Science.gov

Sample records for magnetic field optical

  1. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  2. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  3. Magnetic field concentrator for probing optical magnetic metamaterials.

    PubMed

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-01

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials. PMID:21164936

  4. Magnetic-field-compensation optical vector magnetometer.

    PubMed

    Papoyan, Aram; Shmavonyan, Svetlana; Khanbekyan, Alen; Khanbekyan, Karen; Marinelli, Carmela; Mariotti, Emilio

    2016-02-01

    A concept for an optical magnetometer used for the measurement of magnitude and direction of a magnetic field (B-field) in two orthogonal directions is developed based on double scanning of a B-field to compensate the measured field to zero value, which is monitored by a resonant magneto-optical process in an unshielded atomic vapor cell. Implementation of the technique using the nonlinear Hanle effect on the D2 line of rubidium demonstrates viability and efficiency of the proposed concept. The ways to enhance characteristics of the suggested technique and optimize its performance, as well as the possible extension to three-axis magnetometry, are discussed. PMID:26836097

  5. Optical absorption in semiconductor nanorings under electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhang, Tong-Yi; Cao, Jun-Cheng; Zhao, Wei

    2005-01-01

    The optical absorption in semiconductor nanorings under a lateral DC field and a perpendicular magnetic field is numerically simulated by coherent wave approach. The exciton dominated optical absorption is compared with the free-carrier interband absorption to demonstrate the key role of Coulomb interaction between electron and hole. The influence of the lateral DC field and the perpendicular magnetic field on the optical absorption are discussed in detail. It shows that the lateral DC field can significantly enhance the Aharonov-Bohm effect of the neutral excitons in semiconductor nanorings.

  6. Magneto-optical micromechanical systems for magnetic field mapping.

    PubMed

    Truong, Alain; Ortiz, Guillermo; Morcrette, Mélissa; Dietsch, Thomas; Sabon, Philippe; Joumard, Isabelle; Marty, Alain; Joisten, Hélène; Dieny, Bernard

    2016-01-01

    A new method for magnetic field mapping based on the optical response of organized dense arrays of flexible magnetic cantilevers is explored. When subjected to the stray field of a magnetized material, the mobile parts of the cantilevers deviate from their initial positions, which locally changes the light reflectivity on the magneto-optical surface, thus allowing to visualize the field lines. While the final goal is to be able to map and quantify non-uniform fields, calibrating and testing the device can be done with uniform fields. Under a uniform field, the device can be assimilated to a magnetic-field-sensitive diffraction grating, and therefore, can be analyzed by coherent light diffraction. A theoretical model for the diffraction patterns, which accounts for both magnetic and mechanical interactions within each cantilever, is proposed and confronted to the experimental data. PMID:27531037

  7. Magneto-optical micromechanical systems for magnetic field mapping

    PubMed Central

    Truong, Alain; Ortiz, Guillermo; Morcrette, Mélissa; Dietsch, Thomas; Sabon, Philippe; Joumard, Isabelle; Marty, Alain; Joisten, Hélène; Dieny, Bernard

    2016-01-01

    A new method for magnetic field mapping based on the optical response of organized dense arrays of flexible magnetic cantilevers is explored. When subjected to the stray field of a magnetized material, the mobile parts of the cantilevers deviate from their initial positions, which locally changes the light reflectivity on the magneto-optical surface, thus allowing to visualize the field lines. While the final goal is to be able to map and quantify non-uniform fields, calibrating and testing the device can be done with uniform fields. Under a uniform field, the device can be assimilated to a magnetic-field-sensitive diffraction grating, and therefore, can be analyzed by coherent light diffraction. A theoretical model for the diffraction patterns, which accounts for both magnetic and mechanical interactions within each cantilever, is proposed and confronted to the experimental data. PMID:27531037

  8. Triaxial fiber optic magnetic field sensor for MRI applications

    NASA Astrophysics Data System (ADS)

    Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea

    2016-05-01

    In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.

  9. Novel concepts in near-field optics: from magnetic near-field to optical forces

    NASA Astrophysics Data System (ADS)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  10. Zero-field optical manipulation of magnetic ions in semiconductors.

    PubMed

    Myers, R C; Mikkelsen, M H; Tang, J-M; Gossard, A C; Flatté, M E; Awschalom, D D

    2008-03-01

    Controlling and monitoring individual spins is desirable for building spin-based devices, as well as implementing quantum information processing schemes. As with trapped ions in cold gases, magnetic ions trapped on a semiconductor lattice have uniform properties and relatively long spin lifetimes. Furthermore, diluted magnetic moments in semiconductors can be strongly coupled to the surrounding host, permitting optical or electrical spin manipulation. Here we describe the zero-field optical manipulation of a few hundred manganese ions in a single gallium arsenide quantum well. Optically created mobile electron spins dynamically generate an energy splitting of the ion spins and enable magnetic moment orientation solely by changing either photon helicity or energy. These polarized manganese spins precess in a transverse field, enabling measurements of the spin lifetimes. As the magnetic ion concentration is reduced and the manganese spin lifetime increases, coherent optical control and readout of single manganese spins in gallium arsenide should be possible. PMID:18278049

  11. Measurement of magnetic field using Rayleigh backscattering in optical fibres

    SciTech Connect

    Wuilpart, M.; Caucheteur, C.; Goussarov, A.; Aerssens, M.; Massaut, V.; Megret, P.

    2011-07-01

    In this paper, we investigate the use of optical reflectometry in optical fibres for the measurement of magnetic field. The dedicated application concerns the measurement of plasma current in the fusion reactor. The measurement is based on the rotation of the polarization state of the Rayleigh backscattered signal when an optical pulse is launched in the fibre. Particular care has been undertaken to evaluate the impact of linear birefringence on the measurement performance. (authors)

  12. Linear optical response of carbon nanotubes under axial magnetic field

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-04-01

    We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.

  13. Magnetic field tunability of optical microfiber taper integrated with ferrofluid.

    PubMed

    Miao, Yinping; Wu, Jixuan; Lin, Wei; Zhang, Kailiang; Yuan, Yujie; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2013-12-01

    Optical microfiber taper has unique propagation properties, which provides versatile waveguide structure to design the tunable photonic devices. In this paper, the S-tapered microfiber is fabricated by using simple fusion spicing. The spectral characteristics of microfiber taper integrated with ferrofluid under different magnetic-field intensities have been theoretically analyzed and experimentally demonstrated. The spectrum are both found to become highly magnetic-field-dependent. The results indicate the transmission and wavelength of the dips are adjustable by changing magnetic field intensity. The response of this device to the magnetic field intensity exhibits a Langvin function. Moreover, there is a linear relationship between the transmission loss and magnetic field intensity for a magnetic field intensity range of 25 to 200Oe, and the sensitivities as high as 0.13056dB/Oe and 0.056nm/Oe have been achieved, respectively. This suggests a potential application of this device as a tunable all-in-fiber photonic device, such as magneto-optic modulator, filter, and sensing element. PMID:24514542

  14. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    NASA Astrophysics Data System (ADS)

    Banerjee, Ananya; Sarkar, A.

    2016-05-01

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  15. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    PubMed Central

    2012-01-01

    Ferronematic materials composed of 4-cyano-4′-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δn) and figure of merit of optical properties (Q = Δn/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field. PMID:22587542

  16. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-05-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δ n) and figure of merit of optical properties ( Q = Δ n/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of Q R exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field.

  17. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals.

    PubMed

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-01-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δn) and figure of merit of optical properties (Q = Δn/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field. PMID:22587542

  18. Using optical soliton stability for magnetic field measurement

    NASA Astrophysics Data System (ADS)

    Şchiopu, IonuÅ£ Romeo; ǎgulinescu, Andrei, Dr; Marinescu, Andrei

    2015-02-01

    In this paper we propose a novel optical method for measuring the circular magnetic field. In practice, many situations may appear in which there are difficulties in measuring the magnetic field, as inside coils, motors etc., where the magnetic field lines are circular or elliptical. The proposed method, applied for measuring the current on high voltage lines, strongly benefits from the advantages that it offers as compared to classical solutions based on the inductive principle. Some of the advantages of optoelectronic and optic measurement methods have a real importance. These advantages consist in: avoiding the use of energy intensive materials (Cu, Fe etc.), reducing the weight of the measuring system, reducing at the minimum the fire danger due to the use of paper-oil insulation in high voltage devices etc. The novelty of our proposed method consists in using the electromagnetic radiation in ultrashort pulses, having a relatively large frequency band and a much improved resistance to external perturbations, for measuring the circular magnetic field generated from the current of high voltage lines, inside power transformers or high power motors.

  19. Solar magnetic fields measurements with a magneto-optical filter

    NASA Technical Reports Server (NTRS)

    Cacciani, A.; Ricci, D.; Rosati, P.; Rhodes, E. J.; Smith, E.

    1990-01-01

    The presence of a magnetic field at different levels inside the sun has crucial implications for helioseismology. The solar oscillation observing program carried out since 1983 at Mt. Wilson with Cacciani magneto-optical filter has recently been modified to acquire full-disk magnetograms with 2 arcsec spatial resolution. A method for the correct determination of magnetic maps which are free of contamination by velocity signal is presented. It is shown that no cross-talk exists between the Doppler and Zeeman shifts of the Na D lines, provided that instrumental polarization effects are taken into account. The observed line-of-sight photospheric field was used to map the vector field in the inner corona, above active regions, in the current free approximation.

  20. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    SciTech Connect

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  1. Artificial Staggered Magnetic Field for Ultracold Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Morais Smith, Cristiane

    2011-03-01

    Uniform magnetic fields are ubiquitous in nature, but this is not the case for staggered magnetic fields. In this talk, I will discuss an experimental set-up for cold atoms recently proposed by us, which allows for the realization of a ``staggered gauge field'' in a 2D square optical lattice. If the lattice is loaded with bosons, it may be described by an effective Bose-Hubbard Hamiltonian, with complex and anisotropic hopping coefficients. A very rich phase diagram emerges: besides the usual Mott-insulator and zero-momentum condensate, a new phase with a finite momentum condensate becomes the ground-state at strong gauge fields. By using the technique of Feshbach resonance, the dynamics of a coherent superposition of a vortex-carrying atomic condensate and a conventional zero-momentum molecular condensate can also be studied within the same scheme. On the other hand, if the lattice is loaded with fermions, a highly tunable, graphene-like band structure can be realized, without requiring the honeycomb lattice symmetry. When the system is loaded with a mixture of bosons and two-species fermions, several features of the high-Tc phase diagram can be reproduced. A dome-shaped unconventional superconducting region arises, surrounded by a non-Fermi liquid and a Fermi liquid at low and high doping, respectively. We acknowledge financial support from the Netherlands Organization for Scientific Research (NWO).

  2. Proposal for generating synthetic magnetic fields in hexagonal optical lattices

    NASA Astrophysics Data System (ADS)

    Tian, Binbin; Endres, Manuel; Pekker, David

    2015-05-01

    We propose a new approach to generating synthetic magnetic fields in ultra cold atom systems that does not rely on either Raman transitions nor periodic drive. Instead, we consider a hexagonal optical lattice produced by the intersection of three laser beams at 120 degree angles, where the intensity of one or more of the beams is spatially non-uniform. The resulting optical lattice remains hexagonal, but has spatially varying hopping matrix elements. For atoms near the Dirac points, these spatial variations appear as a gauge field, similar to the fictitious gauge field that is induced for for electrons in strained graphene. We suggest that a robust way to generate a gauge field that corresponds to a uniform flux is to aligning three gaussian beams to intersect in an equilateral triangle. Using realistic experimental parameters, we show how the proposed setup can be used to observe cyclotron motion of an atom cloud - the conventional Hall effect and distinct Landau levels - the integer quantum Hall effect.

  3. Magnetic field topographical survey by magneto-optical space-time light modulators

    NASA Astrophysics Data System (ADS)

    Levy, Sergey V.; Ostrovsky, Andrey S.; Agalidy, Yu. S.

    1993-12-01

    Utilization of magneto-optical spacing light modulators based on Bi-substituted monocrystalline ferrite-garnet films for spatially distributed magnetic field measurements is discussed. Numerous variants of magnetic field topographical survey for different types (audio & video ...) of magnetic signalogramms geometrical parameters control are described. Special usages for magnetic signalogramms criminalistics examination and faint amplitude signalogramms visualization are described too.

  4. Thermal magnetic field noise: electron optics and decoherence.

    PubMed

    Uhlemann, Stephan; Müller, Heiko; Zach, Joachim; Haider, Max

    2015-04-01

    Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered structure of magnetic and non-magnetic materials. For a simplified version of this setup and other situations we derive semi-analytical models in order to predict the strength, bandwidth and spatial correlation of the noise fields. The results of the simulations are finally compared to previous and new experimental data in a quantitative manner. PMID:25499019

  5. Three-dimensional magnetic trap lattice on an atom chip with an optically induced fictitious magnetic field

    SciTech Connect

    Yan Hui

    2010-05-15

    A robust type of three-dimensional magnetic trap lattice on an atom chip combining optically induced fictitious magnetic field with microcurrent-carrying wires is proposed. Compared to the regular optical lattice, the individual trap in this three-dimensional magnetic trap lattice can be easily addressed and manipulated.

  6. Effect of Transverse Magnetic Fields on Cold-Atom Nonlinear Magneto-Optical Rotation

    NASA Astrophysics Data System (ADS)

    Meyer, David; Kunz, Paul; Fatemi, Fredrik; Quraishi, Qudsia

    2016-05-01

    We investigate nonlinear magneto-optical rotation (NMOR) in cold atoms in the presence of a transverse magnetic field where alignment-to-orientation conversion (AOC) dominates. The AOC mechanism, which relies on AC-Stark shifts generated by a strong, off-resonant probe beam, significantly alters the NMOR resonance. When an additional magnetic field is present, parallel to the electric field of the light, a nested feature within this NMOR resonance manifests. Unlike similar features observed with lower optical power in warm vapors, attributed to optical pumping through nearby hyperfine levels, this feature is due solely to the AOC mechanism. Using numerical simulations, a perturbative solution, and experimental observations we characterize the feature with respect to optical power, optical polarization, magnetic field strength, and magnetic field direction. These results shed further light on the AOC mechanism common to NMOR-based experiments and we demonstrate a potential application to measure transverse DC magnetic fields and spatial gradients.

  7. Quasi-static high-resolution magnetic-field detection based on dielectric optical resonators

    NASA Astrophysics Data System (ADS)

    Ioppolo, Tindaro; Rubino, Edoardo

    2013-06-01

    In this paper we present a high resolution magnetic field sensor that is based on the perturbation of the optical modes (whispering gallery mode, WGM) of a spherical dielectric resonator. The optical resonator is side coupled to a tapered single mode optical fiber. One side of the optical fiber is coupled to a distribute feedback diode laser, while the other end is connected to a photodiode. The optical modes of the dielectric cavity are perturbed using a metglas sheet that is in contact with the resonator. When the metglas sheet is exposed to an external magnetic field it elongates perturbing the optical modes of the dielectric cavity. This in turn leads to a shift in the optical resonances. By measuring the induced WGM shift the magnetic field can be measured. Preliminary results show sensor resolution of a few nanoteslas.

  8. A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber

    SciTech Connect

    Candiani, A.; Argyros, A.; Leon-Saval, S. G.; Lwin, R.; Selleri, S.; Pissadakis, S.

    2014-03-17

    We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

  9. High spatial resolution distributed optical fiber magnetic field sensor based on magnetostriction by optical frequency-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Du, Yang; Liu, Tiegen; Ding, Zhenyang; Liu, Kun; Feng, Bowen; Jiang, Junfeng

    2015-03-01

    The distributed optical fiber magnetic field sensors have a capability of spatially resolving the magnetic field along the entire sensing fiber that is distinguishes from other sensing methods. We present a distributed optical fiber magnetic field sensor based on magnetostriction using Rayleigh backscattering spectra shift in OFDR (optical frequency-domain reflectometry). As the spectral shift of Rayleigh backscattering can be used to achieve a distributed strain measurements with high sensitivity and high spatial resolution using OFDR. In the proposed sensor, the magnetostrictive Fe-Co-V alloy thin films as sensing materials are attached to a 51 m standard single mode fiber (SMF). We detect the strain coupled to SMF caused by variation of magnetic field by measuring Rayleigh Backscattering spectra shift in OFDR. In our experiment, we measure the range of the magnetic field is from 12.9 mT~143.3 mT using proposed method. The minimal measurable magnetic field variation is 12.9 mT when the spatial resolution is 4 cm. The minimal measurable magnetic field variation can be improved to 5.3 mT by increasing the spatial resolution to 14 cm. Moreover, we present the simulation result of two dimension (2D) distribution for the static magnetic field using the Maxwell software program.

  10. Development of optical modulators for measurements of solar magnetic fields

    NASA Astrophysics Data System (ADS)

    West, E. A.; Smith, J. E.

    1987-10-01

    The measurement of polarized light allows solar astronomers to infer the magnetic field on the Sun. The accuracy of these measurements is dependent on the stable retardation characteristics of the polarization modulators used to minimize the atmospheric effects seen in ground-based observations. This report describes the work by the Space Science Laboratory at Marshall Space Flight Center to improve two types of polarization modulators. As a result, the timing characteristics for both electrooptic crystals (KD*Ps) and liquid crystal devices (LCDs) have been studied and will be used to enhance the capabilities of the MSFC Vector Magnetograph.

  11. Development of optical modulators for measurements of solar magnetic fields

    NASA Technical Reports Server (NTRS)

    West, E. A.; Smith, J. E.

    1987-01-01

    The measurement of polarized light allows solar astronomers to infer the magnetic field on the Sun. The accuracy of these measurements is dependent on the stable retardation characteristics of the polarization modulators used to minimize the atmospheric effects seen in ground-based observations. This report describes the work by the Space Science Laboratory at Marshall Space Flight Center to improve two types of polarization modulators. As a result, the timing characteristics for both electrooptic crystals (KD*Ps) and liquid crystal devices (LCDs) have been studied and will be used to enhance the capabilities of the MSFC Vector Magnetograph.

