These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Behavior of a Single Langmuir Probe in a Magnetic Field.  

ERIC Educational Resources Information Center

Describes an experiment to demonstrate the influence of a magnetic field on the behavior of a single Langmuir probe. The experiment introduces the student to magnetically supported plasma and particle behavior in a magnetic field. (GA)

Pytlinski, J. T.; And Others

1978-01-01

2

Micro-probe measurement in pulsed high magnetic fields  

NASA Astrophysics Data System (ADS)

We present recent development in pulsed field experiments with small sensing devices or micro-probes, which are obtained by micromachining or microfabrication. The reduced dimensions of the device enable us to measure ?g-order samples. As examples, we demonstrate the usability of magnetometers with use of a microcantilever and a microcapacitance in pulsed high magnetic fields of up to 40 T.

Ohmichi, Eiji; Osada, Toshihito

2004-04-01

3

Field-tunable probe for combined electric and magnetic field measurements  

Microsoft Academic Search

A method to measure the magnitude and phase of electric and magnetic fields with a single probe is presented. The optically-based probe, consisting of a hybrid combination of gallium arsenide followed by terbium gallium garnet, employs the Pockels effect to measure electric fields and the Faraday effect to measure magnetic fields. Isolation between the two effects is achieved via external

Ronald M. Reano; John F. Whitaker; Linda P. B. Katehi

2002-01-01

4

Probing Primordial Magnetic Fields Using Ly-alpha Clouds  

E-print Network

From previous studies of the effect of primordial magnetic fields on early structure formation, we know that the presence of primordial magnetic fields during early structure formation could induce more perturbations at small scales (at present 1-10 Mpc/h) as compared to the usual LCDM theory. Matter power spectrum over these scales are effectively probed by cosmological observables such as shear correlation and Ly-alpha clouds, In this paper we discuss the implications of primordial magnetic fields on the distribution of Ly-alpha clouds. We simulate the line of sight density fluctuation including the contribution coming from the primordial magnetic fields. We compute the evolution of Ly-alpha opacity for this case and compare our theoretical estimates of Ly-alpha opacity with the existing data to constrain the parameters of the primordial magnetic fields. We also discuss the case when the two density fields are correlated. Our analysis yields an upper bounds of roughly 0.3-0.6 nG on the magnetic field streng...

Pandey, Kanhaiya L

2012-01-01

5

Characterization of magnetic force microscopy probe tip remagnetization for measurements in external in-plane magnetic fields  

SciTech Connect

A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.

Weis, Tanja; Engel, Dieter; Ehresmann, Arno [Institute of Physics and Centre for Interdisciplinary Nanostructure Science and Technology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany); Krug, Ingo [DSM IRAMIS SPCSI, CEA-Saclay, 91191 Gif sur Yvette (France); Hoeink, Volker; Schmalhorst, Jan; Reiss, Guenter [Department of Physics, Thin Films and Nanostructures, Bielefeld University, P.O. Box 100131, 33501 Bielefeld (Germany)

2008-12-15

6

Modified pulsar current analysis: probing magnetic field evolution  

NASA Astrophysics Data System (ADS)

We use a modified pulsar current analysis to study magnetic field decay in radio pulsars. In our approach, we analyse the flow not along the spin period axis as has been performed in previous studies, but study the flow along the direction of growing characteristic age, ? =P/(2dot{P}). We perform extensive tests of the method and find that in most of the cases it is able to uncover non-negligible magnetic field decay (more than a few tens of per cent during the studied range of ages) in normal radio pulsars for realistic initial properties of neutron stars. However, precise determination of the magnetic field decay time-scale is not possible at present. The estimated time-scale may differ by a factor of few for different sets of initial distributions of neutron star parameters. In addition, some combinations of initial distributions and/or selection effects can also mimic enhanced field decay. We apply our method to the observed sample of radio pulsars at distances <10 kpc in the range of characteristic ages 8 × 104 < ? < 106 yr where, according to our study, selection effects are minimized. By analysing pulsars in the Parkes Multibeam and Swinburne surveys, we find that, in this range, the field decays roughly by a factor of 2. With an exponential fit, this corresponds to the decay time-scale ˜4 × 105 yr. With larger statistics and better knowledge of the initial distribution of spin periods and magnetic field strength, this method can be a powerful tool to probe magnetic field decay in neutron stars.

Igoshev, A. P.; Popov, S. B.

2014-10-01

7

Probing primordial magnetic fields with the 21-cm fluctuations  

Microsoft Academic Search

Primordial magnetic fields possibly generated in the very early Universe are one of the candidates for the origin of magnetic fields observed in many galaxies and galaxy clusters. After recombination, the dissipation process of the primordial magnetic fields increases the baryon temperature. The Lorentz force acts on the residual ions and electrons to generate density fluctuations. These effects are imprinted

Hiroyuki Tashiro; Naoshi Sugiyama

2006-01-01

8

Probe measurements of low-frequency plasma potential and electric field fluctuations in a magnetized plasma  

Microsoft Academic Search

A system of two cylindrical probes aligned along the magnetic field, and equipped with insulating end plugs, is proposed for measurement of low-frequency fluctuations of the electrostatic field in a magnetized plasma. It is demonstrated by modeling and experiments that the plug probe floats close to the plasma potential. The electric field component in a given direction is obtained by

S. V. Ratynskaia; V. I. Demidov; K. Rypdal

2002-01-01

9

Probing Primordial Magnetic Fields with the 21cm Fluctuations  

E-print Network

Primordial magnetic fields possibly generated in the very early universe are one of the candidates for the origin of magnetic fields observed in many galaxies and galaxy clusters. After recombination, the dissipation process of the primordial magnetic fields increases the baryon temperature. The Lorentz force acts on the residual ions and electrons to generate density fluctuations. These effects are imprinted on the cosmic microwave background (CMB) brightness temperature fluctuations produced by the neutral hydrogen 21cm line. We calculate the angular power spectrum of brightness temperature fluctuations for the model with the primordial magnetic fields of a several nano Gauss strength and a power-law spectrum. It is found that the overall amplitude and the shape of the brightness temperature fluctuations depend on the strength and the spectral index of the primordial magnetic fields. Therefore, it is expected that the observations of the CMB brightness temperature fluctuations give us a strong constraint on the primordial magnetic fields.

Hiroyuki Tashiro; Naoshi Sugiyama

2006-07-10

10

Probing Primordial Magnetic Fields with the 21cm Fluctuations  

Microsoft Academic Search

Primordial magnetic fields possibly generated in the very early universe are\\u000aone of the candidates for the origin of magnetic fields observed in many\\u000agalaxies and galaxy clusters. After recombination, the dissipation process of\\u000athe primordial magnetic fields increases the baryon temperature. The Lorentz\\u000aforce acts on the residual ions and electrons to generate density fluctuations.\\u000aThese effects are imprinted

Hiroyuki Tashiro; Naoshi Sugiyama

2006-01-01

11

Standard Practices for Usage of Inductive Magnetic Field Probes with Application to Electric Propulsion Testing  

NASA Technical Reports Server (NTRS)

Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are often employed to perform field measurements in electric propulsion applications where there are time-varying fields. Magnetic field probes provide the means to measure these magnetic fields and can even be used to measure the plasma current density indirectly through the application of Ampere's law. Measurements of this type can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. Results of the development of a standard for B-dot probe measurements are presented, condensing the available literature on the subject into an accessible set of rules, guidelines, and techniques to standardize the performance and presentation of future measurements.

Polzin, Kurt A.; Hill, Carrie S.; Turchi, Peter J.; Burton, Rodney L.; Messer, Sarah; Lovberg, Ralph H.; Hallock, Ashley K.

2013-01-01

12

Probing Primordial Magnetic Fields with the 21cm Fluctuations  

E-print Network

Primordial magnetic fields possibly generated in the very early universe are one of the candidates for the origin of magnetic fields observed in many galaxies and galaxy clusters. After recombination, the dissipation process of the primordial magnetic fields increases the baryon temperature. The Lorentz force acts on the residual ions and electrons to generate density fluctuations. These effects are imprinted on the cosmic microwave background (CMB) brightness temperature fluctuations produced by the neutral hydrogen 21cm line. We calculate the angular power spectrum of brightness temperature fluctuations for the model with the primordial magnetic fields of a several nano Gauss strength and a power-law spectrum. It is found that the overall amplitude and the shape of the brightness temperature fluctuations depend on the strength and the spectral index of the primordial magnetic fields. Therefore, it is expected that the observations of the CMB brightness temperature fluctuations give us a strong constraint on...

Tashiro, H; Tashiro, Hiroyuki; Sugiyama, Naoshi

2006-01-01

13

Magnification bias as a novel probe for primordial magnetic fields  

E-print Network

In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation, galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual g...

Camera, Stefano; Moscardini, Lauro

2013-01-01

14

High-precision harmonic magnetic-field measurement and analysis using a fixed angle Hall probe  

Microsoft Academic Search

A special theoretical concept involving the harmonic magnetic-field measurement and analysis method using a fixed angle Hall probe was developed at the Synchrotron Radiation Research Center (SRRC) for measuring as well as analyzing the triple bending achromat magnets of the storage ring. The method can be used to simulate the harmonic magnetic-field calculation of the two-dimensional (2D) ‘‘magnet’’ program. This

C. S. Hwang; F. Y. Lin; T. H. Huang; G. J. Jan; P. K. Tseng

1994-01-01

15

The Magnetic Field in Taurus Probed by Infrared Polarization  

NASA Astrophysics Data System (ADS)

We present maps of the plane-of-sky magnetic field within two regions of the Taurus molecular cloud: one in the dense core L1495/B213 filament and the other in a diffuse region to the west. The field is measured from the polarization of background starlight seen through the cloud. In total, we measured 287 high-quality near-infrared polarization vectors in these regions. In L1495/B213, the percent polarization increases with column density up to AV ~ 9 mag, the limits of our data. The radiative torques model for grain alignment can explain this behavior, but models that invoke turbulence are inconsistent with the data. We also combine our data with published optical and near-infrared polarization measurements in Taurus. Using this large sample, we estimate the strength of the plane-of-sky component of the magnetic field in nine subregions. This estimation is done with two different techniques that use the observed dispersion in polarization angles. Our values range from 5 to 82 ?G and tend to be higher in denser regions. In all subregions, the critical index of the mass-to-magnetic flux ratio is sub-unity, implying that Taurus is magnetically supported on large scales (~2 pc). Within the region observed, the B213 filament takes a sharp turn to the north and the direction of the magnetic field also takes a sharp turn, switching from being perpendicular to the filament to becoming parallel. This behavior can be understood if we are observing the rim of a bubble. We argue that it has resulted from a supernova remnant associated with a recently discovered nearby gamma-ray pulsar.

Chapman, Nicholas L.; Goldsmith, Paul F.; Pineda, Jorge L.; Clemens, D. P.; Li, Di; Kr?o, Marko

2011-11-01

16

THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION  

SciTech Connect

We present maps of the plane-of-sky magnetic field within two regions of the Taurus molecular cloud: one in the dense core L1495/B213 filament and the other in a diffuse region to the west. The field is measured from the polarization of background starlight seen through the cloud. In total, we measured 287 high-quality near-infrared polarization vectors in these regions. In L1495/B213, the percent polarization increases with column density up to A{sub V} {approx} 9 mag, the limits of our data. The radiative torques model for grain alignment can explain this behavior, but models that invoke turbulence are inconsistent with the data. We also combine our data with published optical and near-infrared polarization measurements in Taurus. Using this large sample, we estimate the strength of the plane-of-sky component of the magnetic field in nine subregions. This estimation is done with two different techniques that use the observed dispersion in polarization angles. Our values range from 5 to 82 {mu}G and tend to be higher in denser regions. In all subregions, the critical index of the mass-to-magnetic flux ratio is sub-unity, implying that Taurus is magnetically supported on large scales ({approx}2 pc). Within the region observed, the B213 filament takes a sharp turn to the north and the direction of the magnetic field also takes a sharp turn, switching from being perpendicular to the filament to becoming parallel. This behavior can be understood if we are observing the rim of a bubble. We argue that it has resulted from a supernova remnant associated with a recently discovered nearby gamma-ray pulsar.

Chapman, Nicholas L.; Goldsmith, Paul F.; Pineda, Jorge L.; Li Di [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 301-429, Pasadena, CA 91109 (United States); Clemens, D. P. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Krco, Marko, E-mail: nchapman@u.northwestern.edu [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

2011-11-01

17

Inductive probe to measure the Earth’s magnetic field: a short note  

NASA Astrophysics Data System (ADS)

This experiment provides ‘hands-on’ experience of Faraday’s law. By flipping a coil of wire (the probe) in a horizontal or vertical plane the two components of the Earth’s magnetic field are determined. The signal from the probe is recorded by a Picoscope ADC100.

Thompson, Frank

2014-09-01

18

Standard Practices for Usage of Inductive Magnetic Field Probes with Application to Electric Propulsion Testing  

NASA Technical Reports Server (NTRS)

Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are useful for performing measurements in electric space thrusters and various plasma accelerator applications where a time-varying magnetic field is present. Magnetic field probes have proven to be a mainstay in diagnosing plasma thrusters where changes occur rapidly with respect to time, providing the means to measure the magnetic fields produced by time-varying currents and even an indirect measure of the plasma current density through the application of Ampère's law. Examples of applications where this measurement technique has been employed include pulsed plasma thrusters and quasi-steady magnetoplasmadynamic thrusters. The Electric Propulsion Technical Committee (EPTC) of the American Institute of Aeronautics and Astronautics (AIAA) was asked to assemble a Committee on Standards (CoS) for Electric Propulsion Testing. The assembled CoS was tasked with developing Standards and Recommended Practices for various diagnostic techniques used in the evaluation of plasma thrusters. These include measurements that can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. This paper presents a summary of the standard, describing the preferred methods for fabrication, calibration, and usage of inductive magnetic field probes for use in diagnosing plasma thrusters. Inductive magnetic field probes (also called B-dot probes throughout this document) are commonly used in electric propulsion (EP) research and testing to measure unsteady magnetic fields produced by time-varying currents. The B-dot probe is relatively simple in construction, and requires minimal cost, making it a low-cost technique that is readily accessible to most researchers. While relatively simple, the design of a B-dot probe is not trivial and there are many opportunities for errors in probe construction, calibration, and usage, and in the post-processing of data that is produced by the probe. There are typically several ways in which each of these steps can be approached, and different applications may require more or less vigorous attention to various issues.

Polzin, Kurt A.; Hill, Carrie S.

2013-01-01

19

Nanoscale magnetic field mapping with a single spin scanning probe magnetometer  

SciTech Connect

We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V. [Laboratoire de Photonique Quantique et Moleculaire, Ecole Normale Superieure de Cachan and CNRS UMR 8537, 94235 Cachan Cedex (France); Dal Savio, C.; Karrai, K. [Attocube systems AG, Koeniginstrasse 11A RGB, Munich 80539 (Germany); Dantelle, G. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique and CNRS UMR 7643, 91128 Palaiseau (France); Thiaville, A.; Rohart, S. [Laboratoire de Physique des Solides, Universite Paris-Sud and CNRS UMR 8502, 91405 Orsay (France)

2012-04-09

20

Nanoscale magnetic field mapping with a single spin scanning probe magnetometer  

NASA Astrophysics Data System (ADS)

We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Dal Savio, C.; Karrai, K.; Dantelle, G.; Thiaville, A.; Rohart, S.; Roch, J.-F.; Jacques, V.

2012-04-01

21

Microscopic probe for vector measurement of both the electric and the magnetic field of light  

E-print Network

Microscopic probe for vector measurement of both the electric and the magnetic field of light microscopic imaging of light", Nature Photonics, 1, 53-56, 2007. 2. H. W. Kihm et al., "Bethe(Near-field Scanning Optical Microscope) tip (electric dipole) (1) hole tip (2

Park, Namkyoo

22

Modeling magnetic fields measured by surface probes embedded in a cylindrical flux conserver.  

PubMed

Calculating magnetic fields at the surface of a flux conserver, perfect conductor, for displaced plasma currents is useful for understanding modes of a Z-pinch. The magnetic fields measured at the flux conserver are a sum of the magnetic fields from the plasma current and the eddy currents which form in the walls to keep the flux constant. While the magnetic field at the wall from the plasma current alone is easily calculated using the Biot-Savart law, finding the eddy currents in the flux conserver which satisfy the boundary conditions can be a tedious process. A simple method of calculating the surface magnetic field for a given Z-pinch displacement off-axis is derived for a cylindrical flux conserver. This relationship does not require the explicit calculation of the eddy currents, saving time when analyzing surface magnetic probe measurements. Analytic expressions can be used to describe the surface magnetic field which increase the understanding of the magnetic probe measurements. PMID:17411182

Golingo, R P

2007-03-01

23

Design and application of hybrid magnetic field-eddy current probe  

NASA Astrophysics Data System (ADS)

The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a twochannel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 MHz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.

Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John

2014-02-01

24

A new probe of magnetic fields in the pre-reionization epoch: I. Formalism  

E-print Network

We propose a method of measuring extremely weak magnetic fields in the inter galactic medium prior to and during the epoch of cosmic reionization. The method utilizes the Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition. The resulting change in the brightness temperature fluctuations encodes information about the magnetic field the atoms are immersed in. The method is most suited to probing fields that are coherent on large scales. Due to the long lifetime of the triplet state of the 21-cm transition, this technique is naturally sensitive to extremely weak field strengths, of order $10^{-19}$ G (or $10^{-21}$ G if scaled to the present day). Therefore, this might open up the possibility of probing primordial magnetic fields just prior to reionization. Moreover, such measurements are unaffected by later magnetic fields since 21-cm observations preserve redshift information. If the magnetic fields are much stronger, it is still possible to recover information...

Venumadhav, Tejaswi; Gluscevic, Vera; Mishra, Abhilash; Hirata, Christopher M

2014-01-01

25

Rotating field eddy current probe for characterization of cracking in non-magnetic tubing  

SciTech Connect

A rotating field eddy current probe was built and tested for use in small diameter, non-magnetic tubing. The rotating field probe is a driver/pickup style with two orthogonally wound drive coils and a pancake pickup coil. The driver coils are excited by two sine waves 90{degree} out of phase with each other. The physical arrangement of the drive coils and the 90{degree} phase shift of the excitation waveforms creates a field which rotates in the test piece under the drive coils. Preliminary tests on electrical discharge machined (EDM) notches show that phased based estimates of notch depth are possible. Probes currently used for detection of cracks in tubing produce responses that have proven unreliable for estimating defect depths. This recently developed version of the rotating field eddy current probe produces a bipolar response in the presence of a crack or a notch. Typically, the phase angle of a bipolar eddy current response is easily identified and measured and is used extensively for estimating depths of volumetric defects. Data are shown relating the phase angle of the rotating field probe`s bipolar response to the depth of circumferential EDM notches.

Capobianco, T.E. [Lockheed Martin, Schenectady, NY (United States)

1998-07-01

26

A New Radio - X-Ray Probe of Galaxy Cluster Magnetic Fields  

E-print Network

Results are presented of a new VLA-ROSAT study that probes the magnetic field strength and distribution over a sample of 16 ``normal'' low redshift (z = 5-10 (l/10 kpc)^{-1/2} microGauss, where l is the field correlation length. These results lead to a global estimate of the total magnetic energy in clusters, and give new insight into the ultimate energy origin, which is likely gravitational. These results also shed some light on the cluster evolutionary conditions that existed at the onset of cooling flows.

T. E. Clarke; P. P. Kronberg; H. Boehringer

2000-11-14

27

Probing Primordial Magnetic Fields with 21-cm Line Observations of the High-redshift Intergalactic Medium  

NASA Astrophysics Data System (ADS)

Coherent magnetic fields with strengths of the order of 10^(-5) G are observed on scales of individual galaxies, including the Milky Way. They are thought to be organized and maintained by a dynamo mechanism. However, the nature and origin of the seed magnetic field, required for the dynamo effect to take place, are still unknown. Here, we propose a method of probing the magnetic field in the intergalactic medium before the Epoch of Reionization through observations of redshifted 21-cm radiation of neutral hydrogen. The 21-cm line is created during the spin-flip transition between the hyperfine levels of the hydrogen ground state. The upper hyperfine level is a triplet consisting of atomic states with three different projections of the total angular momentum vector. Anisotropic 21-cm radiation, resulting from perturbations in the high-redshift IGM, unevenly populates triplet sublevels. If an atom is located in an external magnetic field, it precesses between the three states; this causes an additional anisotropy in the 21-cm radiation, which could be imprinted in the 21-cm power spectrum. In order to evaluate the effect of the magnetic field, we need to consider in full detail all mechanisms that affect the distribution of atoms in hyperfine sublevels, such as the interaction of hydrogen atoms with the 21-cm radiation, optical pumping by Lyman-alpha photons, and spin-exchange in hydrogen-hydrogen collisions. Preliminary calculations suggest that this method could be sensitive to extremely weak magnetic fields, of the order of 10^(-17) G.

Oklopcic, Antonija; Gluscevic, V.; Hirata, C. M.; Mishra, A.; Venumadhav, T. N.

2014-01-01

28

Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer  

NASA Astrophysics Data System (ADS)

Mars' magnetic field is dominated by remanent magnetization of the crust, which is distributed non-uniformly over the surface. In the northern hemisphere, crustal magnetic fields are so weak that the solar wind interacts directly with the atmosphere and ionosphere in a manner similar to Venus and active comets. The Electron R flectometer (ER) onboard Mars Global Surveyor (MGS) detected ae persistent boundary between the ionosphere and the solar wind as the latter is diverted around and past the planet. Above this boundary the 10-1000 eV electron population is dominated by solar wind electrons, while below it is dominated by ionospheric photoelectrons. Photoelectron energy spectra exhibit a broad feature from 20 to 50 eV, which likely results from a blend of unresolved photoionization peaks, and a feature at ~500 eV due to oxygen Auger electrons. The shape of the photoelectron spectrum remains fairly constant above ~180 km, but changes significantly at lower altitudes, probably because of approach to the exobase. The "photoelectron boundary", or PEB, was observed at altitudes ranging from 180 km to over 800 km, with a m dian of 380 km. The PEB altitude is highly variablee and sensitive to changes in the ionospheric thermal pressure and the solar wind dynamic pressure. Moreover, the PEB is systematically higher over crustal magnetic anomalies, which can exert significant magnetic pressure at ionospheric altitudes. Crustal fields as weak as a few nanoteslas at 400 km altitude cause a detectable bias in the PEB height. In the most strongly magnetized regions of the southern hemisphere, the crustal field is strong and coherent enough to stand off the solar wind up to altitudes of ~800 km, forming localized "magnetocylinders," which are elongated in the east-west direction following the pattern of magnetization. The ER probes the topology of these magnetocylinders by measuring the energy spectra and pitch angle distributions of electrons traveling along the c ustal field lines.r Ionospheric plasma is trapped on closed magnetic field lines that are anchored to the crust. Where the crustal field has a nearly radial orientation, there is a tendency for the field lines to reconnect with the solar wind magnetic field, forming cusps.

Mitchell, D.; Lin, R.; Lee, C.; Chou, S.; Reme, H.; Cloutier, P.; Connerney, J.; Acuna, M.; Ness, N.

29

Stray Field Nuclear Magnetic Resonance of Soil Water: Development of a New, Large Probe and Preliminary Results  

E-print Network

Stray Field Nuclear Magnetic Resonance of Soil Water: Development of a New, Large Probe, which time. The stray field (STRAFI) technique of Samoile- should aid the selection of appropriate soil remediation methods. nko et al. (1988) uses a static gradient, which is about Stray field (STRAFI) imaging

Hemminga, Marcus A.

30

Magnetic field sensor  

NASA Astrophysics Data System (ADS)

Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

Silva, Nicolas

2012-09-01

31

Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-Ray Background  

NASA Technical Reports Server (NTRS)

The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

Venters, T. M.; Pavlidou, V.

2012-01-01

32

Phase-controlled pulse propagation in media with cross coupling of electric and magnetic probe field component  

SciTech Connect

Light propagation is discussed in media with a cross coupling of the electric and magnetic component of an applied probe field. We derive the wave equations for a probe pulse propagating through such a medium and solve them analytically in Fourier space using the slowly varying envelope approximation. Our analysis reveals the influence of the different medium response coefficients on the propagation dynamics. We apply these results to a specific example system in which cross couplings are induced in an atomic medium by additional control fields. We show that the cross couplings render the propagation dynamics sensitive to the relative phase of the additional fields, and this phase dependence enables one to control the pulse during its propagation through the medium. Our results demonstrate that the magnetic field component of a probe beam can crucially influence the system dynamics already at experimentally accessible parameter ranges in dilute vapors.

Fleischhaker, Robert; Evers, Joerg [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

2009-12-15

33

Relaxation of quasi-two-dimensional electrons in a quantizing magnetic field probed by time-resolved cyclotron resonance  

E-print Network

resonance of photogenerated transient carriers in undoped InSb/Al0.09In0.91Sb quantum wells by two-color pump-probe spectroscopy in a magnetic field. The strong conduction-band nonparabolicity of InSb causes study of photogenerated electrons in undoped InSb quantum wells QW's . TRCR is a recently developed

Kono, Junichiro

34

Thermonuclear Supernovae: Probing Magnetic Fields by Positrons and Late-time IR Line Profiles  

NASA Astrophysics Data System (ADS)

We show the importance of ? and positron transport for the formation of late-time spectra in Type Ia supernovae (SNe Ia). The goal is to study the imprint of magnetic fields (B) on late-time IR line profiles, particularly the [Fe II] feature at 1.644 ?m, which becomes prominent two to three months after the explosion. As a benchmark, we use the explosion of a Chandrasekhar mass (M Ch) white dwarf (WD) and, specifically, a delayed detonation model that can reproduce the light curves and spectra for a Branch-normal SN Ia. We assume WDs with initial magnetic surface fields between 1 and 109 G. We discuss large-scale dipole and small-scale magnetic fields. We show that positron transport effects must be taken into account for the interpretation of emission features starting at about one to two years after maximum light, depending on the size of B. The [Fe II] line profile and its evolution with time can be understood in terms of the overall energy input by radioactive decay and the transition from a ?-ray to a positron-dominated regime. We find that the [Fe II] line at 1.644 ?m can be used to analyze the overall chemical and density structure of the exploding WD up to day 200 without considering B. At later times, positron transport and magnetic field effects become important. After about day 300, the line profile allows one to probe the size of the B-field. The profile becomes sensitive to the morphology of B at about day 500. In the presence of a large-scale dipole field, a broad line is produced in M Ch mass explosions that may appear flat-topped or rounded depending on the inclination at which the SN is observed. Small or no directional dependence of the spectra is found for small-scale B. We note that narrow-line profiles require central 56Ni as shown in our previous studies. Persistent broad-line, flat-topped profiles require high-density burning, which is the signature of a WD close to M Ch. Good time coverage is required to separate the effects of optical depth, the size and morphology of B, and the aspect angle of the observer. The spectra require a resolution of about 500 km s–1 and a signal-to-noise ratio of about 20%. Two other strong near-IR spectral features at about 1.5 and 1.8 ?m are used to demonstrate the importance of line blending, which may invalidate a kinematic interpretation of emission lines. Flat-topped line profiles between 300 and 400 days have been observed and reported in the literature. They lend support for M Ch mass explosions in at least some cases and require magnetic fields equal to or in excess of 106 G. We briefly discuss the effects of the size and morphology of B on light curves, as well as limitations. We argue that line profiles are a more direct measurement of B than light curves because they measure both the distribution of 56Ni and the redistribution of the energy input by positrons rather than the total energy input. Finally, we discuss possible mechanisms for the formation of high B-fields and the limitations of our analysis.

Penney, R.; Hoeflich, P.

2014-11-01

35

Magnetic-field-assisted rapid ultrasensitive immunoassays using Fe3O4/ZnO/Au nanorices as Raman probes.  

PubMed

Rapid and ultrasensitive immunoassays were developed by using biofunctional Fe3O4/ZnO/Au nanorices as Raman probes. Taking advantage of the superparamagnetic property of the nanorices, the labeled proteins can rapidly be separated and purified with a commercial permanent magnet. The unsusceptible multiphonon resonant Raman scattering of the nanorices provided a characteristic spectroscopic fingerprint function, which allowed an accurate detection of the analyte. High specificity and selectivity of the assay were demonstrated. It was found that the diffusion barriers and the boundary layer effects had a great influence on the detection limit. Manipulation of the nanorice probes using an external magnetic field can enhance the assay sensitivity by several orders of magnitude, and reduce the detection time from 1 h to 3 min. This magnetic-field-assisted rapid and ultrasensitive immunoassay based on the resonant Raman scatting of semiconductor shows significant value for potential applications in biomedicine, food safety, and environmental defence. PMID:20667438

Hong, Xia; Chu, Xueying; Zou, Peng; Liu, Yichun; Yang, Guoliang

2010-10-15

36

Analysis of magnetic probe signals including effect of cylindrical conducting wall for field-reversed configuration experiment.  

PubMed

A confinement field is disturbed by magnetohydrodynamic (MHD) motions of a field-reversed configuration (FRC) plasma in a cylindrical conductor. The effect of the conductor should be included to obtain a spatial structure of the disturbed field with a good precision. For this purpose, a toroidal current in the plasma and an eddy current on a conducting wall are replaced by magnetic dipole and image magnetic dipole moments, respectively. Typical spatial structures of the disturbed field are calculated by using the dipole moments for such MHD motions as radial shift, internal tilt, external tilt, and n=2 mode deformation. Then, analytic formulas for estimating the shift distance, tilt angle, and deformation rate of the MHD motions from magnetic probe signals are derived. It is estimated from the calculations by using the dipole moments that the analytic formulas include an approximately 40% error. Two kinds of experiment are carried out to investigate the reliability of the calculations. First, a magnetic field produced by a circular current is measured in an aluminum pipe to confirm the replacement of the eddy current with the image magnetic dipole moments. The measured fields coincide well with the calculated values including the image magnetic dipole moments. Second, magnetic probe signals measured from the FRC plasma are substituted into the analytic formulas to obtain shift distance and deformation rate. The experimental results are compared to the MHD motions measured by using a radiation from the plasma. If the error included in the analytic formulas and the difference between the magnetic and optical structures in the plasma are considered, the results of the radiation measurement support well those of the magnetic analysis. PMID:18601402

Ikeyama, Taeko; Hiroi, Masanori; Nemoto, Yuuichi; Nogi, Yasuyuki

2008-06-01

37

Magnetic-Field-induced Transitions in Multiferroic TbMnO3 Probed by Resonant  

SciTech Connect

Multiferroic TbMnO3 is investigated using x-ray diffraction in high magnetic fields. Measurements on first and second harmonic structural reflections due to modulations induced by the Mn and Tb magnetic order are presented as function of temperature and field oriented along the a and b-directions of the crystal. The relation to changes in ordering of the rare earth moments in applied field is discussed. Observations below T{sub N}(Tb) without and with applied magnetic field point to a strong interaction of the rare earth order, the Mn moments and the lattice. Also, the incommensurate to commensurate transition of the wave vector at the critical fields is discussed with respect to the Tb and Mn magnetic order and a phase diagram on basis of these observations for magnetic fields H||a and H||b is presented. The observations point to a complicated and delicate magneto-elastic interaction as function of temperature and field.

Strempfer,J.; Bohnenbuck, B.; Zegkinoglou, I.; Aliouane, N.; Landsgesell, S.; Zimmermann, M.; Argyriou, D.

2008-01-01

38

Probe of the solar magnetic field using the "cosmic-ray shadow" of the sun.  

PubMed

We report on a clear solar-cycle variation of the Sun’s shadow in the 10 TeV cosmic-ray flux observed by the Tibet air shower array during a full solar cycle from 1996 to 2009. In order to clarify the physical implications of the observed solar cycle variation, we develop numerical simulations of the Sun’s shadow, using the potential field source surface model and the current sheet source surface (CSSS) model for the coronal magnetic field. We find that the intensity deficit in the simulated Sun’s shadow is very sensitive to the coronal magnetic field structure, and the observed variation of the Sun’s shadow is better reproduced by the CSSS model. This is the first successful attempt to evaluate the coronal magnetic field models by using the Sun’s shadow observed in the TeV cosmic-ray flux. PMID:24027782

Amenomori, M; Bi, X J; Chen, D; Chen, T L; Chen, W Y; Cui, S W; Danzengluobu; Ding, L K; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gou, Q B; Guo, Y Q; Hakamada, K; He, H H; He, Z T; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Jia, H Y; Jiang, L; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, H J; Li, W J; Liu, C; Liu, J S; Liu, M Y; Lu, H; Meng, X R; Mizutani, K; Munakata, K; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ozawa, S; Qian, X L; Qu, X B; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Shao, J; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, H; Wu, H R; Xue, L; Yamamoto, Y; Yang, Z; Yasue, S; Yuan, A F; Yuda, T; Zhai, L M; Zhang, H M; Zhang, J L; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X X

2013-07-01

39

Measurements of solar irradiance and effective temperature as a probe of solar interior magnetic fields  

E-print Network

We argue that a variety of solar data suggest that the activity-cycle timescale variability of the total irradiance, is produced by structural adjustments of the solar interior. Assuming these adjustments are induced by variations of internal magnetic fields, we use measurements of the total irradiance and effective temperature over the period from 1978 to 1992, to infer the magnitude and location of the magnetic field. Using an updated stellar evolution model, which includes magnetic fields, we find that the observations can be explained by fields whose peak values range from 120k to 2.3k gauss, located in the convection zone between $0.959R_{\\sun}$ and $0.997R_{\\sun}$, respectively. The corresponding maximal radius changes, are 17 km when the magnetic field is located at $0.959R_{\\sun}$ and 3 km when it is located at $0.997R_{\\sun}$. At these depths, the $W$ parameter(defined by $\\Delta \\ln R / \\Delta \\ln L$, where $R$ and $L$ are the radius and luminosity) ranges from 0.02 to 0.006. All these predictions are consistent with helioseismology and recent measurements carried out by the MDI experiment on SOHO.

