakens the argument that classification error resulted in an appreciable reduction in the association between W-L high wire code and childhood cancer. In conclusion, the fact that new wire code is only weakly correlated with magnetic field measurements (in the same manner as the original W-L wire code) suggests that the newly reported stronger association with childhood cancer is likely due to factors other than magnetic fields. Differential residential mobility and differential residential age are two possible explanations and are suggestive that the reported association may be false.

Jones, T.L.

1993-10-01

117

Magnetic Field of the Earth  

NSDL National Science Digital Library

Students can learn about how the magnetic field of the earth is similar to magnets. Go to the following link: Magnetic Field of the Earth 1. What makes the earth like a magnet? 2. How do we measure magnetism? Be sure to check out the fun games and activities on this web site too!! Now click on the following link and listen to a 2 minute presentation about magnetism: Pulse Planet Next go to ...

Merritt, Mrs.

2005-10-18

118

Change in the optical properties of paper when exposed to the magnetic component of a high-frequency electromagnetic field  

NASA Astrophysics Data System (ADS)

We have used laser Stokes polarimetry to study changes in the structure of paper for offset printing when exposed to a high-frequency electromagnetic field. We have shown that the effect of a high-frequency electromagnetic field on paper appears as a decrease in the structural ordering of the material and a change in the shape of the indicatrix of the reflected radiation power from an He-Ne laser at the wavelength 632.8 nm, a decrease in the bidirectional reflection and transmission coefficients of the paper. We have established that when the force lines of the magnetic component of the high-frequency electromagnetic field are oriented perpendicular to the plane of the sheet of paper, we observe a more substantial decrease in the anisotropy in the surface layer and within the interior (the volume) of the paper than when the lines of force are oriented parallel to the plane of the paper.

Azharonok, V. V.; Filatova, I. I.; Voshchula, I. V.; Dlugunovich, V. A.; Tsaryuk, O. V.; Gorzhanova, T. N.

2007-07-01

119

Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals  

SciTech Connect

In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-optical rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.

Hamidi, S. M. [Laser and Plasma Research Institute, G. C., Shahid Beheshti University, Tehran 1983963113 (Iran, Islamic Republic of)

2012-01-15

120

AC Magnetic Field Survey Report  

E-print Network

AC Magnetic Field Survey Report of Literature Building - 3000 University of California San Diego:..........................................................................................................2 ELF OR AC MAGNETIC FIELD CHARACTERISTICS:...............................................2 UNITS of California San Diego La Jolla, California PROJECT: AC Magnetic Field Survey SCOPE: The scope of this project

Krstic, Miroslav

121

The WIND magnetic field investigation  

Microsoft Academic Search

The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and

R. P. Lepping; M. H. Ac?na; L. F. Burlaga; W. M. Farrell; J. A. Slavin; K. H. Schatten; F. Mariani; N. F. Ness; F. M. Neubauer; Y. C. Whang; J. B. Byrnes; R. S. Kennon; P. V. Panetta; J. Scheifele; E. M. Worley

1995-01-01

122

Magnetic Field Topology in Jets  

NASA Technical Reports Server (NTRS)

We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

Gardiner, T. A.; Frank, A.

2000-01-01

123

Low field magnetic resonance imaging  

DOEpatents

A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

2010-07-13

124

Magnetic monopole field exposed by electrons  

E-print Network

Magnetic monopoles have provided a rich field of study, leading to a wide area of research in particle physics, solid state physics, ultra-cold gases, superconductors, cosmology, and gauge theory. So far, no true magnetic monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the central results of quantum physics, shows however, that an effective monopole field can be produced. Understanding the effects of such a monopole field on its surroundings is crucial to its observation and provides a better grasp of fundamental physical theory. We realize the diffraction of fast electrons at a magnetic monopole field generated by a nanoscopic magnetized ferromagnetic needle. Previous studies have been limited to theoretical semiclassical optical calculations of the motion of electrons in such a monopole field. Solid state systems like the recently studied 'spin ice' provide a constrained system to study similar fields, but make it impossible to separate the monopole from the material. Free space ...

Béché, A; Van Tendeloo, G; Verbeeck, J

2013-01-01

125

Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording.  

PubMed

Heat-assisted magnetic recording (HAMR) has attracted increasing attention as one of the most promising future techniques for ultra-high-density magnetic recording beyond the current limit of 1 Tb in(-2). Localized surface plasmon resonance plays an important role in HAMR by providing a highly focused optical spot for heating the recording medium within a small volume. In this work, we report an aluminum near-field transducer (NFT) based on a novel bow-tie design. At an operating wavelength of 450 nm, the proposed transducer can generate a 35 nm spot size inside the magnetic recording medium, corresponding to a recording density of up to 2 Tb in(-2). A highly integrated micro-nano-optics design is also proposed to ensure process compatibility and corrosion-resistance of the aluminum NFT. Our work has demonstrated the feasibility of using aluminum as a plasmonic material for HAMR, with advantages of reduced cost and improved efficiency compared to traditional noble metals. PMID:24981413

Miao, Lingyun; Stoddart, Paul R; Hsiang, Thomas Y

2014-07-25

126

Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording  

NASA Astrophysics Data System (ADS)

Heat-assisted magnetic recording (HAMR) has attracted increasing attention as one of the most promising future techniques for ultra-high-density magnetic recording beyond the current limit of 1 Tb in-2. Localized surface plasmon resonance plays an important role in HAMR by providing a highly focused optical spot for heating the recording medium within a small volume. In this work, we report an aluminum near-field transducer (NFT) based on a novel bow-tie design. At an operating wavelength of 450 nm, the proposed transducer can generate a 35 nm spot size inside the magnetic recording medium, corresponding to a recording density of up to 2 Tb in-2. A highly integrated micro-nano-optics design is also proposed to ensure process compatibility and corrosion-resistance of the aluminum NFT. Our work has demonstrated the feasibility of using aluminum as a plasmonic material for HAMR, with advantages of reduced cost and improved efficiency compared to traditional noble metals.

Miao, Lingyun; Stoddart, Paul R.; Hsiang, Thomas Y.

2014-07-01

127

Electro-magnetically induced transparency in a static magnetic field  

NASA Astrophysics Data System (ADS)

We investigate both theoretically and experimentally the electro- magnetically induced transparency (EIT) phenomenon of atomic 87Rb at the room temperature with a static magnetic field lifting the degeneracy of all three involved hyperfine levels. Two collinearly propagating and linearly polarized laser fields (a probe field and a coupling field) are used to couple one hyperfine level (the upper level) of the 5P 1/2 state to two hyperfine levels (the lower levels) of the 5S 1/2 state, respectively. In the case of zero magnetic fields, we observed a deep EIT window with the contrast of about 66%. Here, the EIT window width is limited by both the spontaneous decay rate of the upper level and the coupling field intensity. When a magnetic field parallel to both laser beams is applied, the EIT window is split into three much narrower sub-windows with contrasts of about 32%. If the magnetic field is perpendicular to the laser beams, however, the EIT window is split into four much narrower sub-windows whose contrasts are 32% or 16%. This is because the decomposition of the linearly polarized optical fields strongly depends on the orientation of the used magnetic field. The underlying physics is that, in the limit of a weak probe field, an ideal degenerate three-level system can be split into three or four sets of independent three-level systems by a magnetic field due to the lifting of magnetic sublevels of the involved hyperfine levels. In this paper the absorption spectra corresponding to different magnetic field directions are clearly shown and compared. And a straightforward but effective theoretical method for analyzing the experimental results is put forward. Our theoretical calculations are in good agreement with the experimental results.

Wei, Xiao-Gang; Gao, Jin-Yue; Wu, Jin-Hui; Sun, Gui-Xia; Wang, Hai-Hua; Kang, Zhi-Hui; Shao, Zhuang; Jiang, Yun

2006-02-01

128

NMR at low magnetic fields  

NASA Astrophysics Data System (ADS)

NMR provides outstanding information in chemistry and in medicine. But the equipment is expensive as high-field magnets are employed. Low-field NMR works with inexpensive permanent magnets. Until recently these did not provide fields sufficiently homogeneous for spectroscopy and were mostly used for relaxation measurements. Relaxation can also be measured outside the magnet, and small mobile NMR devices have been developed for non-destructive testing of large objects. Today small stray-field magnets and small magnets with homogeneous fields are available for relaxation analysis, imaging, and spectroscopy. Their availability is believed to be essential for shifting NMR analysis from a specialist's tool to a convenience tool.

Blümich, Bernhard; Casanova, Federico; Appelt, Stephan

2009-08-01

129

Magnetic Fields in Irregular Galaxies  

E-print Network

Magnetic fields are an important component of the interstellar medium, especially in low-mass galaxies like irregulars where the magnetic pressure may be significant. However, few irregular galaxies have observed magnetic field structures. Using the VLA, the GBT, and the ATCA, we have observed several irregular galaxies in the radio continuum to determine their magnetic field structures. Here we report on our results for the galaxies NGC 4214 and NGC 1569.

Amanda A. Kepley; Stefanie Muehle; Eric M. Wilcots; John Everett; Ellen Zweibel; Timothy Robishaw; Carl Heiles

2007-08-24

130

Optical/Near-infrared Polarization Survey of Sh 2-29: Magnetic Fields, Dense Cloud Fragmentations, and Anomalous Dust Grain Sizes  

NASA Astrophysics Data System (ADS)

Sh 2-29 is a conspicuous star-forming region marked by the presence of massive embedded stars as well as several notable interstellar structures. In this research, our goals were to determine the role of magnetic fields and to study the size distribution of interstellar dust particles within this turbulent environment. We have used a set of optical and near-infrared polarimetric data obtained at OPD/LNA (Brazil) and CTIO (Chile), correlated with extinction maps, Two Micron All Sky Survey data, and images from the Digitized Sky Survey and Spitzer. The region's most striking feature is a swept out interstellar cavity whose polarimetric maps indicate that magnetic field lines were dragged outward, piling up along its borders. This led to a higher magnetic strength value (?400 ?G) and an abrupt increase in polarization degree, probably due to an enhancement in alignment efficiency. Furthermore, dense cloud fragmentations with peak AV between 20 and 37 mag were probably triggered by its expansion. The presence of 24 ?m point-like sources indicates possible newborn stars inside this dense environment. A statistical analysis of the angular dispersion function revealed areas where field lines are aligned in a well-ordered pattern, seemingly due to compression effects from the H II region expansion. Finally, Serkowski function fits were used to study the ratio of the total-to-selective extinction, revealing a dual population of anomalous grain particle sizes. This trend suggests that both effects of coagulation and fragmentation of interstellar grains are present in the region. Based on observations collected at the National Optical Astronomy Observatory (CTIO, Chile) and Observatório do Pico dos Dias, operated by Laboratório Nacional de Astrofísica (LNA/MCT, Brazil).

Santos, Fábio P.; Franco, Gabriel A. P.; Roman-Lopes, Alexandre; Reis, Wilson; Román-Zúñiga, Carlos G.

2014-03-01

131

Magnetic Fields in Protostellar Disks  

E-print Network

· Shear in disc may wind up field or drive MRI · Equipartition field in the minimum solar nebula to the shear in the disc? ­ which form of diffusion is dominant? logn/nH (s-1) M+ C+ m+ e He+ H+ H3 instability (MRI) ­ disc-driven winds Magnetic fields · Magnetic fields play an important role during star

Wardle, Mark

132

Magnetic Fields In Relativistic Collisionless Shocks  

NASA Astrophysics Data System (ADS)

We present a systematic study on magnetic fields in Gamma-Ray Burst (GRB) relativistic shocks by making use of X-ray and optical afterglow observations, mostly coming from the Swift satellite. We use two methods to constrain the afterglow parameter epsilon_B (the fraction of energy in the magnetic field in the shocked plasma): 1. For the X-ray sample, the observed flux at the end of the X-ray steep decline is larger than or equal to the flux from the external-forward shock. 2. The observed optical afterglow flux arises from the external-forward shock emission. From the method for our X-ray sample (60 GRBs), we determine an upper limit on epsilon_B and from the method for our optical sample (35 GRBs), we determine a measurement for epsilon_B. Combining our X-ray and optical results, the median value we found for epsilon_B is ~ 10^-5. The distributions of epsilon_B from our X-ray and optical samples showed a wide distribution, with epsilon_B ranging from ~ 10^-7 - 10^-3. To characterize how much magnetic field amplification is needed, beyond shock compression of the seed magnetic field, we expressed our results for epsilon_B in terms of an amplification factor, AF. For both our X-ray and optical samples, the median value we found is AF ˜ 50-70. The distributions of AF from our X-ray and optical samples also showed a wide distribution, with AF ranging from ~ 1-1000. These results for epsilon_B and AF suggest that a weak amplification, in addition to shock compression, is needed to explain the afterglow observations. Our main conclusion is that shock compression and weak amplification of the magnetic field in GRB relativistic external shocks is sufficient to explain the afterglow data.

Santana, Rodolfo; Barniol Duran, R.; Kumar, P.

2013-01-01

133

The Heliospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

Owens, Mathew J.; Forsyth, Robert J.

2013-11-01

134

Optical/Near-IR Polarization Survey of Sh 2-29: Magnetic Fields, Dense Cloud Fragmentations and Anomalous Dust Grain Sizes  

E-print Network

Sh 2-29 is a conspicuous star-forming region marked by the presence of massive embedded stars as well as several notable interstellar structures. In this research, our goals were to determine the role of magnetic fields and to study the size distribution of interstellar dust particles within this turbulent environment. We have used a set of optical and near-infrared polarimetric data obtained at OPD/LNA (Brazil) and CTIO (Chile), correlated with extinction maps, 2MASS data and images from DSS and Spitzer. The region's most striking feature is a swept out interstellar cavity whose polarimetric maps indicate that magnetic field lines were dragged outwards, pilling up along its borders. This led to a higher magnetic strength value ($\\approx400\\,\\mu$G) and an abrupt increase in polarization degree, probably due to an enhancement in alignment efficiency. Furthermore, dense cloud fragmentations with peak $A_{V}$ between 20 and 37 mag were probably triggered by its expansion. The presence of $24\\,\\mu$m point-like so...

Santos, Fábio P; Roman-Lopes, Alexandre; Reis, Wilson; Román-Zúñiga, Carlos G

2013-01-01

135

Magnetic Fields: Visible and Permanent.  

ERIC Educational Resources Information Center

Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

Winkeljohn, Dorothy R.; Earl, Robert D.

1983-01-01

136

Review: Magnetic fields of O stars  

E-print Network

Since 2002, strong, organized magnetic fields have been firmly detected at the surfaces of about 10 Galactic O-type stars. In this paper I will review the characteristics of the inferred fields of individual stars, as well as the overall population. I will discuss the extension of the 'magnetic desert', first inferred among the A-type stars, to O stars up to 60 solar masses. I will discuss the interaction of the winds of the magnetic stars with the fields above their surfaces, generating complex 'dynamical magnetosphere' structures detected in optical and UV lines, and in X-ray lines and continuum. Finally, I will discuss the detection of a small number of variable O stars in the LMC and SMC that exhibit spectral characteristics analogous to the known Galactic magnetic stars, and that almost certainly represent the first known examples of extra-Galactic magnetic stars.

Wade, G A

2014-01-01

137

(version 6/26/06) Magnetic Fields  

E-print Network

where the magnetic fields of the Earth and the bar magnet sum to zero. INTRODUCTION A magnetic field(version 6/26/06) Magnetic Fields GOALS (1) To visualize the magnetic fields produced by several to trace out the magnetic field lines of a single bar magnet on a large sheet of paper. (3) To calculate

Collins, Gary S.

138

Magnetic Propeller for Uniform Magnetic Field Levitation  

E-print Network

Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

Mark Krinker; Alexander Bolonkin

2008-07-12

139

NATIONAL HIGH MAGNETIC FIELD LABORATORY  

E-print Network

and testing areas, magnet experiment cells, and laser laboratory areas. The laboratory is used 24 hours perNATIONAL HIGH MAGNETIC FIELD LABORATORY NHMFL FLORIDA STATE UNIVERSITY SAFETY PROCEDURE SP-3 TITLE Dalton ______________________________________________________ ASSISTANT DIRECTOR, ENVIRONMENTAL, HEALTH

Weston, Ken

140

Understanding the Chromospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The chromospheric magnetic field is an important and essential component for understanding solar atmospheric fields. Due to the problems of polarization radiation transfer in the chromosphere and the low detective sensitivity of chromospheric spectrum lines, observations of chromospheric magnetic fields are very difficult, so studies of chromospheric fields are infrequent. However, the understanding of chromospheric fields is evolving. In this report, we summarize our current empirical knowledge and basic physical understanding of chromospheric fields. We concentrate on the comparison of magnetic fields in the photosphere and chromosphere, and then display their difference.

Jin, C. L.; Harvey, J. W.; Pietarila, A.

2014-10-01

141

High-? Injection into a Magnetic Mirror Field  

Microsoft Academic Search

Axial injection of a high-density helium plasma into a magnetic mirror has been experimentally studied. Observations of the plasma-field interaction were made with magnetic probes, electrostatic probes, piezoelectric probes, and an optical monochromator which analyzed emission-line profiles. In the central plane of the mirror a density of 2 ± 1 × 1015 ions?cm3 and a maximum ion temperature of 10

F. R. Scott; O. C. Eldridge

1961-01-01

142

Reconnection of Magnetic Fields  

NASA Astrophysics Data System (ADS)

Preface; Part I. Introduction: 1.1 The Sun E. R. Priest; 1.2 Earth's magnetosphere J. Birn; Part II. Basic Theory of MHD Reconnection: 2.1 Classical theory of two-dimensional reconnection T. G. Forbes; 2.2 Fundamental concepts G. Hornig; 2.3 Three-dimensional reconnection in the absence of magnetic null points G. Hornig; 2.4 Three-dimensional reconnection at magnetic null points D. Pontin; 2.5 Three-dimensional flux tube reconnection M. Linton; Part III. Basic Theory of Collisionless Reconnection: 3.1 Fundamentals of collisionless reconnection J. Drake; 3.2 Diffusion region physics M. Hesse; 3.3 Onset of magnetic reconnection P. Pritchett; 3.4 Hall-MHD reconnection A. Bhattacharjee and J. Dorelli; 3.5 Role of current-aligned instabilities J. Büchner and W. Daughton; 3.6 Nonthermal particle acceleration M. Hoshino; Part IV. Reconnection in the Magnetosphere: 4.1 Reconnection at the magnetopause: concepts and models J. G. Dorelli and A. Bhattacharjee; 4.2 Observations of magnetopause reconnection K.-H. Trattner; 4.3 On the stability of the magnetotail K. Schindler; 4.4 Simulations of reconnection in the magnetotail J. Birn; 4.5 Observations of tail reconnection W. Baumjohann and R. Nakamura; 4.6 Remote sensing of reconnection M. Freeman; Part V. Reconnection in the Sun's Atmosphere: 5.1 Coronal heating E. R. Priest; 5.2 Separator reconnection D. Longcope; 5.3 Pinching of coronal fields V. Titov; 5.4 Numerical experiments on coronal heating K. Galsgaard; 5.5 Solar flares K. Kusano; 5.6 Particle acceleration in flares: theory T. Neukirch; 5.7 Fast particles in flares: observations L. Fletcher; 6. Open problems J. Birn and E. R. Priest; Bibliography; Index.

Birn, J.; Priest, E. R.

2007-01-01

143

Exposure guidelines for magnetic fields  

SciTech Connect

The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

Miller, G.

1987-12-01

144

Magnetic-field-dosimetry system  

DOEpatents

A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1981-01-21

145

Magnetic fields in massive stars  

E-print Network

Although indirect evidence for the presence of magnetic fields in high-mass stars is regularly reported in the literature, the detection of these fields remains an extremely challenging observational problem. We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

S. Hubrig

2007-03-09

146

The Galileo magnetic field investigation  

Microsoft Academic Search

The Galileo Orbiter carries a complement of fields and particles instruments designed to provide data needed to shed light on the structure and dynamical variations of the Jovian magnetosphere. Many questions remain regarding the temporal and spatial properties of the magnetospheric magnetic field, how the magnetic field maintains corotation of the embedded plasma and the circumstances under which corotation breaks

M. G. Kivelson; K. K. Khurana; J. D. Means; C. T. Russell; R. C. Snare

1992-01-01

147

Spin microscope based on optically detected magnetic resonance  

DOEpatents

The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

2009-10-27

148

Spin microscope based on optically detected magnetic resonance  

DOEpatents

The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

2009-11-10

149

Spin microscope based on optically detected magnetic resonance  

DOEpatents

The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

2007-12-11

150

Nonlinear optical properties of the magnetized QED Vacuum  

Microsoft Academic Search

New processes associated with the nonlinear optical properties of the electromagnetic vacuum, as predicted by quantum electrodynamics are described. We consider the presence of a static and a rotating magnetic field. The cases of harmonic generation and two different types of sideband cascades are considered. First order and second order effects with respect to the external magnetic field are discussed

J. T. Mendonca

2007-01-01

151

Mars Observer magnetic fields investigation  

NASA Technical Reports Server (NTRS)

The magnetic fields experiment designed for the Mars Observer mission will provide definitive measurements of the Martian magnetic field from the transition and mapping orbits planned for the Mars Observer. The paper describes the instruments (which include a classical magnetometer and an electron reflection magnetometer) and techniques designed to investigate the nature of the Martian magnetic field and the Mars-solar wind interaction, the mapping of crustal magnetic fields, and studies of the Martian ionosphere, which are activities included in the Mars Observer mission objectives. Attention is also given to the flight software incorporated in the on-board data processor, and the procedures of data processing and analysis.

Acuna, M. H.; Connerney, J. E. P.; Wasilewski, P.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Mcfadden, J.; Curtis, D. W.; Reme, H.; Cros, A.

1992-01-01

152

Abnormal crossing of the optic fibres shown by evoked magnetic fields in patients with ocular albinism with a novel mutation in the OA1 gene  

PubMed Central

Aim: To perform genealogical and clinical studies in Finnish families with X linked ocular albinism (OA1), including characterisation of the potential misrouting of optic fibres by evaluating visual evoked magnetic fields (VEFs), and to determine the mutation behind the disease. Methods: Three families with OA1 were clinically examined. VEFs were measured in two affected males and in one female carrier to characterise the cortical activation pattern after monocular visual stimulation. The neuronal sources of the VEFs were modelled with equivalent current dipoles (ECDs) in a spherical head model. All coding exons of the OA1 gene were screened for mutations by single strand conformation analysis and direct polymerase chain reaction sequencing. Results: Genealogical studies revealed that the three families were all related. The affected males had foveal hypoplasia with reduced visual acuity varying from 20/200 to 20/50, variable nystagmus, iris transillumination, and hypopigmentation of the retinal pigment epithelium. The ECD locations corresponding to the VEFs revealed abnormal crossing of the optic fibres in both affected males, but not in the carrier female. A novel point mutation, leading to a STOP codon, was identified in the fifth exon of the OA1 gene. Conclusions: The data indicate that the novel mutation 640C>T in the OA1 gene is the primary cause of the eye disease in the family studied. VEFs with ECD analysis was successfully used to demonstrate abnormal crossing of the optic fibres. PMID:15965158

Lauronen, L; Jalkanen, R; Huttunen, J; Carlsson, E; Tuupanen, S; Lindh, S; Forsius, H; Sankila, E-M; Alitalo, T

2005-01-01

153

(Revised December 30, 2013) Magnetic Fields  

E-print Network

of the points where the magnetic fields of the Earth and the bar magnet sum to zero. INTRODUCTION A magnetic(Revised December 30, 2013) Magnetic Fields GOALS (1) To visualize the magnetic fields produced compasses to trace out the magnetic field lines of a single bar magnet on a large sheet of paper. (3

Collins, Gary S.

154

Ultrafast heating and magnetic switching with weak external magnetic field  

NASA Astrophysics Data System (ADS)

The TbFeCo magneto-optical media with the coercivity of bigger than 1.0 kOe are used for the investigation of ultrafast heating and magnetic switching with the weak external magnetic field. It has been found that the laser-induced active region becomes larger with an external magnetic field because the boundary of the active region is magnetized with the assistance of the external field during the ultrafast heating. According to this physical phenomenon, the so called "mark expansion method" has been proposed for visual observation of ultrafast switching marks. Using this method, the ultrafast magnetic switching in TbFeCo media has been studied using 40 fs laser pulse with linear polarization. The result shows that the ultrafast magnetic switching can be implemented by the laser pulse with assistance of the weak external field of about 0.7 kOe. Further studies show that the area percentage of the magnetic mark expansion relative to its thermal mark decreases with the increasing of the laser pulse energy. There exists the threshold pulse energy that the active region is fully magnetized. The theoretical analysis of electron, spin, and lattice temperatures has been conducted to the active region of the media where the maximum spin temperature is close to the Curie temperature of the media. The result indicates that the media become active at 4.137 ps and the ultrafast heating plays a key role for the ultrafast magnetic switching. The weak external magnetic field provides sufficient driving force to control the magnetization direction in the media.