  12. Electromagnetic waves in optical fibres in a magnetic field

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Burdanova, M. G.

    2016-03-01

    A new method is reported of recording the secondary radiation of luminescent substances based on the use of capillary fibres of great length. Theoretical analysis of the dispersion curves of electromagnetic radiation in capillary fibres doped with erbium ions Er3+ has been established. The Lorentz model is used for describing the dispersion properties of electromagnetic waves in a homogeneous medium doped with rare-earth ions. The dispersion dependencies of polariton and axion-polariton waves in erbium nitrate hydrate are determined on the basis of the model of the interaction between electromagnetic waves and the resonance electronic states of erbium ions in the absence and presence of a magnetic field.

  13. All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer.

    PubMed

    Deng, Ming; Huang, Can; Liu, Danhui; Jin, Wei; Zhu, Tao

    2015-08-10

    An ultra-compact optical fiber magnetic field sensor based on a microstructured optical fiber (MOF) modal interference and ferrofluid (FF) has been proposed and experimentally demonstrated. The magnetic field sensor was fabricated by splicing a tapered germanium-doped index guided MOF with six big holes injected with FF to two conventional single-mode fibers. The transmission spectra of the proposed sensor under different magnetic field intensities have been measured and theoretically analyzed. Due to an efficient interaction between the magnetic nanoparticles in FF and the excited cladding mode, the magnetic field sensitivity reaches up to117.9pm/mT with a linear range from 0mT to 30mT. Moreover, the fabrication process of the proposed sensor is simple, easy and cost-effective. Therefore, it will be a promising candidate for military, aviation industry, and biomedical applications, especially, for the applications where the space is limited. PMID:26367919

  14. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    SciTech Connect

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.

  15. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna.

    PubMed

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H; Pagliano, Francesco; Fiore, Andrea; Schuck, P James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-01-01

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the "campanile tip", a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions. PMID:26045401

  16. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    PubMed Central

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-01-01

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions. PMID:26045401

  17. Optical multichannel room temperature magnetic field imaging system for clinical application

    PubMed Central

    Lembke, G.; Erné, S. N.; Nowak, H.; Menhorn, B.; Pasquarelli, A.

    2014-01-01

    Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820

  18. Optical multichannel room temperature magnetic field imaging system for clinical application.

    PubMed

    Lembke, G; Erné, S N; Nowak, H; Menhorn, B; Pasquarelli, A

    2014-03-01

    Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820

  19. Parametric distortion of the optical absorption edge of a magnetic semiconductor by a strong laser field

    SciTech Connect

    Nunes, O.A.C.

    1985-09-15

    The influence of a strong laser field on the optical absorption edge of a direct-gap magnetic semiconductor is considered. It is shown that as the strong laser intensity increases the absorption coefficient is modified so as to give rise to an absorption tail below the free-field forbidden gap. An application is made for the case of the EuO.

  20. The Parsec-Scale Magnetic Field Properties of Low-Optical Polarization Blazars

    NASA Technical Reports Server (NTRS)

    Lister, Matthew L.; Smith, Paul

    1998-01-01

    Past variability studies of flat-spectrum, compact extra-galactic radio sources have suggested that low- and high-optically polarized quasars (LPQ/HPQ) are the same type of object, differing only in the angle their relativistic jets make to the line of sight. This view has been challenged, however, by recent millimeter-wave polarization observations which indicate intrinsic differences in the inner magnetic field properties of the two classes. The inner jets of LPQs tend to have lower fractional polarizations than HPQs, and inferred magnetic field directions that are mostly parallel to the jet. The magnetic fields of HPQs, on the other hand, lie mainly in a transverse direction. The latter configuration is a prediction of the standard shock-in-jet model, in which a portion of a jet undergoes a strong transverse compression, thereby enhancing the perpendicular components of an originally tangled magnetic field. The main goal of this study is to establish a connection between the optical polarization and magnetic field properties of the inner jets of blazars. The magnetic field orientations of several HPQs have been shown to be stable over many years, which may be due to standing shock(s) located close to the base of the jet. Since these shocks are able to produce large amounts of optically polarized synchrotron radiation, their presence may very well determine whether an object is classified as an HPQ or LPQ. We have imaged the parsec-scale jet regions and magnetic fields of 11 LPQs with the Very Long Baseline Array (VLBA) at 43 and 22 GHz, and have obtained near- simultaneous optical polarization data for the sample. We discuss correlations between the optical and radio polarization data, and compare the LPQ properties to those of a sample of HPQs presently being monitored with the VLBA and JCMT at mm and sub-mm wavelengths, respectively. This research was performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

  1. Vortex Formation of Rotating Bose-Einstein Condensates in Synthetic Magnetic Field with Optical Lattice

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang

    2016-02-01

    Motivated by recent experiments carried out by Spielman's group at NIST, we study the vortex formation in a rotating Bose-Einstein condensate in synthetic magnetic field confined in a harmonic potential combined with an optical lattice. We obtain numerical solutions of the two-dimensional Gross-Pitaevskii equation and compare the vortex formation by synthetic magnetic field method with those by rotating frame method. We conclude that a large angular momentum indeed can be created in the presence of the optical lattice. However, it is still more difficult to rotate the condensate by the synthetic magnetic field than by the rotating frame even if the optical lattice is added, and the chemical potential and energy remain almost unchanged by increasing rotational frequency.

  2. Intrinsic magnetic field sensitivities of sensor head housing for all-fiber optic current sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Xuedian; Chang, Min; Mao, Chenfei; Lu, Dunke; Kamagara, Abel

    2014-10-01

    Full-fiber optical current sensors utilize the effects of magnetic-field imposed on the change of polarization azimuth of light in the fibers. Due to the sensitivities to external perturbations, the sensing fiber head in practical applications is usually packed in a fixed metallic housing majorly for protection purposes. However, the housing material itself tends to influence the magnetic field distributions of the current carrying wire in question. In this paper, the intrinsic effect and influence of fiber sensor head housing made of different magnetic materials on the magnetic field distributions around the current-carrying wire have been investigated. Simulation and virtual experimentation was carried out in the COMSOL environment. From the results, the housings made of single magnetic material are found to have magnetic disturbances on the magnetic field distribution around the wire. Housing made of some alloy materials has no influence on the magnetic distributions outside the wire. After experimenting with several materials, the former materials inclusive, steel is preferred as the protective housing and/or casing of fiber sensor head in optical fiber current sensors. This is on the basis of both technical and non-technical consideration of low cost of material though biased toward technical aspect of little or no influence on magnetic distribution around the wire.

  3. Far-field head-media optical interaction in heat-assisted magnetic recording.

    PubMed

    Yang, Ruoxi; Jones, Paul; Klemmer, Timmothy; Olson, Heidi; Zhang, Deming; Perry, Tyler; Scholz, Werner; Yin, Huaqing; Hipwell, Roger; Thiele, Jan-Ulrich; Tang, Huan; Seigler, Mike

    2016-02-20

    We have used a plane wave expansion method to theoretically study the far-field head-media optical interaction in heat-assisted magnetic recording. For the Advanced Storage Technology Consortium media stack specifically, we notice the outstanding sensitivity related to the interlayer's optical thickness for media reflection and the magnetic layer's light absorption. With 10 nm interlayer thickness change, the recording layer absorption can be changed by more than 25%. The 2D results are found to correlate well with the full 3D model and magnetic recording tests on a flyable disc with different interlayer thickness. PMID:26906574

  4. Analysis of the static magnetic field-dependent optical transmission of Ni nanorod colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Krämer, Florian; Gratz, Micha; Tschöpe, Andreas

    2016-07-01

    The magnetic field-dependent optical transmission of dilute Ni nanorod aqueous suspensions was investigated. A series of four samples of nanorods were synthesized using the AAO template method and processed to stable colloids. The distributions of their length and diameter were characterized by analysis of TEM images and revealed average diameters of ˜25 nm and different lengths in the range of 60 nm-1100 nm. The collinear magnetic and optical anisotropy was studied by static field-dependent transmission measurements of linearly polarized light parallel and perpendicular to the magnetic field direction. The experimental results were modelled assuming the field-dependent orientation distribution function of a superparamagnetic ensemble for the uniaxial ferromagnetic nanorods in liquid dispersion and extinction cross sections for longitudinal and transversal optical polarization derived from different approaches, including the electrostatic approximation and the separation of variables method, both applied to spheroidal particles, as well as finite element method simulations of spheroids and capped cylindrical particles. The extinction cross sections were compared to reveal the differences associated with the approximations of homogeneous polarization and/or particle shape. The consequences of these approximations for the quantitative analysis of magnetic field-dependent optical transmission measurements were investigated and a reliable protocol derived. Furthermore, the changes in optical cross sections induced by electromagnetic interaction between two nanorods in parallel end-to-end and side-by-side configuration as a function of their separation were studied.

  5. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    DOE PAGESBeta

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; et al

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magneticmore » intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.« less

  6. Uniform synthetic magnetic field and effective mass for cold atoms in a shaken optical lattice.

    NASA Astrophysics Data System (ADS)

    Sols, Fernando; Creffield, Charles E.; Pieplow, Gregor; Goldman, Nathan

    2016-05-01

    Cold atoms can be made to experience synthetic magnetic fields when placed in a suitably driven optical lattice. For coherent systems the switching protocol plays an essential role in determining the long time behavior. Relatively simple driving schemes may generate a uniform magnetic flux but an inhomogeneous effective mass. A two-stage split driving scheme can recover a uniform effective mass but at the price of rendering the magnetic field space dependent. We propose a four-stage split driving that generates uniform field and mass of arbitrary values for all driving amplitudes. Finally, we study a modified two-stage split driving approach that enables uniform field and mass for most of but not all values of the magnetic field. Work supported by MINECO (Spain) under Grant FIS2013-41716-P, by FRS-FNRS (Belgium), and by BSPO under PAI Project No. P7/18 DYGEST.

  7. Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Beckwith, Andrew; Miller, John; Wood, Lowell

    2004-12-01

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

  8. Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Beckwith, A. W.

    2005-03-01

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

  9. Ferrofluid-based optical fiber magnetic field sensor fabricated by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Song, Yang; Yuan, Lei; Hua, Liwei; Zhang, Qi; Lei, Jincheng; Huang, Jie; Xiao, Hai

    2016-02-01

    Optofluid system has been more and more attractive in optical sensing applications such as chemical and biological analysis as it incorporates the unique features from both integrated optics and microfluidics. In recent years, various optofluid based structures have been investigated in/on an optical fiber platform which is referred to as "lab in/on a fiber". Among those integrated structures, femto-second laser micromaching technique plays an important role due to its high precision fabrication, flexible design, 3D capability, and compatible with other methods. Here we present a ferrofluid based optical fiber magnetic field sensor fabricated by femtosecond (fs) laser irradiation .With the help of fs laser micromaching technique, a micro-reservoir made by capillary tube assembled in a single mode optical fiber could be fabricated. The micro-reservoir functions as a fiber inline Fabry-Perot (FP) cavity which is filled by ferrofluid liquid. The refractive index of the ferrofluid varies as the surrounding magnetic field strength changes, which can be optically probed by the FP interferometer. A fringe visibility of up to 30 dB can be achieved with a detection limit of around 0.4 Gausses. Due to the fabrication, micro-reservoirs can be assembled with optical fiber and distinguished through a microwave-photonic interrogation system. A quasi-distributed magnetic field sensing application has been demonstrated with a high spatial resolution of around 10 cm.

  10. A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Mao, S. A.; Gaensler, B. M.; Stanimirović, S.; Haverkorn, M.; McClure-Griffiths, N. M.; Staveley-Smith, L.; Dickey, J. M.

    2008-12-01

    We present a study of the magnetic field of the Small Magellanic Cloud (SMC), carried out using radio Faraday rotation and optical starlight polarization data. Consistent negative rotation measures (RMs) across the SMC indicate that the line-of-sight magnetic field is directed uniformly away from us with a strength 0.19 +/- 0.06 μG. Applying the Chandrasekhar-Fermi method to starlight polarization data yields an ordered magnetic field in the plane of the sky of strength 1.6 +/- 0.4 μG oriented at a position angle 4°+/- 12°, measured counterclockwise from the great circle on the sky joining the SMC to the Large Magellanic Cloud (LMC). We construct a three-dimensional magnetic field model of the SMC, under the assumption that the RMs and starlight polarization probe the same underlying large-scale field. The vector defining the overall orientation of the SMC magnetic field shows a potential alignment with the vector joining the center of the SMC to the center of the LMC, suggesting the possibility of a "pan-Magellanic" magnetic field. A cosmic-ray-driven dynamo is the most viable explanation of the observed field geometry, but has difficulties accounting for the observed unidirectional field lines. A study of Faraday rotation through the Magellanic Bridge is needed to further test the pan-Magellanic field hypothesis.

  11. A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud

    SciTech Connect

    Mao, S. A.; Gaensler, B. M.; Stanimirovic, S.; Haverkorn, M.; McClure-Griffiths, N. M.; Staveley-Smith, L.; Dickey, J. M.

    2008-12-01

    We present a study of the magnetic field of the Small Magellanic Cloud (SMC), carried out using radio Faraday rotation and optical starlight polarization data. Consistent negative rotation measures (RMs) across the SMC indicate that the line-of-sight magnetic field is directed uniformly away from us with a strength 0.19 {+-} 0.06 {mu}G. Applying the Chandrasekhar-Fermi method to starlight polarization data yields an ordered magnetic field in the plane of the sky of strength 1.6 {+-} 0.4 {mu}G oriented at a position angle 4deg {+-} 12deg , measured counterclockwise from the great circle on the sky joining the SMC to the Large Magellanic Cloud (LMC). We construct a three-dimensional magnetic field model of the SMC, under the assumption that the RMs and starlight polarization probe the same underlying large-scale field. The vector defining the overall orientation of the SMC magnetic field shows a potential alignment with the vector joining the center of the SMC to the center of the LMC, suggesting the possibility of a 'pan-Magellanic' magnetic field. A cosmic-ray-driven dynamo is the most viable explanation of the observed field geometry, but has difficulties accounting for the observed unidirectional field lines. A study of Faraday rotation through the Magellanic Bridge is needed to further test the pan-Magellanic field hypothesis.

  12. Optical Polarization From Aligned Atoms As A Diagnostic Of Interstellar And Circumstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Yan, H.; Lazarian, A.

    2005-12-01

    Population among sublevels of the ground state of an atom is affected by radiative transitions induced by anisotropic radiation flux. Such aligned atoms precess in the external magnetic field and this affects properties of polarized radiation arising from both scattering and absorption by atoms. As the result the degree of light polarization depends on the direction of the magnetic field. This provides a perspective tool for studies of astrophysical magnetic fields using optical and UV polarimetry. We discuss the process of alignment that can be used to study magnetic fields in interplanetary medium, interstellar medium, circumstellar regions and quasars. To exemplify what atomic alignment can provide to the observers we consider synthetic data obtained with MHD simulations of comet wake.

  13. Experimental realization of strong effective magnetic fields in an optical lattice.

    PubMed

    Aidelsburger, M; Atala, M; Nascimbène, S; Trotzky, S; Chen, Y-A; Bloch, I

    2011-12-16

    We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed. PMID:22243087

  14. Magnetic field control of the intraband optical absorption in two-dimensional quantum rings

    SciTech Connect

    Olendski, O.; Barakat, T.

    2014-02-28

    Linear and nonlinear optical absorption coefficients of the two-dimensional semiconductor ring in the perpendicular magnetic field B are calculated within independent electron approximation. Characteristic feature of the energy spectrum are crossings of the levels with adjacent nonpositive magnetic quantum numbers as the intensity B changes. It is shown that the absorption coefficient of the associated optical transition is drastically decreased at the fields corresponding to the crossing. Proposed model of the Volcano disc allows to get simple mathematical analytical results, which provide clear physical interpretation. An interplay between positive linear and intensity-dependent negative cubic absorption coefficients is discussed; in particular, critical light intensity at which additional resonances appear in the total absorption dependence on the light frequency is calculated as a function of the magnetic field and levels' broadening.

  15. All-Fiber Optical Magnetic Field Sensor Based on Faraday Rotation

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-06-18

    An all-fiber optical magnetic field sensor with a sensitivity of 0.49 rad/T is demonstrated. It consists of a fiber Faraday rotator (56-wt.%-terbium–doped silica fiber) and a fiber polarizer (Corning SP1060 fiber).

  16. Transient magneto-optic effects in ferrofluid-filled microstructured fibers in pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Agruzov, Petr M.; Pleshakov, Ivan V.; Bibik, Efim E.; Stepanov, Serguei I.; Shamrai, Alexander V.

    2015-09-01

    Transient magneto-optic effects in ferrofluid-filled microstructured optical fibers are considered. Magneto-optic responses of two types, i.e., an even and an odd one, were observed in the longitudinal geometry of an applied pulsed magnetic field for the kerosene-based Fe3O4 ferrofluid with ∼8 \\text{nm} nanoparticles. For the first time a submicrosecond response time limited by the rise time of the applied field pulse (∼0.35 μ \\text{s}) was demonstrated for the odd magneto-optic effect in an all-fiber system, and responses of the even and odd magneto-optic effects were separated. A strong influence of the pulse width on the relaxation time of the even response is attributed to the formation of particle aggregates.

  17. Direct measurements of the magnetic field induced by optically polarized sup 3 He atoms

    SciTech Connect

    Gudoshnikov, S.A.; Snigirev, O.V. ); Kozlov, A.N.; Maslennikov, Y.V.; Serebrjakov, A.Y. )

    1991-03-01

    This paper reports on an alternative magnetic field induced by the standard cell of the optically pumped {sup 3}He magnetometer directly measured by the SQUID-based second-order gradiometer with signal-to-noise ratio higher than 6. The magnitude of the measured field equal to 5 {times} 10{sup {minus}13} T at the 5-cm distance from the cell axis and transverse relaxation time T{sub 2} equal to 7 minutes have been found.