L. H. Li; S. Sofia

2000-07-14

40

Hall probe measurements of the poloidal magnetic field in Compact Toroidal Hybrid plasmas.  

PubMed

A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46?V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code. PMID:25273721

Stevenson, B A; Knowlton, S F; Hartwell, G J; Hanson, J D; Maurer, D A

2014-09-01

41

Hall probe measurements of the poloidal magnetic field in Compact Toroidal Hybrid plasmas  

NASA Astrophysics Data System (ADS)

A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46 V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code.

Stevenson, B. A.; Knowlton, S. F.; Hartwell, G. J.; Hanson, J. D.; Maurer, D. A.

2014-09-01

42

Quantum oscillations as a probe of interaction effects in Weyl semimetals in a magnetic field  

NASA Astrophysics Data System (ADS)

The Weyl semimetal surface is modeled by applying the Bogolyubov boundary conditions, in which the quasiparticles have an infinite Dirac mass outside the semimetal. For a Weyl semimetal shaped as a slab of finite thickness, we derive an exact spectral equation for the quasiparticle states and obtain the spectrum of the bulk as well as surface Fermi arc modes. We also show that, in the presence of the magnetic field, the separation between Weyl nodes in momentum space and the length of the Fermi arcs in the reciprocal space are affected by the interactions. As a result, we find that the period of oscillations of the density of states related to closed magnetic orbits involving Fermi arcs has a nontrivial dependence on the orientation of the magnetic field projection in the plane of the semimetal surface. We conclude that the momentum-space separation between Weyl nodes and its modification due the interaction effects in the magnetic field can be measured in the experimental studies of quantum oscillations.

Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

2014-09-01

43

A biased probe analysis of potential well formation in an electron only, low beta Polywell magnetic field  

NASA Astrophysics Data System (ADS)

Orbital limited motion theory has been applied to two biased probes in a low beta Polywell. The cases studied include electron injection, magnetic field scaling, Polywell bias scaling, and radial position profiles. Langmuir's original orbital limited motion results for a monoenergetic electron beam are shown to be in excellent agreement for electron injection into the Polywell. A distribution function is proposed for the electron plasma characteristics in the centre of the magnetic null and confirmed with experimental results. A translational stage was used to measure the radial plasma potential profile. In other experiments, two probes were used to simultaneously measure the profiles in both the null and a position halfway along a corner cusp. The results confirm a radial potential well created by electron trapping in the device. In addition, we present preliminary results of the potential well scaling with the magnetic field, Polywell bias voltage, and the injected beam current. The electron population was found to maintain non-equilibrium in all cases studied.

Carr, Matthew; Khachan, Joe

2013-05-01

44

A biased probe analysis of potential well formation in an electron only, low beta Polywell magnetic field  

SciTech Connect

Orbital limited motion theory has been applied to two biased probes in a low beta Polywell. The cases studied include electron injection, magnetic field scaling, Polywell bias scaling, and radial position profiles. Langmuir's original orbital limited motion results for a monoenergetic electron beam are shown to be in excellent agreement for electron injection into the Polywell. A distribution function is proposed for the electron plasma characteristics in the centre of the magnetic null and confirmed with experimental results. A translational stage was used to measure the radial plasma potential profile. In other experiments, two probes were used to simultaneously measure the profiles in both the null and a position halfway along a corner cusp. The results confirm a radial potential well created by electron trapping in the device. In addition, we present preliminary results of the potential well scaling with the magnetic field, Polywell bias voltage, and the injected beam current. The electron population was found to maintain non-equilibrium in all cases studied.

Carr, Matthew; Khachan, Joe [Department of Plasma Physics, School of Physics A28, University of Sydney NSW 2006 (Australia)] [Department of Plasma Physics, School of Physics A28, University of Sydney NSW 2006 (Australia)

2013-05-15

45

ANISOTROPY AS A PROBE OF THE GALACTIC COSMIC-RAY PROPAGATION AND HALO MAGNETIC FIELD  

SciTech Connect

The anisotropy of cosmic rays (CRs) in the solar vicinity is generally attributed to CR streaming due to the discrete distribution of CR sources or local magnetic field modulation. Recently, the two-dimensional large-scale CR anisotropy has been measured by many experiments in the TeV-PeV energy range in both hemispheres. The tail-in excess along the tangential direction of the local spiral arm and the loss cone deficit pointing to the north Galactic pole direction agree with what have been obtained in tens to hundreds of GeV. The persistence of the two large-scale anisotropy structures in such a wide energy range suggests that the anisotropy might be due to global streaming of the Galactic CRs (GCRs). This work tries to extend the observed CR anisotropy picture from the solar system to the whole galaxy. In such a case, we can find a new interesting signature, a loop of GCR streaming, of the GCR propagation. We further calculate the overall GCR streaming induced magnetic field, and find a qualitative consistency with the observed structure of the halo magnetic field.

Qu, Xiao-bo; Zhang, Yi; Liu, Cheng; Hu, Hong-bo [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Xue, Liang, E-mail: zhangyi@mail.ihep.ac.cn [School of Physics, Shandong University, Ji'nan 250100 (China)

2012-05-01

46

SQUID readout and ultra-low magnetic fields for Gravity Probe-B (GP-B)  

NASA Technical Reports Server (NTRS)

The superconducting readout system to be used for resolving 0.001 arcsec changes in the gyroscope spin direction in the Relativity Gyroscope (GP-B) experiment is described. This system couples the London magnetic moment flux of the spinning gyro to a low noise superconducting quantum interference device (SQUID) detector. Resolution limits and noise performance of the detection system are discussed, and improvements obtained and expected with advanced SQUIDs are presented. Also described is the novel use of superconducting magnetic shielding techniques to obtain a 250 dB attenuation of the earth's magnetic field at the location of the gyroscopes. In this approach, expanded superconducting foil shields are coupled with fixed cylindrical superconducting shields and special geometric considerations to obtain the extremely high attenuation factor required. With these shielding techniques, it appears that the 0.5-Gauss earth field (which appears to the gyroscopes as an ac field at the satellite roll rate) can be reduced to the 10 to the -13th G level required by the experiment. Recent results concerning improvements in the performance of the superconducting foil techniques obtained with the use of a new computer-controlled cooling system are presented.

Lockhart, James M.

1986-01-01

47

Field-focusing hyperthermia and magnetic resonance imaging (MRI) with a grounded probe and a commercial MRI scanner.  

PubMed

A method for performing magnetic resonance imaging (MRI) and producing field-focusing hyperthermia sequentially in phantoms and rat tissues with a grounded hyperthermic probe and a commercial MRI scanner was demonstrated. In the treatment mode the MRI scanner was used as a radiofrequency (RF) power source, and an invasive, electrically grounded, tuned probe was used to produce hyperthermia in phantoms via induced eddy current convergence. Temperature increases of 4.5 degrees C/5 minutes in a dielectrically uniform phantom and 5.0 degrees C/6 minutes in the peritoneum of a rat were measured in the vicinity (3-5 mm) of the grounded probe with the transmitter of the MRI scanner working at 2 per cent duty cycle. The advantage of this combined diagnostic and therapeutic approach is that the position of the hyperthermic probe can be monitored before each treatment, with observation of the tumor during and after treatment, if desired. In addition, the total cost is significantly less than that of both an MRI scanner and an RF hyperthermia treatment system. PMID:4058345

Yamanashi, W S; Fesen, M R; Anderson, D W; SY, A M; Lester, P D

1985-01-01

48

Magnetic pulsations as a probe of the interplanetary magnetic field: a test of the Borok B Index  

Microsoft Academic Search

A magnetic pulsation index based on the periods of Pc 2--4 pulsations as recorded in earth current measurements at the Borok Geophysical Observatory has been claimed to be a measure of the interplanetary field. Tests of this index for the period 1972 to June 1974 show only a 27% success rate. However, a simple recalibration of the index improves the

Christopher T. Russell; Barbara K. Fleming

1976-01-01

49

PROBING THE SHALLOW CONVECTION ZONE: RISING MOTION OF SUBSURFACE MAGNETIC FIELDS IN THE SOLAR ACTIVE REGION  

SciTech Connect

In this Letter, we present a seismological detection of a rising motion of magnetic flux in the shallow convection zone of the Sun, and show estimates of the emerging speed and its decelerating nature. In order to evaluate the speed of subsurface flux that creates an active region, we apply six Fourier filters to the Doppler data of NOAA AR 10488, observed with the Solar and Heliospheric Observatory/Michelson Doppler Imager, to detect the reduction of acoustic power at six different depths from -15 to -2 Mm. All the filtered acoustic powers show reductions, up to 2 hr before the magnetic flux first appears at the visible surface. The start times of these reductions show a rising trend with a gradual deceleration. The obtained velocity is first several km s{sup -1} in a depth range of 15-10 Mm, then {approx}1.5 km s{sup -1} at 10-5 Mm, and finally {approx}0.5 km s{sup -1} at 5-2 Mm. If we assume that the power reduction is actually caused by the magnetic field, the velocity of the order of 1 km s{sup -1} is well in accordance with previous observations and numerical studies. Moreover, the gradual deceleration strongly supports the theoretical model that the emerging flux slows down in the uppermost convection zone before it expands into the atmosphere to build an active region.

Toriumi, Shin; Yokoyama, Takaaki [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ilonidis, Stathis [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Sekii, Takashi, E-mail: toriumi@eps.s.u-tokyo.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

2013-06-10

50

Magnetic Fields  

NSDL National Science Digital Library

This page and its annex describes, in trivial terms, the physics of magnetic fields and the history of its discovery. Included is the work of Halley, Oersted, Ampere and Maxwell. It also describes a way of demonstrating it in the classroom, using a vu-graph projector. Later sections #5, #5a and #6 extend this to magnetic field lines and electromagnetism.

Stern, David

2005-01-04

51

Wave Science with the Electric and Magnetic Field Instrument Suite with Integrated Science (EMFISIS) on the Radiation Belt Storm Probes  

Microsoft Academic Search

The physics of the creation and loss of radiation belt particles is intimately connected to the electric and magnetic fields of waves which mediate these processes. A large range of field regimes are involved in this physics from ring current magnetic fields to microscopic kinetic interactions such as whistler-mode chorus waves with energetic electrons. To measure these key field interactions,

S. R. Bounds; C. A. Kletzing; W. S. Kurth; M. H. Acuna; R. B. Torbert; R. Thorne; V. Jordanova; C. Smith; O. Santolik; R. Pfaff; D. Rpwlamd; G. Hospodarsky; W. Baumjohann; R. Nakamura; P. Puhl-Quinn

2008-01-01

52

Magnetic Field Safety Magnetic Field Safety  

E-print Network

Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

McQuade, D. Tyler

53

3D Hall probe integrated in 0.35 ?m CMOS technology for magnetic field pulses measurements  

Microsoft Academic Search

This paper presents a 3 dimensional magnetometer based on Hall effect sensors integrated without any post processing in a standard low cost 0.35 mum CMOS technology. The system is dedicated to magnetic pulses measurements under a strong static field. Two vertical Hall devices (VHD) are sensitive to the components of the magnetic field oriented in the plane of the chip,

Joris Pascal; Luc Hébrard; Vincent Frick; Jean-Philippe Blondé

2008-01-01

54

Extending the distance range accessed with continuous wave EPR with Gd3+ spin probes at high magnetic fields†  

PubMed Central

Interspin distances between 0.8 nm and 2.0 nm can be measured through the dipolar broadening of the continuous wave (cw) EPR spectrum of nitroxide spin labels at X-band (9.4 GHz, 0.35 T). We introduce Gd3+ as a promising alternative spin label for distance measurements by cw EPR above 7 Tesla, where the |?1/2? to |1/2? transition narrows below 1 mT and becomes extremely sensitive to dipolar broadening. To estimate the distance limits of cw EPR with Gd3+, we have measured spectra of frozen solutions of GdCl3 at 8.6 T (240 GHz) and 10 K at concentrations ranging from 50 mM to 0.1 mM, covering a range of average interspin distances. These experiments show substantial dipolar broadening at distances where line broadening cannot be observed with nitroxides at X-band. This data, and its agreement with calculated dipolar-broadened lineshapes, show Gd3+ to be sensitive to distances as long as ~3.8 nm. Further, the linewidth of a bis-Gd3+ complex with a flexible ~1.6 nm bridge is strongly broadened as compared to the mono-Gd3+ complex, demonstrating the potential for application to pairwise distances. Gd-DOTA-based chelates that can be functionalized to protein surfaces display linewidths narrower than aqueous GdCl3, implying they should be even more sensitive to dipolar broadening. Therefore, we suggest that the combination of tailored Gd3+ labels and high magnetic fields can extend the longest interspin distances measurable by cw EPR from 2.0 nm to 3.8 nm. cw EPR data at 260 K demonstrate that the line broadening remains clear out to similar average interspin distances, offering Gd3+ probes as promising distance rulers at temperatures higher than possible with conventional pulsed EPR distance measurements. PMID:23732863

Edwards, Devin T.; Ma, Zhidong; Meade, Thomas J.; Goldfarb, Daniella; Han, Songi

2014-01-01

55

Standard probes for electromagnetic field measurements  

Microsoft Academic Search

Discusses various standard antennas for measuring radio-frequency electric and magnetic fields. A theoretical analysis of each antenna's receiving characteristics is summarized and referenced. The standard probes described are an electrically short dipole, a resistively-loaded dipole, a half-wave dipole, an electrically small loop, and a resistively-loaded loop. A single-turn loop designed for simultaneous measurement of the electric and magnetic components of

Motohisa Kanda

1993-01-01

56

Impedance-type ferromagnetic probe sensors for magnetic inspection  

Microsoft Academic Search

Impedance-type ferromagnetic probes are based on the fact that the inductive resistance of a coil with a core of soft magnetic material in the form of a rod, ring, or frame decreases in a constant magnetic field. The current flowing through the probe at H = 0 is decreased considerably by connecting a coil to the oscillatory circuit tuned to

P. A. Khalileev

1976-01-01

57

Integrated Cantilever Loop Probe for Magnetic Resonance Force Microscopy  

Microsoft Academic Search

The measurement of magnetic fields, especially at the nanoscale, has become an issue of considerable interest. Applications include quantum computing, data storage, and magnetic resonance imaging (MRI). At the interface between conventional atomic force microscopy and MRI lies magnetic resonance force microscopy. Radio frequency (RF) waves excite electrons in a sample, and a magnetic cantilever probe can image a slice

Douglas Lagally

2005-01-01

58

Magnetically modulated fluorescent probes in turbid media  

E-print Network

Magnetically modulated optical nanoprobes (MagMOONs) were used to detect and distinguish probe fluorescence from autofluorescent backgrounds in turbid media. MagMOONs are micro/nano-sized particles with magnetically controlled orientation and orientation-dependent fluorescence. These probes blink when they rotate in response to rotating external magnetic fields. This blinking signal can be separated from backgrounds enabling spectrochemical sensing in media with strong autofluorescence. We explore the effect of scattering on MagMOON fluorescence. Turbid media reduce the modulated MagMOON signal due to a combination of attenuation of fluorescence signal and reduction in contrast between "On" and "Off" states. The blinking MagMOON fluorescence spectrum can be detected in turbid non-dairy creamer solution with extinction 2.0, and through 9 mm of chicken breast tissue, suggesting that whole mouse imaging is feasible by using this strategy.

Yang,; Chen, Hongyu; Anker, Jeffrey N

2010-01-01

59

Probing fine magnetic particles with neutron scattering  

SciTech Connect

Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid.

Pynn, R.

1991-01-01

60

Probing fine magnetic particles with neutron scattering  

SciTech Connect

Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid.

Pynn, R.

1991-12-31

61

Concentrator of magnetic field of light  

NASA Astrophysics Data System (ADS)

In the recent decade metamaterials with magnetic permeability different than unity and unusual response to the magnetic field of incident light have been intensively explored. Existence of magnetic artificial materials created an interest in a scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of those metamaterials. We present a method of measuring magnetic responses of such elementary cells within a wide range of optical frequencies with single probes of two types. The first type probe is made of a tapered silica fiber with radial metal stripes separated by equidistant slits of constant angular width. The second type probe is similar to metal coated, corrugated, tapered fiber apertured SNOM probe, but in this case corrugations are radially oriented. Both types of probes have internal illumination with azimuthally polarized light. In the near-field they concentrate into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one.

Wróbel, Piotr; Stefaniuk, Tomasz; Antosiewicz, Tomasz J.; Szoplik, Tomasz

2012-05-01

62

Magnetic exchange interactions and supertransferred hyperfine fields at 119Sn probe atoms in CaCu3Mn4O12  

NASA Astrophysics Data System (ADS)

The double manganite CaCu3Mn4O12 doped with 119Sn atoms (˜1 at.% with respect to manganese atoms) was studied by use of Mössbauer spectroscopy. Formally tetravalent Sn4+ ions substitute for isovalent manganese ions in the octahedral (Mn4+O6) polyhedra. The covalency effects on the magnetic interactions like superexchange in Cu2+-O-Mn4+ and Mn4+-O-Mn4+ bonds and supertransferred hyperfine interactions of the 119Sn probe atoms in the manganite structure are discussed. Using a semiquantitative nearest-neighbor cluster model relating the hyperfine magnetic field on the 119Sn nuclei (HSn = 105 kOe at T = 77 K) to covalency parameters and angle characterizing the Sn-O-M (M = Cu, Mn) bonds, it has been shown how such an analysis of supertransferred hyperfine interactions of tin probe ions can get fruitful information about strength and sign of the superexchange interactions between Mn4+ and Cu2+ magnetic ions. A consistent description of the results in the framework of the Weiss molecular field model considering the specific local environment of tin atoms has made it possible to estimate exchange integrals: JCuMn = -51.1 ± 0.3 K and JMnMn = -0.6 ± 0.2 K.

Presniakov, I. A.; Rusakov, V. S.; Demazeau, G.; Sobolev, A. V.; Glazkova, Ya. S.; Gubaidulina, T. V.; Gapochka, A. M.; Volkova, O. S.; Vasiliev, A. N.

2012-01-01

63

Optical sensor of magnetic fields  

DOEpatents

An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

Butler, M.A.; Martin, S.J.

1986-03-25

64

Interaction of proflavin with aromatic amines in homogeneous and micellar media: Photoinduced electron transfer probed by magnetic field effect  

NASA Astrophysics Data System (ADS)

Photoinduced electron transfer (PET) between proflavin (PF +) and two aromatic amines viz., dimethylaniline (DMA) and 4,4'-bis(dimethylamino)diphenylmethane (DMDPM) is studied in homogeneous and heterogeneous media using steady-state as well as time-resolved fluorescence spectroscopy and laser flash photolysis with an associated magnetic field. Ionic micelles have been used to study the effect of charge of proflavin on PET with amines. Magnetic field effect on PET reactions reveals that the parent spin-state of precursors of PET for DMA-PF + system is singlet while for DMDPM-PF + system is triplet, implying that the dynamics of PET is influenced by the structure of the donor.

Chakraborty, Brotati; Basu, Samita

2010-02-01

65

Scanning Hall probe microscopy of superconductors and magnetic materials  

Microsoft Academic Search

We describe results from a scanning Hall probe microscope operating in a broad temperature range, 4â300 K. A submicron Hall probe manufactured in a GaAs\\/AlGaAs two-dimensional electron gas is scanned over the sample to measure the surface magnetic fields using conventional scanning tunneling microscopy positioning techniques. The magnetic field structure of the sample together with the topography can be obtained

A. Oral; S. J. Bending; M. Henini

1996-01-01

66

OH MASER SOURCES IN W49N: PROBING MAGNETIC FIELD AND DIFFERENTIAL ANISOTROPIC SCATTERING WITH ZEEMAN PAIRS USING THE VERY LONG BASELINE ARRAY  

SciTech Connect

Our analysis of a Very Long Baseline Array 12 hr synthesis observation of the OH masers in the well-known star-forming region W49N has yielded valuable data that enable us to probe distributions of magnetic fields in both the maser columns and the intervening interstellar medium (ISM). The data, consisting of detailed high angular resolution images (with beam width ?20 mas) of several dozen OH maser sources, or spots, at 1612, 1665, and 1667 MHz, reveal anisotropic scatter broadening with typical sizes of a few tens of milliarcseconds and axial ratios between 1.5 and 3. Such anisotropies have been reported previously by Desai et al. and have been interpreted as being induced by the local magnetic field parallel to the Galactic plane. However, we find (1) apparent angular sizes of, on average, a factor of about 2.5 less than those reported by Desai et al., indicating significantly less scattering than inferred previously, and (2) a significant deviation in the average orientation of the scatter-broadened images (by ?10°) from that implied by the magnetic field in the Galactic plane. More intriguingly, for a few Zeeman pairs in our set, significant differences (up to 6?) are apparent in the scatter-broadened images for the two hands of circular polarization, even when the apparent velocity separation is less than 0.1 km s{sup –1}. This may possibly be the first example of a Faraday rotation contribution to the diffractive effects in the ISM. Using the Zeeman pairs, we also study the distribution of the magnetic field in the W49N complex, finding no significant trend in the spatial structure function. In this paper, we present the details of our observations and analysis leading to these findings, discuss implications of our results for the intervening anisotropic magneto-ionic medium, and suggest possible implications for the structure of magnetic fields within this star-forming region.

Deshpande, Avinash A. [Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Mendoza-Torres, J. E., E-mail: desh@rri.res.in, E-mail: mgoss@aoc.nrao.edu, E-mail: mend@inaoep.mx [Instituto Nacional de Astrofísica Optica y Electrónica, Tonantzintla, Puebla 72840 (Mexico)

2013-09-20

67

Magnetic fields in astrophysics  

Microsoft Academic Search

The evidence of cosmic magnetism is examined, taking into account the Zeeman effect, beats in atomic transitions, the Hanle effect, Faraday rotation, gyro-lines, and the strength and scale of magnetic fields in astrophysics. The origin of magnetic fields is considered along with dynamos, the conditions for magnetic field generation, the topology of flows, magnetic fields in stationary flows, kinematic turbulent

Ia. B. Zeldovich; A. A. Ruzmaikin; D. D. Sokolov

1983-01-01

68

Spin-echo EPR spin-probe measurement of the microsecond-range magnetic field fluctuations near the surface of crystals of the nanomagnet Mn 12-Ac  

NASA Astrophysics Data System (ADS)

Electron spin-echo detected EPR (ED-EPR) at the X-band, using the spin probe N-methylphenazinium-tetracyanoquinodimethane (NMP-TCNQ), enabled us to detect fluctuations of the local magnetic field close to the surface of a single crystal of [Mn 12O 12(CH 3COO) 16(H 2O) 4]·2CH 3COOH·4H 2O (Mn 12-Ac) in its superparamagnetic regime. The ED-EPR signal from NMP-TCNQ is unexpectedly broad in comparison to standard sharp and intense spectrum detected by continuous wave EPR (CW-EPR). This broadened peak represents inhomogeneous broadening, whose homogenous component line width, ?, was related to its phase memory time TM as ?˜1/ TM˜1/T 2; TM was found to be in the microsecond range around 15 K. The temperature dependence of TM follows that of the bulk magnetization fluctuations. The Arrhenius activation energy for these probe detected fluctuations is ˜45 K, which is distinctly lower than that (˜60 K) for the bulk magnetization reversal for Mn 12-Ac, implicating a significant role for surface effects.

Rakvin, Boris; Žili?, Dijana; Dalal, Naresh S.

2005-12-01

69

CORONAL MAGNETIC FIELD MEASUREMENTS THROUGH GYRORESONANCE EMISSION  

E-print Network

Chapter 5 CORONAL MAGNETIC FIELD MEASUREMENTS THROUGH GYRORESONANCE EMISSION Stephen M. White This article reviews the use of gyroresonance emission at radio wavelengths to measure coronal magnetic fields probes of the magnetic field strength above active regions, and this unique capability is one

White, Stephen

70

Appendix E: Software MEASURING CONSTANT MAGNETIC FIELD  

E-print Network

E - 1 Appendix E: Software MEASURING CONSTANT MAGNETIC FIELD (THE HALL PROBE APPLICATION) Basics yourself with the equipment. The software package that works in tandem with your magnetic field sensor is written in LabVIEWTM. It allows you to measure and record magnetic field strength as a function

Minnesota, University of

71

Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy.  

PubMed

The magnetoelectric effect that occurs in multiferroic materials is fully described by the magnetoelectric coupling coefficient induced either electrically or magnetically. This is rather well understood in bulk multiferroics, but it is not known whether the magnetoelectric coupling properties are retained at nanometre length scales in nanostructured multiferroics. The main challenges are related to measurement difficulties of the coupling at nanoscale, as well as the fabrication of suitable nano-multiferroic samples. Addressing these issues is an important prerequisite for the implementation of multiferroics in future nanoscale devices and sensors. In this paper we report on the local measurement of the magnetoelectric coefficient in bilayered ceramic nanocomposites from the variation in the longitudinal piezoelectric coefficient of the electrostrictive layer in the presence of a magnetic field. The experimental data were analyzed using a theoretical relationship linking the piezoelectric coefficient to the magneto-electric coupling coefficient. Our results confirm the presence of a measurable magnetoelectric coupling in bilayered nanocomposites constructed by a perovskite as the electrostrictive phase and two different ferrites (cubic spinel and hexagonal) as the magnetic phases. The reported experimental values as well as our theoretical approach are both in good agreement with previously published data for bulk and nanostructure magnetoelectric multiferroics. PMID:22522318

Caruntu, Gabriel; Yourdkhani, Amin; Vopsaroiu, Marian; Srinivasan, Gopalan

2012-05-21

72

Magnetic Probing of Core Geodynamics  

NASA Astrophysics Data System (ADS)

To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynamical hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypotheses pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton [1992; GAFD] to scale-variant field and flow [Voorhies, 2004; JGR-SE, in press]. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field [Voorhies, Sabaka and Purucker, 2002; JGR-P], and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at length-scale 1/k, if one presumes kinetic energy is converted in either eddy-overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto-geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core-mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order 120 years is pseudo-scale-invariant. Magnetic spectra of other planets may differ; however, if a transition to non-conducting fluid hydrogen in Jupiter acts as barrier to vertical flow, as well as current, then the shape of the jovi-magnetic spectrum could be remarkably Earth-like.

Voorhies, C. V.

2004-05-01

73

Broad-band magnetic induction probe calibration using a frequency-corrected reference probe  

NASA Astrophysics Data System (ADS)

Finite impedances of magnetic induction probes attenuate and shift the field fluctuations measured by the probe so that they differ from the measured signal at the digitizer. These effects vary with frequency. Traditionally, impedance effects have been accounted for in the calibration process by sweeping the frequency of the magnetic field source through a range of frequencies. Situations arise where the conventional calibration method is not feasible due to probe geometry or hardware constraints. A new calibration technique is presented in this paper which calibrates the probe in situ at a single frequency and uses impedance measurements of the probe assembly across the desired frequency range to account for broad-band effects. The in situ calibration technique requires a reference probe with a known proportionality constant NA and known impedances. Impedance effects are corrected in the probe signal using broad-band impedance measurements included in a transfer function in frequency space. The in situ calibration technique is shown to be complicated by capacitive coupling between the probes and the high voltage source coil. Circuit modeling demonstrates that this coupling introduces negligible attenuation and a small phase-delay so that the relative phase-delay between the reference and target probe signals can be corrected by shifting the signals in time. In summary, this calibration method extends traditional single-frequency calibration techniques to broad-band applications, accounting for important non-ideal effects to improve the accuracy of the magnetic field measurement.

Hill, Carrie

2013-10-01

74

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on the Radiation Belt Storm Probes; Operational Modes and Data Products  

NASA Astrophysics Data System (ADS)

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation on board the Radiation Belt Storm Probes (RBSP), is an integrated set of instruments consisting of a tri-axial fluxgate magnetometer (MAG) and a Waves instrument which includes a tri-axial search coil magnetometer (MSC). These wave measurements include AC electric and magnetic fields from 10Hz to 400 kHz. AC Electric field signals are provided, on board, by the Electric Field and Waves Suite (EFW). All the instrument components are controlled by a Central Data Processing Unit (CDPU), which provides versatility in capturing data in a variety of modes. The system is designed to provide a standard cadence of survey products through the entire orbit, and burst data capture of higher cadenced data at opportune times in the orbit. A description and examples of all the operational modes are presented. Descriptions of the data products and how to access them is also presented. Data from the suite is located at a central Science Operation Center (SOC) maintained at the University of Iowa. EMFISIS data are organized to be easily viewed utilizing the freeware data visualization tool, Autoplot.

Bounds, S. R.; Kletzing, C.; Crawford, D.; Kurth, W. S.; Hospodarsky, G. B.; MacDowall, R. J.; Connerney, J. E.; Torbert, R. B.; Needell, J.; Smith, C. W.; Wygant, J. R.; Bonnell, J. W.

2012-12-01

75

Contributions of the electronic spin and orbital current to the CoCl{sub 4}{sup 2-} magnetic field probed in polarised neutron diffraction experiments  

SciTech Connect

Polarised neutron diffraction experiments conducted at 4.2 K on Cs{sub 3}CoCl{sub 5} crystals have been analysed by using a four-dimensional model Hilbert space made of ab initio n-electron wave functions of the CoCl{sub 4}{sup 2-} molecular ion. Two spin-orbit mixing coefficients and several configuration interaction coefficients have been optimized by fitting calculated magnetic structure factors to experimental ones, to obtain the best ensemble density operator that is representable in the model space. A goodness of fit, {chi}{sup 2}, less then 1 has been obtained for the first time for the two experimental data sets available. In the present article, the optimized density operators are used to calculate the magnetic field densities that are the genuine observables probed in neutron diffraction experiments. Density maps of such observables are presented for the first time and numerical details are provided. The respective contributions of spin density and orbital current to the magnetic field density are analyzed.

Cassam-Chenaie, Patrick [Laboratoire J. A. Dieudonne, UMR 6621 du CNRS, Faculte des Sciences, Parc Valrose, 06108 Nice cedex 2 (France); Jayatilaka, Dylan [School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

2012-08-14

76

Exploring Magnetic Fields  

NSDL National Science Digital Library

In this activity, students investigate the presence of magnetic fields around magnets, the sun and the earth. They will explore magnetic field lines, understand that magnetic lines of force show the strength and direction of magnetic fields, determine how field lines interact between attracting and repelling magnetic poles, and discover that the earth and sun have magnetic properties. They will also discover that magnetic force is invisible and that a "field of force" is a region or space in which one object can attract or repel another.

77

Magnetic fields of galaxies  

Microsoft Academic Search

The current state of the understanding of the magnetic fields of galaxies is reviewed. A simple model of the turbulent dynamo is developed which explains the main observational features of the global magnetic fields of spiral galaxies. The generation of small-scale chaotic magnetic fields in the interstellar medium is also examined. Attention is also given to the role of magnetic

Aleksandr A. Ruzmaikin; Dmitrii D. Sokolov; Anvar M. Shukurov

1988-01-01

78

High-? Injection into a Magnetic Mirror Field  

Microsoft Academic Search

Axial injection of a high-density helium plasma into a magnetic mirror has been experimentally studied. Observations of the plasma-field interaction were made with magnetic probes, electrostatic probes, piezoelectric probes, and an optical monochromator which analyzed emission-line profiles. In the central plane of the mirror a density of 2 ± 1 × 1015 ions?cm3 and a maximum ion temperature of 10

F. R. Scott; O. C. Eldridge

1961-01-01

79

Probing electric and magnetic vacuum fluctuations with quantum dots  

E-print Network

The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this paper we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level.

Petru Tighineanu; Mads Lykke Andersen; Anders Søndberg Sørensen; Søren Stobbe; Peter Lodahl

2014-04-04

80

Probing electric and magnetic vacuum fluctuations with quantum dots  

E-print Network

The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this paper we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level.

Tighineanu, Petru; Sørensen, Anders Søndberg; Stobbe, Søren; Lodahl, Peter

2014-01-01

81

Probing Electric and Magnetic Vacuum Fluctuations with Quantum Dots  

NASA Astrophysics Data System (ADS)

The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this Letter we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level.

Tighineanu, P.; Andersen, M. L.; Sørensen, A. S.; Stobbe, S.; Lodahl, P.

2014-07-01

82

Probing electric and magnetic vacuum fluctuations with quantum dots.  

PubMed

The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this Letter we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level. PMID:25105618

Tighineanu, P; Andersen, M L; Sørensen, A S; Stobbe, S; Lodahl, P

2014-07-25

83

DC-based magnetic field controller  

DOEpatents

A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

1994-01-01

84

Facility Measures Magnetic Fields  

NASA Technical Reports Server (NTRS)

Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

1991-01-01

85

Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet.  

PubMed

We present the designs of probes for making critical current density (Jc) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ~0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J(c) measurements, made by uniformly ramping the current up to a maximum current (I(max)) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b'), and the maximum safe temperature for the critical-current leads (T(max)). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI(max)/A = [1.46D(-0.18)L(0.4)(T(max) - 300)(0.25D(-0.09)) + 750(b'/I(max))D(10(-3)I(max)-2.87b') × 10? A m?¹ where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm(2) is obtained when I(max) = 1000 A, T(max) = 400 K, D = 0.2, b' = 0.3 l?h(-1) and L = 1.0 m. The optimized helium consumption was found to be 0.7 l?h(-1). When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I(max)? ? (1.35 × 10(-3))D(0.41) l?h(?1)?A(-1). A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high-field horizontal magnet. The variable-temperature system is based on the use of an inverted insulating cup that operates above 4.2 K in liquid helium and above 77.4 K in liquid nitrogen, with a stability of ±80 mK to ±150 mK. Uniaxial strains of -1.4% to 1.0% can be applied to the sample, with a total uncertainty of better than ±0.02%, using a modified bending beam apparatus which includes a copper beryllium springboard-shaped sample holder. PMID:24985856

Sunwong, P; Higgins, J S; Hampshire, D P

2014-06-01

86

Probing the magnetic topologies of magnetic clouds by means of solar energetic particles  

NASA Technical Reports Server (NTRS)

Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.

