Science.gov

Sample records for magnetic field optical

  1. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  2. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  3. Fiber-optic magnetic-field imaging.

    PubMed

    Fedotov, I V; Doronina-Amitonova, L V; Sidorov-Biryukov, D A; Safronov, N A; Blakley, S; Levchenko, A O; Zibrov, S A; Fedotov, A B; Kilin, S Ya; Scully, M O; Velichansky, V L; Zheltikov, A M

    2014-12-15

    We demonstrate a scanning fiber-optic probe for magnetic-field imaging where nitrogen-vacancy (NV) centers are coupled to an optical fiber integrated with a two-wire microwave transmission line. The electron spin of NV centers in a diamond microcrystal attached to the tip of the fiber probe is manipulated by a frequency-modulated microwave field and is initialized by laser radiation transmitted through the optical tract of the fiber probe. The two-dimensional profile of the magnetic field is imaged with a high speed and high sensitivity using the photoluminescence spin-readout return from NV centers, captured and delivered by the same optical fiber. PMID:25503039

  4. Simulation of optically pumped intersubband laser in magnetic field

    NASA Astrophysics Data System (ADS)

    Eri?, Marko; Milanovi?, Vitomir; Ikoni?, Zoran; Indjin, Dragan

    2007-06-01

    Simulations of an optically pumped intersubband laser in magnetic field up to 60 T are performed within the steady-state rate equations model. The electron-polar optical phonon scattering is calculated using the confined and interface phonon model. A strong oscillatory optical gain vs. magnetic field dependence is found, with two dominant gain peaks occurring at 20 and 40 T, the fields which bring appropriate states into resonance with optical phonons and thus open additional relaxation paths. The peak at 20 T exceeds the value of gain achieved at zero field.

  5. Measurement of magnetic field using Rayleigh backscattering in optical fibres

    SciTech Connect

    Wuilpart, M.; Caucheteur, C.; Goussarov, A.; Aerssens, M.; Massaut, V.; Megret, P.

    2011-07-01

    In this paper, we investigate the use of optical reflectometry in optical fibres for the measurement of magnetic field. The dedicated application concerns the measurement of plasma current in the fusion reactor. The measurement is based on the rotation of the polarization state of the Rayleigh backscattered signal when an optical pulse is launched in the fibre. Particular care has been undertaken to evaluate the impact of linear birefringence on the measurement performance. (authors)

  6. Magnetic field tunability of optical microfiber taper integrated with ferrofluid.

    PubMed

    Miao, Yinping; Wu, Jixuan; Lin, Wei; Zhang, Kailiang; Yuan, Yujie; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2013-12-01

    Optical microfiber taper has unique propagation properties, which provides versatile waveguide structure to design the tunable photonic devices. In this paper, the S-tapered microfiber is fabricated by using simple fusion spicing. The spectral characteristics of microfiber taper integrated with ferrofluid under different magnetic-field intensities have been theoretically analyzed and experimentally demonstrated. The spectrum are both found to become highly magnetic-field-dependent. The results indicate the transmission and wavelength of the dips are adjustable by changing magnetic field intensity. The response of this device to the magnetic field intensity exhibits a Langvin function. Moreover, there is a linear relationship between the transmission loss and magnetic field intensity for a magnetic field intensity range of 25 to 200Oe, and the sensitivities as high as 0.13056dB/Oe and 0.056nm/Oe have been achieved, respectively. This suggests a potential application of this device as a tunable all-in-fiber photonic device, such as magneto-optic modulator, filter, and sensing element. PMID:24514542

  7. Solar magnetic fields measurements with a magneto-optical filter

    NASA Technical Reports Server (NTRS)

    Cacciani, A.; Ricci, D.; Rosati, P.; Rhodes, E. J.; Smith, E.

    1990-01-01

    The presence of a magnetic field at different levels inside the sun has crucial implications for helioseismology. The solar oscillation observing program carried out since 1983 at Mt. Wilson with Cacciani magneto-optical filter has recently been modified to acquire full-disk magnetograms with 2 arcsec spatial resolution. A method for the correct determination of magnetic maps which are free of contamination by velocity signal is presented. It is shown that no cross-talk exists between the Doppler and Zeeman shifts of the Na D lines, provided that instrumental polarization effects are taken into account. The observed line-of-sight photospheric field was used to map the vector field in the inner corona, above active regions, in the current free approximation.

  8. Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Yangzi; Dong, Xinyong; Chan, Chi Chiu; Shum, Perry Ping; Su, Haibin

    2015-02-01

    A magnetic field sensor is proposed based on the combination of magnetic fluid (MF) and an optical microfiber mode interferometer (MMI). It is measured that the MMI is highly sensitive to ambient refractive index (RI) with a high sensitivity up to 16,539 nm/RIU while RI of the MF is changeable with an external magnetic field strength. By monitoring wavelength shift of transmission spectrum of the MMI, magnetic field measurement is realized with a maximum sensitivity of -293 pm/Oe in the range of 0-220 Oe.

  9. Erbium doped optical fiber lasers for magnetic field sensing

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Baptista, J. M.; Jorge, P. A. S.; Cruz, J. L.; Andrés, M. V.

    2015-09-01

    In this work two erbium doped optical fiber laser configurations for magnetic field measurement are implemented and compared. The first laser is set-up in a loop configuration and requires only a single FBG (Fiber Bragg Grating), acting as mirror. A second laser employs a simpler linear cavity configuration but requires two FBGs with spectral overlap to form the laser cavity. A bulk magnetostrictive material made of Terfenol-D is attached to the laser FBGs enabling modulation of its operation wavelength by the magnetic field. Moreover, a passive interferometer was developed to demodulate the AC magnetic field information where the corresponding demodulation algorithms were software based. Both configurations are tested and compared with the results showing different sensitivities and resolutions. Better performance was accomplished with the double FBGs linear cavity configuration with a resolution of 0.05 mTRMS in the range of 8 to 16 mTRMS. For the same range the loop configuration attained a resolution of 0.48 mTRMS.

  10. Proposal for generating synthetic magnetic fields in hexagonal optical lattices

    NASA Astrophysics Data System (ADS)

    Tian, Binbin; Endres, Manuel; Pekker, David

    2015-05-01

    We propose a new approach to generating synthetic magnetic fields in ultra cold atom systems that does not rely on either Raman transitions nor periodic drive. Instead, we consider a hexagonal optical lattice produced by the intersection of three laser beams at 120 degree angles, where the intensity of one or more of the beams is spatially non-uniform. The resulting optical lattice remains hexagonal, but has spatially varying hopping matrix elements. For atoms near the Dirac points, these spatial variations appear as a gauge field, similar to the fictitious gauge field that is induced for for electrons in strained graphene. We suggest that a robust way to generate a gauge field that corresponds to a uniform flux is to aligning three gaussian beams to intersect in an equilateral triangle. Using realistic experimental parameters, we show how the proposed setup can be used to observe cyclotron motion of an atom cloud - the conventional Hall effect and distinct Landau levels - the integer quantum Hall effect.

  11. Three-dimensional magnetic trap lattice on an atom chip with an optically induced fictitious magnetic field

    SciTech Connect

    Yan Hui

    2010-05-15

    A robust type of three-dimensional magnetic trap lattice on an atom chip combining optically induced fictitious magnetic field with microcurrent-carrying wires is proposed. Compared to the regular optical lattice, the individual trap in this three-dimensional magnetic trap lattice can be easily addressed and manipulated.

  12. Multiple-pulse nuclear magnetic resonance of optically pumped xenon in a low magnetic field

    SciTech Connect

    Raftery, D.; Long, H.W.; Shykind, D.; Grandinetti, P.J.; Pines, A. )

    1994-07-01

    Multiple-pulse coherent averaging methods are used to increase the resolution and frequency range of optically pumped xenon NMR in nutation and point-by-point precession experiments. We observe quadrupolar splittings in [sup 131]Xe spectra due to the macroscopic asymmetry of pumping cells similar to those reported previously, but with reduced demands on magnetic-field homogeneity. Cell treatment with hydrogen gas increases the quadrupolar splittings by a factor of 3 over bare Pyrex cells.

  13. A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber

    SciTech Connect

    Candiani, A.; Argyros, A.; Leon-Saval, S. G.; Lwin, R.; Selleri, S.; Pissadakis, S.

    2014-03-17

    We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

  14. The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well

    NASA Astrophysics Data System (ADS)

    Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. A.

    2015-01-01

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.

  15. All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer.

    PubMed

    Deng, Ming; Huang, Can; Liu, Danhui; Jin, Wei; Zhu, Tao

    2015-08-10

    An ultra-compact optical fiber magnetic field sensor based on a microstructured optical fiber (MOF) modal interference and ferrofluid (FF) has been proposed and experimentally demonstrated. The magnetic field sensor was fabricated by splicing a tapered germanium-doped index guided MOF with six big holes injected with FF to two conventional single-mode fibers. The transmission spectra of the proposed sensor under different magnetic field intensities have been measured and theoretically analyzed. Due to an efficient interaction between the magnetic nanoparticles in FF and the excited cladding mode, the magnetic field sensitivity reaches up to117.9pm/mT with a linear range from 0mT to 30mT. Moreover, the fabrication process of the proposed sensor is simple, easy and cost-effective. Therefore, it will be a promising candidate for military, aviation industry, and biomedical applications, especially, for the applications where the space is limited. PMID:26367919

  16. Development of optical modulators for measurements of solar magnetic fields

    NASA Technical Reports Server (NTRS)

    West, E. A.; Smith, J. E.

    1987-01-01

    The measurement of polarized light allows solar astronomers to infer the magnetic field on the Sun. The accuracy of these measurements is dependent on the stable retardation characteristics of the polarization modulators used to minimize the atmospheric effects seen in ground-based observations. This report describes the work by the Space Science Laboratory at Marshall Space Flight Center to improve two types of polarization modulators. As a result, the timing characteristics for both electrooptic crystals (KD*Ps) and liquid crystal devices (LCDs) have been studied and will be used to enhance the capabilities of the MSFC Vector Magnetograph.

  17. Magnetic field visualization of magnetic minerals and grain boundary regions using magneto-optical imaging

    E-print Network

    Podladchikov, Yuri

    Magnetic field visualization of magnetic minerals and grain boundary regions using magneto to characterize magnetic minerals embedded in a nonmagnetic matrix. We have studied magnetite grains and magnetite-magnetite grain boundary regions in samples of skarns and serpentinites. Distributions of the remanent magnetic

  18. Optical response of nematic droplets in a polymer matrix to a strong pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Parshin, A. M.; Barannik, A. V.

    2009-12-01

    A change in the optical transmission of an ordered single-layer ensemble of nematic liquid crystal (NLC) droplets of 4- n-pentyl-4'-cyanobiphenyl (5CB) in a poly(vinyl butyral) (PVB) matrix in response to a magnetic field pulse with an amplitude of H = 9 × 106 A/m was observed. Since the leading pulse front duration (?onH = 5 ms) significantly exceeded the theoretically calculated NLC response time (?onLC = 0.8 ms), the dynamics of transformations of the NLC director orientation and the optical response were analogous to those in the case of a stationary or slowly varying magnetic field. In contrast, the field decay time (?offH = 25 ms) was much shorter than the NLC relaxation time (?offLC = 300 ms) and, hence, the trailing front of the optical response was not influenced by the oscillatory character of the magnetic field decay during capacitor discharge via an RL chain.

  19. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna.

    PubMed

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H; Pagliano, Francesco; Fiore, Andrea; Schuck, P James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-01-01

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the "campanile tip", a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions. PMID:26045401

  20. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    PubMed Central

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-01-01

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions. PMID:26045401

  1. Optical Photometry of BY Cam Modeled Using a Multipolar Magnetic Field Structure

    NASA Astrophysics Data System (ADS)

    Morales, John; Mason, P. A.; Zhilkin, A.; Bisikalo, D. V.; Robinson, E. L.

    2014-01-01

    We present new high-speed broad-band optical photometry of the asynchronous polar (magnetic cataclysmic variable) BY Cam. Observations were obtained at the 2.1-m Otto Struve Telescope of McDonald observatory with 3s integration times. In an attempt to understand the complex changes in accretion flow geometry, we performed full 3D MHD simulations assuming a variety of white dwarf magnetic field structures including both aligned and non-aligned dipole plus quadrupole field components. We compare model predictions with photometry and various phases of the beat cycle and find that synthetic light curves derived from a multipolar field structure are consistent with the optical photometry.

  2. Optical multichannel room temperature magnetic field imaging system for clinical application

    PubMed Central

    Lembke, G.; Erné, S. N.; Nowak, H.; Menhorn, B.; Pasquarelli, A.

    2014-01-01

    Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820

  3. Magneto-optic imaging: Normal and parallel field components of in-plane magnetized samples

    NASA Astrophysics Data System (ADS)

    Ferrari, H.; Bekeris, V.; Thibeault, M.; Johansen, T. H.

    2007-06-01

    Magneto-optical (MO) imaging has become a powerful tool for determining magnetic properties of materials by detecting the stray magnetic fields. The technique consists in measuring the Faraday rotation, ?F, in the light polarization plane when light travels through a transparent sensitive garnet (ferrite garnet film, FGF) placed in close contact to the sample. For in-plane magnetized samples, the MO image is not trivially related to the sample magnetization, and to contribute to this understanding we have imaged commercial audio tapes in which computer-generated functions were recorded. We present MO images of periodically in-plane magnetized tapes with square, sawtooth, triangular and sinusoidal waveforms, for which we analytically calculate the perpendicular and parallel stray magnetic field components generated by the tape. As a first approach we correlate the measured light intensity with the perpendicular magnetic field component at the FGF, and we show that it can be approximated to the gradient of the sample magnetization. A more detailed calculation, taking into account the effect of both field components in the Faraday rotation, is presented and satisfactorily compared with the obtained MO images. The presence of magnetic domains in the garnet is shown to be related to the change in sign of the parallel component of the stray magnetic field, which can be approximated to the second derivative of the sample magnetization.

  4. Optical pumping magnetic resonance in high magnetic fields: Characterization of nuclear relaxation during pumping

    E-print Network

    Augustine, Mathew P.

    - monly to describe the well known nuclear Overhauser effect.4 In this manner we obtain expressions that relate the 129 Xe polarization to the available incident laser power. Nuclear magnetic resonance NMROptical pumping magnetic resonance in high magnetic fields: Characterization of nuclear relaxation

  5. Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field

    E-print Network

    Sladkov, Maksym; Chaubal, A U; Reuter, D; Wieck, A D; van der Wal, C H

    2010-01-01

    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with, and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film.

  6. Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field

    E-print Network

    Maksym Sladkov; M. P. Bakker; A. U. Chaubal; D. Reuter; A. D. Wieck; C. H. van der Wal

    2010-10-09

    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with, and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film.

  7. Intrinsic magnetic field sensitivities of sensor head housing for all-fiber optic current sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Xuedian; Chang, Min; Mao, Chenfei; Lu, Dunke; Kamagara, Abel

    2014-10-01

    Full-fiber optical current sensors utilize the effects of magnetic-field imposed on the change of polarization azimuth of light in the fibers. Due to the sensitivities to external perturbations, the sensing fiber head in practical applications is usually packed in a fixed metallic housing majorly for protection purposes. However, the housing material itself tends to influence the magnetic field distributions of the current carrying wire in question. In this paper, the intrinsic effect and influence of fiber sensor head housing made of different magnetic materials on the magnetic field distributions around the current-carrying wire have been investigated. Simulation and virtual experimentation was carried out in the COMSOL environment. From the results, the housings made of single magnetic material are found to have magnetic disturbances on the magnetic field distribution around the wire. Housing made of some alloy materials has no influence on the magnetic distributions outside the wire. After experimenting with several materials, the former materials inclusive, steel is preferred as the protective housing and/or casing of fiber sensor head in optical fiber current sensors. This is on the basis of both technical and non-technical consideration of low cost of material though biased toward technical aspect of little or no influence on magnetic distribution around the wire.

  8. Observations of magnetic field induced contraction of fission yeast cells using optical projection microscopy

    E-print Network

    Xi Yang; Andrew Beckwith

    2004-09-02

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of schizosacchraoymces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase sensitive projection image technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro - optical response from fission yeast cells.

  9. A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud

    SciTech Connect

    Mao, S. A.; Gaensler, B. M.; Stanimirovic, S.; Haverkorn, M.; McClure-Griffiths, N. M.; Staveley-Smith, L.; Dickey, J. M.

    2008-12-01

    We present a study of the magnetic field of the Small Magellanic Cloud (SMC), carried out using radio Faraday rotation and optical starlight polarization data. Consistent negative rotation measures (RMs) across the SMC indicate that the line-of-sight magnetic field is directed uniformly away from us with a strength 0.19 {+-} 0.06 {mu}G. Applying the Chandrasekhar-Fermi method to starlight polarization data yields an ordered magnetic field in the plane of the sky of strength 1.6 {+-} 0.4 {mu}G oriented at a position angle 4deg {+-} 12deg , measured counterclockwise from the great circle on the sky joining the SMC to the Large Magellanic Cloud (LMC). We construct a three-dimensional magnetic field model of the SMC, under the assumption that the RMs and starlight polarization probe the same underlying large-scale field. The vector defining the overall orientation of the SMC magnetic field shows a potential alignment with the vector joining the center of the SMC to the center of the LMC, suggesting the possibility of a 'pan-Magellanic' magnetic field. A cosmic-ray-driven dynamo is the most viable explanation of the observed field geometry, but has difficulties accounting for the observed unidirectional field lines. A study of Faraday rotation through the Magellanic Bridge is needed to further test the pan-Magellanic field hypothesis.

  10. Magnetic field control of the intraband optical absorption in two-dimensional quantum rings

    SciTech Connect

    Olendski, O.; Barakat, T.

    2014-02-28

    Linear and nonlinear optical absorption coefficients of the two-dimensional semiconductor ring in the perpendicular magnetic field B are calculated within independent electron approximation. Characteristic feature of the energy spectrum are crossings of the levels with adjacent nonpositive magnetic quantum numbers as the intensity B changes. It is shown that the absorption coefficient of the associated optical transition is drastically decreased at the fields corresponding to the crossing. Proposed model of the Volcano disc allows to get simple mathematical analytical results, which provide clear physical interpretation. An interplay between positive linear and intensity-dependent negative cubic absorption coefficients is discussed; in particular, critical light intensity at which additional resonances appear in the total absorption dependence on the light frequency is calculated as a function of the magnetic field and levels' broadening.

  11. Effects of shape and magnetic field on the optical properties of wurtzite quantum rods

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.; Xia, J. B.

    2005-11-01

    The optical properties of quantum rods in the absence and presence of the magnetic field are studied in the framework of effective-mass envelope function theory. The two-dimensional (2D) and 1D transition dipoles of wurtzite quantum rods are investigated. It is found that the transition dipoles change from 2D to 1D as the aspect ratio of the ellipsoid increases, in agreement with the experimental results. The linear polarization factors of optical transitions of quantum rods with critical aspect ratio are zero at every orientation of the wave propagation. So quantum rods with critical aspect ratio have isotropic transition dipoles. Due to the 2D or 1D transition dipoles, the linear polarization factors of optical transitions of quantum rods change from negative or positive values to zero as the orientation of the wave propagation changes from the x axis of the crystal structure to the z axis, in agreement with the experimental results. Under magnetic field applied along the z axis of the crystal structure, the negative linear polarization factors in the 2D transition dipole case decrease as the magnetic field increases, while under magnetic field applied along the x axis, the negative linear polarization factors increase as the magnetic field increases. The antisymmetric Hamiltonian is very important to these effects of the magnetic field. It is found that quantum rods with a given radius at a given temperature have dark excitons in a range of aspect ratio. The dimensions along the x , y axes of the crystal structure play opposite roles to the dimension along the z axis on the dark exciton phenomenon. Dark excitons become bright under appropriate magnetic field.

  12. All-Fiber Optical Magnetic Field Sensor Based on Faraday Rotation

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-06-18

    An all-fiber optical magnetic field sensor with a sensitivity of 0.49 rad/T is demonstrated. It consists of a fiber Faraday rotator (56-wt.%-terbium–doped silica fiber) and a fiber polarizer (Corning SP1060 fiber).

  13. Magnetic Fields

    E-print Network

    Schöller, Markus

    2015-01-01

    In this chapter, we give a brief introduction into the use of the Zeeman effect in astronomy and the general detection of magnetic fields in stars, concentrating on the use of FORS2 for longitudinal magnetic field measurements.

  14. Far-field head-media optical interaction in heat-assisted magnetic recording

    E-print Network

    Yang, Ruoxi; Klemmer, Timothy; Olson, Heidi; Zhang, Deming; Perry, Tyler; Yin, Huaqing; Hipwell, Roger; Thiele, Jan-Ulrich; Tang, Huan; Seigler, Mike

    2015-01-01

    We have used a plane-wave expansion method to theoretically study the far-field head-media optical interaction in HAMR. For the ASTC media stack specifically, we notice the outstanding sensitivity related to interlayer's optical thickness for media reflection and magnetic layer's light absorption. With 10-nm interlayer thickness change, the recording layer absorption can be changed by more than 25%. The 2-D results are found to correlate well with full 3-D model and magnetic recording tests on flyable disc with different interlayer thickness.

  15. Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields

    SciTech Connect

    Pustelny, S.; Gawlik, W.; Rochester, S. M.; Kimball, D. F. Jackson; Yashchuk, V. V.; Budker, D.

    2006-12-15

    Larmor precession of laser-polarized atoms contained in antirelaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR), is a promising technique for a new generation of ultrasensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency or amplitude modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. Additional NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method of achieving additional information about a direction of the magnetic field.

  16. Mirror magneto-optical trap exploiting hexapole-compensated magnetic field

    SciTech Connect

    Hyodo, Masaharu; Nakayama, Kazuyuki; Watanabe, Masayoshi; Ohmukai, Ryuzo

    2007-07-15

    A mirror magneto-optical trap (MOT) that exploits a hexapole-compensated magnetic field was developed and used in the experimental surface trapping of neutral atoms. A pair of subsidiary wires, which was placed near the main current-carrying wire, was designed to improve the uniformity of the quadrupole magnetic field and thus increased the effective capture volume of our mirror-MOT. In the experiment, the number of {sup 87}Rb atoms captured with our mirror-MOT was approximately twice that captured with a conventional mirror-MOT.

  17. Optical Absorption and Magnetic Field Effect Based Imaging of Transient Radicals.

    PubMed

    Beardmore, Joshua P; Antill, Lewis M; Woodward, Jonathan R

    2015-07-13

    Short-lived radicals generated in the photoexcitation of flavin adenine dinucleotide (FAD) in aqueous solution at low pH are detected with high sensitivity and spatial resolution using a newly developed transient optical absorption detection (TOAD) imaging microscope. Radicals can be studied under both flash photolysis and continuous irradiation conditions, providing a means of directly probing potential biological magnetoreception within sub-cellular structures. Direct spatial imaging of magnetic field effects (MFEs) by magnetic intensity modulation (MIM) imaging is demonstrated along with transfer and inversion of the magnetic field sensitivity of the flavin semiquinone radical concentration to that of the ground state of the flavin under strongly pumped reaction cycling conditions. A low field effect (LFE) on the flavin semiquinone-adenine radical pair is resolved for the first time, with important implications for biological magnetoreception through the radical pair mechanism. PMID:26037331

  18. Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation

    SciTech Connect

    Ledbetter, M. P.; Acosta, V. M.; Rochester, S. M.; Budker, D.; Pustelny, S.; Yashchuk, V. V.

    2007-02-15

    We describe a room-temperature alkali-metal atomic magnetometer for detection of small, high-frequency magnetic fields. The magnetometer operates by detecting optical rotation due to the precession of an aligned ground state in the presence of a small oscillating magnetic field. The resonance frequency of the magnetometer can be adjusted to any desired value by tuning the bias magnetic field. Based on experimentally measured signal-to-noise ratio, we demonstrate a sensitivity of 100 pG/{radical}(Hz) (rms) in a 3.5-cm-diameter paraffin coated cell. Assuming detection at the photon shot-noise limit, we project a sensitivity as low as 25 pG/{radical}(Hz) (rms)

  19. Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection

    NASA Technical Reports Server (NTRS)

    Gurecki, Jay; Scully, Robert; Davis, Allen; Kirkendall, Clay; Bucholtz, Frank

    2011-01-01

    A fiber-optic sensor system is designed to measure magnetic fields associated with a lightning stroke. Field vector magnitudes are detected and processed for multiple locations. Since physical limitations prevent the sensor elements from being located in close proximity to highly conductive materials such as aluminum, the copper wire sensor elements (3) are located inside a 4-cubic-in. (.66-cubic-cm) plastic housing sensor head and connected to a fiber-optic conversion module by shielded cabling, which is limited to the shortest length feasible. The signal path between the conversion module and the avionics unit which processes the signals are fiber optic, providing enhanced immunity from electromagnetic radiation incident in the vicinity of the measurements. The sensors are passive, lightweight, and much smaller than commercial B-dot sensors in the configuration which measures a three-dimensional magnetic field. The system is expandable, and provides a standard-format output signal for downstream processing. Inside of the sensor head, three small search coils, each having a few turns on a circular form, are mounted orthogonally inside the non-metallic housing. The fiber-optic conversion module comprises three interferometers, one for each search coil. Each interferometer has a high bandwidth optical phase modulator that impresses the signal received from its search coil onto its output. The output of each interferometer travels by fiber optic cable to the avionics unit, and the search coil signal is recovered by an optical phase demodulator. The output of each demodulator is fed to an analog-to-digital converter, whose sampling rate is determined by the maximum expected rate of rise and peak signal magnitude. The output of the digital processor is a faithful reproduction of the coil response to the incident magnetic field. This information is provided in a standard output format on a 50-ohm port that can be connected to any number of data collection and processing instruments and/or systems. The measurement of magnetic fields using fiber-optic signal processing is novel because it eliminates limitations of a traditional B-dot system. These limitations include the distance from the sensor to the measurement device, the potential for the signal to degrade or be corrupted by EMI from lightning, and the size and weight of the sensor and associated plate.

  20. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    NASA Astrophysics Data System (ADS)

    Syed, Wasif; Blesener, Isaac; Hammer, David A.; Lipson, Michal

    2009-01-01

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas especially for their ultimate application to stockpile stewardship and inertial confinement fusion. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (multicomponent terbium borate glass) placed adjacent to, or within, the wire array in 1 MA experiments. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as ˜2 T inside a wire-array for ˜40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor that can be used to corroborate magnetic probes, with which we compare our results.

  1. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    SciTech Connect

    Syed, Wasif; Blesener, Isaac; Hammer, David A.; Lipson, Michal

    2009-01-21

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas especially for their ultimate application to stockpile stewardship and inertial confinement fusion. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (multicomponent terbium borate glass) placed adjacent to, or within, the wire array in 1 MA experiments. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as {approx}2 T inside a wire-array for {approx}40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor that can be used to corroborate magnetic probes, with which we compare our results.

  2. A New Optical Polarization Catalog for the Small Magellanic Cloud: The Magnetic Field Structure

    E-print Network

    Gomes, Aiara Lobo; Pereyra, Antonio; Rodrigues, Cláudia Vilega

    2015-01-01

    We present a new optical polarimetric catalog for the Small Magellanic Cloud (SMC). It contains a total of 7207 stars, located in the Northeast (NE) and Wing sections of the SMC and part of the Magellanic Bridge. This new catalog is a significant improvement compared to previous polarimetric catalogs for the SMC. We used it to study the sky-projected interstellar magnetic field structure of the SMC. Three trends were observed for the ordered magnetic field direction at position angles of $(65 \\pm 10)$ deg, $(115 \\pm 10)$ deg, and $(150 \\pm 10)$ deg. Our results suggest the existence of an ordered magnetic field aligned with the Magellanic Bridge direction and SMC's Bar in the NE region, which have position angles roughly at $115.4$ deg and $45$ deg, respectively. However, the overall magnetic field structure is fairly complex. The trends at $115$ deg and $150$ deg may be correlated with the SMC's bimodal structure, observed in Cepheids' distances and HI velocities. We derived a value of $B_{sky} = (0.947 \\pm ...

  3. Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid.

    PubMed

    Deng, Ming; Sun, Xiaokang; Han, Meng; Li, Decai

    2013-02-01

    We report a magnetic-field sensor by merging the advantages of optical fiber Michelson interferometers with that of magnetic fluid. Compact and low-cost optical fiber Michelson interferometers were first fabricated by a high-frequency CO(2) laser, and then they were inserted into glass capillaries with water-based Fe(3)O(4) magnetic fluid as sensing elements. The sensing characteristics have been investigated and the experimental results show that the reflective spectrum of the fiber-magnetic sensor linearly shifted with the change of the magnetic-field strength that is perpendicular to the axial of the devices. The fiber-magnetic sensor with interference arm's diameter of 50 ?m is most sensitive to the external magnetic field, and the sensitivity is up to 64.9 pm/mT, which is 20 times higher than that of 125 ?m diameter. PMID:23385914

  4. Theory of terahertz/near-infrared optical mixing in quantum wells in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Inoshita, Takeshi; Kono, Junichiro; Sakaki, Hiroyuki

    1998-02-01

    Recently, strong near-band-gap emission lines, or sidebands, were discovered in undoped GaAs quantum wells illuminated simultaneously by near-infrared and terahertz (THz) radiation in strong magnetic fields [J. Kono et al., Phys. Rev. Lett. 79, 1758 (1997) and references therein]. We have developed a perturbation theory for this phenomenon. Assuming that the THz radiation induces transitions between magnetoexciton levels, we modeled the sideband generation as a third-order optical process and obtained the susceptibility. Our theory successfully explains all the observed features of the sidebands. Moreover, we have shown that the magnetic-field dependence of the sideband intensities exhibits a rich spectrum of resonances that originate from intraexciton transitions, demonstrating the power and usefulness of sideband generation in relation to magnetoexciton spectroscopy.

  5. Control of Optical Transitions with Magnetic Fields in Weakly Bound Molecules.

    PubMed

    McGuyer, B H; McDonald, M; Iwata, G Z; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2015-07-31

    In weakly bound diatomic molecules, energy levels are closely spaced and thus more susceptible to mixing by magnetic fields than in the constituent atoms. We use this effect to control the strengths of forbidden optical transitions in (88)Sr2 over 5 orders of magnitude with modest fields by taking advantage of the intercombination-line threshold. The physics behind this remarkable tunability is accurately explained with both a simple model and quantum chemistry calculations, and suggests new possibilities for molecular clocks. We show how mixed quantization in an optical lattice can simplify molecular spectroscopy. Furthermore, our observation of formerly inaccessible f-parity excited states offers an avenue for improving theoretical models of divalent-atom dimers. PMID:26274416

  6. Control of Optical Transitions with Magnetic Fields in Weakly Bound Molecules

    NASA Astrophysics Data System (ADS)

    McGuyer, B. H.; McDonald, M.; Iwata, G. Z.; Skomorowski, W.; Moszynski, R.; Zelevinsky, T.

    2015-07-01

    In weakly bound diatomic molecules, energy levels are closely spaced and thus more susceptible to mixing by magnetic fields than in the constituent atoms. We use this effect to control the strengths of forbidden optical transitions in 88Sr2 over 5 orders of magnitude with modest fields by taking advantage of the intercombination-line threshold. The physics behind this remarkable tunability is accurately explained with both a simple model and quantum chemistry calculations, and suggests new possibilities for molecular clocks. We show how mixed quantization in an optical lattice can simplify molecular spectroscopy. Furthermore, our observation of formerly inaccessible f -parity excited states offers an avenue for improving theoretical models of divalent-atom dimers.

  7. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.

    PubMed

    Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham

    2015-01-01

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972

  8. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor

    PubMed Central

    Dennis, John Ojur; Ahmad, Farooq; Khir, M. Haris Bin Md; Hamid, Nor Hisham Bin

    2015-01-01

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972

  9. Magnetic-Optical Filter

    E-print Network

    I. Formicola; A. Longobardo; C. Pinto; P. Cerulo

    2007-02-01

    Magnetic-Optical Filter (MOF) is an instrument suited for high precision spectral measurements for its peculiar characteristics. It is employed in Astronomy and in the field of the telecommunications (it is called FADOF there). In this brief paper we summarize its fundamental structure and functioning.

  10. High-frequency and high-field optically detected magnetic resonance of nitrogen-vacancy centers in diamond

    E-print Network

    Viktor Stepanov; Franklin H. Cho; Chathuranga Abeywardana; Susumu Takahashi

    2015-02-11

    We present the development of an optically detected magnetic resonance (ODMR) system, which enables us to perform the ODMR measurements of a single defect in solids at high frequencies and high magnetic fields. Using the high-frequency and high-field ODMR system, we demonstrate 115 GHz continuous-wave and pulsed ODMR measurements of a single nitrogen-vacancy (NV) center in a diamond crystal at the magnetic field of 4.2 Tesla as well as investigation of field dependence ($0-8$ Tesla) of the longitudinal relaxation time ($T_1$) of NV centers in nanodiamonds.

  11. Fiber optic sensing of magnetic fields utilizing femtosecond laser sculpted microslots and long period gratings coated with Terfenol-D

    NASA Astrophysics Data System (ADS)

    Lee, Graham C. B.; Allsop, Tom; Wang, Changle; Neal, Ron; Culverhouse, Philip; Webb, David J.

    2015-09-01

    Fiber optic sensors are fabricated for detecting static magnetic fields. The sensors consist of a UV inscribed long period grating with two 50 micron long microslots. The microslots are fabricated using the femtosecond laser based inscribe and etch technique. The microslots and the fiber surface are coated with a magnetostrictive material Terfenol-D. A spectral sensitivity of 1.15 pm/mT was measured in transmission with a working resolution of ±0.2 mT for a static magnetic field strength below 10 mT. These devices also present a different response when the spatial orientation of the fiber was adjusted relative to the magnetic field lines.

  12. Constraints on primordial magnetic fields from the optical depth of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Kunze, Kerstin E.; Komatsu, Eiichiro

    2015-06-01

    Damping of magnetic fields via ambipolar diffusion and decay of magnetohydrodynamical (MHD) turbulence in the post decoupling era heats the intergalactic medium (IGM). Delayed recombination of hydrogen atoms in the IGM yields an optical depth to scattering of the cosmic microwave background (CMB). The optical depth generated at z gg 10 does not affect the ``reionization bump'' of the CMB polarization power spectrum at low multipoles, but affects the temperature and polarization power spectra at high multipoles. Writing the present-day energy density of fields smoothed over the damping scale at the decoupling epoch as ?B,0=B02/2, we constrain B0 as a function of the spectral index, nB. Using the Planck 2013 likelihood code that uses the Planck temperature and lensing data together with the WMAP 9-year polarization data, we find the 95% upper bounds of B0<0.63, 0.39, and 0.18 nG for nB=?2.9, ?2.5, and ?1.5, respectively. For these spectral indices, the optical depth is dominated by dissipation of the decaying MHD turbulence that occurs shortly after the decoupling epoch. Our limits are stronger than the previous limits ignoring the effects of the fields on ionization history. Inverse Compton scattering of CMB photons off electrons in the heated IGM distorts the thermal spectrum of CMB. Our limits on B0 imply that the y-type distortion from dissipation of fields in the post decoupling era should be smaller than 10?9, 4×10?9, and 10?9, respectively.