  18. Fiber - Optic Devices as Temperature Sensors for Temperature Measurements in AC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Lafrance, Joseph; Sala, Anca

    2007-10-01

    We report on the investigation of several fiber-optic devices as potential sensors for temperature measurements in AC magnetic fields. Common temperature sensors, such as thermocouples, thermistors or diodes, will create random and/or systematic errors when placed in a magnetic field. A DC magnetic field is susceptible to create a systematic offset to the measurement, while in an AC magnetic field of variable frequency random errors which cannot be corrected for can also be introduced. Fiber-Bragg-gratings and thin film filters have an inherent temperature dependence. Detrimental for their primary applications, the same dependence allows one to use such devices as temperature sensors. In an AC magnetic field, they present the advantage of being immune to electromagnetic interference. Moreover, for fiber-Bragg-gratings, the shape factor and small mass of the bare-fiber device make it convenient for temperature measurements on small samples. We studied several thin-film filters and fiber-Bragg-gratings and compared their temperature measurement capabilities in AC magnetic fields of 0 to 150 Gauss, 0 to 20 KHz to the results provided by off-the-shelf thermocouples and thermistor-based temperature measurement systems.

  19. Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields

    SciTech Connect

    Pustelny, S.; Gawlik, W.; Rochester, S. M.; Kimball, D. F. Jackson; Yashchuk, V. V.; Budker, D.

    2006-12-15

    Larmor precession of laser-polarized atoms contained in antirelaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR), is a promising technique for a new generation of ultrasensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency or amplitude modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. Additional NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method of achieving additional information about a direction of the magnetic field.

  20. Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient

    SciTech Connect

    Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff

    2004-10-28

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities.

  1. Mirror magneto-optical trap exploiting hexapole-compensated magnetic field

    SciTech Connect

    Hyodo, Masaharu; Nakayama, Kazuyuki; Watanabe, Masayoshi; Ohmukai, Ryuzo

    2007-07-15

    A mirror magneto-optical trap (MOT) that exploits a hexapole-compensated magnetic field was developed and used in the experimental surface trapping of neutral atoms. A pair of subsidiary wires, which was placed near the main current-carrying wire, was designed to improve the uniformity of the quadrupole magnetic field and thus increased the effective capture volume of our mirror-MOT. In the experiment, the number of {sup 87}Rb atoms captured with our mirror-MOT was approximately twice that captured with a conventional mirror-MOT.

  2. Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation

    SciTech Connect

    Ledbetter, M. P.; Acosta, V. M.; Rochester, S. M.; Budker, D.; Pustelny, S.; Yashchuk, V. V.

    2007-02-15

    We describe a room-temperature alkali-metal atomic magnetometer for detection of small, high-frequency magnetic fields. The magnetometer operates by detecting optical rotation due to the precession of an aligned ground state in the presence of a small oscillating magnetic field. The resonance frequency of the magnetometer can be adjusted to any desired value by tuning the bias magnetic field. Based on experimentally measured signal-to-noise ratio, we demonstrate a sensitivity of 100 pG/{radical}(Hz) (rms) in a 3.5-cm-diameter paraffin coated cell. Assuming detection at the photon shot-noise limit, we project a sensitivity as low as 25 pG/{radical}(Hz) (rms)

  3. Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection

    NASA Technical Reports Server (NTRS)

    Gurecki, Jay; Scully, Robert; Davis, Allen; Kirkendall, Clay; Bucholtz, Frank

    2011-01-01

    A fiber-optic sensor system is designed to measure magnetic fields associated with a lightning stroke. Field vector magnitudes are detected and processed for multiple locations. Since physical limitations prevent the sensor elements from being located in close proximity to highly conductive materials such as aluminum, the copper wire sensor elements (3) are located inside a 4-cubic-in. (.66-cubic-cm) plastic housing sensor head and connected to a fiber-optic conversion module by shielded cabling, which is limited to the shortest length feasible. The signal path between the conversion module and the avionics unit which processes the signals are fiber optic, providing enhanced immunity from electromagnetic radiation incident in the vicinity of the measurements. The sensors are passive, lightweight, and much smaller than commercial B-dot sensors in the configuration which measures a three-dimensional magnetic field. The system is expandable, and provides a standard-format output signal for downstream processing. Inside of the sensor head, three small search coils, each having a few turns on a circular form, are mounted orthogonally inside the non-metallic housing. The fiber-optic conversion module comprises three interferometers, one for each search coil. Each interferometer has a high bandwidth optical phase modulator that impresses the signal received from its search coil onto its output. The output of each interferometer travels by fiber optic cable to the avionics unit, and the search coil signal is recovered by an optical phase demodulator. The output of each demodulator is fed to an analog-to-digital converter, whose sampling rate is determined by the maximum expected rate of rise and peak signal magnitude. The output of the digital processor is a faithful reproduction of the coil response to the incident magnetic field. This information is provided in a standard output format on a 50-ohm port that can be connected to any number of data collection and processing

  4. Electronic and optical properties of core-shell nanowires in a magnetic field.

    PubMed

    Ravi Kishore, V V; Partoens, B; Peeters, F M

    2014-03-01

    The electronic and optical properties of zincblende nanowires are investigated in the presence of a uniform magnetic field directed along the [001] growth direction within the k · p method. We focus our numerical study on core-shell nanowires consisting of the III-V materials GaAs, Al(x)Ga(1-x)As and (Al(y)Ga(1-y))₀.₅₁In₀.₄₉P. Nanowires with electrons confined in the core exhibit a Fock-Darwin-like spectrum, whereas nanowires with electrons confined in the shell show Aharonov-Bohm oscillations. Thus, by properly choosing the core and the shell materials of the nanowire, the optical properties in a magnetic field can be tuned in very different ways. PMID:24521608

  5. Optical studies of 2DEGs in ZnSe quantum wells in high magnetic fields.

    SciTech Connect

    Ossau, Wolfgang J.; Astakhov, G. V.; Yakovlev, D. R.; Crooker, S. A.; Waag, A.

    2002-01-01

    Optical properties of a two-dimensional electron gas in ZnSe/(Zn,Be,Mg)Se quantum well structures have been examined by means of photoluminescence and reflectivity techniques in external magnetic fields up to 50 T. For these structures the Fermi energy of the two-dimensional electron gas is falling in the range between the trion binding energy and the exciton binding energy, which keeps the dominating role of Coulombic interaction between electrons and photoexcited holes. Characteristic peculiarities of optical spectra are discussed.

  6. Optical probe of spin-orbit fields in metallic magnetic structures

    NASA Astrophysics Data System (ADS)

    Montazeri, Mohammad; Upadhyaya, Pramey; Yu, Guoqiang; Wong, Kin L.; Lang, Murong; Fan, Yabin; Khalili Amiri, Pedram; Schwartz, Robert N.; Wang, Kang L.

    2015-03-01

    We report a novel self-consistent optical approach based on magneto-optical Kerr effect to directly and quantitatively probe the spin-orbit fields of magnetic devices with 1um diffraction limited spatial resolution. The optical probe is exemplified by investigating the spin-orbit fields in a magnetic stack of Ta(5 nm)/CoFeB(1.1 nm)/MgO(2.0 nm)/TaOx with enhanced perpendicular anisotropy. Both field-like and damping-like contributions were measured independently and their coefficients are quantified at 3 . 3 ×10-6 and - 2 . 0 ×10-6 Oe / A . cm-2 respectively. A detailed comparison with standard transport technique is presented in which a very good agreement were found. Our results establish the relevance of the optical methods for studying spin-orbit torque related physics. We acknowledge the support from the National Science Foundation (DMR-1411085) and the FAME Center, one of the six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  7. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    NASA Astrophysics Data System (ADS)

    Syed, Wasif; Blesener, Isaac; Hammer, David A.; Lipson, Michal

    2009-01-01

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas especially for their ultimate application to stockpile stewardship and inertial confinement fusion. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (multicomponent terbium borate glass) placed adjacent to, or within, the wire array in 1 MA experiments. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as ˜2 T inside a wire-array for ˜40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor that can be used to corroborate magnetic probes, with which we compare our results.

  8. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    SciTech Connect

    Syed, Wasif; Blesener, Isaac; Hammer, David A.; Lipson, Michal

    2009-01-21

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas especially for their ultimate application to stockpile stewardship and inertial confinement fusion. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (multicomponent terbium borate glass) placed adjacent to, or within, the wire array in 1 MA experiments. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as {approx}2 T inside a wire-array for {approx}40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor that can be used to corroborate magnetic probes, with which we compare our results.

  9. Optical signatures of electric-field-driven magnetic phase transitions in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Basak, Tista; Shukla, Alok

    2016-06-01

    Experimental challenges in identifying various types of magnetic ordering in graphene quantum dots (QDs) pose a major hurdle in the application of these nanostructures for spintronic devices. Based upon phase diagrams obtained by employing the π -electron Pariser-Parr-Pople (PPP) model Hamiltonian, we demonstrate that the magnetic states undergo phase transition under the influence of an external electric field. Our calculations of the electroabsorption spectra of these QDs indicate that the spectrum in question carries strong signatures of their magnetic state (FM vs AFM), thus suggesting the possibility of an all-optical characterization of their magnetic nature. Further, the gaps for the up and the down spins are the same in the absence of an external electric field, both for the antiferromagnetic (AFM) and the ferromagnetic (FM) states of QDs. But, once the QDs are exposed to a suitably directed external electric field, gaps for different spins split and exhibit distinct variations with respect to the strength of the field. The nature of variation exhibited by the energy gaps corresponding to the up and down spins is different for the AFM and FM configurations of QDs. This selective manipulation of the spin-polarized gap splitting by an electric field in finite graphene nanostructures can open up new frontiers in the design of graphene-based spintronic devices.

  10. Optical coherence-based techniques for motional Stark effect measurements of magnetic field pitch angle

    NASA Astrophysics Data System (ADS)

    Howard, John

    1999-02-01

    The motional Stark effect measurement of magnetic field pitch angle in tokamaks is a mature and powerful technique for estimating plasma current density in tokamaks. However, its range of applicability is limited by the requirement that 0741-3335/41/2/012/img3 and 0741-3335/41/2/012/img4 manifolds are spectrally sufficiently well separated (high magnetic fields, high beam energies) to ensure adequate net polarization for a successful measurement. This paper proposes alternative schemes based on the optical coherence properties of the Stark multiplet that are somewhat more versatile than the standard method and better suited to measurements on low-field toroidal confinement devices. An interference filter is used to transmit the Stark multiplet to a polarimeter (which uses a single photoelastic plate) that modulates the light temporal coherence and/or its first spectral moment. This light is subsequently processed using a novel electro-optically modulated solid-state interferometer that is sensitive to low-order spectral moments. The modulation of these quantities conveys information about the orientation of the light polarization and hence the magnetic field pitch angle.

  11. Constraining Large-Scale Solar Magnetic Field Models with Optical Coronal Observations

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2015-12-01

    Scientific success of the Solar Probe Plus (SPP) and Solar Orbiter (SO) missions will depend to a large extent on the accuracy of the available coronal magnetic field models describing the connectivity of plasma disturbances in the inner heliosphere with their source regions. We argue that ground based and satellite coronagraph images can provide robust geometric constraints for the next generation of improved coronal magnetic field extrapolation models. In contrast to the previously proposed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions located at significant radial distances from the solar surface. Details on the new feature detection algorithms will be presented. By applying the developed image processing methodology to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code presented in a companion talk by S.Jones at al. Tracing results are shown to be in a good qualitative agreement with the large-scalie configuration of the optical corona. Subsequent phases of the project and the related data products for SSP and SO missions as wwll as the supporting global heliospheric simulations will be discussed.

  12. Optical pumping and spectroscopy of Cs vapor at high magnetic field

    NASA Astrophysics Data System (ADS)

    Olsen, B. A.; Patton, B.; Jau, Y.-Y.; Happer, W.

    2011-12-01

    We have measured changes in the ground-state populations of Cs vapor induced by optical pumping at high magnetic field. The 2.7-T field of our experiments is strong enough to decouple the nuclear and electronic spins, allowing us to independently measure each population. The spatial dependence of the Cs populations in small amounts of buffer gas obeys a simple coupled diffusion model and the relative populations reveal the details of relaxation within the vapor cell. Optical pumping can produce high nuclear polarization in the Cs vapor due to perturbations of the hyperfine interaction during collisions with buffer-gas particles and depending on the pumping transition, radiation trapping can strongly influence the electronic and nuclear polarizations in the vapor.

  13. Optical pumping and spectroscopy of Cs vapor at high magnetic field

    SciTech Connect

    Olsen, B. A.; Patton, B.; Jau, Y.-Y.; Happer, W.

    2011-12-15

    We have measured changes in the ground-state populations of Cs vapor induced by optical pumping at high magnetic field. The 2.7-T field of our experiments is strong enough to decouple the nuclear and electronic spins, allowing us to independently measure each population. The spatial dependence of the Cs populations in small amounts of buffer gas obeys a simple coupled diffusion model and the relative populations reveal the details of relaxation within the vapor cell. Optical pumping can produce high nuclear polarization in the Cs vapor due to perturbations of the hyperfine interaction during collisions with buffer-gas particles and depending on the pumping transition, radiation trapping can strongly influence the electronic and nuclear polarizations in the vapor.

  14. Control of Optical Transitions with Magnetic Fields in Weakly Bound Molecules.

    PubMed

    McGuyer, B H; McDonald, M; Iwata, G Z; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2015-07-31

    In weakly bound diatomic molecules, energy levels are closely spaced and thus more susceptible to mixing by magnetic fields than in the constituent atoms. We use this effect to control the strengths of forbidden optical transitions in (88)Sr2 over 5 orders of magnitude with modest fields by taking advantage of the intercombination-line threshold. The physics behind this remarkable tunability is accurately explained with both a simple model and quantum chemistry calculations, and suggests new possibilities for molecular clocks. We show how mixed quantization in an optical lattice can simplify molecular spectroscopy. Furthermore, our observation of formerly inaccessible f-parity excited states offers an avenue for improving theoretical models of divalent-atom dimers. PMID:26274416

  15. Control of Optical Transitions with Magnetic Fields in Weakly Bound Molecules

    NASA Astrophysics Data System (ADS)

    McGuyer, B. H.; McDonald, M.; Iwata, G. Z.; Skomorowski, W.; Moszynski, R.; Zelevinsky, T.

    2015-07-01

    In weakly bound diatomic molecules, energy levels are closely spaced and thus more susceptible to mixing by magnetic fields than in the constituent atoms. We use this effect to control the strengths of forbidden optical transitions in 88Sr2 over 5 orders of magnitude with modest fields by taking advantage of the intercombination-line threshold. The physics behind this remarkable tunability is accurately explained with both a simple model and quantum chemistry calculations, and suggests new possibilities for molecular clocks. We show how mixed quantization in an optical lattice can simplify molecular spectroscopy. Furthermore, our observation of formerly inaccessible f -parity excited states offers an avenue for improving theoretical models of divalent-atom dimers.

  16. Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid.

    PubMed

    Deng, Ming; Sun, Xiaokang; Han, Meng; Li, Decai

    2013-02-01

    We report a magnetic-field sensor by merging the advantages of optical fiber Michelson interferometers with that of magnetic fluid. Compact and low-cost optical fiber Michelson interferometers were first fabricated by a high-frequency CO(2) laser, and then they were inserted into glass capillaries with water-based Fe(3)O(4) magnetic fluid as sensing elements. The sensing characteristics have been investigated and the experimental results show that the reflective spectrum of the fiber-magnetic sensor linearly shifted with the change of the magnetic-field strength that is perpendicular to the axial of the devices. The fiber-magnetic sensor with interference arm's diameter of 50 μm is most sensitive to the external magnetic field, and the sensitivity is up to 64.9 pm/mT, which is 20 times higher than that of 125 μm diameter. PMID:23385914

  17. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor

    PubMed Central

    Dennis, John Ojur; Ahmad, Farooq; Khir, M. Haris Bin Md; Hamid, Nor Hisham Bin

    2015-01-01

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972

  18. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.

    PubMed

    Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham

    2015-01-01

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972

  19. Validation of a novel fiber optic strain gauge in a cryogenic and high magnetic field environment

    NASA Astrophysics Data System (ADS)

    Baxter, Scott; Lakrimi, M.'hamed; Thomas, Adrian M.; Gao, Yunxin; Blakes, Hugh; Gibbens, Paul; Looi, Mengche

    2010-10-01

    We report on the first operation of an easy to use low cost novel fiber optic strain gauge (FOSG) in cryogenic and magnetic field environments. The FOSGs were mounted on a superconducting coil and resin impregnated. The gauges detected resin shrinkage upon curing. On cooldown, the FOSG monitored the thermal contraction strains of the coil and the electromagnetic strain during energization. The coil was deliberately quenched, in excess of 175 times, and again the FOSG detected the quenches and measured the thermal expansion-induced strains and subsequent re-cooling of the coil after a quench. Agreement with FEA predictions was very good.