Li, J. M.; Xu, B. X.; Zhang, J.; Ye, K. D.

2013-01-01

155

Magnetic response to applied electrostatic field in external magnetic field  

NASA Astrophysics Data System (ADS)

We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

Adorno, T. C.; Gitman, D. M.; Shabad, A. E.

2014-04-01

156

Magnetic-field enhancement in gold nanosandwiches  

NASA Astrophysics Data System (ADS)

Using dispersive finite-difference time-domain (D-FDTD) simulations, we show that a pair of gold nanodisks stacked in a 'sandwich'-like (end-fire) configuration produces a large enhancement of the magnetic field when irradiated with a plane optical wave, if the distance between the nanodisks is optically small. The effect, which can be rationalized in terms of a magnetic dipole resonance, is due the excitation of a hybridized asymmetric plasmon mode, in which the induced electrical dipoles in the two disks oscillate out-of-phase. The strong magnetic response, together with the simple morphology, suggests that Au nanosandwiches are suitable elementary building blocks for optical metamaterials that exhibit negative refraction.

Pakizeh, T.; Abrishamian, M. S.; Granpayeh, N.; Dmitriev, A.; Käll, M.

2006-09-01

157

Nonlinear optical properties of the magnetized QED Vacuum  

E-print Network

New processes associated with the nonlinear optical properties of the electromagnetic vacuum, as predicted by quantum electrodynamics are described. We consider the presence of a static and a rotating magnetic field. The cases of harmonic generation and two different types of sideband cascades are considered. First order and second order effects with respect to the external magnetic field are discussed in detail. Possible experimental configurations using ultra-intense lasers are compared with the alternative use of cw lasers in stable optical cavities.

J. T. Mendonca

2007-02-08

158

Nonlinear optical properties of the magnetized QED Vacuum  

E-print Network

New processes associated with the nonlinear optical properties of the electromagnetic vacuum, as predicted by quantum electrodynamics are described. We consider the presence of a static and a rotating magnetic field. The cases of harmonic generation and two different types of sideband cascades are considered. First order and second order effects with respect to the external magnetic field are discussed in detail. Possible experimental configurations using ultra-intense lasers are compared with the alternative use of cw lasers in stable optical cavities.

Mendonça, J T

2007-01-01

159

Theory of fossil magnetic field  

E-print Network

Theory of fossil magnetic field is based on the observations, analytical estimations and numerical simulations of magnetic flux evolution during star formation in the magnetized cores of molecular clouds. Basic goals, main features of the theory and manifestations of MHD effects in young stellar objects are discussed.

Dudorov, Alexander E

2014-01-01

160

A high-field 3He metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging  

NASA Astrophysics Data System (ADS)

After being hyperpolarized using the technique of Metastability Exchange Optical Pumping (MEOP), 3He can be used as a contrast agent for lung magnetic resonance imaging (MRI). MEOP is usually performed at low magnetic field (˜1 mT) and low pressure (˜1 mbar), which results in a low magnetization production rate. Polarization preserving compression with a compression ratio of order 1000 is also required. It was demonstrated in sealed cells that high nuclear polarization values can be obtained at higher pressures with MEOP, if performed at high magnetic field (non-standard conditions). In this work, the feasibility of building a high-field polarizer that operates within a commercial 1.5 T scanner was evaluated. Preliminary measurements of nuclear polarization with sealed cells filled at different 3He gas pressures (1.33 to 267 mbar) were performed. The use of an annular shape for the laser beam increased by 25% the achievable nuclear polarization equilibrium value (Meq) at 32 and 67 mbar as compared to a Gaussian beam shape. Meq values of 66.4% and 31% were obtained at 32 and 267 mbar, respectively, and the magnetization production rate was increased by a factor of 10 compared to the best results obtained under standard conditions. To study the reproducibility of the method in a polarizing system, the same experiments were performed with small cells connected to a gas handling system. Despite careful cleaning procedure, the purity of the 3He gas could not be matched to that of the sealed cells. Consequently, the polarization build-up times were approximately 3 times longer in the 20-30 mbar range of pressure than those obtained for the 32 mbar sealed cell. However, reasonable Meq values of 40%-60% were achieved in a 90 ml open cell. Based on these findings, a novel compact polarizing system was designed and built. Its typical output is a 3He gas flow rate of 15 sccm with a polarization of 33%. In-vivo lung MRI ventilation images (Signal to Noise Ratio (SNR) of approximately 55 for a voxel size of 50 mm × 3 mm × 3 mm) were acquired to demonstrate the polarizer's application.

Collier, G.; Pa?asz, T.; Wojna, A.; G?owacz, B.; Suchanek, M.; Olejniczak, Z.; Dohnalik, T.

2013-05-01

161

Origin of cosmic magnetic fields.  

PubMed

We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)??G if the energy scale of inflation is few×10(16)??GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

Campanelli, Leonardo

2013-08-01

162

Estimation of fluctuating magnetic fields by an atomic magnetometer  

SciTech Connect

We present a theoretical procedure to estimate with an atomic magnetometer the time dependence of a magnetic field that fluctuates according to an Ornstein-Uhlenbeck process. The magnetometer applies the detected polarization rotation of an optical probe to measure a collective atomic spin, which precesses due to the magnetic field. Based on the noisy optical detection record, our consistent Gaussian update formalism provides an estimator for the magnetic fields, and we identify analytically the steady-state performance of this estimator. We show that the estimate of the current value of the magnetic field is further improved if noisy measurement data obtained also at later times are taken into account.

Petersen, Vivi; Moelmer, Klaus [QUANTOP--Danish National Research Foundation Center for Quantum Optics, Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

2006-10-15

163

NATIONAL HIGH MAGNETIC FIELD LABORATORY  

E-print Network

NATIONAL HIGH MAGNETIC FIELD LABORATORY SUPPORTED BY: THE NATIONAL SCIENCE FOUNDATION and THE STATE OF FLORIDA OPERATED BY: FLORIDA STATE UNIVERSITY · UNIVERSITY OF FLORIDA · LOS ALAMOS NATIONAL LABORATORY Page 15 2005 ANNUAL REPORT #12;2005 ANNUAL REPORT National High magnetic Field Laboratory 2005 NHMFL

Weston, Ken

164

Magnetic Field Problem: Measuring Current  

NSDL National Science Digital Library

A cross section of two circular wire loops carrying the exact same current is shown above (position given in centimeters and magnetic field given in milli-Tesla). You can click-drag to read the magnitude of the magnetic field.

Christian, Wolfgang; Belloni, Mario

2007-03-03

165

Linear electro-optic effect for nuclear magnetic resonance coil  

NASA Astrophysics Data System (ADS)

An electrooptic transduction is here used to perform a low invasive characterization of the magnetic field in the context of magnetic resonance imaging. A resonant coil is coupled to a passive electrooptic crystal and the electromotive force of the magnetic field sensor is converted into a polarization state modulation of a laser probe beam. The optical conversion is demonstrated and lead to a fiber remote measurement of the magnetic field. The setup sensitivity and dynamics are finally dramatically enhanced using a LiNbO3 integrated waveguide. The minimum detectable field is as low as 60 fT.Hz-1/2 and the dynamics exceeds 100 dB.

Ayde, R.; Gaborit, Gwenaël.; Dahdah, Jean; Duvillaret, Lionel; Sablong, Raphaël.; Perrier, Anne-Laure; Beuf, Olivier

2014-05-01

166

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Structure of Magnetic  

E-print Network

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Chapter 3 Structure of Magnetic Fields Many of the most interesting plasmas are permeated by or imbedded in magnetic fields.1 As shown in Fig. 3.1, the magnetic field properties of magnetic fields in plasmas can be discussed without specifying a model for the plasma

Callen, James D.

167

Magnetic Field Measurements in Beam Guiding Magnets  

E-print Network

Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

Henrichsen, K N

1998-01-01

168

Optical decoherence and spectral diffusion at 1.5 ?m in Er3+ : Y2 SiO5 versus magnetic field, temperature, and Er3+ concentration  

NASA Astrophysics Data System (ADS)

The mechanisms and effects of spectral diffusion for optical transitions of paramagnetic ions have been explored using the inhomogeneously broadened 1536 nm I15/24?I13/24 transition in Er3+:Y2SiO5 . Using photon echo spectroscopy, spectral diffusion was measured by observing the evolution of the effective coherence lifetimes over time scales from 1?s to 20 ms for magnetic-field strengths from 0.3 to 6.0 T, temperatures from 1.6 to 6.5 K, and nominal Er3+ concentrations of 0.0015%, 0.005%, and 0.02%. To understand the effect of spectral diffusion on material decoherence for different environmental conditions and material compositions, data and models were compared to identify spectral diffusion mechanisms and microscopic spin dynamics. Observations were successfully modeled by Er3+-Er3+ magnetic dipole interactions and Er3+ electron spin flips driven by the one-phonon direct process. At temperatures of 4.2 K and higher, spectral diffusion due to Y89 nuclear spin flips was also observed. The success in describing our extensive experimental results using simple models provides an important capability for exploring larger parameter spaces, accelerating the design and optimization of materials for spatial-spectral holography, and spectral hole-burning devices. The broad insight into spectral diffusion mechanisms and dynamics is applicable to other paramagnetic materials, such as those containing Yb3+ or Nd3+ .

Böttger, Thomas; Thiel, C. W.; Sun, Y.; Cone, R. L.

2006-02-01

169

Magnetic bearing optical delay line  

NASA Astrophysics Data System (ADS)

TNO TPD, in close cooperation with Micromega-Dynamics and Dutch Space, has developed an advanced Optical Delay Line (ODL) for use in PRIMA, GENIE and other ground based interferometers. The delay line design is modular and flexible, which makes scaling for other applications a relatively easy task. The developed technology can also be applied in future cryogenic space interferometers, such as DARWIN, and TPF-I. The ODL has a single linear motor actuator for Optical Path Difference (OPD) control, driving a two-mirror cat's eye with SiC mirrors and CFRP structure. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. The delay line has been assembled and is currently being subjected to a comprehensive test program.

van den Dool, Teun C.; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Hogenhuis, Harm

2004-09-01

170

Preflare magnetic and velocity fields  

NASA Technical Reports Server (NTRS)

A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

1986-01-01

171

Streamer propagation in magnetic field  

E-print Network

The propagation of a streamer near an insulating surface under the influence of a transverse magnetic field is theoretically investigated. In the weak magnetic field limit it is shown that the trajectory of the streamer has a circular form with a radius that is much larger than the cyclotron radius of an electron. The charge distribution within the streamer head is strongly polarized by the Lorentz force exerted perpendicualr to the streamer velocity. A critical magnetic field for the branching of a streamer is estimated. Our results are in good agreement with available experimental data.

Zhuravlev, V N; Vagner, I D; Wyder, P

1997-01-01

172

AC photovoltaic module magnetic fields  

SciTech Connect

Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

Jennings, C.; Chang, G.J. [Pacific Gas and Electric Co., San Francisco, CA (United States); Reyes, A.B.; Whitaker, C.M. [Endecon Engineering, San Ramon, CA (United States)

1997-12-31

173

Configuration of the local interstellar magnetic field  

NASA Astrophysics Data System (ADS)

The discovery of the Ribbon of energetic neutral atoms by the Interstellar Boundary Explorer (IBEX) provides a new and unexpected diagnostic of the direction of the local interstellar magnetic field (ISMF). The IBEX Ribbon forms where the interstellar magnetic field draping over the heliosphere is perpendicular to the sightline. We have shown that the direction of the interstellar magnetic field close to the Sun, obtained from starlight polarized in the interstellar medium (ISM), is consistent with the ISMF direction that is traced by the IBEX Ribbon. In this presentation we show that new optical polarization data indicate that the local ISMF has a smoothly varying component stretching from the first to the third galactic quadrant. Both the ISMF direction and the kinematics of local interstellar gas within tens of parsecs support an interpretation where the local interstellar clouds are a fragment of the expanding Loop I superbubble.

Frisch, Priscilla C.; Andersson, B.; Berdhyugin, A.; Funsten, H. O.; DeMajistre, R.; Magalhaes, A.; McComas, D.; Piirola, V.; Schwadron, N.; Seriacopi, D.; Slavin, J. D.; Wiktorowicz, S.; IBEX Team

2014-01-01

174

Investigating Magnetic Force Fields  

NSDL National Science Digital Library

In this classroom activity, the students will investigate the magnetic pull of a bar magnet at varying distances with the use of paper clips. Students will hypothesize, conduct the experiment, collect the data, and draw conclusions that support their data. Each student will record the experiment and their findings in their science journals. As a class, students will compare each groups' data and their interpretation of the results.

Daryl ("Tish") Monjeau, Bancroft Elementary School, Minneapolis, MN

2012-03-18

175

Magnetic Force Between Magnetic Nano Probes at Optical Frequency  

E-print Network

Magnetic force microscopy based on the interaction of static magnetic materials was demonstrated in the past with resolutions in the order of nanometers. Measurement techniques based on forces between electric dipoles oscillating at optical frequencies have been also demonstrated leading to the standard operation of the scanning force microscope (SFM). However the investigations of a SFM based on the magnetic force generated by magnetic dipole moments oscillating at optical frequencies has not been tackled yet. With this goal in mind we establish a theoretical model towards observable magnetic force interaction between two magnetically polarizable nanoparticles at optical frequency and show such a force to be in the order of piconewtons which could be in principle detected by conventional microscopy techniques. Two possible principles for conceiving magnetically polarizable nano probes able to generate strong magnetic dipoles at optical frequency are investigated based on silicon nanoparticles and on clusters...

Guclu, Caner; Capolino, Filippo

2014-01-01

176

Time-sequenced optical nuclear magnetic resonance of gallium arsenide  

NASA Astrophysics Data System (ADS)

A method of optical detection of nuclear magnetic resonance is demonstrated in which optical nuclear polarization, spin resonance, and optical detection are separated into distinct sequential periods and separately optimized by varying the optical, rf, and static fields. Experiments on the bulk 69Ga resonance of GaAs show that sites imperceptibly perturbed by the optically relevant defect are optically observable with the rf applied in the dark. A signal-to-noise analysis is given that relates the sensitivity to readily measured material properties and indicates applicability to dilute defects.

Buratto, Steven K.; Shykind, David N.; Weitekamp, Daniel P.

1991-10-01

177

A metafluid exhibiting strong optical magnetism.  

PubMed

Advances in the field of metamaterials have enabled unprecedented control of light-matter interactions. Metamaterial constituents support high-frequency electric and magnetic dipoles, which can be used as building blocks for new materials capable of negative refraction, electromagnetic cloaking, strong visible-frequency circular dichroism, and enhancing magnetic or chiral transitions in ions and molecules. While all metamaterials to date have existed in the solid-state, considerable interest has emerged in designing a colloidal metamaterial or "metafluid". Such metafluids would combine the advantages of solution-based processing with facile integration into conventional optical components. Here we demonstrate the colloidal synthesis of an isotropic metafluid that exhibits a strong magnetic response at visible frequencies. Protein-antibody interactions are used to direct the solution-phase self-assembly of discrete metamolecules comprised of silver nanoparticles tightly packed around a single dielectric core. The electric and magnetic response of individual metamolecules and the bulk metamaterial solution are directly probed with optical scattering and spectroscopy. Effective medium calculations indicate that the bulk metamaterial exhibits a negative effective permeability and a negative refractive index at modest fill factors. This metafluid can be synthesized in large-quantity and high-quality and may accelerate development of advanced nanophotonic and metamaterial devices. PMID:23919764

Sheikholeslami, Sassan N; Alaeian, Hadiseh; Koh, Ai Leen; Dionne, Jennifer A

2013-09-11

178

Neutron scattering in magnetic fields  

SciTech Connect

The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two general areas of application can be distinguished. In one the field acts to change the properties of the scattering sample; in the second the field acts on the neutron itself. Several examples are discussed. Precautions necessary for high precision polarized beam measurements are reviewed. 33 references.

Koehler, W.C.

1984-01-01

179

N-flationary magnetic fields  

NASA Astrophysics Data System (ADS)

There is increasing interest in the role played by pseudo Nambu Goldstone bosons (pNGBs) in the construction of string-inspired models of inflation. In these models the inflaton is expected to be coupled to gauge fields, and will lead to the generation of magnetic fields that can be of cosmological interest. We study the production of such fields mainly focusing on the model of N-flation, where the collective effect of several pNGBs drives inflation. Because the fields produced are maximally helical, inverse cascade processes in the primordial plasma significantly increase their coherence length. We discuss under what conditions inflation driven by pNGBs can account for the cosmological magnetic fields observed. A constraint on the parameters of this class of inflationary scenarios is also derived by requiring that the magnetic field does not backreact on the inflating background.

Anber, Mohamed M.; Sorbo, Lorenzo

2006-10-01

180

Field of the Magnetic Monopole  

E-print Network

This paper shows that based upon the Helmholtz decomposition theorem the field of a stationary magnetic monopole, assuming it exists, cannot be represented by a vector potential. Persisting to use vector potential in monopole representation violates fundamentals of mathematics. The importance of this finding is that the vector potential representation was crucial to the original prediction of the quantized value for a magnetic charge.

A. R. Hadjesfandiari

2007-01-19

181

Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field.  

PubMed

Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain--that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations. PMID:24500329

Sallen, G; Kunz, S; Amand, T; Bouet, L; Kuroda, T; Mano, T; Paget, D; Krebs, O; Marie, X; Sakoda, K; Urbaszek, B

2014-01-01

182

Magnetic field modulation of chirooptical effects in magnetoplasmonic structures  

NASA Astrophysics Data System (ADS)

In this work we analyse the magnetic field effects on the chirooptical properties of magnetoplasmonic chiral structures. The structures consist of two-dimensional arrays of Au gammadions in which thin layers of Co have been inserted. Due to the magnetic properties of the Au/Co interface the structures have perpendicular magnetic anisotropy which favours magnetic saturation along the surface normal, allowing magnetic field modulation of the chirooptical response with moderate magnetic fields. These structures have two main resonances. The resonance at 850 nm has a larger chirooptical response than the resonance at 650 nm, which, on the other hand, exhibits a larger magnetic field modulation of its chirooptical response. This dissimilar behaviour is due to the different physical origin of the chirooptical and magneto-optical responses. Whereas the chirooptical effects are due to the geometry of the structures, the magneto-optical response is related to the intensity of the electromagnetic field in the magnetic (Co) layers. We also show that the optical chirality can be modulated by the applied magnetic field, which suggests that magnetoplasmonic chiral structures could be used to develop new strategies for chirooptical sensing.In this work we analyse the magnetic field effects on the chirooptical properties of magnetoplasmonic chiral structures. The structures consist of two-dimensional arrays of Au gammadions in which thin layers of Co have been inserted. Due to the magnetic properties of the Au/Co interface the structures have perpendicular magnetic anisotropy which favours magnetic saturation along the surface normal, allowing magnetic field modulation of the chirooptical response with moderate magnetic fields. These structures have two main resonances. The resonance at 850 nm has a larger chirooptical response than the resonance at 650 nm, which, on the other hand, exhibits a larger magnetic field modulation of its chirooptical response. This dissimilar behaviour is due to the different physical origin of the chirooptical and magneto-optical responses. Whereas the chirooptical effects are due to the geometry of the structures, the magneto-optical response is related to the intensity of the electromagnetic field in the magnetic (Co) layers. We also show that the optical chirality can be modulated by the applied magnetic field, which suggests that magnetoplasmonic chiral structures could be used to develop new strategies for chirooptical sensing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05889a

Armelles, Gaspar; Caballero, Blanca; Prieto, Patricia; García, Fernando; Cebollada, Alfonso; González, Maria Ujué; García-Martin, Antonio

2014-03-01

183

Chiral near fields generated from plasmonic optical lattices  

NASA Astrophysics Data System (ADS)

Plasmonic fields are usually considered nonchiral because of the transverse magnetic polarization of surface plasmon modes. We, however, show here that an optical lattice created from the intersection of two coherent surface plasmons propagating on a smooth metal film can generate optical chirality in the interfering near field. We reveal in particular the emergence of plasmonic potentials relevant to the generation of near-field chiral forces. This draws promising perspectives for performing enantiomeric separation schemes within the near field.

Canaguier-Durand, Antoine; Genet, Cyriaque

2014-08-01

184

Neutron in Strong Magnetic Fields  

E-print Network

Relativistic world-line Hamiltonian for strongly interacting 3q systems in magnetic field is derived from the path integral for the corresponding Green's function. The neutral baryon Hamiltonian in magnetic field obeys the pseudomomentum conservation and allows a factorization of the c.m. and internal motion. The resulting expression for the baryon mass in magnetic field is written explicitly with the account of hyperfine, OPE and OGE (color Coulomb) interaction. The neutron mass is fast decreasing with magnetic field, losing 1/2 of its value at eB~0.25 GeV^2 and is nearly zero at eB~0.5 GeV^2. Possible physical consequences of the calculated mass trajectory of the neutron, M_n(B), are presented and discussed.

M. A. Andreichikov; B. O. Kerbikov; V. D. Orlovsky; Yu. A. Simonov

2013-12-08

185

Polarization state of the optical near field  

NASA Astrophysics Data System (ADS)

The polarization state of the optical electromagnetic field lying several nanometers above complex dielectric-air interfaces reveals the intricate light-matter interaction that occurs in the near-field zone. From the experimental point of view, access to this information is not direct and can only be extracted from an analysis of the polarization state of the detected light. These polarization states can be calculated by different numerical methods, well suited to near-field optics. In this paper, we apply two different techniques (localized Green's function method and differential theory of gratings) to separate each polarization component associated with both electric and magnetic optical near fields produced by nanometer sized objects. A simple dipolar model is used to get an insight into the physical origin of the near-field polarization state. In a second stage, accurate numerical simulations of field maps complete data produced by analytical models. We conclude this study by demonstrating the role played by the near-field polarization in the formation of the local density of states.

Lévêque, Gaëtan; Francs, Gérard Colas; Girard, Christian; Weeber, Jean Claude; Meier, Christophe; Robilliard, Cécile; Mathevet, Renaud; Weiner, John

2002-03-01

186

Doppler Imaging of stellar magnetic fields. III. Abundance distribution and magnetic field geometry of alpha 2 CVn  

Microsoft Academic Search

We used the new magnetic Doppler Imaging code to reconstruct the magnetic field geometry and surface abundance distributions for the classical magnetic CP star alpha 2 CVn. High-resolution spectropolarimetric observations in the Stokes I and V parameters were collected with the SOFIN échelle spectrograph at the Nordic Optical Telescope. This superb observational material in combination with the advanced modelling technique

O. Kochukhov; N. Piskunov; I. Ilyin; S. Ilyina; I. Tuominen

2002-01-01

187

Development of optical field emitter arrays  

E-print Network

Optical field emitters are electron emission sources actuated by incident light. Optically actuated field emitters may produce ultrafast pulses of electrons when excited by ultrafast optical pulses, thus making them of ...

Yang, Yujia, S.M. Massachusetts Institute of Technology

2013-01-01

188

Review of magnetic field observations  

NASA Technical Reports Server (NTRS)

Recent observations of magnetic fields in the magnetosphere are reviewed, and critical experiments and data are identified for theoretical analysis and interpretation. Quantitative studies of the solar wind interaction with the earth's magnetic field, regional measurements near the earth's equator at R = 2-8 R sub E, the polar cusp region of the geomagnetosphere, and structural models of the neutral sheet region in the geomagnetic tail are considered.

Ness, N. F.

1971-01-01

189

Electric and magnetic field sensing for high-voltage applications  

Microsoft Academic Search

Electric and magnetic fields can be measured optically, either directly via Pockels and Faraday effect or indirectly via Piezo effect. In high voltage applications fiber optic sensors are especially attractive for their ability of easy potential separation. For electric fields the Pockels effect in BSO, BGO crystals is mostly read out polarimetrically. The current is mostly measured via the Faraday

Thomas Bosselmann

1997-01-01

190

Field-tunable probe for combined electric and magnetic field measurements  

Microsoft Academic Search

A method to measure the magnitude and phase of electric and magnetic fields with a single probe is presented. The optically-based probe, consisting of a hybrid combination of gallium arsenide followed by terbium gallium garnet, employs the Pockels effect to measure electric fields and the Faraday effect to measure magnetic fields. Isolation between the two effects is achieved via external

Ronald M. Reano; John F. Whitaker; Linda P. B. Katehi

2002-01-01

191

Mapping magnetic near-field distributions of plasmonic nanoantennas.  