Kahler, S. W.; Reames, D. V.

1991-01-01

87

Probing the magnetic topologies of magnetic clouds by means of solar energetic particles  

Microsoft Academic Search

Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not

S. W. Kahler; D. V. Reames

1991-01-01

88

Earths magnetic field  

Microsoft Academic Search

Recent studies of the Paleosecular Variation of lavas (PSVL) by the authors and others, shows that the variability of Earth's magnetic field over the last several million years is less than the variability of the present Earth's magnetic field. The present magnetic field is asymmetric between the northern and southern hemispheres. The dispersion in the southern hemisphere being much greater

N. Opdyke; V. Mejia

2003-01-01

89

The Magnetic Field  

NSDL National Science Digital Library

This demonstration of the magnetic field lines of Earth uses a bar magnet, iron filings, and a compass. The site explains how to measure the magnetic field of the Earth by measuring the direction a compass points from various points on the surface. There is also an explanation of why the north magnetic pole on Earth is actually, by definition, the south pole of a magnet.

Barker, Jeffrey

90

Magnetic Fields Analogous to electric field, a magnet  

E-print Network

Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic characteristic of elementary particles such as an electron #12;Magnetic Fields Magnetic field lines Direction

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

91

Contributions to the Gaussian Line Broadening of the Proxyl Spin Probe EPR Spectrum Due to Magnetic-Field Modulation and Unresolved Proton Hyperfine Structure  

NASA Astrophysics Data System (ADS)

A simple expression is derived to compute the total Gaussian linewidth of a Voigt line that is broadened by sinusoidal magnetic-field modulation as follows: ? HGpp( Hm) 2= ? HGpp(0) 2+ ? 2H2m, where ? HGpp( Hm) is the Gaussian linewidth observed with an modulation amplitude Hm/2 and ? HGpp(0) is the Gaussian linewidth in the limit of zero modulation. The field modulation contributes an additional Gaussian broadening of ? Hm, where ? is a constant, which adds in quadrature to ? HGpp(0) to give the total Gaussian linewidth. Denoting the overall linewidth of the Voigt line in the absence of modulation broadening by ? H0pp(0), it is shown, both by analytical means and by spectral simulation, that the constant ? is equal to 1/2 in the limit of Hm? ? H0pp(0); however, using values of Hmas large as ? H0pp(0) leads to only minor departures from ? = 1/2. The formulation is valid both for Lorentzian and Voigt lines and is tested for 2,2,5,5-tetramethylpyrrolidin-1-oxyl-3-carboxylic acid (3-carboxy proxyl) in CCl 4and in aqueous buffer. This spin probe was studied because the proxyl group is the only major spin-probe moiety whose Gaussian linewidth had not been characterized in the literature. For 3-carboxy proxyl, it is found that ? HGpp(0) = 1.04 ± 0.01 G independent of solvent polarity. Precision values of the 14N hyperfine coupling constant for 3-carboxy proxyl at 9.5°C are as follows: 14.128 ± 0.001 G in CCl 4and 16.230 ± 0.002 G in aqueous buffer. The temperature dependence of ? HGpp(0) and the 14N hyperfine coupling constant are reported as empirical equations. Results of the present work taken together with previously published data permits accurate correction for the effects of inhomogeneous broadening due to unresolved hyperfine structure and modulation broadening for the majority of spin probes in common use.

Bales, Barney L.; Peric, Miroslav; Lamy-Freund, Maria Teresa

1998-06-01

92

Spherical probes at ion saturation in E × B fields  

NASA Astrophysics Data System (ADS)

The ion saturation current to a spherical probe in the entire range of ion magnetization is computed with SCEPTIC3D, a new three-dimensional version of the kinetic code SCEPTIC designed to study transverse plasma flows. Results are compared with prior two-dimensional calculations valid in the magnetic-free regime (Hutchinson 2002 Plasma Phys. Control. Fusion 44 1953), and with recent semi-analytic solutions to the strongly magnetized transverse Mach probe problem (Patacchini and Hutchinson 2009 Phys. Rev. E 80 036403). At intermediate magnetization (ion Larmor radius close to the probe radius) the plasma density profiles show a complex three-dimensional structure that SCEPTIC3D can fully resolve, and, contrary to intuition, the ion current peaks provided the ion temperature is low enough. Our results are conveniently condensed in a single factor Mc, function of ion temperature and magnetic field only, providing the theoretical calibration for a transverse Mach probe with four electrodes placed at 45° to the magnetic field in a plane of flow and magnetic field.

Patacchini, Leonardo; Hutchinson, Ian H.

2010-03-01

93

On the electromagnetic fields generated by a slowly moving conducting body in a magnetized plasma. Possible applications for the Io-Jovian system, spacecraft, and plasma probes  

Microsoft Academic Search

To explain self-consistently some energetic processes, radiation features, and the electromagnetic environment near the Io satellite moving in the Jovian magnetospheric plasma, as well as a spacecraft body or a plasma probe, we consider, by means of plasma kinetic theory, the process of electromagnetic interaction between a moving conducting body and the surrounding hot magnetized plasma described by the tensor

M. L. Khodachenko; V. M. Gubchenko; H. O. Rucker

1998-01-01

94

The Square Kilometre Array: A new probe of cosmic magnetism  

E-print Network

Magnetic fields are a fundamental part of many astrophysical phenomena, but the evolution, structure and origin of magnetic fields are still unresolved problems in physics and astrophysics. When and how were the first fields generated? Are present-day magnetic fields the result of standard dynamo action, or do they represent rapid or recent field amplification through other processes? What role do magnetic fields play in turbulence, cosmic ray acceleration and structure formation? I explain how the Square Kilometre Array (SKA), a next-generation radio telescope, can deliver stunning new data-sets that will address these currently unanswered issues. The foundation for these experiments will be an all-sky survey of rotation measures, in which Faraday rotation toward >10^7 background sources will provide a dense grid for probing magnetism in the Milky Way, nearby galaxies, and in distant galaxies, clusters and protogalaxies. Using these data, we can map out the evolution of magnetized structures from redshifts z > 3 to the present, can distinguish between different origins for seed magnetic fields in galaxies, and can develop a detailed model of the magnetic field geometry of the intergalactic medium and of the overall Universe. In addition, the SKA will certainly discover new magnetic phenomena beyond what we can currently predict or imagine.

Bryan M. Gaensler

2006-03-02

95

Magnetic-field-dependent assembly of silica-coated magnetite nanoclusters probed by Ultra-Small-Angle X-ray Scattering (USAXS)  

NASA Astrophysics Data System (ADS)

Colloidal suspension of the silica coated magnetic nanoclusters (MNCs) was used to study the magnetic field mediated assembly of magnetic nanoparticles. The spatial arrangement of these MNCs in colloidal suspension was studied using the ultra-small-angle X-ray scattering (USAXS) technique with magnetic field applied in directions orthogonal and parallel to the scattering vector. In situ magnetic field analysis of the USAXS scattering measurement showed anisotropic behavior that can be attributed to the formation of colloidal crystals. During magnetization, the clustered magnetic core induces a large dipole moment, and the thickness of the silica shell helps keep distance between the neighboring particles. The assembly of these hybrid nanostructured particles was found to be dependent on the strength and orientation of this external magnetic field. The dipolar chains formed of MNCs arranged themselves into colloidal crystals formed by two-dimensional magnetic sheets. The structure factor calculations suggested that the lattice parameters of these colloidal crystals can be tuned by changing the strength of the external magnetic field. These experiments shed light on the stimuli-responsive assembly of magnetic colloidal nanoparticles that leads to the creation of tunable photonic crystals.

Malik, Vikash; Suthar, Kamleshkumar J.; Mancini, Derrick C.; Ilavsky, Jan

2014-03-01

96

Mapping Magnetic Field Lines  

NSDL National Science Digital Library

This is a lesson about the magnetic field of a bar magnet. The lesson begins with an introductory discussion with learners about magnetism to draw out any misconceptions that may be in their minds. Then, learners freely experiment with bar magnets and various materials, such as paper clips, rulers, copper or aluminum wire, and pencils, to discover that magnets attract metals containing iron, nickel, and/or cobalt but not most other materials. Next, learners experiment with using a magnetic compass to discover how it is affected by the magnet and then draw the magnetic field lines of the magnet by putting dots at the location of the compass arrow. This is the first lesson in the first session of the Exploring Magnetism teacher guide.

97

Comparison of magnetic probe calibration at nano and millitesla magnitudes  

NASA Astrophysics Data System (ADS)

Magnetic field probes are invaluable diagnostics for pulsed inductive plasma devices where field magnitudes on the order of tenths of tesla or larger are common. Typical methods of providing a broadband calibration of dot{{B}} probes involve either a Helmholtz coil driven by a function generator or a network analyzer. Both calibration methods typically produce field magnitudes of tens of microtesla or less, at least three and as many as six orders of magnitude lower than their intended use. This calibration factor is then assumed constant regardless of magnetic field magnitude and the effects of experimental setup are ignored. This work quantifies the variation in calibration factor observed when calibrating magnetic field probes in low field magnitudes. Calibration of two dot{{B}} probe designs as functions of frequency and field magnitude are presented. The first dot{{B}} probe design is the most commonly used design and is constructed from two hand-wound inductors in a differential configuration. The second probe uses surface mounted inductors in a differential configuration with balanced shielding to further reduce common mode noise. Calibration factors are determined experimentally using an 80.4 mm radius Helmholtz coil in two separate configurations over a frequency range of 100-1000 kHz. A conventional low magnitude calibration using a vector network analyzer produced a field magnitude of 158 nT and yielded calibration factors of 15 663 ± 1.7% and 4920 ± 0.6% {T}/{V {s}} at 457 kHz for the surface mounted and hand-wound probes, respectively. A relevant magnitude calibration using a pulsed-power setup with field magnitudes of 8.7-354 mT yielded calibration factors of 14 615 ± 0.3% and 4507 ± 0.4% {T}/{V {s}} at 457 kHz for the surface mounted inductor and hand-wound probe, respectively. Low-magnitude calibration resulted in a larger calibration factor, with an average difference of 9.7% for the surface mounted probe and 12.0% for the hand-wound probe. The maximum difference between relevant and low magnitude tests was 21.5%.

Pahl, Ryan A.; Rovey, Joshua L.; Pommerenke, David J.

2014-01-01

98

The Magnetic Field  

NSDL National Science Digital Library

This webpage is part of the University Corporation for Atmospheric Research (UCAR) "Windows to the Universe" program. It describes the nature and configuration of magnetic fields, which are the result of moving electric charges, including how they cause magnetic objects to orient themselves along the direction of the magnetic force points, which are illustrated as lines. Magnetic field lines by convention point outwards at the north magnetic pole and inward at the south magnetic pole. The site features text, scientific illustrations and an animation. Text and vocabulary are selectable for the beginning, intermediate, or advanced reader.

99

Magnetic Field Example 1  

NSDL National Science Digital Library

Clicking on the different links below will produce different magnetic fields in the box above. The wires (perpendicular to the screen) or coils (in and out of the screen) are not visible, but you can determine what they are from the field. You can also click on a point to read off the magnetic field at that place.

Christian, Wolfgang; Belloni, Mario

2008-02-19

100

Scanning Hall probe microscopy of superconductors and magnetic materials  

SciTech Connect

We describe results from a scanning Hall probe microscope operating in a broad temperature range, 4{endash}300 K. A submicron Hall probe manufactured in a GaAs/AlGaAs two-dimensional electron gas is scanned over the sample to measure the surface magnetic fields using conventional scanning tunneling microscopy positioning techniques. The magnetic field structure of the sample together with the topography can be obtained simultaneously. The technique is noninvasive with an extremely low self-field of {lt}10{sup {minus}2} G and yields a quantitative measurement of the surface magnetic field in contrast to magnetic force microscopy. In addition the microscope has an outstanding magnetic field resolution ({approximately}1.1{times}10{sup {minus}3} G/{radical}Hz at 77 K) and high spatial resolution, {approximately}0.85 {mu}m. Images of individual vortices in a high-{ital T}{sub {ital c}} Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thin film at low temperatures and magnetic domains in an Fe-garnet crystal at room temperature are presented. {copyright} {ital 1996 American Vacuum Society}

Oral, A.; Bending, S.J. [School of Physics, University of Bath, Bath BA2 7AY (England)] [School of Physics, University of Bath, Bath BA2 7AY (England); Henini, M. [Department of Physics, University of Nottingham, Nottingham NG7 2RD (England)] [Department of Physics, University of Nottingham, Nottingham NG7 2RD (England)

1996-03-01

101

Magnetic Field Distribution of Permanent Magnet Magnetized by Static Magnetic Field Generated by HTS Bulk Magnet  

Microsoft Academic Search

Demagnetized rare earth magnets (Nd-Fe-B) can be fully magnetized by scanning them in the intense static fields over 3 T of a HTS bulk magnet which was cooled to the temperature range lower than 77K with use of cryo-coolers and activated by the field of 5 T. We precisely examined the magnetic field distributions of magnetized permanent magnets. The magnetic

Tetsuo Oka; Nobutaka Kawasaki; Satoshi Fukui; Jun Ogawa; Takao Sato; Toshihisa Terasawa; Yoshitaka Itoh; Ryohei Yabuno

2012-01-01

102

On the electromagnetic fields generated by a slowly moving conducting body in a magnetized plasma. Possible applications for the Io-Jovian system, spacecraft, and plasma probes  

Microsoft Academic Search

To explain self-consistently some energetic processes, radiation features, and the electromagnetic environment near the Io\\u000a satellite moving in the Jovian magnetospheric plasma, as well as a spacecraft body or a plasma probe, we consider, by means\\u000a of plasma kinetic theory, the process of electromagnetic interaction between a moving conducting body and the surrounding\\u000a hot magnetized plasma described by the tensor?

M. L. Khodachenko; V. M. Gubchenko; H. O. Rucker

1998-01-01

103

Abstract: Quasistatic magnetic fields  

Microsoft Academic Search

A prototype switching system has been developed which can switch 20 kA at 230 V for short periods of time through inductive loads. High power silicon controlled rectifiers are used to switch the National Magnet Laboratory dc generators on and off into a liquid N2 cooled, low impedance high field magnet so that high fields can be generated for a

H. C. Praddaude; S. Foner

1979-01-01

104

Cosmic Magnetic Fields  

Microsoft Academic Search

Most of the visible matter in the Universe is in a plasma state, or more specifically is composed of ionized or partially ionized gas permeated by magnetic fields. Thanks to recent advances on the theory and detection of cosmic magnetic fields there has been a worldwide growing interest in the study of their role on the formation of astrophysical sources

Elisabete M. de Gouveia Dal Pino; Dal Pino

2006-01-01

105

Dynamic optical probing of the magnetic anisotropy of nickelferrite nanoparticles  

Microsoft Academic Search

Field dependence of dynamic magneto-orientational birefringence in a ferrocolloid based on the nickel-ferrite nanoparticles is examined. The nanoparticles are electrostatically stabilized and suspended in glycerin at low-volume fractions Phi<=0.75%. The colloids are tested under crossed magnetic fields: an alternating weak (probing) and a constant strong (bias) one. By comparison to a theoretical model of the birefringence relaxation, an evaluation of

Yu. L. Raikher; V. I. Stepanov; J. Depeyrot; M. H. Sousa; F. A. Tourinho; E. Hasmonay; R. Perzynski

2004-01-01

106

Magnetic Fields in Galaxies  

NASA Astrophysics Data System (ADS)

Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

Beck, Rainer

107

Interplanetary Magnetic Field Lines  

NSDL National Science Digital Library

This web page provides information and a graphical exercise for students regarding the interaction between magnetic field lines and a plasma. The activity involves tracing a typical interplanetary magnetic field line, dragged out of a location on the Sun by the radial flow of the solar wind. This illustrates the way magnetic field lines are "frozen to the plasma" and the wrapping of field lines due to the rotation of the sun. This is part of the work "The Exploration of the Earth's Magnetosphere". A Spanish translation is available.

Stern, David

2005-04-27

108

Properties of electromagnetic field focusing probe.  

PubMed

The electromagnetic field focusing (EFF) apparatus consists of a radio frequency generator, solenoidal coil, and a hand-held or catheter probe. Applications such as aneurysm treatment, angioplasty, and neurosurgery in various models have been reported. The probe is operated in the near field (within one wavelength of an electromagnetic field source) of a coil inducing eddy currents in biological tissues, producing maximal convergence of the induced current at the probe tip. The probe produces very high temperatures depending on the wattage selected for the given radio frequency of output power. The high temperature can be used in cutting, cauterizing, or vaporizing. The EFF probe is comparable to different types of lasers and to bipolar and monopolar cautery. The EFF probe can be used with catheters or endoscopes. Objectives of this study were to determine what the thermal properties of the EFF probe are and how instrument parameters can be varied to obtain different temperatures in the tissue near the probe tip. In this study an F2 catheter was used as an insulated sheath and the tip of the guide wire was used as the probe tip. Different powers, wave forms, coil-to-probe distances, and probe-tip lengths were tested on a phantom that simulates tissue electrical properties. Some of the experiments were conducted under normal saline to simulate treatment of tissue with body fluids such as blood vessels or brain tissue under normal physiologic conditions. It is concluded that the EFF probe has the advantages of easy manipulation, relative safety, cost effectiveness, and a high degree of spatial control.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3177961

Yamanashi, W S; Yassa, N A; Hill, D L; Patil, A A; Lester, P D

1988-11-01

109

Magnetic Force Between Magnetic Nano Probes at Optical Frequency  

E-print Network

Magnetic force microscopy based on the interaction of static magnetic materials was demonstrated in the past with resolutions in the order of nanometers. Measurement techniques based on forces between electric dipoles oscillating at optical frequencies have been also demonstrated leading to the standard operation of the scanning force microscope (SFM). However the investigations of a SFM based on the magnetic force generated by magnetic dipole moments oscillating at optical frequencies has not been tackled yet. With this goal in mind we establish a theoretical model towards observable magnetic force interaction between two magnetically polarizable nanoparticles at optical frequency and show such a force to be in the order of piconewtons which could be in principle detected by conventional microscopy techniques. Two possible principles for conceiving magnetically polarizable nano probes able to generate strong magnetic dipoles at optical frequency are investigated based on silicon nanoparticles and on clusters...

Guclu, Caner; Capolino, Filippo

2014-01-01

110

Bending of magnetic filaments under a magnetic field.  

PubMed

Magnetic beads and superparamagnetic (SP) colloid particles have successfully been employed for micromechanical manipulation of soft material, in situ probing of elastic properties, and design of smart materials (ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two end-member cases, (a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes, and (b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing SP particles. Our analysis yields also metastable equilibrium states (MES's), which only exist above a critical filament length, but become more stable with increasing magnetic field. The MES's for case (a) are, like the ground state, circular arcs, but more strongly bent. The multiform MES's in case (b), which comprise hairpin, sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization, case (a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments may hold advantages over tips usually employed in magnetic force microscopy. PMID:15697393

Shcherbakov, Valera P; Winklhofer, Michael

2004-12-01

111

Magnetic Probe Construction using Thick-film Technology  

SciTech Connect

Thick-film technology has been successfully adapted for the design and fabrication of magnetic probes of a new type suitable for use in the simultaneous ultra-high vacuum and high-temperature environment of a nuclear fusion device. The maximum usable temperature is expected to be around 900 degrees C. This new probe has a specific sensitivity (coupling area per unit volume) an order of magnitude higher than a conventional coil. The new probe in one implementation is capable of simultaneously measuring magnetic field in three orthogonal directions about a single spatial point and in two frequency ranges. Low-frequency coils have a measured coupling area of 296-323 cm squared and a frequency response of about 300 kHz. High-frequency coils have a design coupling area of 12-15 cm squared.

Takahashi, H.; Sakakibara, S.; Kubota, Y.; and Yamada, H.

2001-02-02

112

Probes of strong-field gravity  

E-print Network

In this thesis, I investigate several ways to probe gravity in the strong-field regime. These investigations focus on observables from the gravitational dynamics, i.e. when time derivatives are large: thus I focus on sources ...

Stein, Leo Chaim

2012-01-01

113

Magnetic Bar Field Model  

NSDL National Science Digital Library

The EJS Magnetic Bar Field Model shows the field of a bar magnet and has a movable compass that reports the magnetic field values. The bar magnet model is built by placing a group of magnetic dipoles along the bar magnet. You can modify this simulation if you have Ejs installed by right-clicking within the plot and selecting âOpen Ejs Modelâ from the pop-up menu item. The Magnetic Bar Field model was created using the Easy Java Simulations (Ejs) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. Double clicking the ejs_em_MagneticBarField.jar file will run the program if Java is installed. Ejs is a part of the Open Source Physics Project and is designed to make it easier to access, modify, and generate computer models. Additional Ejs models are available. They can be found by searching ComPADRE for Open Source Physics, OSP, or Ejs.

Christian, Wolfgang; Franciscouembre; Cox, Anne

2009-09-18

114

Probing the anisotropy constants of SmCo5 and PrCo5 by Hall resistance measurements in pulsed high magnetic fields up to 47 T  

NASA Astrophysics Data System (ADS)

In order to assess the anisotropy constants of highly anisotropic thin film samples with anisotropy fields well above 10 T, Hall resistance measurements were conducted in pulsed magnetic fields. These measurements also deliver the anomalous Hall data, which are proportional to the perpendicular magnetisation. This specific approach combines the high field values obtainable by pulsed fields with a measurement technique sensitive enough to be applied to thin film samples. Two epitaxial Rare Earth-Cobalt thin films with large in-plane uniaxial magnetocrystalline anisotropy at room temperature were studied. The resulting anisotropy fields and constants are discussed with respect to measurements on single crystals and similar films investigated in quasi-static magnetic fields well below the anisotropy field. The present technique proved to be very valuable to highly anisotropic samples, as the approach to saturation is fully monitored and the data thus provides a more extended view on the hard axis magnetisation process.

Stilp, E.; Freudenberger, J.; Seifert, M.; Patra, A. K.; Menzel, S.; Mönch, I.; Schultz, L.; Neu, V.

2012-05-01

115

Magnetic Fields, Flares & Forecasts  

Microsoft Academic Search

A 2D wavelet transform modulus maxima (WTMM) method is used to characterise the complexity of the distribution of the photospheric magnetic field of active regions. The WTMM method offers increased accuracy and reliability over previous fractal and multifractal methods. The multifractal spectrum of both quiet Sun and active region magnetic features are presented. It is shown that the multifractal nature

Paul A. Conlon; P. Kestener; R. McAteer; P. Gallagher

2009-01-01

116

A tunable radio-frequency magnetic probe.  

PubMed

A tunable center-tapped transformer is proposed to increase the output of a rf magnetic probe and improve the signal-to-noise ratio. The tuning is implemented by a variable capacitor connected parallel with the primary winding of the tunable center-tapped transformer. Undesirable common-to-differential conversion is reduced by installing a compensating capacitor. In addition, a planar Faraday shield is installed between the windings of the transformer to further suppress the electrostatic coupling. It is found that tuning the variable capacitor can result in a resonance in the output voltage of the rf magnetic probe. The largest output voltage, achieved with the tunable magnetic probe under the optimal condition, is higher than that with a conventional one by an order of magnitude. Effects of the compensating capacitance on the common-mode output voltage are studied and discussed. Influences of parameters such as cable length, the coupling coefficient, and the step-up ratio of the transformer on the output voltage are also presented. Analytical derivations and numerical calculations based on the equivalent circuit are performed to elucidate the characteristics of the differential mode. PMID:20515162

Sun, B; Yuan, G Y; Huo, W G; Ding, Z F

2010-05-01

117

The First Magnetic Fields  

E-print Network

We demonstrate that the Biermann battery mechanism for the creation of large scale magnetic fields can arise in a simple model protogalaxy. Analytic calculations and numerical simulations follow explicitly the generation of vorticity (and hence magnetic field) at the outward-moving shock that develops as the protogalactic perturbation collapses. Shear angular momentum then distorts this field into a dipole-like configuration. The magnitude of the field created in the fully formed disk galaxy is estimated to be 10^(-17) Gauss, approximately what is needed as a seed for the galactic dynamo.

George Davies; Lawrence M. Widrow

1999-12-14

118

Solar Wind Magnetic Fields  

NASA Technical Reports Server (NTRS)

The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

Smith, E. J.

1995-01-01

119

Magnetic and Langmuir Probe Measurements on the Plasmoid Thruster Experiment (PTX)  

NASA Technical Reports Server (NTRS)

The Plasmoid Thruster Experiment (PTX) operates by inductively producing plasmoids in a conical theta-pinch coil and ejecting them at high velocity. A plasmoid is a plasma with an imbedded closed magnetic field structure. The shape and magnetic field structure of the translating plasmoids have been measured with of an array of magnetic field probes. Six sets of two B-dot probes were constructed for measuring B(sub z) and B(sub theta), the axial and azimuthal components of the magnetic field. The probes are wound on a square G10 form, and have an average (calibrated) NA of 9.37 x l0(exp -5) square meters, where N is the number of turns and A is the cross-sectional area. The probes were calibrated with a Helmholtz coil, driven by a high-voltage pulser to measure NA, and by a signal generator to determine the probe's frequency response. The plasmoid electron number density n(sub e) electron temperature T(sub e), and velocity ratio v/c(sub m), (where v is the bulk plasma flow velocity and c(sub m), is the ion thermal speed) have also been measured with a quadruple Langmuir probe. The Langmuir probe tips are 10 mm long, 20-mil diameter stainless steel wire, housed in a 6-inch long 4-bore aluminum rod. Measurements on PTX with argon and hydrogen from the magnetic field probes and quadruple Langmuir probe will be presented in this paper.

Koelfgen, Syri J.; Eskridge, Richard; Lee, Michael H.; Martin, Adam; Hawk, Clark W.; Fimognan, Peter

2004-01-01

120

Electro-magnetically induced transparency in a static magnetic field  

NASA Astrophysics Data System (ADS)

We investigate both theoretically and experimentally the electro- magnetically induced transparency (EIT) phenomenon of atomic 87Rb at the room temperature with a static magnetic field lifting the degeneracy of all three involved hyperfine levels. Two collinearly propagating and linearly polarized laser fields (a probe field and a coupling field) are used to couple one hyperfine level (the upper level) of the 5P 1/2 state to two hyperfine levels (the lower levels) of the 5S 1/2 state, respectively. In the case of zero magnetic fields, we observed a deep EIT window with the contrast of about 66%. Here, the EIT window width is limited by both the spontaneous decay rate of the upper level and the coupling field intensity. When a magnetic field parallel to both laser beams is applied, the EIT window is split into three much narrower sub-windows with contrasts of about 32%. If the magnetic field is perpendicular to the laser beams, however, the EIT window is split into four much narrower sub-windows whose contrasts are 32% or 16%. This is because the decomposition of the linearly polarized optical fields strongly depends on the orientation of the used magnetic field. The underlying physics is that, in the limit of a weak probe field, an ideal degenerate three-level system can be split into three or four sets of independent three-level systems by a magnetic field due to the lifting of magnetic sublevels of the involved hyperfine levels. In this paper the absorption spectra corresponding to different magnetic field directions are clearly shown and compared. And a straightforward but effective theoretical method for analyzing the experimental results is put forward. Our theoretical calculations are in good agreement with the experimental results.

Wei, Xiao-Gang; Gao, Jin-Yue; Wu, Jin-Hui; Sun, Gui-Xia; Wang, Hai-Hua; Kang, Zhi-Hui; Shao, Zhuang; Jiang, Yun

2006-02-01

121

Mapping the magnetic field vector in a fountain clock  

NASA Astrophysics Data System (ADS)

We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.

Gertsvolf, Marina; Marmet, Louis

2011-12-01

122

Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion  

SciTech Connect

A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

Martens, Daniel [Los Alamos National Laboratory; Hsu, Scott C. [Los Alamos National Laboratory

2012-08-16

123

Application of the Hall-probe technique for magnetization measurements of superconductors  

SciTech Connect

A commercial Hall probe (supplied by Lake Shore Cryotronics, Inc.) is used as a sensor of the magnetic field at the surface of a magnetized sample. With the Linear Research resistance bridge LR-400, an excellent stability, linearity of response on field and an extremely small temperature dependence of the background signal is obtained, which is essential for this kind of applications of a Hall probe. At certain conditions, a resolution in field measurements of about 10 mG is reached. Examples of magnetization measurements as a function of temperature, magnetic field and time, performed on high-{Tc} and heavy-fermion superconductors, are discussed.

Koziol, Z.; Franse, J.J.M. [Univ. van Amsterdam (Netherlands). Van der Waals-Zeeman Lab.] [Univ. van Amsterdam (Netherlands). Van der Waals-Zeeman Lab.

1994-03-01

124

Planetary magnetic fields  

Microsoft Academic Search

The past several years have seen dramatic developments in the study of planetary magnetic fields, including a wealth of new data, mainly from the Galilean satellites and Mars, together with major improvements in our theoretical modeling effort of the dynamo process believed responsible for large planetary fields. These dynamos arise from thermal or compositional convection in fluid regions of large

David J. Stevenson

2003-01-01

125

Micromachined near-field probe arrays  

NASA Astrophysics Data System (ADS)

In this paper, we describe the fabrication of cantilevered arrays of tapered near-field probes with pyramidal, sub-micrometer tips that are micromachined from glass substrates. High density data storage and page-oriented retrieval are the potential applications of the described microdevice. Heating and pulling or chemical etching of optic fibers are the common approaches to sub-wavelength aperture fabrication necessary to probe the near-field. Arrays have been previously formed by chemical etching of or film deposition on an opaque substrate and were later coupled to optical fibers for use as near-field probes though; alignment of optical fibers with the apertures for guiding the light to the detector in the far-field is not trivial. Probe arrays described in this work were initially fabricated by dicing a 175-?m thick borosilicate glass substrate using a 250-?m thick resinoid blade and were subsequently tapered and sharpened in a two-step chemical etch process performed at room temperature. The tips were then metallized using a 100nm thick coating of aluminum. Arrays of upto eight 1cm to 2.5 cm long probes with center-to-center spacing of 450 ?m and tip sizes of approximately 200 nm were fabricated. Roughness on the vertical sidewall was characterized and the dependence of optical loss coefficients of the light guiding bulk on etch duration was investigated.

Srinivasan, Pradeep; Beyette, Fred R., Jr.; Papautsky, Ian

2003-01-01

126

Graphene Magnetic Field Sensors  

Microsoft Academic Search

Graphene extraordinary magnetoresistance (EMR) devices have been fabricated and characterized in varying magnetic fields at room temperature. The atomic thickness, high carrier mobility and high current carrying capabilities of graphene are ideally suited for the detection of nanoscale sized magnetic domains. The device sensitivity can reach 10 mV\\/Oe, larger than state of the art InAs 2DEG devices of comparable size

Simone Pisana; Patrick M. Braganca; Ernesto E. Marinero; Bruce A. Gurney

2010-01-01

127

Magnetic probing of the solar interior  

NASA Technical Reports Server (NTRS)

The magnetic field patterns in the region beneath the solar photosphere is determined. An approximate method for downward extrapolation of line of sight magnetic field measurements taken at the solar photosphere was developed. It utilizes the mean field theory of electromagnetism in a form thought to be appropriate for the solar convection zone. A way to test that theory is proposed. The straightforward application of the lowest order theory with the complete model fit to these data does not indicate the existence of any reasonable depth at which flux conservation is achieved.

Benton, E. R.; Estes, R. H.

1985-01-01

128

Magnetic Field and Life  

NSDL National Science Digital Library

This is a lesson where learners explore magnetic forces, fields, and the relationship between electricity. Learners will use this information to infer how the Earth generates a protective magnetic field. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes, prerequisite concepts, common misconceptions, student journal and reading. This is lesson seven in the Astro-Venture Geology Training Unit that were developed to increase students' awareness of and interest in astrobiology and the many career opportunities that utilize science, math and technology skills. The lessons are designed for educators to use with with the Astro-Venture multimedia modules.

129

High field superconducting magnets  

NASA Technical Reports Server (NTRS)

A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

2011-01-01

130

Associated electron and proton transfer between Acridine and Triethylamine in AOT reverse micelles probed by laser flash photolysis with magnetic field  

NASA Astrophysics Data System (ADS)

Laser flash photolysis with magnetic field (MF ˜0.08 T) has been used to study interaction between Acridine (Acr) and Triethylamine (TEA) in reverse micelles with w0 = 2.5-40. Dynamic protonation equilibrium exists between 3Acr and 3AcrH +. The intermediates indicate excited-state proton transfer (PT) between 3AcrH + and TEA. However, application of MF highlights the formation of geminate radical ion pairs (RIPs) with triplet spin-correlation, a signature of latent photoinduced electron transfer between 3AcrH + and TEA co-exists with PT. Magnetic field effect (MFE) is prominent for smaller w0 showing importance of optimum separation between RIP to maximize MFE, whereas PT remains unaltered.

Sarangi, Manas Kumar; Basu, Samita

2011-04-01

131

On magnetic field ``reconstruction''  

NASA Astrophysics Data System (ADS)

Context: Solanki and colleagues have presented intriguing 3D “reconstructions” of magnetic fields from the vector polarimetry of the He I 1083 nm multiplet. Aims: In this Research Note I re-examine the reconstruction technique used. Methods: Using a simple dipole field, I examine the reconstruction technique as applied to the theoretical fields. I assume that the He line forms in two locations, (1) along the magnetic loops and (2) in a horizontal plane. Results: The planar interpretation can account for all aspects of the data, but the loop interpretation has geometrical and physical problems. Conclusions: The data by themselves are not sufficient to determine which picture is more applicable. Nevertheless I argue that the planar interpretation makes more physical sense and that the early reconstructions lead to spurious results. I suggest additional tests that might help constrain the problem further.