  20. Optical, electrical, and magnetic field studies of organic materials for light emitting diodes and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Basel, Tek Prasad

    We studied optical, electrical, and magnetic field responses of films and devices based on organic semiconductors that are used for organic light emitting diodes (OLEDs) and photovoltaic (OPV) solar cell applications. Our studies show that the hyperfine interaction (HFI)-mediated spin mixing is the key process underlying various magnetic field effects (MFE) and spin transport in aluminum tris(8-hydroxyquinoline)[Alq3]-based OLEDs and organic spin-valve (OSV). Conductivity-detected magnetic resonance in OLEDs and magneto-resistance (MR) in OSVs show substantial isotope dependence. In contrast, isotope-insensitive behavior in the magneto-conductance (MC) of same devices is explained by the collision of spin ½ carriers with triplet polaron pairs. We used steady state optical spectroscopy for studying the energy transfer dynamics in films and OLEDs based on host-guest blends of the fluorescent polymer and phosphorescent molecule. We have also studied the magnetic-field controlled color manipulation in these devices, which provide a strong proof for the `polaron-pair' mechanism underlying the MFE in organic devices. The critical issue that hampers organic spintronics device applications is significant magneto-electroluminescence (MEL) at room temperature (RT). Whereas inorganic spin valves (ISVs) show RT magneto-resistance, MR>80%, however, the devices do not exhibit electroluminescence (EL). In contrast, OLEDs show substantive EL emission, and are particularly attractive because of their flexibility, low cost, and potential for multicolor display. We report a conceptual novel hybrid organic/inorganic spintronics device (h-OLED), where we employ both ISV with large MR at RT, and OLED that has efficient EL emission. We investigated the charge transfer process in an OPV solar cell through optical, electrical, and magnetic field measurements of thin films and devices based on a low bandgap polymer, PTB7 (fluorinated poly-thienothiophene-benzodithiophene). We found that

  1. Linear and nonlinear optical properties of semiconductor nanorings with magnetic field and disorder - Influence on excitons and biexcitons

    NASA Astrophysics Data System (ADS)

    Meier, T.; Thomas, P.; Koch, S. W.

    2001-07-01

    Linear and nonlinear optical absorption spectra are studied theoretically for semiconductor nanorings penetrated by a magnetic field. Due to the Aharanov-Bohm effect the spectral position as well as the oscillator strength of the exciton change periodically as function of the magnetic flux enclosed by the ring. In the nonlinear differential absorption spectra it is found that the magnetic field strongly modifies Coulomb many-body correlations. In particular, the magnetic-field-induced increase of the exciton binding energy is accompanied by a decrease of the biexciton binding energy. The persistence of these effects in the presence of energetic disorder is analyzed.

  2. Investigation of implosion dynamics and magnetic fields in 1-MA wire arrays by optical probing diagnostics

    NASA Astrophysics Data System (ADS)

    Laca, P. J.; Sarkisov, G. S.

    2005-10-01

    Multiframe optical probing diagnostics were applied for the investigation of implosion dynamics and magnetic fields in z-pinch plasma of wire arrays and x-pinches at the Nevada Terawatt Facility (NTF). Five shadow frames per shot, with a long 34-ns or short 9-ns pulse train, presents fine details of plasma evolution in the wire array. A Faraday rotation diagnostic consists of identical shadow and Faraday channels, shearing air-wedge interferometer, and schlieren channel. Evolution of the wire array z-pinch in different regimes of implosion was investigated. Fast dynamics of bubbles in plasma streams were studied in detail. A current in the plasma column of Al wire arrays and magnetic bubbles were found by the Faraday rotation diagnostic.

  3. Perforated Semishells: Far-Field Directional Control and Optical Frequency Magnetic Response

    SciTech Connect

    Mirin, Nikolay A.; Ali, Tamer A.; Nordlander, Peter; Halas, Naomi J.

    2010-05-25

    Reduced-symmetry plasmonic nanostructures can be designed to support a range of novel optical phenomena, such as nanoscale control of the far-field scattering profile and magnetic resonances at optical frequencies. A family of reduced-symmetry nanostructures—plasmonic semishells with specifically shaped and oriented perforations introduced into the metallic shell layer—can be tailored to control these effects. Unlike core-shell nanoparticles, perforated semishells can be fabricated using a combination of clean-room techniques. For a semishell with a single spherical perforation positioned on its symmetry axis, we examine how the resonant modes of the structure depend on hole size and shape. Placing the perforation off the symmetry axis allows a family of higher-order modes to be excited in the nanostructure, along with complex near-field charge distributions for the various resonant modes. This reduced-symmetry case provides a platform for optical studies, which agree quite well with theoretical analysis. Our study also examines two important variations of this structure: a semishell with multiple perforations in the shell layer, and a semishell with a wedge-like “slice” in the shell layer. A semishell with a wedge-like perforation can be thought of as a three-dimensional analogue of a split-ring resonator (SRR), an important nanoscale component in metamaterial design. Here we show that the dimensions of the wedge-like perforation, which control the effective optical frequency resistance, inductance, and capacitance of this structure, determine the frequency of the magnetic mode.

  4. Observations of vector magnetic fields with a magneto-optic filter

    NASA Technical Reports Server (NTRS)

    Cacciani, Alessandro; Varsik, John; Zirin, Harold

    1990-01-01

    The use of the magnetooptic filter to observe solar magnetic fields in the potassium line at 7699 A is described. The filter has been used in the Big Bear videomagnetograph since October 23. It gives a high sensitivity and dynamic range for longitudnal magnetic fields and enables measurement of transverse magnetic fields using the sigma component. Examples of the observations are presented.

  5. Rashba spin-orbit coupling effects on the optical properties of double quantum wire under magnetic field

    NASA Astrophysics Data System (ADS)

    Karaaslan, Y.; Gisi, B.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2016-05-01

    We investigate the effects of Rashba spin-orbit interaction on the optical absorption coefficients and refractive index changes associated with transitions between the first two lower-lying electronic levels in double quantum wire. The wire system represented by a symmetric, double quartic-well confinement potential is subjected to a perpendicular magnetic field. The analytical expressions of the linear and third-order nonlinear optical absorption coefficients and refractive index changes are obtained by using the compact-density matrix formalism and iterative scheme. Optical properties are investigated as a function of structural parameter, magnetic field, Rashba spin-orbit interaction and photon energies. Numerical results reveal that competing effects between spin-orbit interaction and magnetic field modify strongly the optical properties and can be altered by these parameters.

  6. Effects of crossed electric and magnetic fields on the interband optical absorption spectra of variably spaced semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Zuleta, J. N.; Reyes-Gómez, E.

    2016-05-01

    The interband optical absorption spectra of a GaAs-Ga1-xAlxAs variably spaced semiconductor superlattice under crossed in-plane magnetic and growth-direction applied electric fields are theoretically investigated. The electronic structure, transition strengths and interband absorption coefficients are analyzed within the weak and strong magnetic-field regimes. A dramatic quenching of the absorption coefficient is observed, in the weak magnetic-field regime, as the applied electric field is increased, in good agreement with previous experimental measurements performed in a similar system under growth-direction applied electric fields. A decrease of the resonant tunneling in the superlattice is also theoretically obtained in the strong magnetic-field regime. Moreover, in this case, we found an interband absorption coefficient weakly dependent on the applied electric field. Present theoretical results suggest that an in-plane magnetic field may be used to tune the optical properties of variably spaced semiconductor superlattices, with possible future applications in solar cells and magneto-optical devices.

  7. Design and Modelling of a Silicon Optical MEMS Switch Controlled by Magnetic Field Generated by a Plain Coil

    NASA Astrophysics Data System (ADS)

    Golebiowski, J.; Milcarz, Sz

    2014-04-01

    Optical switches can be made as a silicon cantilever with a magnetic layer. Such a structure is placed in a magnetic field of a planar coil. There is a torque deflecting the silicon beam with NiFe layer depending on a flux density of the magnetic field. The study shows an analysis of ferromagnetic layer parameters, beam's dimensions on optical switch characteristics. Different constructions of the beams were simulated for a range of values of magnetic field strength from 100 to 1000 A/m. An influence of the actuators parameters on characteristics was analysed. The loss of stiffness of the beam caused by specific constructions effected in displacements reaching 85 nm. Comsol Multiphysics 4.3b was used for the simulations.

  8. Distributed magnetic field sensor based on magnetostriction using Rayleigh backscattering spectra shift in optical frequency-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Du, Yang; Liu, Tiegen; Ding, Zhenyang; Liu, Kun; Feng, Bowen; Jiang, Junfeng

    2015-01-01

    We present a distributed optical-fiber magnetic-field sensor based on magnetostriction using the Rayleigh backscattering spectra (RBS) shift in optical frequency-domain reflectometry (OFDR). The magnetostrictive Fe-Co-V alloy thin films are attached to a 51-m single-mode fiber (SMF). We detect the strain coupled to the SMF caused by the magnetic field using the RBS shift. We measure the range of the magnetic field to be from 0 to 143.3 mT. The minimum measurable magnetic intensity variation is 12.9 mT when the spatial resolution is 4 cm, and it can be improved to 5.3 mT by deteriorating the spatial resolution to 14 cm.

  9. Magnetic field effects on mitochondrion-activity-related optical properties in slime mold and bone forming cells.

    PubMed

    Mizukawa, Yuri; Iwasaka, Masakazu

    2013-01-01

    In the present study, a cellular level response of Cyto-aa3 oxidation was investigated in real time under both time-varying and strong static magnetic fields of 5 T. Two kinds of cells, a slime mold, Physarum polycephalum, and bone forming cells, MC-3T3-E1, were used for the experiments. The oxidation level of the Cyto-aa3 was calculated by optical absorptions at 690 nm, 780 nm and 830 nm. The sample, fiber-optics and an additional optical fiber for light stimulation were set in a solenoidal coil or the bore of a 5-T superconducting magnet. The solenoidal coil for time-varying magnetic fields produced sinusoidal magnetic fields of 6 mT. The slime mold showed a periodic change in Cyto-aa3 oxidation, and the oxidation-reduction cycle of Cyto-aa3 was apparently changed when visible-light irradiated the slime mold. Similarly to the case with light, time-varying magnetic stimulations changed the oxidation-reduction cycle during and after the stimulation for 10 minutes. The same phenomena were observed in the MC-3T3-E1 cell assembly, although their cycle rhythm was comparatively random. Finally, magnetic field exposure of up to 5 T exhibited a distinct suppression of Cyto-aa3 oscillation in the bone forming cells. Exposure up to 5 T was repeated five times, and the change in Cyto-aa3 oxidation reproducibly occurred. PMID:24109969

  10. Measurements of the Domain Magnetization Direction and its Effects on the Sensitivity of Magneto-optic Field Sensors

    NASA Astrophysics Data System (ADS)

    Shinn, Mannix; Garzarella, Anthony; Wu, Dong Ho; Tao, Rongjia

    Bismuth doped, rare earth iron garnet (Bi:RIG) thick films exhibit a large magneto-optic response to external magnetic fields while exhibiting low optical insertion loss, making them ideal candidates for polarimetric magnetic field sensors. It was generally found that the Faraday rotation and overall sensitivity of the sensors depends on the orientation of the local domain magnetization relative to the direction of laser propagation. In arrayed Bi:RIG sensors, it is critical that the optical path of the laser is perpendicular to the easy-axis of each film of the array, in order to avoid magnetically-induced optical incoherence (MIOI). Therefore a precise, localized measurement of the magnetization vector within the films is necessary. Since traditional magnetization measurement techniques do not provide adequate resolution, several new approaches to precisely measure the easy axis were developed and will be described in this presentation. These approaches involve measurements of the directionality of the Faraday response, incoherence in the Malus curves, and damping in the domain wall motion. Such measurements have been instrumental in constructing and optimizing arrayed Bi:RIG sensors, which currently have a sensitivity of 6 pT/Hz1/2.

  11. Roles of Atomic Injection Rate and External Magnetic Field on Optical Properties of Elliptical Polarized Probe Light

    NASA Astrophysics Data System (ADS)

    Karimi, R.; Asadpour, S. H.; Batebi, S.; Rahimpour Soleimani, H.

    2016-01-01

    In this paper we investigate the optical properties of an open four-level tripod atomic system driven by an elliptically polarized probe field in the presence of the external magnetic field and compare its properties with the corresponding closed system. Our result reveals that absorption, dispersion and group velocity of probe field can be manipulated by adjusting the phase difference between the two circularly polarized components of a single coherent field, magnetic field and cavity parameters i.e. the atomic exit rate from cavity and atomic injection rates. We show that the system can exhibit multiple electromagnetically induced transparency windows in the presence of the external magnetic field. The numerical result shows that the probe field in the open system can be amplified by appropriate choice of cavity parameters, while in the closed system with introduce appropriate phase difference between fields the probe field can be enhanced. Also it is shown that the group velocity of light pulse can be controlled by external magnetic field, relative phase of applied fields and cavity parameters. By changing the parameters the group velocity of light pulse changes from subluminal to superluminal light propagation and vice versa.

  12. Optical soliton in dielectric fibers and self-organization of turbulence in plasmas in magnetic fields

    PubMed Central

    Hasegawa, Akira

    2009-01-01

    One important discovery in the twentieth century physics is the natural formation of a coherent or a well-ordered structure in continuous media, in contrary to degradation of the state as predicted earlier from the second law of thermodynamics. Here nonlinearity plays the essential role in its process. The discovery of soliton, a localized stable wave in a nonlinear and dispersive medium and the self-organization of fluid turbulence are of the major examples. A soliton is formed primarily in one-dimensional medium where the dispersion and nonlinearity play the essential role. Here the temporal evolution can be described by an infinite dimensional Hamiltonian system that is integrable. While a self-organization appears in an infinite dimensional non-Hamiltonian (or dissipative) system where more than two conservative quantities exist in the limit of no dissipation. In this manuscript, by showing examples of the optical soliton in dielectric fibers and self-organization of turbulence in a toroidal plasma in a magnetic field, we demonstrate these interesting discoveries. The manuscript is intended to describe these discoveries more on philosophical basis with some sacrifice on mathematical details so that the idea is conveyed to those in the wide area of sciences. PMID:19145067

  13. All-Fiber Optical Magnetic-Field Sensor Based on Faraday Rotation in Highly Terbium-Doped Fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-03-03

    An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium–doped silicate fiber with a Verdet constant of –24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

  14. Controllable optical bistability and multistability in a graphene structure under external magnetic field

    NASA Astrophysics Data System (ADS)

    Raheli, Ali; Hamedi, H. R.; Sahrai, M.

    2016-02-01

    We investigate the behavior of optical bistability (OB) and optical multistability (OM) based on quantum coherence in a Landau-quantized graphene structure. Such a tunable four-level system is driven coherently by two coherent fields and an incoherent pumping field inside the unidirectional ring cavity. The influence of system parameters on the threshold of the onset of OB and OM is studied. It is found that one can efficiently control the OB/OM threshold intensity and the hysteresis loop by using the system parameters. The results obtained may be used in real experiments for the development of new types of nanoelectronic devices for realizing an all-optical switching process.

  15. A simple model for optical capture of atoms in strong magnetic quadrupole fields

    NASA Astrophysics Data System (ADS)

    Haubrich, D.; Höpe, A.; Meschede, D.

    1993-10-01

    The radiative capture of cesium atoms from the gas phase in a magnetooptic trap with strong magnetic field gradients is studied. A simplified analytic model is used to derive an upper limit for capture velocities. The resulting scaling law agrees well with the observed number of atoms and with the density as a function of field gradient.

  16. Combined excitation of an optically detected magnetic resonance in nitrogen-vacancy centers in diamond for precision measurement of the components of a magnetic field vector

    NASA Astrophysics Data System (ADS)

    Vershovskii, A. K.; Dmitriev, A. K.

    2015-11-01

    We used synchronous radio-frequency excitation of three components of a hyperfine resonance line in the scheme of the vector sensor of a magnetic field based on optically detected magnetic resonance in the nitrogen-vacancy centers in diamond crystal. As a result, for the first time, the sensitivity of order 1.5 nT Hz-1/2 in the frequency range of 0-100 Hz was reached in the crystal with a volume of 0.01 mm3 glued to the end of an optical fiber.

  17. Coherence of interacting bosons in optical lattices in synthetic magnetic fields with a large number of subbands

    NASA Astrophysics Data System (ADS)

    Grygiel, B.; Patucha, K.; Zaleski, T. A.

    2016-05-01

    We study the behavior of interacting ultracold bosons in optical lattices in synthetic magnetic fields with wide range of in-cell fluxes α =p /q . The problem is similar to the one of an electron moving in a tight-binding scheme in the magnetic field and becomes difficult to tackle for a growing number of magnetic subbands, q . To overcome this, we focus on the interplay of the width, shape, and number of the subbands on the formation of the coherent state of cold bosons. Using the quantum rotor approach, which goes beyond the mean-field approximation, we are able to pinpoint the elements of the band structure, which are the most significant in a proper theoretical description of the synthetic magnetic field in a bosonic lattice system. As a result, we propose a method of reconstruction of the Hofstadter butterfly spectrum by replacing the magnetic subbands with renormalized bands of a square lattice. This allows us to effectively investigate the properties of the studied system for a wide range of magnetic fluxes and their impact on the Mott-insulator-superfluid transition.

  18. Magnetic field effects on spectrally resolved lifetime of on-line oxygen monitoring using magneto-optic probes

    NASA Astrophysics Data System (ADS)

    Mermut, O.; Gallant, P.; Le Bouch, N.; Leclair, S.; Noiseux, I.; Vernon, M.; Morin, J.-F.; Diamond, K.; Patterson, M. S.; Samkoe, K.; Pogue, B.

    2009-02-01

    Multimodal agents that serve as both probes for contrast and light-activated effectors of cellular processes in diseased tissue were developed. These agents were introduced into multicellular tumor spheroids (3D tissue models) and in the chorioallantoic membrane (CAM) of a chicken embryo. The luminescence decay was examined using a novel technique involving a spectrally-resolved fluorescence lifetime apparatus integrated with a weak electromagnet. A spectrallyresolved lifetime setup was used to identify magneto-optic species sensitive to magnetic field effects and distinguish from background emissions. We demonstrate that the applied magnetic fields can alter reaction rates and product distribution of some dyes detected by time- and spectrally-resolved luminescence changes. We will discuss the use of exogenous magneto-optical probes taken up in tumors to both induce phototoxicity, a process that is governed by complex and dynamically evolving mechanisms involving reactive oxygen species, and monitor treatment progress. The magnetic field enhancement, measured over a range of weak fields (0-300 mT) is correlated to oxygenation and may be used to monitor dynamic changes occurring due to oxygen consumption over the course of photodynamic therapy. Such online measurements provide the possibility to derive real-time information about response to treatment via monitoring magnetic field enhancement/suppression of the time-resolved, spectrally-resolved luminescence of the probe at the site of the treatment directly. Magnetic perturbation of lifetime can serve as a status reporter, providing optical feedback of oxygen-mediated treatments in situ and allowing for real-time adjustment of a phototherapy treatment plan.