PubMed

We present direct experimental mapping of the lateral magnetic near-field distribution in plasmonic nanoantennas using aperture scanning near-field optical microscopy (SNOM). By means of full-field simulations it is demonstrated how the coupling of the hollow-pyramid aperture probe to the nanoantenna induces an effective magnetic dipole which efficiently excites surface plasmon resonances only at lateral magnetic field maxima. This excitation in turn affects the detected light intensity enabling the visualization of the lateral magnetic near-field distribution of multiple odd and even order plasmon modes with subwavelength spatial resolution. PMID:23464670

Denkova, Denitza; Verellen, Niels; Silhanek, Alejandro V; Valev, Ventsislav K; Van Dorpe, Pol; Moshchalkov, Victor V

2013-04-23

192

Magnetic Fields in Relativistic Collisionless Shocks  

NASA Astrophysics Data System (ADS)

We present a systematic study on magnetic fields in gamma-ray burst (GRB) external forward shocks (FSs). There are 60 (35) GRBs in our X-ray (optical) sample, mostly from Swift. We use two methods to study epsilon B (fraction of energy in magnetic field in the FS): (1) for the X-ray sample, we use the constraint that the observed flux at the end of the steep decline is >= X-ray FS flux; (2) for the optical sample, we use the condition that the observed flux arises from the FS (optical sample light curves decline as ~t -1, as expected for the FS). Making a reasonable assumption on E (jet isotropic equivalent kinetic energy), we converted these conditions into an upper limit (measurement) on epsilon B n 2/(p + 1) for our X-ray (optical) sample, where n is the circumburst density and p is the electron index. Taking n = 1 cm-3, the distribution of epsilon B measurements (upper limits) for our optical (X-ray) sample has a range of ~10-8-10-3 (~10-6-10-3) and median of ~few × 10-5 (~few × 10-5). To characterize how much amplification is needed, beyond shock compression of a seed magnetic field ~10 ?G, we expressed our results in terms of an amplification factor, AF, which is very weakly dependent on n (AFvpropn 0.21). The range of AF measurements (upper limits) for our optical (X-ray) sample is ~1-1000 (~10-300) with a median of ~50 (~50). These results suggest that some amplification, in addition to shock compression, is needed to explain the afterglow observations.

Santana, Rodolfo; Barniol Duran, Rodolfo; Kumar, Pawan

2014-04-01

193

Chiral transition with magnetic fields  

E-print Network

We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling constants and the number of fermions. We show that the critical temperature for the restoration of chiral symmetry monotonically increases from small to intermediate values of the magnetic fields and that this temperature is always above the critical temperature for the case when the magnetic field is absent.

Alejandro Ayala; Luis Alberto Hernandez; Ana Julia Mizher; Juan Cristobal Rojas; Cristian Villavicencio

2014-04-25

194

Magnetic field induced dynamical chaos  

SciTech Connect

In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra, E-mail: bidhanchandra.bag@visva-bharati.ac.in [Department of Chemistry, Visva-Bharati, Santiniketan 731 235 (India)

2013-12-15

195

Experimental measurement of variations in the optical reflection coefficient of water-magnetic liquid interface in an electric field, wave motion, and surface instability  

NASA Astrophysics Data System (ADS)

A variation in the reflection coefficient of an interface of two liquids (water and magnetic liquid) in the presence of an electric field is experimentally studied. An increase in the reflection coefficient of the interface is demonstrated. A surface instability of the water-magnetic liquid interface, the wave motion at the interface, and wave interference are observed.

Chekanov, V. V.; Kandaurova, N. V.; Chekanov, V. S.

2014-09-01

196

Magnetic fields in protoplanetary disks  

E-print Network

Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary discs. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface, and magnetically-driven mixing has implications for disk chemistry and evolution of the grain population. However, the weak ionisation of protoplanetary discs means that magnetic fields may not be able to effectively couple to the matter. I present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas. For a standard population of 0.1 micron grains the active surface layers have a combined column of about 2 g/cm^2 at 1 AU; by the time grains have aggregated to 3 microns the active surface density is 80 g/cm^2. In the absence of grains, x-rays maintain magnetic coupling to 10% of the disk material at 1 AU (150 g/cm^2). At 5 AU the entire disk thickness becomes active once grains have aggregated to 1 micron in size.

Mark Wardle

2007-04-07

197

Active Region Magnetic Fields. I. Plage Fields  

Microsoft Academic Search

We present observations taken with the Advanced Stokes Polarimeter (ASP) in active-region plages and study the frequency distribution of the magnetic field strength (B), inclination with respect to vertical ( gamma ), azimuthal orientation ( chi ), and filling factor (f). The most common values at disk center are B = 1400 G, gamma < 10 deg, no preferred east-west

V. Martinez Pillet; B. W. Lites; A. Skumanich

1997-01-01

198

Magnetic resonance imaging of radiation optic neuropathy  

SciTech Connect

Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence.

Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S. (Univ. of Miami, FL (USA))

1990-10-15

199

Magnetic fields in O stars  

NASA Astrophysics Data System (ADS)

During the last decade, large-scale, organized (generally dipolar) magnetic fields with strengths between 0.1 and 20 kG have been detected in dozens of OB stars. This contribution reviews the impact of such fields on the stellar winds of O-type stars, with emphasis on variability and X-ray emission.

Nazé, Y.

2014-11-01

200

Magnetization and rotation of MTG HTSC ring in magnetic field  

Microsoft Academic Search

The magnetization of a melt-texture growth (MTG) HTSC ring has been studied. It is shown that the magnetic field inside the ring is larger than the external field under a certain range of external magnetic fields. We have also investigated the magnetic field dependence of the response of a detective coil near a rotating superconducting ring. The responses of the

E. V. Postrekhin; L. W. Zhou; K. J. Huang; C. B. Cai; S. M. Gong; Y. X. Fu

1996-01-01

201

Optical chirality and superchiral fields  

NASA Astrophysics Data System (ADS)

A chiral object is any material body whose mirror image may not be superimposed on the original. Electromagnetic (EM) fields may be chiral too, with circularly polarized light as the paradigmatic example. We propose a measure of the local chirality of EM fields, which we call optical chirality. Optical chirality determines the degree of chiral asymmetry in the interaction of light with small molecules. We predict the existence of superchiral forms of light which show larger bias for exciting a single chiral enantiomer, in some regions of space, than does circularly polarized plane waves. We performed a conceptually simple experiment to probe the interaction of superchiral light with a chiral biperylene derivative. We selected this molecule for its strong intrinsic optical activity and fluorescence in the visible. The regions of enhanced chiral selectivity are too thin to detect by absorption, so we used fluorescence instead. We demonstrated experimentally a 12-fold enhancement in the chiral selectivity of superchiral fields for these chiral compounds. The demonstrated chiral enhancement is not a fundamental limit. Larger enhancement may be obtained at the expense of lower overall excitation rate. These results establish that optical chirality is a fundamental property of the electromagnetic field, with possible applications ranging from plasmonic sensors to absolute asymmetric synthesis.

Tang, Yiqiao

2011-03-01

202

Magnetic field investigations on low cost missions  

Microsoft Academic Search

Magnetic fields pervade all of space and provide important diagnostic information on the nature of processes occurring within and around solar system objects. Thus magnetic investigations are frequently included on planetary missions. Since spacecraft subsystems can generate magnetic fields that may interfere with the measurement of the ambient field, magnetic cleanliness programs are usually instituted to minimize such extraneous magnetic

R. C. Snare; C.T. Russell

1995-01-01

203

The National High Magnetic Field Laboratory  

NASA Astrophysics Data System (ADS)

The National High Magnetic Field Laboratory (NHMFL) is a collaboration between Florida State University, the University of Florida, and the Los Alamos National Laboratory. The DC Field Facilities are located at the main campus for the NHMFL in Tallahassee, Florida and are described in this paper. The DC Field Facility has a variety of resistive and superconducting magnets. The DC Field Facility infrastructure, the most powerful in the world, is able to provide 57 MW of continuous low noise DC power. Constant magnetic fields of up to 45 tesla in a 32 mm bore and 20 tesla in 195 mm bore are available at no charge to the user community. The users of the facility are selected by a peer reviewed process. Roughly 400 research groups visit the lab to conduct experiments each year. Experimental capabilities provided by the NHMFL are magneto-optics, millimeter wave spectroscopy, magnetization, dilatometry, specific heat, electrical transport, ultrasound, low to medium resolution NMR, EMR, and materials processing. Measurements of properties can be made on samples at temperatures from 20 mK to 1000 K, pressures from ambient to 10 GPa, orientation and currents from 1 pA to 10 kA.

Hannahs, S. T.; Palm, E. C.

2010-04-01

204

Indoor localization using magnetic fields  

NASA Astrophysics Data System (ADS)

Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.

Pathapati Subbu, Kalyan Sasidhar

205

Magnetic fields of HgMn stars?  

NASA Astrophysics Data System (ADS)

Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have failed to detect magnetic fields, indicating an upper limit on the longitudinal field between 8 and 15 G. In these LSD studies, assumptions were made that all spectral lines are identical in shape and can be described by a scaled mean profile. Aims: We re-analyse the available spectropolarimetric material by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD 65949 and the hotter analog of HgMn stars, the PGa star HD 19400, using FORS 2 installed at the VLT. We also give new measurements of the eclipsing system AR Aur with a primary star of HgMn peculiarity, which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. Methods: We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS spectra for eight HgMn stars and one normal and one superficially normal B-type star obtained in 2010. Out of this sample, three HgMn stars belong to spectroscopic double-lined systems. The application of the moment technique to the HARPS and SOFIN spectra allowed us to study the presence of the longitudinal magnetic field, the crossover effect, and quadratic magnetic fields. Results for the HgMn star HD 65949 and the PGa star HD 19400 are based on a linear regression analysis of low-resolution spectra obtained with FORS 2 in spectropolarimetric mode. Results: Our measurements of the magnetic field with the moment technique using spectral lines of several elements separately reveal the presence of a weak longitudinal magnetic field, a quadratic magnetic field, and the crossover effect on the surface of several HgMn stars as well as normal and superficially normal B-type stars. Furthermore, our analysis suggests the existence of intriguing correlations between the strength of the magnetic field, abundance anomalies, and binary properties. The results are discussed in the context of possible mechanisms responsible for the development of the element patches and complex magnetic fields on the surface of late B-type stars. Based on observations obtained at the European Southern Observatory (ESO programmes 076.D-0169(A), 076.D-0172(A), 084.D-0338(A), 085.D-0296(A), 085.D-0296(B), 087.D-0049(A), 088.D-0284(A)), SOFIN observations at the 2.56 m Nordic Optical Telescope on La Palma, and observations obtained with the CORALIE Echelle Spectrograph on the 1.2 m Euler Swiss telescope on La Silla, Chile.Tables 2-7, 9, 10 are only available in electronic form at http://www.aanda.org

Hubrig, S.; González, J. F.; Ilyin, I.; Korhonen, H.; Schöller, M.; Savanov, I.; Arlt, R.; Castelli, F.; Lo Curto, G.; Briquet, M.; Dall, T. H.

2012-11-01

206

Magnetic field modulation of chirooptical effects in magnetoplasmonic structures.  

PubMed

In this work we analyse the magnetic field effects on the chirooptical properties of magnetoplasmonic chiral structures. The structures consist of two-dimensional arrays of Au gammadions in which thin layers of Co have been inserted. Due to the magnetic properties of the Au/Co interface the structures have perpendicular magnetic anisotropy which favours magnetic saturation along the surface normal, allowing magnetic field modulation of the chirooptical response with moderate magnetic fields. These structures have two main resonances. The resonance at 850 nm has a larger chirooptical response than the resonance at 650 nm, which, on the other hand, exhibits a larger magnetic field modulation of its chirooptical response. This dissimilar behaviour is due to the different physical origin of the chirooptical and magneto-optical responses. Whereas the chirooptical effects are due to the geometry of the structures, the magneto-optical response is related to the intensity of the electromagnetic field in the magnetic (Co) layers. We also show that the optical chirality can be modulated by the applied magnetic field, which suggests that magnetoplasmonic chiral structures could be used to develop new strategies for chirooptical sensing. PMID:24569696

Armelles, Gaspar; Caballero, Blanca; Prieto, Patricia; García, Fernando; Cebollada, Alfonso; González, Maria Ujué; García-Martin, Antonio

2014-04-01

207

Mars Crustal Magnetic Field Remnants  

NASA Technical Reports Server (NTRS)

The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.

This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.

The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.

These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.

2001-01-01

208

Origin of primordial magnetic fields  

SciTech Connect

Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields {approx}{mu}G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) {approx}10 {mu}G over a comoving {approx}1 pc region are predicted at redshift z{approx}10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs {approx}10{sup -2} {mu}G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z{approx}10. In the collapse to a galaxy (comoving size {approx}30 kpc) at z{approx}10, the fields are amplified to {approx}10 {mu}G. This indicates that the MFs created immediately after the QHPT (10{sup -4} s), predicted by the fluctuation-dissipation theorem, could be the origin of the {approx}{mu}G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field predicted by our model in producing the first stars and in reionizing the Universe.

Souza, Rafael S. de; Opher, Reuven [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)

2008-02-15

209

Magnetic field tomography, helical magnetic fields and Faraday depolarization  

NASA Astrophysics Data System (ADS)

Wide-band radio polarization observations offer the possibility to recover information about the magnetic fields in synchrotron sources, such as details of their three-dimensional configuration, that has previously been inaccessible. The key physical process involved is the Faraday rotation of the polarized emission in the source (and elsewhere along the wave's propagation path to the observer). In order to proceed, reliable methods are required for inverting the signals observed in wavelength space into useful data in Faraday space, with robust estimates of their uncertainty. In this paper, we examine how variations of the intrinsic angle of polarized emission ?0 with the Faraday depth ? within a source affect the observable quantities. Using simple models for the Faraday dispersion F(?) and ?0(?), along with the current and planned properties of the main radio interferometers, we demonstrate how degeneracies among the parameters describing the magneto-ionic medium can be minimized by combining observations in different wavebands. We also discuss how depolarization by Faraday dispersion due to a random component of the magnetic field attenuates the variations in the spectral energy distribution of the polarization and shifts its peak towards shorter wavelengths. This additional effect reduces the prospect of recovering the characteristics of the magnetic field helicity in magneto-ionic media dominated by the turbulent component of the magnetic field.

Horellou, C.; Fletcher, A.

2014-07-01

210

Magnetic field dispersion in the neighbourhood of Bok Globules  

NASA Astrophysics Data System (ADS)

We performed an observational study of the relation between the interstellar magnetic field alignment and star formation in twenty (20) sky regions containing Bok Globules. The presence of young stellar objects in the globules is verified by a search of infrared sources with spectral energy distribution compatible with a pre main-sequence star. The interstellar magnetic field direction is mapped using optical polarimetry. These maps are used to estimate the dispersion of the interstellar magnetic field direction in each region from a Gaussian fit, ? B . In addition to the Gaussian dispersion, we propose a new parameter, ?, to measure the magnetic field alignment that does not rely on any function fitting. Statistical tests show that the dispersion of the magnetic field direction is different in star forming globules relative to quiescent globules. Specifically, the less organised magnetic fields occur in regions having young stellar objects.

Rodrigues, C. V.; Magalhães, V. de S.; Vilas-Boas, J. W.; Racca, G.; Pereyra, A.

2014-08-01

211

Cylindrical isentropic compression by ultrahigh magnetic field  

NASA Astrophysics Data System (ADS)

The cylindrical isentropic compression by ultrahigh magnetic field (MC-1) is a kind of unique high energy density technique. It has characters like ultrahigh pressure and low temperature rising, and would have widely used in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun the experiment since 2011 and a primary experimental device had been set-up. In the experiments, a seed magnetic field of 5 Tesla were set-up first and compressed by a stainless steel liner which is driven by high explosive initiated synchronously. The internal diameter of the liner is 97 mm, and its thickness is 1.5 mm. The movement of liner was recorded optically and a typical turnaround phenomenon was observed. From the photography results the liner was compressed smoothly and evenly and its average velocity was about 5-6 km/s. In the experiment a axial magnetic field of over 1400 Tesla has been recorded. The MC-1 process was numerical simulated by 1D MHD code MC11D and the simulations are in accord with the experiments.

Gu, Zhuowei; Luo, Hao; Zhang, Hengdi; Zhao, Shichao; Tang, Xiaosong; Tong, Yanjin; Song, Zhenfei; Tan, Fuli; Zhao, Jianheng; Sun, Chengwei

2014-05-01

212

Longitudinal field-induced polarized light transmittance of magnetic fluids  

NASA Astrophysics Data System (ADS)

The complete optical transmittance for a polarized light passing through the magnetic fluids is investigated theoretically and experimentally, when the externally magnetic field is applied along the propagation direction of the incident light. Hybrid effects due to the geometric shadowing and Faraday rotation are considered simultaneously. The Langevin-like functions are employed to describe the magnetic-field-dependent volume concentration of the particle-aggregation ( ?') and the approximate number of magnetic nanoparticles in the particle-aggregation ( ?N0). Based on the experiments on the geometric shadowing effect of our magnetic fluid sample, the analytical expression for the total transmitted power with externally magnetic field after an analyzer is derived. Theoretical simulations disclose the influence of certain critical parameters of the magnetic fluids on the field-dependent optical transmittance. For the entire polarized light transmittance, qualitative agreement between the calculations and the experiments is achieved. Applications of magnetic fluids to several polarized devices operating in longitudinal field arrangement are proposed and discussed. The results presented in this work may be useful for designing the corresponding magnetic-fluid-based optical devices.

Pu, Shengli; Dai, Min; Sun, Guoqing

2010-10-01

213

Magnetic fields around black holes  

NASA Astrophysics Data System (ADS)

Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our Newtonian results are excellent approximations for slowly spinning black holes. We proceed to address the issue of the spin dependence of the Blandford & Znajek power. The result we choose to highlight is our finding that given the validity of our assumption for the dynamical behavior of the so-called plunge region in black hole accretors, rotating black holes produce maximum Poynting flux via the Blandford & Znajek process for a black hole spin parameter of about a [approximate] 0.8. This is contrary to the conventional claim that the maximum electromagnetic flux is achieved for highest black hole spin.

Garofalo, David A. G.

214

EXPLORER 10 MAGNETIC FIELD MEASUREMENTS  

Microsoft Academic Search

Magnetic field measurements made by means of Explorer 10 over geocentric ; distances of 1.8 to 42.6R\\/sub e\\/ on March 25experiment on the same satellite are ; referenced in interpretations. The close-in data are consistent with the ; existence of a very weak ring current below 3R\\/sub e\\/ along the trajectory, but ; alternative explanations for the field deviations are

J. P. Heppner; N. F. Ness; C. S. Scearce; T. L. Skillman

1963-01-01

215

Long-distance transfer and routing of static magnetic fields.  

PubMed

We show how the static magnetic field of a finite source can be transferred and routed to arbitrary long distances. This is achieved by using transformation optics, which results in a device made of a material with a highly anisotropic magnetic permeability. We show that a simplified version of the device, made by a superconducting-ferromagnet hybrid, also leads to an excellent transfer of the magnetic field. The latter is demonstrated with a proof-of-principle experiment where a ferromagnet tube coated with a superconductor improves the transfer of static magnetic fields with respect to conventional methods by a 400% factor over distances of 14 cm. PMID:25014816

Navau, C; Prat-Camps, J; Romero-Isart, O; Cirac, J I; Sanchez, A

2014-06-27

216

Optical rectification in a strained GaAs0.9P0.1/GaAs0.6P0.4 quantum dot: Simultaneous effects of electric and magnetic fields  

NASA Astrophysics Data System (ADS)

Simultaneous effects of electric field and magnetic field on exciton binding energy as a function of dot radius in a cylindrical GaAs0.9P0.1/GaAs0.6P0.4 strained quantum dot are investigated. The strain contribution includes the strong built-in electric field induced by the spontaneous and piezoelectric polarizations. Numerical calculations are performed using variational procedure within the single band effective mass approximation. Optical rectification in the GaAs0.9P0.1/GaAs0.6P0.4 quantum dot is computed in the presence of electric and magnetic fields.

Vinolin, Ada; Peter, A. John

2014-04-01

217

Crystal field and magnetic properties  

NASA Technical Reports Server (NTRS)

Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

Flood, D. J.

1977-01-01

218

Transverse Magnetic Field Propellant Isolator  

NASA Technical Reports Server (NTRS)

An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

Foster, John E.

2000-01-01

219

Diffusion of magnetic field via turbulent reconnection  

Microsoft Academic Search

The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as

Reinaldo Santos de Lima; Alexander Lazarian; Elisabete M. de Gouveia Dal Pino; Jungyeon Cho

2010-01-01

220

Separation of magnetic field lines  

SciTech Connect

The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

2012-11-15

221

Magnetic fields in the sun  

NASA Technical Reports Server (NTRS)

The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

Mullan, D. J.

1974-01-01

222

Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics  

NASA Astrophysics Data System (ADS)

As a new type of functional material, magnetic fluid (MF) is a stable colloid of magnetic nanoparticles, dressed with surfactant and dispersed in the carrier liquid uniformly. The MF has many unique optical properties, and the most important one is its tunable refractive index property. This paper summarizes the properties of the MF refractive index and the related optical devices. The refractive index can be easily controlled by external magnetic field, temperature, and so on. But the tunable refractive index of MF has a relaxation effect. As a result, the response time is more than milliseconds and the MF is only suitable for low speed environment. Compared with the traditional optical devices, the magnetic fluid based optical devices have the tuning ability. Compared with the tunable optical devices (the electro-optic devices (LiNbO3) of more than 10 GHz modulation speed, acoustic-optic devices (Ge) of more than 20 MHz modulation speed), the speed of the magnetic fluid based optical devices is low. Now there are many applications of magnetic fluid based on the refractive index in the field of optical information communication and sensing technology, such as tunable beam splitter, optical-fiber modulator, tunable optical gratings, tunable optical filter, optical logic device, tunable interferometer, and electromagnetic sensor. With the development of the research and application of magnetic fluid,a new method, structure and material to improve the response time can be found, which will play an important role in the fields of optical information communication and sensing technology.

Zhao, Yong; Zhang, Yuyan; Lv, Riqing; Wang, Qi

2011-12-01

223

Magnetic resonance imaging with an optical atomic magnetometer.  

PubMed

We report an approach for the detection of magnetic resonance imaging without superconducting magnets and cryogenics: optical atomic magnetometry. This technique possesses a high sensitivity independent of the strength of the static magnetic field, extending the applicability of magnetic resonance imaging to low magnetic fields and eliminating imaging artifacts associated with high fields. By coupling with a remote-detection scheme, thereby improving the filling factor of the sample, we obtained time-resolved flow images of water with a temporal resolution of 0.1 s and spatial resolutions of 1.6 mm perpendicular to the flow and 4.5 mm along the flow. Potentially inexpensive, compact, and mobile, our technique provides a viable alternative for MRI detection with substantially enhanced sensitivity and time resolution for various situations where traditional MRI is not optimal. PMID:16885210

Xu, Shoujun; Yashchuk, Valeriy V; Donaldson, Marcus H; Rochester, Simon M; Budker, Dmitry; Pines, Alexander

2006-08-22

224

The Loop I Superbubble and the Local Interstellar Magnetic Field  

NASA Astrophysics Data System (ADS)

Recent data on the interstellar magnetic field in the low density nearby interstellar medium suggest a new perspective for understanding interstellar clouds within 40 pc. The directions of the local interstellar magnetic field found from measurements of optically polarized starlight and the very local field found from the Ribbon of energetic neutral atoms discovered by IBEX nearly agree. The geometrical relation between the local magnetic field, the positions and kinematics of local interstellar clouds, and the Loop I S1 superbubble, suggest that the Sun is located in the boundary of this evolved superbubble. The quasiperpendicular angle between the bulk kinematics and magnetic field of the local ISM indicates that a complete picture of low density interstellar clouds needs to include information on the interstellar magnetic field.

Chapman Frisch, Priscilla

2014-08-01

225

Magnetic Field Line Simulation Using a Microcomputer.  

ERIC Educational Resources Information Center

Describes the implementation of a computer simulation of magnetic field lines. Discusses properties of magnetic fields and the calculation of magnetic fields at points. Provides a program listing (additional programs and teaching notes available from the author) and gives examples of several field plots. (JM)

Kirkup, L.

1986-01-01

226

The HMI Magnetic Field Pipeline  

NASA Astrophysics Data System (ADS)

The Helioseismic and Magnetic Imager (HMI) will provide frequent full-disk magnetic field data after launch of the Solar Dynamics Observatory (SDO), currently scheduled for fall 2009. 16 megapixel line-of-sight magnetograms (Blos) will be recorded every 45 seconds. A full set of polarized filtergrams needed to determine the vector magnetic field requires 90 seconds. Quick-look data will be available within a few minutes of observation. Quick-look space weather and browse products must have identified users, and the list currently includes full disk magnetograms, feature identification and movies, 12-minute disambiguated vector fields in active region patches, time evolution of AR indices, synoptic synchronic frames, potential and MHD model results, and 1 AU predictions. A more complete set of definitive science data products will be offered about a day later and come in three types. "Pipeline” products, such as full disk vector magnetograms, will be computed for all data on an appropriate cadence. A larger menu of "On Demand” products, such as Non-Linear Force Free Field snapshots of an evolving active region, will be produced whenever a user wants them. Less commonly needed "On Request” products that require significant project resources, such as a high resolution MHD simulation of the global corona, will be created subject to availability of resources. Further information can be found at the SDO Joint Science Operations Center web page, jsoc.stanford.edu

Hoeksema, Jon Todd; Liu, Y.; Schou, J.; Scherrer, P.; HMI Science Team

2009-05-01

227

Production and detection of atomic hexadecapole at Earth's magnetic field.  