  13. Optical response of magnetic fluorescent microspheres used for force spectroscopy in the evanescent field.

    PubMed

    Bijamov, Alex; Shubitidze, Fridon; Oliver, Piercen M; Vezenov, Dmitri V

    2010-07-20

    Force spectroscopy based on magnetic tweezers is a powerful technique for manipulating single biomolecules and studying their interactions. The resolution in magnetic probe displacement, however, needs to be commensurate with molecular sizes. To achieve the desirable sensitivity in tracking displacements of the magnetic probe, some recent approaches have combined magnetic tweezers with total internal reflection fluorescence microscopy. In this situation, a typical force probe is a polymer microsphere containing two types of optically active components: a pure absorber (magnetic nanoparticles for providing the pulling force) and a luminophore (semiconducting nanoparticles or organic dyes for fluorescent imaging). To assess the system's capability fully with regard to tracking the position of the force probe with subnanometer accuracy, we developed a body-of-revolution formulation of the method of auxiliary sources (BOR-MAS) to simulate the absorption, scattering, and fluorescence of microscopic spheres in an evanescent electromagnetic field. The theoretical formulation uses the axial symmetry of the system to reduce the dimensionality of the modeling problem and produces excellent agreement with the reported experimental data on forward scattering intensity. Using the BOR-MAS numerical model, we investigated the probe detection sensitivity for a high numerical aperture objective. The analysis of both backscattering and fluorescence observation modes shows that the total intensity of the bead image decays exponentially with the distance from the surface (or the length of a biomolecule). Our investigations demonstrate that the decay lengths of observable optical power are smaller than the penetration depth of the unperturbed excitation evanescent wave. In addition, our numerical modeling results illustrate that the expected sensitivity for the decay length changes with the angle of incidence, tracking the theoretical penetration depth for a two-media model, and is sensitive to the bead size. The BOR-MAS methodology developed in this work for near-field modeling of bead-tracking experiments fully describes the fundamental photonic response of microscopic BOR probes at the subwavelength level and can be used for future improvements in the design of these probes or in the setup of bead-tracking experiments. PMID:20486724

  14. Study of nanosecond pulsed magnetic fields using temporally resolved Faraday rotation through a magneto-optical waveguide.

    PubMed

    Syed, Wasif; Hammer, David A; Lipson, Michal

    2009-04-01

    We have measured magnetic fields up to 17.7 T with a rise time of 75 ns using temporally resolved Faraday rotation of a single longitudinal mode laser beam through a magneto-optically active bulk waveguide. We believe this to be the first time that such large, rapidly varying magnetic fields have been measured with this class of materials (multicomponent terbium borate glass). As there was no measurable lag between the magnetic field inferred from the angle of rotation of the laser beam and the electromagnetically measured field, our sample of terbium borate glass has a spin-lattice relaxation time of a few tens of nanoseconds at most at approximately room temperature (300 K). The highest peak magnetic fields were measured in wire-array Z-pinch experiments on a 0.5 MA pulsed power machine. PMID:19340202

  15. Formation and focusing of electron beams in an electron-optical system with a plasma emitter placed in a magnetic field

    NASA Astrophysics Data System (ADS)

    Kornilov, S. Yu.; Rempe, N. G.

    2012-02-01

    The configuration and strength of a magnetic field are calculated in the regions of electron generation, acceleration, and transport in the electron-optical system of the plasma electron source. A magnetic field necessary for discharge initiation and maintenance is generated with a permanent magnet placed in a discharge chamber. It is shown that the magnetic field strength and configuration in these regions can be considerably varied by appropriately choosing the materials of electrodes forming the magnetic circuit. It is found that the beam focusing can be significantly improved by producing a quasi-uniform magnetic field in the electron-optical system of the plasma electron source.

  16. Magnetic field effects on mitochondrion-activity-related optical properties in slime mold and bone forming cells.

    PubMed

    Mizukawa, Yuri; Iwasaka, Masakazu

    2013-01-01

    In the present study, a cellular level response of Cyto-aa3 oxidation was investigated in real time under both time-varying and strong static magnetic fields of 5 T. Two kinds of cells, a slime mold, Physarum polycephalum, and bone forming cells, MC-3T3-E1, were used for the experiments. The oxidation level of the Cyto-aa3 was calculated by optical absorptions at 690 nm, 780 nm and 830 nm. The sample, fiber-optics and an additional optical fiber for light stimulation were set in a solenoidal coil or the bore of a 5-T superconducting magnet. The solenoidal coil for time-varying magnetic fields produced sinusoidal magnetic fields of 6 mT. The slime mold showed a periodic change in Cyto-aa3 oxidation, and the oxidation-reduction cycle of Cyto-aa3 was apparently changed when visible-light irradiated the slime mold. Similarly to the case with light, time-varying magnetic stimulations changed the oxidation-reduction cycle during and after the stimulation for 10 minutes. The same phenomena were observed in the MC-3T3-E1 cell assembly, although their cycle rhythm was comparatively random. Finally, magnetic field exposure of up to 5 T exhibited a distinct suppression of Cyto-aa3 oscillation in the bone forming cells. Exposure up to 5 T was repeated five times, and the change in Cyto-aa3 oxidation reproducibly occurred. PMID:24109969

  17. Ultrafast nonlinear optical response of Fano resonances in gallium arsenide under high magnetic field

    SciTech Connect

    Siegner, U.; Mycek, M.A.; Chemla, D.S. |

    1994-05-01

    Fano interference results from the coupling between a discrete energy level and a continuum of states whose energies overlap. In the linear absorption spectrum, a Fano resonance manifests itself in an asymmetric lineshape with a minimum at the energy where the contributions of the discrete state and the continuum interfere destructively. Using femtosecond spectroscopy, the authors study for the first time, the dynamics of the coherent emission from Fano resonances and compare it to that from an isolated Lorentzian line. They find that despite the very narrow frequency lineshape, the coupling to the continuum induces an almost instantaneous nonlinear optical response. Experiments are carried out in bulk GaAs, where an applied magnetic field leads to the formation of discrete magneto-exciton states. The higher-order magneto-excitons energetically overlap with the 1-dimensional continua of states with k parallel to the field and Fano resonances are formed. The zero field absorption spectrum of the sample shows that the heavy hole (hh) and light hole (lh) exciton resonances are split due to uniaxial strain. The typical Fano lineshape is clearly observed both for hh and lh magneto-excitons at B = 10T. The temporal behavior of the polarization stimulated from Fano and Lorentzian resonances is studied by transient four-wave-mixing (FWM) experiments with co-circularly polarized 100-fs pulses.

  18. PHYSICAL REVIEW A 88, 043847 (2013) Effective magnetic field for photons based on the magneto-optical effect

    E-print Network

    Fan, Shanhui

    2013-01-01

    PHYSICAL REVIEW A 88, 043847 (2013) Effective magnetic field for photons based on the magneto for photons in photonic crystal resonator lattices using the magneto-optical effect. The inter between the nearest-neighbor photonic crystal resonators acquire a direction-dependent phase

  19. Progress on the magnetic field-assisted finishing of MEMS micropore x-ray optics

    NASA Astrophysics Data System (ADS)

    Riveros, Raul E.; Tan, Michael A.; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Ishizu, Kensuke; Moriyama, Teppei; Ogawa, Tomohiro; Ezoe, Yuichiro; Horade, Mitsuhiro; Sugiyama, Susumu; Kanamori, Yoshiaki; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2011-09-01

    Microelectromechanical systems (MEMS) micropore X-ray optics were proposed as an ultralightweight, high- resolution, and low cost X-ray focusing optic alternative to the large, heavy and expensive optic systems in use today. The optic's monolithic design which includes high-aspect-ratio curvilinear micropores with minimal sidewall roughness is challenging to fabricate. When made by either deep reactive ion etching or X-ray LIGA, the micropore sidewalls (re ecting surfaces) exhibit unacceptably high surface roughness. A magnetic eld-assisted nishing (MAF) process was proposed to reduce the micropore sidewall roughness of MEMS micropore optics and improvements in roughness have been reported. At this point, the best surface roughness achieved is 3 nm Rq on nickel optics and 0.2 nm Rq on silicon optics. These improvements bring MEMS micropore optics closer to their realization as functional X-ray optics. This paper details the manufacturing and post-processing of MEMS micropore X-ray optics including results of recent polishing experiments with MAF.

  20. All-Fiber Optical Magnetic-Field Sensor Based on Faraday Rotation in Highly Terbium-Doped Fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-03-03

    An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium–doped silicate fiber with a Verdet constant of –24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

  1. Differential twin receiving fiber-optic magnetic field and electric current sensor utilizing a microfiber coupler.

    PubMed

    Yan, Shao-cheng; Chen, Ye; Li, Cai; Xu, Fei; Lu, Yan-qing

    2015-04-01

    A magnetic field and electric current meter is proposed based on a differential twin receiving microfiber coupler (MC) sensor. The sensor is fabricated by bonding a MC and an aluminium (Al) wire together. With the small diameter of several micrometers, the output power at each port of the coupler shows high sensitivity to the distortion of Al wire from the Lorentz force induced by the magnetic field or the thermal expansion caused by the electric current. The ratio of the difference to the sum of the output signals from the two output ports can be used to eliminate the variation in the sensitivity. Using our proposed sensor, we measured a magnetic field sensitivity of ~0.0496 mT(-1), current sensitivity of ~1.0899 A(-1) without any magnetic field, and good repeatability are also shown in this paper. PMID:25968771

  2. Influence of magnetic-field inhomogeneity on nonlinear magneto-optical resonances

    SciTech Connect

    Pustelny, S.; Jackson Kimball, D. F.; Rochester, S. M.; Yashchuk, V. V.; Budker, D.

    2006-12-15

    In this work, a sensitivity of the rate of relaxation of ground-state atomic coherences to magnetic-field inhomogeneities is studied. Such coherences give rise to many interesting phenomena in light-atom interactions, and their lifetimes are a limiting factor for achieving better sensitivity, resolution, or contrast in many applications. For atoms contained in a vapor cell, some of the coherence-relaxation mechanisms are related to magnetic-field inhomogeneities. We present a simple model describing relaxation due to such inhomogeneities in a buffer-gas-free antirelaxation-coated cell. A relation is given between relaxation rate and magnetic-field inhomogeneities including the dependence on cell size and atomic species. Experimental results, which confirm predictions of the model, are presented. Different regimes, in which the relaxation rate is equally sensitive to the gradients in any direction and in which it is insensitive to gradients transverse to the bias magnetic field, are predicted and demonstrated experimentally.

  3. Optical soliton in dielectric fibers and self-organization of turbulence in plasmas in magnetic fields

    PubMed Central

    Hasegawa, Akira

    2009-01-01

    One important discovery in the twentieth century physics is the natural formation of a coherent or a well-ordered structure in continuous media, in contrary to degradation of the state as predicted earlier from the second law of thermodynamics. Here nonlinearity plays the essential role in its process. The discovery of soliton, a localized stable wave in a nonlinear and dispersive medium and the self-organization of fluid turbulence are of the major examples. A soliton is formed primarily in one-dimensional medium where the dispersion and nonlinearity play the essential role. Here the temporal evolution can be described by an infinite dimensional Hamiltonian system that is integrable. While a self-organization appears in an infinite dimensional non-Hamiltonian (or dissipative) system where more than two conservative quantities exist in the limit of no dissipation. In this manuscript, by showing examples of the optical soliton in dielectric fibers and self-organization of turbulence in a toroidal plasma in a magnetic field, we demonstrate these interesting discoveries. The manuscript is intended to describe these discoveries more on philosophical basis with some sacrifice on mathematical details so that the idea is conveyed to those in the wide area of sciences. PMID:19145067

  4. Nonlinear optical properties of GaAs pyramidal quantum dots: Effects of elliptically polarized radiation, impurity, and magnetic applied fields

    NASA Astrophysics Data System (ADS)

    Niculescu, E. C.; Bejan, D.

    2015-11-01

    The effects of the magnetic field and impurity position on the electronic states and nonlinear light absorption in a GaAs pyramidal quantum dot are investigated. The calculations were performed by using the total optical susceptibility for an incident light elliptically polarized along the pyramid growth axis. We proved that: (i) the optical susceptibility can be considerably modified by moving the impurity along the pyramid height; (ii) the enhancement of the magnetic field blueshifts the transition energies and increases the magnitude of the absorption coefficient; (iii) the light dispersion and absorption, as well as the group velocity can be controlled by changing the light intensity and its ellipticity parameter, without supplementary geometrical manipulations.

  5. Optically pumped quantum Mx-MR magnetometer with high oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Ding, Zhi-Chao; Yuan, Jie; Wang, Zhi-Guo; Yang, Kai-Yong; Luo, Hui

    2015-08-01

    A dip of the transverse component of the magnetic moment as a function of resonance frequency-detuning will emerge when the intensity of oscillating magnetic field exceeds a specific value, which is demonstrated theoretically and experimentally. The linewidth of magnetic-resonance signal can be much smaller than when the Mx-MR magnetometer operates on condition that the intensity of oscillating magnetic field is smaller than this specific value, and the Mx-MR magnetometer can possess a much higher signal-to-noise ratio. The experimental result shows that the sensitivity of Mx-MR magnetometer can be improved by an order of magnitude under this condition. Project supported by the National Natural Science Foundation of China (Grant No. 61475192) and the Science Research Program of National University of Defense Technology, China (Grant No. JC140702).

  6. Optical spectroscopy of single-walled carbon nanotubes in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Zaric, Sasa

    Magnetic flux threading a single-walled carbon nanotube (SWNT) is predicted to influence its electronic structure through the Aharonov-Bohm (AB) effect, causing bandgap oscillations and absorption peaks splitting. In order to verify these predictions, near infrared (NIR) photoluminescence (PL) and visible-NIR absorption in the Voigt geometry were measured at room temperature in external magnetic field (B) up to 74 T. The used aqueous surfactant solubilized SWNT samples show excitonic interband absorption peaks coming from a range of nanotube chiralities present in the sample. At fields B > 30 T, PL peaks showed red shifts and changes in peak widths. Magneto-PL spectra were successfully simulated, demonstrating that the observed spectral changes can be understood in terms of magnetic alignment of SWNTs (due to their predicted anisotropy magnetic properties) and B dependent changes of the bandgap due to the AB effect. By using the measured B-induced nanotube alignment and the measured average length of nanotubes in the sample, we estimated SWNT magnetic anisotropy to be 1.4 x 10-5 emu/mol, consistent with theoretical predictions. At B > 55 T, clear absorption peak splittings were observed, with splitting rates of 1 meV/T in good agreement with theoretical predictions. Recent theory predicts a dark singlet exciton state (below the only bright singlet state) which brightens as B is applied. Our observation of two bright excitons at high B demonstrates that magnetic field is indeed capable of brightening dark excitons.

  7. Tuning light matter interaction in magnetic nanofluid based field induced photonic crystal-glass structure by controlling optical path length

    E-print Network

    Junaid M. Laskar; Baldev Raj; John Philip

    2015-09-04

    The ability to control the light matter interaction and simultaneous tuning of both structural order and disorder in materials, although are important in photonics, but still remain as major challenges. In this paper, we show that optical path length dictates light-matter interaction in the same crystal structure formed by the ordering of magnetic nanoparticle self-assembled columns inside magnetic nanofluid under applied field. When the optical path length (L=80 {\\mu}m) is shorter than the optical (for wavelength, {\\lambda}=632.8 nm) coherence length inside the magnetic nanofluid under applied field, a Debye diffraction ring pattern is observed; while for longer path length (L=1mm), a corona ring of scattered light is observed. Analysis of Debye diffraction ring pattern suggests the formation of 3D hexagonal crystal structure, where the longitudinal and lateral inter-column spacings are 5.281 and 7.344 microns, respectively. Observation of speckles within the Debye diffraction pattern confirms the presence of certain degree of structural disorder within the crystal structure, which can be tuned by controlling the applied field strength, nanoparticle size and particle volume fraction. Our results provide a new approach to develop next generation of tunable photonic devices, based on simultaneous harnessing of the properties of disordered photonic glass and 3D photonic crystal.

  8. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  9. Pairing and Vortex Lattices for Interacting Fermions in Optical Lattices with a Large Magnetic Field

    SciTech Connect

    Zhai Hui; Umucalilar, R. O.; Oktel, M. Oe.

    2010-04-09

    We study the structure of a pairing order parameter for spin-1/2 fermions with attractive interactions in a square lattice under a uniform magnetic field. Because the magnetic translation symmetry gives a unique degeneracy in the single-particle spectrum, the pair wave function has both zero and finite-momentum components coexisting, and their relative phases are determined by a self-consistent mean-field theory. We present a microscopic calculation that can determine the vortex lattice structure in the superfluid phase for different flux densities. Phase transition from a Hofstadter insulator to a superfluid phase is also discussed.

  10. Fractal diabolo antenna for enhancing and confining the optical magnetic field

    SciTech Connect

    Yang, Y.; Dai, H. T.; Sun, X. W.

    2014-01-15

    We introduce fractal geometry to diabolo nanoantenna for higher magnetic field intensity enhancement, i.e. the Sierpi?ski triangle diabolo antenna (STDA). Numerical results show that higher iteration of the STDA is responsible for the higher enhancement and the red shift of the resonant wavelength. Further investigation demonstrates the enhancement can be improved by increasing the length of the antenna or its central strip. By designing diabolo antennas with fractal geometry, improving the magnetic field intensity enhancement and varying the resonance conditions can be achieved while keeping the constant antenna dimensions.

  11. Enhanced laser cooling and state preparation in an optical lattice with a magnetic field D. L. Haycock, S. E. Hamann, G. Klose, G. Raithel,* and P. S. Jessen

    E-print Network

    Jessen, Poul S.

    Enhanced laser cooling and state preparation in an optical lattice with a magnetic field D. L significantly enhance laser cooling and state preparation of Cs atoms in a one-dimensional optical lattice dipole force potentials, commonly known as ``optical lattices'' 1 , are a powerful means of trapping at

  12. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics

    SciTech Connect

    Riveros, Raul E.; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3{+-}2.5nmrms to 5.7{+-}0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  13. Optical properties of plasmons in a multiple quantum well semiconductor superlattice under electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Soo Ahn, Hyung; Chil Lee, Sang; Whan Kim, Suck

    2014-10-01

    The behavior of multiple quantum well GaAs/AlxGa1-xAs semiconductor superlattices with different dielectric interfaces are considered under magnetic and electric fields perpendicular and parallel to the superlattice axis, respectively. The parabolic confining potential well was varied with the compositional rate of the AlxGa1-xAs barrier. Taking into account intrasubband and intersubband transitions and using random phase approximation, the density-density correlation function is calculated as a function of the magnetic field strength, compositional rate, and averaged electric field strength over the quantum well. In this way, the dispersion of the surface and bulk state energies are obtained. The Raman intensities for these states are also obtained as a function of incoming light energy for various averaged electric field strengths over the quantum well.

  14. Field-dependent magneto-optical Kerr effect spectroscopy applied to the magnetic component diagnosis of a rubrene/Ni system.

    PubMed

    Li, Wen; Fronk, Michael; Albrecht, Manfred; Franke, Mechthild; Zahn, Dietrich R T; Salvan, Georgeta

    2014-07-28

    Polar magneto-optical Kerr effect (MOKE) spectroscopy in the energy range from 1.75 eV to 5 eV at different magnetic field strength was applied to study Ni nanostructures formed on rubrene nanoislands. The magnetic hysteresis curves measured by MOKE change the shape depending on the photon energy and therefore deviate from those measured by superconducting quantum interference device (SQUID) magnetometry. Similar optical effects were previously observed in inorganic heterostructures. Our observations show that it correlates to the change in lineshape of the MOKE rotation and ellipticity spectra as a function of magnetic field strength. We show that this spectral dependence on magnetic field can be exploited to separate the contributions of two magnetic components to the magneto-optical spectra and hysteresis. The proposed model does not require the a priori knowledge of the (magneto-)optical constants of the heterostructure and its components. PMID:25089464

  15. Analyze and experiment on AC magnetic field's effect to fiber optic gyroscopes in compact stabilization control systems

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Mao, Yao; Tian, Jing; Li, Zhijun

    2015-10-01

    Fiber optic gyroscopes (FOG) are getting more and more attention in areas such as stabilization control systems as they are all solid state and have a wide bandwidth. In stabilization systems that require wide bandwidth control, motors are usually used as actuating mechanism for active disturbance restrain. Voice coil motors (VCMs) are usually used in compact stabilization systems that require large torque and fast response. However, AC magnetic field, which can affect the output of FOG due to Faraday effect, will be generated during operation of VCMs. The frequency range affected by the AC magnetic field to the FOG's output is the same as VCMs drive signal frequency range, which is also exactly the stabilization system's working range. Therefore the effect of the AC magnetic field to FOGs must be evaluated to verify the feasibility of a stable system design that uses both FOGs and VCMs. In this article, the basic structure and operating principle of stabilization system is introduced. The influence of AC magnetic field to FOG is theoretically analyzed. The magnetic field generated by VCMs is numerically simulated based on the theory deduction of the magnetic field near energized wires. To verify the influence of the VCM generated magnetic field to the FOGs in practical designs, a simplified random fiber coil model is built for it's hard to accurately test the exact polarize axis's twisting rate in a fiber coil. The influence to the FOG's output of different random coil model is simulated and the result shows a same trend that the influence of the VCM's magnetic field to the FOG is reduced as the distance between the VCM and the FOG increasing. The influence of a VCM to a FOG with the same parameters is experimentally tested. In the Fourier transformed FOG data the same frequency point as the VCM drive signal frequency can be read. The result fit simulated result that as the distance increases, the influence decreases. The amplitude of the frequency point is just above the average noise spectrum amplitude of the tested FOG and that indicates the influence of the particular VCM's AC magnetic field to the FOG's output is negligible in this design. The feasibility of the future design can also be tested in the same way as the article introduced.

  16. Optical visualisation of the flow around a cylinder in electrolyte under strong axial magnetic field.

    NASA Astrophysics Data System (ADS)

    Andreev, O.; Kobzev, A.; Kolesnikov, Yu.; Thess, A.

    Flows around obstacles are among the most common problems encountered in the fluid mechanics literature, and cylindrical obstacles definitely received the most extensive attention. The reason for this is that this relatively simple geometry already encompasses most of the important physical effects likely to play a role in flow around more complicated obstacles. This means that understanding the cylinder problem provides relevant insight on a wide variety of problem ranging from aerodynamics, with the flow around a wing or a vehicle, to pollutant dispersion around building, flows in turbines … When the working fluid conducts electricity additional effects are involved. In particular, the presence of a magnetic field tends to homogenise the flow in the direction of the magnetic field lines which leads to strong alterations of the flow patterns known from the classical nonconducting case. This configuration is also a very generic one as Magnetohydrodynamic flows around obstacle also occur in a wide variety of applications: for instance, the space vehicle re-entry problem features the flow of a conducting plasma around an obstacle: [1] and [2] have shown that it could be influenced by a strong magnetic field in order to reduce heat transfer. The cooling blanket of the future nuclear fusion reactor ITER soon to be built in France, features a complex flow of liquid metal in a very high magnetic field (typically 10 T), in which the occurrence of obstacles cannot be avoided.

  17. Tuning light matter interaction in magnetic nanofluid based field induced photonic crystal-glass structure by controlling optical path length

    E-print Network

    Laskar, Junaid M; Philip, John

    2015-01-01

    The ability to control the light matter interaction and simultaneous tuning of both structural order and disorder in materials, although are important in photonics, but still remain as major challenges. In this paper, we show that optical path length dictates light-matter interaction in the same crystal structure formed by the ordering of magnetic nanoparticle self-assembled columns inside magnetic nanofluid under applied field. When the optical path length (L=80 {\\mu}m) is shorter than the optical (for wavelength, {\\lambda}=632.8 nm) coherence length inside the magnetic nanofluid under applied field, a Debye diffraction ring pattern is observed; while for longer path length (L=1mm), a corona ring of scattered light is observed. Analysis of Debye diffraction ring pattern suggests the formation of 3D hexagonal crystal structure, where the longitudinal and lateral inter-column spacings are 5.281 and 7.344 microns, respectively. Observation of speckles within the Debye diffraction pattern confirms the presence o...

  18. Imaging of the magnetic field structure in megagauss plasmas by combining pulsed polarimetry with an optical Kerr effect shutter technique

    SciTech Connect

    Smith, R. J.

    2010-10-15

    Pulsed polarimetry in combination with a high speed photographic technique based on the optical Kerr effect is described. The backscatter in a pulsed polarimeter is directed through a scattering cell and photographed using an {approx}1 ps shutter, essentially freezing the intensity pattern. The image provides both the local electron density and magnetic field distributions along and transverse to the laser sightline. Submillimeter spatial resolution is possible for probing wavelengths in the visible due to the high densities and strong optical activity. Pulsed polarimetry is thereby extended to centimeter-sized plasmas with n{sub e}>10{sup 19}-10{sup 20} cm{sup -3} and B>20-100 T (MG) produced by multiterawatt, multimega-ampere electrical drivers, wire Z pinches, and liner imploded magnetized plasmas.

  19. Nonlinear optical rectification and second-harmonic generation in a semi-parabolic quantum well under intense laser field: Effects of electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Kasapoglu, E.; Duque, C. A.

    2015-05-01

    The effects of electric and magnetic fields on the nonlinear optical rectification and second harmonic generation coefficients related with intersubband transitions in a semi-parabolic quantum well under intense laser field are theoretically studied. The energy levels and corresponding wave functions are obtained by solving the conduction band Schrödinger-like equation in the parabolic approximation and the envelope function approach. Numerical calculations are presented for a typical GaAs/Ga1-xAlxAs quantum well. The results show that both the non-resonant intense laser field and the static external fields have significant influences on the magnitude and resonant peak energy positions of the coefficients under study.

  20. Optically Detected Magnetic Resonance Imaging

    E-print Network

    Blank, Aharon; Fischer, Ran; London, Paz; Gershoni, David

    2014-01-01

    Optically detected magnetic resonance (ODMR) provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging (MRI) techniques. Here, we demonstrate for the first time how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially-encode the sample. This results in what we denote as an "optically detected magnetic resonance imaging" (ODMRI) technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially-selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importan...

  1. Phase dependence of optical bistability and multistability in graphene nanostructure under external magnetic field

    NASA Astrophysics Data System (ADS)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H.

    2016-01-01

    In this letter, the phase control of optical bistability and multistability in a ring cavity doped with a four-level graphene nanostructure in infrared regions are discussed. Due to the unusual dispersion relation in graphene nanoribbons, electrons can lead to an exceptionally strong optical response in the infrared and terahertz regions. We show that by adjusting the intensities and relative phase of infrared laser fields, the threshold intensity and hysteresis loop can be manipulated efficiently. The effect of the electronic cooperation parameter, which is directly proportional to the electron concentration and the length of the graphene sample, is also discussed. Our proposed model may be useful for the next generation of all-optical systems and information processing in nanoscale devices.

  2. Optical detection of nanoparticle agglomeration in a living system under the influence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Müller, Robert; Stranik, Ondrej; Schlenk, Florian; Werner, Sebastian; Malsch, Daniéll; Fischer, Dagmar; Fritzsche, Wolfgang

    2015-04-01

    Nanoparticles are important in diagnosis and therapy. In order to apply their potential, an understanding of the behavior of particles in the body is crucial. However, in vitro experiments usually do not mimic the dynamic conditions of the in vivo situation. The aim of our work was an in vivo observation of particle transport in chicken egg vessels in the presence of a magnetic field by particle tracking. For that we demonstrate the spatial resolution of our observations in a vein and a temporal resolution by observation of the cardiac cycle in an artery. Microscopic images were recorded in dark field reflection and fluorescence mode.

  3. Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential

    NASA Astrophysics Data System (ADS)

    Mandal, Arkajit; Sarkar, Sucharita; Ghosh, Arghya Pratim; Ghosh, Manas

    2015-12-01

    We make an extensive investigation of total optical absorption coefficient (TOAC) of impurity doped quantum dots (QDs) in presence and absence of Gaussian white noise. The TOAC profiles have been monitored against incident photon energy with special emphasis on the roles played by the electric field, magnetic field, and the dot confinement potential. Presence of impurity also influences the TOAC profile. In general, presence of noise causes enhancement of TOAC over that of noise-free condition. However, the interplay between the noise and the quantities like electric field, magnetic field, confinement potential and impurity potential bring about rich subtleties in the TOAC profiles. The said subtleties are often manifested by the alterations in TOAC peak intensity, extent of TOAC peak bleaching, and value of saturation intensity. The findings reveal some technologically relevant aspects of TOAC for the doped QD systems, specially in presence of noise.

  4. Magneto-optical absorption spectra and self-similarity of GaAs-(Ga,Al)As quasiperiodic Fibonacci superlattices under in-plane magnetic fields

    NASA Astrophysics Data System (ADS)

    Bruno-Alfonso, A.; Oliveira, L. E.; de Dios-Leyva, M.

    1995-07-01

    A theoretical study of the effects of in-plane magnetic fields on the interband optical absorption spectra of quasiperiodic GaAs-(Ga,Al)As Fibonacci superlattices is presented within the effective-mass approximation. The electron-envelope wave functions and magnetic subbands are obtained by an expansion in harmonic-oscillator wave functions. The theoretical optical absorption spectra are calculated for magnetic fields related by integer powers of the golden mean ?=(1+?5)/2. It is unambiguously shown that, for magnetic-field values scaled by ?2n, the corresponding optical absorption spectra essentially exhibit a self-similar behavior, with the width of the peaks increasing linearly with the field, in agreement with the experimental results by D. Toet, M. Potemski, Y. Y. Wang, J. C. Maan, L. Tapter, and K. Ploog [Phys. Rev. Lett. 66, 2128 (1991)].

  5. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  6. Magneto-optic visualization of magnetic field microdistributions: principles and applications for NDT of smart structures and materials

    NASA Astrophysics Data System (ADS)

    Korpusov, O. M.; Grechishkin, R. M.; Breczko, T.; Goosev, M. Y.; Neustroev, N. S.

    2003-10-01

    Bi-substituted ferrite garnet (R Bi)3(M FE)5O12 epitaxial films with anomalously high (up to 1.2 deg/?m at RT) specific Faraday rotation provide a unique possibility of magneto-optical imaging of magnetic field microdistributions with a sub-micron resolution close to the diffraction limit. In the present work we give a detailed description of the physical principles and various applications of such films in materials science, microelectronics, magnetic testing and nondestructive evaluation (NDE) of defects in both ferromagnetic and non-ferrous metal components. In the latter case eddy-current excitation is used to reveal flaws, cracks and corrosion. The technique is ideal for not only detailed inspections, but also for rapid scanning over large areas to quickly determine structural condition of the part.

  7. Quantum magnetism of spinor bosons in optical lattices with synthetic non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2015-10-01

    We study quantum magnetism of interacting spinor bosons at integer fillings hopping in a square lattice in the presence of non-Abelian gauge fields. In the strong-coupling limit, this leads to the rotated ferromagnetic Heisenberg model, which is a new class of quantum spin model. We introduce Wilson loops to characterize frustrations and gauge equivalent classes. For a special equivalent class, we identify a spin-orbital entangled commensurate ground state. It supports not only commensurate magnons, but also a gapped elementary excitation: incommensurate magnons with two gap minima continuously tuned by the spin-orbit coupling (SOC) strength. At low temperatures, these magnons lead to dramatic effects in many physical quantities such as density of states, specific heat, magnetization, uniform susceptibility, staggered susceptibility, and various spin-correlation functions. The commensurate magnons lead to a pinned central peak in the angle-resolved light or atom Bragg spectroscopy. However, the incommensurate magnons split it into two located at their two gap minima. At high temperatures, the transverse spin-structure factors depend on the SOC strength explicitly. The whole set of Wilson loops can be mapped out by measuring the specific heat at the corresponding orders in the high-temperature expansion. We argue that one gauge may be realized in current experiments and other gauges may also be realized in future experiments. The results achieved along the exact solvable line sets up the stage to investigate dramatic effects when tuning away from it by various means. We sketch the crucial roles to be played by these magnons at other equivalent classes, with spin anisotropic interactions and in the presence of finite magnetic fields. Various experimental detections of these phenomena are discussed.

  8. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  9. Magnetic field mapper

    NASA Technical Reports Server (NTRS)

    Masters, R. M.; Stenger, F. J.

    1969-01-01

    Magnetic field mapper locates imperfections in cadmium sulphide solar cells by detecting and displaying the variations of the normal component of the magnetic field resulting from current density variations. It can also inspect for nonuniformities in other electrically conductive materials.

  10. Magnetic hyperbolic optical metamaterials

    E-print Network

    Kruk, Sergey S; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N; Kivshar, Yuri S; Zhang, Xiang

    2015-01-01

    Strongly anisotropic media where the principal components of the electric permittivity and/or magnetic permeability tensor have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wavevectors, and therefore they exhibit unique optical properties. However in all artificial and natural optical structures studied to date the hyperbolic dispersion originates solely from their electric response. This restricts functionality of these materials for only one polarization of light and inhibits impedance matching with free space. Such restrictions can be overcome in media having components of opposite signs in both electric and magnetic tensors. Here we present the first experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure experimentally metamaterial's dispersion and trace the topological transition between the elliptic and hyperbolic regimes. We experimentally demonstrate that due to the uniq...

  11. PHYSICAL REVIEW B 89, 165120 (2014) Magnetic-field-induced shift of the optical band gap in Ni3V2O8

    E-print Network

    2014-01-01

    reveal field-induced blue shifts of the band gap that are much larger than that of the Zeeman effect in the optical properties requires reaching beyond traditional mechanisms like the Zeeman effect to include]. The magnetic field also drives changes in the electronic properties. This effect can be as simple

  12. Magnetic Fields Analogous to electric field, a magnet

    E-print Network

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic characteristic of elementary particles such as an electron #12;Magnetic Fields Magnetic field lines Direction

  13. Resonant peaks of the linear optical absorption and rectification coefficients in GaAs/GaAlAs quantum well: Combined effects of intense laser, electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Ozturk, Emine; Sokmen, Ismail

    2015-11-01

    In this study, the resonant peaks of the linear optical absorption (OA) and rectification coefficients in GaAs/GaAlAs quantum well are calculated as dependent on the applied electric field (F), the magnetic field (B) and the laser field intensity parameter (?0). Our results show that the shape of confined potential profile, the energy levels and the dipole moment matrix elements are changed as dependent on the F, B and ?0. Also, the resonant peaks of the OA and rectification coefficients depend on the applied external field effects. Therefore, the variation of the resonant peaks of these coefficients which can be appropriate for various optical modulators and infrared optical device applications can be smoothly obtained by the alteration electric, magnetic and intense laser field.

  14. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  15. Optical magnetic imaging of living cells

    PubMed Central

    Le Sage, D.; Arai, K.; Glenn, D. R.; DeVience, S. J.; Pham, L. M.; Rahn-Lee, L.; Lukin, M. D.; Yacoby, A.; Komeili, A.; Walsworth, R. L.

    2013-01-01

    Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (e.g., magnetic resonance imaging [MRI]1), or entail operating conditions that preclude application to living biological samples while providing sub-micron resolution (e.g., scanning superconducting quantum interference device [SQUID] microscopy2, electron holography3, and magnetic resonance force microscopy [MRFM]4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nm), using an optically-detected magnetic field imaging array consisting of a nanoscale layer of nitrogen-vacancy (NV) colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the NV quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria, and spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field sCMOS acquisition allows parallel optical and magnetic imaging of multiple cells in a population with sub-micron resolution and >100 micron field-of-view. Scanning electron microscope (SEM) images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. The results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5, 6. PMID:23619694

  16. Magnetic Fields and Plasmas

    SciTech Connect

    Schep, T.J.

    2004-03-15

    Plasmas and magnetic fields are inseparably related in numerous physical circumstances. This is not only the case in natural occurring plasmas like the solar corona and the earth magnetic tail, but also in laboratory plasmas like tokamaks and stellarators.

  17. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    PubMed

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ?100??mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ?30??mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments. PMID:26193403

  18. Magnetic field generator

    DOEpatents

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  19. Ultrafast optical excitation of magnetic skyrmions.

    PubMed

    Ogawa, N; Seki, S; Tokura, Y

    2015-01-01

    Magnetic skyrmions in an insulating chiral magnet Cu2OSeO3 were studied by all-optical spin wave spectroscopy. The spins in the conical and skyrmion phases were excited by the impulsive magnetic field from the inverse-Faraday effect, and resultant spin dynamics were detected by using time-resolved magneto-optics. Clear dispersions of the helimagnon were observed, which is accompanied by a distinct transition into the skyrmion phase, by sweeping temperature and magnetic field. In addition to the collective excitations of skyrmions, i.e., rotation and breathing modes, several spin precession modes were identified, which would be specific to optical excitation. The ultrafast, nonthermal, and local excitation of the spin systems by photons would lead to the efficient manipulation of nano-magnetic structures. PMID:25897634

  20. Two-color magneto-optical trap with small magnetic field for ytterbium

    E-print Network

    Kawasaki, Akio

    We report a two-color magneto-optical trap (MOT) for ytterbium atoms where the slowing and trapping functions are separately performed by the singlet transition light (6s[superscript 2] [superscript 1]S[subscript 0] ? 6s6p ...