  19. Magneto-optical effects and the determination of vector magnetic fields from Stokes profiles

    NASA Astrophysics Data System (ADS)

    Landolfi, M.; Landi Degl'Innocenti, E.

    1982-06-01

    The influence of magnetooptical effects in analytical solutions of the radiative transfer equations for polarized radiation is studied in terms of the single approximations contained in Unno's (1956) solutions. It is shown that the procedures adopted by Auer et al. (1977) for finding the magnetic field vector from Stokes profile data results in large errors in the magnetic field azimuth due to neglect of the magnetooptical effects. The magnetooptical effects are demonstrated to have a larger influence on the linear polarization profiles than other Stokes parameters.

  20. Fractal diabolo antenna for enhancing and confining the optical magnetic field

    SciTech Connect

    Yang, Y.; Dai, H. T.; Sun, X. W.

    2014-01-15

    We introduce fractal geometry to diabolo nanoantenna for higher magnetic field intensity enhancement, i.e. the Sierpiński triangle diabolo antenna (STDA). Numerical results show that higher iteration of the STDA is responsible for the higher enhancement and the red shift of the resonant wavelength. Further investigation demonstrates the enhancement can be improved by increasing the length of the antenna or its central strip. By designing diabolo antennas with fractal geometry, improving the magnetic field intensity enhancement and varying the resonance conditions can be achieved while keeping the constant antenna dimensions.

  1. Optical visualisation of the flow around a cylinder in electrolyte under strong axial magnetic field.

    NASA Astrophysics Data System (ADS)

    Andreev, O.; Kobzev, A.; Kolesnikov, Yu.; Thess, A.

    Flows around obstacles are among the most common problems encountered in the fluid mechanics literature, and cylindrical obstacles definitely received the most extensive attention. The reason for this is that this relatively simple geometry already encompasses most of the important physical effects likely to play a role in flow around more complicated obstacles. This means that understanding the cylinder problem provides relevant insight on a wide variety of problem ranging from aerodynamics, with the flow around a wing or a vehicle, to pollutant dispersion around building, flows in turbines … When the working fluid conducts electricity additional effects are involved. In particular, the presence of a magnetic field tends to homogenise the flow in the direction of the magnetic field lines which leads to strong alterations of the flow patterns known from the classical nonconducting case. This configuration is also a very generic one as Magnetohydrodynamic flows around obstacle also occur in a wide variety of applications: for instance, the space vehicle re-entry problem features the flow of a conducting plasma around an obstacle: [1] and [2] have shown that it could be influenced by a strong magnetic field in order to reduce heat transfer. The cooling blanket of the future nuclear fusion reactor ITER soon to be built in France, features a complex flow of liquid metal in a very high magnetic field (typically 10 T), in which the occurrence of obstacles cannot be avoided.

  2. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics

    SciTech Connect

    Riveros, Raul E.; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3{+-}2.5nmrms to 5.7{+-}0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  3. Analyze and experiment on AC magnetic field's effect to fiber optic gyroscopes in compact stabilization control systems

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Mao, Yao; Tian, Jing; Li, Zhijun

    2015-10-01

    Fiber optic gyroscopes (FOG) are getting more and more attention in areas such as stabilization control systems as they are all solid state and have a wide bandwidth. In stabilization systems that require wide bandwidth control, motors are usually used as actuating mechanism for active disturbance restrain. Voice coil motors (VCMs) are usually used in compact stabilization systems that require large torque and fast response. However, AC magnetic field, which can affect the output of FOG due to Faraday effect, will be generated during operation of VCMs. The frequency range affected by the AC magnetic field to the FOG's output is the same as VCMs drive signal frequency range, which is also exactly the stabilization system's working range. Therefore the effect of the AC magnetic field to FOGs must be evaluated to verify the feasibility of a stable system design that uses both FOGs and VCMs. In this article, the basic structure and operating principle of stabilization system is introduced. The influence of AC magnetic field to FOG is theoretically analyzed. The magnetic field generated by VCMs is numerically simulated based on the theory deduction of the magnetic field near energized wires. To verify the influence of the VCM generated magnetic field to the FOGs in practical designs, a simplified random fiber coil model is built for it's hard to accurately test the exact polarize axis's twisting rate in a fiber coil. The influence to the FOG's output of different random coil model is simulated and the result shows a same trend that the influence of the VCM's magnetic field to the FOG is reduced as the distance between the VCM and the FOG increasing. The influence of a VCM to a FOG with the same parameters is experimentally tested. In the Fourier transformed FOG data the same frequency point as the VCM drive signal frequency can be read. The result fit simulated result that as the distance increases, the influence decreases. The amplitude of the frequency point is just

  4. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    SciTech Connect

    Kushwaha, Manvir S.

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  5. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2014-12-01

    Semiconducting quantum dots - more fancifully dubbed artificial atoms - are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement - or the lack of any degree of freedom for the electrons (and/or holes) - in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines' random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level transitions are seen

  6. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  7. Phase dependence of optical bistability and multistability in graphene nanostructure under external magnetic field

    NASA Astrophysics Data System (ADS)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H.

    2016-01-01

    In this letter, the phase control of optical bistability and multistability in a ring cavity doped with a four-level graphene nanostructure in infrared regions are discussed. Due to the unusual dispersion relation in graphene nanoribbons, electrons can lead to an exceptionally strong optical response in the infrared and terahertz regions. We show that by adjusting the intensities and relative phase of infrared laser fields, the threshold intensity and hysteresis loop can be manipulated efficiently. The effect of the electronic cooperation parameter, which is directly proportional to the electron concentration and the length of the graphene sample, is also discussed. Our proposed model may be useful for the next generation of all-optical systems and information processing in nanoscale devices.

  8. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  9. Optical visualization of electric and magnetic field perturbations in tokamak discharges by hydrogen pellet injection

    NASA Astrophysics Data System (ADS)

    Drawin, H.-W.; Dubois, M. A.

    1992-09-01

    Two-dimensional intensity distribution mappings of photographs of pellet ablation cloud trajectories in TFR and TORE SUPRA reveal irregular shapes of the luminous striations. The observed features are not well understood, but a likely interpretation is that these features are caused by pre-existing electric and/or magnetic field perturbations in the hot core of tokamak plasmas. It is suggested to further investigate pellet injection as a diagnostic tool for the study of plasma structures and transport phenomena

  10. Optical detection of nanoparticle agglomeration in a living system under the influence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Müller, Robert; Stranik, Ondrej; Schlenk, Florian; Werner, Sebastian; Malsch, Daniéll; Fischer, Dagmar; Fritzsche, Wolfgang

    2015-04-01

    Nanoparticles are important in diagnosis and therapy. In order to apply their potential, an understanding of the behavior of particles in the body is crucial. However, in vitro experiments usually do not mimic the dynamic conditions of the in vivo situation. The aim of our work was an in vivo observation of particle transport in chicken egg vessels in the presence of a magnetic field by particle tracking. For that we demonstrate the spatial resolution of our observations in a vein and a temporal resolution by observation of the cardiac cycle in an artery. Microscopic images were recorded in dark field reflection and fluorescence mode.

  11. Fractal vector optical fields.

    PubMed

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field. PMID:27420485

  12. Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential

    NASA Astrophysics Data System (ADS)

    Mandal, Arkajit; Sarkar, Sucharita; Ghosh, Arghya Pratim; Ghosh, Manas

    2015-12-01

    We make an extensive investigation of total optical absorption coefficient (TOAC) of impurity doped quantum dots (QDs) in presence and absence of Gaussian white noise. The TOAC profiles have been monitored against incident photon energy with special emphasis on the roles played by the electric field, magnetic field, and the dot confinement potential. Presence of impurity also influences the TOAC profile. In general, presence of noise causes enhancement of TOAC over that of noise-free condition. However, the interplay between the noise and the quantities like electric field, magnetic field, confinement potential and impurity potential bring about rich subtleties in the TOAC profiles. The said subtleties are often manifested by the alterations in TOAC peak intensity, extent of TOAC peak bleaching, and value of saturation intensity. The findings reveal some technologically relevant aspects of TOAC for the doped QD systems, specially in presence of noise.

  13. Electric Field Measurements of the Capacitively Coupled Magnetized RF Sheath Utilizing Passive Optical Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Elijah Henry

    A major challenge facing magnetic confinement fusion is the implementation of reliable plasma heating systems. Ion cyclotron resonance heating (ICRH) is a key technique utilized to achieve the ion temperatures necessary for desirable fusion reaction rates. ICRH systems are designed to couple energy into the core plasma ions through a resonant interaction with an electromagnetic wave in the radio frequency range. The interaction of the wave with the scrape off layer plasma establishes an electric field which terminates directly on the plasma facing surfaces and is referred to as the near-field. In order to bridge the gap between the theoretical and actual performance of ICRF antennas, experimental measurement of this electric field is highly desired. However, due to the large amount of power launched by ICRF antennas only non-local measurements have thus far been obtained. The research presented in this dissertation is centered on the development of a non-perturbative diagnostic to locally measure the near-field with high spatial and temporal resolution. The main objective of the research presented in this dissertation is to develop and validate a spectroscopic diagnostic capable of measuring local time periodic electric fields. The development phase of the diagnostic consisted of atomic physics formulation and was carried out in two steps. The first involved the calculation of the electronic structure of the one and two-electron atom utilizing the hydrogenic wave function. The second involved the calculation of the spectral line profile based on the electric dipole connection operator. The validate phase of the diagnostic consisted of implementation of the atomic physics to measure the electric field topology associated with the capacitively coupled magnetized RF sheath using passive OES. The experimental measurements are then compared to a simple one-dimensional analytical model providing the validation of the developed atomic physics.

  14. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  15. Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Al, E. B.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Ungan, F.; Kasapoglu, E.

    2016-08-01

    In the present study, the effects of electric and magnetic fields on the linear and third-order nonlinear optical absorption coefficients and relative change of the refractive index in asymmetric GaAs/GaAlAs double quantum wells under intense laser fields are theoretically investigated. The electric field is oriented along the growth direction of the heterostructure while the magnetic field is taken in-plane. The intense laser field is linear polarization along the growth direction. Our calculations are made using the effective-mass approximation and the compact density-matrix approach. Intense laser effects on the system are investigated with the use of the Floquet method with the consequent change in the confinement potential of heterostructures. Our results show that the increase of the electric and magnetic fields blue-shifts the peak positions of the total absorption coefficient and of the total refractive index while the increase of the intense laser field firstly blue-shifts the peak positions and later results in their red-shifting.

  16. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  17. Magnetic-field control of photon echo from the electron-trion system in a CdTe quantum well: shuffling coherence between optically accessible and inaccessible states.

    PubMed

    Langer, L; Poltavtsev, S V; Yugova, I A; Yakovlev, D R; Karczewski, G; Wojtowicz, T; Kossut, J; Akimov, I A; Bayer, M

    2012-10-12

    We report on magnetic field-induced oscillations of the photon echo signal from negatively charged excitons in a CdTe/(Cd,Mg)Te semiconductor quantum well. The oscillatory signal is due to Larmor precession of the electron spin about a transverse magnetic field and depends sensitively on the polarization configuration of the exciting and refocusing pulses. The echo amplitude can be fully tuned from the maximum down to zero depending on the time delay between the two pulses and the magnetic-field strength. The results are explained in terms of the optical Bloch equations accounting for the spin level structure of electrons and trions. PMID:23102368

  18. Magnetic hyperbolic optical metamaterials

    PubMed Central

    Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N.; Kivshar, Yuri S.; Zhang, Xiang

    2016-01-01

    Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light. PMID:27072604

  19. Magnetic hyperbolic optical metamaterials

    NASA Astrophysics Data System (ADS)

    Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N.; Kivshar, Yuri S.; Zhang, Xiang

    2016-04-01

    Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.

  20. Magnetic hyperbolic optical metamaterials.

    PubMed

    Kruk, Sergey S; Wong, Zi Jing; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N; Kivshar, Yuri S; Zhang, Xiang

    2016-01-01

    Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light. PMID:27072604

  1. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  2. Magnetofluorescent micelles incorporating Dy(III)-DOTA as potential bimodal agents for optical and high field magnetic resonance imaging.

    PubMed

    Harris, Michael; Vander Elst, Luce; Laurent, Sophie; Parac-Vogt, Tatjana N

    2016-03-21

    Dysprosium(iii) was coordinated to four 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) bisamide derivatives functionalized with amphiphilic p-dodecylaniline and p-tetradecylaniline in a differing cis- and trans-orientation. The complexes were assembled into mono-disperse micelles having size distribution maxima ranging from 10 to 15 nm and the magnetic and optical properties of the micelles were examined in detail. The micelles show characteristic Dy(iii) emission with quantum yields reaching 0.8%. The transverse relaxivity r2 per Dy(iii) ion at 500 MHz and 310 K reaches maximum values of ca. 20 s(-1) mM(-1) which is a large increase when compared to a value of 0.8 s(-1) mM(-1) observed for Dy(III)-DTPA. The micelles were stable in water when incubated at 37 °C for 1 week and showed no relaxivity decrease when measured in the presence of 4% (w/v) human serum albumin. The efficient T2 relaxation, especially at strong magnetic fields, is sustained by the high magnetic moment of the dysprosium(iii) ion, the coordination of water molecules and long rotational correlation times. PMID:26865457

  3. Optical properties of double quantum wires under the combined effect of spin-orbit interaction and in-plane magnetic field

    NASA Astrophysics Data System (ADS)

    Sakiroglu, S.; Gisi, B.; Karaaslan, Y.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2016-07-01

    In this work, we investigate the intersubband optical absorption coefficients and refractive index changes for transitions between the lower-lying electronic levels of double quantum wires formed by a symmetric, double quartic-well potential. The system is subjected to an external in-plane magnetic field and Rashba and Dresselhaus spin-orbit couplings are taken into account. The analytical expressions of the linear and nonlinear absorption coefficients and refractive index changes are obtained by using the compact density-matrix approach and iterative method. The dependence of the optical characteristics on the magnetic field, spin-orbit interactions, quantum wire radius, structural parameter and photon energies has been examined. Numerical results exhibit that the optical properties are considerably sensitive to the strength and orientation of magnetic field as well as to the spin-orbit couplings and thus can be controlled by these parameters.

  4. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  5. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    SciTech Connect

    Baumann, K; Weber, U; Simeonov, Y; Zink, K

    2015-06-15

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular and thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.

  6. Bioluminescence under static magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Ueno, S.

    1998-06-01

    In the present study, the effect of magnetic fields on the emission of light by a living system was studied. The fireflies Hotaria parvula and Luciola cruciata were used as the bioluminescence systems. The firefly light organ was fixed at the edge of an optical fiber. The emitted light was introduced into a single-channel photon-counting system using an optical fiber. We measured both the spectrum of a constant light emission and, the time course of bioluminescence pulses. Two horizontal-type superconducting magnets, which produced 8 and 14 T magnetic fields at their center, were used as the magnetic-field generators. We also carried out an in vitro study of bioluminescence. The enzymatic activity of luciferase was measured under a 14 T magnetic field. We measured emission spectra of bioluminescence over the interval 500-600 nm at 25 °C in a stable emission state. It was observed that the peak wavelength around 550 nm shifted to 560 nm under a 14 T magnetic field. However, the effects of magnetic fields were not significant. Also, we measured the time course of emissions at 550 nm in a transient emission state. The rate in the light intensity under a 14 T magnetic field increased compared to the control. There is a possibility that the change in the emission intensities under a magnetic field is related to a change in the biochemical systems of the firefly, such as the enzymatic process of luciferase and the excited singlet state with subsequent light emission.

  7. Stray magnetic-field response of linear birefringent optical current sensors

    NASA Astrophysics Data System (ADS)

    MacDougall, Trevor W.; Hutchinson, Ted F.

    1995-07-01

    It is well known that the line integral, describing Faraday rotation in an optical medium, reduces to zero at low frequencies for a closed path that does not encircle a current source. If the closed optical path possesses linear birefringence in addition to Faraday rotation, the cumulative effects on the state of polarization result in a response to externally located current-carrying conductors. This effect can induce a measurable error of the order of 0.3% during certain steady-state operating conditions.

  8. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  9. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    PubMed

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments. PMID:26193403

  10. On Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Florido, E.; Battaner, E.

    2010-12-01

    Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.

  11. Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure

    NASA Astrophysics Data System (ADS)

    Dadoenkova, Yu. S.; Bentivegna, F. F. L.; Dadoenkova, N. N.; Petrov, R. V.; Lyubchanskii, I. L.; Bichurin, M. I.

    2016-05-01

    We present a theoretical investigation of the Goos-Hänchen effect upon light reflection from a heterostructure consisting of an electro-optic film deposited on a magneto-electric film grown on a nonmagnetic dielectric substrate. It is shown that the linear magneto-electric interaction leads to an increase of the lateral shift even in the absence of any applied electric field. The presence of the electro-optic layer enables the control of the Goos-Hänchen shift and of the position of its maximum (with respect to the angle of incidence) through a variation of the magnitude and orientation of an applied electric field. It is also demonstrated that applying an external magnetic field in order to reverse the magnetization in the magnetic layer results (under the influence of the magneto-electric interaction in the system) in a sign reversal of the lateral shift but a nonreciprocal change of its amplitude.

  12. Optical magnetic imaging of living cells

    PubMed Central

    Le Sage, D.; Arai, K.; Glenn, D. R.; DeVience, S. J.; Pham, L. M.; Rahn-Lee, L.; Lukin, M. D.; Yacoby, A.; Komeili, A.; Walsworth, R. L.