PubMed

Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude. PMID:18648462

Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D

2008-07-21

228

Modeling graphene: Magnetic, transport and optical properties  

NASA Astrophysics Data System (ADS)

Graphene, with its unique linear dispersion near the Fermi energy, has attracted great attention since its successful isolation from highly oriented pyrolytic graphite in 2004. Many important properties have been identified in graphene, including a remarkably high mobility at room temperature, an unusual quantum hall effect, and an ambipolar electric field effect. It has been proposed as a candidate for many applications, such as optical modulators, spintronic devices, and solar cells. Understanding the fundamental properties of graphene is therefore important. In this dissertation, I present a study of transport, magnetism and optical properties of graphene. In the first chapter, I introduce the electronic properties of mono layer and few layer graphene. In the second chapter, I present low temperature transport measurements in few layer graphene. An electric-field induced semimetal-to-metal transition is observed based on the temperature dependence of the resistance for different applied gate voltages. At small gate voltages the resistance decreases with increasing temperature due to the increase in carrier concentration resulting from thermal excitation of electron-hole pairs, as it is characteristic of a semimetal. At large gate, voltages excitations of electron-hole pairs are suppressed, and the resistance increases with increasing temperature because of the decrease in mean free path due to electron-phonon scattering, as is characteristic of a metal. The electron and hole mobilities are almost equal, so there is approximate electron-hole symmetry. The data are analyzed according to two different theoretical models for few-layer graphene. A simple two band (STB) model, two overlapping bands with quadratic energy-versus-momentum dispersion relations, is used to explain the experimental observations. The best fitting parameter for the overlap energy is found to be 16 meV. However, at low temperatures, the STB suggests that the conductivity is gate independent in the small gate voltage regime, which is not observed in the data. By considering frustration of the electronic potential due to impurities from the substrate, a Gaussian-distribution puddle model can successfully describe the observed transport behavior in the low temperature, small gate voltage regime. In the third chapter, I investigate the effects of point and line defects in monolayer graphene within the framework of the Hubbard model, using a self-consistent mean field theory. These defects are found to induce characteristic patterns into the electronic density of states and cause non-uniform distributions of magnetic moments in the vicinity of the impurity sites. Specifically, defect induced resonances in the local density of states are observed at energies close to the Dirac points. The magnitudes of the frequencies of these resonance states are shown to decrease with the strength of the scattering potential, whereas their amplitudes decay algebraically with increasing distance from the defect. For the case of defect clusters, we observe that with increasing defect cluster size the local magnetic moments in the vicinity of the cluster center are strongly enhanced. Furthermore, non-trivial impurity induced magnetic patterns are observed in the presence of line defects: zigzag line defects are found to introduce stronger-amplitude magnetic patterns than armchair line defects. When the scattering strength of these topological defects is increased, the induced patterns of magnetic moments become more strongly localized. In the fourth chapter, I theoretically study the electronic properties properties in graphene dots under mechanical deformation, using both tight binding lattice model and effective Dirac model. We observed an edge state, which is tunned by an effective quantum well originating from a strain-induced gauge field. Applying a uniaxial strain along the zigzag or armchair directions enhances or dampens the edge state due to the development of edge quantum wells. When an arc bending deformation is applied, the inner and outer edges of graphene dot

Chang, Yi Chen

229

Large magnetic field instabilities induced by magnetic dipole transitions  

Microsoft Academic Search

We present a new mechanism that will limit very high magnetic fields which have been conjectured to exist in connection with some astrophysical phenomena. Low lying strongly interacting particles and resonances mixing with each other via magnetic dipole QED couplings force a vacuum instability for large external magnetic fields. These mixings limit fields to a few GeV2.

Myron Bander; H. R. Rubinstein

1992-01-01

230

Magnetic Resonance Imaging System Based on Earth's Magnetic Field  

Microsoft Academic Search

This article describes both the setup and the use of a system for magnetic resonance imaging (MRI) in the Earth's magnetic field. Phase instability caused by temporal fluctuations of Earth's field can be successfully improved by using a reference signal from a separate Earth's field nuclear magnetic resonance (NMR) spectrometer\\/magnetometer. In imaging, it is important to correctly determine the phase

Ales Mohoric; Gorazd Planinsic; Miha Kos; Andrej Duh; Janez Stepisnik

2004-01-01

231

Optical spin manipulation for minimal magnetic logic operations in metallic three-center magnetic clusters  

NASA Astrophysics Data System (ADS)

We present a first-principles scenario where a realistic three-magnetic-center metallic cluster acts as a prototypic magnetic-logic element within the frame of a unified optically induced spin manipulation. We find that the spins of the energetically low-lying triplet states of a Ni3Na2 cluster are always localized at a single magnetic center and that controlled spin flips and transfers are possible within a hundred femtoseconds with suitable static external magnetic field and laser pulses. The magnetic state or the position of the spins and the static magnetic field can be used as input bits while the output bit is the final state of the magnetic centers, thus the gates AND, OR, XOR (CNOT), and NAND can be built.

Hübner, Wolfgang; Kersten, Sander; Lefkidis, Georgios

2009-05-01

232

The Giotto magnetic field investigation  

Microsoft Academic Search

The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28\\/sec during close encounter,

F. M. Neubauer; G. Musmann; M. H. Acuna; L. F. Burlaga; N. F. Ness; F. Mariani; M. Wallis; E. Ungstrup; H. Schmidt

1983-01-01

233

Optical and Magnetic Properties of Dust Grains  

E-print Network

The optical and magnetic properties of dust grains are reviewed, as they relate to the problem of interstellar grain alignment. Grain geometry plays an important role in determining the optical properties, and scattering and absorption of starlight will produce radiative torques which may drive grains to suprathermal rates of rotation in interstellar clouds; these radiative torques appear likely to play an active role in the alignment process. The likely magnetic properties of grains are discussed, with particular attention to the imaginary part of the magnetic susceptibility.

B. T. Draine

1996-03-13

234

MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2  

E-print Network

MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value to the formation of an azimuthal rope of twisted magnetic field embedded within the global field, and to the energy

Fornberg, Bengt

235

Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer  

E-print Network

Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer H an ultrasensitive atomic magnetometer based on optically pumped potassium atoms operating in a spin . As an example of an application enabled by such a magnetometer, we describe measurements of weak remnant rock

Romalis, Mike

236

Development Trends in High Field Magnet Technology  

Microsoft Academic Search

The production of high magnetic fields using low temperature superconductors (LTS) has become common place. However, large magnet sizes and associated high cooling costs have often precluded the full utilization of these research capabilities. Recent advances in internal Sn superconductors and cryogen free technology have opened up a new era in superconducting magnet development. Ultra-compact, laboratory sized magnets producing fields

R. Harrison; R. Bateman; J. Brown; F. Domptail; C. M. Friend; P. Ghoshal; C. King; A. Van der Linden; Z. Melhem; P. Noonan; A. Twin; M. Field; S. Hong; J. Parrell; Y. Zhang

2008-01-01

237

Brass plasmoid in external magnetic field at different air pressures  

NASA Astrophysics Data System (ADS)

The behavior of expanding brass plasmoid generated by 266 nm wavelength of Nd:YAG laser in nonuniform magnetic field at different air pressures has been examined using optical emission spectroscopy and fast imaging of plasma plumes. The splitting of the plasma plumes and enhancement of intensity of Cu I at 510.5 nm in the presence of magnetic field at lower pressures are discussed. The threading and expulsion of the magnetic field lines through the plasmoid are correlated with the ambient pressure. The stoichiometry of the plasma plume is not significantly influenced by the magnetic field; however, the abundance of neutral to ionic species of Cu and Zn is greatly influenced by the magnetic field.

Patel, D. N.; Pandey, Pramod K.; Thareja, Raj K.

2013-10-01

238

Brass plasmoid in external magnetic field at different air pressures  

SciTech Connect

The behavior of expanding brass plasmoid generated by 266 nm wavelength of Nd:YAG laser in nonuniform magnetic field at different air pressures has been examined using optical emission spectroscopy and fast imaging of plasma plumes. The splitting of the plasma plumes and enhancement of intensity of Cu I at 510.5 nm in the presence of magnetic field at lower pressures are discussed. The threading and expulsion of the magnetic field lines through the plasmoid are correlated with the ambient pressure. The stoichiometry of the plasma plume is not significantly influenced by the magnetic field; however, the abundance of neutral to ionic species of Cu and Zn is greatly influenced by the magnetic field.

Patel, D. N.; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, UP 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, UP 208016 (India); Pandey, Pramod K. [WCI-Center for Quantum-Beam Based Radiation Research, Korea Atomic Energy Research Institute, Daojeon (Korea, Republic of)] [WCI-Center for Quantum-Beam Based Radiation Research, Korea Atomic Energy Research Institute, Daojeon (Korea, Republic of)

2013-10-15

239

Comparing Magnetic Fields on Earth and Mars  

NASA Video Gallery

This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

240

Measurements of Solar Vector Magnetic Fields  

NASA Technical Reports Server (NTRS)

Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

Hagyard, M. J. (editor)

1985-01-01

241

Plasma stability in a dipole magnetic field  

E-print Network

The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field ...

Simakov, Andrei N., 1974-

2001-01-01

242

What Are Electric and Magnetic Fields? (EMF)  

MedlinePLUS

What are Electric and Magnetic Fields? (EMF) Electric and Magnetic Fields Electricity is an essential part of our lives. Electricity powers all sorts of things around us, from computers to refrigerators ...

243

Primordial magnetic field limits from cosmological data  

SciTech Connect

We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi, GE-0128 (Georgia); Sethi, Shiv K. [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Pandey, Kanhaiya [Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)

2010-10-15

244

Magnetic-Field Processing of Industrial Effluents  

Microsoft Academic Search

• the field acts on pollutants in the colloidal state; and • the field influences the structure of the water. Magnetic treatment is simple, safe, and very inexpensive, but a patent search under the topic “Magnetic treatment of water and aqueous solutions” has shown that the existing devices and methods for using magnetic fields to process effluents containing heavy-metal ions

V. P. Malkin

2002-01-01

245

Magnetic field navigation in an indoor environment  

Microsoft Academic Search

This paper describes a method that has been developed to aid an inertial navigation system when GNSS signals are not available, by taking advantage of the uniqueness of magnetic field variations. Most indoor environments have many different features (ferrous structural materials or contents, electrical currents, etc.) which perturb the Earths natural magnetic field. The variations in the magnetic field in

William Storms; Jeremiah Shockley; John Raquet

2010-01-01

246

CORONAL MAGNETIC FIELD MEASUREMENTS THROUGH GYRORESONANCE EMISSION  

E-print Network

Chapter 5 CORONAL MAGNETIC FIELD MEASUREMENTS THROUGH GYRORESONANCE EMISSION Stephen M. White This article reviews the use of gyroresonance emission at radio wavelengths to measure coronal magnetic fields probes of the magnetic field strength above active regions, and this unique capability is one

White, Stephen

247

Appendix E: Software MEASURING CONSTANT MAGNETIC FIELD  

E-print Network

E - 1 Appendix E: Software MEASURING CONSTANT MAGNETIC FIELD (THE HALL PROBE APPLICATION) Basics yourself with the equipment. The software package that works in tandem with your magnetic field sensor is written in LabVIEWTM. It allows you to measure and record magnetic field strength as a function

Minnesota, University of

248

Quenching of flames by magnetic fields (abstract)  

Microsoft Academic Search

The effects of magnetic fields on combustion of alcohol with the aid of platinum catalysis have been studied to simulate in part the oxidation of organic matter in the living body, and it has been found that the combustion reactions are influenced by magnetic fields. It has also been observed that candle flames are pressed down by magnetic fields of

S. Ueno

1988-01-01

249

Applied Magnetic Field Enhances Arc Vapor Deposition  

NASA Technical Reports Server (NTRS)

Applied magnetic field enhances performance of vaporization part of arc vapor deposition apparatus. When no magnetic field applied by external means, arc wonders semirandomly over cathode, with net motion toward electrical feedthrough. When magnetic field applied arc moves circumferentially around cathode, and downward motion suppressed.

Miller, T. A.; Loutfy, R. O.; Withers, J. C.

1993-01-01

250

A low-temperature dynamic mode scanning force microscope operating in high magnetic fields  

E-print Network

-field optical microscope designed for operation at low temperatures.5 In this setup, an optical fiber is glued scanning near field optical microscopy,5,7­10 magnetic force microscopy,11 and acoustic near field as a friction- force sensor. The advantages of these piezoelectric sensors are the availability, the low cost

Ihn, Thomas

251

Field-gradient-induced second-harmonic generation in magnetized vacuum A. E. Kaplan1  

E-print Network

Field-gradient-induced second-harmonic generation in magnetized vacuum A. E. Kaplan1 and Y. J. Ding magnetic field. If observed, these effects may provide a fundamental optical test of QED. From any proposal 13 of laser-induced SHG in vacuum in the presence of a dc magnetic field has been criticized from

Kaplan, Alexander

252

Field-Sensitive Materials for Optical Applications.  

National Technical Information Service (NTIS)

The purpose of investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD (Department of Defense) applications such as: membrane optics, fil...

S. H. Choi, M. Little

2002-01-01

253

Effects of magnetic fields on fibrinolysis  

NASA Astrophysics Data System (ADS)

In this study, we investigated the possible effects of magnetic fields on the fibrinolytic process. Fibrin dissolution was observed and the fibrinolytic activities were evaluated. First, fibrinolytic processes in magnetic fields were investigated by the fibrin plate method. We gathered solutions from the dissolved fibrin, and measured mean levels of fibrin degradation products (FDPs) in solutions. Mean levels of FDPs exposed to 8 T magnetic fields were higher than those not exposed to fields. Second, we carried out an experiment to understand how fibrin oriented in a magnetic field dissolves. FDPs in solutions of dissolved fibrins in fibrin plates were assayed. The result was that fibrin gels formed in a magnetic field at 8 T were more soluble than those not formed in a magnetic field. A model based on the diamagnetic properties of macromolecules was explained, and changes of protein concentrations in a solution in gradient magnetic fields were predicted.

Iwasaka, M.; Ueno, S.; Tsuda, H.

1994-05-01

254

Magnetic monopole and the nature of the static magnetic field  

E-print Network

We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

Xiuqing Huang

2008-12-10

255

Heliospheric magnetic fields and plasmas  

NASA Technical Reports Server (NTRS)

A survey of the existing literature on heliospheric physics, covering the period 1972-1982, is presented. Attention is given to observations and theories germane to the examination of the heliosphere as a large-scale astrophysical system that is part of the earth's environment. The literature includes data and models for magnetic sectors and the large-scale magnetic field, the large-scale plasma structure, and models and observed variations in the solar wind. Consideration is also devoted to the transient and corotating streams and shocks, the composition of the solar wind, and to MHD turbulence, waves, and discontinuities. More intensive investigations of the region near 1 AU are recommended, particularly to characterize the coronal source of the solar wind. The solar polar mission will be the first to provide radial measurements for comparisons with previous exclusively ecliptic measurements of solar activities.

Burlaga, L. F.

1983-01-01

256

The Giotto magnetic field investigation  

NASA Technical Reports Server (NTRS)

The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.

Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.

1983-01-01

257

Nonlinear optical properties of the magnetized QED Vacuum  

Microsoft Academic Search

New processes associated with the nonlinear optical properties of the\\u000aelectromagnetic vacuum, as predicted by quantum electrodynamics are described.\\u000aWe consider the presence of a static and a rotating magnetic field. The cases\\u000aof harmonic generation and two different types of sideband cascades are\\u000aconsidered. First order and second order effects with respect to the external\\u000amagnetic field are discussed

J. T. Mendonca

2007-01-01

258

Magnetic Helicity and Large Scale Magnetic Fields: A Primer  

E-print Network

Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. H...

Blackman, Eric G

2014-01-01

259

Magnetic field perturbations in the systems where only poloidal magnetic field is present*  

E-print Network

1 Magnetic field perturbations in the systems where only poloidal magnetic field is present* D In some plasma confinement systems the confinement is provided by a poloidal magnetic field (no toroidal magnetic field is present). Examples include FRC, levitated dipoles, and long diffuse pinches. We consider

260

Magnetic Fields1 Increasingly, instruments that generate large static magnetic fields (e.g., NMR spectrometers,  

E-print Network

Magnetic Fields1 Increasingly, instruments that generate large static magnetic fields (e.g., NMR spectrometers, MRI) are present in research laboratories. Such magnets typically have fields of 14,000 to 235,000 G (1.4 to 23.5 T), far above that of Earth's magnetic field, which is approximately 0.5 G

Shull, Kenneth R.

261

The magnetic field over the Southern African continent: from core to crustal magnetic fields  

Microsoft Academic Search

Secular magnetic field evolutions do not proceed in a regular way all over the Earth. In some regions like Southern Africa, the field has been changing more rapidly than elsewhere. During the last five decades, the Earth's magnetic field has been represented in spherical harmonics from a series of measurements that were generally obtained at magnetic field observatories. Unfortunately, magnetic

Erwan Thébault; Pieter Kotze; Arnaud Chulliat; Fotini Vervelidou

2010-01-01

262

Near-infrared magneto-optical study of excitonic states in single-walled carbon nanotubes under ultra-high magnetic fields  

NASA Astrophysics Data System (ADS)

Singlet excitonic states at the first subband-edge in single-walled carbon nanotubes (SWCNTs) have been studied through near-infrared magneto-absorption spectroscopy under magnetic fields to 105.9 T. Well-resolved absorption spectra of stretch-aligned SWCNT(CoMoCAT)-gelatin films were obtained above 100 T. By the application of magnetic fields in parallel to the alignment of SWCNTs, peak shift toward the lower energy was observed for (8, 4) and (7, 6) tubes and the opposite behavior was observed for (7, 5) and (6, 5) tubes. Above 28.8 T, new peaks emerged at the higher energy side of the peak for the (8, 4) and (7, 6) tubes, and at the lower energy side of the peaks for the (7, 5) and (6, 5) tubes. The magnetic splitting between the existing peak and the new peak was symmetric for every tube, which is in line with the energy splitting due to the Aharonov-Bohm effect. Judging from the energetic positions where the new peaks emerged, the singlet dark excitonic state locates at the lower energy than the singlet bright one in the (7, 5) and (6, 5) tubes while it is suggested strongly that the bright one locates at the lower energy in the (8, 4) and (7, 6) tubes.

Yokoi, H.; Effendi, Mukhtar; Minami, N.; Takeyama, S.

2011-12-01

263

Persistent optically induced magnetism in oxygen-deficient strontium titanate.  

PubMed

Strontium titanate (SrTiO3) is a foundational material in the emerging field of complex oxide electronics. Although its bulk electronic and optical properties are rich and have been studied for decades, SrTiO3 has recently become a renewed focus of materials research catalysed in part by the discovery of superconductivity and magnetism at interfaces between SrTiO3 and other non-magnetic oxides. Here we illustrate a new aspect to the phenomenology of magnetism in SrTiO3 by reporting the observation of an optically induced and persistent magnetization in slightly oxygen-deficient bulk SrTiO3-? crystals using magnetic circular dichroism (MCD) spectroscopy and SQUID magnetometry. This zero-field magnetization appears below ~18 K, persists for hours below 10 K, and is tunable by means of the polarization and wavelength of sub-bandgap (400-500 nm) light. These effects occur only in crystals containing oxygen vacancies, revealing a detailed interplay between magnetism, lattice defects, and light in an archetypal complex oxide material. PMID:24658116

Rice, W D; Ambwani, P; Bombeck, M; Thompson, J D; Haugstad, G; Leighton, C; Crooker, S A

2014-05-01

264

Persistent optically induced magnetism in oxygen-deficient strontium titanate  

NASA Astrophysics Data System (ADS)

Strontium titanate (SrTiO3) is a foundational material in the emerging field of complex oxide electronics. Although its bulk electronic and optical properties are rich and have been studied for decades, SrTiO3 has recently become a renewed focus of materials research catalysed in part by the discovery of superconductivity and magnetism at interfaces between SrTiO3 and other non-magnetic oxides. Here we illustrate a new aspect to the phenomenology of magnetism in SrTiO3 by reporting the observation of an optically induced and persistent magnetization in slightly oxygen-deficient bulk SrTiO3-? crystals using magnetic circular dichroism (MCD) spectroscopy and SQUID magnetometry. This zero-field magnetization appears below ~18 K, persists for hours below 10 K, and is tunable by means of the polarization and wavelength of sub-bandgap (400-500 nm) light. These effects occur only in crystals containing oxygen vacancies, revealing a detailed interplay between magnetism, lattice defects, and light in an archetypal complex oxide material.

Rice, W. D.; Ambwani, P.; Bombeck, M.; Thompson, J. D.; Haugstad, G.; Leighton, C.; Crooker, S. A.

2014-05-01

265

Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization  

DOEpatents

In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

2000-12-19

266

Magnetic fluid flow phenomena in DC and rotating magnetic fields  

E-print Network

An investigation of magnetic fluid experiments and analysis is presented in three parts: a study of magnetic field induced torques in magnetorheological fluids, a characterization and quantitative measurement of properties ...

Rhodes, Scott E. (Scott Edward), 1981-

2004-01-01

267

Magnetic field effects on microwave absorbing materials  

NASA Technical Reports Server (NTRS)

The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

1991-01-01

268

Problems with magnetic field measurements on spacecrafts  

Microsoft Academic Search

The paper summarizes the difficulties and possible solutions to design and evaluate accurate vector magnetic field measurements on spacecrafts in the interplanetary magnetic field. Problems are discussed like calibration, boom mounted sensors and misalignment angles determination in flight. The application of a detailed magnetic cleanliness program as an example the comet Halley-Giotto spacecraft is demonstrated in detail. The use of

Günter Musmann

1988-01-01

269

Neutrinos with Mixing in Twisting Magnetic Fields  

E-print Network

Transitions in a system of neutrinos with vacuum mixing and magnetic moments, propagating in matter and transverse magnetic field, are considered. It is shown that in the realistic case of magnetic field direction varying along the neutrino path qualitatively new phenomena become possible: permutation of neutrino conversion resonances, appearance of resonances in the neutrino-antineutrino ($\

E. Kh. Akhmedov; S. T. Petcov; A. Yu. Smirnov

1993-01-06

270

Discovery of magnetic fields in CPNs  

E-print Network

For the first time we have directly detected magnetic fields in central stars of planetary nebulae by means of spectro-polarimetry with FORS1 at the VLT. In all four objects of our sample we found kilogauss magnetic fields, in NGC 1360 and LSS1362 with very high significance, while in Abell36 and EGB5 the existence of a magnetic field is probable but with less certainty. This discovery supports the hypothesis that the non-spherical symmetry of most planetary nebulae is caused by magnetic fields in AGB stars. Our high discovery rate demands mechanisms to prevent full conservation of magnetic flux during the transition to white dwarfs.

S. Jordan; K. Werner; S. J. O'Toole

2004-10-21

271

All-optical high-resolution magnetic resonance using a nitrogen-vacancy spin in diamond  

E-print Network

We propose an all-optical scheme to prolong the quantum coherence of a negatively charged nitrogen-vacancy (NV) center in diamond. Optical control of the NV spin suppresses energy fluctuations of the $^{3}\\text{A}_{2}$ ground states and forms an energy gap protected subspace. By optical control, the spectral linewidth of magnetic resonance is much narrower and the measurement of the frequencies of magnetic field sources has higher resolution. The optical control also improves the sensitivity of the magnetic field detection and can provide measurement of the directions of signal sources.

Zhen-Yu Wang; Jian-Ming Cai; Alex Retzker; Martin B. Plenio

2014-04-04

272

Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields  

E-print Network

We demonstrate an all-optical $^{133}$Cs scalar magnetometer, operating in nonzero magnetic field,in which the magnetic resonance is driven by an effective oscillating magnetic field provided by the AC Stark shift of an intensity-modulated laser beam. We achieve a projected shot-noise-limited sensitivity of 1.7 fT/Hz$^{1/2}$ and measure a technical noise floor of 40 fT/Hz$^{1/2}$. These results are essentially identical to a coil-driven scalar magnetometer using the same setup. This all-optical scheme offers advantages over traditional coil-driven magnetometers for use in arrays and in magnetically sensitive fundamental physics experiments e.g., searches for a permanent electric dipole moment of the neutron.

Zhivun, Elena; Patton, Brian; Budker, Dmitry

2014-01-01

273

Unique topological characterization of braided magnetic fields  

SciTech Connect

We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.