Judge, P. G.

2009-01-01

132

Nuclear Magnetic Resonance and Magnetic Field Measurements  

NSDL National Science Digital Library

This laboratory is designed for students to become familiar with the principles and detection techniques of Nuclear Magnetic Resonance (NMR), examine the relationship between current and magnetic field in an electromagnet, and gain experience in the use of magnetic field measurement techniques.

2012-01-04

133

The Earth's Magnetic Field  

NSDL National Science Digital Library

This section of the Windows to the Universe website provides information and images about Earth's magnetic field (the magnetosphere), including detailed information about the aurora borealis, magnets, and solar wind. Windows to the Universe is a user-friendly learning system pertaining to the Earth and Space sciences. The objective of this project is to develop an innovative and engaging website that includes a rich array of documents, including images, movies, animations, and data sets that explore the Earth and Space sciences and the historical and cultural ties between science, exploration and the human experience. Links at the top of each page allow users to navigate between beginner, intermediate and advanced levels.

Johnson, Roberta

2000-07-01

134

The Heliospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The Heliospheric Magnetic Field (HMF) is the physical framework in which energetic particles and cosmic rays propagate. Changes in the large scale structure of the magnetic field lead to short- and long term changes in cosmic ray intensities, in particular in anti-phase with solar activity. The origin of the HMF in the corona is well understood and inner heliospheric observations can generally be linked to their coronal sources. The structure of heliospheric magnetic polarities and the heliospheric current sheet separating the dominant solar polarities are reviewed here over longer than a solar cycle, using the three dimensional heliospheric observations by Ulysses. The dynamics of the HMF around solar minimum activity is reviewed and the development of stream interaction regions following the stable flow patterns of fast and slow solar wind in the inner heliosphere is described. The complex dynamics that affects the evolution of the stream interaction regions leads to a more chaotic structure of the HMF in the outer heliosphere is described and discussed on the basis of the Voyager observations. Around solar maximum, solar activity is dominated by frequent transients, resulting in the interplanetary counterparts of Coronal Mass Ejections (ICMEs). These produce a complex aperiodic pattern of structures in the inner heliosphere, at all heliolatitudes. These structures continue to interact and evolve as they travel to the outer heliosphere. However, linking the observations in the inner and outer heliospheres is possible in the case of the largest solar transients that, despite their evolutions, remain recognizably large structures and lead to the formation of Merged Interaction Regions (MIRs) that may well form a quasi-spherical, "global" shell of enhanced magnetic fields around the Sun at large distances. For the transport of energetic particles and cosmic rays, the fluctuations in the magnetic field and their description in alternative turbulent models remains a very important research topic. These are also briefly reviewed in this paper.

Balogh, André; Erdõs, Géza

2013-06-01

135

Scanning Hall probe microscopy of a diluted magnetic semiconductor  

SciTech Connect

We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga{sub 0.94}Mn{sub 0.06}As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 mum wide and fairly stable with temperature. Magnetic clusters are observed above T{sub C}, which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.

Kweon, Seongsoo [Materials Science and Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Samarth, Nitin [Physics Department, Penn State University, University Park, Pennsylvania 16802 (United States); Lozanne, Alex de [Materials Science and Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

2009-05-01

136

Magnetic Fields, Flares & Forecasts  

NASA Astrophysics Data System (ADS)

A 2D wavelet transform modulus maxima (WTMM) method is used to characterise the complexity of the distribution of the photospheric magnetic field of active regions. The WTMM method offers increased accuracy and reliability over previous fractal and multifractal methods. The multifractal spectrum of both quiet Sun and active region magnetic features are presented. It is shown that the multifractal nature of the quiet Sun is significantly different from that of an active region. As such, a method is proposed to seperate the information corresponding to the multifractal spectrum of an active region from the surrounding quite Sun texture. The WTMM method and segmentation procedure are shown to detect the internal restructuring of active region magnetic features prior to flaring. We detect two thresholds (Haussdorf dimension > 1.2 and Holder Exponent > -0.7) as possible indicators for conditions favourable to flaring.

Conlon, Paul A.; Kestener, P.; McAteer, R.; Gallagher, P.

2009-05-01

137

High-beta Injection into a Magnetic Mirror Field  

Microsoft Academic Search

Axial lnjection of a high-density helium plasma into a magnetic mirror ; is experimentally studied. Observations of the plasma-field interaction are made ; with magnetic probes, electrostatic probes, piezoelectric probes, and an optical ; monochromator that analyzes emission-line profiles. In the central plane of the ; mirror a density of (2 plus or minus 1) x 10¹⁵ ions\\/cm³ and a

F. R. Scott; O. C. Eldridge Jr.

1961-01-01

138

Magnetic fields and cancer  

SciTech Connect

This letter is a response to an article by Savitz and Kaune, EHP 101:76-80. W-L wire code was applied to data from a 1988 Denver study, and an association was reported between high W-L wire code and childhood cancer. This author discusses several studies and provides explanations which weakens the argument that classification error resulted in an appreciable reduction in the association between W-L high wire code and childhood cancer. In conclusion, the fact that new wire code is only weakly correlated with magnetic field measurements (in the same manner as the original W-L wire code) suggests that the newly reported stronger association with childhood cancer is likely due to factors other than magnetic fields. Differential residential mobility and differential residential age are two possible explanations and are suggestive that the reported association may be false.

Jones, T.L.

1993-10-01

139

Magnetic Field of the Earth  

NSDL National Science Digital Library

Students can learn about how the magnetic field of the earth is similar to magnets. Go to the following link: Magnetic Field of the Earth 1. What makes the earth like a magnet? 2. How do we measure magnetism? Be sure to check out the fun games and activities on this web site too!! Now click on the following link and listen to a 2 minute presentation about magnetism: Pulse Planet Next go to ...

Merritt, Mrs.

2005-10-18

140

Hyperfine magnetic fields at the nuclei of probe 119Sn atoms and exchange interactions in the CaCu3Mn3.96Sn0.04O12 manganite  

NASA Astrophysics Data System (ADS)

We have investigated the hyperfine magnetic interactions between the nuclei of probe 119Sn atoms in the CaCu3Mn3.96Sn0.04O12 double manganite by Mössbauer spectroscopy using magnetic measurements. A consistent description of the results obtained in terms of the Weiss molecular field model by taking into account the peculiarities of the local environment of tin atoms has allowed the indirect Cu2+-O-Mn4+ ( J CuMn ? -51 ± 1 K) and Mn4+-O-Mn4+ ( J MnMn ? -0.6 ± 0.6 K) exchange interaction integrals to be estimated. Based on the Kanamori-Goodenough-Anderson model, we show that the magnitude and sign of the intrasublattice exchange integral J MnMn correspond to both the electronic configuration of the Mn4+ cations and the geometry of their local crystallographic environment in the compound under study.

Rusakov, V. S.; Presnyakov, I. A.; Sobolev, A. V.; Demazeau, G.; Gubaidulina, T. V.; Matsnev, M. E.; Gapochka, A. M.; Volkova, O. S.; Vasil'ev, A. N.

2011-04-01

141

Spin Polarized Electron Probes and Magnetic Nanostructures  

SciTech Connect

OAK B188 This report summarizes progress to date in our theoretical research program, for the period from July 1, 2002 to November 1, 2003. In addition, our research priorities for the coming year are set forth. The reporting period has been a most exciting and significant one. For the past several years, one of our principal thrust areas has been development of the theory of spin dynamics in magnetic nanostructures with emphasis on the use of spin polarized electrons as probes of short wavelength spin dynamics in such entities. Our program stimulated the first experiment which detected large wave vector spin waves in ultrathin films in 1999 through spin polarized electron loss spectroscopy (SPEELS); the publication which announced this discovery was a joint publication between a group in Halle (Germany) with our theory effort. The continued collaboration has led to the design and implementation of the new SPEELS spectrometer and we now have in hand the first detailed measurements of spin wave dispersion in an ultrathin film. A second such spectrometer is now operational in the laboratory of Prof. H. Hopster, at UC Irvine. We are thus entering a most exciting new era in the spectroscopy of spin excitations in magnetic nanostructures. During the reporting period, we have completed very important new analyses which predict key aspects of the spectra which will be uncovered by these new instruments, and the calculations continue to be developed and to expand our understanding. In addition, we have initiated a new series of theoretical studies directed toward spin dynamics of single magnetic adatoms on metal surfaces, with STM based studies of this area n mind. In the near future, these studies will continue, and we will expand our effort into new areas of spin dynamics in magnetic nanostructures.

D.L. Mills

2003-10-15

142

Suppression of probe background signals via B1 field inhomogeneity  

SciTech Connect

A new approach combining a long pulse with the DEPTH sequence (Cory and Ritchey, Journal of Magnetic Resonance, 1988) greatly improves the efficiency for suppressing probe background signals arising from spinning modules. By applying a long initial excitation pulse in the DEPTH sequence, instead of a {pi}/2 pulse, the inhomogeneous B{sub 1} fields outside the coil can dephase the background coherence in the nutation frame. The initial long pulse and the following two consecutive EXORCYCLE {pi} pulses function complementarily and prove most effective in removing background signals from both strong and weak B{sub 1} fields. Experimentally, the length of the long pulse can be optimized around odd multiples of the {pi}/2 pulse, depending on the individual probe design, to preserve signals inside the coil while minimizing those from probe hardware. This method extends the applicability of the DEPTH sequence to probes with small differences in B{sub 1} field strength between the inside and outside of the coil, and can readily combine with well-developed double resonance experiments for quantitative measurement. In general, spin systems with weak internal interactions are required to attain efficient and uniform excitation for powder samples, and the principles to determine the applicability are discussed qualitatively in terms of the relative strength of spin interactions, r.f. power and spinning rate.

Feng, Jian; Reimer, Jeffrey

2011-01-27

143

Agyrotropy: An Observable Probe of Magnetic Topology  

NASA Astrophysics Data System (ADS)

Claims for traversal of magnetic separatrices and electron diffusion region transits are many, though few, if any, are theoretically certain. The reason for this on the edge of the MMS era is that there is no clearly agreed upon observable for this type of identification that has a theoretical basis. All too often data signatures are interpreted as, or circularly defined to be, those of the magnetic separatrices or the electron diffusion region. Examples of such identifications are a burst of electric field noise, parallel electric fields, heat flux layers, or "bursts" of energetic particles. The purpose of this presentation is to discuss an observable, electron agyrotropy, that agilely illuminates the boundaries of magnetic topology. For this study fully kinetic simulations of reconnecting layers have been used with open boundary conditions including guide and anti-parallel geometries and multiple island equilibria. Unlike observations, the actual magnetic topology in the simulations can be determined using the vector potential; the same simulation run can be used to compute the observable electron agyrotropy from the pressure tensor of the PIC particles in the code. In this way the patterns of agyrotropy are demonstrated to "paint" the mathematical separatrices of the vector potential. Even in time dependent geometries the electron agyrotropy provides a clear indication of the location of such layers. Since non-zero agyrotropy reflects an electron distribution that is not cylindrically symmetrical about the magnetic field direction, its detection would be a strong local signature that unusually thin layers are being traversed. Because these layers are structured in space, they can support electric fields from the off diagonal elements of the pressure tensor of the type required to explain collisionless magnetic reconnection. As it is a local measurement, the pattern of agyrotropy can be found by orchestrating simultaneous independent measurements using an array of spacecraft such as Cluster or MMS. If detectors are routinely intercalibrated to the level that agyrotropy is routinely small, interesting experimental discoveries can be made by delineating locales where the agyrotropy is too large to be explained by intercalibration errors. As a word of caution, agyrotropy detection need not imply the detection of magnetic separatrices or even the diffusion region, since non-zero electron agyrotropy is a well known property of the Harris sheet in the presence of a background plasma. However, this agyrotropy is not large by the standards of PIC reconnecting sites, so sorting events by the size of agyrotropy would help to guarantee identifications.

Scudder, J.; Daughton, W.; Karimabadi, H.

2007-05-01

144

Seismic probes of solar interior magnetic structure.  

PubMed

Sun spots are prominent manifestations of solar magnetoconvection, and imaging their subsurface structure is an outstanding problem of wide physical importance. Travel times of seismic waves that propagate through these structures are typically used as inputs to inversions. Despite the presence of strongly anisotropic magnetic waveguides, these measurements have always been interpreted in terms of changes to isotropic wave speeds and flow-advection-related Doppler shifts. Here, we employ partial-differential-equation-constrained optimization to determine the appropriate parametrization of the structural properties of the magnetic interior. Seven different wave speeds fully characterize helioseismic wave propagation: the isotropic sound speed, a Doppler-shifting flow-advection velocity, and an anisotropic magnetic velocity. The structure of magnetic media is sensed by magnetoacoustic slow and fast modes and Alfvén waves, each of which propagates at a different wave speed. We show that even in the case of weak magnetic fields, significant errors may be incurred if these anisotropies are not accounted for in inversions. Translation invariance is demonstrably lost. These developments render plausible the accurate seismic imaging of magnetoconvection in the Sun. PMID:23005276

Hanasoge, Shravan; Birch, Aaron; Gizon, Laurent; Tromp, Jeroen

2012-09-01

145

AC Magnetic Field Survey Report  

E-print Network

AC Magnetic Field Survey Report of Literature Building - 3000 University of California San Diego:..........................................................................................................2 ELF OR AC MAGNETIC FIELD CHARACTERISTICS:...............................................2 UNITS of California San Diego La Jolla, California PROJECT: AC Magnetic Field Survey SCOPE: The scope of this project

Krstic, Miroslav

146

The WIND magnetic field investigation  

Microsoft Academic Search

The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and

R. P. Lepping; M. H. Ac?na; L. F. Burlaga; W. M. Farrell; J. A. Slavin; K. H. Schatten; F. Mariani; N. F. Ness; F. M. Neubauer; Y. C. Whang; J. B. Byrnes; R. S. Kennon; P. V. Panetta; J. Scheifele; E. M. Worley

1995-01-01

147

Magnetic Field Topology in Jets  

NASA Technical Reports Server (NTRS)

We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

Gardiner, T. A.; Frank, A.

2000-01-01

148

Low field magnetic resonance imaging  

DOEpatents

A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

2010-07-13

149

The CMS Magnetic Field Map Performance  

E-print Network

The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field values. The value of the field at a given point of a volume is obtained by interpolation from a regular grid of values resulting from a TOSCA calculation or, when available, from a parameterization. The results of the measurements and calculations are presented, compared and discussed.

V. I. Klyukhin; N. Amapane; V. Andreev; A. Ball; B. Curé; A. Hervé; A. Gaddi; H. Gerwig; V. Karimaki; R. Loveless; M. Mulders; S. Popescu; L. I. Sarycheva; T. Virdee

2011-10-04

150

High-frequency magnetic measurements using small inductive probes  

SciTech Connect

Experiments with small magnetic probes suitable for advanced undergraduates are described. The experiments are designed to show that an inductive probe does not respond to high-frequency signals (1--70 MHz) as might be expected from experience with probes at low frequencies. Pickup of noninductive signals is demonstrated, resonances are observed, and the inductance, capacitance, resistance, and effective area of the probe are measured. In addition, the conductivity of copper and aluminum is found using thin metal foils.

Beiersdorfer, P.; Clothiaux, E.J.

1983-11-01

151

NMR at low magnetic fields  

NASA Astrophysics Data System (ADS)

NMR provides outstanding information in chemistry and in medicine. But the equipment is expensive as high-field magnets are employed. Low-field NMR works with inexpensive permanent magnets. Until recently these did not provide fields sufficiently homogeneous for spectroscopy and were mostly used for relaxation measurements. Relaxation can also be measured outside the magnet, and small mobile NMR devices have been developed for non-destructive testing of large objects. Today small stray-field magnets and small magnets with homogeneous fields are available for relaxation analysis, imaging, and spectroscopy. Their availability is believed to be essential for shifting NMR analysis from a specialist's tool to a convenience tool.

Blümich, Bernhard; Casanova, Federico; Appelt, Stephan

2009-08-01

152

Magnetic Fields in Irregular Galaxies  

E-print Network

Magnetic fields are an important component of the interstellar medium, especially in low-mass galaxies like irregulars where the magnetic pressure may be significant. However, few irregular galaxies have observed magnetic field structures. Using the VLA, the GBT, and the ATCA, we have observed several irregular galaxies in the radio continuum to determine their magnetic field structures. Here we report on our results for the galaxies NGC 4214 and NGC 1569.

Amanda A. Kepley; Stefanie Muehle; Eric M. Wilcots; John Everett; Ellen Zweibel; Timothy Robishaw; Carl Heiles

2007-08-24

153

USING COORDINATED OBSERVATIONS IN POLARIZED WHITE LIGHT AND FARADAY ROTATION TO PROBE THE SPATIAL POSITION AND MAGNETIC FIELD OF AN INTERPLANETARY SHEATH  

SciTech Connect

Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B{sub ?} and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression I?r {sup –3}. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r{sub sheath} and the mass of plasma at that position M{sub sheath} can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B{sub ?sheath} at r{sub sheath} can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.

Xiong, Ming; Feng, Xueshang; Liu, Ying D. [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing (China); Davies, Jackie A.; Harrison, Richard A. [Rutherford-Appleton Laboratory (RAL) Space, Harwell Oxford (United Kingdom); Owens, Mathew J.; Davis, Chris J., E-mail: mxiong@spacweather.ac.cn [Reading University, Reading (United Kingdom)

2013-11-01

154

DEPLETED MAGNETIC FLUX TUBES AS PROBES OF THE IO TORUS PLASMA  

E-print Network

DEPLETED MAGNETIC FLUX TUBES AS PROBES OF THE IO TORUS PLASMA C. T. Russell1 , M. G. Kivelson1 , W spacecraft detected thin tubes of magnetic flux that had stronger fields than their surroundings indicating that they were depleted in their energy content. These tubes have not been seen on every return to the Io torus

Russell, Christopher T.

155

Magnetic Fields in Protostellar Disks  

E-print Network

· Shear in disc may wind up field or drive MRI · Equipartition field in the minimum solar nebula to the shear in the disc? ­ which form of diffusion is dominant? logn/nH (s-1) M+ C+ m+ e He+ H+ H3 instability (MRI) ­ disc-driven winds Magnetic fields · Magnetic fields play an important role during star

Wardle, Mark

156

Modeling and Measurements by Hall probes of Magnetic Structures of Undulators HU256  

SciTech Connect

The magnetic calculations of the individual dipoles and dipoles in 'undulator environment' were executed by means of Mermaid 3D Code and these results were confirmed by magnetic measurements of the individual dipoles and the assembled undulators. The magnetic parameters of all dipoles were estimated on basis of the mechanical measurement of the dipole characteristics (pole gap, yoke width, coil position) and the main dependences obtained from magnetic calculations and measurements. These parameters were used for optimal placing of the dipoles in undulators (sorting). The special Hall probe system was designed and manufactured for magnetic measurements of the undulators. It allowed us to observe the inner structure of the magnetic fields. At a magnetic field measurement accuracy of {+-} 15 {mu}T the accuracy of the 1st integral calculated on the basis of the measured magnetic fields is {approx} 50 {mu}Tm. All three undulators were magnetically measured at BINP and are being re-measured at Soleil after transportation.

Batrakov, A.; Churkin, I.; Ilyin, I.; Steshov, A.; Vobly, P. [Budker Institute of Nuclear Physics, Lavrenteva 11, Novosibirsk, 630090 (Russian Federation); Briquez, F.; Chubar, O.; Dael, A.; Roux, G.; Valleau, M. [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48-F91192, GIF-sur-YVETTE Cedex (France)

2007-01-19

157

The Heliospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

Owens, Mathew J.; Forsyth, Robert J.

2013-11-01

158

Photonic Magnetic Field Sensor  

NASA Astrophysics Data System (ADS)

Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

Wyntjes, Geert

2002-02-01

159

Multipoint explosive emission cathode operation in external magnetic field  

Microsoft Academic Search

For investigation of a multipoint explosive emission cathode operation in an external magnetic field an experimental electron source with a grounded cathode was developed. It allows to carry out measurements of currents through the cathode points and probe measurements of the cathode plasma parameters. The following main results were obtained. An increase of the magnetic field leads to an increase

A. D. Andreev; V. I. Engelko; G. Mueller

2001-01-01

160

Magnetic Fields: Visible and Permanent.  

ERIC Educational Resources Information Center

Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

Winkeljohn, Dorothy R.; Earl, Robert D.

1983-01-01

161

(version 6/26/06) Magnetic Fields  

E-print Network

where the magnetic fields of the Earth and the bar magnet sum to zero. INTRODUCTION A magnetic field(version 6/26/06) Magnetic Fields GOALS (1) To visualize the magnetic fields produced by several to trace out the magnetic field lines of a single bar magnet on a large sheet of paper. (3) To calculate

Collins, Gary S.

162

Magnetic and Langmuir Probe Measurements on the Plasmoid Thruster Experiment (PTX)  

NASA Technical Reports Server (NTRS)

The Plasmoid Thruster Experiment (PTX) operates by inductively producing plasmoids in a conical theta-pinch coil and subsequently ejecting them at high velocity. An overview of PTX is described in a companion paper. The shape and magnetic field structure of the translating plasmoids will be measured with of an array of inductive magnetic field probes. Six sets of two B-dot probes (for a total of twelve probes) have been constructed for measuring B(sub z) and B(sub theta), the axial and azimuthal components of the magnetic field. The probes were calibrated with a Helmholtz coil, driven alternately by a high-voltage pulser or a signal generator. The probes are wound on a G-10 form, and have an average (calibrated) NA of 9.37 x 10(exp -5) square meters, where N is the number of turns and A is cross-sectional area. The frequency response of the probes was measured over the range from 1 kHz to 10 MHZ. The electron number density n(sub e), electron temperature T(sub e) and velocity v will be determined from measurements taken with a quadruple Langmuir probe, situated in the exhaust chamber. Three of the four probes on the quadruple probe sample the current-voltage characteristic, and from this yield measurements of T(sub e) and n(sub e). The fourth probe provides a measurement of plasma flow velocity. A 6-inch long alumina rod, hollowed with four holes to house the probe wires, is being used to construct the quadruple probe. A variety of propellants will be used, including hydrogen, nitrogen and argon. From the measurements of the plasmoid mass, density, temperature, and velocity, the basic propulsion characteristics of PTX will be evaluated.

Koelfgen, Syri J.; Eskridge, Richard; Fimognari, Peter; Hawk, Clark W.; Lee, Mike; Martin, Adam

2004-01-01

163

Magnetic Propeller for Uniform Magnetic Field Levitation  

E-print Network

Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

Mark Krinker; Alexander Bolonkin

2008-07-12

164

NATIONAL HIGH MAGNETIC FIELD LABORATORY  

E-print Network

and testing areas, magnet experiment cells, and laser laboratory areas. The laboratory is used 24 hours perNATIONAL HIGH MAGNETIC FIELD LABORATORY NHMFL FLORIDA STATE UNIVERSITY SAFETY PROCEDURE SP-3 TITLE Dalton ______________________________________________________ ASSISTANT DIRECTOR, ENVIRONMENTAL, HEALTH

Weston, Ken

165

Magnetic Classification of Meteorites and Asteroid Probing  

NASA Astrophysics Data System (ADS)

Magnetic susceptibility (X) provides a versatile rapid and non destructive way to quan- tify the amount of magnetic minerals (FeNi metal, magnetic oxides and sulfides) on large volume of material. As petrological studies of meteorites suggest that this param- eter should be quite discriminant, we assembled a database of measurements on about 1000 stony meteorites from various European collections: Helsinki, Madrid, Paris, Prague, Roma, Siena, Vatican, and other smaller collections. From 1 to >20 pieces and 1 to >100 cc per meteorite allow to define a representative mean value, using a large coil (8 cm) Kappabridge. For ordinary chondrites, it appears that weathering is responsible for a systematic bias toward low logc for Antarctic (Frontier Mountain) and non Antarctic (mainly from Sahara) finds. Once only falls are considered a quite narrow range of logc is observed for a given class, with no effect of petrological grade except for LL. High grade LLs (heated above 400C) develop the weakly magnetic antitaenite-tetrataenite phases [3] during slow cooling, explaining the difference with low grade taenite-bearing LLs. Outliers from H and L classes are grade 6 material (showing metal segregation) or intermediate types: H/L and L/LL. Once these out- liers are excluded, well defined means for H and L are observed with no overlap at 2 s.d.; this agrees with the lack of overlap on metal amount. The standard deviation for all falls of a given class is only slightly higher than the averaged standard deviation for multiple pieces of the same fall. This supports the hypothesis that all falls from a given ordinary chondrite class (H or L) may come from the same homogeneous par- ent body. For non ordinary chondrites and achondrites, weakly magnetic classes are HED, Aubrites and SNC (below LL), strongly ones are E (above H) and Ureilites (in the L-H range), while C chondrites are spread in the whole range, again with each class showing restricted variation. On objects without intrinsic magnetic field the only way to measure X is to use a lander able to apply a small coil on the surface to mea- sure. Existing pocket susceptometer with a 25 mm radius loop and penetration depth of 30 mm are easily adaptable to such a purpose with a payload of less than 50 g (not counting the mobile arm). Such a petrophysical tool would have the advantage of its penetration depth with respect to all other chemical and mineralogical analysers that obtain essentially surface information prone to bias by space weathering. It should allow to attribute the asteroid to a meteorite class.

Rochette, P.; Sagnotti, L.; Chevrier, V.; Consolmagno, G.; Denise, M.; Folco, L.; Osete, M.; Pesonen, L.

166

Prospects for neutron probed magnetic resonance imaging  

SciTech Connect

The information gained from magnetic resonance imaging has provided useful insight into many insulators. Extending this technique to conductors requires an alternative means of spin manipulation besides electromagnetic radiation. A method to use neutron measurement of the Zeeman splitting to measure the relaxation time is described. The Zeeman splitting is observed by a neutron spectrometer as an incoherent signal with an energy transfer equal to the Zeeman energy. This energy scale is so small that fields in excess of 15 T are required to sufficiently separate this line from other incoherent processes. Once the Zeeman splitting is observed, a perturbation of the system is required to enable measurement of the nuclear spin relaxation time; the physical quantity measured in a Nuclear Magnetic Resonance experiment. The proposed perturbation is a pulsed field of 10 T. The relaxation of the Zeeman splitting back to the 15 T condition is then recorded as a function of time. The resultant data is the aforementioned measure of the relaxation time. With the ability to measure the relaxation times the image map can be created by rastering the sample with respect to the beam.

Granroth, Garrett E [ORNL

2009-01-01

167

Understanding the Chromospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The chromospheric magnetic field is an important and essential component for understanding solar atmospheric fields. Due to the problems of polarization radiation transfer in the chromosphere and the low detective sensitivity of chromospheric spectrum lines, observations of chromospheric magnetic fields are very difficult, so studies of chromospheric fields are infrequent. However, the understanding of chromospheric fields is evolving. In this report, we summarize our current empirical knowledge and basic physical understanding of chromospheric fields. We concentrate on the comparison of magnetic fields in the photosphere and chromosphere, and then display their difference.

Jin, C. L.; Harvey, J. W.; Pietarila, A.

2014-10-01

168

Reconnection of Magnetic Fields  

NASA Astrophysics Data System (ADS)

Preface; Part I. Introduction: 1.1 The Sun E. R. Priest; 1.2 Earth's magnetosphere J. Birn; Part II. Basic Theory of MHD Reconnection: 2.1 Classical theory of two-dimensional reconnection T. G. Forbes; 2.2 Fundamental concepts G. Hornig; 2.3 Three-dimensional reconnection in the absence of magnetic null points G. Hornig; 2.4 Three-dimensional reconnection at magnetic null points D. Pontin; 2.5 Three-dimensional flux tube reconnection M. Linton; Part III. Basic Theory of Collisionless Reconnection: 3.1 Fundamentals of collisionless reconnection J. Drake; 3.2 Diffusion region physics M. Hesse; 3.3 Onset of magnetic reconnection P. Pritchett; 3.4 Hall-MHD reconnection A. Bhattacharjee and J. Dorelli; 3.5 Role of current-aligned instabilities J. Büchner and W. Daughton; 3.6 Nonthermal particle acceleration M. Hoshino; Part IV. Reconnection in the Magnetosphere: 4.1 Reconnection at the magnetopause: concepts and models J. G. Dorelli and A. Bhattacharjee; 4.2 Observations of magnetopause reconnection K.-H. Trattner; 4.3 On the stability of the magnetotail K. Schindler; 4.4 Simulations of reconnection in the magnetotail J. Birn; 4.5 Observations of tail reconnection W. Baumjohann and R. Nakamura; 4.6 Remote sensing of reconnection M. Freeman; Part V. Reconnection in the Sun's Atmosphere: 5.1 Coronal heating E. R. Priest; 5.2 Separator reconnection D. Longcope; 5.3 Pinching of coronal fields V. Titov; 5.4 Numerical experiments on coronal heating K. Galsgaard; 5.5 Solar flares K. Kusano; 5.6 Particle acceleration in flares: theory T. Neukirch; 5.7 Fast particles in flares: observations L. Fletcher; 6. Open problems J. Birn and E. R. Priest; Bibliography; Index.

Birn, J.; Priest, E. R.

2007-01-01

169

A platform for designing hyperpolarized magnetic resonance chemical probes  

PubMed Central

Hyperpolarization is a highly promising technique for improving the sensitivity of magnetic resonance chemical probes. Here we report [15N, D9]trimethylphenylammonium as a platform for designing a variety of hyperpolarized magnetic resonance chemical probes. The platform structure shows a remarkably long 15N spin–lattice relaxation value (816?s, 14.1 T) for retaining its hyperpolarized spin state. The extended lifetime enables the detection of the hyperpolarized 15N signal of the platform for several tens of minutes and thus overcomes the intrinsic short analysis time of hyperpolarized probes. Versatility of the platform is demonstrated by applying it to three types of hyperpolarized chemical probes: one each for sensing calcium ions, reactive oxygen species (hydrogen peroxide) and enzyme activity (carboxyl esterase). All of the designed probes achieve high sensitivity with rapid reactions and chemical shift changes, which are sufficient to allow sensitive and real-time monitoring of target molecules by 15N magnetic resonance. PMID:24022444

Nonaka, Hiroshi; Hata, Ryunosuke; Doura, Tomohiro; Nishihara, Tatsuya; Kumagai, Keiko; Akakabe, Mai; Tsuda, Masashi; Ichikawa, Kazuhiro; Sando, Shinsuke

2013-01-01

170

Magnetic resonance imaging of time-varying magnetic fields from therapeutic devices.  

PubMed

While magnetic resonance imaging of static magnetic fields generated by external probes has been previously demonstrated, there is an unmet need to image time-varying magnetic fields such as those generated by transcranial magnetic stimulators and radiofrequency hyperthermia probes. A method to image such time-varying magnetic fields is introduced in this study. This article presents the theory behind the method and provides proof of concept by imaging time-varying magnetic fields generated by a figure-eight coil inside simple phantoms over a range of frequencies and intensities using a 7T small animal MRI scanner. The method was able to reconstruct the three-dimensional components of the oscillating magnetic field vector. PMID:23355446

Hernandez-Garcia, Luis; Bhatia, Vivek; Prem-Kumar, Krishan; Ulfarsson, Magnus

2013-06-01

171

Magnetic Resonance Imaging of time-varying magnetic fields from therapeutic devices  

PubMed Central

While magnetic resonance imaging of static magnetic fields generated by external probes has been previously demonstrated, there is an unmet need to image time-varying magnetic fields, such as those generated by transcranial magnetic stimulators or radiofrequency hyperthermia probes. A method to image such time-varying magnetic fields is introduced in this work. This article presents the theory behind the method and provides proof of concept by imaging time-varying magnetic fields generated by a figure-eight coil inside simple phantoms over a range of frequencies and intensities, using a 7T small animal MRI scanner. The method is able to reconstruct the three-dimensional components of the oscillating magnetic field vector. PMID:23355446

Hernandez-Garcia, Luis; Bhatia, Vivek; Prem-Kumar, Krishan; Ulfarsson, Magnus

2013-01-01

172

Exposure guidelines for magnetic fields  

SciTech Connect

The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

Miller, G.

1987-12-01

173

Magnetic-field-dosimetry system  

DOEpatents

A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1981-01-21

174

Magnetic fields in massive stars  

E-print Network

Although indirect evidence for the presence of magnetic fields in high-mass stars is regularly reported in the literature, the detection of these fields remains an extremely challenging observational problem. We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

S. Hubrig

2007-03-09

175

The Galileo magnetic field investigation  

Microsoft Academic Search

The Galileo Orbiter carries a complement of fields and particles instruments designed to provide data needed to shed light on the structure and dynamical variations of the Jovian magnetosphere. Many questions remain regarding the temporal and spatial properties of the magnetospheric magnetic field, how the magnetic field maintains corotation of the embedded plasma and the circumstances under which corotation breaks

M. G. Kivelson; K. K. Khurana; J. D. Means; C. T. Russell; R. C. Snare

1992-01-01

176

Coupling scheme and probe damper for pulsed nuclear magnetic resonance single coil probe  

Microsoft Academic Search

A coupling scheme and a probe damper for use with a pulsed nuclear magnetic resonance single coil probe are described. The designs for both circuits incorporate the unique properties of PIN diodes. The performances of the circuits at the signal processing level are evaluated at 4.3, 15.78, and 49.0 MHz.

Kenneth E. Kisman; Robin L. Armstrong

1974-01-01

177

Mapping magnetic near-field distributions of plasmonic nanoantennas.  