  1. Magnetic Field & Right Hand Rule

    E-print Network

    Heller, Barbara

    Magnetic Field & Right Hand Rule Academic Resource Center #12;Magnetic Fields And Right Hand Rules By: Anthony Ruth #12;Magnetic Fields vs Electric Fields · Magnetic fields are similar to electric charges and stationary charges. · In addition, magnetic fields create a force only on moving charges

  2. The effect of line damping, magneto-optics and parasitic light on the derivation of sunspot vector magnetic fields

    NASA Technical Reports Server (NTRS)

    Skumanich, A.; Lites, B. W.

    1985-01-01

    The least square fitting of Stokes observations of sunspots using a Milne-Eddington-Unno model appears to lead, in many circumstances, to various inconsistencies such as anomalously large doppler widths and, hence, small magnetic fields which are significantly below those inferred solely from the Zeeman splitting in the intensity profile. It is found that the introduction of additional physics into the model such as the inclusion of damping wings and magneto-optic birefrigence significantly improves the fit to Stokes parameters. Model fits excluding the intensity profile, i.e., of both magnitude as well as spectral shape of the polarization parameters alone, suggest that parasitic light in the intensity profile may also be a source of inconsistencies. The consequences of the physical changes on the vector properties of the field derived from the Fe I lambda 6173 line for the 17 November 1975 spot as well as on the thermodynamic state are discussed. A Doppler width delta lambda (D) - 25mA is bound to be consistent with a low spot temperature and microturbulence, and a damping constant of a = 0.2.

  3. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  4. Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing.

    PubMed

    Dong, Shaohua; Pu, Shengli; Wang, Haotian

    2014-08-11

    A kind of magnetic field sensor composed of magnetic fluid surrounding a segment of singlemode fiber is proposed. The taper-like and lateral-offset fusion splicing techniques are employed. The sensing principle is based on cladding mode interference. The interference valley wavelength or transmission loss of the sensing structure is sensitive to the external magnetic field, which is utilized for magnetic field sensing. The linear response regions are obtained in the range of 38-225 Oe and 250-475 Oe. For the valley-wavelength-shift-type sensing, the sensitivities are 14.1 pm/Oe and 26 pm/Oe at low and high field ranges, respectively. For the transmission-loss-variation-type sensing, the sensitivity of -0.024 dB/Oe is achieved for the magnetic field strength ranging from 250 to 475 Oe. PMID:25320997

  5. Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature

    SciTech Connect

    Singh, Akhilesh K.; Barik, Puspendu; Ullrich, Bruno E-mail: bruno.ullrich@yahoo.com

    2014-12-15

    We observed changes of the transmitted monochromatic light passing through a colloidal PbS quantum dot film on glass owing to an applied moderate (smaller than 1?T) magnetic field under ambient conditions. The observed alterations show a square dependence on the magnetic field increase that cannot be achieved with bulk semiconductors. The findings point to so far not recognized application potentials of quantum dots.

  6. Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric GaAs /Ga1-xAlx As double inverse parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Al, E. B.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2015-09-01

    The combined effects of electric and magnetic fields on the optical absorption coefficients and refractive index changes related to the intersubband transitions within the conduction band of asymmetric GaAs /Ga1-xAlxAs double inverse parabolic quantum wells are studied using the effective-mass approximation and the compact density-matrix approach. The results are presented as a function of the incident photon energy for the different values of the electromagnetic fields and the structure parameters such as quantum well width and the Al concentration at the well center. It is found that the optical absorption coefficients and the refractive index changes are strongly affected not only by the magnitudes of the electric and magnetic fields but also by the structure parameters of the system.

  7. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  8. Magnetosheath magnetic field variability

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    1994-01-01

    A case study using simulations IRM and CCE observations demonstrates that transient magnetospheric events correspond to pressure pulses in the magnetosheath, inward bow shock motion, and magnetopause compression. Statistical surveys indicate that the magnetosheath magnetic field orientation rarely remains constant during periods of magnetopause and bow shock motion (both characterized by periods of 1 to 10 min). There is no tendency for bow shock motion to occur for southward interplanetary magnetic field (IMF) orientations.

  9. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  10. Molecules in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana

    2015-08-01

    Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.

  11. Note: Fiber optic transport probe for Hall measurements under light and magnetic field at low temperatures: Case study of a two dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Bhadauria, P. P. S.; Gupta, Anurag; Kumar, Pramod; Dogra, Anjana; Budhani, R. C.

    2015-05-01

    A fiber optic based probe is designed and developed for electrical transport measurements in presence of quasi-monochromatic (360-800 nm) light, varying temperature (T = 1.8-300 K), and magnetic field (B = 0-7 T). The probe is tested for the resistivity and Hall measurements performed on a LaAlO3-SrTiO3 heterointerface system with a conducting two dimensional electron gas.

  12. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  13. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  14. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-01

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles. PMID:17812894

  15. Mercury's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.

    2014-12-01

    Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal sources cannot be distinguished from core fields, nor cleanly separated from external fields. I will report on recent data acquired at altitudes as low as 25 km that have the potential to resolve these issues. The presence of remanent crustal fields would have profound implications for Mercury's thermal and dynamical histories.

  16. The induced magnetic field.

    PubMed

    Islas, Rafael; Heine, Thomas; Merino, Gabriel

    2012-02-21

    Aromaticity is indispensable for explaining a variety of chemical behaviors, including reactivity, structural features, relative energetic stabilities, and spectroscopic properties. When interpreted as the spatial delocalization of ?-electrons, it represents the driving force for the stabilization of many planar molecular structures. A delocalized electron system is sensitive to an external magnetic field; it responds with an induced magnetic field having a particularly long range. The shape of the induced magnetic field reflects the size and strength of the system of delocalized electrons and can have a large influence on neighboring molecules. In 2004, we proposed using the induced magnetic field as a means of estimating the degree of electron delocalization and aromaticity in planar as well as in nonplanar molecules. We have since tested the method on aromatic, antiaromatic, and nonaromatic compounds, and a refinement now allows the individual treatment of core-, ?-, and ?-electrons. In this Account, we describe the use of the induced magnetic field as an analytical probe for electron delocalization and its application to a large series of uncommon molecules. The compounds include borazine; all-metal aromatic systems Al(4)(n-); molecular stars Si(5)Li(n)(6-n); electronically stabilized planar tetracoordinate carbon; planar hypercoordinate atoms inside boron wheels; and planar boron wheels with fluxional internal boron cluster moieties. In all cases, we have observed that planar structures show a high degree of electron delocalization in the ?-electrons and, in some examples, also in the ?-framework. Quantitatively, the induced magnetic field has contributions from the entire electronic system of a molecule, but at long range the contributions arising from the delocalized electronic ?-system dominate. The induced magnetic field can only indirectly be confirmed by experiment, for example, through intermolecular contributions to NMR chemical shifts. We show that calculating the induced field is a useful method for understanding any planar organic or inorganic system, as it corresponds to the intuitive Pople model for explaining the anomalous proton chemical shifts in aromatic molecules. Indeed, aromatic, antiaromatic, and nonaromatic molecules show differing responses to an external field; that is, they reduce, augment, or do not affect the external field at long range. The induced field can be dissected into different orbital contributions, in the same way that the nucleus-independent chemical shift or the shielding function can be separated into component contributions. The result is a versatile tool that is particularly useful in the analysis of planar, densely packed systems with strong orbital contributions directly atop individual atoms. PMID:21848282

  17. HMI Magnetic Field Products

    NASA Astrophysics Data System (ADS)

    Hoeksema, Jon T.; HMI Magnetic Field Team

    2013-07-01

    The Helioseismic and Magnetic Imager (HMI) on SDO has measured magnetic field, velocity, and intensity in the photosphere over the full disk continuously since May 2010 with arc-second resolution. Scalar images are measured every 45 seconds. From these basic observables the pipeline automatically identifies and tracks active regions on the solar disk. The vector magnetic field and a variety of summary quantities are determined every 720s in these tracked Space-weather HMI Active Region Patches (SHARPS). Synoptic and synchronic maps are constructed daily and after each Carrington Rotation Most data products are available with definitive scientific calibration after a few day deal at and in a quick-look near-real-time version a few minutes after the observations are made. Uncertainties are determined for the derived products. All of the magnetic field products along with movies and images suitable for browsing are available at http:://Hmi.stanford.edu/magnetic. Other products, e.g. coronal field over active regions, can be computed on demand.

  18. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties.

    PubMed

    Wu, Wenbo; Tang, Runli; Li, Qianqian; Li, Zhen

    2015-06-21

    As one kind of important functional material, those with advanced optical, electrical and magnetic characteristics have attracted increasing attention due to their essential and irreplaceable role in the daily life of humans. In particular, optical, electrical and magnetic hyperbranched polymers (HBPs) exhibit some unique properties, partially derived from their highly branched topological structures. This review summarizes the recent progress in the field of functional HBPs and their application in optics, electronics and magnetics, including light-emitting polymers, nonlinear optical materials, chemosensors, solar cells, magnetic materials, etc., and also gives some outlooks for further exploration in this field at the end of this paper. PMID:25170592

  19. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  20. Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals

    SciTech Connect

    Hamidi, S. M.

    2012-01-15

    In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-optical rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.

  1. Magnetic fields at Uranus

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Connerney, J. E. P.; Lepping, R. P.

    1986-01-01

    The conclusions drawn regarding the structure, behavior and composition of the Uranian magnetic field and magnetosphere as revealed by Voyager 2 data are summarized. The planet had a bipolar magnetotail and a bow shock wave which was observed 23.7 Uranus radii (UR) upstream and a magnetopause at 18.0 UR. The magnetic field observed can be represented by a dipole offset from the planet by 0.3 UR. The field vector and the planetary angular momentum vector formed a 60 deg angle, permitting Uranus to be categorized as an oblique rotator, with auroral zones occurring far from the rotation axis polar zones. The surface magnetic field was estimated to lie between 0.1-1.1 gauss. Both the field and the magnetotail rotated around the planet-sun line in a period of about 17.29 hr. Since the ring system is embedded within the magnetosphere, it is expected that the rings are significant absorbers of radiation belt particles.

  2. Magnetic fields at Uranus

    NASA Astrophysics Data System (ADS)

    Ness, N. F.; Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Connerney, J. E. P.; Lepping, R. P.

    1986-07-01

    The conclusions drawn regarding the structure, behavior and composition of the Uranian magnetic field and magnetosphere as revealed by Voyager 2 data are summarized. The planet had a bipolar magnetotail and a bow shock wave which was observed 23.7 Uranus radii (UR) upstream and a magnetopause at 18.0 UR. The magnetic field observed can be represented by a dipole offset from the planet by 0.3 UR. The field vector and the planetary angular momentum vector formed a 60 deg angle, permitting Uranus to be categorized as an oblique rotator, with auroral zones occurring far from the rotation axis polar zones. The surface magnetic field was estimated to lie between 0.1-1.1 gauss. Both the field and the magnetotail rotated around the planet-sun line in a period of about 17.29 hr. Since the ring system is embedded within the magnetosphere, it is expected that the rings are significant absorbers of radiation belt particles.

  3. Optically reconfigurable magnetic materials

    NASA Astrophysics Data System (ADS)

    Vogel, Marc; Chumak, Andrii V.; Waller, Erik H.; Langner, Thomas; Vasyuchka, Vitaliy I.; Hillebrands, Burkard; von Freymann, Georg

    2015-06-01

    Structuring of materials is the most general approach for controlling waves in solids. As spin waves--eigen-excitations of the electrons' spin system--are free from Joule heating, they are of interest for a range of applications, such as processing, filtering and short-time data storage. Whereas all these applications rely on predefined constant structures, a dynamic variation of the structures would provide additional, novel applications. Here, we present an approach for producing fully tunable, two-dimensionally structured magnetic materials. Using a laser, we create thermal landscapes in a magnetic medium that result in modulations of the saturation magnetization and in the control of spin-wave characteristics. This method is demonstrated by the realization of fully reconfigurable one- and two-dimensional magnonic crystals--artificial periodic magnetic lattices.

  4. Near Field Magneto-Optical Microscope

    DOEpatents

    Vlasko-Vlasov, Vitalii K. (Downers Grove, IL); Welp, Ulrich (Lisle, IL); Crabtree, George W. (Chicago, IL)

    2005-12-06

    A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

  5. Near-Field Magneto-Optical Microscope

    DOEpatents

    Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.

    2005-12-06

    A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

  6. Radial magnetic field in magnetic confinement device

    NASA Astrophysics Data System (ADS)

    Xiong, Hao; Liu, Ming-Hai; Chen, Ming; Rao, Bo; Chen, Jie; Chen, Zhao-Quan; Xiao, Jin-Shui; Hu, Xi-Wei

    2015-09-01

    The intrinsic radial magnetic field (Br) in a tokamak is explored by the solution of the Grad-Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak should possess a three-dimensional magnetic field configuration, which could be reduced to a two-dimensional one when the radial position is greater than 0.6a. The radial magnetic field and the amzimuthal magnetic field have the same order of magnitude at the core of the device. These results can offer a reference for the analysis of the plasma instability, the property of the core plasma, and the magnetic field measurement. Project supported by the Special Domestic Program of ITER, China (Grant No. 2009GB105003).

  7. The influence of external magnetic field on the structural and optical properties of nanocrystalline ZnO thin films prepared by dip coating method

    NASA Astrophysics Data System (ADS)

    AlArfaj, Esam; Subahi, Ahmad

    2015-10-01

    ZnO thin films were prepared by the sol gel dip coating method. Some samples were prepared under a DC magnetic field DC-MF (B); others were done without it. The sol gel was also continuously stirred. The field orientation in each case of deposition was chosen perpendicular as well as parallel to the growing ZnO-film substrate and the film depositions were carried out at a fixed B intensity value. The influences of magnetic field on the structural, morphological, and optical properties of ZnO thin films were investigated. In the perpendicular case, a cubic structure phase was observed at ambient conditions. It is noteworthy that this phase growth is only possible at high pressure deposition. In the parallel case, the films improved the crystal structure without creating a new phase. The structural properties of the ZnO films such as surface morphology and crystallinity were determined using scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively. The optical properties of the ZnO films were characterized by the ultraviolet-visible (UV-Vis) spectroscopy.

  8. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  9. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  10. The Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Jansson, Ronnie; Farrar, Glennys R.

    2012-12-01

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength ?20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  11. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  12. Magnetic nanoparticle motion in external magnetic field

    NASA Astrophysics Data System (ADS)

    Usov, N. A.; Liubimov, B. Ya

    2015-07-01

    A set of equations describing the motion of a free magnetic nanoparticle in an external magnetic field in a vacuum, or in a medium with negligibly small friction forces is postulated. The conservation of the total particle momentum, i.e. the sum of the mechanical and the total spin momentum of the nanoparticle is taken into account explicitly. It is shown that for the motion of a nanoparticle in uniform magnetic field there are three different modes of precession of the unit magnetization vector and the director that is parallel the particle easy anisotropy axis. These modes differ significantly in the precession frequency. For the high-frequency mode the director points approximately along the external magnetic field, whereas the frequency and the characteristic relaxation time of the precession of the unit magnetization vector are close to the corresponding values for conventional ferromagnetic resonance. On the other hand, for the low-frequency modes the unit magnetization vector and the director are nearly parallel and rotate in unison around the external magnetic field. The characteristic relaxation time for the low-frequency modes is remarkably long. This means that in a rare assembly of magnetic nanoparticles there is a possibility of additional resonant absorption of the energy of alternating magnetic field at a frequency that is much smaller compared to conventional ferromagnetic resonance frequency. The scattering of a beam of magnetic nanoparticles in a vacuum in a non-uniform external magnetic field is also considered taking into account the precession of the unit magnetization vector and director.

  13. Physical and optical properties of rare earth cobalt magnets

    SciTech Connect

    Halbach, K.

    1980-08-01

    Rare Earth Cobalt (REC) permanent magnets have unique properties that permit solutions to some optical tasks that cannot be accomplished with conventional magnets. A review of design and of performance characteristics of these magnets includes an analytical description of the three dimensional fringe fields of REC quadrupoles.

  14. Magnetic-field sensor based on tapered all-solid waveguide-array fiber and magnetic fluids

    NASA Astrophysics Data System (ADS)

    Miao, Yinping; Mao, Jia; Wu, Jixuan; Lin, Wei; Song, Binbin; Zhang, Kailiang; Zhang, Hao; Liu, Bo

    2015-09-01

    A compact fiber-optic magnetic-field sensor based on tapered all-solid waveguide-array fiber (WAF) and magnetic fluid (MF) has been proposed and experimentally demonstrated. The transmission spectra of the fiber-optic magnetic field sensor have been measured and analyzed under different magnetic field intensities. Experimental results show that the acquired magnetic field sensitivity is 44.57 pm/Oe for a linear magnetic field intensity range from 50 Oe to 200 Oe. It also indicates that the magnetic field sensor based on tapered all-solid WAF and MF is helpful to reduce temperature cross-sensitivity for the measurement of magnetic field.

  15. Planetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Stevenson, David J.

    2003-03-01

    The past several years have seen dramatic developments in the study of planetary magnetic fields, including a wealth of new data, mainly from the Galilean satellites and Mars, together with major improvements in our theoretical modeling effort of the dynamo process believed responsible for large planetary fields. These dynamos arise from thermal or compositional convection in fluid regions of large radial extent. The relevant electrical conductivities range from metallic values to values that may be only about 1% or less that of a typical metal, appropriate to ionic fluids and semiconductors. In all planets, the Coriolis force is dynamically important, but slow rotation may be more favorable for a dynamo than fast rotation. The maintenance and persistence of convection appears to be easy in gas giants and ice-rich giants, but is not assured in terrestrial planets because the quite high electrical conductivity of iron-rich cores guarantees a high thermal conductivity (through the Wiedemann-Franz law), which allows for a large core heat flow by conduction alone. In this sense, high electrical conductivity is unfavorable for a dynamo in a metallic core. Planetary dynamos mostly appear to operate with an internal field ˜(2 ??/ ?) 1/2 where ? is the fluid density, ? is the planetary rotation rate and ? is the conductivity (SI units). Earth, Ganymede, Jupiter, Saturn, Uranus, Neptune, and maybe Mercury have dynamos, Mars has large remanent magnetism from an ancient dynamo, and the Moon might also require an ancient dynamo. Venus is devoid of a detectable global field but may have had a dynamo in the past. The presence or absence of a dynamo in a terrestrial body (including Ganymede) appears to depend mainly on the thermal histories and energy sources of these bodies, especially the convective state of the silicate mantle and the existence and history of a growing inner solid core. Induced fields observed in Europa and Callisto indicate the strong likelihood of water oceans in these bodies.

  16. Ultrafast optical encoding of magnetic resonance

    NASA Astrophysics Data System (ADS)

    Trease, David; Bajaj, Vikram S.; Paulsen, Jeffrey; Pines, Alexander

    2011-02-01

    Temporal resolution in magnetic resonance imaging (MRI) is limited by the time required to encode the position of spins using time-varying (10-100 ms) magnetic field gradients. Here, we demonstrate spatial encoding of MRI images in a time that is three orders of magnitude shorter than what is possible by conventional gradient encoding techniques. Our method exploits the chemically induced dynamic nuclear polarization (CIDNP) effect and is an initial example of a set of approaches that seek to combine the favorable properties of optical spectroscopy with those of NMR for polarization, encoding, and detection.

  17. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  18. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  19. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  20. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  1. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  2. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  3. Magnetic field therapy: a review.

    PubMed

    Markov, Marko S

    2007-01-01

    There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation. PMID:17454079

  4. What Are Electric and Magnetic Fields? (EMF)

    MedlinePLUS

    ... Print this page Share What are Electric and Magnetic Fields? (EMF) Electric and Magnetic Fields Electricity is an essential part of our ... we take for granted. What are electric and magnetic fields? Electric and magnetic fields (EMF) are invisible ...

  5. Magnetic Propeller for Uniform Magnetic Field Levitation

    E-print Network

    Krinker, Mark

    2008-01-01

    Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

  6. Magnetic Propeller for Uniform Magnetic Field Levitation

    E-print Network

    Mark Krinker; Alexander Bolonkin

    2008-07-12

    Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

  7. Nonlinear magneto-optic polarization rotation with intense laser fields 

    E-print Network

    Hsu, Paul S.; Patnaik, Anil K.; Welch, George R.

    2008-01-01

    We have studied the nonlinear Faraday effect with intense linear polarized light in an optically thick atomic rubidium vapor. We demonstrate that the polarization rotation rate (rotation angle per unit magnetic field, in the limit of low field) has...

  8. Leptogenesis and primordial magnetic fields

    SciTech Connect

    Long, Andrew J.; Sabancilar, Eray; Vachaspati, Tanmay E-mail: eray.sabancilar@asu.edu

    2014-02-01

    The anomalous conversion of leptons into baryons during leptogenesis is shown to produce a right-handed helical magnetic field; in contrast, the magnetic field produced during electroweak baryogenesis is known to be left-handed. If the cosmological medium is turbulent, the magnetic field evolves to have a present day coherence scale ? 10 pc and field strength ? 10{sup ?18} Gauss. This result is insensitive to the energy scale at which leptogenesis took place. Observations of the amplitude, coherence scale, and helicity of the intergalactic magnetic field promise to provide a powerful probe of physics beyond the Standard Model and the very early universe.

  9. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  10. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  11. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  12. Evolution of twisted magnetic fields

    SciTech Connect

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  13. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  14. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  15. Optical Studies of Zero-Field Magnetization of CdMnTe Quantum Dots: Influence of Average Size and Composition of Quantum Dots

    E-print Network

    T. Gurung; S. Mackowski; H. E. Jackson; L. M. Smith; W. Heiss; J. Kossut; G. Karczewski

    2004-08-30

    We show that through the resonant optical excitation of spin-polarized excitons into CdMnTe magnetic quantum dots, we can induce a macroscopic magnetization of the Mn impurities. We observe very broad (4 meV linewidth) emission lines of single dots, which are consistent with the formation of strongly confined exciton magnetic polarons. Therefore we attribute the optically induced magnetization of the magnetic dots results to the formation of spin-polarized exciton magnetic polarons. We find that the photo-induced magnetization of magnetic polarons is weaker for larger dots which emit at lower energies within the QD distribution. We also show that the photo-induced magnetization is stronger for quantum dots with lower Mn concentration, which we ascribe to weaker Mn-Mn interaction between the nearest neighbors within the dots. Due to particular stability of the exciton magnetic polarons in QDs, where the localization of the electrons and holes is comparable to the magnetic exchange interaction, this optically induced spin alignment persists to temperatures as high as 160 K.

  16. Research of optical electric field probe

    NASA Astrophysics Data System (ADS)

    Zhang, Wan; Li, Bin; Chen, Jingyao; Wang, Jifeng; Lu, Guizhen

    2012-10-01

    As an important modern measurement equipment of the electromagnetic field, electric field probe can measure the industrial, scientific and medical aspects of the leakage field. In the Electro Magnetic Compatibility (EMC) experiment, it can also check the high-frequency-sensitive parts of the devices and the parasitic radiations due to the mechanical movement. Especially in the field of Electromagnetic Compatibility, electric field probe is one of the most important test equipment. This paper introduces a type of optical electric field probe. In the system, a kind of antenna, which could provide a response nearly isotropic for all polarizations of the incident field, is used for receiving the signal of the electric field. The high-frequency signal received by the antenna then is detected by Schottky barrier diode detector. This low-frequency or Direct Current (DC) signal can be modulated to the band of light by the Electro-Absorption-Distributed Feed Back (EA-DFB) modulator, thus the probe can provide a wild band responds. Through the optical fiber, the optical signal is sent to the photoelectric detector. Based on the optical power value, the field intensity can be calculated. In this system, compared with traditional transmission line, optical fiber can minimize the electromagnetic interference and transmission-line attenuation. In addition to this, the system also has high test sensitivity and wide measurement bandwidth. Furthermore, the whole system has a simple structure and low manufacturing cost.

  17. Optical/near-infrared polarization survey of Sh 2-29: Magnetic fields, dense cloud fragmentations, and anomalous dust grain sizes

    SciTech Connect

    Santos, Fábio P.; Franco, Gabriel A. P.; Reis, Wilson; Roman-Lopes, Alexandre; Román-Zúñiga, Carlos G. E-mail: franco@fisica.ufmg.br E-mail: roman@dfuls.cl

    2014-03-01

    Sh 2-29 is a conspicuous star-forming region marked by the presence of massive embedded stars as well as several notable interstellar structures. In this research, our goals were to determine the role of magnetic fields and to study the size distribution of interstellar dust particles within this turbulent environment. We have used a set of optical and near-infrared polarimetric data obtained at OPD/LNA (Brazil) and CTIO (Chile), correlated with extinction maps, Two Micron All Sky Survey data, and images from the Digitized Sky Survey and Spitzer. The region's most striking feature is a swept out interstellar cavity whose polarimetric maps indicate that magnetic field lines were dragged outward, piling up along its borders. This led to a higher magnetic strength value (?400 ?G) and an abrupt increase in polarization degree, probably due to an enhancement in alignment efficiency. Furthermore, dense cloud fragmentations with peak A{sub V} between 20 and 37 mag were probably triggered by its expansion. The presence of 24 ?m point-like sources indicates possible newborn stars inside this dense environment. A statistical analysis of the angular dispersion function revealed areas where field lines are aligned in a well-ordered pattern, seemingly due to compression effects from the H II region expansion. Finally, Serkowski function fits were used to study the ratio of the total-to-selective extinction, revealing a dual population of anomalous grain particle sizes. This trend suggests that both effects of coagulation and fragmentation of interstellar grains are present in the region.

  18. Vestibular stimulation by magnetic fields.

    PubMed

    Ward, Bryan K; Roberts, Dale C; Della Santina, Charles C; Carey, John P; Zee, David S

    2015-04-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging studies, these reports have become more common. It was recently learned that humans, mice, and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  19. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  20. Optical measurements of gravity fields

    NASA Technical Reports Server (NTRS)

    Maleki, L.; Yu, N.; Matsko, A.

    2003-01-01

    Optical measurements of a gravitational field with sensitivity close to the sensitivity of atomic devices are possible if one detects properties of light after its interaction with optically thick atomic cloud moving freely in the gravity field. A nondestructive detection of a number of ultracold atoms in a cloud as well as tracking of the ground state population distribution of the atoms is possible by optical means.

  1. Estimation of fluctuating magnetic fields by an atomic magnetometer

    SciTech Connect

    Petersen, Vivi; Moelmer, Klaus

    2006-10-15

    We present a theoretical procedure to estimate with an atomic magnetometer the time dependence of a magnetic field that fluctuates according to an Ornstein-Uhlenbeck process. The magnetometer applies the detected polarization rotation of an optical probe to measure a collective atomic spin, which precesses due to the magnetic field. Based on the noisy optical detection record, our consistent Gaussian update formalism provides an estimator for the magnetic fields, and we identify analytically the steady-state performance of this estimator. We show that the estimate of the current value of the magnetic field is further improved if noisy measurement data obtained also at later times are taken into account.

  2. A high-field 3He metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Collier, G.; Pa?asz, T.; Wojna, A.; G?owacz, B.; Suchanek, M.; Olejniczak, Z.; Dohnalik, T.

    2013-05-01

    After being hyperpolarized using the technique of Metastability Exchange Optical Pumping (MEOP), 3He can be used as a contrast agent for lung magnetic resonance imaging (MRI). MEOP is usually performed at low magnetic field (˜1 mT) and low pressure (˜1 mbar), which results in a low magnetization production rate. Polarization preserving compression with a compression ratio of order 1000 is also required. It was demonstrated in sealed cells that high nuclear polarization values can be obtained at higher pressures with MEOP, if performed at high magnetic field (non-standard conditions). In this work, the feasibility of building a high-field polarizer that operates within a commercial 1.5 T scanner was evaluated. Preliminary measurements of nuclear polarization with sealed cells filled at different 3He gas pressures (1.33 to 267 mbar) were performed. The use of an annular shape for the laser beam increased by 25% the achievable nuclear polarization equilibrium value (Meq) at 32 and 67 mbar as compared to a Gaussian beam shape. Meq values of 66.4% and 31% were obtained at 32 and 267 mbar, respectively, and the magnetization production rate was increased by a factor of 10 compared to the best results obtained under standard conditions. To study the reproducibility of the method in a polarizing system, the same experiments were performed with small cells connected to a gas handling system. Despite careful cleaning procedure, the purity of the 3He gas could not be matched to that of the sealed cells. Consequently, the polarization build-up times were approximately 3 times longer in the 20-30 mbar range of pressure than those obtained for the 32 mbar sealed cell. However, reasonable Meq values of 40%-60% were achieved in a 90 ml open cell. Based on these findings, a novel compact polarizing system was designed and built. Its typical output is a 3He gas flow rate of 15 sccm with a polarization of 33%. In-vivo lung MRI ventilation images (Signal to Noise Ratio (SNR) of approximately 55 for a voxel size of 50 mm × 3 mm × 3 mm) were acquired to demonstrate the polarizer's application.

  3. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  4. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)??G if the energy scale of inflation is few×10(16)??GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

  5. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  6. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  7. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-06-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  8. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  9. Magnetic fields of the W4 superbubble

    NASA Astrophysics Data System (ADS)

    Gao, X. Y.; Reich, W.; Reich, P.; Han, J. L.; Kothes, R.

    2015-06-01

    Context. Superbubbles and supershells are the channels for transferring mass and energy from the Galactic disk to the halo. Magnetic fields are believed to play a vital role in their evolution. Aims: We study the radio continuum and polarized emission properties of the W4 superbubble to determine its magnetic field strength. Methods: New sensitive radio continuum observations were made at ?6 cm, ?11 cm, and ?21 cm. The total intensity measurements were used to derive the radio spectrum of the W4 superbubble. The linear polarization data were analysed to determine the magnetic field properties within the bubble shells. Results: The observations show a multi-shell structure of the W4 superbubble. A flat radio continuum spectrum that stems from optically thin thermal emission is derived from 1.4 GHz to 4.8 GHz. By fitting a passive Faraday screen model and considering the filling factor fne, we obtain the thermal electron density ne = 1,0/??ne (±5%) cm-3 and the strength of the line-of-sight component of the magnetic field B// = 5,0/??ne (±10%) ?G (i.e. pointing away from us) within the western shell of the W4 superbubble. When the known tilted geometry of the W4 superbubble is considered, the total magnetic field Btot in its western shell is greater than 12 ?G. The electron density and the magnetic field are lower and weaker in the high-latitude parts of the superbubble. The rotation measure is found to be positive in the eastern shell but negative in the western shell of the W4 superbubble, which is consistent with the case where the magnetic field in the Perseus arm is lifted up from the plane towards high latitudes. Conclusions: The magnetic field strength and the electron density we derived for the W4 superbubble are important parameters for evolution models of superbubbles breaking out of the Galactic plane.

  10. Excitation of Magnetic Dipole Transitions at Optical Frequencies

    NASA Astrophysics Data System (ADS)

    Kasperczyk, Mark; Person, Steven; Ananias, Duarte; Carlos, Luis D.; Novotny, Lukas

    2015-04-01

    We use the magnetic field distribution of an azimuthally polarized focused laser beam to excite a magnetic dipole transition in Eu3 + ions embedded in a Y2O3 nanoparticle. The absence of the electric field at the focus of an azimuthally polarized beam allows us to unambiguously demonstrate that the nanoparticle is excited by the magnetic dipole transition near 527.5 nm. When the laser wavelength is resonant with the magnetic dipole transition, the nanoparticle maps the local magnetic field distribution, whereas when the laser wavelength is resonant with an electric dipole transition, the nanoparticle is sensitive to the local electric field. Hence, by tuning the excitation wavelength, we can selectively excite magnetic or electric dipole transitions through optical fields.

  11. Excitation of magnetic dipole transitions at optical frequencies.

    PubMed

    Kasperczyk, Mark; Person, Steven; Ananias, Duarte; Carlos, Luis D; Novotny, Lukas

    2015-04-24

    We use the magnetic field distribution of an azimuthally polarized focused laser beam to excite a magnetic dipole transition in Eu^{3+} ions embedded in a Y2O3 nanoparticle. The absence of the electric field at the focus of an azimuthally polarized beam allows us to unambiguously demonstrate that the nanoparticle is excited by the magnetic dipole transition near 527.5 nm. When the laser wavelength is resonant with the magnetic dipole transition, the nanoparticle maps the local magnetic field distribution, whereas when the laser wavelength is resonant with an electric dipole transition, the nanoparticle is sensitive to the local electric field. Hence, by tuning the excitation wavelength, we can selectively excite magnetic or electric dipole transitions through optical fields. PMID:25955052

  12. Estimation of the Influence on the LHC Beam of Parasitic Magnetic Fields Resulting from Magnet Interconnections

    E-print Network

    Völlinger, C

    2008-01-01

    The Large Hadron Collider (LHC) is equipped with 1232 main superconducting dipole magnets, 474 superconducting quadrupole magnets and more than 7400 superconducting corrector magnets that are distributed around the eight sectors of the accelerator. Each of the magnets is powered via superconducting power cables, the so-called main busbars for the main magnets and auxiliary busbars for the corrector magnets. Within the main magnets, the field produced by the superconducting busbars is shielded by the magnet's iron yoke. However, in the numerous magnet interconnections, the busbars are magnetically unshielded with respect to the beam pipes and produce parasitic fields that can affect the beam. Extensive analyses have been carried out in the past to assess the field quality of the individual magnets and its influence on the two counter-rotating beams. However, no detailed evaluation of the influence of the parasitic fields of the main and auxiliary busbars and their effect on beam optics had been performed so fa...

  13. Static magnetic fields enhance turbulence

    E-print Network

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  14. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  15. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  16. Magnetic Field Generation in Stars

    NASA Astrophysics Data System (ADS)

    Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

    2015-10-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.

  17. Gauge field optics with anisotropic media.

    PubMed

    Liu, Fu; Li, Jensen

    2015-03-13

    By considering gauge transformations on the macroscopic Maxwell's equations, a two-dimensional gauge field, with its pseudomagnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that the optical spin Hall effect with broadband response and one-way edge states become possible simply by using anisotropic media. The proposed gauge field also allows us to obtain unidirectional propagation for a particular pseudospin based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices. PMID:25815934

  18. Neutron scattering in magnetic fields

    SciTech Connect

    Koehler, W.C.

    1984-01-01

    The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two general areas of application can be distinguished. In one the field acts to change the properties of the scattering sample; in the second the field acts on the neutron itself. Several examples are discussed. Precautions necessary for high precision polarized beam measurements are reviewed. 33 references.

  19. Reconnection of stressed magnetic fields

    NASA Technical Reports Server (NTRS)

    Hassam, A. B.

    1992-01-01

    It is shown that magnetized plasma configurations under magnetic stress relax irreversibly to the state of minimum stress at a rate that is essentially Alfvenic provided a magnetic null is present. The relaxation is effected by the reconnection at the field null and proceeds at a rate proportional to the absolute value of ln(eta) exp-1, where eta is the resistivity. An analytic calculation in the linear regime is presented.

  20. Light storage in a magnetically-dressed optical lattice

    E-print Network

    Y. O. Dudin; R. Zhao; T. A. B. Kennedy; A. Kuzmich

    2010-04-21

    Differential Stark shift compensation for ground state $^{87}$Rb atoms trapped in an elliptically polarized optical lattice and "magic" magnetic field, was recently proposed and demonstrated experimentally by N. Lundblad {\\it et al.}, arXiv:0912.1528 and analyzed theoretically by A. Derevianko, arXiv:0912.3233. Here we demonstrate for the first time enhanced hyperfine coherence times using the magic field technique. We observe coherent light storage with a 0.32 s lifetime in an atomic Rb gas confined in a one dimensional optical lattice and magnetic field.