Yeates, A. R. [Department of Mathematical Sciences, Durham University, Durham DH1 3LE (United Kingdom); Hornig, G. [Division of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom)

2013-01-15

274

Magnetic resonance imaging with an optical atomicmagnetometer  

SciTech Connect

Magnetic resonance imaging (MRI) is a noninvasive andversatile methodology that has been applied in many disciplines1,2. Thedetection sensitivity of conventional Faraday detection of MRI depends onthe strength of the static magnetic field and the sample "fillingfactor." Under circumstances where only low magnetic fields can be used,and for samples with low spin density or filling factor, the conventionaldetection sensitivity is compromised. Alternative detection methods withhigh sensitivity in low magnetic fields are thus required. Here we showthe first use of a laser-based atomic magnetometer for MRI detection inlow fields. Our technique also employs remote detection which physicallyseparates the encoding and detection steps3-5, to improve the fillingfactor of the sample. Potentially inexpensive and using a compactapparatus, our technique provides a novel alternative for MRI detectionwith substantially enhanced sensitivity and time resolution whileavoiding the need for cryogenics.

Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

2006-05-09

275

Bipolar pulse field for magnetic refrigeration  

DOEpatents

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

Lubell, M.S.

1994-10-25

276

Advances in Remote Sensing of Magnetic Fields  

NASA Astrophysics Data System (ADS)

In sharp contrast to stellar magnetic fields, geomagnetic fields have never been remotely sensed. If geomagnetic fields could be measured remotely at the nanotesla (nT) level or better, our understanding of the processes that produce these fields would advance markedly. Unlike characteristics such as topography and temperature, measurements of the magnetic field are determined almost exclusively in situ. The inability to remotely sense these fields has hindered their utility. The Remote Atmospheric Magnetics Workshop highlighted advances in this frontier area, focusing on lab- and field-based studies.

Purucker, Michael

2014-09-01

277

Franck-Hertz experiment in magnetic field  

E-print Network

The paper studies the impact of applied magnetic field on the inelastic collisions of electrons with argon atoms. In the electron-argon Franck-Hertz experiment, the influence of applied magnetic field emerges complicated features, and is equivalent to that of the temperature. In case the accelerating electric intensity becomes strong enough, enlarging magnetic flux density will be equivalent to the increasing of oven temperature. When the accelerating electric intensity is very weak and the applied magnetic field occupies a dominant position, enhancing magnetic flux density is identical with the decreasing of oven temperature. And the non-uniform distribution of applied magnetic field has an influence on the inelastic collision as well. The study claims that the influence of magnetic field variation is equivalent to that of temperature variety, and that it leads the electron energy to transfer obviously in the experiment.

Ying Weng; Zi-Hua Weng

2010-10-07

278

Electric-field control of magnetic domain wall motion and local magnetization reversal.  

PubMed

Spintronic devices currently rely on magnetic switching or controlled motion of domain walls by an external magnetic field or spin-polarized current. Achieving the same degree of magnetic controllability using an electric field has potential advantages including enhanced functionality and low power consumption. Here we report on an approach to electrically control local magnetic properties, including the writing and erasure of regular ferromagnetic domain patterns and the motion of magnetic domain walls, in CoFe-BaTiO(3) heterostructures. Our method is based on recurrent strain transfer from ferroelastic domains in ferroelectric media to continuous magnetostrictive films with negligible magnetocrystalline anisotropy. Optical polarization microscopy of both ferromagnetic and ferroelectric domain structures reveals that domain correlations and strong inter-ferroic domain wall pinning persist in an applied electric field. This leads to an unprecedented electric controllability over the ferromagnetic microstructure, an accomplishment that produces giant magnetoelectric coupling effects and opens the way to electric-field driven spintronics. PMID:22355770

Lahtinen, Tuomas H E; Franke, Kévin J A; van Dijken, Sebastiaan

2012-01-01

279

Magnetic Fields and Rotations of Protostars  

E-print Network

The evolution of the magnetic field and angular momentum in the collapsing cloud core is studied using three-dimensional resistive MHD nested grid simulations. Starting with a Bonnor-Ebert isothermal cloud rotating in a uniform magnetic field, we calculate the cloud evolution from the molecular cloud core (n=10^4 cm^-3) to the stellar core (n \\simeq 10^22 cm^-3). The magnetic field strengths at the center of the clouds converge to a certain value as the clouds collapse, when the clouds have the same angular momenta but different strengths of the magnetic fields at the initial state. For 10^12 cm^-3 magnetic field from the collapsing cloud core, and the magnetic field lines, which are strongly twisted for n magnetic field lines are twisted and amplified again for nc > 10^16 cm^-3, because the magnetic field is recoupled with the warm gas. Finally, protostars at their formation epoch have 0.1-1kG of the magnetic fields, which are comparable to observations. The magnetic field strength of protostar slightly depends on the angular momentum of the host cloud. The protostar formed from the slowly rotating cloud core has a stronger magnetic field. The evolution of the angular momentum is closely related to the evolution of the magnetic field. The angular momentum in the collapsing cloud is removed by the magnetic effect. The formed protostars have 0.1-2 days of the rotation period at their formation epoch, which are slightly shorter than the observation. This indicates that the further removal mechanism of the angular momentum such as interaction between the protostar and disk, wind gas or jet is important in further evolution of the protostar.

Masahiro N. Machida; Shu-ichiro Inutsuka; Tomoaki Matsumoto

2007-02-07

280

High-beta Injection into a Magnetic Mirror Field  

Microsoft Academic Search

Axial lnjection of a high-density helium plasma into a magnetic mirror ; is experimentally studied. Observations of the plasma-field interaction are made ; with magnetic probes, electrostatic probes, piezoelectric probes, and an optical ; monochromator that analyzes emission-line profiles. In the central plane of the ; mirror a density of (2 plus or minus 1) x 10¹⁵ ions\\/cm³ and a

F. R. Scott; O. C. Eldridge Jr.

1961-01-01

281

Measuring T Tauri star magnetic fields  

Microsoft Academic Search

Stellar magnetic fields including a strong dipole component are believed to play a critical role in the early evolution of newly formed stars and their circumstellar accretion disks. It is currently believed that the stellar magnetic field truncates the accretion disk several stellar radii above the star. This action forces accreting material to flow along the field lines and accrete

Christopher M. Johns-Krull

2009-01-01

282

DC-based magnetic field controller  

DOEpatents

A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

1994-01-01

283

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

2013-12-01

284

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

Plank, Gernot; Haagmans, Roger; Floberghagen, Rune; Menard, Yvon

2013-04-01

285

Comparing magnetic field extrapolations with measurements of magnetic loops  

E-print Network

We compare magnetic field extrapolations from a photospheric magnetogram with the observationally inferred structure of magnetic loops in a newly developed active region. This is the first time that the reconstructed 3D-topology of the magnetic field is available to test the extrapolations. We compare the observations with potential fields, linear force-free fields and non-linear force-free fields. This comparison reveals that a potential field extrapolation is not suitable for a reconstruction of the magnetic field in this young, developing active region. The inclusion of field-line-parallel electric currents, the so called force-free approach, gives much better results. Furthermore, a non-linear force-free computation reproduces the observations better than the linear force-free approximation, although no free parameters are available in the former case.

T. Wiegelmann; A. Lagg; S. K. Solanki; B. Inhester; J. Woch

2008-01-29

286

Magnetic Fields in Clusters of Galaxies  

E-print Network

A brief overview about our knowledge on galaxy cluster magnetic fields is provided. Emphasize is given to the mutual dependence of our knowledge on relativistic particles in galaxy clusters and the magnetic field strength. Furthermore, we describe efforts to measure magnetic field strengths, characteristic length-scales, and power-spectra with reliable accuracy. An interpretation of these results in terms of non-helical dynamo theory is given. If this interpretation turns out to be correct, the understanding of cluster magnetic fields is directly connected to our understanding of intra-cluster turbulence.

Torsten A. Ensslin; Corina Vogt; Christoph Pfrommer

2005-01-17

287

Ferroelectric Cathodes in Transverse Magnetic Fields  

SciTech Connect

Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

2002-07-29

288

Statistics of magnetic fields on OBA stars  

NASA Astrophysics Data System (ADS)

Starting from recent measurements, we studied the statistical properties of the magnetic fields of OBA stars. As one of the statistically significant characteristics of the magnetic field we use the average effective magnetic field of the star, < B>. We then investigated the distribution function f() of the magnetic fields of OBA stars. This function has a power-law dependence on , with an index of 2-3 and a fast decrease for ? 300 G for B-A stars and ? 80 G for O stars.

Kholtygin, A. F.; Hubrig, S.; Drake, N. A.; Sudnik, N. P.; Dushin, V. V.

2014-11-01

289

Magnetic monopole field exposed by electrons  

NASA Astrophysics Data System (ADS)

The experimental search for magnetic monopole particles has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study. Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle. We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole. This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.

Béché, Armand; van Boxem, Ruben; van Tendeloo, Gustaaf; Verbeeck, Jo

2014-01-01

290

Magnetic field screening effect in electroweak model  

E-print Network

It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of that phenomenon is conditioned by features of the electro-weak interaction, namely, there is mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that corresponding magnetic bound state exists in the electroweak theory and can be detected in experiment.

Bakry, A; Zhang, P M; Zou, L P

2014-01-01

291

Numerical analysis of magnetic field in superconducting magnetic energy storage  

SciTech Connect

This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.

Kanamaru, Y. (Kanazawa Inst. of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921 (JP)); Amemiya, Y. (Chiba Inst. of Tech., Narashino (Japan))

1991-09-01

292

Reducing Field Distortion in Magnetic Resonance Imaging  

NASA Technical Reports Server (NTRS)

A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

2010-01-01

293

Destruction of magnetic surfaces by magnetic field irregularities: Part II  

Microsoft Academic Search

The present work is a continuation of the paper by Rosenbluth et al. (Nucl. Fusion 6 (1966) 297) and concerns the investigation of problems associated with the condition for the existence of magnetic surfaces in closed systems of the stellarator type. The unperturbed geometry of the magnetic field is produced by a straight helical field. Exact equations for the motion

N. N. Filonenko; R. Z. Sagdeev; G. M. Zaslavskii

1967-01-01

294

Cosmic Magnetic Fields (IAU S259)  

NASA Astrophysics Data System (ADS)

Preface K. G. Strassmeier, A. G. Kosovichev and J. E. Beckman; Organising committee; Conference photograph; Conference participants; Session 1. Interstellar magnetic fields, star-forming regions and the Death Valley Takahiro Kudoh and Elisabeta de Gouveia Dal Pino; Session 2. Multi-scale magnetic fields of the Sun; their generation in the interior, and magnetic energy release Nigel O. Weiss; Session 3. Planetary magnetic fields and the formation and evolution of planetary systems and planets; exoplanets Karl-Heinz Glassmeier; Session 4. Stellar magnetic fields: cool and hot stars Swetlana Hubrig; Session 5. From stars to galaxies and the intergalactic space Dimitry Sokoloff and Bryan Gaensler; Session 6. Advances in methods and instrumentation for measuring magnetic fields across all wavelengths and targets Tom Landecker and Klaus G. Strassmeier; Author index; Object index; Subject index.

Strassmeier, Klaus G.; Kosovichev, Alexander G.; Beckman, John E.

2009-06-01

295

SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES  

SciTech Connect

We present self-consistent high-resolution simulations of NGC 4038/4039 (the 'Antennae galaxies') including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10{sup -9} to 10{sup -4} G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of {approx}10 {mu}G, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Dolag, K.; Stasyszyn, F. A., E-mail: kotarba@usm.lmu.d [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

2010-06-20

296

Critical behavior of zero-field magnetic fluctuations in perpendicularly magnetized thin films  

NASA Astrophysics Data System (ADS)

We use video-rate magneto-optical Kerr effect microscopy to study zero-field magnetic fluctuations in a perpendicularly magnetized cobalt film at room temperature, prepared near a spin reorientation transition. Globally, the film has zero net moment but local areas continually undergo thermal magnetic fluctuations between saturated states. Position resolved hysteresis loops show the fluctuations occur at sample locations close to the spin reorientation transition. Furthermore, nearby fluctuations interact magnetostatically, acting to maintain the overall zero net magnetization. The measured scaling exponent of the fluctuation areas ? is consistent with 4 /3 .

Balk, A. L.; Stiles, M. D.; Unguris, J.

2014-11-01

297

Nonconservative electric and magnetic optical forces on submicron dielectric particles  

SciTech Connect

We present a study of the total force on a small lossless dielectric particle, which presents both an electric and magnetic response, in a optical vortex wave field. We show that the force is a simple combination of conservative and nonconservative steady forces that can rectify the flow of magnetodielectric particles. In a vortex lattice the electric-magnetic dipolar interaction can spin the particles either in or out of the whirl sites leading to trapping or diffusion. Specifically, we analyze force effects on submicron silicon spheres in the near infrared, proving that the results previously discussed for hypothetical magnetodielectric particles can be observed for these Si particles.

Gomez-Medina, Raquel; Nieto-Vesperinas, Manuel [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, Madrid E-28049 (Spain); Saenz, Juan Jose [Departamento de Fisica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Donostia International Physics Center (DIPC), Paseo Manuel Lardizabal 4, 20018 Donostia-San Sebastian (Spain)

2011-03-15

298

Optically induced magnetic polarons in EuTe  

SciTech Connect

Direct measurements of the photoinduced magnetization in EuTe, using a two color pump-and-probe technique, are presented. The photoinduced effect was pumped using photons of above-the-bandgap energy, and detected by the Faraday rotation of a probe beam of energy below-the-bandgap. The photoinduced Faraday rotation changes sign, as expected from our model for the optically induced magnetic polaron. The EuTe spin-flop transition at low fields is also detected as a sharp step in the photoinduced Faraday rotation, and its observation provides additional supports for the photoinduced polaron model.

Henriques, A. B.; Galgano, G. D. [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970, São Paulo (Brazil); Abramof, E.; Rappl, P. H. O. [LAS - INPE, Av. Dos Astronautas, 1758, 12227-010, São José dos Campos (Brazil)

2013-12-04

299

Atoms in Crossed Electric and Magnetic Fields  

NASA Astrophysics Data System (ADS)

In this dissertation, extensive experimental and theoretical work pertaining to three interesting aspects of the interaction of atoms with crossed electric and magnetic fields is presented. The first experiment discussed deals with the effects of weak crossed fields on sodium atoms. A fluorescence spectrum of laser excited sodium n = 11 states in an electric field of 2560 V/cm perpendicular to a magnetic field of 4.4 kG is presented, along with a comparison to theory. The data show the important effects of m-mixing and residual degeneracies which remain in the crossed fields. The next topic presented is the theoretical prediction of novel resonances, termed "quasi-Penning resonances," corresponding to electron states localized away from the nucleus at the Stark saddlepoint in strong crossed electric and magnetic fields. The stability and possibility for observation of these resonances is explored. Finally, extensive experimental maps of data are presented which compare laser induced ionization spectra of sodium atoms in crossed electric and magnetic fields to spectra in an electric field atone. The experiment explores the energy region of the electric field saddlepoint, where quasi-Penning resonances are predicted to occur. The magnetic field is too weak for the observation of these resonances, but the experiment provides important groundwork for the understanding of future experiments in strong crossed fields. The magnetic field is seen to cause splitting of some transitions due to the interaction of the electron spin with the magnetic field. Also, magnetic field induced state mixing causes a redistribution of oscillator strengths leading to changes in peak heights and auto-ionizing line widths. On the whole, however, the effect of the weak crossed magnetic field on the sodium Stark spectra remains small.

Korevaar, Eric John

1987-09-01

300

Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection  

DOEpatents

A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

Xu,Shoujun (Berkeley, CA); Lowery, Thomas L. (Belmont, MA); Budker, Dmitry (El Cerrito, CA); Yashchuk, Valeriy V. (Richmond, CA); Wemmer, David E. (Berkeley, CA); Pines, Alexander (Berkeley, CA)

2009-08-11

301

A Novel Electro-Optical Magnetic Microsensor with Reducing Interference Packaging  

Microsoft Academic Search

A novel electro-optical magnetic microsensor with reducing interference packaging mechanism for sensing magnetic field strength is demonstrated. Both capacitive and optical fiber sensing microstructures surrounded magnetic shields are fabricated in a chip using low temperature silicon-based MEMS compatible technology. Varied NiFe permalloy flaps embedded on polyimide membranes were used as flexible sensing mechanisms to actuate side-polished fiber and capacitor plate.

Hsing-Cheng Chang; San-Shan Hung; Chingfu Tsou; Wen-Fung Liu; Chi-Chih Lai; Ching-Shang Jian

2007-01-01

302

Birefringence of silica hydrogels prepared under high magnetic fields reinvestigated  

E-print Network

Birefringence is an indicator of structural anisotropy of materials. We measured the birefringence of Pb(II)-doped silica hydrogels prepared under a high magnetic field of various strengths. Because the silica is diamagnetic, one does not expect the structural anisotropy induced by a magnetic field. In previous work [Mori A, Kaito T, Furukawa H 2008 Mater. Lett. 62 3459-3461], we prepared samples in cylindrical cells made of borosilicate glass and obtained a preliminary result indicating a negative birefringence for samples prepared at 5T with the direction of the magnetic field being the optic axis. We have measured the birefringence of Pn(II)-doped silica hydrogels prepared in square cross-sectional cells made of quartz and reverted the previous conclusion. Interestingly, the magnetic-influenced silica hydrogels measured have been classified into four classes: two positive birefringent ones, no birefringent one, and negative birefringent one. Proportionality between birefringence and the strength of magneti...

Mori, Atsushi; Furukawa, Hidemitsu; Yamato, Masafumi; Takahashi, Kohki

2014-01-01

303

Calculation of magnetic fields for engineering devices  

Microsoft Academic Search

This paper deals with the methodology of magnet technology and its application to various engineering devices. Magnet technology has experienced a rapid growth in the past few years as a result of the advances made in superconductivity, numerical methods and computational techniques. Specifically, this paper concerns itself with: (a) Mathematical models for solving magnetic field problems; (b) The applicability, usefulness,

John S. Colonias

1976-01-01

304

The Evolution of the Earth's Magnetic Field.  

ERIC Educational Resources Information Center

Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

Bloxham, Jeremy; Gubbins, David

1989-01-01

305

Coronal magnetic fields and the solar wind  

NASA Technical Reports Server (NTRS)

Current information is presented on coronal magnetic fields as they bear on problems of the solar wind. Both steady state fields and coronal transient events are considered. A brief critique is given of the methods of calculating coronal magnetic fields including the potential (current free) models, exact solutions for the solar wind and field interaction, and source surface models. These solutions are compared with the meager quantitative observations which are available at this time. Qualitative comparisons between the shapes of calculated magnetic field lines and the forms visible in the solar corona at several recent eclipses are displayed. These suggest that: (1) coronal streamers develop above extended magnetic arcades which connect unipolar regions of opposite polarity; and (2) loops, arches, and rays in the corona correspond to preferentially filled magnetic tubes in the approximately potential field.

Newkirk, G., Jr.

1972-01-01

306

Magnetic field decay in model SSC dipoles  

SciTech Connect

We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

1988-08-01

307

Protecting SQUID metamaterials against stray magnetic fields  

NASA Astrophysics Data System (ADS)

Using superconducting quantum interference devices (SQUIDs) as the basic, low-loss elements of thin-film metamaterials has one main advantage: their resonance frequency is easily tunable by applying a weak magnetic field. The downside, however, is a strong sensitivity to stray and inhomogeneous magnetic fields. In this work, we demonstrate that even small magnetic fields from electronic components destroy the collective, resonant behaviour of the SQUID metamaterial. We also show how the effect of these fields can be minimized. As a first step, magnetic shielding decreases any initially present fields, including the earth’s magnetic field. However, further measures such as improvements in the sample geometry have to be taken to avoid the trapping of Abrikosov vortices.

Butz, S.; Jung, P.; Filippenko, L. V.; Koshelets, V. P.; Ustinov, A. V.

2013-09-01

308

Graphene Nanoribbon in Sharply Localized Magnetic Fields  

E-print Network

We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.

Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal

2011-03-21

309

Magneto-optical studies of magnetization processes in high-Tc superconductors structure.  

SciTech Connect

Magneto-optical imaging is a powerful tool for nondestructive quality control and scientific research through visualization of magnetic fields around any magnetic flux or current carrying sample. It allows real time observations of domain structures and their transformations in magnetics, static and dynamic field patterns due to inhomogeneous currents in electric circuits and superconductors, and reveals distortions of the fields due to defects. In addition to qualitative pictures showing different details in the intensities of the magneto-optical images, one can obtain quantitative maps of field distributions and retrieve values of the underlying currents or magnetization variations. In this review we discuss the advantages of magneto-optics for studies of superconductors, show its place among other techniques, and report recent results in magneto-optical investigations of high temperature superconductors (HTS).

Vlasko-Vlasox, V. K.

1998-12-02

310

Magneto-optical study of magnetic-flux penetration into a current-carrying high-temperature-superconductor strip  

E-print Network

of magnetic-flux penetration into high-temperature superconductor HTSC films have been extensively performed and magneto-optical MO techniques, allow local magnetic-field distributions in various HTSC structures

Johansen, Tom Henning

311

Twist-bend nematic liquid crystals in high magnetic fields  

E-print Network

We present magneto-optic measurements on two materials that form the recently discovered twist-bend nematic (Ntb) phase. This intriguing state of matter represents a new fluid phase that is orientationally anisotropic in three directions and also exhibits translational order with periodicity several times larger than the molecular size. NTB materials may also spontaneously form a visible, macroscopic stripe texture. We show that the optical stripe texture can be persistently inhibited by a magnetic field, and a 25T external magnetic field depresses the N-Ntb phase transition temperature by almost 1 degree C. We propose a quantitative mechanism to account for this shift and suggest a Helfrich-Hurault-type mechanism for the optical stripe formation.

P. K. Challa; V. Borshch; O. Parri; C. T. Imrie; S. N. Sprunt; J. T. Gleeson; O. D. Lavrentovich; A. Jakli

2014-07-31

312

Resonant Magnetic Field Sensors Based On MEMS Technology  

PubMed Central

Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

Herrera-May, Agustin L.; Aguilera-Cortes, Luz A.; Garcia-Ramirez, Pedro J.; Manjarrez, Elias

2009-01-01

313

Extended Magnetization of Superconducting Pellets in Highly Inhomogeneous Magnetic Field  

NASA Astrophysics Data System (ADS)

The magnetization of superconducting pellets is a worth point in the development of trapped flux superconducting motors. Experimental and simulated data have been reported extensively according to the framework of one or several pulses of a homogeneous magnetizing field applied to a pellet or a set of pellets. In case of cylindrical rotors of low power motors with radial excitation, however, the use of the copper coils to produce the starting magnetization of the pellets produces a highly inhomogeneous magnetic field which cannot be reduced to a 2D standard model. In this work we present an analysis of the magnetization of the superconducting cylindrical rotor of a small motor by using a commercial FEM program, being the rotor magnetized by the working copper coils of the motor. The aim of the study is a report of the magnetization obtained and theheat generated in the HTSC pellets.

Maynou, R.; López, J.; Granados, X.; Torres, R.; Bosch, R.

314

The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields  

NASA Astrophysics Data System (ADS)

The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

Nakotte, Heinz

2001-11-01

315

Magnetic and electric field meters developed for the US Department of Energy  

Microsoft Academic Search

This report describes work done at the Jet Propulsion Laboratory for the Office of Energy Storage and Distribution of DOE on the measurement of power line fields. A magnetic field meter is discussed that uses fiber optics to couple a small measuring probe to a remote readout device. The use of fiber optics minimizes electric field perturbation due to the

H. Kirkham; A. Johnson

1988-01-01

316

Comparison of the mean photospheric magnetic field and the interplanetary magnetic field  

Microsoft Academic Search

The mean photospheric magnetic field of the sun seen as a star has been compared with the interplanetary magnetic field observed with spacecraft near the earth. Each change in polarity of the mean solar field is followed about 4 1\\/2 days later by a change in polarity of the interplanetary field (sector boundary). The scaling of the field magnitude from

A. Severny; J. M. Wilcox; P. H. Scherrer; D. S. Colburn

1970-01-01

317

Correlation properties of magnetosheath magnetic field fluctuations  

Microsoft Academic Search

The magnetosheath is characterized by a variety of low-frequency fluctuations, but their features and sources are different. Taking advantage of multipoint magnetic field measurements of the Cluster spacecraft, we present a statistical study to reveal properties of waves. We compute cross-correlation coefficients of magnetic field strengths as measured by pairs of the Cluster spacecraft and determine the correlation length of

O. Gutynska; J. Šafránková; Z. N?me?ek

2009-01-01

318

Magnetic fields, branes, and noncommutative geometry  

Microsoft Academic Search

We construct a simple physical model of a particle moving on the infinite noncommutative 2-plane. The model consists of a pair of opposite charges moving in a strong magnetic field. In addition, the charges are connected by a spring. In the limit of large magnetic field, the charges are frozen into the lowest Landau levels. Interactions of such particles include

Daniela Bigatti; Leonard Susskind

2000-01-01

319

Lattice Planar QED in external magnetic field  

E-print Network

We investigate planar Quantum ElectroDynamics (QED) with two degenerate staggered fermions in an external magnetic field on the lattice. Our preliminary results indicate that in external magnetic fields there is dynamical generation of mass for two-dimensional massless Dirac fermions in the weak coupling region. We comment on possible implications to the quantum Hall effect in graphene.