PubMed

We present direct experimental mapping of the lateral magnetic near-field distribution in plasmonic nanoantennas using aperture scanning near-field optical microscopy (SNOM). By means of full-field simulations it is demonstrated how the coupling of the hollow-pyramid aperture probe to the nanoantenna induces an effective magnetic dipole which efficiently excites surface plasmon resonances only at lateral magnetic field maxima. This excitation in turn affects the detected light intensity enabling the visualization of the lateral magnetic near-field distribution of multiple odd and even order plasmon modes with subwavelength spatial resolution. PMID:23464670

Denkova, Denitza; Verellen, Niels; Silhanek, Alejandro V; Valev, Ventsislav K; Van Dorpe, Pol; Moshchalkov, Victor V

2013-04-23

178

Quadrupole Magnetic Center Definition Using the Hall Probe Measurement Technique  

E-print Network

coherent light source [LCLS] project [1] requires 5 µm straightness of the particle beam trajectory to avoid using an additional magnetic measurement technique and to use the same sensors that will be used of the probe motion in Z-direction of the quadrupole: clear reference line was made at the probe tip

Kemner, Ken

179

Mars Observer magnetic fields investigation  

NASA Technical Reports Server (NTRS)

The magnetic fields experiment designed for the Mars Observer mission will provide definitive measurements of the Martian magnetic field from the transition and mapping orbits planned for the Mars Observer. The paper describes the instruments (which include a classical magnetometer and an electron reflection magnetometer) and techniques designed to investigate the nature of the Martian magnetic field and the Mars-solar wind interaction, the mapping of crustal magnetic fields, and studies of the Martian ionosphere, which are activities included in the Mars Observer mission objectives. Attention is also given to the flight software incorporated in the on-board data processor, and the procedures of data processing and analysis.

Acuna, M. H.; Connerney, J. E. P.; Wasilewski, P.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Mcfadden, J.; Curtis, D. W.; Reme, H.; Cros, A.

1992-01-01

180

Detecting solar axions using Earth's magnetic field  

E-print Network

We show that solar axion conversion to photons in the Earth's magnetosphere can produce an x-ray flux, with average energy \\sim 4 keV, which is measurable on the dark side of the Earth. The smallness of the Earth's magnetic field is compensated by a large magnetized volume. For axion masses Earth-orbit x-ray detector with an effective area of 10^4 cm^2, pointed at the solar core, can probe the photon-axion coupling down to 10^{-11} GeV^{-1}, in one year. Thus, the sensitivity of this new approach will be an order of magnitude beyond current laboratory limits.

Hooman Davoudiasl; Patrick Huber

2005-09-26

181

(Revised December 30, 2013) Magnetic Fields  

E-print Network

of the points where the magnetic fields of the Earth and the bar magnet sum to zero. INTRODUCTION A magnetic(Revised December 30, 2013) Magnetic Fields GOALS (1) To visualize the magnetic fields produced compasses to trace out the magnetic field lines of a single bar magnet on a large sheet of paper. (3

Collins, Gary S.

182

Magnetic response to applied electrostatic field in external magnetic field  

NASA Astrophysics Data System (ADS)

We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

Adorno, T. C.; Gitman, D. M.; Shabad, A. E.

2014-04-01

183

THE OUTER MAGNETIC FIELD OF L183  

SciTech Connect

The L183 (= L134N) dark molecular cloud has been probed using deep near-infrared imaging polarimetry of stars to beyond 14 mag in H band (1.6 {mu}m), using the Mimir instrument on the 1.83 m Perkins Telescope. Nearly 400 arcmin{sup 2} were surveyed, including the dense core in L183, as seen in WISE Band 3 (12 {mu}m) extinction, and the near surroundings, revealing 35 stars with either detected polarizations or significant upper limits. Stars with detected polarizations are reddened if closer than 8 arcmin (0.25 pc at the 110 pc cloud distance) and unreddened beyond. The polarimetric sample probes as close to the core as 3 arcmin (0.1 pc), where A{sub V} {approx} 14 mag. Compared to the relatively unextincted surrounding stars, the reddened stars show no increase in polarization with extinction, suggesting that all of the polarization is induced in the outer layers of the cloud. This 0.25 pc radius envelope magnetic field does show a strong interaction with the L183 dark cloud. The envelope field is also virtually perpendicular, on the plane of the sky, to the field seen at 850 {mu}m, though more closely aligned with the rotation axis of the dense gas core. The physical size scale at which the envelope and the core magnetic fields either decouple from each other or strongly modify their directions must be inside the 0.1 pc region probed here.

Clemens, Dan P., E-mail: clemens@bu.edu [Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave, Boston, MA 02215 (United States)

2012-03-20

184

Theory of fossil magnetic field  

E-print Network

Theory of fossil magnetic field is based on the observations, analytical estimations and numerical simulations of magnetic flux evolution during star formation in the magnetized cores of molecular clouds. Basic goals, main features of the theory and manifestations of MHD effects in young stellar objects are discussed.

Dudorov, Alexander E

2014-01-01

185

Measurement of the CMS Magnetic Field  

E-print Network

The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the initial magnetic flux density in steel at the maximum field to an accuracy of a few percent. The results of the measurements made at 4 T are reported and compared with a three-dimensional model of the CMS magnet system calculated with TOSCA.

V. I. Klyukhin; A. Ball; F. Bergsma; D. Campi; B. Curé; A. Gaddi; H. Gerwig; A. Hervé; J. Korienek; F. Linde; C. Lindenmeyer; R. Loveless; M. Mulders; T. Nebel; R. P. Smith; D. Stickland; G. Teafoe; L. Veillet; J. K. Zimmerman

2011-10-03

186

Origin of cosmic magnetic fields.  

PubMed

We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)??G if the energy scale of inflation is few×10(16)??GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

Campanelli, Leonardo

2013-08-01

187

NATIONAL HIGH MAGNETIC FIELD LABORATORY  

E-print Network

NATIONAL HIGH MAGNETIC FIELD LABORATORY SUPPORTED BY: THE NATIONAL SCIENCE FOUNDATION and THE STATE OF FLORIDA OPERATED BY: FLORIDA STATE UNIVERSITY · UNIVERSITY OF FLORIDA · LOS ALAMOS NATIONAL LABORATORY Page 15 2005 ANNUAL REPORT #12;2005 ANNUAL REPORT National High magnetic Field Laboratory 2005 NHMFL

Weston, Ken

188

Magnetic Field Problem: Measuring Current  

NSDL National Science Digital Library

A cross section of two circular wire loops carrying the exact same current is shown above (position given in centimeters and magnetic field given in milli-Tesla). You can click-drag to read the magnitude of the magnetic field.

Christian, Wolfgang; Belloni, Mario

2007-03-03

189

High frequency umbilical magnetic probe array for SSX wind tunnel  

NASA Astrophysics Data System (ADS)

The Swarthmore Spheromak Experiment (SSX) wind tunnel consists of a high velocity plume of magnetized plasma injected into a copper flux conserver with dimensions L = 1 m and R = 0.08 m (aspect ratio 10:1). The plasma spheromaks in this wind tunnel typically have densities on the order of 1 - 5 x10^15 cm-3 and flow speeds of 50 km/s. In the past, fluctuations and turbulence in the SSX plasma wind tunnel during magnetic reconnection have been examined by means of two high resolution (16 position at 0.46 cm spacing) radial magnetic probes. Results from the radial probes show high frequency magnetic fluctuations at the site of reconnection. Four more probes have been design to help detect magnetic fluctuations and reconnection activity along the axial direction of the wind tunnel. The four new probes have 8 positions at 0.95 cm spacing and have a flexible bellow in vacuum and a quartz jacket. The bellows act as an umbilical giving the probe excellent flexibility and versatility. The flexibility allows the probe to be bent so it lies along the axis of the flux conserver.

Werth, A. M.; Gray, T.; Brown, M. R.

2012-10-01

190

Estimation of fluctuating magnetic fields by an atomic magnetometer  

SciTech Connect

We present a theoretical procedure to estimate with an atomic magnetometer the time dependence of a magnetic field that fluctuates according to an Ornstein-Uhlenbeck process. The magnetometer applies the detected polarization rotation of an optical probe to measure a collective atomic spin, which precesses due to the magnetic field. Based on the noisy optical detection record, our consistent Gaussian update formalism provides an estimator for the magnetic fields, and we identify analytically the steady-state performance of this estimator. We show that the estimate of the current value of the magnetic field is further improved if noisy measurement data obtained also at later times are taken into account.

Petersen, Vivi; Moelmer, Klaus [QUANTOP--Danish National Research Foundation Center for Quantum Optics, Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

2006-10-15

191

Gauss-Bonnet holographic superconductors with magnetic field  

E-print Network

We study the Gauss-Bonnet (GB) holographic superconductors in the presence of an external magnetic field. We describe the phenomena away from the probe limit. We derive the critical magnetic field of the GB holographic superconductors with backreaction. Our analytical approach matches the numerical calculations. We calculate the backreaction corrections up to first order of $O(\\kappa^2=8\\pi G)$ to the critical temperature $T_C$ and the critical magnetic field $B_C$ for a GB superconductor. We show that the GB coupling $\\alpha$ makes the condensation weaker but the backreaction corrections $O(\\kappa^2)$ make the critical magnetic field stronger.

M. R. Setare; D. Momeni

2011-06-06

192

Catheter based magnetic resonance compatible perfusion probe  

E-print Network

Neurosurgeons are using a thermal based technique to quantify brain perfusion. The thermal diffusion probe (TDP) technology measures perfusion in a relatively small volume of brain tissue. The neurosurgeon chooses the ...

Toretta, Cara Lynne

2007-01-01

193

MANUFACTURING OF MAGNETIC PROBE COILS FOR DIII-D  

SciTech Connect

OAK-B135 The magnetic diagnostics program at DIII-D adds to its in-vessel installations of induction-type loops and coils almost every year. The current design of toroidal and poloidal magnetic field coils (45-50 kHz, N {center_dot} A = 0.06 m{sup 2}) has been in existence since 1987. Many coils were installed in DIII-D during that year and are still operating and reliable today. The high reliability of the coils is owing to the use of a continuous length of mineral-insulated cable, eliminating any electrical connections inside the vacuum vessel. The geometry of the probes was designed to achieve a bandwidth of 50 kHz, despite the conducting shell formed by the stainless steel sheath of the mineral-insulated cable. The bandwidth is sensitive to the details of the cable dimensions and winding technique, and care must be taken in the fabrication in order to maintain this specification. With possible future magnetic diagnostics installations IN ITER and other long-pulse machines requiring large numbers of coils and/or multiple layers per coil, the manufacturing scale-up, quality control, and the development of layered coils should all be investigated in addition to the obvious issues such as irradiation effects.

BOZEK,A.S; STRAIT,E.J

2003-10-01

194

Hand-Held Schlieren Photography with Light Field Probes  

Microsoft Academic Search

We introduce a new approach to capturing refraction in transparent media, which we call Light Field Back- ground Oriented Schlieren Photography (LFBOS). By op- tically coding the locations and directions of light rays emerging from a light field probe, we can capture changes of the refractive index field between the probe and a camera or an observer. Rather than using

Gordon Wetzstein; Ramesh Raskar; Wolfgang Heidrich

2011-01-01

195

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Structure of Magnetic  

E-print Network

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Chapter 3 Structure of Magnetic Fields Many of the most interesting plasmas are permeated by or imbedded in magnetic fields.1 As shown in Fig. 3.1, the magnetic field properties of magnetic fields in plasmas can be discussed without specifying a model for the plasma

Callen, James D.

196

Effect of Ge substitution for Si on the magnetic hyperfine field in LaMn2Si2 compound measured by perturbed angular correlation spectroscopy with 140Ce as probe nuclei  

NASA Astrophysics Data System (ADS)

The effect of substitution of Ge for Si in LaMn2Si2 compound on the magnetic hyperfine field (Bhf) has been investigated by perturbed ? -? angular correlation (PAC) spectroscopy using 140La(140Ce) as probe nuclei. This compound exhibits antiferromagnetism followed by a ferromagnetic ordering when temperature decreases. The behavior of the ferromagnetic transition when Ge gradually replaces Si, with concentrations of 20%, 40%, 80%, and 100% is discussed. PAC measurements were carried out in the temperature range from 15 K to 325 K. Results for LaMn2Si2 compound showed that the dependence of Bhf with temperature follows the expected behavior for the host magnetization and could be fitted by a Brillouin function for JMn = 5/2. However, the temperature dependence of Bhf for compounds when Si is gradually replaced by Ge showed a deviation from such a behavior, which gradually increases up to a strong deviation observed for LaMn2Ge2. This striking behavior was ascribed to the hybridization of d band of the host and f band of the Ce impurities, which is stronger when the unit cell volume increase as Si ions are substituted by Ge atoms.

Bosch-Santos, B.; Carbonari, A. W.; Cabrera-Pasca, G. A.; Costa, M. S.; Saxena, R. N.

2013-05-01

197

A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments  

SciTech Connect

The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 ?m diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.

Smith, Doran D.; Alexson, Dimitri A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States)] [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); Garbini, Joseph L. [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)] [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)

2013-09-15

198

Depth-resolved studies of layered magnetic nanostructures using 57Fe probe layers and Mössbauer spectroscopy  

NASA Astrophysics Data System (ADS)

An atomic-scale quantitative analysis of the structural and magnetic properties of surfaces, interfaces and complex nanostructures is of fundamental relevance for the development of new materials for spintronics. Studies of buried magnetic interfaces and depth-resolved measurements in layered magnetic nanostructures are particularly challenging, and the combination of conversion electron Mössbauer spectroscopy and/or nuclear resonant scattering of synchrotron radiation with isotope-enriched probe layers can be a powerful tool in this field. The potential offered by the application of isotope-selective measurements for the study of Fe-based layered magnetic nanostructures is illustrated with our recent results on the investigation of depth-dependent spin structures and interfacial interdiffusion in exchange-biased ferromagnetic/antiferromagnetic bilayer systems and of an epitaxial magnetic system with perpendicular magnetic anisotropy, obtained from samples prepared with ultrathin 57Fe probe layers placed at different depths during the growth processes, via molecular beam epitaxy or sputtering deposition.

Macedo, Waldemar A. A.

2014-11-01

199

Magnetic Field Measurements in Beam Guiding Magnets  

E-print Network

Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

Henrichsen, K N

1998-01-01

200

Field quality measurements of a 2-Tesla transmission line magnet  

SciTech Connect

A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; /Fermilab; Wake, M.; /KEK, Tsukuba

2005-09-01

201

Preflare magnetic and velocity fields  

NASA Technical Reports Server (NTRS)

A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

1986-01-01

202

Observation of low magnetic field density peaks in helicon plasma  

SciTech Connect

Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peak value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.

Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2013-04-15

203

Streamer propagation in magnetic field  

E-print Network

The propagation of a streamer near an insulating surface under the influence of a transverse magnetic field is theoretically investigated. In the weak magnetic field limit it is shown that the trajectory of the streamer has a circular form with a radius that is much larger than the cyclotron radius of an electron. The charge distribution within the streamer head is strongly polarized by the Lorentz force exerted perpendicualr to the streamer velocity. A critical magnetic field for the branching of a streamer is estimated. Our results are in good agreement with available experimental data.

Zhuravlev, V N; Vagner, I D; Wyder, P

1997-01-01

204

AC photovoltaic module magnetic fields  

SciTech Connect

Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

Jennings, C.; Chang, G.J. [Pacific Gas and Electric Co., San Francisco, CA (United States); Reyes, A.B.; Whitaker, C.M. [Endecon Engineering, San Ramon, CA (United States)

1997-12-31

205

Investigating Magnetic Force Fields  

NSDL National Science Digital Library

In this classroom activity, the students will investigate the magnetic pull of a bar magnet at varying distances with the use of paper clips. Students will hypothesize, conduct the experiment, collect the data, and draw conclusions that support their data. Each student will record the experiment and their findings in their science journals. As a class, students will compare each groups' data and their interpretation of the results.

Daryl ("Tish") Monjeau, Bancroft Elementary School, Minneapolis, MN

2012-03-18

206

Neutron scattering in magnetic fields  

SciTech Connect

The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two general areas of application can be distinguished. In one the field acts to change the properties of the scattering sample; in the second the field acts on the neutron itself. Several examples are discussed. Precautions necessary for high precision polarized beam measurements are reviewed. 33 references.

Koehler, W.C.

1984-01-01

207

N-flationary magnetic fields  

NASA Astrophysics Data System (ADS)

There is increasing interest in the role played by pseudo Nambu Goldstone bosons (pNGBs) in the construction of string-inspired models of inflation. In these models the inflaton is expected to be coupled to gauge fields, and will lead to the generation of magnetic fields that can be of cosmological interest. We study the production of such fields mainly focusing on the model of N-flation, where the collective effect of several pNGBs drives inflation. Because the fields produced are maximally helical, inverse cascade processes in the primordial plasma significantly increase their coherence length. We discuss under what conditions inflation driven by pNGBs can account for the cosmological magnetic fields observed. A constraint on the parameters of this class of inflationary scenarios is also derived by requiring that the magnetic field does not backreact on the inflating background.

Anber, Mohamed M.; Sorbo, Lorenzo

2006-10-01

208

Field of the Magnetic Monopole  

E-print Network

This paper shows that based upon the Helmholtz decomposition theorem the field of a stationary magnetic monopole, assuming it exists, cannot be represented by a vector potential. Persisting to use vector potential in monopole representation violates fundamentals of mathematics. The importance of this finding is that the vector potential representation was crucial to the original prediction of the quantized value for a magnetic charge.

A. R. Hadjesfandiari

2007-01-19

209

Neutron in Strong Magnetic Fields  

E-print Network

Relativistic world-line Hamiltonian for strongly interacting 3q systems in magnetic field is derived from the path integral for the corresponding Green's function. The neutral baryon Hamiltonian in magnetic field obeys the pseudomomentum conservation and allows a factorization of the c.m. and internal motion. The resulting expression for the baryon mass in magnetic field is written explicitly with the account of hyperfine, OPE and OGE (color Coulomb) interaction. The neutron mass is fast decreasing with magnetic field, losing 1/2 of its value at eB~0.25 GeV^2 and is nearly zero at eB~0.5 GeV^2. Possible physical consequences of the calculated mass trajectory of the neutron, M_n(B), are presented and discussed.

M. A. Andreichikov; B. O. Kerbikov; V. D. Orlovsky; Yu. A. Simonov

2013-12-08

210

Electromagnetic field focusing probe (EFFP)--a new angioplasty tool.  

PubMed

An electromagnetic field focusing probe (EFFP) consists of a radiofrequency generator, solenoidal coil, and a hand-held or catheter probe. The probe is operated in the near field (distance within one wave length of an electromagnetic field source) of a coil, which induces eddy current in a biological tissue. The induced eddy current is converged maximally at the tip of the probe upon contact of the tip with the tissue. The probe produces very high temperatures depending on the wattage selected. In this study, the EFFP was used to evaporate atheromatous plaques in human cadaver abdominal aorta specimens, which were then studied histologically. Gas produced by this technique was analyzed and the volume found to be related to power delivered, but in such small amounts as to be of no embolic significance. While temperature varied with wattage and time of application, it was maximal at the probe tip and easily controlled, resulting in clean obliteration of plaque. PMID:2973268

Yamanashi, W S; Yassa, N A; Hill, D L; Lewis, J E; Patil, A A; Lester, P D

1988-12-01

211

Review of magnetic field observations  

NASA Technical Reports Server (NTRS)

Recent observations of magnetic fields in the magnetosphere are reviewed, and critical experiments and data are identified for theoretical analysis and interpretation. Quantitative studies of the solar wind interaction with the earth's magnetic field, regional measurements near the earth's equator at R = 2-8 R sub E, the polar cusp region of the geomagnetosphere, and structural models of the neutral sheet region in the geomagnetic tail are considered.

Ness, N. F.

1971-01-01

212

Probing local magnetization in molecular heterometallic Cr2Cu trimer  

NASA Astrophysics Data System (ADS)

We have extensively studied the magnetic features of a heterometallic molecular trimer, Cr2Cu . We have characterized molecular Cr2Cu by low-temperature ac susceptibility and specific-heat measurements and this allowed us to determine the microscopic parameters of the spin Hamiltonian. Then, we used x-ray magnetic circular dichroism to selectively probe local symmetries, electronic configuration, orbital, and spin magnetic moments of the magnetic ions. We found that at low temperatures only the ground state S=3/2 is occupied and the spin of Cu is found opposite to that of Cr in agreement with spin-Hamiltonian calculations.

Lorusso, G.; Corradini, V.; Candini, A.; Ghirri, A.; Biagi, R.; Del Pennino, U.; Carretta, S.; Garlatti, E.; Santini, P.; Amoretti, G.; Timco, G.; Pritchard, R. G.; Winpenny, R. E. P.; Affronte, M.

2010-10-01

213

Chiral transition with magnetic fields  

E-print Network

We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling constants and the number of fermions. We show that the critical temperature for the restoration of chiral symmetry monotonically increases from small to intermediate values of the magnetic fields and that this temperature is always above the critical temperature for the case when the magnetic field is absent.

Alejandro Ayala; Luis Alberto Hernandez; Ana Julia Mizher; Juan Cristobal Rojas; Cristian Villavicencio

2014-04-25

214

Magnetic field induced dynamical chaos  

SciTech Connect

In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra, E-mail: bidhanchandra.bag@visva-bharati.ac.in [Department of Chemistry, Visva-Bharati, Santiniketan 731 235 (India)

2013-12-15

215

Analysis of the Distribution of Magnetic Fluid inside Tumors by a Giant Magnetoresistance Probe  

PubMed Central

Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42°C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe. PMID:24312280

Gooneratne, Chinthaka P.; Kurnicki, Adam; Yamada, Sotoshi; Mukhopadhyay, Subhas C.; Kosel, Jurgen

2013-01-01

216

Dynamic nuclear polarization at high magnetic fields  

PubMed Central

Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (?w) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (?e/?l), being ?660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (?5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms—the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in ?w and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments. PMID:18266416

Maly, Thorsten; Debelouchina, Galia T.; Bajaj, Vikram S.; Hu, Kan-Nian; Joo, Chan-Gyu; Mak-Jurkauskas, Melody L.; Sirigiri, Jagadishwar R.; van der Wel, Patrick C. A.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

2009-01-01

217

Magnetic fields in protoplanetary disks  

E-print Network

Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary discs. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface, and magnetically-driven mixing has implications for disk chemistry and evolution of the grain population. However, the weak ionisation of protoplanetary discs means that magnetic fields may not be able to effectively couple to the matter. I present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas. For a standard population of 0.1 micron grains the active surface layers have a combined column of about 2 g/cm^2 at 1 AU; by the time grains have aggregated to 3 microns the active surface density is 80 g/cm^2. In the absence of grains, x-rays maintain magnetic coupling to 10% of the disk material at 1 AU (150 g/cm^2). At 5 AU the entire disk thickness becomes active once grains have aggregated to 1 micron in size.

Mark Wardle

2007-04-07

218

Active Region Magnetic Fields. I. Plage Fields  

Microsoft Academic Search

We present observations taken with the Advanced Stokes Polarimeter (ASP) in active-region plages and study the frequency distribution of the magnetic field strength (B), inclination with respect to vertical ( gamma ), azimuthal orientation ( chi ), and filling factor (f). The most common values at disk center are B = 1400 G, gamma < 10 deg, no preferred east-west

V. Martinez Pillet; B. W. Lites; A. Skumanich

1997-01-01

219

Magnetic fields in O stars  

NASA Astrophysics Data System (ADS)

During the last decade, large-scale, organized (generally dipolar) magnetic fields with strengths between 0.1 and 20 kG have been detected in dozens of OB stars. This contribution reviews the impact of such fields on the stellar winds of O-type stars, with emphasis on variability and X-ray emission.

Nazé, Y.

2014-11-01

220

Magnetization and rotation of MTG HTSC ring in magnetic field  

Microsoft Academic Search

The magnetization of a melt-texture growth (MTG) HTSC ring has been studied. It is shown that the magnetic field inside the ring is larger than the external field under a certain range of external magnetic fields. We have also investigated the magnetic field dependence of the response of a detective coil near a rotating superconducting ring. The responses of the

E. V. Postrekhin; L. W. Zhou; K. J. Huang; C. B. Cai; S. M. Gong; Y. X. Fu

1996-01-01

221

In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect.  

PubMed

A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelength of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz(1/2), which was mainly dominated by the noise of the magnetic shield. PMID:24985800

Fang, Jiancheng; Wang, Tao; Quan, Wei; Yuan, Heng; Zhang, Hong; Li, Yang; Zou, Sheng

2014-06-01

222

Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces  

NASA Technical Reports Server (NTRS)

At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

2003-01-01

223

Magnetic field investigations on low cost missions  

Microsoft Academic Search

Magnetic fields pervade all of space and provide important diagnostic information on the nature of processes occurring within and around solar system objects. Thus magnetic investigations are frequently included on planetary missions. Since spacecraft subsystems can generate magnetic fields that may interfere with the measurement of the ambient field, magnetic cleanliness programs are usually instituted to minimize such extraneous magnetic

R. C. Snare; C.T. Russell

1995-01-01

224

Longitudinal field muon spin relaxation: a new probe of two-dimensional electron systems  

Microsoft Academic Search

It is shown that longitudinal field muon spin relaxation may be used to probe the local charge density correlations in two-dimensional systems and het- erostructures. Magnetic quantum oscillations in the local density of extended states show up in the relaxation time 2'1. This method should reveal the variation of elec- tronic parameters within the sample. Muons are a well known

C Zhangt; P C E Stamp

225

Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster  

NASA Astrophysics Data System (ADS)

The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5kW Hall thruster operating over the range of 300-500V and 5-10mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4×10-4Pa Xe (3.3×10-6Torr Xe) to 1.1×10-3Pa Xe (8.4×10-6Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5A solenoid current, provides the best agreement with flight-test data and across operating pressures.

Rovey, Joshua L.; Walker, Mitchell L. R.; Gallimore, Alec D.; Peterson, Peter Y.

2006-01-01

226

Spatiotemporal magnetic field monitoring for MR.  

PubMed

MR experiments frequently rely on signal encoding by the application of magnetic fields that vary in both space and time. The accurate interpretation of the resulting signals often requires knowledge of the exact spatiotemporal field evolution during the experiment. To better fulfill this need, a new approach is presented that enables measuring the field evolution concurrently with any MR sequence. Miniature NMR probes are used to monitor the MR phase evolution around the object under investigation. Based on these data, a global phase model is calculated that can then be used as a basis for processing the actual image or spectroscopic data. The new method is demonstrated by MRI of a phantom, using spin-warp, spiral, and EPI trajectories. Throughout, the monitoring results enabled highly accurate image reconstruction, even in the presence of massive gradient imperfections. PMID:18581361

Barmet, Christoph; De Zanche, Nicola; Pruessmann, Klaas P

2008-07-01

227

Indoor localization using magnetic fields  

NASA Astrophysics Data System (ADS)

Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.

Pathapati Subbu, Kalyan Sasidhar

228

Dynamic Pressure Probes Developed for Supersonic Flow-Field Measurements  

NASA Technical Reports Server (NTRS)

A series of dynamic flow-field pressure probes were developed for use in large-scale supersonic wind tunnels at the NASA Glenn Research Center. These flow-field probes include pitot and static pressure probes that can capture fast-acting flow-field pressure transients occurring on a millisecond timescale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The flow-field pressure probe contains four major components: 1) Static pressure aerodynamic tip; 2) Pressure-sensing cartridge assembly; 3) Pitot pressure aerodynamic tip; 4) Mounting stem. This modular design allows for a variety of probe tips to be used for a specific application. Here, the focus is on flow-field pressure measurements in supersonic flows, so we developed a cone-cylinder static pressure tip and a pitot pressure tip. Alternatively, probe tips optimized for subsonic and transonic flows could be used with this design. The pressure-sensing cartridge assembly allows the simultaneous measurement of steady-state and transient pressure which allows continuous calibration of the dynamic pressure transducer.

Porro, A. Robert

2001-01-01

229

Mars Crustal Magnetic Field Remnants  

NASA Technical Reports Server (NTRS)

The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.

This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.

The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.

These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.

2001-01-01

230

Development of a magnetic corrosion probe for nondestructive evaluation of concrete against corrosion of reinforcing bar  

Microsoft Academic Search

A new magnetic corrosion probe has been developed for nondestructive evaluation of concrete against corrosion of reinforcing bar. Two types of probes, a thin iron wire (probe A) and an iron-plated copper bar (probe B) were tested whether their changes in residual magnetization with progress of corrosion of iron could be detected using a superconducting interference device (SQUID) magnetometer. The

Hitoshi Yashiro; Yusuke Kawamata; Teruaki Kageyama; Shigeyuki Ishikawa; Yuya Tsujimura; Tetsuya Oyamada; Tadashi Fujiwara

2008-01-01

231

Origin of primordial magnetic fields  

SciTech Connect

Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields {approx}{mu}G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) {approx}10 {mu}G over a comoving {approx}1 pc region are predicted at redshift z{approx}10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs {approx}10{sup -2} {mu}G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z{approx}10. In the collapse to a galaxy (comoving size {approx}30 kpc) at z{approx}10, the fields are amplified to {approx}10 {mu}G. This indicates that the MFs created immediately after the QHPT (10{sup -4} s), predicted by the fluctuation-dissipation theorem, could be the origin of the {approx}{mu}G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field predicted by our model in producing the first stars and in reionizing the Universe.

Souza, Rafael S. de; Opher, Reuven [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)

2008-02-15

232

Magnetic field tomography, helical magnetic fields and Faraday depolarization  

NASA Astrophysics Data System (ADS)

Wide-band radio polarization observations offer the possibility to recover information about the magnetic fields in synchrotron sources, such as details of their three-dimensional configuration, that has previously been inaccessible. The key physical process involved is the Faraday rotation of the polarized emission in the source (and elsewhere along the wave's propagation path to the observer). In order to proceed, reliable methods are required for inverting the signals observed in wavelength space into useful data in Faraday space, with robust estimates of their uncertainty. In this paper, we examine how variations of the intrinsic angle of polarized emission ?0 with the Faraday depth ? within a source affect the observable quantities. Using simple models for the Faraday dispersion F(?) and ?0(?), along with the current and planned properties of the main radio interferometers, we demonstrate how degeneracies among the parameters describing the magneto-ionic medium can be minimized by combining observations in different wavebands. We also discuss how depolarization by Faraday dispersion due to a random component of the magnetic field attenuates the variations in the spectral energy distribution of the polarization and shifts its peak towards shorter wavelengths. This additional effect reduces the prospect of recovering the characteristics of the magnetic field helicity in magneto-ionic media dominated by the turbulent component of the magnetic field.

Horellou, C.; Fletcher, A.

2014-07-01

233

Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas  

SciTech Connect

A three-axis, 2.5 mm overall diameter differential magnetic probe (also known as B-dot probe) is discussed in detail from its design and construction to its calibration and use as diagnostic of fast transient effects in exploding plasmas. A design and construction method is presented as a means to reduce stray pickup, eliminate electrostatic pickup, reduce physical size, and increase magnetic signals while maintaining a high bandwidth. The probe's frequency response is measured in detail from 10 kHz to 50 MHz using the presented calibration method and compared to theory. The effect of the probe's self-induction as a first order correction in frequency, O({omega}), on experimental signals and magnetic field calculations is discussed. The probe's viability as a diagnostic is demonstrated by measuring the magnetic field compression and diamagnetism of a sub-Alfvenic ({approx}500 km/s,M{sub A}{approx}0.36) flow created from the explosion of a high-density energetic laser plasma through a cooler, low-density, magnetized ambient plasma.

Everson, E. T.; Pribyl, P.; Constantin, C. G.; Zylstra, A.; Schaeffer, D.; Kugland, N. L.; Niemann, C. [Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095 (United States)

2009-11-15

234

Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas.  

PubMed

A three-axis, 2.5 mm overall diameter differential magnetic probe (also known as B-dot probe) is discussed in detail from its design and construction to its calibration and use as diagnostic of fast transient effects in exploding plasmas. A design and construction method is presented as a means to reduce stray pickup, eliminate electrostatic pickup, reduce physical size, and increase magnetic signals while maintaining a high bandwidth. The probe's frequency response is measured in detail from 10 kHz to 50 MHz using the presented calibration method and compared to theory. The effect of the probe's self-induction as a first order correction in frequency, O(omega), on experimental signals and magnetic field calculations is discussed. The probe's viability as a diagnostic is demonstrated by measuring the magnetic field compression and diamagnetism of a sub-Alfvenic (approximately 500 km/s, M(A) approximately 0.36) flow created from the explosion of a high-density energetic laser plasma through a cooler, low-density, magnetized ambient plasma. PMID:19947729

Everson, E T; Pribyl, P; Constantin, C G; Zylstra, A; Schaeffer, D; Kugland, N L; Niemann, C

2009-11-01

235

Novel rotating field probe for inspection of tubes  

NASA Astrophysics Data System (ADS)

Inspection of steam generator tubes in nuclear power plants is extremely critical for safe operation of the power plant. In the nuclear industry, steam generator tube inspection using eddy current techniques has evolved over the years from a single bobbin coil, to rotating probe coil (RPC) and array probe, in an attempt to improve the speed and reliability of inspection. The RPC probe offers the accurate spatial resolution but involves complex mechanical rotation. This paper presents a novel design of eddy current probes based on rotating fields produced by three identical coils excited by a balanced three-phase supply. The sensor thereby achieves rotating probe functionality by electronic means and eliminates the need for mechanical rotation. The field generated by the probe is largely radial that result in induced currents that flow circularly around the radial axis and rotating around the tube at a synchronous speed effectively producing induced eddy currents that are multidirectional. The probe will consequently be sensitive to cracks of all orientations in the tube wall. The finite element model (FEM) results of the rotating fields and induced currents are presented. A prototype probe is being built to validate simulation results.

Xin, J.; Tarkleson, E.; Lei, N.; Udpa, L.; Udpa, S. S.