  1. The Magnetic Field in Tapia's Globule 2

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Carretti, Ettore; Bhat, Ramesh; Robishaw, Timothy; Crutcher, Richard; Vaillancourt, John

    2014-04-01

    We propose to measure the magnetic field in the Southern Coalsack using the Zeeman effect in OH at 1665 and 1667 MHz. This is motivated by (1) the measurement of a large magnetic field (B~90 uG) in the Coalsack region from optical and near infrared polarimetry and (2) a very low magnetic field (B~1 uG) measured ~30' from the cloud edge using pulsar Faraday rotation measurements. While the derived field strength in the cloud is significantly larger than usually seen in the interstellar medium, the existence of an X-ray emitting envelope around the cloud that contains significant amounts of O VI ions puts the magnetic pressure at approximate equipartition with the thermal pressure of such gas. A chain of observational results indicate that the Coalsack might be a unique, nearby example of externally triggered star formation. This chain starts with the passage of the Upper Centaurus-Lupus super bubble over the cloud, eventually causing triggered star formation. Probing the high magnetic field strength and providing accurate constraints for the interpretation of the observations of the cloud is therefore of great importance for testing this hypothesis.

  2. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  3. June 1, 2001 / Vol. 26, No. 11 / OPTICS LETTERS 849 Origin of magnetic field enhancement in the generation of

    E-print Network

    Heinz, Tony F.

    enhanced by an external B field. The critical fac- tor is the radiation efficiency for current transients is sufficient to explain the strong B-field enhancement in THz radiation that has been observed experimentally. The effect arises primarily from the increased radiation efficiency of transient currents f lowing

  4. Magnetic fields in relativistic collisionless shocks

    SciTech Connect

    Santana, Rodolfo; Kumar, Pawan; Barniol Duran, Rodolfo E-mail: pk@astro.as.utexas.edu

    2014-04-10

    We present a systematic study on magnetic fields in gamma-ray burst (GRB) external forward shocks (FSs). There are 60 (35) GRBs in our X-ray (optical) sample, mostly from Swift. We use two methods to study ? {sub B} (fraction of energy in magnetic field in the FS): (1) for the X-ray sample, we use the constraint that the observed flux at the end of the steep decline is ? X-ray FS flux; (2) for the optical sample, we use the condition that the observed flux arises from the FS (optical sample light curves decline as ?t {sup –1}, as expected for the FS). Making a reasonable assumption on E (jet isotropic equivalent kinetic energy), we converted these conditions into an upper limit (measurement) on ? {sub B} n {sup 2/(p+1)} for our X-ray (optical) sample, where n is the circumburst density and p is the electron index. Taking n = 1 cm{sup –3}, the distribution of ? {sub B} measurements (upper limits) for our optical (X-ray) sample has a range of ?10{sup –8}-10{sup –3} (?10{sup –6}-10{sup –3}) and median of ?few × 10{sup –5} (?few × 10{sup –5}). To characterize how much amplification is needed, beyond shock compression of a seed magnetic field ?10 ?G, we expressed our results in terms of an amplification factor, AF, which is very weakly dependent on n (AF?n {sup 0.21}). The range of AF measurements (upper limits) for our optical (X-ray) sample is ?1-1000 (?10-300) with a median of ?50 (?50). These results suggest that some amplification, in addition to shock compression, is needed to explain the afterglow observations.

  5. Black Holes and Magnetic Fields

    E-print Network

    Filip Hejda; Ji?í Bi?ák

    2015-10-01

    We briefly summarise the basic properties of spacetimes representing rotating, charged black holes in strong axisymmetric magnetic fields. We concentrate on extremal cases, for which the horizon surface gravity vanishes. We investigate their properties by finding simpler spacetimes that exhibit their geometries near degenerate horizons. Employing the simpler geometries obtained by near-horizon limiting description we analyse the Meissner effect of magnetic field expulsion from extremal black holes.

  6. Magnetic fields on the Sun

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1981-01-01

    Synoptic observations of solar magnetic fields are discussed. Seen in long-term averages, the magnetic fields of the Sun show distinctive behavior. The active-region latitudes are characterized by magnetic fields of preceding polarity. The flow of following polarity fields to make up the polar fields is episodic, not continuous. This field motion is a directed poleward flow and is not due to diffusion. The total magnetic flux on the solar surface, which is related linearly to the calcium emission in integrated sunlight, varies from activity minimum to maximum by a factor of 2 or 3. Nearly all this flux is seen at active-region latitudes-only about 1% is at the poles. The total flux of the Sun disappears from the surface at a very rapid rate and is replaced by new flux. All the field and flux patterns that we see originate in active-region latitudes. The polar magnetic fields of the Sun were observed to change polarity recently. The variations of the full-disk solar flux are shown to lead to the proper rotation rate of the Sun, but the phase of the variations is constant for only a year or two at most.

  7. Electro-Optic Field Sensor

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solakiewiez, R. J.

    1997-01-01

    Electrostatic field measurements are fundamental to the study of thunderstorm electrification, thundercloud charge structure, and the determination of the locations and magnitudes of charges deposited by lightning. Such measurements can also be used to warn of impending electrical hazards. In this work effort, we offer an alternate way of detecting atmospheric electric fields. Our approach involves the use of anisotropic electro-optic crystals.

  8. Magnetic field induced dynamical chaos

    SciTech Connect

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-15

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  9. Magnetic field effect on hemin

    NASA Astrophysics Data System (ADS)

    Bartoszek, Mariola; Balanda, Maria; Skrzypek, Danuta; Drzazga, Zofia

    2001-12-01

    Magnetic behaviour of hemin has been investigated by means of magnetostatic methods, AC-susceptibility measurements and EPR spectroscopy. The measurements were made using polycrystalline and oriented samples of hemin in the temperature range 2.3-292 K and in magnetic fields up to 6 T. In the paramagnetic region, the susceptibility obeys the Curie-Weiss law with positive Curie-Weiss temperature. At low temperature, a rapid increase of the susceptibility is noticed but up to 2 K no long-range correlations are observed. The studies show that the iron ion in hemin exists in two spin states ( S= {5}/{2} and {1}/{2}). The applied magnetic field increases the occupation of the low-spin state. Hemin shows high-field-induced magnetic anisotropy which, similar to the susceptibility, increases with decreasing temperature.

  10. A solar magnetic and velocity field measurement system for Spacelab 2: The Solar Optical Universal Polarimeter (SOUP)

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.; Title, Alan M.

    1992-01-01

    The Solar Optical Universal Polarimeter (SOUP) flew on the shuttle mission Spacelab 2 (STS-51F) in August, 1985, and collected historic solar observations. SOUP is the only solar telescope on either a spacecraft or balloon which has delivered long sequences of diffraction-limited images. These movies led to several discoveries about the solar atmosphere which were published in the scientific journals. After Spacelab 2, reflights were planned on the shuttle Sunlab mission, which was cancelled after the Challenger disaster, and on a balloon flights, which were also cancelled for funding reasons. In the meantime, the instrument was used in a productive program of ground-based observing, which collected excellent scientific data and served as instrument tests. Given here is an overview of the history of the SOUP program, the scientific discoveries, and the instrument design and performance.

  11. Magnetic fields in quiescent prominences

    NASA Technical Reports Server (NTRS)

    Van Ballegooijen, A. A.; Martens, P. C. H.

    1990-01-01

    The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.

  12. Development of optical field emitter arrays

    E-print Network

    Yang, Yujia, S.M. Massachusetts Institute of Technology

    2013-01-01

    Optical field emitters are electron emission sources actuated by incident light. Optically actuated field emitters may produce ultrafast pulses of electrons when excited by ultrafast optical pulses, thus making them of ...

  13. Charge and current reservoirs for electric and magnetic field enhancement.

    PubMed

    Wang, Dongxing; Yang, Tian; Crozier, Kenneth B

    2010-05-10

    Two optical antenna designs incorporating structures termed charge and current reservoirs are proposed to realize localized high electric and magnetic field enhancement, respectively. Simulation results show that the fan-rod electric antenna design combines the advantages of the rod antenna and the bowtie antenna, and has higher field enhancement than either. The performance of a loop shaped magnetic antenna consisting of a pair of metallic strips with offsets is also verified numerically, with high magnetic field enhancement being observed in the simulation. In both of the designs, the concepts of charge and current reservoirs contribute to high electric and magnetic field enhancement. PMID:20588894

  14. Optical lattice polarization effects on magnetically induced optical atomic clock transitions

    SciTech Connect

    Taichenachev, A. V.; Yudin, V. I.; Oates, C. W.

    2007-08-15

    We derive the frequency shift for a forbidden optical transition J=0{yields}J{sup '}=0 caused by the simultaneous actions of an elliptically polarized lattice field and a static magnetic field. We find that a simple configuration of lattice and magnetic fields leads to a cancellation of this shift to first order in lattice intensity and magnetic field. In this geometry, the second-order lattice intensity shift can be minimized as well by use of optimal lattice polarization. Suppression of these shifts could considerably enhance the performance of the next generation of atomic clocks.

  15. The magnetic field of Uranus

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.

    1987-01-01

    Aspherical harmonic model of the planetary magnetic field of Uranus is obtained from the Voyager 2 encounter observations using generalized inverse techniques which allow partial solutions to complex (underdetermined) problems. The Goddard Space Flight Center 'Q3' model is characterized by a large dipole tilt (58.6 deg) relative to the rotation axis, a dipole moment of 0.228 G R(Uranus radii cubed) and an unusually large quadrupole moment. Characteristics of this complex model magnetic field are illustrated using contour maps of the field on the planet's surface and discussed in the context of possible dynamo generation in the relatively poorly conducting 'ice' mantle.

  16. Magnetic field fluctuations during substorms

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1971-01-01

    Before a magnetospheric substorm and during its early phases the magnetic field magnitude in the geomagnetic tail increases and field lines in the nighttime hemisphere assume a more tail-like configuration. Before the substorm onset a minimum amount of magnetic flux is observed to cross the neutral sheet which means that the neutral sheet currents attain their most earthward locations and their greatest current densities. This configuration apparently results from an increased transport of magnetic flux to the tail caused by a southward interplanetary magnetic field. The field begins relaxing toward a more dipolar configuration at the time of a substorm onset with the recovery probably occurring first between 6 and 10 R sub E. This recovery must be associated with magnetospheric convection which restores magnetic flux to the dayside hemisphere. Field aligned currents appear to be required to connect magnetospheric currents to the auroral electrojets, implying that a net current flows in a limited range of longitudes. Space measurements supporting current systems are limited. More evidence exists for the occurrence of double current sheets which do not involve net current at a given longitude.

  17. Magnetic field modulation of chirooptical effects in magnetoplasmonic structures.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Prieto, Patricia; García, Fernando; Cebollada, Alfonso; González, Maria Ujué; García-Martin, Antonio

    2014-04-01

    In this work we analyse the magnetic field effects on the chirooptical properties of magnetoplasmonic chiral structures. The structures consist of two-dimensional arrays of Au gammadions in which thin layers of Co have been inserted. Due to the magnetic properties of the Au/Co interface the structures have perpendicular magnetic anisotropy which favours magnetic saturation along the surface normal, allowing magnetic field modulation of the chirooptical response with moderate magnetic fields. These structures have two main resonances. The resonance at 850 nm has a larger chirooptical response than the resonance at 650 nm, which, on the other hand, exhibits a larger magnetic field modulation of its chirooptical response. This dissimilar behaviour is due to the different physical origin of the chirooptical and magneto-optical responses. Whereas the chirooptical effects are due to the geometry of the structures, the magneto-optical response is related to the intensity of the electromagnetic field in the magnetic (Co) layers. We also show that the optical chirality can be modulated by the applied magnetic field, which suggests that magnetoplasmonic chiral structures could be used to develop new strategies for chirooptical sensing. PMID:24569696

  18. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  19. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.

  20. Magnetic fields of HgMn stars?

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; González, J. F.; Ilyin, I.; Korhonen, H.; Schöller, M.; Savanov, I.; Arlt, R.; Castelli, F.; Lo Curto, G.; Briquet, M.; Dall, T. H.

    2012-11-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have failed to detect magnetic fields, indicating an upper limit on the longitudinal field between 8 and 15 G. In these LSD studies, assumptions were made that all spectral lines are identical in shape and can be described by a scaled mean profile. Aims: We re-analyse the available spectropolarimetric material by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD 65949 and the hotter analog of HgMn stars, the PGa star HD 19400, using FORS 2 installed at the VLT. We also give new measurements of the eclipsing system AR Aur with a primary star of HgMn peculiarity, which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. Methods: We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS spectra for eight HgMn stars and one normal and one superficially normal B-type star obtained in 2010. Out of this sample, three HgMn stars belong to spectroscopic double-lined systems. The application of the moment technique to the HARPS and SOFIN spectra allowed us to study the presence of the longitudinal magnetic field, the crossover effect, and quadratic magnetic fields. Results for the HgMn star HD 65949 and the PGa star HD 19400 are based on a linear regression analysis of low-resolution spectra obtained with FORS 2 in spectropolarimetric mode. Results: Our measurements of the magnetic field with the moment technique using spectral lines of several elements separately reveal the presence of a weak longitudinal magnetic field, a quadratic magnetic field, and the crossover effect on the surface of several HgMn stars as well as normal and superficially normal B-type stars. Furthermore, our analysis suggests the existence of intriguing correlations between the strength of the magnetic field, abundance anomalies, and binary properties. The results are discussed in the context of possible mechanisms responsible for the development of the element patches and complex magnetic fields on the surface of late B-type stars. Based on observations obtained at the European Southern Observatory (ESO programmes 076.D-0169(A), 076.D-0172(A), 084.D-0338(A), 085.D-0296(A), 085.D-0296(B), 087.D-0049(A), 088.D-0284(A)), SOFIN observations at the 2.56 m Nordic Optical Telescope on La Palma, and observations obtained with the CORALIE Echelle Spectrograph on the 1.2 m Euler Swiss telescope on La Silla, Chile.Tables 2-7, 9, 10 are only available in electronic form at http://www.aanda.org

  1. Optical protein detection based on magnetic clusters rotation.

    PubMed

    Ramiandrisoa, Donatien; Brient-Litzler, Elodie; Daynes, Aurélien; Compain, Eric; Bibette, Jérôme; Baudry, Jean

    2015-09-25

    In this paper we present a simple method to quantify aggregates of 200nm magnetic particles. This method relies on the optical and magnetic anisotropy of particle aggregates, whereas dispersed particles are optically isotropic. We orientate aggregates by applying short pulses of a magnetic field, and we measure optical density variation directly linked to this reorientation. By computing the scattering efficiency of doublets and singlets, we demonstrate the absolute quantification of a few % of doublets in a well dispersed suspension. More generally, these optical variations are related to the aggregation state of the sample. This method can be easily applied to an agglutination assay, where target proteins induce aggregation of colloidal particles. By observing only aligned clusters, we increase sensitivity and we reduce the background noise as compared to a classical agglutination assay: we obtain a detection limit on the C-reactive protein of less than 3pM for a total assay time of 10min. PMID:25849116

  2. The Enhanced Effect of Optical Emission from Laser Induced Breakdown Spectroscopy of an Al-Li Alloy in the Presence of Magnetic Field Confinement

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Hai, Ran; Wu, Ding; Xiao, Qingmei; Sun, Liying; Ding, Hongbin

    2015-08-01

    In this paper, the influence of magnetic field strength on laser-induced breakdown spectroscopy (LIBS) has been investigated for various pressures. The plasma plume was produced by employing Q-switch Nd:YAG laser ablation of an Al-Li alloy operating at a 1064 nm wavelength. The results indicated that the LIBS intensity of the Al and Li emission lines is boosted with an increase of magnetic strength. Typically, the intensity of the Al I and Li I spectral emissions can be magnified by 1.5-3 times in a steady magnetic field of 1.1 T compared with the field-free case. Also, in this investigation we recorded time-resolved images of the laser-produced plume by employing a fast ICCD camera. The results show that the luminance of the plasma is enhanced and the time of persistence is increased significantly, and the plasma plume splits into two lobes in the presence of a magnetic field. The probable reason for the enhancement is the magnetic confinement effect which increases the number density of excited atoms and the population of species in a high energy state. In addition, the electron temperature and density are also augmented by the magnetic field compared to the field-free case. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB109005) and National Natural Science Foundation of China (No. 11175035), Chinesisch-Deutsches Forschungs Project (GZ768), the Fundamental Research Funds for the Central Universities, China (Nos. DUT12ZD(G)01, (DUT14ZD(G)04), MMLab Research Project (DP1051208)

  3. Electric field driven optical recording

    NASA Astrophysics Data System (ADS)

    Karpov, V. G.

    2010-07-01

    A physical mechanism of transformations between the amorphous and crystalline phases induced by the electric field of a laser beam is proposed. It creates needle-shaped crystal particles aligned to the beam polarization. The polarization driven orientation of particles can significantly increase the information storage capacity achievable with phase change optical recording. The nucleation and postnucleation stages of the laser field induced crystallization are discussed establishing the conditions under which the polarization aligned particles can be created.

  4. Cylindrical isentropic compression by ultrahigh magnetic field

    NASA Astrophysics Data System (ADS)

    Gu, Zhuowei; Luo, Hao; Zhang, Hengdi; Zhao, Shichao; Tang, Xiaosong; Tong, Yanjin; Song, Zhenfei; Tan, Fuli; Zhao, Jianheng; Sun, Chengwei

    2014-05-01

    The cylindrical isentropic compression by ultrahigh magnetic field (MC-1) is a kind of unique high energy density technique. It has characters like ultrahigh pressure and low temperature rising, and would have widely used in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun the experiment since 2011 and a primary experimental device had been set-up. In the experiments, a seed magnetic field of 5 Tesla were set-up first and compressed by a stainless steel liner which is driven by high explosive initiated synchronously. The internal diameter of the liner is 97 mm, and its thickness is 1.5 mm. The movement of liner was recorded optically and a typical turnaround phenomenon was observed. From the photography results the liner was compressed smoothly and evenly and its average velocity was about 5-6 km/s. In the experiment a axial magnetic field of over 1400 Tesla has been recorded. The MC-1 process was numerical simulated by 1D MHD code MC11D and the simulations are in accord with the experiments.

  5. Temperature and magnetic field dependent optical spectral weight in the cation-deficient colossal-magnetoresistance material La{sub 0.936}Mn{sub 0.982}O{sub 3}

    SciTech Connect

    Golovanov, V.; Mihaly, L.; Homes, C.O.; McCarroll, W.H.; Ramanujachary, K.V.; Greenblatt, M.

    1999-01-01

    The optical reflectivity of a vacancy doped colossal magnetoresistance material La{sub 0.936}Mn{sub 0.982}O{sub 3} has been investigated on single-crystal samples as a function of temperature and at zero and 0.5 T magnetic fields. The conductivity has been evaluated by Kramers-Kronig analysis in the frequency range of 100{endash}20000 cm{sup {minus}1}. The broad peak in the optical conductivity, observed at room temperature around 10000 cm{sup {minus}1}, shifts towards zero as the ferromagnetic state develops at lower temperatures. In the transition regime the application of moderate magnetic field also induces a downward shift of the spectral weight. {copyright} {ital 1999} {ital The American Physical Society}

  6. Sub-Doppler laser cooling in a magnetic field

    SciTech Connect

    Shang, S.; Sheehy, B.; van der Straten, P.; Metcalf, H. )

    1991-08-05

    This paper reports on sub-Doppler laser cooling processes in a light field of constant polarization with an applied magnetic field. A theoretical model is developed to describe these experiments that is valid for arbitrary transition schemes. Adding the magnetic field to the optical molasses gives rise to new phenomena such as cooling of atoms to a non-zero velocity that can also be used to test the 1-D model. (AIP)

  7. Magnetic Field Issues in Magnetic Resonance Imaging.

    NASA Astrophysics Data System (ADS)

    Petropoulos, Labros Spiridon

    Advances in Magnetic Resonance Imaging depend on the capability of the available hardware. Specifically, for the main magnet configuration, using derivative constraints, we can create a static magnetic field with reduced levels of inhomogeneity over a prescribed imaging volume. In the gradient coil, the entire design for the axial elliptical coil, and the mathematical foundation for the transverse elliptical coil have been presented. Also, the design of a self-shielded cylindrical gradient coil with a restricted length has been presented. In order to generate gradient coils adequate for head imaging without including the human shoulders in the design, asymmetric cylindrical coils in which the gradient center is shifted axially towards the end of a finite cylinder have been introduced and theoretical as well as experimental results have been presented. In order to eliminate eddy current effects in the design of the non-shielded asymmetric gradient coils, the self-shielded asymmetric cylindrical gradient coil geometry has been introduced. Continuing the development of novel geometries for the gradient coils, the complete set of self-shielded cylindrical gradient coils, which are designed such that the x component of the magnetic field varies linearly along the three traditional gradient axes, has been presented. In order to understand the behavior of the rf field inside a dielectric object, a mathematical model is briefly presented. Although specific methods can provide an indication of the rf behavior inside a loosely dielectric object, finite element methodology is the ultimate approach for modeling the human torso and generating an accurate picture for the shape of the rf field inside this dielectric object. For this purpose we have developed a 3D finite element model, using the Coulomb gauge condition as a constraint. Agreement with the heterogeneous multilayer planar model has been established, while agreement with theoretical results from the spherical model and experimental results from the cylindrical model at 170 M H z is very good and provides an encouraging sign for using this finite element approach for modeling the rf inside the human body. (Abstract shortened by UMI.).

  8. Charge and current reservoirs for electric and magnetic field enhancement

    E-print Network

    either. The performance of a loop shaped magnetic antenna consisting of a pair of metallic stripsCharge and current reservoirs for electric and magnetic field enhancement Dongxing Wang,1 Tian Yang, Shanghai 200240, China *kcrozier@seas.harvard.edu Abstract: Two optical antenna designs incorporating

  9. Lanthanide doped nanoparticles as remote sensors for magnetic fields.

    PubMed

    Chen, Ping; Zhang, Junpei; Xu, Beibei; Sang, Xiangwen; Chen, Weibo; Liu, Xiaofeng; Han, Junbo; Qiu, Jianrong

    2014-10-01

    We report the effect of magnetic fields (MFs) on emission Eu-doped NaYF4 nanoparticles. A notable shift in the position of emission bands and the suppressed emission intensity are observed with the MF. These magnetic-optical interactions are explained in terms of the Zeeman effect, enhanced cross-relaxation rate and change of site symmetry. PMID:25123099

  10. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  11. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our Newtonian results are excellent approximations for slowly spinning black holes. We proceed to address the issue of the spin dependence of the Blandford & Znajek power. The result we choose to highlight is our finding that given the validity of our assumption for the dynamical behavior of the so-called plunge region in black hole accretors, rotating black holes produce maximum Poynting flux via the Blandford & Znajek process for a black hole spin parameter of about a [approximate] 0.8. This is contrary to the conventional claim that the maximum electromagnetic flux is achieved for highest black hole spin.

  12. Supplementary Notes: 1. Simulated magnetic field pattern

    E-print Network

    Cai, Long

    magnetic field B0 and the MNP- labeled cell's magnetization vector: || = = ! "# $ !% & '. (3 here, under a 400 G magnetizing field B0) uniformly distributed on a 15-µm diameter spherical cell with the applied bias magnetic field B0 to create a characteristic 2-lobed shape common to all labeled cells

  13. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  14. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  15. Heliospheric Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Popescu, Adrian Sabin

    2007-09-01

    From the Maxwell equations in the local Minkowski spacetime chart (derived from the DEUS topology) we obtain the relations to be particularized for a solar type star and a massive star, and later to be used for a 3D representation of the electric and magnetic field topology (in heliosphere or in a stellar atmosphere) and of its evolution with the cosmological time.

  16. Separation of magnetic field lines

    SciTech Connect

    Boozer, Allen H.

    2012-11-15

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

  17. Development of magnetic system with high-anisotropy localized magnetic field for terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Azbite, Solveyga E.; Denisultanov, Alaudi K.; Khodzitsky, Mikhail K.

    2015-08-01

    In this paper magnetic system with a localized high-intensity magnetic field due to giant magnetic anisotropy magnets was proposed for THz time-domain spectroscopy. The magnetic system consists of two hemispheres which are made from two types of magnets. The both hemispheres will be used for an improvement of THz generation and one hemisphere will be used for investigation of spectral and optical properties of an object at strong magnetic field. The proposed magnetic system was numerically calculated in COMSOL MultiPhysics using AC/DC Module. These results may be used for development of real magnetic THz time-domain spectroscopy system.

  18. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  19. The magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.

  20. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  1. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  2. Bacterial Growth in Weak Magnetic Field

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    2015-03-01

    We study the growth of bacteria in a weak magnetic field. Computational analysis of experimental data shows that the growth rate of bacteria is affected by the magnetic field. The effect of magnetic field depends on the strength and type of magnetic field. It also depends on the type of bacteria. We mainly study gram positive and gram negative bacteria of rod type as well as spherical bacteria. Preliminary results show that the weak magnetic field enhances the growth of rod shape gram negative bacteria. Gram positive bacteria can be even killed in the inhomogeneous magnetic field.

  3. Integrated E-field and B-field sensor using electro-optic and magneto-optic materials

    NASA Astrophysics Data System (ADS)

    Garzarella, Anthony; Wu, Dong Ho

    2010-03-01

    In this presentation, we describe an integrated, fiber optic, electro-optic (EO) and magneto-optic (MO) sensor for the detection and measurement of electric and magnetic fields. Conventional sensors such as dipole and loop antennas are metallic-based, thereby perturbing the very fields they measure. Additionally, metallic probes cannot be used high power microwaves, large magnetic fields, or in small cavities. EO sensors (based on the Pockels Effect) and MO sensors (based on the Faraday rotation) are small in size (a few mm^2), have large bandwidths, and detect external electric and magnetic fields optically without the use of metallic components in the sensorhead. In spite of their intrinsic advantages, EO and MO sensors are rarely used in actual field measurement applications and are confined to more research-oriented laboratory applications due to low sensitivity, optical phase noise and other limitations. In this presentation, we describe an integrated EO and MO sensor which overcomes many of these obstacles and has been used in a variety of field tests involving numerous sources of electric and magnetic fields. Experimental data is presented with power levels from tens of milliwatts to several megawatts and frequencies from dc to 10 GHz.

  4. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer

    E-print Network

    Romalis, Mike

    Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer H an ultrasensitive atomic magnetometer based on optically pumped potassium atoms operating in a spin . As an example of an application enabled by such a magnetometer, we describe measurements of weak remnant rock

  5. Magneto-optical Kerr Effect Studies of Artificial Frustrated Magnets

    NASA Astrophysics Data System (ADS)

    Kohli, K. K.; Balk, A. L.; Li, J.; Zhang, S.; Lammert, P.; Crespi, V. H.; Schiffer, P.; Samarth, N.

    2011-03-01

    We use the magneto-optical Kerr effect (MOKE) to study the collective magnetic behavior of geometrically frustrated arrays of single-domain ferromagnetic islands. By varying the island spacing, lattice geometry and the orientation relative to the magnetic field, we probe the properties of the arrays via MOKE measurements of the net moment of the arrays. We study the influence of local geometry and frustration on the collective magnetization reversal process, using the switching field as a measure. Further, angle-resolved MOKE measurements probe the influence of individual island shape anisotropy on the collective anisotropy of interacting arrays. Finally, we present preliminary measurements in an oscillating magnetic field. The results are compared to the results of micromagnetic simulation. We thank M. Ericson and C. Leighton for sample preparation. This research was supported by the US Dept. of Energy.

  6. Tuning plasmonic cloaks with an external magnetic field

    E-print Network

    Kort-Kamp, W J M; Pinheiro, F A; Farina, C

    2013-01-01

    We propose a mechanism to actively tune the operation of plasmonic cloaks with an external magnetic field by investigating electromagnetic scattering by a dielectric cylinder coated with a magneto-optical shell. In the long wavelength limit we show that the presence of an external magnetic field may drastically reduce the scattering cross-section at all observation angles. We demonstrate that the application of external magnetic fields can modify the operation wavelength without the need of changing material and/or geometrical parameters. We also show that applied magnetic fields can reversibly switch on and off the cloak operation. These results, which could be achieved for existing magneto-optical materials, are shown to be robust to material losses, so that they may pave the way for developing actively tunable, versatile plasmonic cloaks.

  7. Tuning plasmonic cloaks with an external magnetic field.

    PubMed

    Kort-Kamp, W J M; Rosa, F S S; Pinheiro, F A; Farina, C

    2013-11-22

    We propose a mechanism to actively tune the operation of plasmonic cloaks with an external magnetic field by investigating electromagnetic scattering by a dielectric cylinder coated with a magneto-optical shell. In the long wavelength limit, we show that the presence of a magnetic field may drastically reduce the scattering cross section at all observation angles. We demonstrate that the application of magnetic fields can modify the operation wavelength without the need of changing material and/or geometrical parameters. We also show that applied magnetic fields can reversibly switch on and off the cloak operation. These results, which could be achieved for existing magneto-optical materials, are shown to be robust to material losses, so that they may pave the way for developing actively tunable, versatile plasmonic cloaks. PMID:24313504

  8. Polymeric variable optical attenuators based on magnetic sensitive stimuli materials

    NASA Astrophysics Data System (ADS)

    de Pedro, S.; Cadarso, V. J.; Ackermann, T. N.; Muñoz-Berbel, X.; Plaza, J. A.; Brugger, J.; Büttgenbach, S.; Llobera, A.

    2014-12-01

    Magnetically-actuable, polymer-based variable optical attenuators (VOA) are presented in this paper. The design comprises a cantilever which also plays the role of a waveguide and the input/output alignment elements for simple alignment, yet still rendering an efficient coupling. Magnetic properties have been conferred to these micro-opto-electromechanical systems (MOEMS) by implementing two different strategies: in the first case, a magnetic sensitive stimuli material (M-SSM) is obtained by a combination of polydimethylsiloxane (PDMS) and ferrofluid (FF) in ratios between 14.9?wt % and 29.9?wt %. An M-SSM strip under the waveguide-cantilever, defined with soft lithography (SLT), provides the required actuation capability. In the second case, specific volumes of FF are dispensed at the end of the cantilever tip (outside the waveguide) by means of inkjet printing (IJP), obtaining the required magnetic response while holding the optical transparency of the waveguide-cantilever. In the absence of a magnetic field, the waveguide-cantilever is aligned with the output fiber optics and thus the intrinsic optical losses can be obtained. Numerical simulations, validated experimentally, have shown that, for any cantilever length, the VOAs defined by IJP present lower intrinsic optical losses than their SLT counterparts. Under an applied magnetic field (Bapp), both VOA configurations experience a misalignment between the waveguide-cantilever and the output fiber optics. Thus, the proposed VOAs modulate the output power as a function of the cantilever displacement, which is proportional to Bapp. The experimental results for the three different waveguide-cantilever lengths and six different FF concentrations (three per technology) show maximum deflections of 220?µm at 29.9?wt % of FF for VOASLT and 250?µm at 22.3?wt % FF for VOAIJP, at 0.57?kG for both. These deflections provide maximum actuation losses of 16.1?dB and 18.9?dB for the VOASLT and VOAIJP, respectively.

  9. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  10. Brass plasmoid in external magnetic field at different air pressures

    SciTech Connect

    Patel, D. N.; Thareja, Raj K.; Pandey, Pramod K.

    2013-10-15

    The behavior of expanding brass plasmoid generated by 266 nm wavelength of Nd:YAG laser in nonuniform magnetic field at different air pressures has been examined using optical emission spectroscopy and fast imaging of plasma plumes. The splitting of the plasma plumes and enhancement of intensity of Cu I at 510.5 nm in the presence of magnetic field at lower pressures are discussed. The threading and expulsion of the magnetic field lines through the plasmoid are correlated with the ambient pressure. The stoichiometry of the plasma plume is not significantly influenced by the magnetic field; however, the abundance of neutral to ionic species of Cu and Zn is greatly influenced by the magnetic field.

  11. Explaining Mercury's peculiar magnetic field

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.

    2014-05-01

    MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken and we explore two scenarios. Increasing the heat flux through the northern hemisphere of the core-mantle boundary is an obvious choice but is not supported by current models for Mercury's mantle. We find that a combination of internal rather than bottom driving and an increased heat flux through the equatorial region of the core-mantle boundary also promotes the required symmetry breaking and results in very Mercury like fields. The reason is that the imposed heat flux pattern, though being equatorially symmetric, lowers the critical Rayleigh number for the onset of equatorially anti-symmetric convection modes. In both scenarios, a stably stratified layer or a feedback coupling to the magnetospheric field is required for lowering the field strength to Mercury-like values.

  12. MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2

    E-print Network

    Fornberg, Bengt

    MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value to the formation of an azimuthal rope of twisted magnetic field embedded within the global field, and to the energy

  13. Reconfiguring photonic metamaterials with currents and magnetic fields

    SciTech Connect

    Valente, João Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.

    2015-03-16

    We demonstrate that spatial arrangement and optical properties of metamaterial nanostructures can be controlled dynamically using currents and magnetic fields. Mechanical deformation of metamaterial arrays is driven by both resistive heating of bimorph nanostructures and the Lorentz force that acts on charges moving in a magnetic field. With electrically controlled transmission changes of up to 50% at sub-mW power levels, our approaches offer high contrast solutions for dynamic control of metamaterial functionalities in optoelectronic devices.

  14. Field errors in superconducting magnets

    SciTech Connect

    Barton, M.Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  15. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  16. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  17. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  18. Phonon-induced artificial magnetic fields

    E-print Network

    Alexander Klein; Dieter Jaksch

    2009-01-22

    We investigate the effect of a rotating Bose-Einstein condensate on a system of immersed impurity atoms trapped by an optical lattice. We analytically show that for a one-dimensional, ring-shaped setup the coupling of the impurities to the Bogoliubov phonons of the condensate leads to a non-trivial phase in the impurity hopping. The presence of this phase can be tested by observing a drift in the transport properties of the impurities. These results are quantitatively confirmed by a numerically exact simulation of a two-mode Bose-Hubbard model. We also give analytical expressions for the occurring phase terms for a two-dimensional setup. The phase realises an artificial magnetic field and can for instance be used for the simulation of the quantum Hall effect using atoms in an optical lattice.

  19. A magneto-optical fiber device based on magnetic fluid-filled photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Bai, Xuekun; Chai, Zhaopu; Pang, Fufei; Wen, Jianxiang; Wang, Tingyun

    2015-08-01

    Magneto-optical fiber plays an important role in magneto-optical devices. The fiber has larger Verdet constant will lead to a larger Faraday rotation per unit length fiber and applied field. In order to increase the magneto-optical characteristic, especially the Verdet constant of photonic crystal fiber, a magneto-optical fiber device based on combination of the magnetic fluid and the tunable photonic bandgap effect of photonic crystal fiber is proposed. The magnetic fluid is filled into the air holes of the cladding layer in the photonic crystal fiber using a new air pressure-filled method. Because the magnetic fluid prepared in this experiment has higher refractive index (>1.45), and is filled into the air-holes of photonic crystal fiber, as a result, the index guiding fiber is converted into photonic bandgap fiber. A magneto-optic system based on the Stokes polarization parameters method is designed which could analyze the Faraday effect. The corresponding Faraday rotation could be measured in the external magnetic field with different magnetic intensity by this magneto-optic system. The Faraday rotation of the photonic crystal fiber filled with magnetic fluid is approximately 5 times than that of the single mode optical fiber. The proposed magneto-optical fiber device takes full advantage of the ultrahigh sensitivity characteristic of photonic bandgap fiber and the large Verdet constant of magneto-optical fiber, can be used for high sensitive magnetic field sensor, magneto-optical switch, and magneto-optical modulator, etc.

  20. Van der Waals torque induced by external magnetic fields

    SciTech Connect

    Esquivel-Sirvent, R.; Cocoletzi, G. H.; Palomino-Ovando, M.