Paolo Cea; Leonardo Cosmai; Pietro Giudice; Alessandro Papa

2011-09-29

320

Directional discontinuities in the interplanetary magnetic field  

Microsoft Academic Search

It is shown that the interplanetary magnetic field has different characteristics on different scales, and it is noted that a given physical theory may not be applicable or relevant on all scales. Four scales are defined in terms of time intervals on which the data may be viewed. Many discontinuities in the magnetic-field direction are seen on the mesoscale (˜

Leonard F. Burlaga

1969-01-01

321

Lattice Planar QED in external magnetic field  

NASA Astrophysics Data System (ADS)

We investigate planar Quantum ElectroDynamics (QED) with two degenerate staggered fermions in an external magnetic field on the lattice. Our preliminary results indicate that in external magnetic fields there is dynamical generation of mass for two-dimensional massless Dirac fermions in the weak coupling region. We comment on possible implications to the quantum Hall effect in graphene.

Cea, P.; Cosmai, L.; Giudice, P.; Papa, A.

322

Ground Vehicle Navigation Using Magnetic Field Variation  

NASA Astrophysics Data System (ADS)

The Earth's magnetic field has been the bedrock of navigation for centuries. The latest research highlights the uniqueness of magnetic field measurements based on position due to large scale variations as well as localized perturbations. These observable changes in the Earth's magnetic field as a function of position provide distinct information which can be used for navigation. This dissertation describes ground vehicle navigation exploiting variation in Earth's magnetic field using a self-contained navigation system consisting of only a magnetometer and magnetic field maps. In order to achieve navigation, effective calibration enables repeatable magnetic field measurements from different vehicles and facilitates mapping of the observable magnetic field as a function of position. A new modified ellipsoid calibration technique for strapdown magnetometers in large vehicles is described, as well as analysis of position measurement generation comparing a multitude of measurement compositions using existing and newly developed likelihood techniques. Finally, navigation solutions are presented using both a position measurement and direct incorporation of the magnetometer measurements via a particle filter to demonstrate road navigation in three different environments. Emphatically, the results affirm that navigation using magnetic field variation in ground vehicles is viable and achieves adequate performance for road level navigation.

Shockley, Jeremiah A.

323

Astrophysical magnetic fields and nonlinear dynamo theory  

Microsoft Academic Search

The current understanding of astrophysical magnetic fields is reviewed, focusing on their generation and maintenance by turbulence. In the astrophysical context this generation is usually explained by a self-excited dynamo, which involves flows that can amplify a weak ‘seed’ magnetic field exponentially fast. Particular emphasis is placed on the nonlinear saturation of the dynamo. Analytic and numerical results are discussed

Axel Brandenburg; Kandaswamy Subramanian

2005-01-01

324

Superconductor based sensor for monitoring magnetic field  

Microsoft Academic Search

The authors propose a method for measurement of magnetic fields with the help of a HTSC (high temperature superconductor) based sensor in conjunction with a microcomputer. The same sensor may be used for monitoring current in a circuit under the influence of a controlled magnetic field acting perpendicular to the direction of the current flow. The theoretical basis is discussed.

S. C. Kar; S. P. Basu

1992-01-01

325

Fall in Earth's magnetic field is erratic  

Microsoft Academic Search

Earth's magnetic field has decayed by about 5\\\\% per century since measurements began in 1840. Directional measurements predate those of intensity by more than 250 years, and we combined the global model of directions with paleomagnetic intensity measurements to estimate the fall in strength for this earlier period (1590 to 1840 A.D.). We found that magnetic field strength was nearly

David Gubbins; Adrian L. Jones; Christopher C. Finlay

2006-01-01

326

Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind  

NASA Technical Reports Server (NTRS)

The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

Burlaga, L. F.; Barouch, E.

1974-01-01

327

Generalized expression for optical source fields  

NASA Astrophysics Data System (ADS)

A generalized optical beam expression is developed that presents the majority of the existing optical source fields such as Bessel, Laguerre-Gaussian, dark hollow, bottle, super Gaussian, Lorentz, super-Lorentz, flat-topped, Hermite-sinusoidal-Gaussian, sinusoidal-Gaussian, annular, Gauss-Legendre, vortex, also their higher order modes with their truncated, elegant and elliptical versions. Source intensity profiles derived from the generalized optical source beam fields are checked to match the intensity profiles of many individual known beam types. Source intensities for several interesting beam combinations are presented. Our generalized optical source beam field expression can be used to examine both the source characteristics and the propagation properties of many different optical beams in a single formulation.

Kamac?o?lu, Canan; Baykal, Yahya

2012-09-01

328

Field-Sensitive Materials for Optical Applications  

NASA Technical Reports Server (NTRS)

The purpose of investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD (Department of Defense) applications such as: membrane optics, filters for LIDARs (Light Detection and Ranging), windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, flat-panel displays, etc. The proposed idea is based on the quantum-dots (QD) array or thin-film of field-sensitive Stark and Zeeman materials and the bound excitonic state of organic crystals that will offer optical adaptability and reconfigurability. Major tasks are the development of concept demonstration article and test data of field-controlled spectrally smart active optics (FCSAO) for optical multi-functional capabilities on a selected spectral range.

Choi, Sang H.; Little, Mark

2002-01-01

329

Permanent magnet edge-field quadrupole  

DOEpatents

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

Tatchyn, R.O.

1997-01-21

330

Permanent magnet edge-field quadrupole  

DOEpatents

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

Tatchyn, Roman O. (Mountain View, CA)

1997-01-01

331

Quenching of flames by magnetic fields  

Microsoft Academic Search

An experiment has been demonstrated to show a phenomenon involving quenching of candle flames using magnetic fields. An electromagnet with a pair of columnar magnetic poles in which inner sidepieces were hollowed out was used. Magnetic fields of 1.5 T at the brim gave a gradient of 50–300 T\\/m in the direction perpendicular to the pole axis when the distance

S. Ueno

1989-01-01

332

Alignment of magnetic uniaxial particles in a magnetic field: Simulation  

NASA Astrophysics Data System (ADS)

The numerical investigations of the process of alignment of magnetically uniaxial Nd-Fe-B powders in an applied magnetic field were carried out using the discrete element method (DEM). It is shown that magnetic alignment of ensemble of spherical particles provides extremely high degree of alignment, which is achieved in low magnetic fields. A model of formation of anisotropic particles as a combination of spherical particles is suggested. The influence of the shape anisotropy and friction coefficient on the alignment degree was analyzed. The increase in the friction coefficient leads to a decrease in the alignment degree; the simulation results are in qualitative agreement with experimental dependences. It is shown that in magnetic fields higher than 5 T, the calculated field dependences of the alignment degree quantitatively render the experimental data. The increase of about 6% in the alignment degree in the experiments with addition of internal lubricant can be explained by the decrease of 14% in friction coefficient.

Golovnia, O. A.; Popov, A. G.; Sobolev, A. N.; Hadjipanayis, G. C.

2014-09-01

333

In vivo heating of magnetic nanoparticles in alternating magnetic field.  

PubMed

We have evaluated heating capabilities of new magnetic nanoparticles. In in vitro experiments they were exposed to an alternating magnetic field with frequency 3.5 MHz and induction 1.5 mT produced in three turn pancake coil. In in vivo experiments rats with injected magnetic nanoparticles were also exposed to an ac field. An optimal increase of temperature of the tumor to 44 degrees C was achieved after 10 minutes of exposure. Obtained results showed that magnetic nanoparticles may be easily heated in vitro as well as in vivo, and may be therefore useful for hyperthermic therapy of cancer. PMID:15377087

Babincová, M; Altanerová, V; Altaner, C; Cicmanec, P; Babinec, P

2004-08-01

334

Magnetic field structure around cores with very low luminosity objects  

E-print Network

[Abridged] We carried out optical polarimetry of five dense cores, (IRAM 04191, L1521F, L328, L673-7, and L1014) which are found to harbour VeLLO. This study was conducted mainly to understand the role played by the magnetic field in the formation of very low and substellar mass range objects using optical polarisation. The angular offsets between the envelope magnetic field direction (inferred from optical polarisation measurements) and the outflow position angles from the VeLLOs in IRAM 04191, L1521F, L328, L673-7, and L1014 are found to be 84$\\degree$, 53$\\degree$, 24$\\degree$, 08$\\degree$, and 15$\\degree$, respectively. The mean value of the offsets for all the five clouds is $\\sim37\\degree$. If we exclude IRAM 04191, the mean value reduces to become $\\sim25\\degree$. In IRAM 04191, the offset between the projected envelope and the inner magnetic field (inferred from the submillimetre data from SCUPOL) is found to be $\\sim68\\degree$. The inner magnetic field, however, is found to be nearly aligned with the...

A., Soam; Lee, Chang Won; Dib, Sami; C, Bhatt H; Tamura, Motohide; Kim, Gwanjeong

2014-01-01

335

Processing of polymers in high magnetic fields  

SciTech Connect

Many organic molecules and polymers have an anisotropic diamagnetic susceptibility, and thus can be aligned in high magnetic fields. The presence of liquid crystallinity allows cooperative motions of the individual molecules, and thus the magnetic energy becomes greater than the thermal energy at experimentally obtainable field strengths. This work has determined the effect of magnetic field alignment on the thermal expansion and mechanical properties of liquid crystalline thermosets in the laboratory. Further advances in magnet design are needed to make magnetic field alignment a commercially viable approach to polymer processing. The liquid crystal thermoset chosen for this study is the diglycidyl ether of dihydroxy-{alpha}-methylstilbene cured with the diamine sulfamilamide. This thermoset has been cured at field strengths up to 18 Tesla.

Douglas, E.P.; Smith, M.E.; Benicewicz, B.C. [Los Alamos National Lab., NM (United States); Earls, J.D.; Priester, R.D. Jr. [Dow Chemical Co., Freeport, TX (United States)

1996-05-01

336

Reionization constraints on primordial magnetic fields  

E-print Network

We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: $6 magnetic fields (strength, $B_0$, and power-spectrum index $n_{\\scriptscriptstyle \\rm B}$), reionization, and $\\Lambda$CDM cosmological model. We find that magnetic field strengths in the range: $B_0 \\simeq 0.05{-}0.3$ nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the WMAP and quasar absorption spectra data. Our analysis puts upper-limits on the magnetic field strength $B_0 magnetic field constraints among those available from other cosmological observables.

Pandey, Kanhaiya L; Sethi, Shiv K; Ferrara, Andrea

2014-01-01

337

The selection rule of graphene in a composite magnetic field  

E-print Network

The generalized tight-binding model with exact diagonalization method is developed to calculate the optical properties of monolayer graphene in the presence of composite magnetic fields. The ratio of the uniform magnetic field and the modulated one accounts for a strong influence on the structure, number, intensity and frequency of absorption peaks, and thus the extra selection rules that are subsequently induced can be explained. When the modulated field increases, each symmetric peak, under a uniform magnetic field, splits into a pair of asymmetric peaks with lower intensities. The threshold absorption frequency exhibits an obvious evolution in terms of a redshift. These absorption peaks obey the same selection rule that is followed by Landau level transitions. Moreover, at a sufficiently strong modulation strength, the extra peaks in the absorption spectrum might arise from different selection rules.

Ou, Y C; Yang, P H; Lin, M F

2014-01-01

338

Measurement of AC magnetic field distribution using magnetic resonance imaging.  

PubMed

Electric currents are applied to body in numerous applications in medicine such as electrical impedance tomography, cardiac defibrillation, electrocautery, and physiotherapy. If the magnetic field within a region is measured, the currents generating these fields can be calculated using the curl operator. In this study, magnetic fields generated within a phantom by currents passing through an external wire is measured using a magnetic resonance imaging (MRI) system. A pulse sequence that is originally designed for mapping static magnetic field inhomogeneity is adapted. AC current in the form of a burst sine wave is applied synchronously with the pulse sequence. The frequency of the applied current is in the audio range with an amplitude of 175-mA rms. It is shown that each voxel value of sequential images obtained by the proposed pulse sequence is modulated similar to a single tone broadband frequency modulated (FM) waveform with the ac magnetic field strength determining the modulation index. An algorithm is developed to calculate the ac magnetic field intensity at each voxel using the frequency spectrum of the voxel signal. Experimental results show that the proposed algorithm can be used to calculate ac magnetic field distribution within a conducting sample that is placed in an MRI system. PMID:9368117

Ider, Y Z; Muftuler, L T

1997-10-01

339

The Magnetic Field in the Solar Atmosphere  

E-print Network

This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsible for all solar activity in its numerous manifestations. Thus, dynamic phenomena such as coronal mass ejections and flares are magnetically driven. In addition, the field also plays a crucial role in heating the solar chromosphere and corona as well as in accelerating the solar wind. Our main emphasis is the magnetic field in the upper solar atmosphere so that photospheric and chromospheric magnetic structures are mainly discussed where relevant for higher solar layers. Also, the discussion of the solar atmosphere and activity is limited to those topics of direct relevance to the magnetic field. After giving a brief overview about the solar magnetic field in general and its global structure, we discuss in more detail the magnetic field in active regions, the quie...

Wiegelmann, Thomas; Solanki, Sami K

2014-01-01

340

Magnetic induction-induced resistive heating of optical fibers and gratings.  

PubMed

Magnetic induction heating of optical fibers packaged with a steel plate is studied using a fiber Bragg grating. The dependence on the induced wavelength shift with magnetic field is obtained for a commercially available induction heater. More than a 300°C temperature rise is observed within seconds. The potential of magnetic induction as an efficient and rapid means of modulating devices and as a novel approach to potential optical based magnetic field and current sensing is proposed and discussed. The extension of the ideas into micro and nanophotonics is described. PMID:23503262

Canning, John; Naqshbandi, Masood; Cook, Kevin; Huyang, George

2013-03-15

341

Warm inflation in presence of magnetic fields  

E-print Network

We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.

Gabriella Piccinelli; Angel Sanchez; Alejandro Ayala; Ana Julia Mizher

2013-11-03

342

Bending of magnetic filaments under a magnetic field.  

PubMed

Magnetic beads and superparamagnetic (SP) colloid particles have successfully been employed for micromechanical manipulation of soft material, in situ probing of elastic properties, and design of smart materials (ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two end-member cases, (a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes, and (b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing SP particles. Our analysis yields also metastable equilibrium states (MES's), which only exist above a critical filament length, but become more stable with increasing magnetic field. The MES's for case (a) are, like the ground state, circular arcs, but more strongly bent. The multiform MES's in case (b), which comprise hairpin, sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization, case (a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments may hold advantages over tips usually employed in magnetic force microscopy. PMID:15697393

Shcherbakov, Valera P; Winklhofer, Michael

2004-12-01

343

‘Clean’ observations of magnetic field fluctuations on planetary surfaces  

Microsoft Academic Search

Magnetic field measurements on planetary surfaces are disturbed by various internal and external sources. We discuss methods to reduce their influence on the quality of magnetic field experiments aboard surface stations. Our major emphasis is on terrestrial seismo-magnetic measurements, but magnetic cleanliness procedures for the ROSETTA lander magnetic field experiment is discussed too. We consider not only disturbing magnetic field

K. Schwingenschuh; G. Prattes; M. Delva; H. U. Eichelberger; G. Berghofer; W. Magnes; M. Vellante; P. Nenovski; V. Wesztergom; H. U. Auster; K.-H. Fornacon

2012-01-01

344

Casimir effect in external magnetic field  

E-print Network

In this paper we examine the Casimir effect for charged fields in presence of external magnetic field. We consider scalar field (connected with spinless particles) and the Dirac field (connected with 1/2-spin particles). In both cases we describe quantum field using the canonical formalism. We obtain vacuum energy by direct solving field equations and using the mode summation method. In order to compute the renormalized vacuum energy we use the Abel-Plana formula.

Marcin Ostrowski

2005-04-13

345

Magnetic fields in noninvasive brain stimulation.  

PubMed

The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

2014-04-01

346

Organic magnetoelectroluminescence for room temperature transduction between magnetic and optical information  

NASA Astrophysics Data System (ADS)

Magnetic and spin-based technologies for data storage and processing provide unique challenges for information transduction to light because of magnetic metals’ optical loss, and the inefficiency and resistivity of semiconductor spin-based emitters at room temperature. Transduction between magnetic and optical information in typical organic semiconductors poses additional challenges, as the spin-orbit interaction is weak and spin injection from magnetic electrodes has been limited to low temperature and low polarization efficiency. Here we demonstrate room temperature information transduction between a magnet and an organic light-emitting diode that does not require electrical current, based on control via the magnet’s remanent field of the exciton recombination process in the organic semiconductor. This demonstration is explained quantitatively within a theory of spin-dependent exciton recombination in the organic semiconductor, driven primarily by gradients in the remanent fringe fields of a few nanometre-thick magnetic film.

Macià, Ferran; Wang, Fujian; Harmon, Nicholas J.; Kent, Andrew D.; Wohlgenannt, Markus; Flatté, Michael E.

2014-04-01

347

Origin of magnetic fields in galaxies  

SciTech Connect

Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation -dissipation theorem, predicts {approx}0.034 {mu}G fields over {approx}0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation-dissipation theorem are not completely random, microgauss fields over regions > or approx. 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in < or approx. 10{sup 9} years in high redshift galaxies.

Souza, Rafael S. de; Opher, Reuven [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)

2010-03-15

348

Modeling solar force-free magnetic fields  

NASA Astrophysics Data System (ADS)

A class of nonlinear force-free magnetic fields is presented, described in terms of the solutions to a second-order, nonlinear ordinary differential equation. These magnetic fields are three-dimensional, filling the infinite half-space above a plane where the lines of force are anchored. They model the magnetic fields of the sun over active regions with a striking geometric realism. The total energy and the free energy associated with the electric current are finite and can be calculated directly from the magnetic field at the plane boundary using the virial theorem. In the study of solar magnetic fields with data from vector magnetographs, there is a long-standing interest in devising algorithms to extrapolate for the force-free magnetic field in a given domain from prescribed field values at the boundary. The closed-form magnetic fields of this paper open up an opportunity for testing the reliability and accuracy of algorithms that claim the capability of performing this extrapolation. The extrapolation procedure as an ill-posed mathematical problem is discussed.

Low, B. C.; Lou, Y. Q.

1990-03-01

349

Magnetic-field-controlled reconfigurable semiconductor logic.  

PubMed

Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices. PMID:23364687

Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

2013-02-01

350

Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM  

NASA Astrophysics Data System (ADS)

A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.

Yoshimi, A.; Asahi, K.; Inoue, T.; Uchida, M.; Hatakeyama, N.; Tsuchiya, M.; Kagami, S.

2009-08-01

351

The Measurement of Magnetic Fields  

ERIC Educational Resources Information Center

Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

Berridge, H. J. J.

1973-01-01

352

QCD vacuum structure in strong magnetic fields  

Microsoft Academic Search

We study the response of the QCD vacuum to strong magnetic fields, using a potential model for the quark-antiquark interaction. We find that production of spin-polarized u¯ u pairs is energetically favorable for fields B > Bcrit ? 10 GeV2. We contrast the resulting uu condensate with the quark condensate which is present at zero magnetic field, and we estimate

Daniel Kabata; Kimyeong Leea; Erick Weinberg

353

Ohm's law for mean magnetic fields  

SciTech Connect

The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.

Boozer, A.H.

1986-05-01

354

An Extraordinary Magnetic Field Map of Mars  

NASA Technical Reports Server (NTRS)

The Mars Global Surveyor spacecraft has completed two Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriguing in both its global distribution and geometric properties [2,3]. Measurements of the vector magnetic field have been used to map the magnetic field of crustal origin to high accuracy [4]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from > 2 full years of MGS night-side observations, and uses along-track filtering to greatly reduce noise due to external field variations.

Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.; Mitchell, D. L.; Lin, R. P.

2004-01-01

355

Stellar magnetic fields: From the photosphere into the corona  

NASA Astrophysics Data System (ADS)

Simultaneous X-ray and optical observations of the active M dwarf CN Leo have shown variability in its magnetic flux (as measured through magnetically sensitive lines in the molecular FeH band) on different timescales: within a few days, within one night, and possibly even related to a flare event. We propose to extend these studies to a larger sample of stars and observe the two flare stars Proxima Cen and YZ CMi simultaneously with XMM-Newton and VLT/UVES in order to characterize the amplitudes and time scales of variations in their photospheric magnetic fields together with the behavior of chromospheric emission lines and coronal X-ray emission. This will enable us to trace activity-related changes in the stellar magnetic field through all layers of the stellar atmosphere.

Liefke, Carolin

2007-10-01

356

Tuning permanent magnets with adjustable field clamps  

SciTech Connect

The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius.

Schermer, R.I.

1987-01-01

357

Particle Transport in Therapeutic Magnetic Fields  

NASA Astrophysics Data System (ADS)

Iron oxide magnetic nanoparticles, in ferrofluids or as magnetic microspheres, offer magnetic maneuverability, biochemical surface functionalization, and magnetic relaxation under the influence of an alternating field. The use of these properties for clinical applications requires an understanding of particles, forces, and scalar transport at various length scales. This review explains the behavior of magnetic nano- and microparticles during magnetic drug targeting and magnetic fluid hyperthermia, and the microfluidic transport of these particles in bioMEMS (biomedical microelectromechanical systems) devices for ex vivo therapeutic and diagnostic applications. Magnetic particle transport, the momentum interaction of these particles with a host fluid in a flow, and thermal transport in a particle-infused tissue are characterized through the governing electrodynamic, hydrodynamic, and scalar transport equations.

Puri, Ishwar K.; Ganguly, Ranjan

2014-01-01

358

The CMS Magnetic Field Map Performance  

E-print Network

The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field values. The value of the field at a given point of a volume is obtained by interpolation from a regular grid of values resulting from a TOSCA calculation or, when available, from a parameterization. The results of the measurements and calculations are presented, compared and discussed.

V. I. Klyukhin; N. Amapane; V. Andreev; A. Ball; B. Curé; A. Hervé; A. Gaddi; H. Gerwig; V. Karimaki; R. Loveless; M. Mulders; S. Popescu; L. I. Sarycheva; T. Virdee

2011-10-04

359

Low temperature and high magnetic field spectroscopic ellipsometry system.  

PubMed

We report on the design and implementation of a spectral ellipsometer at near-infrared wavelength (700-1000 nm) for samples placed in high magnetic fields (up to 14 T) at low temperatures (~4.2 K). The main optical components are integrated in a probe, which can be inserted into a conventional long-neck He dewar and has a very long free-space optical path (~1.8 m×2). A polarizer-sample-(quarter-wave plate)-rotating analyzer configuration was employed. Two dielectric mirrors, one before and one after the sample in the optical path, helped to reflect the light back to the analyzer and a two-axis piezo-driven goniometer under the sample holder was used to control the direction of the reflected light. Functional test results performed on an intrinsic GaAs wafer and analysis on the random error of the system are shown. We obtained both amplitude and phase ellipsometric spectra simultaneously and observed helicity transformation at energies near the GaAs exciton transitions in the phase spectra. Significant shifts of them induced by magnetic fields were observed and fitted with a simple model. This system will allow us to study the collective magneto-optical response of materials and spatial dispersive exciton-polariton related problems in high external magnetic fields at low temperatures. PMID:24880409

Su, Sheng-Kai; Li, Liang-Chen; Suen, Yuen-Wuu; Wu, Jau-Yang; Kuo, Hong-Rong; Sung, Yu-Tai; Lee, Chien-Ping; Voskoboynikov, Oleksandr

2014-05-01

360

Low temperature and high magnetic field spectroscopic ellipsometry system  

NASA Astrophysics Data System (ADS)

We report on the design and implementation of a spectral ellipsometer at near-infrared wavelength (700-1000 nm) for samples placed in high magnetic fields (up to 14 T) at low temperatures (˜4.2 K). The main optical components are integrated in a probe, which can be inserted into a conventional long-neck He dewar and has a very long free-space optical path (˜1.8 m×2). A polarizer-sample-(quarter-wave plate)-rotating analyzer configuration was employed. Two dielectric mirrors, one before and one after the sample in the optical path, helped to reflect the light back to the analyzer and a two-axis piezo-driven goniometer under the sample holder was used to control the direction of the reflected light. Functional test results performed on an intrinsic GaAs wafer and analysis on the random error of the system are shown. We obtained both amplitude and phase ellipsometric spectra simultaneously and observed helicity transformation at energies near the GaAs exciton transitions in the phase spectra. Significant shifts of them induced by magnetic fields were observed and fitted with a simple model. This system will allow us to study the collective magneto-optical response of materials and spatial dispersive exciton-polariton related problems in high external magnetic fields at low temperatures.