    2013-01-01

    Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (e.g., magnetic resonance imaging [MRI]1), or entail operating conditions that preclude application to living biological samples while providing sub-micron resolution (e.g., scanning superconducting quantum interference device [SQUID] microscopy2, electron holography3, and magnetic resonance force microscopy [MRFM]4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nm), using an optically-detected magnetic field imaging array consisting of a nanoscale layer of nitrogen-vacancy (NV) colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the NV quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria, and spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field sCMOS acquisition allows parallel optical and magnetic imaging of multiple cells in a population with sub-micron resolution and >100 micron field-of-view. Scanning electron microscope (SEM) images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. The results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5, 6. PMID:23619694

  13. Optical magnetic imaging of living cells.

    PubMed

    Le Sage, D; Arai, K; Glenn, D R; DeVience, S J; Pham, L M; Rahn-Lee, L; Lukin, M D; Yacoby, A; Komeili, A; Walsworth, R L

    2013-04-25

    Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (for example, magnetic resonance imaging), or entail operating conditions that preclude application to living biological samples while providing submicrometre resolution (for example, scanning superconducting quantum interference device microscopy, electron holography and magnetic resonance force microscopy). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nanometres), using an optically detected magnetic field imaging array consisting of a nanometre-scale layer of nitrogen-vacancy colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the nitrogen-vacancy quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria. We also spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field microscopy allows parallel optical and magnetic imaging of multiple cells in a population with submicrometre resolution and a field of view in excess of 100 micrometres. Scanning electron microscope images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. Our results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks. PMID:23619694

  14. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  15. The effect of line damping, magneto-optics and parasitic light on the derivation of sunspot vector magnetic fields

    NASA Technical Reports Server (NTRS)

    Skumanich, A.; Lites, B. W.

    1985-01-01

    The least square fitting of Stokes observations of sunspots using a Milne-Eddington-Unno model appears to lead, in many circumstances, to various inconsistencies such as anomalously large doppler widths and, hence, small magnetic fields which are significantly below those inferred solely from the Zeeman splitting in the intensity profile. It is found that the introduction of additional physics into the model such as the inclusion of damping wings and magneto-optic birefrigence significantly improves the fit to Stokes parameters. Model fits excluding the intensity profile, i.e., of both magnitude as well as spectral shape of the polarization parameters alone, suggest that parasitic light in the intensity profile may also be a source of inconsistencies. The consequences of the physical changes on the vector properties of the field derived from the Fe I lambda 6173 line for the 17 November 1975 spot as well as on the thermodynamic state are discussed. A Doppler width delta lambda (D) - 25mA is bound to be consistent with a low spot temperature and microturbulence, and a damping constant of a = 0.2.

  16. Magnetically Responsive Nanostructures with Tunable Optical Properties.

    PubMed

    Wang, Mingsheng; Yin, Yadong

    2016-05-25

    Stimuli-responsive materials can sense specific environmental changes and adjust their physical properties in a predictable manner, making them highly desired components for designing novel sensors, intelligent systems, and adaptive structures. Magnetically responsive structures have unique advantages in applications, as external magnetic stimuli can be applied in a contactless manner and cause rapid and reversible responses. In this Perspective, we discuss our recent progress in the design and fabrication of nanostructured materials with various optical responses to externally applied magnetic fields. We demonstrate tuning of the optical properties by taking advantage of the magnetic fields' abilities to induce magnetic dipole-dipole interactions or control the orientation of the colloidal magnetic nanostructures. The design strategies are expected to be extendable to the fabrication of novel responsive materials with new optical effects and many other physical properties. PMID:27115174

  17. Zero field anti ferromagnetic resonance at optical frequencies in dilute magnetic system

    NASA Astrophysics Data System (ADS)

    Paul, Somnath; Sarkar, A.

    2015-06-01

    An experimental study of Antiferromagnetic resonance on Cobalt and Nickel oxide at room temperature has been undertaken. The zero field resonance frequency is detected in near infrared frequency regime. The measurement makes use of UV-VIS spectrophotometer. The overall results are found to be good and encouraging.

  18. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  19. Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature

    SciTech Connect

    Singh, Akhilesh K.; Barik, Puspendu; Ullrich, Bruno E-mail: bruno.ullrich@yahoo.com

    2014-12-15

    We observed changes of the transmitted monochromatic light passing through a colloidal PbS quantum dot film on glass owing to an applied moderate (smaller than 1 T) magnetic field under ambient conditions. The observed alterations show a square dependence on the magnetic field increase that cannot be achieved with bulk semiconductors. The findings point to so far not recognized application potentials of quantum dots.

  20. An Alternative Map from a 2 + 1 Dimensional Charged Dirac Oscillator in the Background of a Uniform Perpendicular Magnetic Field to a Quantum Optics Model

    NASA Astrophysics Data System (ADS)

    Hou, Yu-Long; Wang, Qing; Long, Zheng-Wen; Jing, Jian

    2015-05-01

    We propose an alternative map from the the 2-dimensional charged Dirac oscillator in the background of a uniform perpendicular magnetic field onto a quantum optics model which contains both Jaynes-Cummings (JC) and Anti-Jaynes-Cummings (AJC) interactions. Different from previous work, we only introduce one kind of phonons and realize a symmetrical competition which is controlled by the magnetic field. Furthermore, we find that this model behaves as a quantum phase transition when a dimensionless parameter crosses its critical value. Several characteristics of quantum phase transition are exhibited explicitly.

  1. Ultrafast optical excitation of magnetic skyrmions.

    PubMed

    Ogawa, N; Seki, S; Tokura, Y

    2015-01-01

    Magnetic skyrmions in an insulating chiral magnet Cu2OSeO3 were studied by all-optical spin wave spectroscopy. The spins in the conical and skyrmion phases were excited by the impulsive magnetic field from the inverse-Faraday effect, and resultant spin dynamics were detected by using time-resolved magneto-optics. Clear dispersions of the helimagnon were observed, which is accompanied by a distinct transition into the skyrmion phase, by sweeping temperature and magnetic field. In addition to the collective excitations of skyrmions, i.e., rotation and breathing modes, several spin precession modes were identified, which would be specific to optical excitation. The ultrafast, nonthermal, and local excitation of the spin systems by photons would lead to the efficient manipulation of nano-magnetic structures. PMID:25897634

  2. Ultrafast optical excitation of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Ogawa, N.; Seki, S.; Tokura, Y.

    2015-04-01

    Magnetic skyrmions in an insulating chiral magnet Cu2OSeO3 were studied by all-optical spin wave spectroscopy. The spins in the conical and skyrmion phases were excited by the impulsive magnetic field from the inverse-Faraday effect, and resultant spin dynamics were detected by using time-resolved magneto-optics. Clear dispersions of the helimagnon were observed, which is accompanied by a distinct transition into the skyrmion phase, by sweeping temperature and magnetic field. In addition to the collective excitations of skyrmions, i.e., rotation and breathing modes, several spin precession modes were identified, which would be specific to optical excitation. The ultrafast, nonthermal, and local excitation of the spin systems by photons would lead to the efficient manipulation of nano-magnetic structures.

  3. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  4. Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric GaAs /Ga1-xAlx As double inverse parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Al, E. B.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2015-09-01

    The combined effects of electric and magnetic fields on the optical absorption coefficients and refractive index changes related to the intersubband transitions within the conduction band of asymmetric GaAs /Ga1-xAlxAs double inverse parabolic quantum wells are studied using the effective-mass approximation and the compact density-matrix approach. The results are presented as a function of the incident photon energy for the different values of the electromagnetic fields and the structure parameters such as quantum well width and the Al concentration at the well center. It is found that the optical absorption coefficients and the refractive index changes are strongly affected not only by the magnitudes of the electric and magnetic fields but also by the structure parameters of the system.

  5. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  6. Visualizing Magnetism with Optical Ferrofluid Cells

    NASA Astrophysics Data System (ADS)

    Snyder, Michael

    2015-05-01

    a novel technique for the visualization of magnetic fields. The ferrofluid cells are made up of two optically flat windows with a layer of Fe3O4/Fe2O3 ferrofluid between the glass. Using different magnet configurations and lighting, highly structured pictures are obtained of one of the universes forces. Characterized as the magneto-optic Kerr/displacement current effect on self assembled micrometer sized helical rods of Fe304/Fe203.

  7. A fiber-optic interferometer based on non-adiabatic fiber taper and long-period fiber grating for simultaneous measurement of magnetic field and temperature

    NASA Astrophysics Data System (ADS)

    Kang, Shouxin; Zhang, Hao; Liu, Bo; Lin, Wei; Zhang, Ning; Miao, Yinping

    2016-01-01

    A dual-parameter sensor based on a fiber-optic interferometer consisting of a non-adiabatic fiber taper and a long-period fiber grating (LPFG) integrated with magnetic nanoparticle fluids has been proposed and experimentally demonstrated. Due to the Mach-Zehnder interference induced by the concatenation of the fiber taper and long-period grating, an interferometric spectrum could be acquired within the transmission resonance spectral envelope of the LPFG. Thanks to different magnetic field and temperature sensitivities of difference interference dips, simultaneous measurement of the magnetic field intensity and environmental temperature could be achieved. Moreover, due to the variation in coupling coefficients of the fiber taper and the LPFG in response to the change of the applied magnetic field intensity, some of the interference dips would exhibit opposite magnetic-field-intensity-dependent transmission loss variation behavior. Magnetic field intensity and temperature sensitivities of 0.017 31 dB Oe-1 and 0.0315 dB K-1, and -0.024 55 dB Oe-1 and -0.056 28 dB K-1 were experimentally acquired for the experimentally monitored interference dips.

  8. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  9. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    NASA Astrophysics Data System (ADS)

    Spencer, B. F.; Smith, W. F.; Hibberd, M. T.; Dawson, P.; Beck, M.; Bartels, A.; Guiney, I.; Humphreys, C. J.; Graham, D. M.

    2016-05-01

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 1012 cm-2 and 9000 cm2 V-1 s-1 at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m0.

  10. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  11. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  12. Magnetic fields at neptune.

    PubMed

    Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1989-12-15

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes

  13. Revealing the Exciton Fine Structure of PbSe Nanocrystal Quantum Dots Using Optical Spectroscopy in High Magnetic Fields

    SciTech Connect

    Schaller, Richard D.; Crooker, Scott A.; Bussian, David A.; Pietryga, Jeffrey M.; Joo, Jin; Klimov, Victor I.

    2010-08-04

    We measure the photoluminescence lifetime τ of excitons in colloidal PbSe nanocrystals (NCs) at low temperatures to 270 mK and in high magnetic fields to 15 T. For all NCs, τ increases sharply below 10 K but saturates by 500 mK. In contrast to the usual picture of well-separated “bright” and “dark” exciton states (found, e.g., in CdSe NCs), these dynamics fit remarkably well to a system having two exciton states with comparable—but small—oscillator strengths that are separated by only 300–900 μeV depending on NC size. Importantly, magnetic fields reduce τ below 10 K, consistent with field-induced mixing between the two states. Magnetic-circular dichroism studies reveal exciton g factors from 2–5, and magnetophotoluminescence shows >10% circularly polarized emission.

  14. Note: Fiber optic transport probe for Hall measurements under light and magnetic field at low temperatures: Case study of a two dimensional electron gas

    SciTech Connect

    Bhadauria, P. P. S.; Gupta, Anurag; Kumar, Pramod; Dogra, Anjana; Budhani, R. C.

    2015-05-15

    A fiber optic based probe is designed and developed for electrical transport measurements in presence of quasi-monochromatic (360–800 nm) light, varying temperature (T = 1.8–300 K), and magnetic field (B = 0–7 T). The probe is tested for the resistivity and Hall measurements performed on a LaAlO{sub 3}–SrTiO{sub 3} heterointerface system with a conducting two dimensional electron gas.

  15. Pulsed magnet for magneto-optical experimentation

    NASA Astrophysics Data System (ADS)

    Trabjerg, I.

    1980-10-01

    A high field pulsed magnet system with its associated electronics has been modernized to obtain a device which is easy to use. The magnet has been synchronized to operate with an optical multichannel analyzer; the coil has been miniaturized and tested with success in a pumped conventional dewar with liquid helium and in a tube with flowing gaseous helium. Fields of 20 T have been obtained above 77 K and 14.2 T below that temperature.

  16. PHOTOSPHERIC FLOW FIELD RELATED TO THE EVOLUTION OF THE SUN'S POLAR MAGNETIC PATCHES OBSERVED BY HINODE SOLAR OPTICAL TELESCOPE

    SciTech Connect

    Kaithakkal, Anjali John; Suematsu, Y.; Kubo, M.; Iida, Y.; Tsuneta, S.; Shiota, D.

    2015-02-01

    We investigated the role of photospheric plasma motions in the formation and evolution of polar magnetic patches using time-sequence observations with high spatial resolution. The observations were obtained with the spectropolarimeter on board the Hinode satellite. From the statistical analysis using 75 magnetic patches, we found that they are surrounded by strong converging, supergranulation associated flows during their apparent lifetime and that the converging flow around the patch boundary is better observed in the Doppler velocity profile in the deeper photosphere. Based on our analysis, we suggest that the like-polarity magnetic fragments in the polar region are advected and clustered by photospheric converging flows, thereby resulting in the formation of polar magnetic patches. Our observations show that, in addition to direct cancellation, magnetic patches decay by fragmentation followed by unipolar disappearance or unipolar disappearance without fragmentation. It is possible that the magnetic patches of existing polarity fragment or diffuse away into smaller elements and eventually cancel out with opposite polarity fragments that reach the polar region around the solar cycle maximum. This could be one of the possible mechanisms by which the existing polarity decays during the reversal of the polar magnetic field.

  17. Chiral plasmons without magnetic field.

    PubMed

    Song, Justin C W; Rudner, Mark S

    2016-04-26

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  18. Chiral plasmons without magnetic field

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.

    2016-04-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.

  19. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  20. The interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.

    1972-01-01

    Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

  1. Investigation of MR signal modulation due to magnetic fields from neuronal currents in the adult human optic nerve and visual cortex.

    PubMed

    Chow, Li Sze; Cook, Greg G; Whitby, Elspeth; Paley, Martyn N J

    2006-07-01

    Neuronal currents produce weak transient magnetic fields, and the hypothesis being investigated here is that the components of these parallel to the B0 field can potentially modulate the MR signal, thus providing a means of direct detection of nerve impulses. A theory for the phase and amplitude changes of the MR signal over time due to an external magnetic field has been developed to predict this modulation. Experimentally, a fast gradient-echo EPI sequence (TR = 158 ms, TE = 32.4 ms) was employed in an attempt to directly detect these neuronal currents in the adult human optic nerve and visual cortex using a 280-mm quadrature head coil at 1.5 T. A symmetrical intravoxel field distribution, which can be plausibly hypothesized for the axonal fields in the optic nerve and visual cortex, would result in phase cancellation within a voxel, and hence, only amplitude changes would be expected. On the other hand, an asymmetrical intravoxel field distribution would produce both phase and amplitude changes. The in vivo magnitude image data sets show a significant nerve firing detection rate of 56%, with zero detection using the phase image data sets. The percentage magnitude signal changes relative to the fully relaxed equilibrium signal fall within a predicted RMS field range of 1.2-2.1 nT in the optic nerve and 0.4-0.6 nT in the visual cortex, according to the hypothesis that the axonal fields create a symmetrical Lorentzian field distribution within the voxel. PMID:16824962

  2. Magnetic Field-Dependent Magneto-Optical Kerr Effect in [(GeTe)2(Sb2Te3)1]8 Topological Superlattice

    NASA Astrophysics Data System (ADS)

    Bang, Do; Awano, Hiroyuki; Saito, Yuta; Tominaga, Junji

    2016-05-01

    We studied the magnetic field dependence of magneto-optical Kerr rotation of the [(GeTe)2/(Sb2Te3)1]8 topological superlattice at different temperatures (from 300 K to 440 K). At low temperatures (less than 360 K), the Kerr signal was within noise level. However, large Kerr rotation peaks with a mirror symmetric loop were at high temperatures (higher than 360 K). The temperature dependence of the observed Kerr signal can be attributed to the breaking of spatial inversion symmetry, which induces a narrow gap in surface state bands due to the Ge atomic layer movement-induced phase transition in the superlattice. We found that the resonant field of each Kerr peak gradually decreases with increasing temperature. On the other hand, the phase transition from a high temperature phase to a low temperature one could be controlled by external magnetic fields.

  3. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    SciTech Connect

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  4. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-01

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  5. Magnetic Trapping of Bacteria at Low Magnetic Fields.

    PubMed

    Wang, Z M; Wu, R G; Wang, Z P; Ramanujan, R V

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  6. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  7. Magnetic Trapping of Bacteria at Low Magnetic Fields

    PubMed Central

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  8. Rydberg EIT in High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  9. Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Ravat, D.; Frawley, James J.

    1999-01-01

    Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

  10. Magnetization dynamics using ultrashort magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Tudosa, Ioan

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic

  11. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  12. Near-Field Magneto-Optical Microscope

    DOEpatents

    Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.

    2005-12-06

    A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

  13. Near Field Magneto-Optical Microscope

    DOEpatents

    Vlasko-Vlasov, Vitalii K.; Welp, Ulrich; Crabtree, George W.

    2005-12-06

    A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

  14. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  15. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  16. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  17. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  18. The influence of applied magnetic fields on the optical properties of zero- and one-dimensional CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Blumling, Daniel E.; McGill, Stephen; Knappenberger, Kenneth L.