    2010-01-01

    We present a method for inducing and controlling van der Waals torques between two parallel slabs using a constant magnetic field. The torque is calculated using the Barash theory of dispersive torques. In III–IV semiconductors such as InSb, the effect of an external magnetic field is to induce an optical anisotropy, in an otherwise isotropic material, that will in turn induce a torque. The calculations of the torque are done in the Voigt configuration, with the magnetic field parallel to the surface of the slabs. As a case study we consider a slab made of calcite and a second slab made of InSb. In the absence of magnetic field there is no torque. As the magnetic field increases, the optical anisotropy of InSb increases and the torque becomes different from zero, increasing with the magnetic field. The resulting torque is of the same order of magnitude as that calculated using permanent anisotropicmaterials when the magnetic fields is close to 1 T.

  1. Minireview: Biological effects of magnetic fields

    SciTech Connect

    Villa, M.; Mustarelli, P. ); Caprotti, M. )

    1991-01-01

    The literature about the biological effects of magnetic fields is reviewed. The authors begin by discussing the weak and/or time variable fields, responsible for subtle changes in the circadian rhythms of superior animals, which are believed to be induced by same sort of resonant mechanism. The safety issues related with the strong magnetic fields and gradients generated by clinical NMR magnets are then considered. The last portion summarizes the debate about the biological effects of strong and uniform magnetic fields.

  2. Magnetic monopole and the nature of the static magnetic field

    E-print Network

    Xiuqing Huang

    2008-12-10

    We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

  3. Quantum cascade lasers in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Wade, Aaron

    The frontier of the rapidly emerging field of nano-optoelectronics relies on the understanding and control of intersubband transitions in low-dimensional systems. The continual search for new optoelectronics concepts and materials (including, but not limited to, III-V semiconductors, nitrides, and Si/Ge) has resulted in a rapid expansion of the field of intersubband physics and quantum cascade devices. A quantum cascade (QC) structure is a general concept of an optoelectronic device (laser, LED, frequency mixer, or detector) based on a cascade of radiative transitions between size-quantized energy levels in a multi-quantum-well structure. Today, Quantum Cascade Lasers (QCL), which are the only semiconductor devices operating from the mid-infrared (MIR) to the THz range of frequencies, represent one of the most striking outcomes of intersubband structure engineering, and provide a state-of-the-art model structure to study the basic properties of low-dimensional semiconductor systems. This dissertation concerns the experimental study of MIR and THz QC structures in high magnetic fields. Because of the similar energy and size scales of the spatial and magnetic confinements, the application of an external magnetic field offers a unique experimental tool to control and understand the most basic processes determining the performance of QC nanostructures: quantum confinement and intersubband relaxation. Specific issues addressed in this thesis are (i) mechanisms of intersubband electron relaxation, including electron-phonon, electron-electron, and interface effects; (ii) intersubband transitions in the effective zero-dimensional system ("magnetic" quantum box system); and (iii) intersubband radiative transitions in tilted magnetic fields. First we present detailed studies of GaAs/AlGaAs and GaInAs/AlInAs mid-IR QCLs. By comparing the experimental data and the model of the electron lifetime in the presence of a strong magnetic field, the lifetimes of the elastic and inelastic scattering processes are determined. Ultimately this results in the development (formulation) of a new powerful spectroscopic tool to study the scattering mechanisms in QC structures---intersubband magneto-spectroscopy. Secondly, a study of InAs/AlSb mid-IR QC structures is performed. By applying the method of the intersubband magneto-spectroscopy, we directly measured the quantum efficiency of intersubband processes in a model two-level system, and then obtain electron lifetimes of the upper-state of the radiative transition. Thirdly, GaAs/AlGaAs THz QCLs are studied. Here, a magnetic field was used as a tool to controllably transform a 2D multi-QW structure into effective 0D system with reduced (eventually quenched) non-radiative intersubband scattering. This allowed us to achieve laser emission from a single device in an unprecedented range of frequencies from 0.68 THz to 3.33 THz. Moreover, the device shows 1 THz lasing at temperatures up to 215 K, and 3 THz lasing up to 225 K. This is the longest wavelength, the widest spectral coverage, and the highest operational temperatures of any single THz solid state laser to date. The last chapter discusses QCL angular-resolved magneto-spectroscopy. At tilted magnetic fields, additional optical transitions, never observed in QC structures, are allowed as a result of the intersubband-cyclotron coupling. Also, angular field measurements are an effective tool to study the effects related to cyclotron- and spin-splitting phenomena. Here we demonstrated the feasibility of QCL angular measurements at high magnetic fields, and discuss the first results.

  4. Cluster Magnetic Fields from Galactic Outflows

    E-print Network

    J. Donnert; K. Dolag; H. Lesch; E. Müller

    2008-10-24

    We performed cosmological, magneto-hydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields are galactic outflows during the star-burst phase of galactic evolution. To do this we coupled a semi-analytical model for magnetized galactic winds as suggested by \\citet{2006MNRAS.370..319B} to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy clusters fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude that magnetized galactic outflows and their subsequent evolution within the intra-cluster medium can fully account for the observed magnetic fields in galaxy clusters. Our findings also suggest that measuring cosmological magnetic fields in low-density environments such as filaments is much more useful than observing cluster magnetic fields to infer their possible origin.

  5. Micromechanics in magnetic suspensions with optical tweezers

    NASA Astrophysics Data System (ADS)

    Gast, Alice

    2000-03-01

    The key to understanding and controlling the rheological response of a colloidal system lies in characterizing the suspension microstructure and dynamics. The formation of well-defined microstructures in magnetorheological (MR) and electrorheological (ER)suspensions offers a clear example of the interplay between structure and rheology. When an external magnetic or electric field is applied to an MR or ER suspension, the particles acquire dipole moments. At field strengths sufficient to overcome thermal motion, the particles aggregate into chains aligned in the field direction. Because energy is required to deform and rupture the chains, this microstructural transition is responsible for the onset of a large, ``tunable,'' finite yield stress. Applications for MR and ER suspensions include active shock absorbers, clutches, and brakes. We apply optical trapping techniques to directly measure mechanical properties of an MR dipolar chain, such as the rupturing stress and strain under tensile and affine deformations. Our results under these conditions are in good agreement with calculations of the rupturing stress and strain using a self-consistent point dipole model of the particle interaction that takes into account induction and multi-body effects along the chain. Additionally, we observe energy-dissipating "rearrangements" of chains as a stress is applied, such as the inclusion of neighboring particles into the chain. Similar mechanical measurements on columns of laterally-aggregated chains show that column formation significantly increases the microstructure resistance to applied stresses. Also, rearrangements in columns indicate mechanisms for "strain-hardening" effects at intermediate field strengths. Direct microscopic manipulation allows us to investigate the lateral interaction between chains. In MR suspensions,Landau-Peierls thermal fluctuations are thought to cause a lateral attraction between chains that influences the long-time suspension structure, such as the formation of columns or "cross-linking" between chains at high particle concentrations.

  6. Magnetic field sources and their threat to magnetic media

    NASA Technical Reports Server (NTRS)

    Jewell, Steve

    1993-01-01

    Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

  7. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 ?T; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 ?T), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  8. All-optical high-resolution magnetic resonance using a nitrogen-vacancy spin in diamond

    E-print Network

    Zhen-Yu Wang; Jian-Ming Cai; Alex Retzker; Martin B. Plenio

    2014-04-04

    We propose an all-optical scheme to prolong the quantum coherence of a negatively charged nitrogen-vacancy (NV) center in diamond. Optical control of the NV spin suppresses energy fluctuations of the $^{3}\\text{A}_{2}$ ground states and forms an energy gap protected subspace. By optical control, the spectral linewidth of magnetic resonance is much narrower and the measurement of the frequencies of magnetic field sources has higher resolution. The optical control also improves the sensitivity of the magnetic field detection and can provide measurement of the directions of signal sources.

  9. A magneto-optical microscope for quantitative measurement of magnetic microstructures

    NASA Astrophysics Data System (ADS)

    Patterson, W. C.; Garraud, N.; Shorman, E. E.; Arnold, D. P.

    2015-09-01

    An optical system is presented to quantitatively map the stray magnetic fields of microscale magnetic structures, with field resolution down to 50 ?T and spatial resolution down to 4 ?m. The system uses a magneto-optical indicator film (MOIF) in conjunction with an upright reflective polarizing light microscope to generate optical images of the magnetic field perpendicular to the image plane. A novel single light path construction and discrete multi-image polarimetry processing method are used to extract quantitative areal field measurements from the optical images. The integrated system including the equipment, image analysis software, and experimental methods are described. MOIFs with three different magnetic field ranges are calibrated, and the entire system is validated by measurement of the field patterns from two calibration samples.

  10. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  11. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  12. Magnetic field structure around cores with very low luminosity objects

    NASA Astrophysics Data System (ADS)

    Soam, A.; Maheswar, G.; Lee, Chang Won; Dib, Sami; Bhatt, H. C.; Tamura, Motohide; Kim, Gwanjeong

    2015-01-01

    Aims: We carried out optical polarimetry of five dense cores, (IRAM 04191, L1521F, L328, L673-7, and L1014) which are found to harbour very low luminosity objects (VeLLOs; Lint ? 0.1 L?). This study was conducted mainly to understand the role played by the magnetic field in the formation of very low and substellar mass range objects. Methods: Light from the stars, while passing through the dust grains that are aligned with their short axis parallel to an external magnetic field, becomes linearly polarised. The polarisation position angles measured for the stars can provide the plane-of-the sky magnetic field orientation. Because the light in the optical wavelength range is most efficiently polarised by the dust grains typically found at the outer layers of the molecular clouds, optical polarimetry mostly traces the magnetic field orientation of the core envelope. Results: The polarisation observations of stars projected on IRAM 04191, L328, L673-7, and L1014 were obtained in the R-band and those of L1521F were obtained in the V-band. The angular offsets between the envelope magnetic field direction (inferred from optical polarisation measurements) and the outflow position angles from the VeLLOs in IRAM 04191, L1521F, L328, L673-7, and L1014 are found to be 84°, 53°, 24°, 08°, and 15°, respectively. The mean value of the offsets for all the five clouds is ~ 37°. If we exclude IRAM 04191, the mean value reduces to become ~ 25°. In IRAM 04191, the offset between the projected envelope and the inner magnetic field (inferred from the submillimetre data obtained using SCUBA-POL) is found to be ~ 68°. The inner magnetic field, however, is found to be nearly aligned with the projected position angles of the minor axis, the rotation axis of the cloud, and the outflow from the IRAM 04191-IRS. We discuss a possible explanation for the nearly perpendicular orientation between the envelope and core scale magnetic fields in IRAM 04191. The angular offset between the envelope magnetic field direction and the minor axis of IRAM 04191, L1521F, L673-7, and L1014 are 82°, 60°, 47°, and 55°, respectively. The mean value of the offsets between the envelope magnetic field and the minor axis position angles for the four cores is found to be ~ 60°. Conclusions: The results obtained from our study on the limited sample of five cores with VeLLOs show that the outflows in three of them tend to nearly align with the envelope magnetic field. Table 4 is available in electronic form at http://www.aanda.org

  13. Full 180° Magnetization Reversal with Electric Fields

    PubMed Central

    Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

  14. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  15. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  16. SOLIS/VSM Polar Magnetic Field Data

    E-print Network

    Bertello, Luca

    2015-01-01

    The Vector Spectromagnetograph (VSM) instrument on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) telescope is designed to obtain high-quality magnetic field observations in both the photosphere and chromosphere by measuring the Zeeman-induced polarization of spectral lines. With 1$^{\\prime \\prime}$ spatial resolution (1.14$^{\\prime \\prime}$ before 2010) and 0.05\\AA\\ spectral resolution, the VSM provides, among other products, chromospheric full-disk magnetograms using the CaII 854.2 nm spectral line and both photospheric full-disk vector and longitudinal magnetograms using the FeI 630.15 nm line. Here we describe the procedure used to compute daily weighted averages of the photospheric radial polar magnetic field at different latitude bands from SOLIS/VSM longitudinal full-disk observations. Time series of these measurements are publicly available from the SOLIS website at http://solis.nso.edu/0/vsm/vsm\\_plrfield.html. Future plans include the calculation of the mean polar field strength fr...

  17. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  18. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  19. Magnetic field effect on charged Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.

    2016-01-01

    We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.

  20. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  1. Optical activity in media with noncoplanar magnetization distribution

    SciTech Connect

    Karashtin, E. A. Udalov, O. G.; Fraerman, A. A.

    2009-12-15

    Natural optical activity in magnetic media for which the exchange interaction dominates is studied theoretically. It is shown using a phenomenological theory that the optical activity effect can be observed in a medium with a nonuniform noncoplanar magnetization distribution without an inversion center. A microscopic theory of the optical activity is constructed for a medium with a helicoidal magnetic structure.

  2. Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields

    SciTech Connect

    Zhivun, Elena; Wickenbrock, Arne; Patton, Brian; Budker, Dmitry

    2014-11-10

    We demonstrate an all-optical {sup 133}Cs scalar magnetometer, operating in nonzero magnetic field, in which the magnetic resonance is driven by an effective oscillating magnetic field provided by the AC Stark shift of an intensity-modulated laser beam. We achieve a projected shot-noise-limited sensitivity of 1.7fT/?(Hz) and measure a technical noise floor of 40fT/?(Hz). These results are essentially identical to a coil-driven scalar magnetometer using the same setup. This all-optical scheme offers advantages over traditional coil-driven magnetometers for use in arrays and in magnetically sensitive fundamental physics experiments, e.g., searches for a permanent electric dipole moment of the neutron.

  3. Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid

    NASA Astrophysics Data System (ADS)

    Luo, Longfeng; Pu, Shengli; Tang, Jiali; Zeng, Xianglong; Lahoubi, Mahieddine

    2015-05-01

    A kind of magnetic field sensor using a microfiber coupler (MFC) surrounded with magnetic fluid (MF) is proposed and experimentally demonstrated. As the MFC is strongly sensitive to the surrounding refractive index (RI) and MF's RI is sensitive to magnetic field, the magnetic field sensing function of the proposed structure is realized. Interrogation of magnetic field strength is achieved by measuring the dip wavelength shift and transmission loss change of the transmission spectrum. The experimental results show that the sensitivity of the sensor is wavelength-dependent. The maximum sensitivity of 191.8 pm/Oe is achieved at wavelength of around 1537 nm in this work. In addition, a sensitivity of -0.037 dB/Oe is achieved by monitoring variation of the fringe visibility. These suggest the potential applications of the proposed structure in tunable all-in-fiber photonic devices such as magneto-optical modulator, filter, and sensing.

  4. Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid

    SciTech Connect

    Luo, Longfeng; Pu, Shengli Tang, Jiali; Zeng, Xianglong; Lahoubi, Mahieddine

    2015-05-11

    A kind of magnetic field sensor using a microfiber coupler (MFC) surrounded with magnetic fluid (MF) is proposed and experimentally demonstrated. As the MFC is strongly sensitive to the surrounding refractive index (RI) and MF's RI is sensitive to magnetic field, the magnetic field sensing function of the proposed structure is realized. Interrogation of magnetic field strength is achieved by measuring the dip wavelength shift and transmission loss change of the transmission spectrum. The experimental results show that the sensitivity of the sensor is wavelength-dependent. The maximum sensitivity of 191.8?pm/Oe is achieved at wavelength of around 1537?nm in this work. In addition, a sensitivity of ?0.037?dB/Oe is achieved by monitoring variation of the fringe visibility. These suggest the potential applications of the proposed structure in tunable all-in-fiber photonic devices such as magneto-optical modulator, filter, and sensing.

  5. Electric-field control of magnetic domain wall motion and local magnetization reversal

    PubMed Central

    Lahtinen, Tuomas H. E.; Franke, Kévin J. A.; van Dijken, Sebastiaan

    2012-01-01

    Spintronic devices currently rely on magnetic switching or controlled motion of domain walls by an external magnetic field or spin-polarized current. Achieving the same degree of magnetic controllability using an electric field has potential advantages including enhanced functionality and low power consumption. Here we report on an approach to electrically control local magnetic properties, including the writing and erasure of regular ferromagnetic domain patterns and the motion of magnetic domain walls, in CoFe-BaTiO3 heterostructures. Our method is based on recurrent strain transfer from ferroelastic domains in ferroelectric media to continuous magnetostrictive films with negligible magnetocrystalline anisotropy. Optical polarization microscopy of both ferromagnetic and ferroelectric domain structures reveals that domain correlations and strong inter-ferroic domain wall pinning persist in an applied electric field. This leads to an unprecedented electric controllability over the ferromagnetic microstructure, an accomplishment that produces giant magnetoelectric coupling effects and opens the way to electric-field driven spintronics. PMID:22355770

  6. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1994-01-01

    The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

  7. Optical Potential Field Mapping System

    NASA Technical Reports Server (NTRS)

    Reid, Max B. (Inventor)

    1996-01-01

    The present invention relates to an optical system for creating a potential field map of a bounded two dimensional region containing a goal location and an arbitrary number of obstacles. The potential field mapping system has an imaging device and a processor. Two image writing modes are used by the imaging device, electron deposition and electron depletion. Patterns written in electron deposition mode appear black and expand. Patterns written in electron depletion mode are sharp and appear white. The generated image represents a robot's workspace. The imaging device under processor control then writes a goal location in the work-space using the electron deposition mode. The black image of the goal expands in the workspace. The processor stores the generated images, and uses them to generate a feedback pattern. The feedback pattern is written in the workspace by the imaging device in the electron deposition mode to enhance the expansion of the original goal pattern. After the feedback pattern is written, an obstacle pattern is written by the imaging device in the electron depletion mode to represent the obstacles in the robot's workspace. The processor compares a stored image to a previously stored image to determine a change therebetween. When no change occurs, the processor averages the stored images to produce the potential field map.

  8. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  9. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    PubMed Central

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-01-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet ? singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580

  10. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S. (Oak Ridge, TN)

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  11. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  12. On Magnetic Field Generation Mechanisms in Astrophysics

    NASA Astrophysics Data System (ADS)

    Cherny, O. G.

    Magnetic chemically peculiar stars (CP stars) are characterized by a strong magnetic field, peculiar chemical composition and slow rotation. Since the origin and evolution of CP stars may be responsible for such unusual features, understanding the mechanisms of generation of the magnetic field is one of the ways to learn more about the CP star characteristics. At present there are two mechanisms of magnetic field generation considered in astrophysics, a fossil field hypothesis and turbulent dynamo theory. However, there is another mechanism of magnetic field generation. All the elementary particles including the most abundant, i. e. the protons, electrons, neutrons, have their own angular momenta and the corresponding magnetic momenta. Microscopic magnetic fields are determined generally by these magnetic momenta. Provided that microscopic magnetic fields are aligned, large-scale magnetic fields may be generated, which has been proved in the experiments of Barnett, Einstein and de Haas. This phenomenon is best illustrated by the experiments with iron. Analysis performed in the current study showed that all the large bodies of the Solar System have both an iron-nickel core and a magnetic field, which is proportional to the planet's core volume and its rotational velocity. We hypothesize that the reason for this phenomenon is a magnetic interaction of ferromagnetic materials, which occurred during the formation of the Solar System. We show that the magnitude of the magnetic field of the Earth and a change of magnetic field polarity can be explained by the gyromagnetic effect. In the beginning of formation of the Solar System the prospective Sun was the main attractive center. Therefore, there is a possibility that the Sun contains a massive (relative to the Earth) iron-nickel core.

  13. Magnetic Or Optical Surface Layer Would Indicate Strain

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1995-01-01

    In proposed method of obtaining information on strain at surface of material specimen, magnetic coat (like that on magnetic tape) or optical coat (like that on compact disk) applied to all or part of surface monitored. Coating layer and associated measuring equipment, taken together, constitute system called "material strain monitor" (MSM). MSM important in research in materials and mechanics; in particular, expected to compete strongly with systems based on image-analysis and laser techniques now being developed to obtain information on strain fields.

  14. The Protogalactic Origin for Cosmic Magnetic Fields

    E-print Network

    Russell M. Kulsrud; Renyue Cen; Jeremiah P. Ostriker; Dongsu Ryu

    1996-07-28

    It is demonstrated that strong magnetic fields are produced from a zero initial magnetic field during the pregalactic era, when galaxies are first forming. Their development proceeds in three phases. In the first phase, weak magnetic fields are created by the Biermann battery mechanism, acting in shocked parts of the intergalactic medium where caustics form and intersect. In the second phase, these weak magnetic fields are amplified to strong magnetic fields by the Kolmogoroff turbulence endemic to gravitational structure formation of galaxies. During this second phase, the magnetic fields reach saturation with the turbulent power, but they are coherent only on the scale of the smallest eddy. In the third phase, the magnetic field strength increases to equipartition with the turbulent energy, and the coherence length of the magnetic fields increases to the scale of the largest turbulent eddy, comparable to the scale of the entire galaxy. The resulting magnetic field represents a galactic magnetic field of primordial origin. No further dynamo action is necessary, after the galaxy forms, to explain the origin of magnetic fields. However, the magnetic field may be altered by dynamo action once the galaxy and the galactic disk have formed. It is first shown by direct numerical simulations, that thermoelectric currentsassociated with the Biermann battery, build the field up from zero to $10^{-21}$ G in the regions about to collapse into galaxies, by $z\\sim3$. For weak fields, in the absence of dissipation, the cyclotron frequency ${\\bf \\omega_{cyc}}=e{\\bf B } /m_H c $ and $ {\\bf \\omega}/(1+ \\chi )$, where ${\\bf \\omega = \

  15. Absorption spectra of graphene nanoribbons in a composite magnetic field

    NASA Astrophysics Data System (ADS)

    Li, T. S.; Wu, M. F.; Hsieh, C. T.

    2015-10-01

    The low-frequency optical absorption properties of graphene nanoribbons in a composite magnetic field are investigated by using the gradient approximation. The spectral function exhibits symmetric delta-function like prominent peaks structure in a uniform magnetic field, and changes to asymmetric square-root divergent peaks structure when subjecting to a composite field. These asymmetric divergent peaks can be further classified into principal and secondary peaks. The spectral intensity and frequency of the absorption peaks depend sensitively on the strength and modulation period of the composite field. The transition channels of the absorption peaks are also analyzed. There exists an optical selection rule which is caused by the orthogonal properties of the sublattice wave functions. The evolution of the spectral frequency of the absorption peaks with the field strength is explored.

  16. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  17. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  18. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  19. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  20. Static uniform magnetic fields and amoebae

    SciTech Connect

    Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.

    1997-03-01

    Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

  1. Magneto-optical studies of magnetization processes in high-Tc superconductors structure.

    SciTech Connect

    Vlasko-Vlasox, V. K.

    1998-12-02

    Magneto-optical imaging is a powerful tool for nondestructive quality control and scientific research through visualization of magnetic fields around any magnetic flux or current carrying sample. It allows real time observations of domain structures and their transformations in magnetics, static and dynamic field patterns due to inhomogeneous currents in electric circuits and superconductors, and reveals distortions of the fields due to defects. In addition to qualitative pictures showing different details in the intensities of the magneto-optical images, one can obtain quantitative maps of field distributions and retrieve values of the underlying currents or magnetization variations. In this review we discuss the advantages of magneto-optics for studies of superconductors, show its place among other techniques, and report recent results in magneto-optical investigations of high temperature superconductors (HTS).

  2. Thermal and high magnetic field treatment of materials and associated apparatus

    DOEpatents

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2010-06-29

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  3. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1991-01-01

    The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

  4. Magnetic field effects on plasma ionization balance

    SciTech Connect

    Weisheit, J.C.

    1995-12-31

    Magnetic fields give rise to several phenomena that can significantly affect ionization balance in a plasma. Theoretical models commonly used to determine the charge state distribution (viz., ) of ions in non-magnetized plasmas are reviewed first, for both equilibrium and non-equilibrium situations. Then, after a brief survey of laboratory and cosmic plasmas with strong fields, B > 10{sup 6} Gauss, some of the ways such magnetic fields influence are highlighted. Most key problems have yet to be tackled.

  5. Minimizing magnetic fields for precision experiments

    NASA Astrophysics Data System (ADS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  6. Magneto-optic studies of magnetic oxides

    NASA Astrophysics Data System (ADS)

    Gehring, Gillian A.; Alshammari, Marzook S.; Score, David S.; Neal, James R.; Mokhtari, Abbas; Fox, A. Mark

    2012-10-01

    A brief review of the use of magneto-optic methods to study magnetic oxides is given. A simple method to obtain the magnetic circular dichroism (MCD) of a thin film on a transparent substrate is described. The method takes full account of multiple reflections in the film and substrate. Examples of the magneto-optic spectra of Co-doped ZnO, Fe3O4, and GdMnO3 are given. The Maxwell-Garnett method is used to describe the effects of metallic cobalt inclusions in Co:ZnO samples, and the change of the MCD spectra of Fe3O4 at the Verwey temperature is discussed. Data showing different MCD signals at different energies is presented for GdMnO3.

  7. Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection

    DOEpatents

    Xu,Shoujun (Berkeley, CA); Lowery, Thomas L. (Belmont, MA); Budker, Dmitry (El Cerrito, CA); Yashchuk, Valeriy V. (Richmond, CA); Wemmer, David E. (Berkeley, CA); Pines, Alexander (Berkeley, CA)

    2009-08-11

    A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

  8. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  9. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  10. Five years of magnetic field management

    SciTech Connect

    Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

    1995-01-01

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors` experiences and shows the results of the specific projects completed in recent years.

  11. Magnetic fields in anisotropic relativistic stars

    E-print Network

    Vladimir Folomeev; Vladimir Dzhunushaliev

    2015-02-28

    Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.

  12. Magnetic Fields in the Milky Way

    NASA Astrophysics Data System (ADS)

    Haverkorn, Marijke

    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.

  13. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2013-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  14. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  15. High-field magnetization of polycrystalline praseodymium

    SciTech Connect

    Leyarovski, E.; Mrachkov, J.; Gilewski, A.; Mydlarz, T.

    1987-06-01

    The field dependence of the induced magnetic moment in polycrystalline Pr is studied in impulse magnetic fields up to 45 T at 4.2 K and in stationary magnetic fields up to 18 T at 20 and 30 K. No anomalies in the magnetization have been observed which might be associated with the metamagnetic phase transition in single crystals at 31.5 T (K. A. McEwen, G. J. Cock, L. W. Roeland, and A. R. Mackinstosh, Phys. Rev. Lett. 30, 287 (1973)), as well as with any changes of the orientation of the magnetic moments characteristic for an antiferromagnetic. The observed magnetization is satisfactorily described using a molecular field Hamiltonian including the crystal electric field potential, exchange interactions, and Zeeman-effect term.

  16. High-field magnetization of polycrystalline praseodymium

    NASA Astrophysics Data System (ADS)

    Leyarovski, E.; Mrachkov, J.; Gilewski, A.; Mydlarz, T.

    1987-06-01

    The field dependence of the induced magnetic moment in polycrystalline Pr is studied in impulse magnetic fields up to 45 T at 4.2 K and in stationary magnetic fields up to 18 T at 20 and 30 K. No anomalies in the magnetization have been observed which might be associated with the metamagnetic phase transition in single crystals at 31.5 T [K. A. McEwen, G. J. Cock, L. W. Roeland, and A. R. Mackinstosh, Phys. Rev. Lett. 30, 287 (1973)], as well as with any changes of the orientation of the magnetic moments characteristic for an antiferromagnetic. The observed magnetization is satisfactorily described using a molecular field Hamiltonian including the crystal electric field potential, exchange interactions, and Zeeman-effect term.

  17. Image-Optimized Coronal Magnetic Field Reconstructions

    NASA Astrophysics Data System (ADS)

    Jones, S. I.; Davila, J. M.; Uritsky, V. M.

    2014-12-01

    The magnetic field dominates many of the most important and puzzling processes in the corona. In the absence of direct measurements, solar physicists have struggled for decades to accurately reconstruct the coronal magnetic field using photospheric magnetograms. Even with today's excellent magnetographs, these reconstructions are plagued by several problems, among them long computation time, and poor agreement with the structures seen in EUV and coronagraph images. However no method exists for systematically improving the agreement between coronal images and magnetic reconstructions. Solar Orbiter and Solar Probe Plus will bring us closer to the sun we have ever been before, but taking full advantage of that opportunity requires accurate coronal magnetic field reconstructions so that we can connect the in situ observations offered by these unique missions to magnetic sources at the surface of the Sun. In this study we propose a method to improve coronal magnetic field reconstructions by optimizing agreement between the reconstructed field and white-light coronagraph images.

  18. Vacuum magnetic linear birefringence using pulsed fields: the BMV experiment

    E-print Network

    A. Cadène; P. Berceau; M. Fouché; R. Battesti; C. Rizzo

    2013-11-22

    We present the current status of the BMV experiment. Our apparatus is based on an up-to-date resonant optical cavity coupled to a transverse magnetic field. We detail our data acquisition and analysis procedure which takes into account the symmetry properties of the raw data with respect to the orientation of the magnetic field and the sign of the cavity birefringence. The measurement result of the vacuum magnetic linear birefringence k_\\mathrm{CM}$ presented in this paper was obtained with about 200 magnetic pulses and a maximum field of 6.5\\,T, giving a noise floor of about $8 \\times 10^{-21}$\\,T$^{-2}$ at $3\\sigma$ confidence level.

  19. The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Nakotte, Heinz

    2001-11-01

    The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

  20. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    DOEpatents

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  1. Pulsed field probe of real time magnetization dynamics in magnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Foulkes, T.; Syed, M.; Taplin, T.

    2015-05-01

    Magnetic nanoparticles (MNPs) are extensively used in biotechnology. These applications rely on magnetic properties that are a keen function of MNP size, distribution, and shape. Various magneto-optical techniques, including Faraday Rotation (FR), Cotton-Mouton Effect, etc., have been employed to characterize magnetic properties of MNPs. Generally, these measurements employ AC or DC fields. In this work, we describe the results from a FR setup that uses pulsed magnetic fields and an analysis technique that makes use of the entire pulse shape to investigate size distribution and shape anisotropy. The setup employs a light source, polarizing components, and a detector that are used to measure the rotation of light from a sample that is subjected to a pulsed magnetic field. This magnetic field "snapshot" is recorded alongside the intensity pulse of the sample's response. This side by side comparison yields useful information about the real time magnetization dynamics of the system being probed. The setup is highly flexible with variable control of pulse length and peak magnitude. Examining the raw data for the response of bare Fe3O4 and hybrid Au and Fe3O4 nanorods reveals interesting information about Brownian relaxation and the hydrodynamic size of these nanorods. This analysis exploits the self-referencing nature of this measurement to highlight the impact of an applied field on creating a field induced transparency for a longitudinal measurement. Possible sources for this behavior include shape anisotropy and field assisted aggregate formation.

  2. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  3. From optical magnetic resonance to dielectric nanophotonics (A review)

    NASA Astrophysics Data System (ADS)

    Savelev, R. S.; Makarov, S. V.; Krasnok, A. E.; Belov, P. A.

    2015-10-01

    The current state of research in the field of dielectric nanophotonics has been reviewed. "Dielectric nanophotonics" is considered to mean the field of science that studies the interaction of light with nanostructures composed of dielectric nanoparticles with a high value of the refractive index (high-index). These nanostructures allow to control not only the electric but also the magnetic component of light at the nanoscale. Optical properties of high-index dielectric nanoparticles are described; studies devoted to the development of dielectric nanophotonics devices, such as dielectric discrete waveguides, dielectric nanoantennas, and oligomers have been reviewed, and various methods of their preparation have been discussed.

  4. Resonant Magnetic Field Sensors Based On MEMS Technology

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  5. Graphene Nanoribbon in Sharply Localized Magnetic Fields

    E-print Network

    Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal

    2013-03-20

    We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.

  6. Control of magnetism by electric fields

    NASA Astrophysics Data System (ADS)

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

  7. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  8. Magnetic field evolution of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ?, r ? ?-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B??1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/?)-1. The characteristic time of decreasing of the magnetic field ? is equal to ? ? 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  9. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  10. Path planning using optically computed potential fields

    NASA Technical Reports Server (NTRS)

    Reid, Max B.

    1993-01-01

    An algorithm for the optical computation of potential field maps suitable for mobile robot navigation is described and experimentally produced maps and paths are presented. The parallel analog optical computation employs a two-dimensional spatial light modulator on which an image of the potential field map is generated. Optically calculated fields contain no local minima, tend to produce paths centered in gaps between obstacles, and produce paths which give preference to wide gaps. Calculation of 128 x 128 pixel fields at a few hertz are possible with current technology, and calculation time vs. map size scales favorably in comparison to digital electronic computation.

  11. Energy of magnetic moment of superconducting current in magnetic field

    NASA Astrophysics Data System (ADS)

    Gurtovoi, V. L.; Nikulov, A. V.

    2015-09-01

    The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment.

  12. Magnetic field perturbations in the systems where only poloidal magnetic field is present*

    E-print Network

    magnetic field is present). Examples include FRC, levitated dipoles, and long diffuse pinches. We consider · Small perturbations in the general geometry · Uniform magnetic field imposed on the levitated dipole an infinitesimal perturbation causes a dramatic change of the magnetic topology: without perturbations, each field

  13. The National High Magnetic Field Laboratory

    NASA Astrophysics Data System (ADS)

    Jaime, M.; Lacerda, A.; Takano, Y.; Boebinger, G. S.

    2006-11-01

    The National High Magnetic Field Laboratory, established in 1990 with support from the National Science Foundation, the State of Florida, and the US Department of Energy, is a facility open to external users around the world. The experimental capabilities are distributed in three campuses. In Tallahassee, Florida, continuous magnetic fields are produced by means of superconducting and resistive magnets reaching fields of up to 33T (resistive), and 45T (hybrid). EMR, ICR, and a 900MHz wide bore NMR magnet are also available. The facility in Gainesville, Florida, is devoted to generating extremely low temperatures in the presence of external magnetic fields (15T, down to 0.4mK), and large MRI imaging capabilities. In Los Alamos, New Mexico, a 9 kV-capable capacitor bank and a number of different liquid Nitrogen-cooled resistive magnets produce repetitive pulses up to 75 T and now a single-shot pulsed up to 300T.

  14. Diffusion of magnetic field via turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar.

  15. Magnetic fields in the early Universe

    NASA Astrophysics Data System (ADS)

    Grasso, D.; Rubinstein, H. R.

    2001-07-01

    This review concerns the origin and the possible effects of magnetic fields in the early Universe. We start by providing the reader with a short overview of the current state of the art of observations of cosmic magnetic fields. We then illustrate the arguments in favor of a primordial origin of magnetic fields in the galaxies and in the clusters of galaxies. We argue that the most promising way to test this hypothesis is to look for possible imprints of magnetic fields on the temperature and polarization anisotropies of the cosmic microwave background radiation (CMBR). With this purpose in mind, we provide a review of the most relevant effects of magnetic fields on the CMBR. A long chapter of this review is dedicated to particle-physics-inspired models which predict the generation of magnetic fields during the early Universe evolution. Although it is still unclear if any of these models can really explain the origin of galactic and intergalactic magnetic fields, we show that interesting effects may arise anyhow. Among these effects, we discuss the consequences of strong magnetic fields on the big-bang nucleosynthesis, on the masses and couplings of the matter constituents, on the electroweak phase transition, and on the baryon and lepton number violating sphaleron processes. Several intriguing common aspects, and possible interplay, of magnetogenesis and baryogenesis are also discussed.

  16. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  17. Magnetic Field Structure in Molecular Clouds by Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Su, B. H.; Eswaraiah, C.; Pandey, A. K.; Wang, C. W.; Lai, S. P.; Tamura, M.; Sato, S.

    2015-03-01

    We report on a program to delineate magnetic field structure inside molecular clouds by optical and infrared polarization observations. An ordered magnetic field inside a dense cloud may efficiently align the spinning dust grains to cause a detectable level of optical and near-infrared polarization of otherwise unpolarized background starlight due to dichroic extinction. The near-infrared polarization data were taken by SIRPOL mounted on IRSF in SAAO. Here we present the SIRPOL results in RCW 57, for which the magnetic field is oriented along the cloud filaments, and in Carina Nebula, for which no intrinsic polarization is detected in the turbulent environment. We further describe TRIPOL, a compact and efficient polarimer to acquire polarized images simultaneously at g', r', and i' bands, which is recently developed at Nagoya University for adaption to small-aperture telescopes. We show how optical observations probe the translucent outer parts of a cloud, and when combining with infrared observations probing the dense parts, and with millimeter and submillimeter observations to sutdy the central embedded protostar, if there is one, would yield the magnetic field structure on different length scales in the star-formation process.