Su, Sheng-Kai; Li, Liang-Chen; Suen, Yuen-Wuu; Wu, Jau-Yang; Kuo, Hong-Rong; Sung, Yu-Tai; Lee, Chien-Ping; Voskoboynikov, Oleksandr

2014-05-01

361

Prediction of DC magnetic fields for magnetic cleanliness on spacecraft  

Microsoft Academic Search

Magnetometry is among the most used techniques in space exploration, e.g. to study complex plasma interactions between the solar wind and the Earth's magnetosphere, to map the planetary or interplanetary magnetic fields, or to retrieve information about the structural composition of planets. The success of each mission relies on the attainment of an adequate level of magnetic cleanliness at the

Axel Junge; Filippo Marliani

2011-01-01

362

Magnetic reconnection at the edge of Uranus's magnetic field  

NASA Astrophysics Data System (ADS)

A new modeling study sheds light on how the magnetosphere of Uranus compares to those of other planets. Magnetospheres around the inner planets Mercury and Earth are primarily driven by the solar wind—the charged particles spewed out from the Sun—through magnetic reconnection, in which the planet's magnetic field lines break and reconnect, releasing energy in the process.

Balcerak, Ernie

2014-09-01

363

Connection Between Magnetic Field Amplification and Blazar Flares  

NASA Astrophysics Data System (ADS)

Recent multiwavelength observations of PKS 0208-512 by SMARTS, Fermi, and Swift revealed that ?-ray and optical light curves of this flat spectrum radio quasars are highly correlated, but with an exception of one large optical flare having no corresponding gamma-ray activity or even detection. On the other hand, recent advances in SNRs observations and plasma simulations both reveal that magnetic field downstream of astrophysical shocks can be largely amplified beyond simple shock compression. These amplifications, along with their associated particle acceleration, might contribute to blazar flares, including the peculiar flare of PKS 0208-512. Using our time dependent multizone blazar emission code,which tracks all the light travel time effects, we evaluate several scenarios that may represent such phenomena. Both the changes of the magnetic field and acceleration efficiency are explored as the cause of blazar flares. Under these assumption, synchrotron self-Compton and external Compton scenarios produce distinct features that favor the external Compton scenario. The optical flares with/without gamma-ray counterparts can be explained by different allocations of energy between the magnetization and particle acceleration, which in turn can be affected by the relative orientation between the magnetic field and the shock flow.

Chen, Xuhui; Chatterjee, Ritaban; Fossati, Giovanni; Pohl, Martin

2014-03-01

364

An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening  

E-print Network

We demonstrate an optically pumped $^{87}$Rb magnetometer in a microfabricated vapor cell based on a zero-field dispersive resonance generated by optical modulation of the $^{87}$Rb ground state energy levels. The magnetometer is operated in the spin-exchange relaxation-free regime where high magnetic field sensitivities can be achieved. This device can be useful in applications requiring array-based magnetometers where radio frequency magnetic fields can induce cross-talk among adjacent sensors or affect the source of the magnetic field being measured.

Jimenez-Martinez, Ricardo; Kitching, John

2014-01-01

365

An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening.  

PubMed

We demonstrate an optically pumped (87)Rb magnetometer in a microfabricated vapor cell based on a zero-field dispersive resonance generated by optical modulation of the (87)Rb ground state energy levels. The magnetometer is operated in the spin-exchange relaxation-free regime where high magnetic field sensitivities can be achieved. This device can be useful in applications requiring array-based magnetometers where radio frequency magnetic fields can induce cross-talk among adjacent sensors or affect the source of the magnetic field being measured. PMID:24784676

Jiménez-Martínez, R; Knappe, S; Kitching, J

2014-04-01

366

An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening  

NASA Astrophysics Data System (ADS)

We demonstrate an optically pumped 87Rb magnetometer in a microfabricated vapor cell based on a zero-field dispersive resonance generated by optical modulation of the 87Rb ground state energy levels. The magnetometer is operated in the spin-exchange relaxation-free regime where high magnetic field sensitivities can be achieved. This device can be useful in applications requiring array-based magnetometers where radio frequency magnetic fields can induce cross-talk among adjacent sensors or affect the source of the magnetic field being measured.

Jiménez-Martínez, R.; Knappe, S.; Kitching, J.

2014-04-01

367

Magnetic field induced transition in vanadium spinels.  

PubMed

We study vanadium spinels AV2O4 (A = Cd,Mg) in pulsed magnetic fields up to 65 T. A jump in magnetization at ?0H?40??T is observed in the single-crystal MgV2O4, indicating a field induced quantum phase transition between two distinct magnetic orders. In the multiferroic CdV2O4, the field induced transition is accompanied by a suppression of the electric polarization. By modeling the magnetic properties in the presence of strong spin-orbit coupling characteristic of vanadium spinels, we show that both features of the field induced transition can be successfully explained by including the effects of the local trigonal crystal field. PMID:24483929

Mun, E D; Chern, Gia-Wei; Pardo, V; Rivadulla, F; Sinclair, R; Zhou, H D; Zapf, V S; Batista, C D

2014-01-10

368

Velocity-Magnetic Field Correlation of Pulsars  

NASA Astrophysics Data System (ADS)

Monte Carlo simulations of the evolution of pulsars are carried out in order to compare with the recent measurement of the pulsar transverse velocity by Lyne & Lorimer (1994). The new electron density distribution model of Taylor & Cordes (1993) is adopted in the simulation. Accurate pulsar o rbits in the Galactic gravitational field are calculated. It is found that the constant magnetic field model of pulsars can account for the new measurement of the pulsar transverse velocity, and the apparent correlat ion between the strength of the magnetic field and the transverse velocity of the pulsars. The present finding confirms the validity of the constant magnetic field model of pulsars, and consolidates the idea that the app arent correlation between the strength of the magnetic field and the transverse velocity of the pulsars is cau sed by observational selection effects.

Itoh, N.; Kotouda, T.

369

ASYMMETRIC DIFFUSION OF MAGNETIC FIELD LINES  

SciTech Connect

Stochasticity of magnetic field lines is important for particle transport properties. Magnetic field lines separate faster than diffusively in turbulent plasma, which is called superdiffusion. We discovered that this superdiffusion is pronouncedly asymmetric, so that the separation of field lines along the magnetic field direction is different from the separation in the opposite direction. While the symmetry of the flow is broken by the so-called imbalance or cross-helicity, the difference between forward and backward diffusion is not directly due to imbalance, but a non-trivial consequence of both imbalance and non-reversibility of turbulence. The asymmetric diffusion perpendicular to the mean magnetic field entails a variety of new physical phenomena, such as the production of parallel particle streaming in the presence of perpendicular particle gradients. Such streaming and associated instabilities could be significant for particle transport in laboratory, space, and astrophysical plasmas.

Beresnyak, Andrey [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2013-04-20

370

Normal glow discharge in axial magnetic field  

NASA Astrophysics Data System (ADS)

Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1–5 Torr, emf of power supply 1–2 kV, and magnetic field induction B = 0–0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

Surzhikov, S.; Shang, J.

2014-10-01

371

Tracing Magnetic Fields by Atomic Alignment in Extended Radiation Fields  

E-print Network

Tracing magnetic fields is crucial as magnetic fields play an important role in many astrophysical processes. Earlier studies have demonstrated that Ground State Alignment (GSA) is a unique way to detect weak magnetic fields (1G> B> 1exp(-15)G) in diffuse media, they consider the situation when the pumping source is a point source, which applies when the star is very far away from the diffuse media. In this paper, we explore the GSA in the presence of extended radiation fields. For the radiation fields with a clear geometric structure, we consider the alignment in circumstellar medium, binary systems, disc, and Local Interstellar Medium (LISM). For the radiation fields with unidentified pumping sources, we apply the method of multipole expansion and discuss the GSA induced by each component. We demonstrate that for general radiation fields, it is adequate to consider the contribution from dipole and quadrupole radiation components. We find that in general polarization of absorption arizing from GSA coincides ...

Zhang, Heshou; Dong, Le

2014-01-01

372

Quantum Electrodynamics in a Uniform Magnetic Field  

E-print Network

A systematic formalism for quantum electrodynamics in a classical uniform magnetic field is discussed. The first order radiative correction to the ground state energy of an electron is calculated. This then leads to the anomalous magnetic moment of an electron without divergent integrals. Thorough analyses of this problem are given for the weak magnetic field limit. A new expression for the radiative correction to the ground state energy is obtained. This contains only one integral with an additional summation with respect to each Landau level. The importance of this formalism is also addressed in order to deal with quantum electrodynamics in an intense external field.

Jun Suzuki

2005-12-28

373

Magnetic fields from second-order interactions  

E-print Network

It is well known that when two types of perturbations interact in cosmological perturbation theory, the interaction may lead to the generation of a third type. In this article we discuss the generation of magnetic fields from such interactions. We determine conditions under which the interaction of a first-order magnetic field with a first-order scalar-or vector-, or tensor-perturbations would lead to the generation of second order magnetic field. The analysis is done in a covariant-index-free approach, but could be done in the standard covariant indexed-approach.

Bob Osano

2014-03-21

374

Joule heating in high magnetic field pulsars  

E-print Network

We study the efficiency of Joule heating in the crustal layers of young neutron stars. It is shown that dissipation of the magnetic field is highly inhomogeneous in the crust with much faster dissipation in relatively low density layers. In young neutron stars, the rate of Joule heating in the crust can exceed the standard luminosity of non-magnetic star and can even be comparable to the luminosity of magnetars. The results of calculations are compared with the available observational data. We argue that the crustal field model can well account for the data on the surface temperature and magnetic field of young neutron stars.

Urpin, V

2008-01-01

375

Joule heating in high magnetic field pulsars  

E-print Network

We study the efficiency of Joule heating in the crustal layers of young neutron stars. It is shown that dissipation of the magnetic field is highly inhomogeneous in the crust with much faster dissipation in relatively low density layers. In young neutron stars, the rate of Joule heating in the crust can exceed the standard luminosity of non-magnetic star and can even be comparable to the luminosity of magnetars. The results of calculations are compared with the available observational data. We argue that the crustal field model can well account for the data on the surface temperature and magnetic field of young neutron stars.

V. Urpin; D. Konenkov

2008-04-01

376

Analysis of magnetic electron lens with secant hyperbolic field distribution  

E-print Network

Electron-optical imaging instruments like Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) use specially designed solenoid electromagnets for focusing of electron beam probe. Indicators of imaging performance of these instruments, like spatial resolution, have strong correlation with focal characteristics of the magnetic lenses which in turn have been shown to be functions of the spatial distribution of axial magnetic field generated by them. Owing to complicated design of practical lenses, empirical mathematical expressions are deemed convenient for use in physics based calculations of their focal properties. So, degree of closeness of such models to the actual field distribution determines accuracy of the calculations. Mathematical models proposed by Glaser[1] and Ramberg[1] have historically been put into extensive use. In this paper the authors discuss one such model with secant-hyperbolic type magnetic field distribution function, and present a comparison among these models, ...

Pany, S S; Dubey, B P

2014-01-01

377

Structural anisotropy of silica hydrogels prepared under magnetic field  

E-print Network

Birefringence measurements have been carried out on the Pb-doped silica hydrogels prepared under various magnetic fields up to 5T. The silica gels prepared at 5T were used as a medium of crystal growth of PbBr2, whose result implied the structural anisotropy; an aligned array of crystallites was obtained by transmission electron microscopy. While the samples prepared at 0, 1, and 3T have no birefringence, we found that the samples have negative birefringence on the order of magnitude 10^-6 as if the direction of the magnetic field is the optic axis of a uniaxal crystal. To the authors' knowledge, the birefringent silica hydrogels were obtained by gelation under magnetic field for the first time. Also, scanning microscopic light scattering experiments have been performed. The results indicate that the characteristic length distribution for birefringent samples is narrower than that for non-birefringent ones.

Atsushi Mori; Takamasa Kaito; Hidemitsu Furukawa

2008-03-02

378

Magnetic fields near the peripheries of galactic discs  

E-print Network

Magnetic fields are observed beyond the peripheries of optically detected galactic discs, while numerical models of their origin and the typical magnitudes are still absent. Previously, studies of galactic dynamo have avoided considering the peripheries of galactic discs because of the very limited (though gradually growing) knowledge about the local properties of the interstellar medium. Here we investigate the possibility that magnetic fields can be generated in the outskirts of discs, taking the Milky Way as an example. We consider a simple evolving galactic dynamo model in the "no-z" formulation, applicable to peripheral regions of galaxies, for various assumptions about the radial and vertical profiles of the ionized gas disc. The magnetic field may grow as galaxies evolve, even in the more remote parts of the galactic disc, out to radii of 15 to 30 kpc, becoming substantial after times of about 10 Gyr. This result depends weakly on the adopted distributions of the half thickness and surface density of t...

Mikhailov, E; Moss, D; Beck, R; Sokoloff, D; Zasov, A

2014-01-01

379

Dynamo Models for Saturn's Axisymmetric Magnetic Field  

NASA Astrophysics Data System (ADS)

Magnetic field measurements by the Cassini mission have confirmed the earlier Pioneer 11 and Voyager missions' results that Saturn's observed magnetic field is extremely axisymmetric . For example, Saturn's dipole tilt is less than 0.06 degrees (Cao et al., 2011) . The nearly-perfect axisymmetry of Saturn's dipole is troubling because of Cowling's Theorem which states that an axisymmetric magnetic field cannot be maintained by a dynamo. However, Cowling's Theorem applies to the magnetic field generated inside the dynamo source region and we can avert any contradiction with Cowling's Theorem if we can find reason for a non-axisymmetric field generated inside the dynamo region to have an axisymmetrized potential field observed at satellite altitude. Stevenson (1980) proposed a mechanism for this axisymmetrization. He suggested that differential rotation in a stably-stratified electrically conducting layer (i.e. the helium rain-out layer) surrounding the dynamo could act to shear out the non-axisymmetry and hence produce an axisymmetric observed magnetic field. In previous work, we used three-dimensional self-consistent numerical dynamo models to demonstrate that a thin helium rain-out layer can produce a more axisymmetrized field (Stanley, 2010). We also found that the direction of the zonal flows in the layer is a crucial factor for magnetic field axisymmetry. Here we investigate the influence of the thickness of the helium rain-out layer and the intensity of the thermal winds on the axisymmetrization of the field. We search for optimal regions in parameter space for producing axisymmetric magnetic fields with similar spectral properties to the observed Saturnian field.

Stanley, S.; Tajdaran, K.

2012-12-01

380

On magnetic field generation in Kolmogorov turbulence  

E-print Network

We analyze the initial, kinematic stage of magnetic field evolution in an isotropic and homogeneous turbulent conducting fluid with a rough velocity field, v(l) ~ l^alpha, alphamagnetic Reynolds number that is needed to excite magnetic fluctuations. This implies that numerical or experimental investigations of the Kolmogorov turbulence with small Prandtl numbers need to achieve extremely high resolution in order to adequately describe magnetic phenomena; (ii) For small Prandtl numbers, magnetic energy penetrates below the resistive scale and has a power-law spectrum between the resistive and viscous scales. Magnetic energy is dissipated not at the resistive scale but at the much smaller viscous scale, which may be relevant for the problems of anomalous resistivity and fast magnetic reconnection. Our results also suggest that the l...

Boldyrev, S A; Boldyrev, Stanislav; Cattaneo, Fausto

2004-01-01

381

Recent biophysical studies in high magnetic fields  

NASA Astrophysics Data System (ADS)

A brief overview of biophysical effects of steady magnetic fields is given. The need of high field strength is illustrated by several recent diamagnetic orientation experiments. They include rod-like viruses, purple membranes and chromosomes. Results of various studies on bees, quails, rats and pigeons exposed to fields above 7 T are also resumed.

Maret, Georg

1990-06-01

382

Computer Program for Earths magnetic field  

Microsoft Academic Search

A FORTRAN IV computer program has been developed by the U.S. Coast and Geodetic Survey to compute the elements of the earths magnetic field for any geographic position.Part of the program is a mathematical model of the geomagnetic field consisting of two sets of spherical harmonic coefficients. The first set, representing the main geomagnetic field, consists of 168 coefficients (degree

Anonymous

1970-01-01

383

FEM Computation of Magnetic Fields in Anisotropic Magnetic Materials  

NASA Astrophysics Data System (ADS)

The magnetic fields in nonlinear anisotropic magnetic materials were analyzed by using the Finite Element Method (FEM). The measured data was directly used in the computation without a complicateded smoothing. The resultant asymmetric linear equations were solved by using the ILUBiCGStab method without symmetrization or the ICCG method with symmetrization. The magnetic flux distributions in a ring core model showed the characteristic patterns according to the non-oriented, grain-oriented and doubly-oriented magnetic properties. The good convergence of the Newton-Raphson nonlinear iteration was attained by the iterative solvers without special techniques for the smoothing.

Kameari, Akihisa; Fujiwara, Koji

384

TRANSITION REGION MAGNETIC FIELD AND POLAR MAGNETIC DISTURBANCES  

Microsoft Academic Search

The Explorer 12 measurements of the magnetic field outside the magnetosphere are compared with ground magnetograms from arctic observatories. Results indicate that an exterior field with a southerly component tends to be associated with ground disturbance, whereas a northward field is associated with quiet conditions. Examples are presented show- ing how a north-to-south field-direction change accompanies an increase in ground

D. H. Fairfield; L. J. Jr. Cahill

1966-01-01

385

Magnetic field effects on surgical ligation clips.  

PubMed

Magnetic forces exerted on surgical clips and the magnetic resonance imaging distortion they create in phantoms and rabbits at magnetic field strengths of 1.5 Tesla were investigated. Results are reported for both ligation and aneurysm clips manufactured from three types of stainless steel as well as titanium, tantalum and niobium metals. Paramagnetism and eddy currents were measured in a customized moving Gouy balance. Direct measurements of other magnetic forces were carried out in a 1.5T MRI system. The titanium and tantalum clips showed the least interaction with the magnetic field, both in terms of forces exerted and the observed image distortion with the larger clips generating the larger interactions. The strongest field distortions and attractive forces occurred with 17-7PH stainless steel clips. These interactions were ferromagnetic in origin and of sufficient strength to present significant risk to patients having this type of clip present during an MRI scan. PMID:3431354

Brown, M A; Carden, J A; Coleman, R E; McKinney, R; Spicer, L D

1987-01-01

386

The rotation-magnetic field relation  

NASA Astrophysics Data System (ADS)

Today, the generation of magnetic fields in solar-type stars and its relation to activity and rotation can coherently be explained, although it is certainly not understood in its entirety. Rotation facilitates the generation of magnetic flux that couples to the stellar wind, slowing down the star. There are still many open questions, particularly at early phases (young age), and at very low mass. It is vexing that rotational braking becomes inefficient at the threshold to fully convective interiors, although no threshold in magnetic activity is seen, and the generation of large scale magnetic fields is still possible for fully convective stars. This article briefly outlines our current understanding of the rotation-magnetic field relation.

Reiners, Ansgar; Scholz, Alexander; Eislöffel, Jochen; Hallinan, Gregg; Berger, Edo; Browning, Matthew; Irwin, Jonathan; Küker, Manfred; Matt, Sean

2009-02-01

387

Electrical properties of chain microstructure magnetic emulsions in magnetic field  

E-print Network

The work deals with the experimental study of the emulsion whose dispersion medium is a magnetic fluid while the disperse phase is formed by a glycerin-water mixture. It is demonstrated that under effect of a magnetic field chain aggregates form from the disperse phase drops. Such emulsion microstructure change affects its macroscopic properties. The emulsion dielectric permeability and specific electrical conductivity have been measured. It is demonstrated that under the effect of relatively weak external magnetic fields (~ 1 kA/m) the emulsion electrical parameters may change several fold. The work theoretically analyzes the discovered regularities of the emulsion electrical properties.

Arthur Zakinyan; Yuri Dikansky; Marita Bedzhanyan

2014-02-05

388

Magnetic field generated by current filaments  

NASA Astrophysics Data System (ADS)

We investigate the magnetic field generated by two straight current filaments using the analogy between steady MHD and Euler flows. Using the Biot-Savart law, we present a dynamical system describing the extension of magnetic lines around the current filaments. It is demonstrated that, if two current filaments are non-parallel, a magnetic line starting near one current goes to infinity by the drifting effect of the other.

Kimura, Y.

2014-10-01

389

Magnetic reconnection with radiative cooling. I. Optically thin regime  

NASA Astrophysics Data System (ADS)

Magnetic reconnection processes in many high-energy-density astrophysical and laboratory plasma systems are significantly affected by radiation; hence traditional, nonradiative reconnection models are not applicable to these systems. Motivated by this observation, the present paper develops a Sweet-Parker-like theory of resistive magnetic reconnection with strong radiative cooling. It is found that, in the case with zero guide field, intense radiative cooling leads to a strong plasma compression, resulting in a higher reconnection rate. The compression ratio and the reconnection layer temperature are determined by the balance between ohmic heating and radiative cooling. The lower temperature in a radiatively cooled layer leads to a higher Spitzer resistivity and, hence, a higher reconnection rate. Several specific radiative processes (bremsstrahlung, cyclotron, and inverse Compton) in the optically thin regime are considered for both the zero- and strong-guide-field cases, and concrete expressions for the reconnection parameters are derived, along with the applicability conditions.

Uzdensky, Dmitri A.; McKinney, Jonathan C.

2011-04-01

390

Magnetic reconnection with radiative cooling. I. Optically thin regime  

SciTech Connect

Magnetic reconnection processes in many high-energy-density astrophysical and laboratory plasma systems are significantly affected by radiation; hence traditional, nonradiative reconnection models are not applicable to these systems. Motivated by this observation, the present paper develops a Sweet-Parker-like theory of resistive magnetic reconnection with strong radiative cooling. It is found that, in the case with zero guide field, intense radiative cooling leads to a strong plasma compression, resulting in a higher reconnection rate. The compression ratio and the reconnection layer temperature are determined by the balance between ohmic heating and radiative cooling. The lower temperature in a radiatively cooled layer leads to a higher Spitzer resistivity and, hence, a higher reconnection rate. Several specific radiative processes (bremsstrahlung, cyclotron, and inverse Compton) in the optically thin regime are considered for both the zero- and strong-guide-field cases, and concrete expressions for the reconnection parameters are derived, along with the applicability conditions.

Uzdensky, Dmitri A. [Center for Integrated Plasma Studies, Physics Department, UCB-390, University of Colorado, Boulder, Colorado 80309 (United States); McKinney, Jonathan C. [Department of Physics and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, California 94305-4060 (United States)

2011-04-15

391

The earth's magnetic field: Its history, origin and planetary perspective  

Microsoft Academic Search

The history of geomagnetism and palaeomagnetism is examined, and an analysis and description of the present geomagnetic field is presented. The magnetic compass is discussed along with declination, inclination, secular variation, magnetic charts and the search for the poles, fossil magnetism and the magnetic field in the past, transient magnetic variations regarding the external magnetic field, the origin of the

R. T. Merrill; M. W. McElhinny

1983-01-01

392

Wire codes, magnetic fields, and childhood cancer  

SciTech Connect

Childhood cancer has been modestly associated with wire codes, an exposure surrogate for power frequency magnetic fields, but less consistently with measured fields. The authors analyzed data on the population distribution of wire codes and their relationship with several measured magnetic field metrics. In a given geographic area, there is a marked trend for decreased prevalence from low to high wire code categories, but there are differences between areas. For average measured fields, there is a positive relationship between the mean of the distributions and wire codes but a large overlap among the categories. Better discrimination is obtained for the extremes of the measurement values when comparing the highest and the lowest wire code categories. Instability of measurements, intermittent fields, or other exposure conditions do not appear to provide a viable explanation for the differences between wire codes and magnetic fields with respect to the strength and consistency of their respective association with childhood cancer.

Kheifets, L.I.; Kavet, R.; Sussman, S.S. [Electric Power Research Inst., Palo Alto, CA (United States)] [Electric Power Research Inst., Palo Alto, CA (United States)

1997-05-01

393

Magnetic space-based field measurements  

NASA Technical Reports Server (NTRS)

Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.

Langel, R. A.

1981-01-01

394

Cosmic Magnetic Fields and the CMB  

E-print Network

I describe the imprint of primordial magnetic fields on the CMB. I show that these are observable only if the field amplitude is of the order of $B\\gsim 10^{-9}G$ on Mpc scale. I further argue that such fields are strongly constrained by the stochastic background of gravity waves which they produce. Primordial magnetic fields, which are strong enough to be seen in the CMB, are compatible with the nucleosynthesis bound, only if their spectrum is close to scale invariant, or maybe if helical magnetic fields provoke an inverse cascade. For helical fields, the CMB signature is especially interesting. It contains parity violating T-B and E--B correlations.