2012-05-01

236

Study of local magnetic fields and magnetic ordering in fluid and solid matrices containing magnetite nanoparticles using TEMPOL stable radical  

NASA Astrophysics Data System (ADS)

The stable nitroxide radical 2,2,6,6-tetramethyl-4-hydroxy-piperidin-1-oxyl (TEMPOL) has been applied as a sensor to study magnetite nanoparticles both in water suspension and in dried gelatin films. g-values and line widths of ESR spectra of the probe were found to be sensitive to the local magnetic fields of magnetic nanoparticles. Calculated on the basis of the sensor ESR spectra, local magnetic fields are stipulated by linear aggregates of magnetite nanoparticles formed in applied outer magnetic fields and are significantly lower than local magnetic fields estimated from the static magnetic measurements data.

Kovarski, Alexander L.; Sorokina, Olga N.

2007-04-01

237

Magnetic fields around black holes  

NASA Astrophysics Data System (ADS)

Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our Newtonian results are excellent approximations for slowly spinning black holes. We proceed to address the issue of the spin dependence of the Blandford & Znajek power. The result we choose to highlight is our finding that given the validity of our assumption for the dynamical behavior of the so-called plunge region in black hole accretors, rotating black holes produce maximum Poynting flux via the Blandford & Znajek process for a black hole spin parameter of about a [approximate] 0.8. This is contrary to the conventional claim that the maximum electromagnetic flux is achieved for highest black hole spin.

Garofalo, David A. G.

238

EXPLORER 10 MAGNETIC FIELD MEASUREMENTS  

Microsoft Academic Search

Magnetic field measurements made by means of Explorer 10 over geocentric ; distances of 1.8 to 42.6R\\/sub e\\/ on March 25experiment on the same satellite are ; referenced in interpretations. The close-in data are consistent with the ; existence of a very weak ring current below 3R\\/sub e\\/ along the trajectory, but ; alternative explanations for the field deviations are

J. P. Heppner; N. F. Ness; C. S. Scearce; T. L. Skillman

1963-01-01

239

Polarization dependence of optical bistability in the presence of external magnetic field  

NASA Astrophysics Data System (ADS)

In this paper, a four-level inverted Y type atomic system for controlling the optical bistability and multistability is proposed. An elliptically polarized probe field and a coherent coupling field in the presence of external magnetic field are interacted by this medium. It is shown that the external magnetic field and relative phase between two electric field components of the probe field can influence the threshold of optical bistability. Moreover, it is found that optical bistability can be converted to the optical multistability by external magnetic field and relative phase.

Asadpour, Seyyed Hossein; Rahimpour Soleimani, Hamid

2014-01-01

240

Crystal field and magnetic properties  

NASA Technical Reports Server (NTRS)

Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

Flood, D. J.

1977-01-01

241

Transverse Magnetic Field Propellant Isolator  

NASA Technical Reports Server (NTRS)

An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

Foster, John E.

2000-01-01

242

Investigation of the periodic magnetic field modulation in LHC superconducting dipoles  

Microsoft Academic Search

The windings of high-field accelerator magnets are usually made of Rutherford-type superconducting cables. The magnetic field distribution along the axis of such magnets exhibits a periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. This effect, resulting from quasipersistent currents, was investigated with a Hall probe array inserted inside the aperture

P. Pugnat; T. Schreiner; A. Siemko

2002-01-01

243

Diffusion of magnetic field via turbulent reconnection  

Microsoft Academic Search

The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as

Reinaldo Santos de Lima; Alexander Lazarian; Elisabete M. de Gouveia Dal Pino; Jungyeon Cho

2010-01-01

244

Separation of magnetic field lines  

SciTech Connect

The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

2012-11-15

245

COLLIMATION OF COSMIC RAYS BY THE INTERPLANETARY MAGNETIC FIELD  

Microsoft Academic Search

a portion of the cosmic-ray and magnetic data observed during one of these flare events and lo demonstrate specific particle guidance properties of the interplanetary magnetic field. The data were obtained at a time when the spacecraft was 2.8 X 106 km from earth and at a sun-earth probe angle of 90 ø east of the sun and arc, therefore,

K. G. McCracken; N. F. Ness

1966-01-01

246

Magnetic fields in the sun  

NASA Technical Reports Server (NTRS)

The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

Mullan, D. J.

1974-01-01

247

Atomic Probes of Noncommutative Field Theory  

E-print Network

We consider the role of Lorentz symmetry in noncommutative field theory. We find that a Lorentz-violating standard-model extension involving ordinary fields is general enough to include any realisitc noncommutative field theory as a subset. This leads to various theoretical consequences, as well as bounds from existing experiments at the level of (10 TeV)$^{-2}$ on the scale of the noncommutativity parameter.

Charles D. Lane

2002-01-07

248

Magnetic Field Line Simulation Using a Microcomputer.  

ERIC Educational Resources Information Center

Describes the implementation of a computer simulation of magnetic field lines. Discusses properties of magnetic fields and the calculation of magnetic fields at points. Provides a program listing (additional programs and teaching notes available from the author) and gives examples of several field plots. (JM)

Kirkup, L.

1986-01-01

249

The HMI Magnetic Field Pipeline  

NASA Astrophysics Data System (ADS)

The Helioseismic and Magnetic Imager (HMI) will provide frequent full-disk magnetic field data after launch of the Solar Dynamics Observatory (SDO), currently scheduled for fall 2009. 16 megapixel line-of-sight magnetograms (Blos) will be recorded every 45 seconds. A full set of polarized filtergrams needed to determine the vector magnetic field requires 90 seconds. Quick-look data will be available within a few minutes of observation. Quick-look space weather and browse products must have identified users, and the list currently includes full disk magnetograms, feature identification and movies, 12-minute disambiguated vector fields in active region patches, time evolution of AR indices, synoptic synchronic frames, potential and MHD model results, and 1 AU predictions. A more complete set of definitive science data products will be offered about a day later and come in three types. "Pipeline” products, such as full disk vector magnetograms, will be computed for all data on an appropriate cadence. A larger menu of "On Demand” products, such as Non-Linear Force Free Field snapshots of an evolving active region, will be produced whenever a user wants them. Less commonly needed "On Request” products that require significant project resources, such as a high resolution MHD simulation of the global corona, will be created subject to availability of resources. Further information can be found at the SDO Joint Science Operations Center web page, jsoc.stanford.edu

Hoeksema, Jon Todd; Liu, Y.; Schou, J.; Scherrer, P.; HMI Science Team

2009-05-01

250

DC Electric Field Measurement by the Double Probe System Aboard Geotail and its Simulation  

NASA Astrophysics Data System (ADS)

We summarize the characteristics of the DC electric field measurement by the double probe system, PANT and EFD-P, aboard Geotail. The accuracy and correction factors for the gain (effective length) and off-set, which depends on ambient plasma conditions, are provided. Accurate measurements of electric fields are essential for space plasma studies, for example, plasma convection, wave-particle interactions, violation of MHD approximation, etc. One typical measurement techniques is the 'Double Probe method', identical to that of a voltmeter: the potential difference between two top-hat probes [cf. Pedersen et al., 1984]. This method can measure electric fields passively and continuously in all plasma conditions. However, the accuracy of the measured electric field values is limited. The probe measurement is also subjected to the variable gain (effective length) of the probe antenna and the artificial offset of the measured values. Those depend on a) the disturbance from ambient plasma and b) the disturbance from the spacecraft and the probe itself. In this paper, we show the results of the characteristics of DC electric field measurement by the PANT probe and the EFD-P (Electric Field Detector - Probe technique) receiver aboard Geotail [Tsuruda et al., 1994], in order to evaluate the accuracy, gain, and offset controlled by ambient plasmas. We conclude that the Geotail electric field measurement by the double probe system has the accuracy 0.4 mV/m for Ex and 0.3 mV/m for Ey, after the correction of the gain and offset. In better conditions, accuracy of Ey is 0.2 mV/m. The potential accuracy would be better because those values are limited by the accuracy of the particle measurement especially in low density conditions. In practical use, the corrections by long-term variation and spacecraft potential are effective to refine the electric field data. The characteristics of long-term variation and the dependences on ambient plasma are not fully understood well, yet. Further works will be needed based on the calibrated LEP data after 1998. It will also cover the conditions rejected in this paper, i.e., low density regions, potential controlled period, electric field quasi-parallel to magnetic field, etc. The comparison with EFD-B (EFD - Beam technique) data will also be included in order to reject the ambiguity in particle observations. In addition, we are trying to establish the numerical model of the double probe system for the full-quantitative understanding of the effect of potential structure and photoelectron distributions. Those will be the basis for planned experiments, BepiColombo to Mercury, ERG to the inner magnetosphere, and the multi-spacecraft magnetospheric mission SCOPE.

Kasaba, Y.; Hayakawa, H.; Ishisaka, K.; Okada, T.; Matsuoka, A.; Mukai, T.; Okada, M.

2005-12-01

251

Magnetic Field Effects on High Quality Factor Superconducting Coplanar Resonators  

NASA Astrophysics Data System (ADS)

Superconducting coplanar waveguide resonators have proven to be invaluable tools in studying some of the same decoherence mechanisms as those found in superconducting qubits. Prior improvements in fabrication led to resonator internal quality factors (Qi's) in excess of 10 million at high power, enabling us to sensitively probe environmental effects on the resonance frequency and Qi. We have found these resonators to be very susceptible to applied and stray magnetic fields, with measurable changes in the resonator's Qi and resonance frequency from fields as small as a few milligauss. I will present more recent measurements of resonators in magnetic fields.

Megrant, Anthony; Neill, Charles; Barends, Rami; Chen, Yu; Chiaro, Ben; Kelly, Julian; Mariantoni, Matteo; Mutus, Josh; O'Malley, Peter; Sank, Daniel; Vainsencher, Amit; Wenner, James; White, Ted; Low, David; Ohya, Shinobu; Palmstrom, Christopher; Martinis, John; Cleland, Andrew

2013-03-01

252

Large magnetic field instabilities induced by magnetic dipole transitions  

Microsoft Academic Search

We present a new mechanism that will limit very high magnetic fields which have been conjectured to exist in connection with some astrophysical phenomena. Low lying strongly interacting particles and resonances mixing with each other via magnetic dipole QED couplings force a vacuum instability for large external magnetic fields. These mixings limit fields to a few GeV2.

Myron Bander; H. R. Rubinstein

1992-01-01

253

Magnetic Resonance Imaging System Based on Earth's Magnetic Field  

Microsoft Academic Search

This article describes both the setup and the use of a system for magnetic resonance imaging (MRI) in the Earth's magnetic field. Phase instability caused by temporal fluctuations of Earth's field can be successfully improved by using a reference signal from a separate Earth's field nuclear magnetic resonance (NMR) spectrometer\\/magnetometer. In imaging, it is important to correctly determine the phase

Ales Mohoric; Gorazd Planinsic; Miha Kos; Andrej Duh; Janez Stepisnik

2004-01-01

254

Magnetically engineered semiconductor quantum dots as multimodal imaging probes.  

PubMed

Light-emitting semiconductor quantum dots (QDs) combined with magnetic resonance imaging contrast agents within a single nanoparticle platform are considered to perform as multimodal imaging probes in biomedical research and related clinical applications. The principles of their rational design are outlined and contemporary synthetic strategies are reviewed (heterocrystalline growth; co-encapsulation or assembly of preformed QDs and magnetic nanoparticles; conjugation of magnetic chelates onto QDs; and doping of QDs with transition metal ions), identifying the strengths and weaknesses of different approaches. Some of the opportunities and benefits that arise through in vivo imaging using these dual-mode probes are highlighted where tumor location and delineation is demonstrated in both MRI and fluorescence modality. Work on the toxicological assessments of QD/magnetic nanoparticles is also reviewed, along with progress in reducing their toxicological side effects for eventual clinical use. The review concludes with an outlook for future biomedical imaging and the identification of key challenges in reaching clinical applications. PMID:25178258

Jing, Lihong; Ding, Ke; Kershaw, Stephen V; Kempson, Ivan M; Rogach, Andrey L; Gao, Mingyuan

2014-10-01

255

Magnetic field dependence of the correlation gap in SmB{sub 6}  

SciTech Connect

We have used magnetoresistance measurements to probe the effect of large magnetic fields on the stability of the electronic gap {delta} in SmB{sub 6}. Although the Zeeman splitting in a 18 Telsa field is comparable to the ambient pressure {delta}, and even exceeds {delta} at 56 kbar, {delta} is in both cases almost completely unaffected by the magnetic field.

Cooley, J.C.; Aronson, M.C. [Univ. of Michigan, Ann Arbor, MI (United States); Lacerda, A. [National High Magnetic Field Laboratory, Los Alamos, NM (United States); Canfield, P.C. [Iowa State Univ. of Science and Technology, Ames, IA (United States); Fisk, Z. [Los Alamos National Laboratory, Los Alamos, NM (United States)

1994-06-11

256

The Giotto magnetic field investigation  

Microsoft Academic Search

The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28\\/sec during close encounter,

F. M. Neubauer; G. Musmann; M. H. Acuna; L. F. Burlaga; N. F. Ness; F. Mariani; M. Wallis; E. Ungstrup; H. Schmidt

1983-01-01

257

The Link between Magnetic Fields and Cloud/Star Formation  

E-print Network

The question whether magnetic fields play an important role in the processes of molecular cloud and star formation has been debated for decades. Recent observations have revealed a simple picture that may help illuminate these questions: magnetic fields have a tendency to preserve their orientation at all scales that have been probed - from 100-pc scale inter-cloud media down to sub-pc scale cloud cores. This ordered morphology has implications for the way in which self-gravity and turbulence interact with magnetic fields: both gravitational contraction and turbulent velocities should be anisotropic, due to the influence of dynamically important magnetic fields. Such anisotropy is now observed. Here we review these recent observations and discuss how they can improve our understanding of cloud/star formation.

Li, Hua-bai; Sridharan, T K; Houde, Martin; Li, Zhi-Yun; Novak, Giles; Tang, Kwok Sun

2014-01-01

258

MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2  

E-print Network

MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value to the formation of an azimuthal rope of twisted magnetic field embedded within the global field, and to the energy

Fornberg, Bengt

259

Development Trends in High Field Magnet Technology  

Microsoft Academic Search

The production of high magnetic fields using low temperature superconductors (LTS) has become common place. However, large magnet sizes and associated high cooling costs have often precluded the full utilization of these research capabilities. Recent advances in internal Sn superconductors and cryogen free technology have opened up a new era in superconducting magnet development. Ultra-compact, laboratory sized magnets producing fields

R. Harrison; R. Bateman; J. Brown; F. Domptail; C. M. Friend; P. Ghoshal; C. King; A. Van der Linden; Z. Melhem; P. Noonan; A. Twin; M. Field; S. Hong; J. Parrell; Y. Zhang

2008-01-01

260

Comparing Magnetic Fields on Earth and Mars  

NASA Video Gallery

This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

261

Measurements of Solar Vector Magnetic Fields  

NASA Technical Reports Server (NTRS)

Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

Hagyard, M. J. (editor)

1985-01-01

262

Plasma stability in a dipole magnetic field  

E-print Network

The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field ...

Simakov, Andrei N., 1974-

2001-01-01

263

What Are Electric and Magnetic Fields? (EMF)  

MedlinePLUS

What are Electric and Magnetic Fields? (EMF) Electric and Magnetic Fields Electricity is an essential part of our lives. Electricity powers all sorts of things around us, from computers to refrigerators ...

264

Ground state alignment as a tracer of interplanetary magnetic field  

NASA Astrophysics Data System (ADS)

We demonstrate a new way of studying interplanetary magnetic field -- spectropolarimetry based on ground state alignment. Ground state alignment is a new promising way of sub-gausian magnetic fields in radiation-dominated environment. The polarization of spectral lines that are pumped by the anisotropic radiation from the sun is influenced by the magnetic alignment, which happens for sub-gausian magnetic field. As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic obser- vation of the Jupiter's Io and comet Halley. A uniform density distribution of Na was considered and polar- ization at each point was then constructed. Both spa- tial and temporal variations of turbulent magnetic field can be traced with this technique as well. Instead of sending thousands of space probes, ground state alignment allows magnetic mapping with any ground telescope facilities equipped with spectrometer and polarimeter. For remote regions like the the boundary of interstellar medium, ground state alignment provides a unique diagnostics of magnetic field, which is crucial for understanding the physical processes such as the IBEX ribbons.

Yan, H.

2012-12-01

265

Dynamics of positive probes in underdense, strongly magnetized, E×B drifting plasma: Particle-in-cell simulations  

SciTech Connect

Electron trapping, electron heating, space-charge wings, wake eddies, and current collection by a positive probe in E×B drifting plasma were studied in three-dimensional electromagnetic particle-in-cell simulations. In these simulations, electrons and ions were magnetized with respect to the probe and the plasma was underdense (?{sub pe}probe was created with background electric and magnetic fields. Four distinct regions developed in the presences of the positive probe: a quasi-trapped electron region, an electron-depletion wing, an ion-rich wing, and a wake region. We report on the observations of strong electron heating mechanisms, space-charge wings, ion cyclotron charge-density eddies in the wake, electron acceleration due to a magnetic presheath, and the current-voltage relationship.

Heinrich, Jonathon R.; Cooke, David L. [Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117 (United States)] [Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117 (United States)

2013-09-15

266

Dynamics of positive probes in underdense, strongly magnetized, E ×B drifting plasma: Particle-in-cell simulations  

NASA Astrophysics Data System (ADS)

Electron trapping, electron heating, space-charge wings, wake eddies, and current collection by a positive probe in E ×B drifting plasma were studied in three-dimensional electromagnetic particle-in-cell simulations. In these simulations, electrons and ions were magnetized with respect to the probe and the plasma was underdense (?peprobe was created with background electric and magnetic fields. Four distinct regions developed in the presences of the positive probe: a quasi-trapped electron region, an electron-depletion wing, an ion-rich wing, and a wake region. We report on the observations of strong electron heating mechanisms, space-charge wings, ion cyclotron charge-density eddies in the wake, electron acceleration due to a magnetic presheath, and the current-voltage relationship.

Heinrich, Jonathon R.; Cooke, David L.

2013-09-01

267

Development of internal magnetic probe for current density profile measurement in Versatile Experiment Spherical Torusa)  

NASA Astrophysics Data System (ADS)

An internal magnetic probe using Hall sensors to measure a current density profile directly with perturbation of less than 10% to the plasma current is successfully operated for the first time in Versatile Experiment Spherical Torus (VEST). An appropriate Hall sensor is chosen to produce sufficient signals for VEST magnetic field while maintaining the small size of 10 mm in outer diameter. Temperature around the Hall sensor in a typical VEST plasma is regulated by blown air of 2 bars. First measurement of 60 kA VEST ohmic discharge shows a reasonable agreement with the total plasma current measured by Rogowski coil in VEST.

Yang, J.; Lee, J. W.; Jung, B. K.; Chung, K. J.; Hwang, Y. S.

2014-11-01

268

A new approach for highly accurate, remote temperature probing using magnetic nanoparticles.  

PubMed

In this study, we report on a new approach for remote temperature probing that provides accuracy as good as 0.017°C (0.0055% accuracy) by measuring the magnetisation curve of magnetic nanoparticles. We included here the theoretical model construction and the inverse calculation method, and explored the impact caused by the temperature dependence of the saturation magnetisation and the applied magnetic field range. The reported results are of great significance in the establishment of safer protocols for the hyperthermia therapy and for the thermal assisted drug delivery technology. Likewise, our approach potentially impacts basic science as it provides a robust thermodynamic tool for noninvasive investigation of cell metabolism. PMID:25315470

Zhong, Jing; Liu, Wenzhong; Kong, Li; Morais, Paulo Cesar

2014-01-01

269

A new approach for highly accurate, remote temperature probing using magnetic nanoparticles  

PubMed Central

In this study, we report on a new approach for remote temperature probing that provides accuracy as good as 0.017°C (0.0055% accuracy) by measuring the magnetisation curve of magnetic nanoparticles. We included here the theoretical model construction and the inverse calculation method, and explored the impact caused by the temperature dependence of the saturation magnetisation and the applied magnetic field range. The reported results are of great significance in the establishment of safer protocols for the hyperthermia therapy and for the thermal assisted drug delivery technology. Likewise, our approach potentially impacts basic science as it provides a robust thermodynamic tool for noninvasive investigation of cell metabolism. PMID:25315470

Zhong, Jing; Liu, Wenzhong; Kong, Li; Morais, Paulo Cesar

2014-01-01

270

The resonant radio-frequency magnetic probe tuned by coaxial cable.  

PubMed

In this paper, the resonant rf magnetic probe is upgraded by replacing the rotary capacitor in the old version with the series-connected coaxial cable. The numerical calculation and the measurement with the prototype probe show that the rf magnetic probe can achieve resonance at a middle length of the series-connected coaxial cable. The good electrical symmetry of the new rf magnetic probe is ensured by both the identity of series-connected coaxial cables and the new structure of the primary winding. Practical measurements conduced on an rf inductively coupled plasma source demonstrate that performances of the new rf magnetic probe are good. PMID:22938337

Sun, B; Huo, W G; Ding, Z F

2012-08-01

271

Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method  

PubMed Central

The motions of magnetic particles contained within organelles of living cells were followed by measuring magnetic fields generated by the particles. The alignment of particles was sensed magnetometrically and was manipulated by external fields, allowing non-invasive detection of particle motion as well as examination of cytoplasmic viscoelasticity. Motility and rheology data are presented for pulmonary macrophages isolated from lungs of hamsters 1 d after the animals had breathed airborne gamma-Fe2O3 particles. The magnetic directions of particles within phagosomes and secondary lysosomes were aligned, and the weak magnetic field produced by the particles was recorded. For dead cells, this remanent field was constant, but for viable macrophages, the remanent field decreased rapidly so that only 42% of its initial magnitude remained 5 min after alignment. A twisting field was applied perpendicular to the direction of alignment and the rate at which particles reoriented to this new direction was followed. The same twisting was repeated for particles suspended in a series of viscosity standards. Based on this approach, the low-shear apparent intracellular viscosity was estimated to be 1.2-2.7 X 10(3) Pa.s (1.2-2.7 X 10(4) poise). Time-lapse video microscopy confirmed the alignment of ingested particles upon magnetization and showed persistent cellular motility during randomization of alignment. Cytochalasin D and low temperature both reduced cytoplasmic activity and remanent-field decay, but affected rheology differently. Magnetic particles were observed in association with the microtubule organizing center by immunofluorescence microscopy; magnetization did not affect microtubule distribution. However, both vimentin intermediate filaments and f-actin reorganized after magnetization. These data demonstrate that magnetometry of isolated phagocytic cells can probe organelle movements, rheology, and physical properties of the cytoskeleton in living cells. PMID:4040136

1985-01-01

272

A multichannel magnetic probe system for analysing magnetic fluctuations in helical axis plasmas  

NASA Astrophysics Data System (ADS)

The need to understand the structure of magnetic fluctuations in H-1NF heliac [S. Hamberger et al., Fusion Technol. 17, 123 (1990)] plasmas has motivated the installation of a sixteen former, tri-axis helical magnetic probe Mirnov array (HMA). The new array complements two existing poloidal Mirnov arrays by providing polarisation information, higher frequency response, and improved toroidal resolution. The helical placement is ideal for helical axis plasmas because it positions the array as close as possible to the plasma in regions of varying degrees of favourable curvature in the magnetohydrodynamic sense, but almost constant magnetic angle. This makes phase variation with probe position near linear, greatly simplifying the analysis of the data. Several of the issues involved in the design, installation, data analysis, and calibration of this unique array are presented including probe coil design, frequency response measurements, mode number identification, orientation calculations, and mapping probe coil positions to magnetic coordinates. Details of specially designed digitally programmable pre-amplifiers, which allow gains and filters to be changed as part of the data acquisition initialisation sequence and stored with the probe signals, are also presented. The low shear heliac geometry [R. Jiménez-Gómez et al., Nucl. Fusion 51, 033001 (2011)], 10.1088/0029-5515/51/3/033001, flexibility of the H-1NF heliac, and wealth of information provided by the HMA create a unique opportunity for detailed study of Alfvén eigenmodes, which could be a serious issue for future fusion reactors.

Haskey, S. R.; Blackwell, B. D.; Seiwald, B.; Hole, M. J.; Pretty, D. G.; Howard, J.; Wach, J.

2013-09-01

273

Development of flexible array eddy current probes for complex geometries and inspection of magnetic parts using magnetic sensors  

NASA Astrophysics Data System (ADS)

Eddy Current Technique is a powerful method of inspection of metal parts. When size of flaws decreases, inspection areas become hardly accessible or material is magnetic, traditional winding coil probes are less efficient. Thanks to new CIVA simulation tools, we have designed and optimized advanced EC probes: flexible EC probe based on micro-coil arrays and EC probe with magnetic sensors, including specific electronics.

Marchand, B.; Decitre, J.-M.; Sergeeva-Chollet, N.; Skarlatos, A.

2013-01-01

274

Primordial magnetic field limits from cosmological data  

SciTech Connect

We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi, GE-0128 (Georgia); Sethi, Shiv K. [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Pandey, Kanhaiya [Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)

2010-10-15

275

Magnetic-Field Processing of Industrial Effluents  

Microsoft Academic Search

• the field acts on pollutants in the colloidal state; and • the field influences the structure of the water. Magnetic treatment is simple, safe, and very inexpensive, but a patent search under the topic “Magnetic treatment of water and aqueous solutions” has shown that the existing devices and methods for using magnetic fields to process effluents containing heavy-metal ions

V. P. Malkin

2002-01-01

276

Magnetic field navigation in an indoor environment  

Microsoft Academic Search

This paper describes a method that has been developed to aid an inertial navigation system when GNSS signals are not available, by taking advantage of the uniqueness of magnetic field variations. Most indoor environments have many different features (ferrous structural materials or contents, electrical currents, etc.) which perturb the Earths natural magnetic field. The variations in the magnetic field in

William Storms; Jeremiah Shockley; John Raquet

2010-01-01

277

Quenching of flames by magnetic fields (abstract)  

Microsoft Academic Search

The effects of magnetic fields on combustion of alcohol with the aid of platinum catalysis have been studied to simulate in part the oxidation of organic matter in the living body, and it has been found that the combustion reactions are influenced by magnetic fields. It has also been observed that candle flames are pressed down by magnetic fields of

S. Ueno

1988-01-01

278

Applied Magnetic Field Enhances Arc Vapor Deposition  

NASA Technical Reports Server (NTRS)

Applied magnetic field enhances performance of vaporization part of arc vapor deposition apparatus. When no magnetic field applied by external means, arc wonders semirandomly over cathode, with net motion toward electrical feedthrough. When magnetic field applied arc moves circumferentially around cathode, and downward motion suppressed.

Miller, T. A.; Loutfy, R. O.; Withers, J. C.

1993-01-01

279

Lifshitz Effects on Vector Condensate Induced by a Magnetic Field  

E-print Network

By numerical and analytical methods, we study in detail the effects of the Lifshitz dynamical exponent $z$ on the vector condensate induced by an applied magnetic field in the probe limit. Concretely, in the presence of the magnetic field, we obtain the Landau level independent of $z$, and also find the critical value by coupling a Maxwell complex vector field and SU(2) field into a (3+1)-dimensional Lifshitz black hole, respectively. The research results show that for both two models with the lowest Landau level, the increasing $z$ improves the response of the critical temperature to the applied magnetic field even without the charge density, and the analytical results uphold the numerical results. In addition, we find even in the Lifshitz black hole, the Maxwell complex vector model is still a generalization of the SU(2) Yang-Mills model. Furthermore, we construct the square vortex lattice and discuss the implications of these results.

Ya-Bo Wu; Jun-Wang Lu; Mo-Lin Liu; Jian-Bo Lu; Cheng-Yuan Zhang; Zhuo-Qun Yang

2014-03-22

280

Design and calibration of high-frequency magnetic probes for the SUNIST spherical tokamaka)  

NASA Astrophysics Data System (ADS)

A new high-frequency magnetic diagnostic system is designed, installed, and calibrated in the Sino-United Spherical Tokamak (SUNIST) to investigate Alfvén waves (AWs). The system consists of a fixed toroidal array and a movable radial array of high-frequency magnetic probes (HFMPs) with 21 and 60 probes, respectively. Based on the method of vacuum enameled wire wound on ceramic bobbins, the fixed toroidal array is located as near as possible to the plasma and carefully shielded to reduce the attenuation of high-frequency magnetic field. Meanwhile, by using the technology of commercial chip inductors mounted on printed circuit boards, the movable radial array is inserted into a thin quartz tube that allows positioning along radial direction. A Helmholtz coil is utilized to calibrate the effective areas as well as the frequency response of each HFMP. The calibration results are consistent with the calculated results of an equivalent probe-and-cable circuit model. High-frequency magnetic signals related to AW are detected with these HFMPs. These HFMPs are expected to play a key role in analyzing Alfvén eigenmodes excited by AW antenna in the SUNIST.

Liu, Yangqing; Tan, Yi; Pan, Ou; Ke, Rui; Wang, Wenhao; Gao, Zhe

2014-11-01

281

Effects of magnetic fields on fibrinolysis  

NASA Astrophysics Data System (ADS)

In this study, we investigated the possible effects of magnetic fields on the fibrinolytic process. Fibrin dissolution was observed and the fibrinolytic activities were evaluated. First, fibrinolytic processes in magnetic fields were investigated by the fibrin plate method. We gathered solutions from the dissolved fibrin, and measured mean levels of fibrin degradation products (FDPs) in solutions. Mean levels of FDPs exposed to 8 T magnetic fields were higher than those not exposed to fields. Second, we carried out an experiment to understand how fibrin oriented in a magnetic field dissolves. FDPs in solutions of dissolved fibrins in fibrin plates were assayed. The result was that fibrin gels formed in a magnetic field at 8 T were more soluble than those not formed in a magnetic field. A model based on the diamagnetic properties of macromolecules was explained, and changes of protein concentrations in a solution in gradient magnetic fields were predicted.

Iwasaka, M.; Ueno, S.; Tsuda, H.

1994-05-01

282

Magnetic monopole and the nature of the static magnetic field  

E-print Network

We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

Xiuqing Huang

2008-12-10

283

Heliospheric magnetic fields and plasmas  

NASA Technical Reports Server (NTRS)

A survey of the existing literature on heliospheric physics, covering the period 1972-1982, is presented. Attention is given to observations and theories germane to the examination of the heliosphere as a large-scale astrophysical system that is part of the earth's environment. The literature includes data and models for magnetic sectors and the large-scale magnetic field, the large-scale plasma structure, and models and observed variations in the solar wind. Consideration is also devoted to the transient and corotating streams and shocks, the composition of the solar wind, and to MHD turbulence, waves, and discontinuities. More intensive investigations of the region near 1 AU are recommended, particularly to characterize the coronal source of the solar wind. The solar polar mission will be the first to provide radial measurements for comparisons with previous exclusively ecliptic measurements of solar activities.

Burlaga, L. F.

1983-01-01

284

The Giotto magnetic field investigation  

NASA Technical Reports Server (NTRS)

The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.

Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.

1983-01-01

285

Lightning-Driven Electric and Magnetic Fields Measured in the Stratosphere: Implications for Sprites  

E-print Network

Lightning-Driven Electric and Magnetic Fields Measured in the Stratosphere: Implications made from microform." Signature Date #12;#12;University of Washington Abstract Lightning impedance, dou- ble Langmuir probe instrument is designed specifically for measuring these large lightning

Thomas, Jeremy N.

286

Kinetic solution to the Mach probe problem in transversely flowing strongly magnetized plasmas  

NASA Astrophysics Data System (ADS)

The kinetic equation governing a strongly magnetized transverse plasma flow past a convex ion-collecting object is solved numerically for arbitrary ion to electron temperature ratio ? . The approximation of isothermal ions adopted in a recent fluid treatment of the same plasma model [I. H. Hutchinson, Phys. Rev. Lett. 101, 035004 (2008)] is shown to have no more than a small quantitative effect on the solution. In particular, the ion flux density to an elementary portion of the object still only depends on the local surface orientation. We rigorously show that the solution can be condensed in a single “calibration factor” Mc , function of ? only, enabling Mach probe measurements of parallel and perpendicular flows by probing flux ratios at two different angles in the plane of flow and magnetic field.

Patacchini, Leonardo; Hutchinson, Ian H.

2009-09-01

287

Magnetic Helicity and Large Scale Magnetic Fields: A Primer  

E-print Network

Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. H...

Blackman, Eric G

2014-01-01

288

Probing Brownian relaxation in water-glycerol mixtures using magnetic hyperthermia  

NASA Astrophysics Data System (ADS)

Generation of heat by magnetic nanoparticles in the presence of an external oscillating magnetic field is known as magnetic hyperthermia (MHT). This heat is generated by two mechanisms: the Neel relaxation and Brownian relaxation. While the internal spin relaxation of the nanoparticles known as Neel relaxation is largely dependent on the magnetic properties of the nanoparticles, the physical motion of the particle or the Brownian relaxation is largely dependent on the viscous properties of the carrier liquid. The MHT properties of dextran coated iron oxide nanoparticles have been investigated at a frequency of 400KHz. To understand the influence of Brownian relaxation on heating, we probe the MHT properties of these ferrofluids in water-glycerol mixtures of varying viscosities. The heat generation is quantified using the specific absorption rate (SAR) and its maximum at a particular temperature is discussed with reference to the viscosity.

Nemala, Humeshkar; Milgie, Michael; Wadehra, Anshu; Thakur, Jagdish; Naik, Vaman; Naik, Ratna

2013-03-01

289

Magnetic nanoparticles as both imaging probes and therapeutic agents.  