  18. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  19. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O. (Mountain View, CA)

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  20. Structure of magnetic fields in intracluster cavities

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, Konstantinos Nektarios; Braithwaite, Jonathan; Lyutikov, Maxim

    2010-12-01

    Observations of clusters of galaxies show ubiquitous presence of X-ray cavities, presumably blown by the active galactic nuclei (AGN) jets. We consider magnetic field structures of these cavities. Stability requires that they contain both toroidal and poloidal magnetic fields, while realistic configurations should have vanishing magnetic field on the boundary. For axisymmetric configurations embedded in unmagnetized plasma, the continuity of poloidal and toroidal magnetic field components on the surface of the bubble then requires solving the elliptical Grad-Shafranov equation with both Dirichlet and Neumann boundary conditions. This leads to a double eigenvalue problem, relating the pressure gradients and the toroidal magnetic field to the radius of the bubble. We have found fully analytical stable solutions. This result is confirmed by numerical simulation. We present synthetic X-ray images and synchrotron emission profiles and we evaluate the rotation measure for radiation transversing the bubble.

  1. Magnetic fields in Neutron Stars

    E-print Network

    Viganò, Daniele; Miralles, Juan A; Rea, Nanda

    2015-01-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  2. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  3. Diffusion in Electronegative Discharges with Magnetic Fields.

    NASA Astrophysics Data System (ADS)

    Bell, David Eugene

    Electronegative plasmas are important in a variety of electric discharge applications, such as plasma reactors, negative ion sources, and even electropositive discharges when contaminated with an electronegative impurity. The need for an understanding of the processes and phenomena associated with these electronegative discharges has spurred the development of numerical simulations and models. While many of the devices incorporate various configurations of external magnetic fields, specific attention to the influence of the magnetic field on the discharge operating point, structure, and stability is lacking. To address this deficiency, a collisional model for diffusion in three -component plasmas with an applied magnetic field is developed; it is an extension of Schottky theory allowing for negative ions and a magnetic field. This study analyzes the effect of magnetic fields on diffusion in three-component plasmas; provides an analytic solution for the collisional model in a magnetic field; evaluates the validity of effective diffusion coefficients through an analysis of the afterglow; and provides a regime of validity for the model in terms of magnetic field strength by analytically establishing the critical magnetic field for the onset of "anomalous" diffusion. When a discharge operating at constant current is subjected to an increase in axial magnetic field, the ionization frequency decreases more rapidly in an electronegative discharge than an electropositive discharge, due to negative ions reducing the ambipolar electric field. The model is compared qualitatively to a hydrogen discharge and quantitatively to a sulfur hexafluoride discharge with good agreement. The time-dependent model shows that, for a hydrogen discharge, one can obtain an enhancement of the negative ion density in the afterglow. Electronegative discharges are more unstable with respect to the helical mode instability than electropositive discharges, due to the larger axial electric field and weaker ambipolar electric field in an electronegative discharge.

  4. Pulsed field magnetization characteristics of a holed superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Yokoyama, K.; Igarashi, R.; Togasaki, R.; Oka, T.

    2015-11-01

    We have proposed a holed superconducting bulk magnet to trap the magnetic field efficiently in the high-performance material excited by pulsed field magnetization. Previously, a single pulsed field was applied with varying amplitudes of the magnetic fields and temperatures to a GdBCO bulk material with four 2-mm-diameter holes, and the time responses of flux density on the bulk surface and trapped field distributions were measured. The experimental results suggested that the number of holes was too high because a large distortion appeared in the trapped field distributions. In this paper, we processed only a single hole with a different hole size and investigated the magnetization characteristics. After estimating the trapped field performance by applying a single pulsed field with varying its amplitude and temperature in the original material, a 1-mm-diameter hole was drilled; then the hole was extended to 2 mm in diameter, and the same experiments were carried out in each sample. A total magnetic flux of both 1-mm-diameter hole and 2-mm-diameter hole samples was about 10 percent higher than that of a four-hole sample at a low temperature. On the other hand, the value of a 2-mm-diameter hole sample was the same as that of a four-hole sample at a high temperature. The experimental results suggested that about 1 mm in diameter was proper for the hole size.

  5. Exoplanet Magnetic Fields and Their Detectability

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tian, B. Y.; Vilim, R.

    2014-12-01

    The investigation of planetary magnetic fields in our solar system provides a wealth of information on planetary interior structure and dynamics. Satellite magnetic data demonstrates that planetary dynamos can produce a range of magnetic field morphologies and intensities. Numerical dynamo simulations are working towards determining relationships between planetary properties and the resulting magnetic field characteristics. However, with only a handful of planetary dynamos in our solar system, it is challenging to determine specific dependence of magnetic field properties on planetary characteristics. Extrasolar planets therefore provide a unique opportunity by significantly increasing the number of planets for study as well as offering a much larger range of planetary properties to investigate. Although detection of exoplanet magnetic fields is challenging at present, the increasing sophistication of observational tools available to astronomers implies these extrasolar planetary magnetic fields may eventually be detectable. This presentation will discuss potential observational trends for magnetic field strength and morphology for exoplanets based on numerical simulations and interior structure modeling. We will focus on the influence of planetary age, environment, composition and structure.

  6. The magnetic field of ? Orionis A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J.-C.; Rivinius, Th.

    2015-10-01

    Context. ? Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. Aims: We aim at verifying the presence of a magnetic field in ? Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field. Methods: Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the least-squares deconvolution technique to extract the magnetic information. Results: We confirm that ? Ori A is magnetic. We find that the supergiant component ? Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~140 G. Because the magnetic field is weak and the stellar wind is strong, ? Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion ? Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ~300 G. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.Appendix A is available in electronic form at http://www.aanda.org

  7. Perpendicular magnetic fields in cantilever beam magnetometry

    NASA Astrophysics Data System (ADS)

    Koch, R.; Das, A. K.; Yamaguchi, H.; Pampuch, C.; Ney, A.

    2004-09-01

    Cantilever beam magnetometry is a common technique to determine the magnetoelastic (ME) coupling constants of thin films by measuring the stress that develops when the film magnetization is changed. In cantilever beam experiments performed so far the film magnetization was mainly rotated within the film plane. Here we discuss the measurement of the ME coupling constants, when the magnetizing field is chosen so that it rotates the film magnetization out of the film plane. A major stress contribution, which arises additionally to the ME stress, originates in the torque that magnetic dipoles experience in a magnetic field. In order to separate torque effects from ME contributions in cantilever beam experiments a general method is proposed. With this method the ME coupling constants can be quantitatively determined and furthermore the film magnetization as well as its perpendicular anisotropy constant are obtained quantitatively.

  8. Magnetic-field-controlled reconfigurable semiconductor logic.

    PubMed

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

    2013-02-01

    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices. PMID:23364687

  9. Field Mapping System for Solenoid Magnet

    NASA Astrophysics Data System (ADS)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  10. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

  11. Dipole-magnet field models based on a conformal map

    NASA Astrophysics Data System (ADS)

    Walstrom, P. L.

    2012-10-01

    In general, generation of charged-particle transfer maps for conventional iron-pole-piece dipole magnets to third and higher order requires a model for the midplane field profile and its transverse derivatives (soft-edge model) to high order and numerical integration of map coefficients. An exact treatment of the problem for a particular magnet requires use of measured magnetic data. However, in initial design of beam transport systems, users of charged-particle optics codes generally rely on magnet models built into the codes. Indeed, if maps to third order are adequate for the problem, an approximate analytic field model together with numerical map coefficient integration can capture the important features of the transfer map. The model described in this paper is based on the fact that, except at very large distances from the magnet, the magnetic field for parallel pole-face magnets with constant pole gap height and wide pole faces is basically two dimensional (2D). The field for all space outside of the pole pieces is given by a single (complex) analytic expression and includes a parameter that controls the rate of falloff of the fringe field. Since the field function is analytic in the complex plane outside of the pole pieces, it satisfies two basic requirements of a field model for higher-order map codes: it is infinitely differentiable at the midplane and also a solution of the Laplace equation. It is apparently the only simple model available that combines an exponential approach to the central field with an inverse cubic falloff of field at large distances from the magnet in a single expression. The model is not intended for detailed fitting of magnetic field data, but for use in numerical map-generating codes for studying the effect of extended fringe fields on higher-order transfer maps. It is based on conformally mapping the area between the pole pieces to the upper half plane, and placing current filaments on the pole faces. An algorithm for computing the midplane field derivatives with the model is described. The model has been incorporated in the particle beam code Marylie/Impact as a special dipole-magnet type along with a tanh model with exponential falloff of the fringe field. Comparison of maps from the tanh model and the new model shows that significant differences in 3rd-order geometric terms can occur, apparently due to the extended fringe field in the new model.

  12. Organic magnetoelectroluminescence for room temperature transduction between magnetic and optical information.

    PubMed

    Macià, Ferran; Wang, Fujian; Harmon, Nicholas J; Kent, Andrew D; Wohlgenannt, Markus; Flatté, Michael E

    2014-01-01

    Magnetic and spin-based technologies for data storage and processing provide unique challenges for information transduction to light because of magnetic metals' optical loss, and the inefficiency and resistivity of semiconductor spin-based emitters at room temperature. Transduction between magnetic and optical information in typical organic semiconductors poses additional challenges, as the spin-orbit interaction is weak and spin injection from magnetic electrodes has been limited to low temperature and low polarization efficiency. Here we demonstrate room temperature information transduction between a magnet and an organic light-emitting diode that does not require electrical current, based on control via the magnet's remanent field of the exciton recombination process in the organic semiconductor. This demonstration is explained quantitatively within a theory of spin-dependent exciton recombination in the organic semiconductor, driven primarily by gradients in the remanent fringe fields of a few nanometre-thick magnetic film. PMID:24736418

  13. External-field-free magnetic biosensor

    SciTech Connect

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6?dB from one iron oxide magnetic nanoparticle with 8?nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200?nm?×?200?nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3?dB is achieved for 30??l magnetic nanoparticles suspension (30?nm iron oxide particles, 1?mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  14. Decay of Resonaces in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2015-08-01

    We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of K±*, K0* vector mesons as well as ?* (1520) and ?0* baryonic states is considered in static fields 1013-1015 T. In particular, n = 0 Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from ?0(770) mesons may occur if strong decay channel ?0 ? ?+?- is significantly suppressed. CP - violating ?+?- decays of pseudoscalar ?c and ?(547) mesons in the magnetic field are discussed, and superpositions of quarkonium states ?c,b and ?c,b(nP) with ?(nS), ?(nS) mesons in the external field are considered.

  15. Cyclic behavior of solar inter-network magnetic field

    E-print Network

    Jin, Chunlan

    2015-01-01

    Solar inter-network magnetic field is the weakest component of solar magnetism, but contributes most of the solar surface magnetic flux. The study on its origin has been constrained by the inadequate tempo-spatial resolution and sensitivity of polarization observations. With dramatic advances in spatial resolution and detective sensitivity, solar spectro-polarimetry provided by the Solar Optical Telescope aboard Hinode in an interval from solar minimum to maximum of cycle 24 opens an unprecedented opportunity to study the cyclic behavior of solar inter-network magnetic field. More than 1000 Hinode magnetograms observed from 2007 January to 2014 August are selected in the study. It has been found that there is a very slight correlation between sunspot number and magnetic field at the inter-network flux spectrum. From solar minimum to maximum of cycle 24, the flux density of solar inter-network field is invariant, which is 10$\\pm1$ G. The observations suggest that the inter-network magnetic field does not arise...

  16. Skyrmion in a uniform magnetic field

    E-print Network

    He, Bing-Ran

    2015-01-01

    We investigate the skyrmion properties in a uniform magnetic field. Based on the symmetry of the system, we propose an axially symmetric ansatz of a soliton for studying the skyrmion properties. We show the baryon number is always conserved even in a nonzero magnetic background. We find that with increasing magnetic field strength, the static mass of the skyrmion first decreases and then increases as the dominant role shifts from the linear term of the magnetic field to the quadratic term of the magnetic field. On the other hand, the soliton size first increases and then decreases as the magnetic field strength increases. We find that the distribution of the baryon number density and energy density is anisotropic in a uniform magnetic background. Furthermore, the x- and z-axis projection of the radius of the baryon number density is strongly dependent on the increase of the magnetic field, while the energy density does not have this dependency. Finally, in the core part of the magnetar, the equation of state ...

  17. Surface magnetic fields across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Landstreet, John D.

    2015-10-01

    The past 20 years have seen remarkable advances in spectropolarimetric instrumentation that have allowed us, for the first time, to identify some magnetic stars in most major stages of stellar evolution. We are beginning to see the broad outline of how such fields change during stellar evolution, to confront theoretical hypotheses and models of magnetic field structure and evolution with detailed data, and to understand more of the ways in which the presence of a field in turn affects stellar structure and evolution.

  18. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  19. Tuning permanent magnets with adjustable field clamps

    SciTech Connect

    Schermer, R.I.

    1987-01-01

    The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius.

  20. Magnetic fields near Mars - First results

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Schwingenschuh, K.; Moehlmann, D.; Oraevskii, V. N.; Eroshenko, E.; Slavin, J.

    1989-01-01

    The magnetic fields of Mars have been measured from Phobos 2 with high temporal resolution in the tail and down to an 850-km altitude. During four successive highly elliptical orbits, the position of the bow shock as well as that of a transition layer, the 'planetopause', were identified. Subsequent circular orbits at 6000-km altitude provided the first high-resolution data in the planetary tail and indicate that the interplanetary magnetic field mainly controls the magnetic tail. Magnetic turbulence was also detected when the spacecraft crossed the orbit of Phobos, indicating the possible existence of a torus near the orbit of this moon.

  1. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  2. Field-Sensitive Materials for Optical Applications

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Little, Mark

    2002-01-01

    The purpose of investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD (Department of Defense) applications such as: membrane optics, filters for LIDARs (Light Detection and Ranging), windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, flat-panel displays, etc. The proposed idea is based on the quantum-dots (QD) array or thin-film of field-sensitive Stark and Zeeman materials and the bound excitonic state of organic crystals that will offer optical adaptability and reconfigurability. Major tasks are the development of concept demonstration article and test data of field-controlled spectrally smart active optics (FCSAO) for optical multi-functional capabilities on a selected spectral range.

  3. Pulsed field magnets at the United States National High Magnetic Field Laboratory

    SciTech Connect

    Campbell, L.J.; Parkin, D.M.; Crow, J.E.; Schneider-Muntau, H.J.; Sullivan, N.S.

    1993-11-01

    The pulsed field facility of the National High Magnetic Field Laboratory (NHMFL) consists of four components. Now available are (1) explosive driven flux compression, (2) capacitor-driven magnets, and (3) a 20 T superconducting magnet. The fourth component, a 60 T quasi-continuous magnet, has been designed and is scheduled for installation in early 1995. All magnets have He-4 cryostats giving temperatures from room temperature (RT) to 2.2--1.5 K. Dilution refrigerators for the superconducting 20 T magnet and the 50 T pulsed magnet will be installed by early 1994. A wide range of experiments has been completed within the past year.

  4. Motion Field and Optical Flow: Qualitative Properties

    E-print Network

    Verri, Alessandro

    1986-12-01

    In this paper we show that the optical flow, a 2D field that can be associated with the variation of the image brightness pattern, and the 2D motion field, the projection on the image plane of the 3D velocity field of ...

  5. Force measurements in magnetic bearings using fiber optic strain gauges 

    E-print Network

    Raymer, Stephen Geoffrey

    2000-01-01

    The research presented here develops a new method for measuring forces in magnetic bearings. Fiber-optic strain gauges (FOSGs) mounted to the side of the magnet poles are used to detect the small levels of strain that the ...

  6. Diffusion in electronegative discharges with magnetic fields

    NASA Astrophysics Data System (ADS)

    Bell, David E.

    1993-12-01

    Electronegative plasmas are important in a variety of electric discharge applications, such as plasma reactors, negative ion sources, and even electropositive discharges when contaminated with an electronegative impurity. The need for an understanding of the processes and phenomena associated with these electronegative discharges has spurred the development of numerical simulations and models. While many of the devices incorporate various configurations of external magnetic fields, specific attention to the influence of the magnetic field on the discharge operating point, structure, and stability is lacking. To address this deficiency, a collisional model for diffusion in three-component plasmas with an applied magnetic field is developed; it is an extension of Schottky theory allowing for negative ions and a magnetic field. This study analyzes the effect of magnetic fields on diffusion in three-component plasmas; provides an analytic solution for the collisional model in a magnetic field; evaluates the validity of effective diffusion coefficients through an analysis of the afterglow; and provides a regime of validity for the model in terms of magnetic field strength by looking at the onset of anomalous diffusion.

  7. The CMS Magnetic Field Map Performance

    E-print Network

    V. I. Klyukhin; N. Amapane; V. Andreev; A. Ball; B. Curé; A. Hervé; A. Gaddi; H. Gerwig; V. Karimaki; R. Loveless; M. Mulders; S. Popescu; L. I. Sarycheva; T. Virdee

    2011-10-04

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field values. The value of the field at a given point of a volume is obtained by interpolation from a regular grid of values resulting from a TOSCA calculation or, when available, from a parameterization. The results of the measurements and calculations are presented, compared and discussed.

  8. Characterization and manipulation of a high-magnetic field trap

    NASA Astrophysics Data System (ADS)

    Paradis, Eric; Raithel, Georg

    2012-06-01

    We report on the characterization of an efficient atom trap within a background magnetic field of 2.6 Tesla. Up to 10?8 Rubidium atoms are recaptured from a cold atomic beam with a 2-3% collection efficiency, in a cigar-shaped volume and cooled with a six-beam optical molasses. The aspect ratio of the trap is measured as a function of the magnetic field curvature, which can be varied to produce a range of trap shapes. The trapping lineshape is both narrow and asymmetric, as is characteristic of laser-cooling of atoms or ions in an external trapping potential. Additional features of the high magnetic field trap include cooling onto hollow shell-like structures. Simulation results are also presented.

  9. The BOES spectropolarimeter for Zeeman measurements of stellar magnetic fields

    E-print Network

    Kang-Min Kim; Inwoo Han; Gennady G. Valyavin; Sergei Plachinda; Jeong Gyun Jang; Be-Ho Jang; Hyeon Cheol Seong; Byeong-Cheol Lee; Dong-Il Kang; Byeong-Gon Park; Tae Seog Yoon; Steven S. Vogt

    2007-07-28

    We introduce a new polarimeter installed on the high-resolution fiber-fed echelle spectrograph (called BOES) of the 1.8-m telescope at the Bohyunsan Optical Astronomy Observatory, Korea. The instrument is intended to measure stellar magnetic fields with high-resolution (R $\\sim$ 60000) spectropolarimetric observations of intrinsic polarization in spectral lines. In this paper we describe the spectropolarimeter and present test observations of the longitudinal magnetic fields in some well-studied F-B main sequence magnetic stars (m_v < 8.8^m). The results demonstrate that the instrument has a high precision ability of detecting the fields of these stars with typical accuracies ranged from about 2G to a few tens of gauss.

  10. The BOES spectropolarimeter for Zeeman measurements of stellar magnetic fields

    E-print Network

    Kim, Kang-Min; Valyavin, Gennady G; Plachinda, Sergei; Jang, Jeong Gyun; Jang, Be-Ho; Seong, Hyeon Cheol; Lee, Byeong-Cheol; Kang, Dong-Il; Park, Byeong-Gon; Yoon, Tae Seog; Vogt, Steven S

    2007-01-01

    We introduce a new polarimeter installed on the high-resolution fiber-fed echelle spectrograph (called BOES) of the 1.8-m telescope at the Bohyunsan Optical Astronomy Observatory, Korea. The instrument is intended to measure stellar magnetic fields with high-resolution (R $\\sim$ 60000) spectropolarimetric observations of intrinsic polarization in spectral lines. In this paper we describe the spectropolarimeter and present test observations of the longitudinal magnetic fields in some well-studied F-B main sequence magnetic stars (m_v < 8.8^m). The results demonstrate that the instrument has a high precision ability of detecting the fields of these stars with typical accuracies ranged from about 2G to a few tens of gauss.

  11. Simulating and detecting artificial magnetic fields in trapped atoms

    E-print Network

    Matthias Rosenkranz; Alexander Klein; Dieter Jaksch

    2010-01-21

    A Bose-Einstein condensate exhibiting a nontrivial phase induces an artificial magnetic field in immersed impurity atoms trapped in a stationary, ring-shaped optical lattice. We present an effective Hamiltonian for the impurities for two condensate setups: the condensate in a rotating ring and in an excited rotational state in a stationary ring. We use Bogoliubov theory to derive analytical formulas for the induced artificial magnetic field and the hopping amplitude in the limit of low condensate temperature where the impurity dynamics is coherent. As methods for observing the artificial magnetic field we discuss time of flight imaging and mass current measurements. Moreover, we compare the analytical results of the effective model to numerical results of a corresponding two-species Bose-Hubbard model. We also study numerically the clustering properties of the impurities and the quantum chaotic behavior of the two-species Bose-Hubbard model.

  12. Rheological behavior of cellulose nanowhisker suspension under magnetic field.

    PubMed

    Kim, Dah Hee; Song, Young Seok

    2015-08-01

    We investigated the influence of a magnetic field on the rheology of cellulose nanowhisker (CNW) suspension. The morphology of CNWs was analyzed by using polarized optical microscopy (POM) and transmission electron microscopy (TEM). The findings show that the application of the magnetic field leads to an increase in shear viscosity and viscoelastic properties such as the storage and loss moduli. A mesoscale constitutive model was adopted to provide better understanding of the effect of particle concentration on the orientation of CNWs. As the concentration increases, the steric interaction between particles becomes significant and the effect of the applied magnetic field on the internal structure of the CNW suspension was reduced. In addition, the size distribution of CNWs was characterized using a light scattering method. PMID:25933545

  13. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-05-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple ``open`` configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic ``bottles,`` still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  14. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-01-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple open'' configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic bottles,'' still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  15. Magnetic Field Measurement with Ground State Alignment

    NASA Astrophysics Data System (ADS)

    Yan, Huirong; Lazarian, A.

    Observational studies of magnetic fields are crucial. We introduce a process "ground state alignment" as a new way to determine the magnetic field direction in diffuse medium. The alignment is due to anisotropic radiation impinging on the atom/ion. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1 G ? B ? 10^{-15} G). In fact, the effects of atomic/ionic alignment were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this chapter, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields in the Epoch of Reionization.

  16. Magnetic field spectrum at cosmological recombination revisited

    E-print Network

    Shohei Saga; Kiyotomo Ichiki; Keitaro Takahashi; Naoshi Sugiyama

    2015-06-03

    If vector type perturbations are present in the primordial plasma before recombination, the generation of magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard cosmological perturbation theory, non-linear couplings of first-order scalar perturbations create second-order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and extend it by newly taking into account the time evolution of purely second-order vector perturbations with a newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the product-terms of the first-order scalar modes is consistent with the result in our previous study. However, we find, both numerically and analytically, that the magnetic fields from the purely second-order vector perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the magnetic fields on small scales, $k \\gtrsim 10~h{\\rm Mpc}^{-1}$, is smaller than the previous estimates. The amplitude of the generated magnetic fields at cosmological recombination is about $B_{\\rm rec} =5.0\\times 10^{-24}~{\\rm Gauss}$ on $k = 5.0 \\times 10^{-1}~h{\\rm Mpc}^{-1}$. Finally, we discuss the reason of the discrepancies that exist in estimates of the amplitude of magnetic fields among other authors.

  17. How are static magnetic fields detected biologically?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2009-03-01

    There is overwhelming evidence that life, from bacteria to birds to bats, detects magnetic fields, using the fields for orientation or navigation. Indeed there are recent reports (based on Google Earth imagery) that cattle and deer align themselves with the earth's magnetic field. [1]. The development of frog and insect eggs are changed by high magnetic fields, probably through known physical mechanisms. However, the mechanisms for eukaryotic navigation and alignment are not clear. Persuasive published models will be discussed. Evidence, that static magnetic fields might produce therapeutic effects, will be updated [2]. [4pt] [1] S. Begall, et al., Proc Natl Acad Sci USA, 105:13451 (2008). [0pt] [2] L. Finegold and B.L. Flamm, BMJ, 332:4 (2006).

  18. Normal glow discharge in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Surzhikov, S.; Shang, J.

    2014-10-01

    Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

  19. Electric-field guiding of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.

    2015-10-01

    We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.

  20. The magnetic field of Mercury, part 1

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1974-01-01

    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

  1. Theory of cosmological seed magnetic fields

    SciTech Connect

    Saleem, H.

    2007-07-15

    A theory for the generation of seed magnetic field and plasma flow on cosmological scales driven by externally given baroclinic vectors is presented. The Beltrami-like plasma fields can grow from zero values at initial time t=0 from a nonequilibrium state. Exact analytical solutions of the set of two-fluid equations are obtained that are valid for large plasma {beta}-values as well. Weaknesses of previous models for seed magnetic field generation are also pointed out. The analytical calculations predict the galactic seed magnetic field generated by this mechanism to be of the order of 10{sup -14} G, which may be amplified later by the {alpha}{omega} dynamo (or by some other mechanism) to the present observed values of the order of {approx}(2-10) {mu}G. The theory has been applied to laser-induced plasmas as well and the estimate of the magnetic field's magnitude is in agreement with the experimentally observed values.

  2. ASYMMETRIC DIFFUSION OF MAGNETIC FIELD LINES

    SciTech Connect

    Beresnyak, Andrey

    2013-04-20

    Stochasticity of magnetic field lines is important for particle transport properties. Magnetic field lines separate faster than diffusively in turbulent plasma, which is called superdiffusion. We discovered that this superdiffusion is pronouncedly asymmetric, so that the separation of field lines along the magnetic field direction is different from the separation in the opposite direction. While the symmetry of the flow is broken by the so-called imbalance or cross-helicity, the difference between forward and backward diffusion is not directly due to imbalance, but a non-trivial consequence of both imbalance and non-reversibility of turbulence. The asymmetric diffusion perpendicular to the mean magnetic field entails a variety of new physical phenomena, such as the production of parallel particle streaming in the presence of perpendicular particle gradients. Such streaming and associated instabilities could be significant for particle transport in laboratory, space, and astrophysical plasmas.

  3. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening

    SciTech Connect

    Jiménez-Martínez, R.; Department of Physics, University of Colorado, Boulder, Colorado 80309 ; Knappe, S.; Kitching, J.

    2014-04-15

    We demonstrate an optically pumped {sup 87}Rb magnetometer in a microfabricated vapor cell based on a zero-field dispersive resonance generated by optical modulation of the {sup 87}Rb ground state energy levels. The magnetometer is operated in the spin-exchange relaxation-free regime where high magnetic field sensitivities can be achieved. This device can be useful in applications requiring array-based magnetometers where radio frequency magnetic fields can induce cross-talk among adjacent sensors or affect the source of the magnetic field being measured.

  4. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening

    E-print Network

    Jimenez-Martinez, Ricardo; Kitching, John

    2014-01-01

    We demonstrate an optically pumped $^{87}$Rb magnetometer in a microfabricated vapor cell based on a zero-field dispersive resonance generated by optical modulation of the $^{87}$Rb ground state energy levels. The magnetometer is operated in the spin-exchange relaxation-free regime where high magnetic field sensitivities can be achieved. This device can be useful in applications requiring array-based magnetometers where radio frequency magnetic fields can induce cross-talk among adjacent sensors or affect the source of the magnetic field being measured.

  5. Ultracold atoms in strong synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    2015-03-01

    The Harper Hofstadter Hamiltonian describes charged particles in the lowest band of a lattice at high magnetic fields. This Hamiltonian can be realized with ultracold atoms using laser assisted tunneling which imprints the same phase into the wavefunction of neutral atoms as a magnetic field dose for electrons. I will describe our observation of a bosonic superfluid in a magnetic field with half a flux quantum per lattice unit cell, and discuss new possibilities for implementing spin-orbit coupling. Work done in collaboration with C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton, and Woo Chang Chung.

  6. Relativistic stars with purely toroidal magnetic fields

    SciTech Connect

    Kiuchi, Kenta; Yoshida, Shijun

    2008-08-15

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  7. Texturing Nd-Fe-B magnets under high magnetic field

    NASA Astrophysics Data System (ADS)

    Rivoirard, S.; Barthem, V. M. T. S.; Bres, R.; Beaugnon, E.; de Miranda, P. E. V.; Givord, D.

    2008-08-01

    An original approach is explored in the preparation of anisotropic hard magnetic alloys. This constitutes a proof of principle toward the preparation of anisotropic bonded magnets. Nd-Fe-B ribbons (50% Nd2Fe14B+50% Nd-Cu alloy), constituted of Nd2Fe14B grains embedded in a Nd-Cu eutectic matrix, were annealed under an applied magnetic field up to 16 T at various temperatures above the Nd-Cu melting temperature. The grain orientation mechanism is described in terms of a competition between the aligning magnetic field torque acting on the solid magnetic grains and the friction counter torque at the interface between the grains and the liquid matrix. The large temperature effect on the orientation behavior is attributed to the associated increase in the liquid phase volume fraction.

  8. PHYSICAL REVIEW B 84, 155319 (2011) Nonequilibrium nuclear polarization and induced hyperfine and dipolar magnetic fields in

    E-print Network

    Flatte, Michael E.

    2011-01-01

    and dipolar magnetic fields in semiconductor nanostructures Ionel T¸ifrea1,2 and Michael E. Flatt´e2 1 be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We

  9. Dynamo Models for Saturn's Axisymmetric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tajdaran, K.

    2012-12-01

    Magnetic field measurements by the Cassini mission have confirmed the earlier Pioneer 11 and Voyager missions' results that Saturn's observed magnetic field is extremely axisymmetric . For example, Saturn's dipole tilt is less than 0.06 degrees (Cao et al., 2011) . The nearly-perfect axisymmetry of Saturn's dipole is troubling because of Cowling's Theorem which states that an axisymmetric magnetic field cannot be maintained by a dynamo. However, Cowling's Theorem applies to the magnetic field generated inside the dynamo source region and we can avert any contradiction with Cowling's Theorem if we can find reason for a non-axisymmetric field generated inside the dynamo region to have an axisymmetrized potential field observed at satellite altitude. Stevenson (1980) proposed a mechanism for this axisymmetrization. He suggested that differential rotation in a stably-stratified electrically conducting layer (i.e. the helium rain-out layer) surrounding the dynamo could act to shear out the non-axisymmetry and hence produce an axisymmetric observed magnetic field. In previous work, we used three-dimensional self-consistent numerical dynamo models to demonstrate that a thin helium rain-out layer can produce a more axisymmetrized field (Stanley, 2010). We also found that the direction of the zonal flows in the layer is a crucial factor for magnetic field axisymmetry. Here we investigate the influence of the thickness of the helium rain-out layer and the intensity of the thermal winds on the axisymmetrization of the field. We search for optimal regions in parameter space for producing axisymmetric magnetic fields with similar spectral properties to the observed Saturnian field.

  10. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  11. Magnetic Field Strengths in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Anish Roshi, D.; Jeyakumar, S.; Bania, T. M.; Montet, Benjamin T.; Shitanishi, J. A.

    2016-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 {{GHz}} toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B? 100{--}300 ? {{G}} in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B? 200{--}1000 ? {{G}}. H i and OH Zeeman measurements of the line of sight magnetic field strength ({B}{{los}}), taken from the literature, are between a factor of ? 0.5{--}1 of the lower bound of our carbon RRL magnetic field strength estimates. Since | {B}{{los}}| ?slant B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths.

  12. Intergalactic Magnetic Fields from Quasar Outflows

    E-print Network

    Steven Furlanetto; Abraham Loeb

    2001-02-05

    Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and calculate their distribution as a function of size and magnetic field strength at different redshifts. We generically find that by a redshift z=3, about 5-20% of the IGM volume is filled by magnetic fields with an energy density >10% of the mean thermal energy density of a photo-ionized IGM (at T=10^4 K). As massive galaxies and X-ray clusters condense out of the magnetized IGM, the adiabatic compression of the magnetic field could result in the field strength observed in these systems without a need for further dynamo amplification. The intergalactic magnetic field could also provide a nonthermal contribution to the pressure of the photo-ionized gas that may account for the claimed discrepancy between the simulated and observed Doppler width distributions of the Ly-alpha forest.

  13. The theory of the Galactic magnetic field

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1987-01-01

    The paper discusses the role of the magnetic field in determining the large scale structure and dynamics of the interstellar medium. It then discusses the origin and maintenance of the Galactic field. The two major competing theories are that the field is primordial and connected to an intergalactic field or that the field is removed from and regenerated within the Galaxy. Finally, cosmic ray acceleration and confinement in the interstellar medium are discussed.

  14. High Field Pulse Magnets with New Materials

    NASA Astrophysics Data System (ADS)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  15. Magnetic monopoles in field theory and cosmology.

    PubMed

    Rajantie, Arttu

    2012-12-28

    The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems. PMID:23166376

  16. Solar Nebula Magnetic Fields Recorded in the Semarkona Meteorite November 17, 2014

    E-print Network

    Walsworth, Ronald L.

    Solar Nebula Magnetic Fields Recorded in the Semarkona Meteorite November 17, 2014 Fig 1: Dusty olivine-bearing chondrules from the Semarkona meteorite. Optical photomicrograph of chondrule DOC4 showing. Fu, et al., "Solar nebula magnetic fields recorded in the Semarkona meteorite," Science DOI: 10

  17. On the helicity of open magnetic fields

    SciTech Connect

    Prior, C.; Yeates, A. R.

    2014-06-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  18. Juno and Jupiter's Magnetic Field (Invited)

    NASA Astrophysics Data System (ADS)

    Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.

    2013-12-01

    The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.

  19. The magnetic field of zeta Orionis A

    E-print Network

    Blazère, A; Tkachenko, A; Bouret, J -C; Rivinius, Th

    2015-01-01

    Zeta Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. We aim at verifying the presence of a magnetic field in zeta Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field.Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the Least-Squares Deconvolution (LSD) technique to extract the magnetic information. We confirm that zeta Ori A is magnetic. We find that the supergiant component zeta Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a per...

  20. Magnetic Field Effects in Fermion Pairings

    E-print Network

    Vivian de la Incera

    2013-07-29

    This paper considers various fermion pairings of interest for the QCD phases. The effects of an external magnetic field on the pairing mechanisms, on the realization of new condensates, and on the properties of the magnetized phases are all explored and discussed.

  1. Field and current induced magnetization reversal in patterned Pseudo Spin Valve devices

    E-print Network

    Colin, Irénée A. (Irénée Anthelme)

    2007-01-01

    The field and current induced magnetization switchings of Pseudo-Spin-Valve (PSV) devices are described in this dissertation. An aligned sequence of three (one optical and two electron-beam) lithographies was used to define ...

  2. Magnetic space-based field measurements

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1981-01-01

    Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.

  3. Interferometric methods for mapping static electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2014-02-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity Equation. Among these approaches, image-plane off-axis electron holography in the transmission electron microscope has acquired a prominent role thanks to its quantitative capabilities and broad range of applicability. After a brief overview of the main ideas and methods behind field mapping, we focus on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p-n junctions in semiconductors, quantized magnetic flux in superconductors and magnetization topographies in nanoparticles and other magnetic materials) and electron-optical geometries (including multiple biprism, amplitude and mixed-type set-ups). We conclude by highlighting the emerging perspectives of (i) three-dimensional field mapping using electron holographic tomography and (ii) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.