Ruth Durrer

2006-09-08

395

Magnetic Dipole Field 3D Model  

NSDL National Science Digital Library

The Magnetic Dipole Field 3D Model displays the field lines and field vectors of a dipole located at the origin and oriented along the z-axis. Users can compute the field line passing through a point by dragging the a marker within the 3D view. Users can also visualize the field vectors in a plane passing though the center of the dipole. The Magnetic Dipole Field 3D Model was developed using the Easy Java Simulations (Ejs) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. Double clicking the ejs_em_MagneticDipole3D.jar file will run the program if Java is installed. EJS is a part of the Open Source Physics Project and is designed to make it easier to access, modify, and generate computer models.

Christian, Wolfgang

2012-08-11

396

Rotation of the Earth's Magnetic Field  

Microsoft Academic Search

HALLEY1 first noticed that the magnetic declination at a number of sites changed with time in a manner that was consistent with a steady westward drift of the magnetic field relative to the surface of the Earth. After long neglect, interest in westward drift was revived by the work of Bullard et al.2, who examined the westward drift of the

S. R. C. Malin; I. Saunders

1973-01-01

397

End fields of CBA superconducting magnets  

SciTech Connect

Measurements of the two dimensional harmonic content of the end fields generated by the Brookhaven CBA dipole and quadrupole superconducting magnets are presented. Both the local longitudinal structure and the integrated end effects are examined.

Kirk, H.G.; Herrera, J.; Willen, E.

1983-01-01

398

Magnetic Field Response Measurement Acquisition System  

NASA Technical Reports Server (NTRS)

A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

2005-01-01

399

Magnetic Field Response Measurement Acquisition System  

NASA Technical Reports Server (NTRS)

Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

2006-01-01

400

Vacuum Birefringence in Strong Magnetic Fields  

Microsoft Academic Search

Table of Contents 1. One-loop effective Lagrangian in spinor QED. 2. Dispersion effects for low-frequency photons. 3. Vacuum birefringence in magnetic fields. 4. Light cone condition, effective Lagrangian approach.

Walter Dittrich; Holger Gies

1998-01-01

401

Fractal structure of the interplanetary magnetic field  

NASA Technical Reports Server (NTRS)

Under some conditions, time series of the interplanetary magnetic field strength and components have the properties of fractal curves. Magnetic field measurements made near 8.5 AU by Voyager 2 from June 5 to August 24, 1981 were self-similar over time scales from approximately 20 sec to approximately 3 x 100,000 sec, and the fractal dimension of the time series of the strength and components of the magnetic field was D = 5/3, corresponding to a power spectrum P(f) approximately f sup -5/3. Since the Kolmogorov spectrum for homogeneous, isotropic, stationary turbulence is also f sup -5/3, the Voyager 2 measurements are consistent with the observation of an inertial range of turbulence extending over approximately four decades in frequency. Interaction regions probably contributed most of the power in this interval. As an example, one interaction region is discussed in which the magnetic field had a fractal dimension D = 5/3.

Burlaga, L. F.; Klein, L. W.

1985-01-01

402

Lunar magnetic field measurements with a cubesat  

E-print Network

We have developed a mission concept that uses 3-unit cubesats to perform new measurements of lunar magnetic fields, less than 100 meters above the Moon’s surface. The mission calls for sending the cubesats on impact ...

Garrick-Bethell, Ian

403

Laminated magnet field coil sheath  

DOEpatents

a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

Skaritka, John R. (Coram, NY)

1987-12-01

404

Laminated magnet field coil sheath  

DOEpatents

A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

Skaritka, J.R.

1987-05-15

405

Bi2212\\/Ag high-field magnets  

Microsoft Academic Search

Bi-2212\\/Ag conductors show practical transport properties in high magnetic field regions above 20 T and 4.2 K, where it is considered difficult to use metallic superconductors. In this paper, the recent progress of our development of Bi-2212\\/Ag high field insert magnets is presented. Bi-2212\\/Ag stacked double pancake coils with a 49–150 mm outer diameter, 15–65 mm inner diameter and 50–220

M. Okada; K. Tanaka; T. Wakuda; K. Ohata; J. Sato; T. Kiyoshi; H. Kitaguchi; H. Wada

2000-01-01

406

The magnetic field investigation on Cluster  

NASA Technical Reports Server (NTRS)

The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.

Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.

1988-01-01

407

PHYSICAL REVIEW A 83, 015801 (2011) Measurements of the magnetic field vector using multiple electromagnetically induced  

E-print Network

optical pumping magnetometers [4] are sensitive only to the magnitude of the magnetic field to "heading error" in some systems [5]. The application of coherent optical effects, such as elec field direction in a linearly polarized bichromatic light (lin||lin) configuration in 87 Rb vapor. We

Novikova, Irina

408

Mean-field quantum dynamics with magnetic fields  

E-print Network

We consider a system of $N$ bosons in three dimensions interacting through a mean-field Coulomb potential in an external magnetic field. For initially factorized states we show that the one-particle density matrix associated with the solution of the $N$-body Schr\\"odinger equation converges to the projection onto the solution of the magnetic Hartree equation in trace norm and in energy as $N \\rightarrow \\infty$. Estimates on the rate of convergence are provided.

Jonas Luhrmann

2012-02-06

409

Optical Manipulation with Speckle Light Fields  

E-print Network

Optical tweezers have been widely applied to trap and manipulate micro- and nano-objects, such as cells, organelles and macromolecules. Generating well-controlled optical forces usually requires a highly focused laser beam, which means a careful engineering of the setups and the samples. Although similar conditions are routinely met in research laboratories, optical imperfections or scattering limit the applicability of this technique to real-life situations, such as in biomedical or microfluidic applications. Nonetheless, scattering of coherent light by disordered structures gives rise to speckles, random diffraction patterns with well-defined statistical properties. Here, we demonstrate how speckle fields can become a versatile tool to perform fundamental optical manipulation tasks such as trapping, guiding and sorting, exploiting the emergence of anomalous diffusion and drift in time-varying speckles. The simplicity and high-throughput of this technique greatly broadens the perspectives of optical manipula...

Volpe, Giorgio; Gigan, Sylvain

2014-01-01

410

Electrostatic waves in carbon nanotubes with an axial magnetic field  

SciTech Connect

Based on a linearized hydrodynamic model and within the quasi-static approximation, the dispersion relation of electrostatic waves propagating through single-walled carbon nanotubes subject to an axial magnetic field is theoretically explored. In the classical limit, we obtain two main possible waves which in turn are divided into two branches, a low-frequency acoustical and a high-frequency optical plasmon branch. In the quantum case, we have found that the dispersion relation is substantially modified when the electron wavelength becomes large enough compared to the propagation wavelength of the electrostatic waves in the quantum plasma. We also show that the axial magnetic field manifest itself on the perturbed electron density through the quantum term and gives rise to the propagation of the electrostatic waves within the quantum plasma. As a result, the effect of the magnetic field is pronounced in the plasma dispersion relations in such a way that their curves approach to zero when the magnetic field is weak; and for the strong magnetic field, they asymptotically meet the constant lines.

Abdikian, Alireza [Department of Physics, Malayer University, Malayer 65719-95863 (Iran, Islamic Republic of)] [Department of Physics, Malayer University, Malayer 65719-95863 (Iran, Islamic Republic of); Bagheri, Mehran [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 19835-63113 (Iran, Islamic Republic of)] [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 19835-63113 (Iran, Islamic Republic of)

2013-10-15

411

Measuring the magnetic fields of jupiter and the outer solar system  

Microsoft Academic Search

The vector helium magnetometer, one of the Pioneer-Jupiter experiments, has measured the magnetic field of Jupiter and the interplanetary magnetic field in the outer solar system. The comprehensive scientific objectives of the investigations are explained and are then translated into the major instrument requirements. The principles of operation of the magnetometer, which involve the optical pumping of metastable helium, are

E. Smith; B. Connor

1975-01-01

412

Magnetic field transfer device and method  

DOEpatents

A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

Wipf, S.L.

1990-02-13

413

Field and current induced magnetization reversal in patterned Pseudo Spin Valve devices  

E-print Network

The field and current induced magnetization switchings of Pseudo-Spin-Valve (PSV) devices are described in this dissertation. An aligned sequence of three (one optical and two electron-beam) lithographies was used to define ...

Colin, Irénée A. (Irénée Anthelme)

2007-01-01

414

Effect of Magnetic Field on the Perfection of Mcz Silicon  

NASA Astrophysics Data System (ADS)

n-type and p-type MCZ silicon grown under different magnetic field strengths and different pulling rates compared with the CZ silicon were investigated by means of X-ray topography, micro-region infrared absorption, infrared microscopy, optical microscopy and spreading resistance, etc. The experimental results show that the MCZ method can provide high quality silicon crystals with a low oxygen concentration, uniform distribution of dopant and good thermal stability, leading to low thermal donor generation.

Mai, Z. H.; Cui, S. F.; Wang, C. Y.; Wu, L. S.; Li, H. P.; Chen, G. X.; Zhou, S. R.; Ye, S. C.

415

Dynamic signatures of quiet sun magnetic fields  

NASA Technical Reports Server (NTRS)

The collision and disappearance of opposite polarity fields is observed most frequently at the borders of network cells. Due to observational limitations, the frequency, magnitude, and spatial distribution of magnetic flux loss have not yet been quantitatively determined at the borders or within the interiors of the cells. However, in agreement with published hypotheses of other authors, the disapperance of magnetic flux is speculated to be a consequence of either gradual or rapid magnetic reconnection which could be the means of converting magnetic energy into the kinetic, thermal, and nonthermal sources of energy for microflares, spicules, the solar wind, and the heating of the solar corona.

Martin, S. F.

1983-01-01

416

Particle decay in Ising field theory with magnetic field  

E-print Network

The scaling limit of the two-dimensional Ising model in the plane of temperature and magnetic field defines a field theory which provides the simplest illustration of non-trivial phenomena such as spontaneous symmetry breaking and confinement. Here we discuss how Ising field theory also gives the simplest model for particle decay. The decay widths computed in this theory provide the obvious test ground for the numerical methods designed to study unstable particles in quantum field theories discretized on a lattice.

Gesualdo Delfino

2007-03-30

417

Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-  

E-print Network

Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta- molecules-shape plasmonic gold meta-molecules, that exhibits a profound response to the magnetic field of light incident depends on the plasmonic resonance mode showing either enhanced in the centre of the erected U-shape meta

Zheludev, Nikolay

418

Levin and Ernst, DC Magnetic Field Effects on Development Applied DC Magnetic Fields Cause Alterations in the  

E-print Network

Levin and Ernst, DC Magnetic Field Effects on Development Applied DC Magnetic Fields Cause relative to fertilization. The exposure time which caused the maximum effect differed between the two urchin, static magnetic field, gastrulation, development, mitotic cycle, teratogenic effects running

Levin, Michael

419

Effects of static magnetic fields on plants.  

NASA Astrophysics Data System (ADS)

In our recent experiment on STS-107 (MFA-Biotube) we took advantage of the magnetic heterogeneity of the gravity receptor cells of flax roots, namely stronger diamagnetism of starch-filled amyloplasts compared to cytoplasm (? ? < 0). High gradient magnetic fields (HGMF, grad(H2/2) up to 109-1010 Oe2/cm) of the experimental chambers (MFCs) repelled amyloplasts from the zones of stronger field thus providing a directional stimulus for plant gravisensing system in microgravity, and causing the roots to react. Such reaction was observed in the video downlink pictures. Unfortunately, the ``Columbia'' tragedy caused loss of the plant material and most of the images, thus preventing us from detailed studies of the results. Currently we are looking for a possibility to repeat this experiment. Therefore, it is very important to understand, what other effects (besides displacing amyloplasts) static magnetic fields with intensities 0 to 2.5104 Oe, and with the size of the area of non-uniformity 10-3 to 1 cm. These effects were estimated theoretically and tested experimentally. No statistically significant differences in growth rates or rates of gravicurvature were observed in experiments with Linum, Arabidopsis, Hordeum, Avena, Ceratodon and Chara between the plants grown in uniform magnetic fields of various intensities (102 to 2.5104 Oe) and those grown in the Earth's magnetic field. Microscopic studies also did not detect any structural differences between test and control plants. The magnitudes of possible effects of static magnetic fields on plant cells and organs (including effects on ion currents, magneto-hydrodynamic effects in moving cytoplasm, ponderomotive forces on other cellular structures, effects on some biochemical reactions and biomolecules) were estimated theoretically. The estimations have shown, that these effects are small compared to the thermodynamic noise and thus are insignificant. Both theoretical estimations and control experiments confirm, that intracellular magnetophoresis of statoliths is the only significant effect of the magnetic field on plant cells and organs in the tested magnetic systems.

Kuznetsov, O.

420

Magnetic field structure evolution in RMF plasmas  

NASA Astrophysics Data System (ADS)

A study of magnetic field structure evolution during 40-ms plasma discharge had been performed in 80 cm long / 40 cm OD cylindrical chamber. Plasma current Ip˜2--3 kA is produced by applied 500 kHz rotating magnetic field. In experiments, the 2D profile of plasma current is changed by feeding a 10-ms pulse current to additional magnetic coil located at the midplane. Using newly developed magnetic field pick-up coils system, we scanned the magnetic field in cross-section of plasma. Two experimental regimes were studied: without external toroidal field (TF), and with TF produced by applied axial current. When a relatively small current (<0.5 kA) is applied to the midplane coil, in both cases the total plasma current measured with Rogowski coil experiences a jump (up to 100%), but the profile of current remains almost unchanged. When a larger current (1--2 kA) is applied to the midplane coil, the total plasma current drops; the magnetic structure changes differently in two regimes. In regime without TF, the magnetic field of plasma current is reversed at Rmagnetic field evolves during initial 1--3 ms transitional period of plasma formation.

Petrov, Yuri; Yang, Xiaokang; Huang, Tian-Sen

2007-11-01

421

Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)  

SciTech Connect

The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

1998-08-22

422

Parabolic nondiffracting optical wave fields.  

PubMed

We demonstrate the existence of parabolic beams that constitute the last member of the family of fundamental nondiffracting wave fields and determine their associated angular spectrum. Their transverse structure is described by parabolic cylinder functions, and contrary to Bessel or Mathieu beams their eigenvalue spectrum is continuous. Any nondiffracting beam can be constructed as a superposition of parabolic beams, since they form a complete orthogonal set of solutions of the Helmholtz equation. A novel class of traveling parabolic waves is also introduced for the first time. PMID:14719655

Bandres, Miguel A; Gutiérrez-Vega, Julio C; Chávez-Cerda, Sabino

2004-01-01

423

Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields  

NASA Astrophysics Data System (ADS)

When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 ?m) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces—the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter ? ?2), the Brownian motion seems not to affect the cloud behavior.

Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Nave, S.; Zubarev, A.; Lomenech, C.; Bashtovoi, V.

2014-03-01

424

Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields  

E-print Network

When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in details. In experiments, dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50$\\mu$m) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces - the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter $\\alpha \\geq 2$), the Brownian motion seems not to affect the cloud behavior.

Cécilia Magnet; Pavel Kuzhir; Georges Bossis; Alain Meunier; Sebastien Nave; Andrey Zubarev; Claire Lomenech; Victor Bashtovoi

2014-04-14

425

Magnetic marker based homogeneous bioassays utilizing rotating magnetic fields  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles (MNPs) as markers in bioassays utilizing rotating instead of alternating magnetic fields predict an improved sensitivity regarding quantitative protein detection. This finding is based on numerical solutions of the Fokker-Planck equation and pronounced for increasing field amplitudes. In order to verify this prediction, the phase lag change of MNPs in rotating magnetic fields up to 5 mT is measured. The magnetic markers are functionalized single core iron oxide nanoparticles with different sizes. Antibodies which specifically bind to the MNPs cause the phase lag change. The increase of the phase lag change strongly depends on the particle parameters. MNPs with a core diameter of 30 nm show for 5 mT, a significant difference between the two field types. This difference is less pronounced for the 25 nm MNPs due to the increasing influence of Néel relaxation processes and for the 40 nm particles, due to the reduced saturation magnetization. A further improvement for the 30 nm MNPs with field amplitudes over 5 mT is simulated based on the determined particle parameters.

Dieckhoff, Jan; Schilling, Meinhard; Ludwig, Frank

2014-05-01

426

Magnetic fields of Jupiter and Saturn  

SciTech Connect

The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

Ness, N.F.

1981-01-01

427

Slowly rotating pulsars and magnetic field decay  

NASA Astrophysics Data System (ADS)

Two dozen long period pulsars are separated from the swarm of ordinary pulsars by an obvious gap in the P versus Sd diagram (where Sd=log?(P)+21.0), with a plausible upper boundary for ordinary pulsars. Possible pulsar evolutionary tracks are discussed to explain the diagram in terms of previously suggested scenarios of magnetic field decay. The (P-Sd) diagram is difficult to understand if there is no magnetic field decay during the active life of pulsars. However, if the magnetic fields of neutron stars decay exponentially, almost all slowly rotating pulsars must have been injected with a very long initial spin period of about 2 seconds, which seems impossible. Based on qualitative analyses, it is concluded that magnetic fields of neutron stars decay as a power-law, with a time scale related to the initial field strengths. The plausible boundary and the gap are suggested to naturally divide pulsars with distinct magnetic "genes", ie. pulsars which were born from strongly magnetized progenitors -- such as Bp stars, and pulsars born from normal massive stars. The possibility remains open that a fraction of slowly rotating pulsars were injected with long initial spin periods, while others would have a classical pulsar evolution history. It is suggested that PSR B1849+00 was born in the supernova remnant Kes-79 with an initial period of about 2 seconds.

Han, J. L.

1997-02-01

428

Suppression of cooling by strong magnetic fields in white dwarf stars.  

PubMed

Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young. PMID:25327247

Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

2014-11-01

429

Suppression of cooling by strong magnetic fields in white dwarf stars  

NASA Astrophysics Data System (ADS)

Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

Valyavin, G.; Shulyak, D.; Wade, G. A.; Antonyuk, K.; Zharikov, S. V.; Galazutdinov, G. A.; Plachinda, S.; Bagnulo, S.; Fox Machado, L.; Alvarez, M.; Clark, D. M.; Lopez, J. M.; Hiriart, D.; Han, Inwoo; Jeon, Young-Beom; Zurita, C.; Mujica, R.; Burlakova, T.; Szeifert, T.; Burenkov, A.

2014-11-01

430

Stabilizing textures with magnetic fields  

E-print Network

The best-known way of stabilizing textures is by Skyrme-like terms, but another possibility is to use gauge fields. The semilocal vortex may be viewed as an example of this, in two spatial dimensions. In three dimensions, however, the idea (in its simplest form) does not work -- the link between the gauge field and the scalar field is not strong enough to prevent the texture from collapsing. Modifying the |D Phi|^2 term in the Lagrangian (essentially by changing the metric on the Phi-space) can strengthen this link, and lead to stability. Furthermore, there is a limit in which the gauge field is entirely determined in terms of the scalar field, and the system reduces to a pure Skyrme-like one. This is described for gauge group U(1), in dimensions two and three. The non-abelian version is discussed briefly, but as yet no examples of texture stabilization are known in this case.

R S Ward

2002-07-11

431

Plasma separation from magnetic field lines in a magnetic nozzle  

NASA Technical Reports Server (NTRS)

This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

1993-01-01

432

Fiber Optic Electric Field Micro Sensor  

NASA Astrophysics Data System (ADS)

A novel method and apparatus for sensing AC and DC electric fields incorporating a fiber-optic transducer mounted directly on the tip of an optical fiber waveguide has been demonstrated. The transducer employs a conductive Fabry-Perot microcavity bounded by a conductive, thin and corrugated silicon diaphragm. When the conductive microcavity is placed into an electric field, the electric field is excluded from within the equipotential cavity, which acts as a Faraday cage, and a net electrostatic force exerted on the surface of the diaphragm. The diaphragm deflects linearly and uniformly under the influence of the extremely low electrostatic pressures which are induced. The diaphragm deflection modulates the reflectance within the optical fiber by varying the gap of the cavity. The change in reflected light is measured and correlated to the field strength using and improved dual-wavelength referencing technique which compensates for bending and transmission losses in the optical fiber. Electric fields in the range of 0 to 300KV/m were successfully measured. The minimum intensity detected was of the order of 40KV/m. This relatively low intensity is due to the high boron-diffusion of the fabricated silicon diaphragms. However, higher sensitivities are possible by thinning the diaphragm, increasing its radius, reducing the boss ratio or decreasing the corrugation depth. No corona or discharge effects were noticed and a good repeatability was observed in the measurements.

Mendez Chamorro, Alexis

433

Generation of Vortex Beams with Strong Longitudinally Polarized Magnetic Field by Using a Metasurface  

E-print Network

A novel method of generation and synthesis of azimuthally E-polarized vortex beams is presented. Along the axis of propagation such beams have a strong longitudinally polarized magnetic field where ideally there is no electric field. We show how these beams can be constructed through the interference of Laguerre-Gaussian beams carrying orbital angular momentum. As an example, we present a metasurface made of double-split ring slot pairs and report a good agreement between simulated and analytical results. Both a high magnetic-to-electric-field contrast ratio and a magnetic field enhancement are achieved. We also investigate the metasurface physical constraints to convert a linearly polarized beam into an azimuthally E- polarized beam and characterize the performance of magnetic field enhancement and electric field suppression of a realistic metasurface. These findings are potentially useful for novel optical spectroscopy related to magnetic dipolar transitions and for optical manipulation of particles with sp...

Veysi, Mehdi; Capolino, Filippo

2014-01-01

434

Birefringence of silica hydrogels prepared under high magnetic fields reinvestigated  

E-print Network

Birefringence is an indicator of structural anisotropy of materials. We measured the birefringence of Pb(II)-doped silica hydrogels prepared under a high magnetic field of various strengths. Because the silica is diamagnetic, one does not expect the structural anisotropy induced by a magnetic field. In previous work [Mori A, Kaito T, Furukawa H 2008 Mater. Lett. 62 3459-3461], we prepared samples in cylindrical cells made of borosilicate glass and obtained a preliminary result indicating a negative birefringence for samples prepared at 5T with the direction of the magnetic field being the optic axis. We have measured the birefringence of Pn(II)-doped silica hydrogels prepared in square cross-sectional cells made of quartz and reverted the previous conclusion. Interestingly, the magnetic-influenced silica hydrogels measured have been classified into four classes: two positive birefringent ones, no birefringent one, and negative birefringent one. Proportionality between birefringence and the strength of magnetic field is seen for the former two.

Atsushi Mori; Takamasa Kaito; Hidemitsu Furukawa; Masafumi Yamato; Kohki Takahashi

2014-09-17

435

Lightning Magnetic Field Measurements around Langmuir Laboratory  

NASA Astrophysics Data System (ADS)

In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.

Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.

2010-12-01

436

The magnetic field of the Milky Way  

Microsoft Academic Search

Since its discovery 40 years ago as a confiner of cosmic rays and an aligner of interstellar dust grains, the Galactic magnetic field has been studied through emission and polarization of synchrotron radiation, Faraday rotation, Zeeman splitting, and effects on gas flows and morphology. The local field has a coherent, few microgauss, component roughly along the local spiral arm and

Virginia Trimble

1990-01-01

437

Vacuum polarization tensor in inhomogeneous magnetic fields  

Microsoft Academic Search

We develop worldline numerical methods, which combine string-inspired with Monte Carlo techniques, for the computation of the vacuum polarization tensor in inhomogeneous background fields for scalar QED. The algorithm satisfies the Ward identity exactly and operates on the level of renormalized quantities. We use the algorithm to study for the first time light propagation in a spatially varying magnetic field.

Holger Gies; Lars Roessler

2011-01-01

438

Magnetic field generation from nonequilibrium phase transitions  

Microsoft Academic Search

We study the generation of magnetic fields during the stage of particle production resulting from spinodal instabilities during phase transitions out of equilibrium. The main premise is that long-wavelength instabilities that drive the phase transition lead to strong nonequilibrium charge and current fluctuations which generate electromagnetic fields. We present a formulation based on the nonequilibrium Schwinger-Dyson equations that leads to

D. Boyanovsky; H. J. de Vega; M. Simionato

2003-01-01

439

Magnetic field effects on CRT computer monitors  

Microsoft Academic Search

This paper discusses the effect of external low frequency magnetic field interference on cathode ray tube (CRT) computer monitors. The paper describes a new test facility and presents a quantitative measuring method which has been developed to characterize the field effects. A total of 21 monitors from major manufacturers were tested. It was found that larger monitors are more sensitive

Balazs Banfai; George G. Karady; Charles J. Kim; Kate Brown Maracas

2000-01-01

440

Cosmic rays in the earth's magnetic field  

Microsoft Academic Search

It is shown that the values of cosmic ray cut-off moments in the earth's magnetic field, observed at many different places, are generally close to the values calculated from Störmer's theory for the motion of charged particles in a dipole field, if the usual centre dipole of the earth is replaced in the Störmer equation by a dipole whose magnitude

P. Rothwell

1958-01-01