    2013-09-01

    Shape-dependent exciton relaxation dynamics of CdSe 0-D nanocrystals and 1-D nanorods were studied using low-temperature (4.2 K), time-resolved and intensity-integrated magneto-photoluminscence (MPL) spectroscopy. Analysis of the average MPL rate constants from several different nanocrystal quantum dots and rods excited by 400 nm light in applied magnetic fields up to 17.5 T revealed size-dependent energy gaps separating bright and dark exciton fine-structure states. For 1-D nanorods under strong cross-sectional confinement and large length-to-diameter aspect ratios, efficient mixing of bright and dark exciton states was achieved using relatively low applied field strengths (<=4 T). The effect was attributed, in part, to decreased confinement of CdSe hole states associated with the long axis of the nanorod, which resulted in reduction of the energy gaps separating the bright and dark states. Increased control over the angle formed between the applied field vectors and the nanocrystal c-axis led to more efficient and uniform mixing of nanorod exciton states than for quantum dots. The findings suggest 1-D nanostructures are advantageous over 0-D ones for field-responsive applications.Shape-dependent exciton relaxation dynamics of CdSe 0-D nanocrystals and 1-D nanorods were studied using low-temperature (4.2 K), time-resolved and intensity-integrated magneto-photoluminscence (MPL) spectroscopy. Analysis of the average MPL rate constants from several different nanocrystal quantum dots and rods excited by 400 nm light in applied magnetic fields up to 17.5 T revealed size-dependent energy gaps separating bright and dark exciton fine-structure states. For 1-D nanorods under strong cross-sectional confinement and large length-to-diameter aspect ratios, efficient mixing of bright and dark exciton states was achieved using relatively low applied field strengths (<=4 T). The effect was attributed, in part, to decreased confinement of CdSe hole states associated with the long

  19. Rheo-Optical Studies on a Polymer Liquid Crystal Under the Influence of Flow or Magnetic Fields.

    NASA Astrophysics Data System (ADS)

    Srinivasarao, Mohan

    1990-01-01

    The response of a lyotropic liquid crystal to an external perturbing field (flow or magnetic field) has been studied. Solutions of rodlike poly(1,4-phenylene -2,6-benzobisthiazole) (PBT) in methane sulfonic acid (MSA) have been used. The study is primarily limited to the anisotropic phase. Two molecular weights were used, both forming a liquid-crystalline phase above 3% by weight of the polymer in solution. Flow birefringence measurements were attempted to characterize flow-induced orientation in the nematic phase. However, a stable, uniform, steady-state flow condition was not reached. The transmitted intensities of polarized light, both with and without an analyzer, fluctuate rapidly, indicating that a stable, uniform flow did not obtain in torsional shear flow. By contrast, a constant stress was measured above 100 units of strain. During the course of this study, we were successful in obtaining monodomain nematic solutions. Monodomains were used to study the response of the material to external fields (flow or magnetic field). Experiments were done in the twist geometry in an effort to obtain the twist elastic constant for the solutions. We found that an instability is created on the application of a magnetic field, producing a phase grating. The instability has been characterized by light microscopy, fluorescence polarization and conoscopy. Theoretical description of this instability is unavailable as yet. We have demonstrated that the instability involves a three -dimensional flow pattern which gives rise to a reorientation of the director in three dimensions. Monodomains were used to study the flow properties of PBT solutions. Microscopic observations were made on textures created during flow. Conoscopy was used to study the director distortion at the onset of shear flows. We have established that alpha_2/ alpha_3 is less than zero, giving rise to unstable flow conditions. Situations with flow parallel and perpendicular to the director were examined. We have

  20. Reconnection of Magnetic Fields

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.

  1. Magnetic fields and stardust

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1988-01-01

    The purpose of this paper is to outline the principles governing the use of far-infrared and submillimeter polarimetry to investigate magnetic fields and dust in interstellar clouds. Particular topics of discussion are the alignment of dust grains in dense clouds, the dependence on wavelength of polarization due to emission or to partial absorption by aligned grains, the nature of that dependence for mixtures of grains with different properties, and the problem of distinguishing between (1) the effects of the shapes and dielectric functions of the grains and (2) the degree and direction of their alignment.

  2. Optical orientation of bright excitons in InAs/GaAs quantum dots: Influence of a Faraday magnetic field and the dark exciton states

    NASA Astrophysics Data System (ADS)

    Sancho, S.; Chaouache, M.; Maaref, M. A.; Bernardot, F.; Eble, B.; Lemaître, A.; Testelin, C.

    2011-10-01

    We study the injection of polarized bright and dark excitons in quantum dots, under nonresonant or resonant excitation, by polarization-resolved photoluminescence experiments on an ensemble of self-assembled InAs/GaAs quantum dots. The importance of the polarized dark exciton creation on the optical emission under magnetic field is discussed. Under circular excitation, we observe the expected increase and saturation of the polarization rate with a magnetic field applied in Faraday geometry. Strikingly, the polarization rate slightly decreases for magnetic fields greater than ˜1.5 T; the feature is more pronounced for higher interband energies and is attributed to a more efficient initial polarization of the dark exciton states. This interpretation is confirmed by the lack of decrease of the polarization rate for quantum dots excited at exact resonance through a 1LO-phonon-assisted transition. Finally, we measure the bright exciton exchange energy as a function of interband emission energy, we measure a decrease from 65 to 30 μeV in the range 1.28-1.35 eV, and we obtain an estimate of the dark exciton splitting.

  3. Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording.

    PubMed

    Miao, Lingyun; Stoddart, Paul R; Hsiang, Thomas Y

    2014-07-25

    Heat-assisted magnetic recording (HAMR) has attracted increasing attention as one of the most promising future techniques for ultra-high-density magnetic recording beyond the current limit of 1 Tb in(-2). Localized surface plasmon resonance plays an important role in HAMR by providing a highly focused optical spot for heating the recording medium within a small volume. In this work, we report an aluminum near-field transducer (NFT) based on a novel bow-tie design. At an operating wavelength of 450 nm, the proposed transducer can generate a 35 nm spot size inside the magnetic recording medium, corresponding to a recording density of up to 2 Tb in(-2). A highly integrated micro-nano-optics design is also proposed to ensure process compatibility and corrosion-resistance of the aluminum NFT. Our work has demonstrated the feasibility of using aluminum as a plasmonic material for HAMR, with advantages of reduced cost and improved efficiency compared to traditional noble metals. PMID:24981413

  4. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  5. Measurement of magnetic moment via optical transmission

    NASA Astrophysics Data System (ADS)

    Heidsieck, Alexandra; Schmid, Daniel; Gleich, Bernhard

    2016-03-01

    The magnetic moment of nanoparticles is an important property for drug targeting and related applications as well as for the simulation thereof. However, the measurement of the magnetic moment of nanoparticles, nanoparticle-virus-complexes or microspheres in solution can be difficult and often yields unsatisfying or incomparable results. To measure the magnetic moment, we designed a custom measurement device including a magnetic set-up to observe nanoparticles indirectly via light transmission in solution. We present a simple, cheap device of manageable size, which can be used in any laboratory as well as a novel evaluation method to determine the magnetic moment of nanoparticles via the change of the optical density of the particle suspension in a well-defined magnetic gradient field. In contrast to many of the established measurement methods, we are able to observe and measure the nanoparticle complexes in their natural state in the respective medium. The nanoparticles move along the magnetic gradient and thereby away from the observation point. Due to this movement, the optical density of the fluid decreases and the transmission increases over time at the measurement location. By comparing the measurement with parametric simulations, we can deduce the magnetic moment from the observed behavior.

  6. Optical/Near-infrared Polarization Survey of Sh 2-29: Magnetic Fields, Dense Cloud Fragmentations, and Anomalous Dust Grain Sizes

    NASA Astrophysics Data System (ADS)

    Santos, Fábio P.; Franco, Gabriel A. P.; Roman-Lopes, Alexandre; Reis, Wilson; Román-Zúñiga, Carlos G.

    2014-03-01

    Sh 2-29 is a conspicuous star-forming region marked by the presence of massive embedded stars as well as several notable interstellar structures. In this research, our goals were to determine the role of magnetic fields and to study the size distribution of interstellar dust particles within this turbulent environment. We have used a set of optical and near-infrared polarimetric data obtained at OPD/LNA (Brazil) and CTIO (Chile), correlated with extinction maps, Two Micron All Sky Survey data, and images from the Digitized Sky Survey and Spitzer. The region's most striking feature is a swept out interstellar cavity whose polarimetric maps indicate that magnetic field lines were dragged outward, piling up along its borders. This led to a higher magnetic strength value (≈400 μG) and an abrupt increase in polarization degree, probably due to an enhancement in alignment efficiency. Furthermore, dense cloud fragmentations with peak AV between 20 and 37 mag were probably triggered by its expansion. The presence of 24 μm point-like sources indicates possible newborn stars inside this dense environment. A statistical analysis of the angular dispersion function revealed areas where field lines are aligned in a well-ordered pattern, seemingly due to compression effects from the H II region expansion. Finally, Serkowski function fits were used to study the ratio of the total-to-selective extinction, revealing a dual population of anomalous grain particle sizes. This trend suggests that both effects of coagulation and fragmentation of interstellar grains are present in the region. Based on observations collected at the National Optical Astronomy Observatory (CTIO, Chile) and Observatório do Pico dos Dias, operated by Laboratório Nacional de Astrofísica (LNA/MCT, Brazil).

  7. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  8. High Magnetic field generation for laser-plasma experiments

    SciTech Connect

    Pollock, B B; Froula, D H; Davis, P F; Ross, J S; Fulkerson, S; Bower, J; Satariano, J; Price, D; Glenzer, S H

    2006-05-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system suppling 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented.

  9. Observations of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.

  10. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  11. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  12. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  13. Magnetic plasmonic Fano resonance at optical frequency.

    PubMed

    Bao, Yanjun; Hu, Zhijian; Li, Ziwei; Zhu, Xing; Fang, Zheyu

    2015-05-13

    Plasmonic Fano resonances are typically understood and investigated assuming electrical mode hybridization. Here we demonstrate that a purely magnetic plasmon Fano resonance can be realized at optical frequency with Au split ring hexamer nanostructure excited by an azimuthally polarized incident light. Collective magnetic plasmon modes induced by the circular electric field within the hexamer and each of the split ring can be controlled and effectively hybridized by designing the size and orientation of each ring unit. With simulated results reproducing the experiment, our suggested configuration with narrow line-shape magnetic Fano resonance has significant potential applications in low-loss sensing and may serves as suitable elementary building blocks for optical metamaterials. PMID:25594885

  14. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  15. Exposure guidelines for magnetic fields.

    PubMed

    Miller, G

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields. PMID:3434538

  16. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  17. [Magnetic fields and fish behavior].

    PubMed

    Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25438567

  18. [Magnetic fields and fish behavior].

    PubMed

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25508098

  19. Probing magnetic and electric optical responses of silicon nanoparticles

    SciTech Connect

    Permyakov, Dmitry; Sinev, Ivan; Markovich, Dmitry; Samusev, Anton; Belov, Pavel; Ginzburg, Pavel; Valuckas, Vytautas; Kuznetsov, Arseniy I.; Luk'yanchuk, Boris S.; Miroshnichenko, Andrey E.; Neshev, Dragomir N.; Kivshar, Yuri S.

    2015-04-27

    We study experimentally both magnetic and electric optically induced resonances of silicon nanoparticles by combining polarization-resolved dark-field spectroscopy and near-field scanning optical microscopy measurements. We reveal that the scattering spectra exhibit strong sensitivity of electric dipole response to the probing beam polarization and attribute the characteristic asymmetry of measured near-field patterns to the excitation of a magnetic dipole mode. The proposed experimental approach can serve as a powerful tool for the study of photonic nanostructures possessing both electric and magnetic optical responses.

  20. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  1. On the photoemission from 3-D quantum well boxes of nonlinear optical materials in the presence of crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Ghatak, Kamakhya P.

    1990-08-01

    An attempt is made to study the photoemission :eron 3D quantum well boxes (QWBs) of nonlinear optical materials in the presence of crossed electric and magnetic fields, taking ternary chalcopyrite semiconductors as an example. Consi3ering the anisotropic crystal potential in the Harniltonian, we have formulated the generalized electron energy spectrum taking into account the anisotropies of the 0ther energy band par arne ter s, within the fr sine work of theory. We have then derlved.the photoernission from 3D QWBs of ternary chalCopyrite compounds by using the modified dispersion law under cross field configuration in the said material. It is found, taking 3D QWBs of n-CdGeAs2 as an example, that the photoernission exhibits ladder like dependence with incident photon energy as found in quanturn Hall effect and the corresponding results for three and two-band Kane models together with that of parabolic energy bands have been obtained from the present generalized exjressions as special cases. The photoeinission decreases with increasing magnetic field and decreasing electron concentration respectively. The oscillations in accordance with the present generalized model show up much more significantly and are in agreement with the experimental results as given elsewhere.

  2. Optical measurements of gravity fields

    NASA Technical Reports Server (NTRS)

    Maleki, L.; Yu, N.; Matsko, A.

    2003-01-01

    Optical measurements of a gravitational field with sensitivity close to the sensitivity of atomic devices are possible if one detects properties of light after its interaction with optically thick atomic cloud moving freely in the gravity field. A nondestructive detection of a number of ultracold atoms in a cloud as well as tracking of the ground state population distribution of the atoms is possible by optical means.

  3. Magnetic fields in nearby spirals

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohui; Lenc, Emil

    2013-10-01

    Magnetic fields play an important role in star formation process and dynamic evolution of galaxies. Previous studies of magnetic fields relied on narrow band polarisation observations and difficult to disentangle magnetised structures along line of sight. Thanks to the broad bandwidth and multi-channels of CABB we are now able to recover the 3D structures of magnetic fields using RM synthesis and QU-fitting. We propose to observe two nearby spirals M83 and NGC 4945 to build clear pictures of their magnetic fields.

  4. Nanofabrication using near-field optical probes

    PubMed Central

    McLeod, Euan; Ozcan, Aydogan

    2012-01-01

    Nanofabrication using near-field optical probes is an established technique for rapid prototyping and automated maskless fabrication of nanostructured devices. In this review, we present the primary types of near-field probes and their physical processing mechanisms. Highlights of recent developments include improved resolution by optimizing the probe shape, incorporation of surface plasmonics in probe design, broader use in biological and magnetic storage applications, and increased throughput using probe arrays as well as high speed writing and patterning. PMID:22713756

  5. A force sensor with five degrees of freedom using optical intensity modulation for usage in a magnetic resonance field

    NASA Astrophysics Data System (ADS)

    Kim, Min-Gyu; Lee, Dong-Hyeok; Cho, Nahm-Gyoo

    2013-04-01

    In this paper, a precise small 5-DOF (degree of freedom) force sensor is proposed for use in a strong EMF (electromagnetic field) environment. Detecting modules using CFPs (carbon fiber plates) and transducing modules using the optical modulation principle are adopted in order not to be affected by the EMF. For miniaturization of the multi-DOF force sensor, a 2-DOF transducing module using a spherical mirror and a 3-DOF transducing module using a plane mirror were designed and integrated. The design parameters of highly sensitive transducing modules were investigated and determined experimentally. To combine with these transducing modules, a 2-DOF detecting module using CFP single leaf springs and a 3-DOF detecting module using a CFP tripod spring were also designed. Considering the easy calibration process and convenient design change, the elastic detecting modules were designed so that they deform independently according to each input force component. A calibration test confirmed that the detecting modules deform linearly and independently of the input force. The results of the evaluation tests showed that the range and resolution of forces were ±4 N and 0.94-7.1 mN and the range and resolution of moments were ±120 N mm and 0.023-0.034 N mm, respectively. The high sensitivity and the linearity of the measuring results were also verified.

  6. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  7. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  8. Optical/near-infrared polarization survey of Sh 2-29: Magnetic fields, dense cloud fragmentations, and anomalous dust grain sizes

    SciTech Connect

    Santos, Fábio P.; Franco, Gabriel A. P.; Reis, Wilson; Roman-Lopes, Alexandre; Román-Zúñiga, Carlos G. E-mail: franco@fisica.ufmg.br E-mail: roman@dfuls.cl

    2014-03-01

    Sh 2-29 is a conspicuous star-forming region marked by the presence of massive embedded stars as well as several notable interstellar structures. In this research, our goals were to determine the role of magnetic fields and to study the size distribution of interstellar dust particles within this turbulent environment. We have used a set of optical and near-infrared polarimetric data obtained at OPD/LNA (Brazil) and CTIO (Chile), correlated with extinction maps, Two Micron All Sky Survey data, and images from the Digitized Sky Survey and Spitzer. The region's most striking feature is a swept out interstellar cavity whose polarimetric maps indicate that magnetic field lines were dragged outward, piling up along its borders. This led to a higher magnetic strength value (≈400 μG) and an abrupt increase in polarization degree, probably due to an enhancement in alignment efficiency. Furthermore, dense cloud fragmentations with peak A{sub V} between 20 and 37 mag were probably triggered by its expansion. The presence of 24 μm point-like sources indicates possible newborn stars inside this dense environment. A statistical analysis of the angular dispersion function revealed areas where field lines are aligned in a well-ordered pattern, seemingly due to compression effects from the H II region expansion. Finally, Serkowski function fits were used to study the ratio of the total-to-selective extinction, revealing a dual population of anomalous grain particle sizes. This trend suggests that both effects of coagulation and fragmentation of interstellar grains are present in the region.

  9. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  10. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  11. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  12. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  13. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  14. Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field.