  4. Electrostatic waves in carbon nanotubes with an axial magnetic field

    SciTech Connect

    Abdikian, Alireza; Bagheri, Mehran

    2013-10-15

    Based on a linearized hydrodynamic model and within the quasi-static approximation, the dispersion relation of electrostatic waves propagating through single-walled carbon nanotubes subject to an axial magnetic field is theoretically explored. In the classical limit, we obtain two main possible waves which in turn are divided into two branches, a low-frequency acoustical and a high-frequency optical plasmon branch. In the quantum case, we have found that the dispersion relation is substantially modified when the electron wavelength becomes large enough compared to the propagation wavelength of the electrostatic waves in the quantum plasma. We also show that the axial magnetic field manifest itself on the perturbed electron density through the quantum term and gives rise to the propagation of the electrostatic waves within the quantum plasma. As a result, the effect of the magnetic field is pronounced in the plasma dispersion relations in such a way that their curves approach to zero when the magnetic field is weak; and for the strong magnetic field, they asymptotically meet the constant lines.

  5. Discontinuities in the magnetic field near Enceladus

    NASA Astrophysics Data System (ADS)

    Simon, Sven; Saur, Joachim; Treeck, Shari C.; Kriegel, Hendrik; Dougherty, Michele K.

    2014-05-01

    The plasma interaction of Saturn's icy moon Enceladus generates a hemisphere coupling current system that directly connects the giant planet's northern and southern polar magnetosphere. Based on Cassini magnetometer observations from all 20 targeted Enceladus flybys between 2004 and 2014, we study the magnetic field discontinuities associated with these hemisphere coupling currents. We identify a total number of 11 events during which the magnetic field was discontinuous at the surface of the Enceladus flux tube (defined by the bundle of magnetic field lines tangential to the solid body of the moon). A minimum variance analysis is applied to calculate the surface normals of these discontinuities. In agreement with theoretical expectations, the normals are found to be perpendicular to the surface of the Enceladus flux tube. The variation of the hemisphere coupling currents with Enceladean longitude leaves a clear imprint in the strengths of the observed magnetic field jumps as well.

  6. Discontinuities in the Magnetic Field near Enceladus

    NASA Astrophysics Data System (ADS)

    Simon, S.; Saur, J.; van Treeck, S.; Kriegel, H.; Dougherty, M. K.

    2014-12-01

    The plasma interaction of Saturn's icy moon Enceladus generates a hemisphere coupling current system that directly connects the giant planet's northern and southern polar magnetosphere. Based on Cassini magnetometer observations from all 20 targeted Enceladus flybys between 2004 and 2014, we study the magnetic field discontinuities associated with these hemisphere coupling currents. We identify a total number of 11 events during which the magnetic field was discontinuous at the surface of the Enceladus fluxtube (defined by the bundle of magnetic field lines tangential to the solid body of the moon). A Minimum Variance Analysis is applied to calculate the surface normals of these discontinuities. In agreement with theoretical expectations, the normals are found to be perpendicular to the surface of the Enceladus fluxtube. The variation of the hemisphere coupling currents with Enceladean longitude leaves a clear imprint in the strengths of the observed magnetic field jumps as well.

  7. Understanding the Geometry of Astrophysical Magnetic Fields

    E-print Network

    Broderick, Avery E

    2009-01-01

    Faraday rotation measurements have provided an invaluable technique with which to measure the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13 (RM/rad m^-2)^(1/4) (B/G)^(1/2) MHz, the character of Faraday rotation changes, entering what we term the ``super-adiabatic regime'' in which the rotation measure is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing rotation measures at high ...

  8. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  9. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  10. Lunar magnetic field measurements with a cubesat

    E-print Network

    Garrick-Bethell, Ian

    We have developed a mission concept that uses 3-unit cubesats to perform new measurements of lunar magnetic fields, less than 100 meters above the Moon’s surface. The mission calls for sending the cubesats on impact ...

  11. Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires.

    PubMed

    Huang, Hao-Ting; Lai, Mei-Feng; Hou, Yun-Fang; Wei, Zung-Hang

    2015-05-13

    We investigated the influence of magnetic domain walls and magnetic fields on the thermal conductivity of suspended magnetic nanowires. The thermal conductivity of the nanowires was obtained using steady-state Joule heating to measure the change in resistance caused by spontaneous heating. The results showed that the thermal conductivity coefficients of straight and wavy magnetic nanowires decreased with an increase in the magnetic domain wall number, implying that the scattering between magnons and domain walls hindered the heat transport process. In addition, we proved that the magnetic field considerably reduced the thermal conductivity of a magnetic nanowire. The influence of magnetic domain walls and magnetic fields on the thermal conductivity of polycrystalline magnetic nanowires can be attributed to the scattering of long-wavelength spin waves mediated by intergrain exchange coupling. PMID:25839230

  12. Tracing Magnetic Fields by Atomic Alignment in Extended Radiation Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong; Dong, Le

    2015-05-01

    Tracing magnetic field is crucial as magnetic field plays an important role in many astrophysical processes. Earlier studies have demonstrated that ground state alignment (GSA) is an effective way to detect a weak magnetic field (1G? B? {{10}-15} G) in a diffuse medium. We explore the atomic alignment in the presence of an extended radiation field for both absorption lines and emission lines. The alignment in the circumstellar medium, binary systems, disks, and the local interstellar medium are considered in order to study the alignment in the radiation field where the pumping source has a clear geometric structure. Furthermore, the multipole expansion method is adopted to study GSA induced in the radiation field with unidentified pumping sources. We study the alignment in the dominant radiation components of the general radiation field: the dipole and quadrupole radiation field. We discuss the approximation of GSA in a general radiation field by summing the contribution from the dipole and quadrupole radiation field. We conclude that GSA is a powerful tool for detecting weak magnetic fields in the diffuse medium in general radiation fields.

  13. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  14. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields

    NASA Astrophysics Data System (ADS)

    Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Nave, S.; Zubarev, A.; Lomenech, C.; Bashtovoi, V.

    2014-03-01

    When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 ?m) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces—the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter ? ?2), the Brownian motion seems not to affect the cloud behavior.

  15. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields

    E-print Network

    Cécilia Magnet; Pavel Kuzhir; Georges Bossis; Alain Meunier; Sebastien Nave; Andrey Zubarev; Claire Lomenech; Victor Bashtovoi

    2014-04-14

    When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in details. In experiments, dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50$\\mu$m) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces - the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter $\\alpha \\geq 2$), the Brownian motion seems not to affect the cloud behavior.

  16. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ?}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 ?m obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ?0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (? 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  17. Nonlinear diffusion waves in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Datsko, I. M.; Rybka, D. V.; Ratakhin, N. A.; Khishchenko, K. V.

    2015-11-01

    The nonlinear diffusion of a magnetic field and the large-scale instabilities arising upon an electrical explosion of conductors in a superstrong (2-3 MG) magnetic field were investigated experimentally on the MIG high-current generator (up to 2.5 peak current, 100 ns current rise time). It was observed that in the nonlinear stage of the process, the wavelength of thermal instabilities (striations) increased with a rate of 1.5-3 km/s.

  18. Magnetic Fields and Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Zhang, Qizhou; Qiu, Keping; Girart, Josep M.; (Baobab Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Li, Zhi-Yun; Keto, Eric; Ho, Paul T. P.; Rao, Ramprasad; Lai, Shih-Ping; Ching, Tao-Chung; Frau, Pau; Chen, How-Huan; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain; Csengeri, Timea; Juárez, Carmen

    2014-09-01

    Massive stars (M > 8 M ?) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 ?m obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of lsim0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (lsim 103 AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  19. Secondary resonance magnetic force microscopy using an external magnetic field for characterization of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dongzi; Mo, Kangxin; Ding, Xidong; Zhao, Liangbing; Lin, Guocong; Zhang, Yueli; Chen, Dihu

    2015-09-01

    A bimodal magnetic force microscopy (MFM) that uses an external magnetic field for the detection and imaging of magnetic thin films is developed. By applying the external modulation magnetic field, the vibration of a cantilever probe is excited by its magnetic tip at its higher eigenmode. Using magnetic nanoparticle samples, the capacity of the technique which allows single-pass imaging of topography and magnetic forces is demonstrated. For the detection of magnetic properties of thin film materials, its signal-to-noise ratio and sensitivity are demonstrated to be superior to conventional MFM in lift mode. The secondary resonance MFM technique provides a promising tool for the characterization of nanoscale magnetic properties of various materials, especially of magnetic thin films with weak magnetism.

  20. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus.

  1. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field.

    PubMed

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus. PMID:26520987

  2. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L. (Hamburg, DE)

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  3. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  4. Suppression of cooling by strong magnetic fields in white dwarf stars.

    PubMed

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-01

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young. PMID:25327247

  5. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  6. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R. (Coram, NY)

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  7. Field dependent magnetic anisotropy of Fe1-xZnx thin films

    NASA Astrophysics Data System (ADS)

    Resnick, Damon A.; McClure, A.; Kuster, C. M.; Rugheimer, P.; Idzerda, Y. U.

    2013-05-01

    Using longitudinal magneto-optical Kerr effect in combination with a variable strength rotating magnetic field, called the Rotational Magneto-Optic Kerr Effect (ROTMOKE) method, we show that the magnetic anisotropy for thin Fe82Zn18 single crystal films, grown on MgO(001) substrates, depends linearly on the strength of the applied magnetic field at low fields but is constant (saturates) at fields greater than 350 Oe. The torque moment curves generated using ROTMOKE are well fit with a model that accounts for the uniaxial and cubic anisotropy with the addition of a cubic anisotropy that depends linearly on the applied magnetic field. The field dependent term is evidence of a large effect on the effective magnetic anisotropy in Fe1-xZnx thin films by the magnetostriction.

  8. Asymptotic freedom in strong magnetic fields.

    PubMed

    Andreichikov, M A; Orlovsky, V D; Simonov, Yu A

    2013-04-19

    Perturbative gluon exchange interaction between quark and antiquark, or in a 3q system, is enhanced in a magnetic field and may cause vanishing of the total qq[over ¯] or 3q mass, and even unlimited decrease of it-recently called the magnetic collapse of QCD. The analysis of the one-loop correction below shows a considerable softening of this phenomenon due to qq[over ¯] loop contribution, similar to the Coulomb case of QED, leading to approximately logarithmic damping of gluon exchange interaction (?O(1/ln|eB|)) at large magnetic field. PMID:23679595

  9. Magnetic Field Apparatus (MFA) Hardware Test

    NASA Technical Reports Server (NTRS)

    Anderson, Ken; Boody, April; Reed, Dave; Wang, Chung; Stuckey, Bob; Cox, Dave

    1999-01-01

    The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.

  10. Magneto-optical imaging of magnetic domain pattern produced by intense femtosecond laser pulse irradiation

    NASA Astrophysics Data System (ADS)

    Sinha, Jaivarhan; Mohan, Shyam; Banerjee, S. S.; Kahaly, S.; Kumar, G. Ravindra

    2009-03-01

    An important and intriguing area of research is laser plasma generated giant magnetic field pulses. Interaction of ultrashort high intensity laser pulses with matter involves several mechanisms for generating ultrastrong magnetic fields. By irradiating a magnetic recordable tape constituting of ?-Fe2O3 particles with an intense p-polarized femtosecond laser pulses (˜ 10^16 W cm-2, 100fs), we have found complex magnetic field patterns stored in the tape. We image the local magnetic field distribution around the irradiated region [1] using the high sensitivity magneto-optical imaging technique. We understand the complex magnetic domains patterns recoded on the tape in terms of interesting instabilities [1] generated in the plasma produced during the irradiation of the tape with intense laser pulses. [0pt] [1] Jaivardhan Sinha, Shyam Mohan, S. S Banerjee, S. Kahaly, G. Ravindra Kumar, Phys. Rev. E 77, 046118(2008). *satyajit@iitk.ac.in

  11. Magnetic phases of a highly frustrated magnet, ZnCr2O4, up to an ultrahigh magnetic field of 600 T.

    PubMed

    Miyata, Atsuhiko; Ueda, Hiroaki; Ueda, Yutaka; Sawabe, Hironobu; Takeyama, Shojiro

    2011-11-11

    The Faraday rotation and magneto-optical absorption spectral measurements were conducted to reveal the full-magnetization process and map out a magnetic phase diagram of a typical geometrical frustrated magnet, ZnCr(2)O(4), by using the electro-magnetic flux compression method in ultrahigh magnetic fields up to 600 T. A fully polarized ferromagnetic phase is observed in which the absorption spectra associated with an exciton-magnon-phonon transition disappears. Furthermore, prior to the fully polarized ferromagnetic phase above 410 T, we found a novel magnetic phase above 350 T at 4.6 K followed by a canted 3?1 phase. PMID:22181764

  12. Fast Reconnection of Weak Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1998-01-01

    Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.

  13. Magnetic fields in early-type stars

    NASA Astrophysics Data System (ADS)

    Grunhut, Jason H.; Neiner, Coralie

    2015-10-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M ?) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have furthered our understanding of the interactions between the magnetic field and stellar wind, as well as the consequences and connections of this interaction with other observed phenomena.

  14. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect

    Canabal, A.; Tajima, T.; Dolgashev, V.A.; Tantawi, S.G.; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  15. Magnetically driven microconvective instability of optically induced concentration grating in ferrofluids

    NASA Astrophysics Data System (ADS)

    Zablotsky, Dmitry; Blums, Elmars

    2011-08-01

    In this paper, we consider a concentration grating of magnetic nanoparticles optically induced by thermodiffusion in a layer of ferrofluid in the presence of the external homogeneous magnetic field. The applied field is directed along the concentration gradient and leads to the appearance of the internal nonhomogeneous demagnetizing fields. When the system reaches equilibrium, the optical pumping is switched off, and the grating is allowed to relax. We carry out a stability analysis using the Galerkin approach and numerical simulations of the full system of equations to determine the growth rates and the mode amplitudes of the hydrodynamic and concentration perturbations during the relaxation stage.

  16. The research and analysis of the uniformity of the magnetic field of the square Helmholtz coil

    NASA Astrophysics Data System (ADS)

    Pan, Xin; Liu, Jun; Wu, Chen; Lu, Jun

    2015-10-01

    A three-dimensional magnetic field generator has been constructed taking advantage of three groups of square Helmholtz coils in order to do research on the magnetic susceptibility of optical sensors. Whether the uniformity in the center of the magnetic field is standard has to be analyzed to ensure the accuracy of test data from the optical sensor. Regarding square Helmholtz coil as four current-carrying conductor, three-dimensional space magnetic intensity and its uniformity of square Helmholtz coil were analyzed, and the result of simulating data were given. Due to that two coils may partly produce magnetic-field component possibly cancelling each other out, Bx, By, which can have an effect on the uniformity of the magnetic field, so that we need to evaluate the effects. First, we build a mathematical model of the magnetic field intensity of the square Helmholtz coil in the three-dimensional space. Then, some related analysis data and structural models of the three-dimensional uniform magnetic field of the square Helmholtz coil are given by Using the computer software MATLAB and LABVIEW. Finally, that square Helmholtz coils can be applied to study the magnetic susceptibility of optical sensors is proven to be feasible with the standardized testing environments of the magnetic susceptibility and evaluation methods proposed.

  17. Magnetic field dependence of plasma relaxation times

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Joyce, G.; Turner, L.

    1974-01-01

    A previously derived Fokker-Planck collision integral for an electron plasma in a dc magnetic field is examined in the limit in which the Debye length is greater than the thermal gyroradius, which is in turn greater than the mean distance of closest approach. It is demonstrated that the collision integral can be satisfactorily approximated by the classical Landau value (which ignores the presence of a dc magnetic field) if the following replacement is made: In the Coulomb logarithm, the Debye length is replaced by the gyroradius. This induces a fundamental logarithmic dependence on magnetic field in the relaxation times. Numerical comparison of the asymptotic approximations with the previously derived exact results is made, and good agreement is found. The simplification this introduces into the description of collision processes in magnetized plasma is considerable.

  18. Mechanical propulsion from unsymmetrical magnetic induction fields

    SciTech Connect

    Schlicher, R.L.; Biggs, A.W.; Tedeschi, W.J.

    1995-06-01

    A method is reported for generating mechanical spacecraft propulsion from unsymmetrical magnetic induction fields. It is based on an unsymmetrical three-dimensional loop antenna structure driven by a repetitively-pulsed high-current power supply. Antenna geometry is optimized for generating propulsive thrust rather than radiating electromagnetic energy. Part of this antenna consists of flat electrical conductors, which form a partially-closed quasi-cylindrical volume around a center conductor. Magnetic flux concentrates at the closed end of the quasicylindrical volume thereby creating a magnetic field flux density gradient along a single axis collinear to the Center Conductor. This magnetic field density gradient imbalances the magneto-mechanical forces that result from the interactions of the internal magnetic induction field with the current in the conductors of the antenna structure, in accordance with Lorentz`s Force Law. Also, there are electrically isolated prismatic conductor surfaces attached to the inside surface of the flat conductors which form the closed end of the quasi-cylindrical volume. Mechanical pressures occur on these conductor prisms because of the changing internal magnetic field and are a consequence of Faraday`s Induction Law and Lenz`s Law. Input current rise time and wave shape are crucial to maximizing spacecraft propulsive thrust.

  19. Magnetic fields of Jupiter and Saturn

    SciTech Connect

    Ness, N.F.

    1981-01-01

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

  20. Magnetic nanoparticles for applications in oscillating magnetic field

    SciTech Connect

    Peeraphatdit, Chorthip

    2010-12-15

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific loss power of PNIPAM-coated Fe{sub 3}O{sub 4} was peculiarly high, and the heat loss mechanism of this material remains to be elucidated. Since thermocatalysis is a long-term goal of this project, we also investigated the effects of the oscillating magnetic field system for the synthesis of 7-hydroxycoumarin-3-carboxylic acid. Application of an oscillating magnetic field in the presence of magnetic particles with high thermal response was found to effectively increase the reaction rate of the uncatalyzed synthesis of the coumarin derivative compared to the room temperature control.

  1. Magnetic colloid by PLA: Optical, magnetic and thermal transport properties

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Shahi, A. K.; Gopal, Ram

    2015-08-01

    Ferrofluids of cobalt and cobalt oxide nanoparticles (NPs) have been successfully synthesized using liquid phase-pulse laser ablation (LP-PLA) in ethanol and double distilled water, respectively. The mechanism of laser ablation in liquid media and formation process for Co target in double distilled water (DDW) and ethanol are speculated based on the reactions between laser generated highly nascent cobalt species and vaporized solvent media in a confined high temperature and pressure at the plume-surrounding liquid interface region. Optical absorption, emission, vibrational and rotational properties have been investigated using UV-vis absorption, photoluminescence (PL) and Fourier transform-infra red (FT-IR) spectroscopy, respectively. In this study optical band gap of cobalt oxide ferrofluids has been engineered using different pulse energy of Nd:YAG laser in the range of (2.80-3.60 eV). Vibrating sample magnetometer (VSM) is employed to determine the magnetic properties of ferrofluids of cobalt and cobalt oxide NPs while their thermal conductivities are examined using rotating disc method. Ferrofluids have gained enormous curiosity due to many technological applications, i.e. drug delivery, coolant and heating purposes.

  2. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    SciTech Connect

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  3. Plume dynamics and cluster formation in laser-ablated copper plasma in a magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, R. K.

    2011-04-01

    Laser-ablated copper plasma plume expanding in a nonuniform magnetic field and ambient gas is investigated to understand plume dynamics using optical emission spectroscopy and fast imaging of the plume. A peculiar oscillatory behavior of the plume observed in magnetic field is discussed. The appearance and enhancement of Cu{sub 2} (A-X) band in ambient gas and in the presence of magnetic field is reported. The presence of magnetic field favors the formation of copper clusters in the expanding plumes.

  4. Coherent control of some optical properties in a system of molecular magnets

    NASA Astrophysics Data System (ADS)

    Raheli, Ali; Hamedi, H. R.; Sahrai, M.; Asgari Sabet, R.

    2016-01-01

    A scheme is proposed for the coherent control of some optical properties in a crystal of molecular magnets based on the density matrix approach. It is shown that in the presence of a uniform dc magnetic field and two ac magnetic fields with different frequencies, the dispersion and absorption properties of the system of molecular magnets can be efficiently controlled. In particular, it is found that the probe absorption can be converted to probe amplification. Simultaneously, the superluminal light propagation changes to the subluminal propagation of the light pulse. The controllable optical multistability is then discussed for the system under consideration. The medium proposed here is a solid. Thus, because of its flexible design and the long relaxation times, it may open up an avenue to explore possibilities for quantum and nonlinear optics, as well as quantum information processing in condensed-state materials, and may result in striking effects on technology.

  5. Poloidal magnetic fields in superconducting neutron stars

    NASA Astrophysics Data System (ADS)

    Henriksson, K. T.; Wasserman, I.

    2013-06-01

    We develop the formalism for computing the magnetic field within an axisymmetric neutron star with a strong type II superconductor core surrounded by a normal conductor. The formalism takes full account of the constraints imposed by hydrostatic equilibrium with a barotropic equation of state. A characteristic of this problem is that the currents and fields need to be determined simultaneously and self-consistently. Within the core, the strong type II limit B ? H allows us to compute the shapes of individual field lines. We specialize to purely poloidal magnetic fields that are perpendicular to the equator, and develop the `most dipolar case' in which field lines are vertical at the outer radius of the core, which leads to a magnetic field at the stellar surface that is as close to a dipole as possible. We demonstrate that although field lines from the core may only penetrate a short distance into the normal shell, boundary conditions at the inner radius of the normal shell control the field strength on the surface. Remarkably, we find that for a Newtonian N = 1 polytrope, the surface dipole field strength is Bsurf ? Hb?b/3, where Hb is the magnetic field strength at the outer boundary of the type II core and ?bR is the thickness of the normal shell. For reasonable models, Hb ? 1014 G and ?b ? 0.1 so the surface field strength is Bsurf ? 3 × 1012 G, comparable to the field strengths of many radio pulsars. In general, Hb and ?b are both determined by the equation of state of nuclear matter and by the mass of the neutron star, but Bsurf ˜ 1012 G is probably a robust result for the `most dipolar' case. We speculate on how the wide range of neutron star surface fields might arise in situations with less restrictions on the internal field configuration. We show that quadrupolar distortions are ˜-10-9(Hb/1014 G)2 and arise primarily in the normal shell for B ? Hb.

  6. UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS

    SciTech Connect

    Broderick, Avery E.; Blandford, Roger D.

    2010-08-01

    Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m{sup -2}){sup 1/4}(B/1 G){sup 1/2} MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, {nu}{sub SA}, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of {nu}{sub SA} range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, {nu}{sub SA} ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.

  7. Lightning Magnetic Field Measurements around Langmuir Laboratory

    NASA Astrophysics Data System (ADS)

    Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.

    2010-12-01

    In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.

  8. Magnetic field imaging with NV ensembles

    E-print Network

    L. M. Pham; D. Le Sage; P. L. Stanwix; T. K. Yeung; D. Glenn; A. Trifonov; P. Cappellaro; P. R. Hemmer; M. D. Lukin; H. Park; A. Yacoby; R. L. Walsworth

    2012-07-13

    We demonstrate a method of imaging spatially varying magnetic fields using a thin layer of nitrogen-vacancy (NV) centers at the surface of a diamond chip. Fluorescence emitted by the two-dimensional NV ensemble is detected by a CCD array, from which a vector magnetic field pattern is reconstructed. As a demonstration, AC current is passed through wires placed on the diamond chip surface, and the resulting AC magnetic field patterns are imaged using an echo-based technique with sub-micron resolution over a 140 \\mu m x 140 \\mu m field of view, giving single-pixel sensitivity ~100 nT/\\sqrt{Hz}. We discuss ongoing efforts to further improve sensitivity and potential bioimaging applications such as real-time imaging of activity in functional, cultured networks of neurons.

  9. Measurements of Photospheric and Chromospheric Magnetic Fields

    E-print Network

    Lagg, Andreas; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-01-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Conseque...

  10. Interaction of Electromagnetic Radiation with Supercritical Magnetic Field

    E-print Network

    A. E. Shabad

    2004-01-12

    It is pointed, that effects of refraction of electromagnetic radiation in the medium, formed by the magnetized vacuum, become essential already for relatively soft photons, not hard enough to create an electron-positron pair, including those belonging to soft gamma-, X-ray, optic and radio- range, if the magnetic field B exceeds the critical value of Bcr=m^2/e=4.4 10^13 Gauss. Three leading terms in the asymptotic expansion of the one-loop polarization operator in a constant magnetic field are found for B>>Bcr, and the corresponding refraction index is shown to depend only on the propagation direction of the photon relative to the external field. It is established, that the refraction index for one of polarization modes unlimitedly grows with the field, while the other is saturated at a moderate level. The photon capture effect is extended to soft photons. The results may be essential in studying reflection, refraction and splitting of X-rays, light and radio waves by magnetic fields of magnetars, as well as in considering emission of such waves by charged particles .

  11. ECE 390 Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields.

    E-print Network

    ECE 390 ­ Electric & Magnetic Fields Catalog Description: Static and quasi-static electric), A. Jander (secondary) Course Content: · Introduction, review of vector analysis · Static electric fields in free space: Coulomb's law, Gauss's law, and electric potential, electric dipole · Static

  12. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    PubMed

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ?50 ps and a spatial resolution of <100 nm. In order to demonstrate the spatiotemporal magnetic imaging capability of this microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 ?m diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ?240 MHz. PMID:25725848

  13. Errors and optics study of a permanent magnet quadrupole system

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Rifuggiato, D.; Cirrone, G. A. P.; Cuttone, G.; Giove, D.

    2015-05-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. Nowadays, energy and angular spread of the laser-driven beams are the main issues in application and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of permanent magnet quadrupoles (PMQs) is going to be realized by INFN [2] researchers, in collaboration with SIGMAPHI [3] company in France, to be used as a collection and pre-selection system for laser driven proton beams. The definition of well specified characteristics, both in terms of performances and field quality, of the magnetic lenses is crucial for the system realization, for an accurate study of the beam dynamics and the proper matching with a magnetic selection system already realized [6,7]. Hence, different series of simulations have been used for studying the PMQs harmonic contents and stating the mechanical and magnetic tolerances in order to have reasonable good beam quality downstream the system. In this paper is reported the method used for the analysis of the PMQs errors and its validation. Also a preliminary optics characterization is presented in which are compared the effects of an ideal PMQs system with a perturbed system on a monochromatic proton beams.

  14. Magnetic field structure in Monoceros R2

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Novak, G.; Xie, T.; Goldsmith, P. F.

    1994-01-01

    We have carried out polarimetric observations to investigate the geometry of the magnetic field in the giant molecular cloud Monoceros R2. This study is based upon deep R-band charge coupled device (CCD) polarimetry, covering a total area of 0.5 deg(exp 2) of the giant molecular cloud. The data were calibrated using a new technique that relies on obtaining broad-band photometry of stars simultaneously with polarimetric photometry of the Mon R2 fields, thus providing an accurate means of measuring the electric vectors of starlight which is polarized by the fore-ground dust grains aligned by the magnetic field in the Mon R2 GMC. In this work, (1) we were able to continuously trace magnetic field lines from the largest scales in Mon R2 to the detailed structure of the field in the dense core, as determined from infrared polarimetry; and (2) we have found that the ambient field is apparently modified by a large-scale structure in the Mon R2 cloud. The mean angle of polarization for the complete sample we measured is 158 deg, which is roughly coincident with the local Galactic magnetic field (155 deg). The dispersion in the angle of polarization is 33 deg, similar to that found in the Orion GMC. The dispersion in angle of polarization for stars located along the western side of the three CCD fields is 22 deg. The CCD fields are bisected by a dense ridge of gas defining the boundary of an expanding gas shell that recent observational results at millimeter wavelengths now reveal dominates the Mon R2 GMC. Our results suggest th at the expanding shell has distorted the magnetic field lines extending from the core to the northern gas structure comprising Mon R2.

  15. Hidden local symmetry of Eu3+ in xenotime-like crystals revealed by high magnetic fields

    NASA Astrophysics Data System (ADS)

    Han, Yibo; Ma, Zongwei; Zhang, Junpei; Wang, Junfeng; Du, Guihuan; Xia, Zhengcai; Han, Junbo; Li, Liang; Yu, Xuefeng

    2015-02-01

    The excellent optical properties of europium-doped crystals in visible and near infrared wavelength regions enable them to have broad applications in optoelectronics, laser crystals and sensing devices. The local site crystal fields can affect the intensities and peak positions of the photo-emission lines strongly, but they are usually difficult to be clarified due to magnetically degenerate 4f electronic levels coupling with the crystal fields. Here, we provide an effective way to explore the hidden local symmetry of the Eu3+ sites in different hosts by taking photoluminescence measurements under pulsed high magnetic fields up to 46 T. The zero-field photoluminescence peaks split further at high magnetic fields when the Zeeman splitting energy is comparable to or larger than that of the crystal field induced zero-field splitting. In particular, a magnetic field induced crossover of the local crystal fields has been observed in the GdVO4:Eu3+ crystal, which resulted from the alignment of Gd3+ magnetic moment in high magnetic fields; and a hexagonally symmetric local crystal fields was observed in the YPO4 nanocrystals at the Eu3+ sites characterized by the special axial and rhombic crystal field terms. These distinct Zeeman splitting behaviors uncover the crystal fields-related local symmetry of luminescent Eu3+ centers in different hosts or magnetic environments, which are significant for their applications in optics and optoelectronics.

  16. Primordial magnetic fields from self-ordering scalar fields

    NASA Astrophysics Data System (ADS)

    Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sekiguchi, Toyokazu; Sugiyama, Naoshi

    2015-04-01

    A symmetry-breaking phase transition in the early universe could have led to the formation of cosmic defects. Because these defects dynamically excite not only scalar and tensor type cosmological perturbations but also vector type ones, they may serve as a source of primordial magnetic fields. In this study, we calculate the time evolution and the spectrum of magnetic fields that are generated by a type of cosmic defects, called global textures, using the non-linear sigma (NLSM) model. Based on the standard cosmological perturbation theory, we show, both analytically and numerically, that a vector-mode relative velocity between photon and baryon fluids is induced by textures, which inevitably leads to the generation of magnetic fields over a wide range of scales. We find that the amplitude of the magnetic fields is given by B~10?9((1+z)/103)?2.5(v/mpl)2(k/Mpc?1)3.5/?N Gauss in the radiation dominated era for klesssim 1 Mpc?1, with v being the vacuum expectation value of the O(N) symmetric scalar fields. By extrapolating our numerical result toward smaller scales, we expect that B~ 10?14.5((1+z)/103)1/2(v/mpl)2(k/Mpc?1)1/2/?N Gauss on scales of kgtrsim 1 Mpc?1 at redshift 0zgtrsim 110. This might be a seed of the magnetic fields observed on large scales today.

  17. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2010-01-01

    The Spiral Magnetic Motor, which can accelerate a magnetized rotor through 90% of its cycle with only permanent magnets, was an energy milestone for the 20th century patents by Kure Tekkosho in the 1970's. However, the Japanese company used old ferrite magnets which are relatively weak and an electrically-powered coil to jump start every cycle, which defeated the primary benefit of the permanent magnet motor design. The principle of applying an inhomogeneous, anisotropic magnetic field gradient force Fz = ? cos ? dB/dz, with permanent magnets is well-known in physics, e.g., Stern-Gerlach experiment, which exploits the interaction of a magnetic moment with the aligned electron spins of magnetic domains. In this case, it is applied to dB/d? in polar coordinates, where the force F? depends equally on the magnetic moment, the cosine of the angle between the magnetic moment and the field gradient. The radial magnetic field increases in strength (in the attractive mode) or decreases in strength (in the repulsive mode) as the rotor turns through one complete cycle. An electromagnetic pulsed switching has been historically used to help the rotor traverse the gap (detent) between the end of the magnetic stator arc and the beginning (Kure Tekko, 1980). However, alternative magnetic pulse and switching designs have been developed, as well as strategic eddy current creation. This work focuses on the switching mechanism, novel magnetic pulse methods and advantageous angular momentum improvements. For example, a collaborative effort has begun with Toshiyuki Ueno (University of Tokyo) who has invented an extremely low power, combination magnetostrictive-piezoelectric (MS-PZT) device for generating low frequency magnetic fields and consumes "zero power" for static magnetic field production (Ueno, 2004 and 2007a). Utilizing a pickup coil such as an ultra-miniature millihenry inductor with a piezoelectric actuator or simply Wiegand wire geometry, it is shown that the necessary power for magnetic field switching device can be achieved in order to deflect the rotor magnet in transit. The Wiegand effect itself (bistable FeCoV wire called "Vicalloy") invented by John Wiegand (Switchable Magnetic Device, US Patent ?4,247,601), utilizing Barkhausen jumps of magnetic domains, is also applied for a similar achievement (Dilatush, 1977). Conventional approaches for spiral magnetic gradient force production have not been adequate for magnetostatic motors to perform useful work. It is proposed that integrating a magnetic force control device with a spiral stator inhomogeneous axial magnetic field motor is a viable approach to add a sufficient nonlinear boundary shift to apply the angular momentum and potential energy gained in 315 degrees of the motor cycle.

  18. Electric/magnetic field sensor

    DOEpatents

    Schill, Jr., Robert A. (Henderson, NV); Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  19. Behavior of a Single Langmuir Probe in a Magnetic Field.

    ERIC Educational Resources Information Center

    Pytlinski, J. T.; And Others

    1978-01-01

    Describes an experiment to demonstrate the influence of a magnetic field on the behavior of a single Langmuir probe. The experiment introduces the student to magnetically supported plasma and particle behavior in a magnetic field. (GA)

  20. Dissipation function in a magnetic field (Review)

    NASA Astrophysics Data System (ADS)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  1. Measurement of the CMS Magnetic Field

    E-print Network

    V. I. Klyukhin; A. Ball; F. Bergsma; D. Campi; B. Curé; A. Gaddi; H. Gerwig; A. Hervé; J. Korienek; F. Linde; C. Lindenmeyer; R. Loveless; M. Mulders; T. Nebel; R. P. Smith; D. Stickland; G. Teafoe; L. Veillet; J. K. Zimmerman

    2011-10-03

    The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the initial magnetic flux density in steel at the maximum field to an accuracy of a few percent. The results of the measurements made at 4 T are reported and compared with a three-dimensional model of the CMS magnet system calculated with TOSCA.

  2. Reducing blood viscosity with magnetic fields

    NASA Astrophysics Data System (ADS)

    Tao, R.; Huang, K.

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ˜1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells’ normal function. This technology has much potential for physical therapy.

  3. Holographic Gauge Theory with Maxwell Magnetic Field

    E-print Network

    Wung-Hong Huang

    2010-03-13

    We first apply the transformation of mixing azimuthal with wrapped coordinate to the 11D M-theory with a stack N M5-branes to find the spacetime of a stack of N D4-branes with magnetic field in 10D IIA string theory, after the Kaluza-Klein reduction. In the near-horizon limit the background becomes the Melvin magnetic field deformed $AdS_6 \\times S^4$. Although the solution represents the D-branes under the Melvin RR one-form we use a simple observation to see that it also describes the solution of D-branes under the Maxwell magnetic field. As the magnetic field we consider is the part of the background itself we have presented an alternative to previous literature, because our method does not require the assumption of negligible back reaction. Next, we use the found solution to investigate the meson property through D4/D8 system (Sakai-Sugimoto model) and compare it with those studied by other authors. Finally, we present a detailed analysis about the Wilson loop therein and results show that the external Maxwell magnetic field will enhance the quark-antiquark potential.

  4. Cosmic Magnetic Fields: Observations and Prospects

    E-print Network

    Beck, Rainer

    2011-01-01

    Synchrotron emission, its polarization and its Faraday rotation at radio frequencies of 0.2-10 GHz are powerful tools to study the strength and structure of cosmic magnetic fields. The observational results are reviewed for spiral, barred and flocculent galaxies, the Milky Way, halos and relics of galaxy clusters, and for the intergalactic medium. Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of cosmic magnetic fields and will help to understand their origin. At low frequencies, LOFAR (10-250 MHz) will allow us to map the structure of weak magnetic fields in the outer regions and halos of galaxies and galaxy clusters. Polarization at higher frequencies (1-10 GHz), as observed with the EVLA, ASKAP, MeerKAT, APERTIF and the SKA, will trace magnetic fields in the disks and central regions of nearby galaxies in unprecedented detail. Surveys of Faraday rotation measures of pulsars will map the Milky Way's magnetic field with high precision. All-sky sur...