PubMed

Magnetic nanoparticles (MNPs) have been explored extensively as contrast agents for magnetic resonance imaging (MRI) or as heating agents for magnetic fluid hyperthermia (MFH) [1]. To achieve optimum operation conditions in MRI and MFH, these NPs should have well-controlled magnetic properties and biological functionalities. Although numerous efforts have been dedicated to the investigations on MNPs for biomedical applications [2-5], the NP optimizations for early diagnostics and efficient therapeutics are still far from reached. Recent efforts in NP syntheses have led to some promising MNP systems for sensitive MRI and efficient MFH applications. This review summarizes these advances in the synthesis of monodisperse MNPs as both contrast probes in MRI and as therapeutic agents via MFH. It will first introduce the nanomagnetism and elucidate the critical parameters to optimize the superparamagnetic NPs for MRI and ferromagnetic NPs for MFH. It will further outline the new chemistry developed for making monodisperse MNPs with controlled magnetic properties. The review will finally highlight the NP functionalization with biocompatible molecules and biological targeting agents for tumor diagnosis and therapy. PMID:20388109

Lacroix, Lise-Marie; Ho, Don; Sun, Shouheng

2010-01-01

290

Magnetic field perturbations in the systems where only poloidal magnetic field is present*  

E-print Network

1 Magnetic field perturbations in the systems where only poloidal magnetic field is present* D In some plasma confinement systems the confinement is provided by a poloidal magnetic field (no toroidal magnetic field is present). Examples include FRC, levitated dipoles, and long diffuse pinches. We consider

291

Magnetic Fields1 Increasingly, instruments that generate large static magnetic fields (e.g., NMR spectrometers,  

E-print Network

Magnetic Fields1 Increasingly, instruments that generate large static magnetic fields (e.g., NMR spectrometers, MRI) are present in research laboratories. Such magnets typically have fields of 14,000 to 235,000 G (1.4 to 23.5 T), far above that of Earth's magnetic field, which is approximately 0.5 G

Shull, Kenneth R.

292

The magnetic field over the Southern African continent: from core to crustal magnetic fields  

Microsoft Academic Search

Secular magnetic field evolutions do not proceed in a regular way all over the Earth. In some regions like Southern Africa, the field has been changing more rapidly than elsewhere. During the last five decades, the Earth's magnetic field has been represented in spherical harmonics from a series of measurements that were generally obtained at magnetic field observatories. Unfortunately, magnetic

Erwan Thébault; Pieter Kotze; Arnaud Chulliat; Fotini Vervelidou

2010-01-01

293

A nuclear magnetic resonance probe of group IV clathrates  

E-print Network

OF PHILOSOPHY Approved by: Chair of Committee, Joseph H. Ross, Jr. Committee Members, Donald G. Naugle Winfried Teizer Xinghang Zhang Head of Department, Edward S. Fry August 2008 Major Subject: Physics iii ABSTRACT A Nuclear Magnetic Resonance Probe of Group IV... Clathrates. (August 2008) Weiping Gou, B.S., Lanzhou University, China; M.S., Academy of Science of China; M.S., Texas A&M University Chair of Advisory Committee: Dr. Joseph H. Ross, Jr. The clathrates feature large cages of silicon, germanium, or tin...

Gou, Weiping

2008-10-10

294

Probing of field-induced structures and their dynamics in ferrofluids using oscillatory rheology.  

PubMed

We probe field-induced structures and their dynamics in ferrofluids using oscillatory rheology. The magnetic field dependence of the relaxation time and crossover modulus showed two distinct regions, indicating the different microstructures in those regions. The observed relaxation at various magnetic field strengths indicates that side chains are attached to the pinned single-sphere-width chains between the rheometer plates. Our results suggest that the ferrofluid under a magnetic field exhibits a soft solidlike behavior whose relaxation is governed by the imposed strain rate and the magnetic field. Using the scaling factors obtained from the frequency and modulus at the crossover point in the oscillatory rheological measurements, the constant strain-rate frequency sweep data is superimposed onto a single master curve. The frequency scaling factor increases with the strain rate as a power law with an exponent close to unity, whereas the amplitude scaling factor is almost strain-rate-independent at high magnetic field strengths. These findings are useful for a better understanding of field-induced ordering of nanoparticles in fluids and their optimization for practical applications. PMID:25268053

Felicia, Leona J; Philip, John

2014-10-21

295

Atomic alignment and Diagnostics of Magnetic Fields in Diffuse Media  

E-print Network

We continue our studies of atomic alignment in diffuse media, in particularly, in interstellar and circumstellar media, with the goal of developing new diagnostics of magnetic fields in these environments. We understand atomic alignment as alignment of atoms or ions in their ground state. Such atoms are sensitive to weak magnetic fields. In particular, we provide predictions of the polarization that arises from astrophysically important aligned atoms (ions) with fine structure of the ground level, namely, OI and SII and Ti II. Unlike our earlier papers which dealt with weak fields only, a substantial part of our current paper is devoted to the studies of atomic alignment when magnetic fields get strong enough to affect the emission from the excited level, i.e. with the regime when the magnetic splitting is comparable to the line-width. This is a regime of Hanle effect modified by the atomic alignment. Using an example of emission and absorption lines of SII ion we demonstrate how polarimetric studies can probe magnetic fields in circumstellar regions and accretion disks. In addition, we show that atomic alignment induced by anisotropic radiation can induce substantial variations of magnetic dipole transitions within the ground state, thus affecting abundance studies based on this emission. Moreover, the radio emission is polarized, provides a new way to study magnetic fields, e.g. at the epoch of Universe reionization.

Huirong Yan; A. Lazarian

2007-11-06

296

Fully 3D Measurement of reconnecting magnetic field structure in SSX  

Microsoft Academic Search

A high resolution (2 cm) magnetic probe array has been developed to investigate the three dimensional magnetic reconnection of two spheromaks in the Swarthmore Spheromak Experiment (SSX). The magnetic field vector is measured at a grid of 5 x 5 x 8 points during each shot with 800 ns time resolution, allowing visualization of the unique dynamics of each reconnection

M. Landreman; C. D. Cothran; M. R. Brown

2002-01-01

297

Design and validation of the ball-pen probe for measurements in a low-temperature magnetized plasma.  

PubMed

Ball-pen probes have been used in fusion devices for direct measurements of the plasma potential. Their application in low-temperature magnetized plasma devices is still subject to studies. In this context, a ball-pen probe has been recently implemented on the linear plasma device Mirabelle. Produced by a thermionic discharge, the plasma is characterized by a low electron temperature and a low density. Plasma confinement is provided by an axial magnetic field that goes up to 100 mT. The principle of the ball-pen probe is to adjust the saturation current ratio to 1 by reducing the electron current contribution. In that case, the floating potential of the probe is close to the plasma potential. A thorough study of the ball-pen probe operation is performed for different designs of the probe over a large set of plasma conditions. Comparisons between ball-pen, Langmuir, and emissive probes are conducted in the same plasma conditions. The ball-pen probe is successfully measuring the plasma potential in these specific plasma conditions only if an adapted electronics and an adapted probe size to the plasma characteristic lengths (?(D), ?(ce)) are used. PMID:23387648

Bousselin, G; Cavalier, J; Pautex, J F; Heuraux, S; Lemoine, N; Bonhomme, G

2013-01-01

298

Design and validation of the ball-pen probe for measurements in a low-temperature magnetized plasma  

SciTech Connect

Ball-pen probes have been used in fusion devices for direct measurements of the plasma potential. Their application in low-temperature magnetized plasma devices is still subject to studies. In this context, a ball-pen probe has been recently implemented on the linear plasma device Mirabelle. Produced by a thermionic discharge, the plasma is characterized by a low electron temperature and a low density. Plasma confinement is provided by an axial magnetic field that goes up to 100 mT. The principle of the ball-pen probe is to adjust the saturation current ratio to 1 by reducing the electron current contribution. In that case, the floating potential of the probe is close to the plasma potential. A thorough study of the ball-pen probe operation is performed for different designs of the probe over a large set of plasma conditions. Comparisons between ball-pen, Langmuir, and emissive probes are conducted in the same plasma conditions. The ball-pen probe is successfully measuring the plasma potential in these specific plasma conditions only if an adapted electronics and an adapted probe size to the plasma characteristic lengths ({lambda}{sub D}, {rho}{sub ce}) are used.

Bousselin, G.; Cavalier, J.; Pautex, J. F.; Heuraux, S.; Lemoine, N.; Bonhomme, G. [IJL, Universite de Lorraine, CNRS (UMR 7198), BP 70239, 54506 Vandoeuvre-les-Nancy (France)

2013-01-15

299

Pressure probe designs for dynamic pressure measurements in a supersonic flow field  

Microsoft Academic Search

A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used

A. Robert Porro

2001-01-01

300

Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization  

DOEpatents

In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

2000-12-19

301

Probing the electromagnetic field distribution within a metallic nanodisk.  

PubMed

A Co nanolayer is used as a local probe to evaluate the vertical inhomogeneous distribution of the electromagnetic (EM) field within a resonant metallic nanodisk. Taking advantage of the direct relation between the magneto-optical activity and the electromagnetic field intensity in the Co layer, it is shown that the nonuniform EM distribution within the nanodisk under plasmon resonant conditions has maximum values close to the upper and lower flat faces, and a minimum value in the middle. PMID:21972067

Meneses-Rodríguez, David; Ferreiro-Vila, Elías; Prieto, Patricia; Anguita, José; González, María U; García-Martín, José M; Cebollada, Alfonso; García-Martín, Antonio; Armelles, Gaspar

2011-12-01

302

Magnetic fluid flow phenomena in DC and rotating magnetic fields  

E-print Network

An investigation of magnetic fluid experiments and analysis is presented in three parts: a study of magnetic field induced torques in magnetorheological fluids, a characterization and quantitative measurement of properties ...

Rhodes, Scott E. (Scott Edward), 1981-

2004-01-01

303

Spherical conducting probes in finite Debye length plasmas and E × B fields  

NASA Astrophysics Data System (ADS)

The particle-in-cell code SCEPTIC3D (Patacchini and Hutchinson 2010 Plasma Phys. Control. Fusion 52 035005) is used to calculate the interaction of a transversely flowing magnetized plasma with a negatively charged spherical conductor, in the entire range of magnetization and Debye length. The results allow the first fully self-consistent analysis of probe operation where neither the ion Larmor radius nor the Debye length are approximated by zero or infinity. An important transition in plasma structure occurs when the Debye length exceeds the average ion Larmor radius, as the sphere starts to shield the convective electric field driving the flow. A remarkable result is that in those conditions, the ion current can significantly exceed the unmagnetized orbital motion limit. When both the Debye length and the Larmor radius are small compared with the probe dimensions, however, their ratio does not affect the collection pattern significantly, and Mach-probe calibration methods derived in the context of quasineutral strongly magnetized plasmas (Patacchini and Hutchinson 2009 Phys. Rev. E 80 036403) hold for Debye lengths and ion Larmor radii smaller than about 10% of the probe radius.

Patacchini, Leonardo; Hutchinson, Ian H.

2011-02-01

304

Magnetic field effects on microwave absorbing materials  

NASA Technical Reports Server (NTRS)

The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

1991-01-01

305

Probing the quality of Ni filled nanoporous alumina templates by magnetic techniques.  

PubMed

Pulsed electrodeposition prepared porous alumina templates with Ni nanowires pore filling ranged from 1 to 100%, depending on the alumina barrier-layer thickness, were probed by continuous wave ferromagnetic resonance at room temperature. For completely filled samples, a single resonance peak was observed in the whole range of angles between the applied magnetic field and normal to the sample plane. Its position was described by Kittel formula that takes into account shape anisotropy of individual Ni wires and dipolar interactions between them. For the samples with lower pore filling the effective anisotropy field decreased and the resonance linewidth in the perpendicular configuration increased. Also a quite intense second peak was observed at lower fields for these samples. These changes are associated with reduction of pore filling percentage that can lead to decrease of dipolar interactions between nanowires and to appearance of magnetic inhomogeneities inside wires. PMID:23035501

Sousa, C T; Leitão, D C; Proença, M P; Apolinário, A; Azevedo, A M; Sobolev, N A; Bunyaev, S A; Pogorelov, Yu G; Ventura, J; Araújo, J P; Kakazei, G N

2012-09-01

306

Probing arrays of circular magnetic microdots by ferromagnetic resonance.  

SciTech Connect

X-band ferromagnetic resonance (FMR) was used to characterize in-plane magnetic anisotropies in rectangular and square arrays of circular nickel and Permalloy microdots. In the case of a rectangular lattice, as interdot distances in one direction decrease, the in-plane uniaxial anisotropy field increases, in good agreement with a simple theory of magnetostatically interacting uniformly magnetized dots. In the case of a square lattice a four-fold anisotropy of the in-plane FMR field H(r) was found when the interdot distance a gets comparable to the dot diameter D. This anisotropy, not expected in the case of uniformly magnetized dots, was explained by a non-uniform magnetization m(r) in a dot in response to dipolar forces in the patterned magnetic structure. It is well described by an iterative solution of a continuous variation procedure. In the case of perpendicular magnetization multiple sharp resonance peaks were observed below the main FMR peak in all the samples, and the relative positions of these peaks were independent of the interdot separations. Quantitative description of the observed multiresonance FMR spectra was given using the dipole-exchange spin wave dispersion equation for a perpendicularly magnetized film where in-plane wave vector is quantized due to the finite dot radius, and the inhomogenetiy of the intradot static demagnetization field in the nonellipsoidal dot is taken into account. It was demonstrated that ferromagnetic resonance force microscopy (FMRFM) can be used to determine both local and global properties of patterned submicron ferromagnetic samples. Local spectroscopy together with the possibility to vary the tip-sample spacing enables the separation of those two contributions to a FMRFM spectrum. The global FMR properties of circular submicron dots determined using magnetic resonance force microscopy are in a good agreement with results obtained using conventional FMR and with theoretical descriptions.

Kakazei, G. N.; Mewes, T.; Wigen, P. E.; Hammel, P. C.; Slavin, A. N.; Pogorelov, Y. G.; Costa, M. D.; Golub, V. O.; Guslienko, K. Y.; Novosad, V. (Materials Science Division); (Univ. of Porto); (National Academy of Sciences Ukraine); (Univ. of Alabama); (Ohio State Univ.); (Oakland Univ.)

2008-06-01

307

Problems with magnetic field measurements on spacecrafts  

Microsoft Academic Search

The paper summarizes the difficulties and possible solutions to design and evaluate accurate vector magnetic field measurements on spacecrafts in the interplanetary magnetic field. Problems are discussed like calibration, boom mounted sensors and misalignment angles determination in flight. The application of a detailed magnetic cleanliness program as an example the comet Halley-Giotto spacecraft is demonstrated in detail. The use of

Günter Musmann

1988-01-01

308

Neutrinos with Mixing in Twisting Magnetic Fields  

E-print Network

Transitions in a system of neutrinos with vacuum mixing and magnetic moments, propagating in matter and transverse magnetic field, are considered. It is shown that in the realistic case of magnetic field direction varying along the neutrino path qualitatively new phenomena become possible: permutation of neutrino conversion resonances, appearance of resonances in the neutrino-antineutrino ($\

E. Kh. Akhmedov; S. T. Petcov; A. Yu. Smirnov

1993-01-06

309

Discovery of magnetic fields in CPNs  

E-print Network

For the first time we have directly detected magnetic fields in central stars of planetary nebulae by means of spectro-polarimetry with FORS1 at the VLT. In all four objects of our sample we found kilogauss magnetic fields, in NGC 1360 and LSS1362 with very high significance, while in Abell36 and EGB5 the existence of a magnetic field is probable but with less certainty. This discovery supports the hypothesis that the non-spherical symmetry of most planetary nebulae is caused by magnetic fields in AGB stars. Our high discovery rate demands mechanisms to prevent full conservation of magnetic flux during the transition to white dwarfs.

S. Jordan; K. Werner; S. J. O'Toole

2004-10-21

310

Possibilities of functionalized probes in optical near-field microscopy  

NASA Astrophysics Data System (ADS)

Functionalization, bringing new functions to standard approaches, is used in different fields of science. Functionalized probes have found wide application in atomic force microscopy, especially in force spectroscopy and for the specific recognition of single molecules. At the same time they have found only minor application in scanning near-field optical microscopy in spite of the possibility to obtain new information. This article considers examples of the use of functionalized tips in near-field optics and emphasizes the new approach based on tip-enhanced Raman scattering (TERS) with functionalized tips. The concept of Raman probe is described considering some possible perspectives as well as the demonstration of an internal standard in TERS based on a functionalized tip.

Bortchagovsky, Eugene G.; Fischer, Ulrich C.; Schmid, Thomas

2014-09-01

311

Unique topological characterization of braided magnetic fields  

SciTech Connect

We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.

Yeates, A. R. [Department of Mathematical Sciences, Durham University, Durham DH1 3LE (United Kingdom); Hornig, G. [Division of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom)

2013-01-15

312

Focused hyperthermia with a magnetic resonance imaging (MRI) unit and an interstitial grounded probe.  

PubMed

The feasibility of using a commercial magnetic resonance imaging (MRI) scanner to do either imaging or hyperthermic treatment was demonstrated. Radiofrequency (RF) induced focal heating of phantoms and animal tissues was performed using a MRI scanner as the RF power source and a grounded interstitial probe as a device to produce hyperthermia via eddy current convergence. In the therapeutic mode, a pulse width of 900 microseconds and interval of 50 ms were used to give 2% duty cycle (closest simulation to continuous wave (CW) mode without bypassing imaging filters). Temperature in the vicinity of the grounded probe was measured with a field nonperturbing fluoroptic probe. Temperatures increased 4.5 degrees C in 5 minutes in a dielectrically uniform phantom, 3.1 degrees C in 6.7 minutes in rats' leg muscles, and 5.0 degrees C in 6.0 minutes in rats' peritoneum. The MRI of the phantom with the grounded probe and the fluoroptic probe was obtained using spin echo sequences. The potential advantage of this approach is visualization of deep-seated tumors and hyperthermic treatment with minimal modification of the MRI scanner. PMID:6537510

Yamanashi, W S; Fesen, M R; Anderson, D W; Valentine, J; Sy, A M; Crandall, C; Lester, P D

1984-01-01

313

Bipolar pulse field for magnetic refrigeration  

DOEpatents

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

Lubell, M.S.

1994-10-25

314

Advances in Remote Sensing of Magnetic Fields  

NASA Astrophysics Data System (ADS)

In sharp contrast to stellar magnetic fields, geomagnetic fields have never been remotely sensed. If geomagnetic fields could be measured remotely at the nanotesla (nT) level or better, our understanding of the processes that produce these fields would advance markedly. Unlike characteristics such as topography and temperature, measurements of the magnetic field are determined almost exclusively in situ. The inability to remotely sense these fields has hindered their utility. The Remote Atmospheric Magnetics Workshop highlighted advances in this frontier area, focusing on lab- and field-based studies.

Purucker, Michael

2014-09-01

315

Franck-Hertz experiment in magnetic field  

E-print Network

The paper studies the impact of applied magnetic field on the inelastic collisions of electrons with argon atoms. In the electron-argon Franck-Hertz experiment, the influence of applied magnetic field emerges complicated features, and is equivalent to that of the temperature. In case the accelerating electric intensity becomes strong enough, enlarging magnetic flux density will be equivalent to the increasing of oven temperature. When the accelerating electric intensity is very weak and the applied magnetic field occupies a dominant position, enhancing magnetic flux density is identical with the decreasing of oven temperature. And the non-uniform distribution of applied magnetic field has an influence on the inelastic collision as well. The study claims that the influence of magnetic field variation is equivalent to that of temperature variety, and that it leads the electron energy to transfer obviously in the experiment.

Ying Weng; Zi-Hua Weng

2010-10-07

316

Magnetic Fields and Rotations of Protostars  

E-print Network

The evolution of the magnetic field and angular momentum in the collapsing cloud core is studied using three-dimensional resistive MHD nested grid simulations. Starting with a Bonnor-Ebert isothermal cloud rotating in a uniform magnetic field, we calculate the cloud evolution from the molecular cloud core (n=10^4 cm^-3) to the stellar core (n \\simeq 10^22 cm^-3). The magnetic field strengths at the center of the clouds converge to a certain value as the clouds collapse, when the clouds have the same angular momenta but different strengths of the magnetic fields at the initial state. For 10^12 cm^-3 magnetic field from the collapsing cloud core, and the magnetic field lines, which are strongly twisted for n magnetic field lines are twisted and amplified again for nc > 10^16 cm^-3, because the magnetic field is recoupled with the warm gas. Finally, protostars at their formation epoch have 0.1-1kG of the magnetic fields, which are comparable to observations. The magnetic field strength of protostar slightly depends on the angular momentum of the host cloud. The protostar formed from the slowly rotating cloud core has a stronger magnetic field. The evolution of the angular momentum is closely related to the evolution of the magnetic field. The angular momentum in the collapsing cloud is removed by the magnetic effect. The formed protostars have 0.1-2 days of the rotation period at their formation epoch, which are slightly shorter than the observation. This indicates that the further removal mechanism of the angular momentum such as interaction between the protostar and disk, wind gas or jet is important in further evolution of the protostar.

Masahiro N. Machida; Shu-ichiro Inutsuka; Tomoaki Matsumoto

2007-02-07

317

Measuring T Tauri star magnetic fields  

Microsoft Academic Search

Stellar magnetic fields including a strong dipole component are believed to play a critical role in the early evolution of newly formed stars and their circumstellar accretion disks. It is currently believed that the stellar magnetic field truncates the accretion disk several stellar radii above the star. This action forces accreting material to flow along the field lines and accrete

Christopher M. Johns-Krull

2009-01-01

318

Analysis of magnetic electron lens with secant hyperbolic field distribution  

E-print Network

Electron-optical imaging instruments like Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) use specially designed solenoid electromagnets for focusing of electron beam probe. Indicators of imaging performance of these instruments, like spatial resolution, have strong correlation with focal characteristics of the magnetic lenses which in turn have been shown to be functions of the spatial distribution of axial magnetic field generated by them. Owing to complicated design of practical lenses, empirical mathematical expressions are deemed convenient for use in physics based calculations of their focal properties. So, degree of closeness of such models to the actual field distribution determines accuracy of the calculations. Mathematical models proposed by Glaser[1] and Ramberg[1] have historically been put into extensive use. In this paper the authors discuss one such model with secant-hyperbolic type magnetic field distribution function, and present a comparison among these models, ...

Pany, S S; Dubey, B P

2014-01-01

319

Toxoplasma gondii DNA detection with a magnetic molecular beacon probe  

NASA Astrophysics Data System (ADS)

Toxoplasma Gondii infection is widespread in humans worldwide and reported infection rates range from 3%-70%, depending on the populations or geographic areas, and it has been recognized as a potential food safety hazard in our daily life. A magnetic molecular beacon probe (mMBP), based on theory of fluorescence resonance energy transfer (FRET), was currently reported to detect Toxoplasma Gondii DNA. Nano-sized Fe3O4 were primarily prepared by coprecipitation method in aqueous phase with NaOH as precipitator, and was used as magnetic core. The qualified coreshell magnetic quantum dots (mQDs), i.e. CdTe(symbol)Fe3O4, were then achieved by layer-by-layer method when mol ratio of Fe3O4/CdTe is 1/3, pH at 6.0, 30 °C, and reactant solution was refluxed for 30 min, the size of mQDs were determined to be 12-15 nm via transmission electron microscopy (TEM). Over 70% overlap between emission spectrum of mQDs and absorbance spectrum of BHQ-2 was observed, this result suggests the synthesized mQDs and BHQ-2 can be utilized as energy donor and energy acceptor, respectively. The sensing probe was fabricated and a stem-loop Toxoplasma Gondii DNA oligonucleotide was labeled with mQDs at the 5' end and BHQ-2 at 3' end, respectively. Target Toxoplasma gondii DNA was detected under conditions of 37 °C, hybridization for 2h, at pH8.0 in Tris-HCl buffer. About 30% recovery of fluorescence intensity was observed via fluorescence spectrum (FS) after the Toxoplasma gondii DNA was added, which suggested that the Toxoplasma Gondii DNA was successfully detected. Specificity investigation of the mMBP indicated that relative low recovery of fluorescence intensity was obtained when the target DNA with one-base pair mismatch was added, this result indicated the high specificity of the sensing probe. Our research simultaneously indicated that mMBP can be conveniently separated from the unhybridized stem-loop DNA and target DNA, which will be meaningful in DNA sensing and purification process.

Xu, Shichao; Yao, Cuicui; Wei, Shuoming; Zhang, Jimei; Dai, Zhao; Zheng, Guo; Sun, Bo; Han, Qing; Hu, Fei; Zhou, Hongming

2008-12-01

320

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

2013-12-01

321

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

Plank, Gernot; Haagmans, Roger; Floberghagen, Rune; Menard, Yvon

2013-04-01

322

Comparing magnetic field extrapolations with measurements of magnetic loops  

E-print Network

We compare magnetic field extrapolations from a photospheric magnetogram with the observationally inferred structure of magnetic loops in a newly developed active region. This is the first time that the reconstructed 3D-topology of the magnetic field is available to test the extrapolations. We compare the observations with potential fields, linear force-free fields and non-linear force-free fields. This comparison reveals that a potential field extrapolation is not suitable for a reconstruction of the magnetic field in this young, developing active region. The inclusion of field-line-parallel electric currents, the so called force-free approach, gives much better results. Furthermore, a non-linear force-free computation reproduces the observations better than the linear force-free approximation, although no free parameters are available in the former case.

T. Wiegelmann; A. Lagg; S. K. Solanki; B. Inhester; J. Woch

2008-01-29

323

Holographic description of the Schwinger effect in electric and magnetic field  

NASA Astrophysics Data System (ADS)

We consider a generalization of the holographic Schwinger effect proposed by Semenoff and Zarembo to the case with constant electric and magnetic fields. There are two ways to turn on magnetic fields, i) the probe D3-brane picture and ii) the string world-sheet picture. In the former picture, magnetic fields both perpendicular and parallel to the electric field are activated by a Lorentz transformation and a spatial rotation. In the latter one, the classical solutions of the string world-sheet corresponding to circular Wilson loops is generalized to contain two additional parameters encoding the presence of magnetic fields.

Sato, Yoshiki; Yoshida, Kentaroh

2013-04-01

324

Oblique ion collection in the drift approximation: How magnetized Mach probes really work  

SciTech Connect

The anisotropic fluid equations governing a frictionless obliquely flowing plasma around an essentially arbitrarily shaped three-dimensional ion-absorbing object in a strong magnetic field are solved analytically in the quasineutral drift approximation, neglecting parallel temperature gradients. The effects of transverse displacements traversing the magnetic presheath are also quantified. It is shown that the parallel collection flux density dependence upon the external Mach number is n{sub {infinity}}c{sub s} exp[-1-(M{sub parallel}{infinity}-M{sub perpendicular}cot {theta})], where {theta} is the angle (in the plane of field and drift velocity) of the object-surface to the magnetic-field and M{sub parallel{infinity}} is the external parallel flow. The perpendicular drift, M{sub perpendicular}, appearing here consists of the external E and B drift plus a weighted sum of the ion and electron diamagnetic drifts that depends upon the total angle of the surface to the magnetic field. It is that somewhat counterintuitive combination that an oblique (transverse) Mach probe experiment measures.

Hutchinson, I. H. [Plasma Science and Fusion Center and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2008-12-15

325

Heavy ion beam probe operation in time varying equilibria of improved confinement reversed field pinch discharges  

SciTech Connect

Operation of a heavy ion beam probe (HIBP) on a reversed field pinch is unique from other toroidal applications because the magnetic field is more temporal and largely produced by plasma current. Improved confinement, produced through the transient application of a poloidal electric field which leads to a reduction of dynamo activity, exhibits gradual changes in equilibrium plasma quantities. A consequence of this is sweeping of the HIBP trajectories by the dynamic magnetic field, resulting in motion of the sample volume. In addition, the plasma potential evolves with the magnetic equilibrium. Measurement of the potential as a function of time is thus a combination of temporal changes of the equilibrium and motion of the sample volume. A frequent additional complication is a nonideal balance of ion current on the detectors resulting from changes in the beam trajectory (magnetic field) and energy (plasma potential). This necessitates use of data selection criteria. Nevertheless, the HIBP on the Madison Symmetric Torus has acquired measurements as a function of time throughout improved confinement. A technique developed to infer the potential in the improved confinement reversed field pinch from HIBP data in light of the time varying plasma equilibrium will be discussed.

Demers, D. R.; Chen, X.; Schoch, P. M. [Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Fimognari, P. J. [University of Wisconsin, Madison, Wisconsin 53706 (United States)

2010-10-15

326

Sources of Magnetic Field Magnetic Phenomena  

E-print Network

Force on top wire: F/L = µ0IbottomItop 2r F = 1 4 0 q1q2 r2viz. 7 SI definition of the ampere: "One0Iproof that this works for any path- Sect. 28.6 B · dl = µ0I 10 Ampère's Law Part III B · dl = µ0's Law Practice B · dl = µ0I BL = µ0nLI B = µ0nI Hall Probe: Sect. 27.9 - Not Examinable 12 #12;vd

Tobar, Michael

327

Magnetic Fields in Clusters of Galaxies  

E-print Network

A brief overview about our knowledge on galaxy cluster magnetic fields is provided. Emphasize is given to the mutual dependence of our knowledge on relativistic particles in galaxy clusters and the magnetic field strength. Furthermore, we describe efforts to measure magnetic field strengths, characteristic length-scales, and power-spectra with reliable accuracy. An interpretation of these results in terms of non-helical dynamo theory is given. If this interpretation turns out to be correct, the understanding of cluster magnetic fields is directly connected to our understanding of intra-cluster turbulence.

Torsten A. Ensslin; Corina Vogt; Christoph Pfrommer

2005-01-17

328

Ferroelectric Cathodes in Transverse Magnetic Fields  

SciTech Connect

Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

2002-07-29

329

Statistics of magnetic fields on OBA stars  

NASA Astrophysics Data System (ADS)

Starting from recent measurements, we studied the statistical properties of the magnetic fields of OBA stars. As one of the statistically significant characteristics of the magnetic field we use the average effective magnetic field of the star, < B>. We then investigated the distribution function f() of the magnetic fields of OBA stars. This function has a power-law dependence on , with an index of 2-3 and a fast decrease for ? 300 G for B-A stars and ? 80 G for O stars.

Kholtygin, A. F.; Hubrig, S.; Drake, N. A.; Sudnik, N. P.; Dushin, V. V.

2014-11-01

330

Magnetic monopole field exposed by electrons  

NASA Astrophysics Data System (ADS)

The experimental search for magnetic monopole particles has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study. Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle. We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole. This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.

Béché, Armand; van Boxem, Ruben; van Tendeloo, Gustaaf; Verbeeck, Jo

2014-01-01

331

Magnetic field screening effect in electroweak model  

E-print Network

It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of that phenomenon is conditioned by features of the electro-weak interaction, namely, there is mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that corresponding magnetic bound state exists in the electroweak theory and can be detected in experiment.

Bakry, A; Zhang, P M; Zou, L P

2014-01-01

332

Numerical analysis of magnetic field in superconducting magnetic energy storage  

SciTech Connect

This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.

Kanamaru, Y. (Kanazawa Inst. of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921 (JP)); Amemiya, Y. (Chiba Inst. of Tech., Narashino (Japan))

1991-09-01

333

Pigtailed electro-optic probes for vectorial electric field mapping  

NASA Astrophysics Data System (ADS)

Electro-optic measurement (EO) constitutes an efficient technique to characterize electrical (E) fields : indeed, the Pockel's effect properties (linear modification of refractive indices of some non-centrosymetric crystals induced by the E-field)1 leads to a vectorial measurement. Thus, it allows to map the E-field vector and its transient evolution, either in free space or inside guiding structures. Pigtailed EO sensors are naturally becoming a reliable and consistent mean of characterization for many applications, e.g. high power microwaves (HPM), electromagnetic interference (EMI), on chip diagnostic, bio-electromagnetism (e.g. influence of mobile phones on the human body). Even if these non-invasive sensors provide a greater temporal and spatial resolution (femtosecond and sub-millimeter, respectively) than commonly used sensors (antennas, bolometers), it remains temperature dependant and quite low sensitive. EO probes are based on the modification of a laser beam (either its polarization, phase or amplitude) crossing an EO crystal. We demonstrate here the last developments and improvements for EO probes as well as for whole EO setups, exploiting polarization state or amplitude modulation. The sensor is constituted by a polarization maintaining (PM) fiber carrying the beam to the crystal and taking it back once modulated, gradient index lense(s) managing the shape of the beam, half or quarter wave plate controlling the input and output polarizations and a crystal (either anisotropic: LiTaO3, LiNb03, DAST, KTP or isotropic : ZnTe, InP) converting the E-field into a modulation. Our probes are fully dielectric and cylindrically shaped (length ~ 1 cm and diameter ~ 2-3 mm). The setup is made of a 1.5 ?m DFB laser, some photodiodes (low and high speed) added with a polarization state analyser arrangement in case of EO probes based on polarization state modulation scheme. The measurement bench is fully automated and compensate/measure the temperature deviation simultaneously. Sensitivity of our EO probe reaches 0.7 V.m-1Hz-1/2, the bandwidth covers an ultra wide frequency band (kHz - and more than 20 GHz), the selectivity (orthogonal E-field components rejection) is about 25 dB, and a spatial resolution greater than 100 ?m is achieved. Transient and frequency measurements and 2D E-field mapping will be presented during the conference.

Warzecha, Adriana; Gaborit, Gwenaël; Ruaro, Mickael; Duvillaret, Lionel; Lassere, Jean-Louis

2010-04-01

334

Reducing Field Distortion in Magnetic Resonance Imaging  

NASA Technical Reports Server (NTRS)

A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

2010-01-01

335

Destruction of magnetic surfaces by magnetic field irregularities: Part II  

Microsoft Academic Search

The present work is a continuation of the paper by Rosenbluth et al. (Nucl. Fusion 6 (1966) 297) and concerns the investigation of problems associated with the condition for the existence of magnetic surfaces in closed systems of the stellarator type. The unperturbed geometry of the magnetic field is produced by a straight helical field. Exact equations for the motion

N. N. Filonenko; R. Z. Sagdeev; G. M. Zaslavskii

1967-01-01

336

Cosmic Magnetic Fields (IAU S259)  

NASA Astrophysics Data System (ADS)

Preface K. G. Strassmeier, A. G. Kosovichev and J. E. Beckman; Organising committee; Conference photograph; Conference participants; Session 1. Interstellar magnetic fields, star-forming regions and the Death Valley Takahiro Kudoh and Elisabeta de Gouveia Dal Pino; Session 2. Multi-scale magnetic fields of the Sun; their generation in the interior, and magnetic energy release Nigel O. Weiss; Session 3. Planetary magnetic fields and the formation and evolution of planetary systems and planets; exoplanets Karl-Heinz Glassmeier; Session 4. Stellar magnetic fields: cool and hot stars Swetlana Hubrig; Session 5. From stars to galaxies and the intergalactic space Dimitry Sokoloff and Bryan Gaensler; Session 6. Advances in methods and instrumentation for measuring magnetic fields across all wavelengths and targets Tom Landecker and Klaus G. Strassmeier; Author index; Object index; Subject index.