    PubMed

    Zhang, Peng; Tang, Ming; Gao, Feng; Zhu, Benpeng; Fu, Songnian; Ouyang, Jun; Shum, Perry Ping; Liu, Deming

    2014-08-11

    We report a highly sensitive fiber-optic sensor based on two cascaded intrinsic fiber Fabry-Perot interferometers (IFFPIs). The cascaded IFFPIs have different free spectral ranges (FSRs) and are formed by a short section of hollow core photonic crystal fiber sandwiched by two single mode fibers. With the superposition of reflective spectrum with different FSRs, the Vernier effect will be generated in the proposed sensor and we found that the strain sensitivity of the proposed sensor can be improved from 1.6 pm/με for a single IFFPI sensor to 47.14 pm/με by employing the Vernier effect. The sensor embed with a metglas ribbon can be also used to measure the magnetic field according to the similar principle. The sensitivity of the magnetic field measurement is achieved to be 71.57 pm/Oe that is significantly larger than the 2.5 pm/Oe for a single IFFPI sensor. PMID:25321041

  15. A capillary optical fiber modulator derivates from magnetic fluid

    NASA Astrophysics Data System (ADS)

    Yang, Xinghua; Liu, Yanxin; Zheng, Yao; Li, Shouzhu; Yuan, Libo; Yuan, Tingting; Tong, Chengguo

    2013-09-01

    A novel in-fiber integrated modulator based on magnetic fluid is proposed. The Fe3O4 magnetic fluid is encapsulated into a specially designed capillary optical fiber with a circular waveguide. Experimental results show that the light at 632.8 nm in the circular waveguide can be modulated by only 2.17×10-2 μL of the magnetic fluid under magnetic field. A wide range of modulation-depth from 44% to 75% can be obtained by adjusting the external magnetic field strength, temperature and the concentration of the magnetic fluid. In addition, the modulator shows good stability and repeatability. This work has great potentials in the integrated optical devices such as tunable in-fiber modulators, optical switches and magnetic sensors.

  16. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  17. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)  G if the energy scale of inflation is few×10(16)  GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

  18. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  19. Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films.

    PubMed

    Ctistis, G; Papaioannou, E; Patoka, P; Gutek, J; Fumagalli, P; Giersig, M

    2009-01-01

    In this study, we present our experimental results on the optical, magnetic, as well as magneto-optic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films. Different meshes were used with hole diameters ranging between 220 and 330 nm while the interhole distance has been kept constant at 470 nm. The hole pattern modifies completely the magnetic behavior of the cobalt films; it gives rise to an increase of the coercive field of the in-plane magnetization with increasing hole diameter and to the appearance of out-of-plane magnetization components. Magneto-optic measurements show a spectacular magneto-optic response at wavelengths where surface plasmon-polaritons are supported by the structure as deduced in optical measurements. The experiments demonstrate the ability to artificially control the magnetic and thus the magneto-optic properties in hole array structures. PMID:19072720

  20. A high-field 3He metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Collier, G.; Pałasz, T.; Wojna, A.; Głowacz, B.; Suchanek, M.; Olejniczak, Z.; Dohnalik, T.

    2013-05-01

    After being hyperpolarized using the technique of Metastability Exchange Optical Pumping (MEOP), 3He can be used as a contrast agent for lung magnetic resonance imaging (MRI). MEOP is usually performed at low magnetic field (˜1 mT) and low pressure (˜1 mbar), which results in a low magnetization production rate. Polarization preserving compression with a compression ratio of order 1000 is also required. It was demonstrated in sealed cells that high nuclear polarization values can be obtained at higher pressures with MEOP, if performed at high magnetic field (non-standard conditions). In this work, the feasibility of building a high-field polarizer that operates within a commercial 1.5 T scanner was evaluated. Preliminary measurements of nuclear polarization with sealed cells filled at different 3He gas pressures (1.33 to 267 mbar) were performed. The use of an annular shape for the laser beam increased by 25% the achievable nuclear polarization equilibrium value (Meq) at 32 and 67 mbar as compared to a Gaussian beam shape. Meq values of 66.4% and 31% were obtained at 32 and 267 mbar, respectively, and the magnetization production rate was increased by a factor of 10 compared to the best results obtained under standard conditions. To study the reproducibility of the method in a polarizing system, the same experiments were performed with small cells connected to a gas handling system. Despite careful cleaning procedure, the purity of the 3He gas could not be matched to that of the sealed cells. Consequently, the polarization build-up times were approximately 3 times longer in the 20-30 mbar range of pressure than those obtained for the 32 mbar sealed cell. However, reasonable Meq values of 40%-60% were achieved in a 90 ml open cell. Based on these findings, a novel compact polarizing system was designed and built. Its typical output is a 3He gas flow rate of 15 sccm with a polarization of 33%. In-vivo lung MRI ventilation images (Signal to Noise Ratio (SNR) of

  1. Magnetic fields in young galaxies

    NASA Astrophysics Data System (ADS)

    Nordlund, Åke; Rögnvaldsson, Örnólfur

    We have studied the fate of initial magnetic fields in the hot halo gas out of which the visible parts of galaxies form, using three-dimensional numerical MHD-experiments. The halo gas undergoes compression by several orders of magnitude in the subsonic cooling flow that forms the cold disk. The magnetic field is carried along and is amplified considerably in the process, reaching μG levels for reasonable values of the initial ratio of magnetic to thermal energy density.

  2. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  3. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  4. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  5. Magnetic field synthesis for microwave magnetics

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  6. Magnetic field structure evolution in rotating magnetic field plasmas

    SciTech Connect

    Petrov, Yuri; Yang Xiaokang; Huang, T.-S.

    2008-07-15

    A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.

  7. PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

    SciTech Connect

    Yamamoto, Tetsuya T.; Kusano, K.

    2012-06-20

    Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

  8. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  9. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  10. Spin noise explores local magnetic fields in a semiconductor.

    PubMed

    Ryzhov, Ivan I; Kozlov, Gleb G; Smirnov, Dmitrii S; Glazov, Mikhail M; Efimov, Yurii P; Eliseev, Sergei A; Lovtcius, Viacheslav A; Petrov, Vladimir V; Kavokin, Kirill V; Kavokin, Alexey V; Zapasskii, Valerii S

    2016-01-01

    Rapid development of spin noise spectroscopy of the last decade has led to a number of remarkable achievements in the fields of both magnetic resonance and optical spectroscopy. In this report, we demonstrate a new - magnetometric - potential of the spin noise spectroscopy and use it to study magnetic fields acting upon electron spin-system of an n-GaAs layer in a high-Q microcavity probed by elliptically polarized light. Along with the external magnetic field, applied to the sample, the spin noise spectrum revealed the Overhauser field created by optically oriented nuclei and an additional, previously unobserved, field arising in the presence of circularly polarized light. This "optical field" is directed along the light propagation axis, with its sign determined by sign of the light helicity. We show that this field results from the optical Stark effect in the field of the elliptically polarized light. This conclusion is supported by theoretical estimates. PMID:26882994

  11. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  12. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  13. Magnetic fields and scintillator performance

    SciTech Connect

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  14. Optical magnetic resonances induced by the interference of reactive components in the near radiation-field zone of atoms in a glow discharge of a mixture of even neon isotopes

    NASA Astrophysics Data System (ADS)

    Saprykin, E. G.

    2016-02-01

    Four types of anomalous optical magnetic resonances shifted with respect to the zero magnetic field and with different shapes are found in radiation of a glow discharge in a mixture of even neon isotopes placed in a swept longitudinal magnetic field. This testifies to the manifestation of collective processes of synchronous light emission by oscillators belonging to isotopically different spatially separated atoms in discharge plasma. The origin of resonances is associated with nonstationary interference of reactive fields in the near radiation-field zones of emission of atoms, averaged over the lifetime of the fields (interference), while different types of resonances are associated with different methods of synchronization of the phases of the fields.

  15. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  16. Magnetic field structure of Mercury

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.

    2012-04-01

    Recently planet Mercury - an unexplored territory in our solar system - has been of much interest to the scientific community due to recent flybys of the spacecraft MESSENGER that discovered its intrinsic stationary and large-scale dipole like magnetic field structure with an intensity of ˜300nT confirming Mariner 10 observations. In the present study, with the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is modeled as a solution of magnetic diffusion equation. In this study, Mercury's internal structure mainly consists of a stable stratified fluid core and the convective mantle. For simplicity, magnetic diffusivity in both parts of the structure is considered to be uniform and constant with a value represented by a suitable averages. It is further assumed that vigorous convection in the mantle disposes of the electric currents leading to a very high diffusivity in that region. Thus, in order to satisfy observed atmospheric magnetic field structure, Mercury's most likely magnetic field structure consists of a solution of MHD diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. With imposition of appropriate boundary conditions at the core-mantle boundary for the first two diffusion eigen modes, in order to satisfy the observed field structure, present study puts the constraint on Mercury's core radius to be ˜2000km. From the estimated magnetic diffusivity and the core radius, it is also possible to estimate the two diffusion eigen modes with their diffusion time scales of ˜8.6 and 3.7 billion years respectively suggesting that the planet inherits its present-day magnetic field structure from the solar Nebula. It is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during

  17. Magnetic Field Generation in Stars

    NASA Astrophysics Data System (ADS)

    Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

    2015-10-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.

  18. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    NASA Astrophysics Data System (ADS)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  19. Overt and covert verification via magnetic optical security devices

    NASA Astrophysics Data System (ADS)

    Coombs, Paul G.; Raksha, Vladimir; Markantes, Tom

    2002-04-01

    The currency of over 70 countries is protected today by security ink incorporating microscopic optical interference filters. The physics of light interference enables the manufacture of multi-layer security devices such as these that are both highly chromatic and color shifting. Further, the technique of thin film deposition allows the inclusion of layers that perform magnetically as well as optically. This investigation involved the creation of security devices that bring together the usually separate functionalities of overt optical and covert magnetic verification into a single device. This allows the devices to be used both for information storage as well as for overt detection and verification--thereby creating improved protection without the addition of separate security devices. Two examples are explored: an optically variable magnetic stripe and a product tag into which an identifiable covert pattern is magnetized. Integrated devices were produced using several different magnetic metals and alloys. The optical and magnetic characteristics of each device were measured and the results included in this report. Devices were built using single-component magnetic layers as well as more complex magnetic materials. Parameters relevant to magnetic materials include remanence (field strength remaining after magnetization) and coercivity (resistance to demagnetization). Also relevant to optical devices is their so-called color travel-often plotted as an arc in a* b* or L* a* b* space. The color travel of sample devices was measured to allow comparison.

  20. Gauge field optics with anisotropic media.

    PubMed

    Liu, Fu; Li, Jensen

    2015-03-13

    By considering gauge transformations on the macroscopic Maxwell's equations, a two-dimensional gauge field, with its pseudomagnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that the optical spin Hall effect with broadband response and one-way edge states become possible simply by using anisotropic media. The proposed gauge field also allows us to obtain unidirectional propagation for a particular pseudospin based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices. PMID:25815934

  1. Second-harmonic generation with magnetic-field controllability.

    PubMed

    Ju, Sheng; Cai, Tian-Yi; Wei, Chi-I; Guo, Guang-Yu

    2009-12-15

    Based on density functional theory with the generalized gradient approximation plus on-site Coulomb repulsion method, we study the magnetic-ordering dependence of second-harmonic generation (SHG) in a polar magnet BiCoO(3). The large second-order optical susceptibility, which can reach 3.7x10(-7) esu, exhibits a strong magnetic-ordering dependence, giving rise to magnetic-field controllable SHG response in polar magnets. PMID:20016638

  2. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  3. Spin noise explores local magnetic fields in a semiconductor

    NASA Astrophysics Data System (ADS)

    Ryzhov, Ivan I.; Kozlov, Gleb G.; Smirnov, Dmitrii S.; Glazov, Mikhail M.; Efimov, Yurii P.; Eliseev, Sergei A.; Lovtcius, Viacheslav A.; Petrov, Vladimir V.; Kavokin, Kirill V.; Kavokin, Alexey V.; Zapasskii, Valerii S.

    2016-02-01

    Rapid development of spin noise spectroscopy of the last decade has led to a number of remarkable achievements in the fields of both magnetic resonance and optical spectroscopy. In this report, we demonstrate a new - magnetometric - potential of the spin noise spectroscopy and use it to study magnetic fields acting upon electron spin-system of an n-GaAs layer in a high-Q microcavity probed by elliptically polarized light. Along with the external magnetic field, applied to the sample, the spin noise spectrum revealed the Overhauser field created by optically oriented nuclei and an additional, previously unobserved, field arising in the presence of circularly polarized light. This “optical field” is directed along the light propagation axis, with its sign determined by sign of the light helicity. We show that this field results from the optical Stark effect in the field of the elliptically polarized light. This conclusion is supported by theoretical estimates.

  4. Spin noise explores local magnetic fields in a semiconductor

    PubMed Central

    Ryzhov, Ivan I.; Kozlov, Gleb G.; Smirnov, Dmitrii S.; Glazov, Mikhail M.; Efimov, Yurii P.; Eliseev, Sergei A.; Lovtcius, Viacheslav A.; Petrov, Vladimir V.; Kavokin, Kirill V.; Kavokin, Alexey V.; Zapasskii, Valerii S.

    2016-01-01

    Rapid development of spin noise spectroscopy of the last decade has led to a number of remarkable achievements in the fields of both magnetic resonance and optical spectroscopy. In this report, we demonstrate a new – magnetometric – potential of the spin noise spectroscopy and use it to study magnetic fields acting upon electron spin-system of an n-GaAs layer in a high-Q microcavity probed by elliptically polarized light. Along with the external magnetic field, applied to the sample, the spin noise spectrum revealed the Overhauser field created by optically oriented nuclei and an additional, previously unobserved, field arising in the presence of circularly polarized light. This “optical field” is directed along the light propagation axis, with its sign determined by sign of the light helicity. We show that this field results from the optical Stark effect in the field of the elliptically polarized light. This conclusion is supported by theoretical estimates. PMID:26882994

  5. A metafluid exhibiting strong optical magnetism.

    PubMed

    Sheikholeslami, Sassan N; Alaeian, Hadiseh; Koh, Ai Leen; Dionne, Jennifer A

    2013-09-11

    Advances in the field of metamaterials have enabled unprecedented control of light-matter interactions. Metamaterial constituents support high-frequency electric and magnetic dipoles, which can be used as building blocks for new materials capable of negative refraction, electromagnetic cloaking, strong visible-frequency circular dichroism, and enhancing magnetic or chiral transitions in ions and molecules. While all metamaterials to date have existed in the solid-state, considerable interest has emerged in designing a colloidal metamaterial or "metafluid". Such metafluids would combine the advantages of solution-based processing with facile integration into conventional optical components. Here we demonstrate the colloidal synthesis of an isotropic metafluid that exhibits a strong magnetic response at visible frequencies. Protein-antibody interactions are used to direct the solution-phase self-assembly of discrete metamolecules comprised of silver nanoparticles tightly packed around a single dielectric core. The electric and magnetic response of individual metamolecules and the bulk metamaterial solution are directly probed with optical scattering and spectroscopy. Effective medium calculations indicate that the bulk metamaterial exhibits a negative effective permeability and a negative refractive index at modest fill factors. This metafluid can be synthesized in large-quantity and high-quality and may accelerate development of advanced nanophotonic and metamaterial devices. PMID:23919764

  6. The magnetic field of Mercury

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1977-01-01

    The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.

  7. Magnetic fields in Herbig Ae stars

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Schöller, M.; Yudin, R. V.

    2004-12-01

    Herbig Ae stars are young A-type stars in the pre-main sequence evolutionary phase with masses of ˜1.5-3 M⊙. They show rather intense surface activity (Dunkin et al. \\cite{Du97}, MNRAS, 290, 165) and infrared excess related to the presence of circumstellar disks. Because of their youth, primordial magnetic fields inherited from the parent molecular cloud may be expected, but no direct evidence for the presence of magnetic fields on their surface, except in one case (Donati et al. \\cite{Do97}, MNRAS, 291, 658), has been found until now. Here we report observations of optical circular polarization with FORS 1 at the VLT in the three Herbig Ae stars HD 139614, HD 144432 and HD 144668. A definite longitudinal magnetic field at 4.8 σ level, =-450±93 G, has been detected in the Herbig Ae star HD 139614. This is the largest magnetic field ever diagnosed for a Herbig Ae star. A hint of a weak magnetic field is found in the other two Herbig Ae stars, HD 144432 and HD 144668, for which magnetic fields are measured at the ˜1.6 σ and ˜2.5 σ level respectively. Further, we report the presence of circular polarization signatures in the Ca II K line in the V Stokes spectra of HD 139614 and HD 144432, which appear unresolved at the low spectral resolution achievable with FORS 1. We suggest that models involving accretion of matter from the disk to the star along a global stellar magnetic field of a specific geometry can account for the observed Zeeman signatures. Based on observations obtained at the European Southern Observatory, Paranal, Chile (ESO programme No. 072.D-0377).

  8. The Magnetic Field in Tapia's Globule 2

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Carretti, Ettore; Bhat, Ramesh; Robishaw, Timothy; Crutcher, Richard; Vaillancourt, John

    2014-04-01

    We propose to measure the magnetic field in the Southern Coalsack using the Zeeman effect in OH at 1665 and 1667 MHz. This is motivated by (1) the measurement of a large magnetic field (B~90 uG) in the Coalsack region from optical and near infrared polarimetry and (2) a very low magnetic field (B~1 uG) measured ~30' from the cloud edge using pulsar Faraday rotation measurements. While the derived field strength in the cloud is significantly larger than usually seen in the interstellar medium, the existence of an X-ray emitting envelope around the cloud that contains significant amounts of O VI ions puts the magnetic pressure at approximate equipartition with the thermal pressure of such gas. A chain of observational results indicate that the Coalsack might be a unique, nearby example of externally triggered star formation. This chain starts with the passage of the Upper Centaurus-Lupus super bubble over the cloud, eventually causing triggered star formation. Probing the high magnetic field strength and providing accurate constraints for the interpretation of the observations of the cloud is therefore of great importance for testing this hypothesis.

  9. Magnetic field induced dynamical chaos

    SciTech Connect

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-15

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  10. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field

    PubMed Central

    Sallen, G.; Kunz, S.; Amand, T.; Bouet, L.; Kuroda, T.; Mano, T.; Paget, D.; Krebs, O.; Marie, X.; Sakoda, K.; Urbaszek, B.

    2014-01-01

    Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain—that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations. PMID:24500329