  5. Reionization constraints on primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Pandey, Kanhaiya L.; Choudhury, T. Roy; Sethi, Shiv K.; Ferrara, Andrea

    2015-08-01

    We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: 6 < z < 10. We perform a comprehensive Markov chain Monte Carlo (MCMC) physical analysis allowing the variation of parameters related to primordial magnetic fields (strength, B0, and power-spectrum index n_{B}), reionization and ? cold dark matter cosmological model. We find that magnetic field strengths in the range: B0 ? 0.05-0.3 nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the Wilkinson Microwave Anisotropy Probe and quasar absorption spectra data. Our analysis puts upper limits on the magnetic field strength B0 < 0.358, 0.120 and 0.059 nG (95 per cent c.l.) for n_{B} = -2.95, -2.9 and -2.85, respectively. These represent the strongest magnetic field constraints among those available from other cosmological observables.

  6. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  7. Crystal-Field Splitting and Giant Negative Magnetization in

    SciTech Connect

    Fishman, Randy Scott; Reboredo, Fernando A

    2007-01-01

    Bimetallic oxalates are a class of layered organic magnets with transi- tion metals M(II) and M'(III) coupled by oxalate molecules in an open honeycomb structure. Of particular interest are the Fe(II)Fe(III) bimetal- lic compounds, which are ferrimagnetically ordered below a transition temperature that ranges from 30 to 48 K, depending on the cation that separates the layers. In small magnetic fields, several of these compounds exhibit giant negative magnetization below a compensation temperature of roughly 2/3 Tc. By studying the behavior of the Kramer's doublet ground state produced by the crystal-field splitting and constructing a reduced Hamiltonian that includes both exchange and spin-orbit and in- teractions, we can explain all of the important behavior of this class of materials: the stability of magnetic order in two dimensions and the existence of magnetic compensation in samples with high transition tem- peratures. We also provide several new predictions for the spin-wave gap and the optical flipping of the magnetic moment.

  8. Refocusing properties of periodic magnetic fields

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1976-01-01

    The use of depressed collectors for the efficient collection of spent beams from linear-beam microwave tubes depends on a refocusing procedure in which the space charge forces and transverse velocity components are reduced. The refocusing properties are evaluated of permanent magnet configurations whose axial fields are approximated by constant plateaus or linearly varying fields. The results provide design criteria and show that the refocusing properties can be determined from the plateau fields alone.

  9. Exploring Magnetic Fields with a Compass

    NASA Astrophysics Data System (ADS)

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this paper, we present a series of simple activities adapted from the Matter & Interactions textbook for doing just this. Interestingly, these simple measurements are comparable to predictions made by the Bohr model of the atom. Although antiquated, Bohr's atom can lead the way to a deeper analysis of the atomic properties of magnets. Although originally developed for an introductory calculus-based course, these activities can easily be adapted for use in an algebra-based class or even at the high school level.

  10. Mechanism of magnetic field effect in cryptochrome

    E-print Network

    Solov'yov, Ilia A

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a concrete light-driven reaction cycle in cryptochrome that lets a magnetic field influence the signaling state of the photoreceptor. The reaction cycle ties together transient absorption and electron-spin-resonance observations with known facts on avian magnetoreception. Our analysis establishes the feasibility of cryptochrome to act as a g...

  11. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John (Oak Ridge, TN) [Oak Ridge, TN; Kisner, Roger (Knoxville, TN) [Knoxville, TN; Ludtka, Gerard (Oak Ridge, TN) [Oak Ridge, TN; Ludtka, Gail (Oak Ridge, TN) [Oak Ridge, TN; Jaramillo, Roger (Knoxville, TN) [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  12. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  13. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Yuen, Clement

    2011-07-01

    The current gold standard method of Malaria diagnosis relies on the blood smears examination. The method is laborintensive, time consuming and requires the expertise for data interpretation. In contrast, Raman scattering from a metabolic byproduct of the malaria parasite (Hemozoin) shows the possibility of rapid and objective diagnosis of malaria. However, hemozoin concentration is usually extremely low especially at the early stage of malaria infection, rendering weak Raman signal. In this work, we propose the sensitive detection of enriched ?-hematin, whose spectroscopic properties are equivalent to hemozoin, based on surface enhanced Raman spectroscopy (SERS) by using magnetic nanoparticles. A few orders of magnitude enhancement in the Raman signal of ?-hematin can be achieved using magnetic nanoparticles. Furthermore, the effect of magnetic field on SERS enhancement is investigated. Our result demonstrates the potential of SERS using magnetic nanoparticles in the effective detection of hemozoin for malaria diagnosis.

  14. Magnetic Field Effects on Plasma Plumes

    NASA Technical Reports Server (NTRS)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  15. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  16. Single spin optically detected magnetic resonance with 60-90 GHz (E-band) microwave resonators

    NASA Astrophysics Data System (ADS)

    Aslam, Nabeel; Pfender, Matthias; Stöhr, Rainer; Neumann, Philipp; Scheffler, Marc; Sumiya, Hitoshi; Abe, Hiroshi; Onoda, Shinobu; Ohshima, Takeshi; Isoya, Junichi; Wrachtrup, Jörg

    2015-06-01

    Magnetic resonance with ensembles of electron spins is commonly performed around 10 GHz, but also at frequencies above 240 GHz and in corresponding magnetic fields of over 9 T. However, experiments with single electron and nuclear spins so far only reach into frequency ranges of several 10 GHz, where existing coplanar waveguide structures for microwave (MW) delivery are compatible with single spin readout techniques (e.g., electrical or optical readout). Here, we explore the frequency range up to 90 GHz, with magnetic fields of up to ?3 T for single spin magnetic resonance in conjunction with optical spin readout. To this end, we develop MW resonators with optical single spin access. In our case, rectangular 60-90 GHz (E-band) waveguides guarantee low-loss supply of microwaves to the resonators. Three dimensional cavities, as well as coplanar waveguide resonators, enhance MW fields by spatial and spectral confinement with a MW efficiency of 1 . 36 mT / ?{ W } . We utilize single nitrogen vacancy (NV) centers as hosts for optically accessible spins and show that their properties regarding optical spin readout known from smaller fields (<0.65 T) are retained up to fields of 3 T. In addition, we demonstrate coherent control of single nuclear spins under these conditions. Furthermore, our results extend the applicable magnetic field range of a single spin magnetic field sensor. Regarding spin based quantum registers, high fields lead to a purer product basis of electron and nuclear spins, which promises improved spin lifetimes. For example, during continuous single-shot readout, the 14N nuclear spin shows second-long longitudinal relaxation times.

  17. Whistler Modes with Wave Magnetic Fields Exceeding the Ambient Field

    SciTech Connect

    Stenzel, R.L.; Urrutia, J.M.; Strohmaier, K.D.

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  18. Whistler modes with wave magnetic fields exceeding the ambient field.

    PubMed

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background. PMID:16606272

  19. Near-field optical thin microcavity theory

    NASA Astrophysics Data System (ADS)

    Wu, Jiu Hui; Hou, Jiejie

    2016-01-01

    The thin microcavity theory for near-field optics is proposed in this study. By applying the power flow theorem and the variable theorem,the bi-harmonic differential governing equation for electromagnetic field of a three-dimensional thin microcavity is derived for the first time. Then by using the Hankel transform, this governing equation is solved exactly and all the electromagnetic components inside and outside the microcavity can be obtained accurately. According to the above theory, the near-field optical diffraction from a subwavelength aperture embedded in a thin conducting film is investigated, and numerical computations are performed to illustrate the edge effect by an enhancement factor of 1.8 and the depolarization phenomenon of the near-field transmission in terms of the distance from the film surface. This thin microcavity theory is verified by the good agreement between our results and those in the previous literatures. The thin microcavity theory presented in the study should be useful in the possible applications of the thin microcavities in near-field optics and thin-film optics.

  20. Magnetic field measurement using a fiber laser sensor in ring arrangement

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Baptista, J. M.; Jorge, P. A. S.; Cruz, J. L.; Andrés, M. V.

    2015-05-01

    In this work an optical fiber laser with loop configuration was developed for magnetic field measurement. The transducer element is an FBG written in a HiBi fiber whose wavelength is modified using a magnetostrictive material that applies deformation in the presence of the magnetic field. The laser has a bandwidth of 450 MHz and operates in single polarization. A shift of 258.5 pm was observed in the laser operating wavelength for a magnetic field of 17.85 mT. Moreover, a maximum sensitivity of 14.72 pm/mT in the linear regime operation was achieved when increasing the magnetic field. The system provides a narrow emission line that is dependent on the magnetic field magnitude enabling high resolution interferometric measurement schemes. The laser response to AC magnetic fields was also characterized using a passive interferometer with higher sensitivity in the range of 8.32 to 17.93 mTRMS.

  1. Magnetic fields in early-type stars

    E-print Network

    Grunhut, Jason H

    2015-01-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M_sun) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have fu...

  2. Mechanical Response of Elastomers to Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Munoz, B. C.; Jolly, M. R.

    1996-01-01

    Elastomeric materials represent an important class of engineering materials, which are widely used to make components of structures, machinery, and devices for vibration and noise control. Elastomeric material possessing conductive or magnetic properties have been widely used in applications such as conductive and magnetic tapes, sensors, flexible permanent magnets, etc. Our interest in these materials has focussed on understanding and controlling the magnitude and directionality of their response to applied magnetic fields. The effect of magnetic fields on the mechanical properties of these materials has not been the subject of many published studies. Our interest and expertise in controllable fluids have given us the foundation to make a transition to controllable elastomers. Controllable elastomers are materials that exhibit a change in mechanical properties upon application of an external stimuli, in this case a magnetic field. Controllable elastomers promise to have more functionality than conventional elastomers and therefore could share the broad industrial application base with conventional elastomers. As such, these materials represent an attractive class of smart materials, and may well be a link that brings the applications of modern control technologies, intelligent structures and smart materials to a very broad industrial area. This presentation will cover our research work in the area of controllable elastomers at the Thomas Lord Research Center. More specifically, the presentation will discuss the control of mechanical properties and mathematical modeling of the new materials prepared in our laboratories along with experiments to achieve adaptive vibration control using the new materials.

  3. Topology of magnetic fields from MDI data: Background field

    NASA Astrophysics Data System (ADS)

    Knyazeva, I. S.; Makarenko, N. G.; Karimova, L. M.

    2010-08-01

    A quantitative description of the geometry and topology of the magnetic field of the Sun is given in terms of Minkowski functionals: the Euler characteristic and the perimeter of excursion sets for specified levels. Methods of mathematical morphology are applied to background fragments of magnetograms for the entire solar disk. The results obtained show that the topological characteristics of the background field are stable in time and correspond to log-normal, intermittent random fields.

  4. Modeling Solar Magnetic Fields Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Lee, G.; Malanushenko, A. V.; DeRosa, M. L.

    2014-12-01

    Previous research reconstructed a three-dimensional model of the magnetic field of an active region on the Sun from using solar coronal loops as guides for modeling(Malanushenko et al., ApJ,2009, 707:1044). In this study, we test the consistency of such reconstructions with data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) by applying the aformentioned method to additional active regions with varying amounts of solar activity. To create an initial model of a magnetic field surrounding an active region, we first manually trace the coronal loops on the coronal images in the following wavelengths: 171Å, 193Å, 211Å, 94Å, 131Å, and 335Å. The manually traced loops are then used as a guide for a computer reconstruction of the individual three-dimensional field lines with differing heights and degrees of local twist. The reconstructed field lines are then adjusted by a partially automated algorithm, so that the constructed field line would correspond to a coronal loop on the Sun. These fitted loops serve as a skeleton to create a model of the magnetic field of the active region. We expect that our modeling can be used in future works to predict future solar events. Implications of this ability include being able to prepare a response for a solar event before it happens.

  5. Human melatonin during continuous magnetic field exposure

    SciTech Connect

    Graham, C.; Cook, M.R.; Riffle, D.W.

    1997-05-01

    This report describes the third in a series of double-blind, laboratory-based studies that were aimed at determining the effects of nocturnal exposure to power frequency magnetic fields on blood levels of melatonin in human volunteers. The two earlier studies evaluated effects on melatonin of intermittent exposure to 60 Hz circularly polarized magnetic fields at 10 and 200 mG. No overall effects on melatonin levels were found. In the present study, men were exposed continuously rather than intermittently through the night to the same 200 mG magnetic field condition that was used previously; again, no overall effects on melatonin levels were found. The authors conclude that the intermittent and continuous exposure conditions used in the laboratory to date are not effective in altering nocturnal blood levels of melatonin in human volunteers.

  6. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    SciTech Connect

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V.; Dal Savio, C.; Karrai, K.; Dantelle, G.; Thiaville, A.; Rohart, S.

    2012-04-09

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  7. Neutrino dispersion in external magnetic fields

    SciTech Connect

    Kuznetsov, A. V.; Mikheev, N. V.; Vassilevskaya, L. A.; Raffelt, G. G.

    2006-01-15

    We calculate the neutrino self-energy operator {sigma}(p) in the presence of a magnetic field B. In particular, we consider the weak-field limit eB<field' m{sub l}{sup 2}<field, we show that it is crucial to include the contributions from all Landau levels of the intermediate charged lepton, not just the ground state. For the conditions of the early universe where the background medium consists of a charge-symmetric plasma, the pure B-field contribution to the neutrino dispersion relation is proportional to (eB){sup 2} and thus comparable to the contribution of the magnetized plasma.

  8. Vertical gradients of sunspot magnetic fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  9. The symmetry properties of planetary magnetic fields

    NASA Technical Reports Server (NTRS)

    Raedler, Karl-Heinz; Ness, Norman F.

    1990-01-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For earth, Jupiter, and Saturn, the centered dipole, quadrupole, and octupole contributions are included, while at Uranus only the dipole and quadrupole contributions are considered. It is found that there are a number of common features of the magnetic fields of earth and Jupiter. Compared to earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets.

  10. A magnetically field-controllable phononic crystal

    NASA Astrophysics Data System (ADS)

    Bayat, Alireza; Gordaninejad, Faramarz

    2014-04-01

    Phononic crystals are periodic structures consist of different materials in an elastic medium designed to interact with elastic waves. These crystals have practical applications, such as, frequency filters, beam splitters, sound or vibration protectors, acoustic lasers, acoustic mirrors and elastic waveguides. In this study, the wave propagation in a tunable phononic crystal is investigated. The magnetically controllable phononic crystal consists of a soft magnetorheological elastic medium undergoing large deformations upon the application of a magnetic field. Finite deformations and induced magnetic fields influence wave propagation characteristics in the periodic structure. The soft matrix is modeled as a hyperelastic elastomer to take into account the material nonlinearity. The integrated effects of material properties, transformation of the geometry of the unit cell, and the induced magnetic field, are used to tune the band structure of the periodic structure. Both analytical and finite element methods are employed to evaluate the dispersion diagrams considering Bloch boundary conditions. Results show that the applied magnetic field significantly affect the width and the position of band-gaps.

  11. Massive disk outflows mediated by extreme magnetic fields

    E-print Network

    Shiber, Sagiv; Soker, Noam

    2015-01-01

    We argue that magnetic fields amplified within a very high accretion-rate disk around main sequence stars can lead to the formation of massive bipolar outflows that can remove most of the disk's mass and energy. This efficient directional removal of energy and mass allows the high accretion-rate disk to be built. We construct thick disks where the magnetic fields are amplified by an Alpha-Omega dynamo in the disk, bringing the fluctuating components of the magnetic field to be much stronger than the large-scale component. By examining the possible activity of the magnetic fields we conclude that main sequence stars can accrete mass at very high rates, up to 0.01Mo/yr for solar type stars, and up to 1Mo/yr for very massive stars. Such energetic outflows can account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, such as the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; Red Novae; Red Transi...

  12. The symmetry properties of planetary magnetic fields

    SciTech Connect

    Raedler, K.H. ); Ness, N.F. )

    1990-03-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of Earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For Earth, Jupiter, and Saturn the centered dipole, quadrupole, and octupole contributions are included, while at Uranus, only the dipole and quadrupole contributoins are considered. The magnetic fields are analyzed by decomposing them into those parts which have simple symmetry properties with respect to the rotation axis and the equatorial plane. It is found that there are a number of common features of the magnetic fields of Earth and Jupiter. Compared to Earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis, by now rather well known, but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets. The implications of these results for dynamo models are discussed. With a vgiew to Cowling's theorem the symmetry of the fields is investigated with respect to not only the rotation axis but also to other axes intersecting the plaentary center. Surprisingly, the high degree of asymmetry of the Uranian field that is observed with respect to the rotation axis reduces considerably to being compare to that for Earth or Jupiter when the appropriate axis is employed.

  13. Multichord optical interferometry of FRX-L's field reversed configuration

    SciTech Connect

    Ruden, E. L.; Zhang, Shouyin; Wurden, G. A.; Intrator, T. P.; Renneke, R.; Waganaar, W. J.; Analla, F. T.; Grabowski, T. C.

    2006-10-15

    A 0.633 {mu}m laser interferometer provides detailed time resolved information about the spatial distribution of the plasma density of field reversed configurations (FRC's) produced by the FRX-L experiment at Los Alamos National Laboratory. This experiment is an effort to produce a magnetized plasma with closed field lines suitable for compression by a solid metal liner imploded by the Shiva Star capacitor bank at the Air Force Research Laboratory. The interferometer probes a fanned array of eight chords through the FRC midplane, measuring the line integrated free electron density via its effect on optical phase shift relative to eight reference beams as a function of time. The reference beams are given nominally identical optical paths, except that they are folded for compactness and given an 80 MHz higher optical frequency by use of a Bragg cell beam splitter. After the beams are recombined, interference results in 80 MHz electromagnetic beat waves with dynamic phase shifts equal to those of the corresponding optical probes. Quadrature mixing of the electronically monitored light is then performed with rf components. Noteworthy features of the interferometer's design are the unique compact folding scheme of the reference paths, inclusion of a fused quartz tube in the reference path similar to that of the FRC's vacuum vessel to compensate for cylindrical lensing, and transmission of the interfering light via optical fibers to a rf shielded room for processing. Extraneous contributions to the phase shift due to vibration resulting from the system's pulsed magnetic field, and dynamic refractive changes in or near the fused quartz tube wall (possibly due to radiation heating) are corrected for.

  14. Generation of Local Magnetic Field by Nano Electro-Magnets Hyung Kwon KIM1;2

    E-print Network

    Hwang, Sung Woo

    Generation of Local Magnetic Field by Nano Electro-Magnets Hyung Kwon KIM1;2 , Su Heon HONG1 , Bo; published April 27, 2004) Fabrication and characterization of nano electro-magnets are reported. The nano and current level of the electro-magnet. [DOI: 10.1143/JJAP.43.2054] KEYWORDS: magnetic field, electro-magnet

  15. Magnetic fields of spherical compact stars in a braneworld

    SciTech Connect

    Ahmedov, B. J.; Fattoyev, F. J.

    2008-08-15

    We study the stellar magnetic field configuration in dependence on brane tension and present solutions of Maxwell equations in the external background space-time of a magnetized spherical star in a Randall-Sundrum II type braneworld. The star is modeled as a sphere consisting of perfect highly magnetized fluid with infinite conductivity and a frozen-in magnetic field. With respect to solutions for magnetic fields found in the Schwarzschild space-time, brane tension introduces enhancing corrections to the exterior magnetic field which could be relevant for the magnetic fields of magnetized compact objects as pulsars and magnetars and may provide observational evidence for the brane tension.

  16. Complex Plasmas in Strong Magnetic Field Environments

    SciTech Connect

    Konopka, U.; Schwabe, M.; Knapek, C.; Kretschmer, M.; Morfill, G.E.

    2005-10-31

    To complete our picture of general complex plasmas, experiments under the influence of high magnetic fields have been carried out in a radio frequency (rf) discharge with and without embedded micro-particles. The influence of the strong magnetic field on the plasma with respect to its homogeneity as well as on the isotropy of the particle interaction was studied. We observed a filamentation of the plasma at low pressures and low powers even in the absence of particles. The plasma filaments moved around -- traced by embedded particles -- and suddenly changed to a crystalline like arrangement.

  17. Broadband antenna systems for lightning magnetic fields

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Noggle, R. C.

    1975-01-01

    Broadband magnetic antenna systems suitable for recording submicrosecond field changes are described, and typical data from distant lightning are presented. Two types of systems are described, one with a high-impedance antenna loop connected to the integrator by a twisted pair of coaxial cables and another with the antenna loop and twisted signal loops formed from a single piece of coaxial cable. Data for correlated magnetic and electric field waveforms from lightning at a distance of 50 to 100 km are presented and are shown to be almost identical.

  18. Measurements of magnetic fields in solar prominences

    NASA Technical Reports Server (NTRS)

    Deglinnocenti, Egidio Landi

    1986-01-01

    Magnetic fields can be measured, in solar prominences, by means of two different basic mechanisms that are responsible for the introduction (or the reduction) of a given amount of polarization in spectral lines: these are the Zeeman effect and the Hanle effect. Through the splitting of the magnetic components of a spectral line, the Zeeman effect is capable of introducing a certain amount of circular polarization across the line profile. The Hanle effect consist of a modification of the linear polarization that is induced in spectral lines by the anisotropic illumination of the prominence plasma by the photospheric radiation field. These two effects are briefly discussed.

  19. Helical magnetic fields via baryon asymmetry

    E-print Network

    Eduard F. Piratova; Edilson A. Reyes; Héctor J. Hortúa

    2014-09-03

    There is strong observational evidence for the presence of large-scale magnetic fields MF in galaxies and clusters, with strength $\\sim \\mu$G and coherence lenght on the order of Kpc. However its origin remains as an outstanding problem. One of the possible explanations is that they have been generated in the early universe. Recently, it has been proposed that helical primordial magnetic fields PMFs, could be generated during the EW or QCD phase transitions, parity-violating processes and predicted by GUT or string theory. Here we concentrate on the study of two mechanisms to generate PMFs, the first one is the $\

  20. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    SciTech Connect

    Lee, Seong-Joo Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-09

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a ?/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5??T static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  1. The History of Near-field Optics1 Lukas Novotny

    E-print Network

    Novotny, Lukas

    The History of Near-field Optics1 Lukas Novotny The Institute of Optics, University of Rochester of near-field optics. The roots trace back to the letters exchanged between Edward Hutchinson Synge of scanning probe microscopy and by the first optical near-field measurements by Dieter W. Pohl and co

  2. Magnetic fields and galactic star formation rates

    SciTech Connect

    Loo, Sven Van; Tan, Jonathan C.; Falle, Sam A. E. G.

    2015-02-10

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ?0.5 pc. Including an empirically motivated prescription for star formation from dense gas (n{sub H}>10{sup 5} cm{sup ?3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 ?G. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  3. Magnetic field exposure of commercial airline pilots.

    PubMed

    Hood; Nicholas; Butler; Lackland; Hoel; Mohr

    2000-10-01

    PURPOSE: Airline pilots are exposed to magnetic fields generated by the aircraft's electrical and electronic systems. The purpose of this study was to directly measure the flight deck magnetic fields to which commercial airline pilots are exposed when flying on different aircraft types over a 75-hour flight-duty month.METHODS: Magentic field measurements were taken using personal dosimeters capable of measuring magnetic fields in the 40-800 Hz frequency range. Dosimeters were carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. The data were analyzed by aircraft type, with statistics based on block hours. Block hours begin when the aircraft departs the gate prior to take off and end when the aircraft returns to the gate after landing.RESULTS: Approximately 1008 block hours were recorded at a sampling rate of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200.CONCLUSIONS: Measured flight deck magnetic field levels were substantially above the 0.8 to 1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure. PMID:11018425

  4. Unusual Magnetic Fields of Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Nellis, W. J.

    2015-06-01

    Voyager 2 discovered the unusual non-dipolar and non-axisymmetric magnetic fields of the Ice Giants Uranus and Neptune (U/N) in the 1980's. The cause of those unique fields has been a major scientific question ever since. The answer lies in physical properties of fluids that generate planetary magnetic fields by dynamo action: convecting, electrically conducting fluids at high pressures P and temperatures T. Properties of fluids at planetary P/Ts are measured under adiabatic shock compression and quasi-isentropic multiple-shock compression up to a few 100 GPa and several 1000 K. Dynamic-compression and Voyager 2 data measured over three decades indicate (i) There is little ``Ice'' in the Ice Giants. (ii) Magnetic fields of U/N are made by metallic fluid H close to outer planetary radii. (iii) Thus, it is reasonable to observe non-dipolar non-axisymmetric fields. (iv) Those fields are probably caused by decoupling of rotational motion of U/N from convective motions in their dynamos, unlike Earth with strong coupling between those motions and a dipolar field. The full paper on this work is published.

  5. Biomaterials and Magnetic fields for Cancer Therapy

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Mazuruk, Konstanty

    2003-01-01

    The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.

  6. Influence of high magnetic field on the luminescence of Eu{sup 3+}-doped glass ceramics

    SciTech Connect

    Jiang, Wei; Chen, Weibo; Chen, Ping; Xu, Beibei; Zheng, Shuhong; Guo, Qiangbing; Liu, Xiaofeng E-mail: qjr@zju.edu.cn; Zhang, Junpei; Han, Junbo; Qiu, Jianrong E-mail: qjr@zju.edu.cn

    2014-09-28

    Rare earth (RE) doped materials have been widely exploited as the intriguing electronic configuration of RE ions offers diverse functionalities from optics to magnetism. However, the coupling of magnetism with photoluminescence (PL) in such materials has been rarely reported in spite of its fundamental significance. In the present paper, the effect of high pulsed magnetic field on the photoluminescence intensity of Eu{sup 3+}-doped nano-glass-ceramics has been investigated. In our experiment, Eu-doped oxyfluoride glass and glass ceramic were prepared by the conventional melt-quenching process and controlled heat treatment. The results demonstrate that the integrated PL intensity of Eu{sup 3+} decreases with the enhancement of magnetic field, which can be interpreted in terms of cooperation effect of Zeeman splitting and magnetic field induced change in site symmetry. Furthermore, as a result of Zeeman splitting, both blue and red shift in the emission peaks of Eu{sup 3+} can be observed, and this effect becomes more prominent with the increase of magnetic field. Possible mechanisms associated with the observed magneto-optical behaviors are suggested. The results of the present paper may open a new gate for modulation of luminescence by magnetic field and remote optical detection of magnetic field.

  7. Embedding quantum and random optics in a larger field theory

    E-print Network

    Peter Morgan

    2008-06-09

    Introducing creation and annihilation operators for negative frequency components extends the algebra of smeared local observables of quantum optics to include an associated classical random field optics.

  8. Sensor for detecting changes in magnetic fields

    DOEpatents

    Praeg, Walter F. (Palos Park, IL)

    1981-01-01

    A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  9. Sensor for detecting changes in magnetic fields

    DOEpatents

    Praeg, W.F.

    1980-02-26

    A sensor is described for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device that comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  10. Influence of the segregation effect on the magnetic and optical properties of a compensated ferronematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Zakhlevnykh, A. N.; Petrov, D. A.

    2012-09-01

    The Freedericksz transition in splay and bend geometry in a ferronematic (a suspension of single-domain magnetic particles in a nematic liquid crystal) is considered in the framework of the continuum theory. In zero magnetic field, the ferronematic was assumed to be compensated (i.e., having equal fractions of an impurity with magnetic moments directed parallel and antiparallel to the local director). Spatial distortions of the director and the concentration redistribution of the magnetic impurity in the ferronematic layer are studied as functions of the applied magnetic field and the segregation parameter. It is shown that the magnetic-field induced Freedericksz transition from the homogeneous to the inhomogeneous state has a threshold nature. The transition field as a function of the material parameters of the ferronematic is determined analytically. Magnetization of the ferronematic and its optical properties for a strong and weak segregation as functions of the magnetic field are studied.

  11. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Enhancement of Field Emission Properties in La-Doped ZnO Films Prepared by Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Li, Jun; Wang, Ru-Zhi; Lan, Wei; Zhang, Xing-Wang; Duan, Zhi-Qiang; Wang, Bo; Yan, Hui

    2008-07-01

    Field emissions (FE) from La-doped zinc oxide (ZnO) films are both experimentally and theoretically investigated. Owing to the La-doped effect, the FE characteristic of ZnO films is remarkably enhanced compared with an undoped sample, and a startling low turn-on electric field of about 0.4 V/?m (about 2.5V/?m for the undoped ZnO films) is obtained at an emission current density of 1 mA/cm2 and the stable current density reaches 1 mA/cm2 at an applied field of about 2.1 V/?m. A self-consistent theoretical analysis shows that the novel FE enhancement of the La-doped sample may be originated from its smaller work function. Due to the effect of doping with La, the Fermi energy level lifts, electrons which tunnelling from surface barrier are consumedly enhancing, and then leads to a huge change of field emission current. Interestingly, it suggests a new effective method to improve the FE properties of film materials.

  12. Terrestrial magnetic field effects on large photomultipliers

    NASA Astrophysics Data System (ADS)

    Leonora, E.; KM3NeT Consortium

    2013-10-01

    The effects of the Earth's magnetic field on the performance of large PMTs for a cubic-kilometer-scale neutrino telescope has been studied. Measurements were performed for three Hamamatsu PMTs: two 8? R5912 types; one with a standard and the other with a super bialkali photocathode, and a 10? R7081 type with a standard bialkali photocathode. The main characteristics of the PMTs, such as detection efficiency, transit time, transit time spread, gain, peak-to-valley ratio, charge resolution and fractions of spurious pulses were measured while varying the PMT orientations with respect to the Earth's magnetic field. The measurements were performed both with and without a mu-metal cage magnetic shielding. For the 8? PMTs the impact of the magnetic field was found to be smaller than for the 10? PMT. The magnetic shielding strongly reduced the orientation-dependent variations measured for the 10? PMT and even improved the performance. Although less pronounced, improvements were also measured for the 8? PMTs.

  13. ANCHORING MAGNETIC FIELD IN TURBULENT MOLECULAR CLOUDS

    SciTech Connect

    Li Huabai; Goodman, Alyssa; Darren Dowell, C.; Hildebrand, Roger; Novak, Giles

    2009-10-20

    One of the key problems in star formation research is to determine the role of magnetic fields. Starting from the atomic intercloud medium which has density n {sub H} approx 1 cm{sup -3}, gas must accumulate from a volume several hundred pc across in order to form a typical molecular cloud. Star formation usually occurs in cloud cores, which have linear sizes below 1 pc and densities n {sub H2} > 10{sup 5} cm{sup -3}. With current technologies, it is hard to probe magnetic fields at scales lying between the accumulation length and the size of cloud cores, a range corresponds to many levels of turbulent eddy cascade, and many orders of magnitude of density amplification. For field directions detected from the two extremes, however, we show here that a significant correlation is found. Comparing this result with molecular cloud simulations, only the sub-Alfvenic cases result in field orientations consistent with our observations.

  14. 2010 BLASTPol Observations of Magnetic Fields in Lupus

    NASA Astrophysics Data System (ADS)

    Matthews, Tristan G.

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 mum. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. The main result presented here is polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li. We have performed a similar analysis for Lupus IV and present initial results. The Lupus IV cloud has no clear dominant filament and we make no attempts to interpret these initial findings. Finally, detailed discussions of two of the dominant sources of error in the 2010 data are presented.

  15. Modelling of solar magnetic field and prominence structures

    NASA Technical Reports Server (NTRS)

    Wu, Shi Tsan

    1988-01-01

    Using plasma theory, the interaction is studied between high frequency and magnetohydrodynamic (MHD) waves from which a set of coupling equations resulted. On the basis of this formalism, the modulation instabilities of an electromagnetic soliton in a current sheet are examined, and it is shown that there is a resistive instability at the onset of the magnetic field reconnection. This mechanism could be used to explain the onset of solar flares and prominences. To improve the resolution of vector magnetic fields at the sun's surface, state-of-the-art optics is examined to improve the design and fabrication of a new spaceborne solar vector magnetograph as part of the SAMEX (Solar Active Measurements Experiment) program.

  16. Optomechanical creation of magnetic fields for photons on a lattice

    E-print Network

    M. Schmidt; S. Keßler; V. Peano; O. Painter; F. Marquardt

    2015-02-26

    We propose using the optomechanical interaction to create artificial magnetic fields for photons on a lattice. The ingredients required are an optomechanical crystal, i.e. a piece of dielectric with the right pattern of holes, and two laser beams with the right pattern of phases. One of the two proposed schemes is based on optomechanical modulation of the links between optical modes, while the other is an lattice extension of optomechanical wavelength-conversion setups. We illustrate the resulting optical spectrum, photon transport in the presence of an artificial Lorentz force, edge states, and the photonic Aharonov-Bohm effect. Moreover, wWe also briefly describe the gauge fields acting on the synthetic dimension related to the phonon/photon degree of freedom. These can be generated using a single laser beam impinging on an optomechanical array.

  17. Pseudomagnetoexcitons in strained graphene bilayers without external magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Fu, Zhen-Guo; Zheng, Fawei; Zhang, Ping

    2013-03-01

    We propose a strained graphene double-layer (SGDL) system for detecting pseudomagnetoexcitons (PME) in the absence of external magnetic fields. The carriers in each graphene layer experience different strong pseudomagnetic fields (PMFs) due to strain engineering, which give rise to Landau quantization. The pseudo-Landau levels of electron-hole pairs under inhomogeneous PMFs in the SGDL are obtained analytically in the absence of Coulomb interactions. Based on the derived optical absorption selection rule for PMEs, we interpret the optical absorption spectra as indicating the formation of Dirac-type PMEs. We also predict that in the presence of inhomogeneous PMFs, the superfluidity-normal phase-transition temperature of PMEs is greater than that under homogeneous PMFs.

  18. Temperature and magnetic-field driven dynamics in artificial magnetic square ice

    NASA Astrophysics Data System (ADS)

    Morley, Sophie A.; Stein, Aaron; Rosamond, Mark C.; Alba Venero, Diego; Hrabec, Aleš; Shepley, Philippa M.; Im, Mi-Young; Fischer, Peter; Bryan, Matthew T.; Allwood, Dan A.; Steadman, Paul; Langridge, Sean; Marrows, Christopher H.

    2015-09-01

    Artificial spin ices are often spoken of as being realisations of some of the celebrated vertex models of statistical mechanics, where the exact microstate of the system can be imaged using advanced magnetic microscopy methods. The fact that a stable image can be formed means that the system is in fact athermal and not undergoing the usual finite-temperature fluctuations of a statistical mechanical system. In this paper we report on the preparation of artificial spin ices with islands that are thermally fluctuating due to their very small size. The relaxation rate of these islands was determined using variable frequency focused magneto-optic Kerr measurements. We performed magnetic imaging of artificial spin ice under varied temperature and magnetic field using X-ray transmission microscopy which uses X-ray magnetic circular dichroism to generate magnetic contrast. We have developed an on-membrane heater in order to apply temperatures in excess of 700 K and have shown increased dynamics due to higher temperature. Due to the `photon-in, photon-out' method employed here, it is the first report where it is possible to image the microstates of an ASI system under the simultaneous application of temperature and magnetic field, enabling the determination of relaxation rates, coercivties, and the analysis of vertex population during reversal.

  19. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  20. Pulsed-field magnetometry for rock magnetism

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2015-12-01

    An improved method is proposed for measuring dynamic magnetizations of bulk volcanic rock samples induced by a pulsed-field of 0.7 T and a duration of 10 ms. The transient magnetization is measured by a sensing system that consists of a pair of inductive differential coils, an analog preamplifier and integrator, and a high-speed digital storage scope. The system was calibrated using a paramagnetic salt (Gd2O3) and was tested to different kinds of volcanic rocks with their magnetic properties well-documented previously. The results were comparable with those measured by a quasi-static method using a vibrating sample magnetometer, although there were small discrepancies in hysteresis parameters suggesting the time-dependence of the magnetic properties. The proposed system provides not only the magnetization over the short interval of a pulse but also the rapid (~3 ms) exponential decay after a pulse. The decay time constant was different among the samples under study, indicating the variations of their magnetic relaxation time. Although the present system is not sensitive enough to characterize varieties of natural samples including sediments, it has the potential as a versatile and convenient tool for rock magnetism.