Strassmeier, Klaus G.; Kosovichev, Alexander G.; Beckman, John E.

2009-06-01

337

SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES  

SciTech Connect

We present self-consistent high-resolution simulations of NGC 4038/4039 (the 'Antennae galaxies') including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10{sup -9} to 10{sup -4} G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of {approx}10 {mu}G, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Dolag, K.; Stasyszyn, F. A., E-mail: kotarba@usm.lmu.d [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

2010-06-20

338

Finite element modeling of magnetic bias eddy current probe interaction with ferromagnetic materials  

NASA Astrophysics Data System (ADS)

Requirements to demonstrate eddy current inspection capabilities for inspection of steam generator tubes in nuclear power generation stations are becoming more rigorous. One method to support qualification of an existing, modified, or new eddy current probe design is to model the probe response to various degradation modes and tube artifacts with a finite element approach. Magnetic-bias probes are used to inspect for defects in conditions where material magnetic permeability effects are a concern, such as in the presence of ferromagnetic tubes, deposits, or supports. In this paper, a transient finite element modeling approach was used to model the interaction of magnetic-bias eddy current probes with ferromagnetic materials.

Lei, J.

2013-01-01

339

Non-linear magnetization dynamics probed with X-rays: 1. Broken cylindrical symmetry of uniform modes  

NASA Astrophysics Data System (ADS)

We discuss how X-ray magnetic circular dichroism (XMCD) and X-ray magnetic linear dichroism (XMLD) may complement each other to probe the nonlinear nature of the resonant precession of either spin or orbital magnetization components in aligned ferro-, ferri- or even antiferro-magnets. The Landau-Lifshitz-Gilbert (LLG) equation is solved in a rotating frame locked to the microwave pump field, while treating as time-dependent perturbations the terms which, in the formulation of the free energy density, break down the cylindrical symmetry of precession. Concretely, we analyze the time-oscillating deviations of the magnetization from the steady-state solutions of the LLG equation hereafter called SS-modes. At any perturbation order, one may derive magnetic dipole components which oscillate at harmonic frequencies of the pump frequency and could be probed with XMCD. Under bichromatic pumping, frequency mixing arises from a time-dependent Zeeman coupling between two rotating frames locked to each individual pump field. Similarly, we expect magnetic quadrupole components to oscillate at the same frequencies. For consistency, their derivation requires a perturbation calculation up to second order. The latter time-reversal even, rank-2 magnetic tensor components can be probed only with XMLD. Beyond the (reciprocal) linear dichroism classically measured in ferri- or antiferromagnetic samples, a non-reciprocal XMLD signal is to be expected when space parity is lost. Nonlinear effects strongly depend upon the relative orientations of the external bias field and of the pump field with respect to the symmetry axes of the magnetic system. This holds true for the foldover lineshape distortions, harmonic generation, frequency mixing or multiquanta excitations.

Goulon, J.; Brouder, Ch.; Rogalev, A.; Goujon, G.; Wilhelm, F.

2014-10-01

340

Near field optical probe for critical dimension measurements  

DOEpatents

A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations.

Stallard, Brian R. (Albuquerque, NM); Kaushik, Sumanth (Cambridge, MA)

1999-01-01

341

Near field optical probe for critical dimension measurements  

DOEpatents

A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.

Stallard, B.R.; Kaushik, S.

1999-05-18

342

Atoms in Crossed Electric and Magnetic Fields  

NASA Astrophysics Data System (ADS)

In this dissertation, extensive experimental and theoretical work pertaining to three interesting aspects of the interaction of atoms with crossed electric and magnetic fields is presented. The first experiment discussed deals with the effects of weak crossed fields on sodium atoms. A fluorescence spectrum of laser excited sodium n = 11 states in an electric field of 2560 V/cm perpendicular to a magnetic field of 4.4 kG is presented, along with a comparison to theory. The data show the important effects of m-mixing and residual degeneracies which remain in the crossed fields. The next topic presented is the theoretical prediction of novel resonances, termed "quasi-Penning resonances," corresponding to electron states localized away from the nucleus at the Stark saddlepoint in strong crossed electric and magnetic fields. The stability and possibility for observation of these resonances is explored. Finally, extensive experimental maps of data are presented which compare laser induced ionization spectra of sodium atoms in crossed electric and magnetic fields to spectra in an electric field atone. The experiment explores the energy region of the electric field saddlepoint, where quasi-Penning resonances are predicted to occur. The magnetic field is too weak for the observation of these resonances, but the experiment provides important groundwork for the understanding of future experiments in strong crossed fields. The magnetic field is seen to cause splitting of some transitions due to the interaction of the electron spin with the magnetic field. Also, magnetic field induced state mixing causes a redistribution of oscillator strengths leading to changes in peak heights and auto-ionizing line widths. On the whole, however, the effect of the weak crossed magnetic field on the sodium Stark spectra remains small.

Korevaar, Eric John

1987-09-01

343

Polarized Radiation Observables for Probing the Magnetism of the Outer Solar Atmosphere  

NASA Astrophysics Data System (ADS)

The basic idea of optical pumping, for which Alfred Kastler received the 1966 Nobel Prize in Physics, is that the absorption and scattering of anisotropic radiation can produce population imbalances and quantum coherence among the magnetic substates of atomic levels. The degree of this radiatively-induced atomic level polarization, which is very sensitive to the presence of magnetic fields, can be determined by observing the polarization of the scattered or transmitted spectral line radiation. The most important point for solar physics is that the outer solar atmosphere is an optically pumped vapor and that the polarization of the emergent spectral line radiation can be exploited to obtain quantitative information on the strength and/or geometry of magnetic fields within the chromosphere, transition region, and corona. Here we review some recent investigations of the polarization produced by optical pumping in selected IR, FUV, and EUV spectral lines, showing that their magnetic sensitivity is suitable for probing the magnetism of the outer solar atmosphere.

Trujillo Bueno, J.

2014-10-01

344

Magnetic properties of thin Cr layers in multilayer systems studied through 119Sn Mössbauer probes  

NASA Astrophysics Data System (ADS)

The magnetic properties of thin Cr layers in epitaxial [Cr( tCr)/Sn(2 Å)] ( tCr=5, 10, 20, 30, and 40 Å) and [Fe(10 Å)/Cr(5 Å)/Sn(2 Å)/Cr(5 Å)] multilayers were studied through 119Sn conversion electron Mössbauer spectroscopy. It was found that the magnetic ordering temperature of Cr in both Cr/Sn and Fe/Cr/Sn/Cr systems is much higher than the Néel temperature of bulk Cr (i.e. 311 K). It also turned out that the magnetic hyperfine fields at the Sn nuclear sites are quite different, i.e., 11-13 T for the Cr/Sn multilayers and 2 T for the Fe/Cr/Sn/Cr multilayer at 300 K, in spite of the similarity of the local crystallographic structure of the Sn probe layers. Possible magnetic structures of the Cr layers are inferred from the size and direction of the magnetic hyperfine field transferred at the Sn nuclear sites.

Mibu, K.; Tanaka, S.; Kobayashi, T.; Nakanishi, A.; Shinjo, T.

1999-06-01

345

Magnetic-field fluctuations in the magnetosheath observed by Pioneers 7 and 8  

Microsoft Academic Search

Fluctuations of the magnetic field at frequencies less than 0.05 Hz have been studied in the magnetosheath from data obtained by Pioneers 7 and 8. During the first two weeks of their flights, the probes were in similar trajectories along approximately radial directions from the earth to 250 R r at an earth-sun-probe angle of 30 ø. Magnetic fluctuations inside

F. Mariani; B. Bavassano; N. F. Ness

1970-01-01

346

Calculation of magnetic fields for engineering devices  

Microsoft Academic Search

This paper deals with the methodology of magnet technology and its application to various engineering devices. Magnet technology has experienced a rapid growth in the past few years as a result of the advances made in superconductivity, numerical methods and computational techniques. Specifically, this paper concerns itself with: (a) Mathematical models for solving magnetic field problems; (b) The applicability, usefulness,

John S. Colonias

1976-01-01

347

Imaging and Probe Techniques for Wave Dispersion Estimates in Magnetized Plasmas  

NASA Astrophysics Data System (ADS)

Fluctuations in magnetized laboratory plasmas are ubiquitous and complex. In addition to deleterious effects, like increasing heat and particle transport in magnetic fusion energy devices, fluctuations also provide a diagnostic opportunity. Identification of a fluctuation with a particular wave or instability gives detailed information about the properties of the underlying plasma. In this work, diagnostics and spectral analysis techniques for fluctuations are developed and applied to two different laboratory plasma experiments. The first part of this dissertation discusses imaging measurements of coherent waves in the Controlled Shear Decorrelation Experiment (CSDX) at the University of California, San Diego. Visible light from ArII line emission is collected at high frame rates using an intensified digital camera. A cross-spectral phase technique allows direct visualization of dominant phase structures as a function of frequency, as well as identification of azimuthal asymmetries present in the system. Experimental dispersion estimates are constructed from imaging data alone. Drift-like waves are identified by comparison with theoretical dispersion curves, and a tentative match of a low- frequency spectral feature to Kelvin-Helmholtz-driven waves is presented. Imaging measurements are consistent with previous results, and provide non-invasive, single-shot measurements across the entire plasma cross-section. Relationships between imaging and electrostatic probe measurements are explored. The second part of this dissertation discusses the design and construction of diagnostics for the Colorado Field-Reversed Configuration (CFRC), as well as preliminary results. A triple probe, a Mach probe, a multi-chord heterodyne interferometer, Rogowski coils, a single-point, three-axis magnetic probe, and a 16-point, three-axis magnetic probe have been constructed. Each diagnostic is designed for fluctuation measurements up to the data acquisition Nyquist frequency of 20 MHz. A histogram cross-spectral analysis technique allows experimental dispersion estimates to be made from multi-channel magnetic measurements. Hints of waves in the range of ion-cyclotron frequency harmonics are observed, but lack of global information about the plasma objects formed in CFRC prevents definitive interpretation.

Light, A. D.

348

Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe  

NASA Astrophysics Data System (ADS)

Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30 eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

Shikama, T.; Kitaoka, H.; Hasuo, M.

2014-07-01

349

The Evolution of the Earth's Magnetic Field.  

ERIC Educational Resources Information Center

Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

Bloxham, Jeremy; Gubbins, David

1989-01-01

350

Coronal magnetic fields and the solar wind  

NASA Technical Reports Server (NTRS)

Current information is presented on coronal magnetic fields as they bear on problems of the solar wind. Both steady state fields and coronal transient events are considered. A brief critique is given of the methods of calculating coronal magnetic fields including the potential (current free) models, exact solutions for the solar wind and field interaction, and source surface models. These solutions are compared with the meager quantitative observations which are available at this time. Qualitative comparisons between the shapes of calculated magnetic field lines and the forms visible in the solar corona at several recent eclipses are displayed. These suggest that: (1) coronal streamers develop above extended magnetic arcades which connect unipolar regions of opposite polarity; and (2) loops, arches, and rays in the corona correspond to preferentially filled magnetic tubes in the approximately potential field.

Newkirk, G., Jr.

1972-01-01

351

Magnetic field decay in model SSC dipoles  

SciTech Connect

We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

1988-08-01

352

Protecting SQUID metamaterials against stray magnetic fields  

NASA Astrophysics Data System (ADS)

Using superconducting quantum interference devices (SQUIDs) as the basic, low-loss elements of thin-film metamaterials has one main advantage: their resonance frequency is easily tunable by applying a weak magnetic field. The downside, however, is a strong sensitivity to stray and inhomogeneous magnetic fields. In this work, we demonstrate that even small magnetic fields from electronic components destroy the collective, resonant behaviour of the SQUID metamaterial. We also show how the effect of these fields can be minimized. As a first step, magnetic shielding decreases any initially present fields, including the earth’s magnetic field. However, further measures such as improvements in the sample geometry have to be taken to avoid the trapping of Abrikosov vortices.

Butz, S.; Jung, P.; Filippenko, L. V.; Koshelets, V. P.; Ustinov, A. V.

2013-09-01

353

Structure and evolution of the heliospheric magnetic field  

NASA Astrophysics Data System (ADS)

Global structure of the heliospheric magnetic field is investigated through several solar cycles. The study includes magnetic field measurements by space probes located in various spaces in the heliosphere. The latitudinal extent of the heliospheric current sheet is determined from the off-ecliptic observation by Ulysses during the declining phase of solar cycles 22 and 23. The results are compared to the latitudinal excursion of the neutral line on the source surface maps, the deviations are interpreted in relation with the characteristics of the solar cycles. The open magnetic flux of the sun, as determined from interplanetary measurements is best characterized by the radial component of the magnetic field. It is shown that the distribution of the radial component is a complex function of the location in the heliosphere, of the type of solar wind (i.e., slow or fast), and of the phase of the solar cycle. We demonstrate that this complexity is due to fluctuations of the magnetic field, the effect of which can be largely reduced by exploiting the symmetry features of the waves. Two methods are presented for the corrections of the interplanetary flux measurements. It is shown that the corrected magnetic flux density measured by the Ulysses around its solar polar orbit from 1990 to 2009 matches that calculated from the OMNI in-ecliptic, 1 AU data set over the same interval. This result shows that the sun's magnetic flux is generally distributed uniformly in the heliosphere and depends only on the total open magnetic flux of the sun. We calculate the open magnetic flux of the sun from the OMNI data base covering four solar cycles and the values are compared to the total open magnetic flux of the sun as determined from source surface models. The match is fairly good except for the raising phase of the solar cycles. The possible reasons are discussed.

Erdos, Geza

354

Graphene Nanoribbon in Sharply Localized Magnetic Fields  

E-print Network

We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.

Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal

2011-03-21

355

Estimation of fluctuating magnetic fields by an atomic magnetometer  

E-print Network

We present a theoretical analysis of the ability of atomic magnetometers to estimate a fluctuating magnetic field. Our analysis makes use of a Gaussian state description of the atoms and the probing field, and it presents the estimator of the field and a measure of its uncertainty which coincides in the appropriate limit with the achievements for a static field. We show by simulations that the estimator for the current value of the field systematically lags behind the actual value of the field, and we suggest a more complete theory, where measurement results at any time are used to update and improve both the estimate of the current value and the estimate of past values of the B-field.

Vivi Petersen; Klaus Molmer

2006-05-29

356

Probing the Magnetized Interstellar Medium Surrounding the Planetary Nebula Sh 2-216  

E-print Network

We present 1420 MHz polarization images of a 2.5 X 2.5 degree region around the planetary nebula (PN) Sh 2-216. The images are taken from the Canadian Galactic Plane Survey (CGPS). An arc of low polarized intensity appears prominently in the north-east portion of the visible disk of Sh 2-216, coincident with the optically identified interaction region between the PN and the interstellar medium (ISM). The arc contains structural variations down to the ~1 arcminute resolution limit in both polarized intensity and polarization angle. Several polarization-angle "knots" appear along the arc. By comparison of the polarization angles at the centers of the knots and the mean polarization angle outside Sh 2-216, we estimate the rotation measure (RM) through the knots to be -43 +/- 10 rad/m^2. Using this estimate for the RM and an estimate of the electron density in the shell of Sh 2-216, we derive a line-of-sight magnetic field in the interaction region of 5.0 +/- 2.0 microG. We believe it more likely the observed magnetic field is interstellar than stellar, though we cannot completely dismiss the latter possibility. We interpret our observations via a simple model which describes the ISM magnetic field around Sh 2-216, and comment on the potential use of old PNe as probes of the magnetized ISM.

Ryan Ransom; Bulent Uyaniker; Roland Kothes; Tom Landecker

2008-06-09

357

Measuring exposed magnetic fields of welders in working time.  

PubMed

The assessment of the occupational electromagnetic field exposure of welders is of great importance, especially in shielded-arc welding, which uses relatively high electric currents of up to several hundred amperes. In the present study, we measured the magnetic field exposure level of welders in the course of working. A 3-axis Hall magnetometer was attached to a subject's wrist in order to place the sensor probe at the closest position to the magnetic source (a cable from the current source). Data was acquired every 5 s from the beginning of the work time. The maximum exposed field was 0.35-3.35 mT (Mean ± SD: 1.55 ± 0.93 mT, N=17) and the average value per day was 0.04-0.12 mT (Mean ± SD: 0.07 ± 0.02 mT, N=17). We also conducted a finite element method-based analysis of human hand tissue for the electromagnetic field dosimetry. In addition, the magnetic field associated with grinders, an air hammer, and a drill using electromagnetic anchorage were measured; however, the magnetic fields were much lower than those generated in the welding process. These results agreed well with the results of the electromagnetic field dosimetry (1.49 mT at the wrist position), and the calculated eddy current (4.28 mA/m(2)) was much lower than the well-known guideline thresholds for electrical nerve or muscular stimulation. PMID:21670555

Yamaguchi-Sekino, Sachiko; Ojima, Jun; Sekino, Masaki; Hojo, Minoru; Saito, Hiroyuki; Okuno, Tsutomu

2011-01-01

358

Extended Magnetization of Superconducting Pellets in Highly Inhomogeneous Magnetic Field  

NASA Astrophysics Data System (ADS)

The magnetization of superconducting pellets is a worth point in the development of trapped flux superconducting motors. Experimental and simulated data have been reported extensively according to the framework of one or several pulses of a homogeneous magnetizing field applied to a pellet or a set of pellets. In case of cylindrical rotors of low power motors with radial excitation, however, the use of the copper coils to produce the starting magnetization of the pellets produces a highly inhomogeneous magnetic field which cannot be reduced to a 2D standard model. In this work we present an analysis of the magnetization of the superconducting cylindrical rotor of a small motor by using a commercial FEM program, being the rotor magnetized by the working copper coils of the motor. The aim of the study is a report of the magnetization obtained and theheat generated in the HTSC pellets.

Maynou, R.; López, J.; Granados, X.; Torres, R.; Bosch, R.

359

The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields  

NASA Astrophysics Data System (ADS)

The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

Nakotte, Heinz

2001-11-01

360

Bashful ballerina unveiled: Multipole analysis of the coronal magnetic field  

NASA Astrophysics Data System (ADS)

Heliospheric current sheet (HCS) is the continuum of the coronal magnetic equator, dividing the heliospheric magnetic field (HMF) into two sectors (polarities). Because of its wavy structure, the HCS is often called the ballerina skirt. Several studies have proven that the HCS is southward shifted during about three years in the solar declining phase. This persistent phenomenon, called the bashful ballerina, has been verified by geomagnetic indices since 1930s, by OMNI data base since 1960s, by the WSO PFSS model since mid-1970s and by the Ulysses probe measurements during the fast latitude scans in 1994-1995 and 2007. We study here the Wilcox Solar Observatory measurements of the photospheric magnetic field and the PFSS extrapolation of the coronal magnetic field. We show that the quadrupole moment of the photospheric magnetic field, which is important for the HCS asymmetry (bashful ballerina), mainly arises from the difference between northern and southern polar field strengths. According to the WSO data the minimum time quadrupole is mainly due to the difference between the highest northern and southern latitude bins. Related studies imply that the southward shift of the HCS is related to the delayed development of southern coronal holes. We also discuss the suggested connection of the HCS asymmetry to sunspot hemispheric asymmetry.

Virtanen, I.; Mursula, K.

2012-12-01

361

High concentration ferronematics in low magnetic fields  

E-print Network

We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field $B_{bias}$, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that $B_{bias}$ is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role.

T. Tóth-Katona; P. Salamon; N. Éber; N. Tomašovi?ová; Z. Mitróová; P. Kop?anský

2014-09-05

362

High concentration ferronematics in low magnetic fields  

NASA Astrophysics Data System (ADS)

We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field Bbias, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that Bbias is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role.

Tóth-Katona, T.; Salamon, P.; Éber, N.; Tomašovi?ová, N.; Mitróová, Z.; Kop?anský, P.

2014-12-01

363

The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission  

NASA Astrophysics Data System (ADS)

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ˜15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the "highest quality" events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

Wygant, J. R.; Bonnell, J. W.; Goetz, K.; Ergun, R. E.; Mozer, F. S.; Bale, S. D.; Ludlam, M.; Turin, P.; Harvey, P. R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malsapina, D. M.; Bolton, M. K.; Hudson, M.; Strangeway, R. J.; Baker, D. N.; Li, X.; Albert, J.; Foster, J. C.; Chaston, C. C.; Mann, I.; Donovan, E.; Cully, C. M.; Cattell, C. A.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A.; Tao, J. B.

2013-11-01

364

Comparison of the mean photospheric magnetic field and the interplanetary magnetic field  

Microsoft Academic Search

The mean photospheric magnetic field of the sun seen as a star has been compared with the interplanetary magnetic field observed with spacecraft near the earth. Each change in polarity of the mean solar field is followed about 4 1\\/2 days later by a change in polarity of the interplanetary field (sector boundary). The scaling of the field magnitude from

A. Severny; J. M. Wilcox; P. H. Scherrer; D. S. Colburn

1970-01-01

365

Correlation properties of magnetosheath magnetic field fluctuations  

Microsoft Academic Search

The magnetosheath is characterized by a variety of low-frequency fluctuations, but their features and sources are different. Taking advantage of multipoint magnetic field measurements of the Cluster spacecraft, we present a statistical study to reveal properties of waves. We compute cross-correlation coefficients of magnetic field strengths as measured by pairs of the Cluster spacecraft and determine the correlation length of

O. Gutynska; J. Šafránková; Z. N?me?ek

2009-01-01

366

Magnetic fields, branes, and noncommutative geometry  

Microsoft Academic Search

We construct a simple physical model of a particle moving on the infinite noncommutative 2-plane. The model consists of a pair of opposite charges moving in a strong magnetic field. In addition, the charges are connected by a spring. In the limit of large magnetic field, the charges are frozen into the lowest Landau levels. Interactions of such particles include

Daniela Bigatti; Leonard Susskind

2000-01-01

367

Lattice Planar QED in external magnetic field  

E-print Network

We investigate planar Quantum ElectroDynamics (QED) with two degenerate staggered fermions in an external magnetic field on the lattice. Our preliminary results indicate that in external magnetic fields there is dynamical generation of mass for two-dimensional massless Dirac fermions in the weak coupling region. We comment on possible implications to the quantum Hall effect in graphene.

Paolo Cea; Leonardo Cosmai; Pietro Giudice; Alessandro Papa

2011-09-29

368

Directional discontinuities in the interplanetary magnetic field  

Microsoft Academic Search

It is shown that the interplanetary magnetic field has different characteristics on different scales, and it is noted that a given physical theory may not be applicable or relevant on all scales. Four scales are defined in terms of time intervals on which the data may be viewed. Many discontinuities in the magnetic-field direction are seen on the mesoscale (˜

Leonard F. Burlaga

1969-01-01

369

Lattice Planar QED in external magnetic field  

NASA Astrophysics Data System (ADS)

We investigate planar Quantum ElectroDynamics (QED) with two degenerate staggered fermions in an external magnetic field on the lattice. Our preliminary results indicate that in external magnetic fields there is dynamical generation of mass for two-dimensional massless Dirac fermions in the weak coupling region. We comment on possible implications to the quantum Hall effect in graphene.

Cea, P.; Cosmai, L.; Giudice, P.; Papa, A.

370

Ground Vehicle Navigation Using Magnetic Field Variation  

NASA Astrophysics Data System (ADS)

The Earth's magnetic field has been the bedrock of navigation for centuries. The latest research highlights the uniqueness of magnetic field measurements based on position due to large scale variations as well as localized perturbations. These observable changes in the Earth's magnetic field as a function of position provide distinct information which can be used for navigation. This dissertation describes ground vehicle navigation exploiting variation in Earth's magnetic field using a self-contained navigation system consisting of only a magnetometer and magnetic field maps. In order to achieve navigation, effective calibration enables repeatable magnetic field measurements from different vehicles and facilitates mapping of the observable magnetic field as a function of position. A new modified ellipsoid calibration technique for strapdown magnetometers in large vehicles is described, as well as analysis of position measurement generation comparing a multitude of measurement compositions using existing and newly developed likelihood techniques. Finally, navigation solutions are presented using both a position measurement and direct incorporation of the magnetometer measurements via a particle filter to demonstrate road navigation in three different environments. Emphatically, the results affirm that navigation using magnetic field variation in ground vehicles is viable and achieves adequate performance for road level navigation.

Shockley, Jeremiah A.

371

Astrophysical magnetic fields and nonlinear dynamo theory  

Microsoft Academic Search

The current understanding of astrophysical magnetic fields is reviewed, focusing on their generation and maintenance by turbulence. In the astrophysical context this generation is usually explained by a self-excited dynamo, which involves flows that can amplify a weak ‘seed’ magnetic field exponentially fast. Particular emphasis is placed on the nonlinear saturation of the dynamo. Analytic and numerical results are discussed

Axel Brandenburg; Kandaswamy Subramanian

2005-01-01

372

Superconductor based sensor for monitoring magnetic field  

Microsoft Academic Search

The authors propose a method for measurement of magnetic fields with the help of a HTSC (high temperature superconductor) based sensor in conjunction with a microcomputer. The same sensor may be used for monitoring current in a circuit under the influence of a controlled magnetic field acting perpendicular to the direction of the current flow. The theoretical basis is discussed.

S. C. Kar; S. P. Basu

1992-01-01

373

Fall in Earth's magnetic field is erratic  

Microsoft Academic Search

Earth's magnetic field has decayed by about 5\\\\% per century since measurements began in 1840. Directional measurements predate those of intensity by more than 250 years, and we combined the global model of directions with paleomagnetic intensity measurements to estimate the fall in strength for this earlier period (1590 to 1840 A.D.). We found that magnetic field strength was nearly

David Gubbins; Adrian L. Jones; Christopher C. Finlay

2006-01-01

374

Magnetic and electric field meters developed for the US Department of Energy  

Microsoft Academic Search

This report describes work done at the Jet Propulsion Laboratory for the Office of Energy Storage and Distribution of DOE on the measurement of power line fields. A magnetic field meter is discussed that uses fiber optics to couple a small measuring probe to a remote readout device. The use of fiber optics minimizes electric field perturbation due to the

H. Kirkham; A. Johnson

1988-01-01

375

Magnetic-Field-Induced Delocalized to Localized Transformation in GaAs:N  

NASA Astrophysics Data System (ADS)

The use of a high magnetic field (57 T) to study the formation and evolution of nitrogen (N) cluster and supercluster states in GaAs:N is demonstrated. A magnetic field is used to lift the conduction band edge and expose resonant N cluster states so that they can be directly experimentally investigated. The reduction of the exciton Bohr radius also results in the fragmentation of N supercluster states, enabling a magnetic field induced delocalized to localized transition. The application of very high magnetic fields thus presents a powerful way to probe percolation phenomena in semiconductors with bound and resonant isoelectronic cluster states.

Alberi, K.; Crooker, S. A.; Fluegel, B.; Beaton, D. A.; Ptak, A. J.; Mascarenhas, A.

2013-04-01

376

Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind  

NASA Technical Reports Server (NTRS)

The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

Burlaga, L. F.; Barouch, E.

1974-01-01

377

Permanent magnet edge-field quadrupole  

DOEpatents

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

Tatchyn, R.O.

1997-01-21

378

Permanent magnet edge-field quadrupole  

DOEpatents

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

Tatchyn, Roman O. (Mountain View, CA)

1997-01-01

379

Quenching of flames by magnetic fields  

Microsoft Academic Search

An experiment has been demonstrated to show a phenomenon involving quenching of candle flames using magnetic fields. An electromagnet with a pair of columnar magnetic poles in which inner sidepieces were hollowed out was used. Magnetic fields of 1.5 T at the brim gave a gradient of 50–300 T\\/m in the direction perpendicular to the pole axis when the distance

S. Ueno

1989-01-01

380

Alignment of magnetic uniaxial particles in a magnetic field: Simulation  

NASA Astrophysics Data System (ADS)

The numerical investigations of the process of alignment of magnetically uniaxial Nd-Fe-B powders in an applied magnetic field were carried out using the discrete element method (DEM). It is shown that magnetic alignment of ensemble of spherical particles provides extremely high degree of alignment, which is achieved in low magnetic fields. A model of formation of anisotropic particles as a combination of spherical particles is suggested. The influence of the shape anisotropy and friction coefficient on the alignment degree was analyzed. The increase in the friction coefficient leads to a decrease in the alignment degree; the simulation results are in qualitative agreement with experimental dependences. It is shown that in magnetic fields higher than 5 T, the calculated field dependences of the alignment degree quantitatively render the experimental data. The increase of about 6% in the alignment degree in the experiments with addition of internal lubricant can be explained by the decrease of 14% in friction coefficient.

Golovnia, O. A.; Popov, A. G.; Sobolev, A. N.; Hadjipanayis, G. C.

2014-09-01

381

The intracluster magnetic field power spectrum in Abell 2255  

E-print Network

The goal of this work is to constrain the strength and structure of the magnetic field in the nearby cluster of galaxies A2255. At radio wavelengths A2255 is characterized by the presence of a polarized radio halo at the cluster center, a relic source at the cluster periphery, and several embedded radio galaxies. The polarized radio emission from all these sources is modified by Faraday rotation as it traverses the magnetized intra-cluster medium. The distribution of Faraday rotation can be used to probe the magnetic field strength and topology in the cluster. For this purpose, we performed Very Large Array observations at 3.6 and 6 cm of four polarized radio galaxies embedded in A2255, obtaining detailed rotation measure images for three of them. We analyzed these data together with the very deep radio halo image recently obtained by us. We simulated random 3-dimensional magnetic field models characterized by different power spectra and produced synthetic rotation measure and radio halo images. By comparing the simulations with the data we are able to determine the strength and the power spectrum of the intra-cluster magnetic field fluctuations which best reproduce the observations. The data require a steepening of the power spectrum spectral index from n=2, at the cluster center, up to n=4, at the cluster periphery and the presence of filamentary structures on large scales. The average magnetic field strength at the cluster center is 2.5 muG. The field strength declines from the cluster center outward with an average magnetic field strength calculated over 1 Mpc^3 of about 1.2 muG.

F. Govoni; M. Murgia; L. Feretti; G. Giovannini; K. Dolag; G. B. Taylor

2006-08-21

382

In vivo heating of magnetic nanoparticles in alternating magnetic field.  

PubMed

We have evaluated heating capabilities of new magnetic nanoparticles. In in vitro experiments they were exposed to an alternating magnetic field with frequency 3.5 MHz and induction 1.5 mT produced in three turn pancake coil. In in vivo experiments rats with injected magnetic nanoparticles were also exposed to an ac field. An optimal increase of temperature of the tumor to 44 degrees C was achieved after 10 minutes of exposure. Obtained results showed that magnetic nanoparticles may be easily heated in vitro as well as in vivo, and may be therefore useful for hyperthermic therapy of cancer. PMID:15377087

Babincová, M; Altanerová, V; Altaner, C; Cicmanec, P; Babinec, P

2004-08-01

383

Processing of polymers in high magnetic fields  

SciTech Connect

Many organic molecules and polymers have an anisotropic diamagnetic susceptibility, and thus can be aligned in high magnetic fields. The presence of liquid crystallinity allows cooperative motions of the individual molecules, and thus the magnetic energy becomes greater than the thermal energy at experimentally obtainable field strengths. This work has determined the effect of magnetic field alignment on the thermal expansion and mechanical properties of liquid crystalline thermosets in the laboratory. Further advances in magnet design are needed to make magnetic field alignment a commercially viable approach to polymer processing. The liquid crystal thermoset chosen for this study is the diglycidyl ether of dihydroxy-{alpha}-methylstilbene cured with the diamine sulfamilamide. This thermoset has been cured at field strengths up to 18 Tesla.

Douglas, E.P.; Smith, M.E.; Benicewicz, B.C. [Los Alamos National Lab., NM (United States); Earls, J.D.; Priester, R.D. Jr. [Dow Chemical Co., Freeport, TX (United States)

1996-05-01

384

Reionization constraints on primordial magnetic fields  

E-print Network

We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: $6 magnetic fields (strength, $B_0$, and power-spectrum index $n_{\\scriptscriptstyle \\rm B}$), reionization, and $\\Lambda$CDM cosmological model. We find that magnetic field strengths in the range: $B_0 \\simeq 0.05{-}0.3$ nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the WMAP and quasar absorption spectra data. Our analysis puts upper-limits on the magnetic field strength $B_0 magnetic field constraints among those available from other cosmological observables.

Pandey, Kanhaiya L; Sethi, Shiv K; Ferrara, Andrea

2014-01-01

385

Measurement of AC magnetic field distribution using magnetic resonance imaging.  

PubMed

Electric currents are applied to body in numerous applications in medicine such as electrical impedance tomography, cardiac defibrillation, electrocautery, and physiotherapy. If the magnetic field within a region is measured, the currents generating these fields can be calculated using the curl operator. In this study, magnetic fields generated within a phantom by currents passing through an external wire is measured using a magnetic resonance imaging (MRI) system. A pulse sequence that is originally designed for mapping static magnetic field inhomogeneity is adapted. AC current in the form of a burst sine wave is applied synchronously with the pulse sequence. The frequency of the applied current is in the audio range with an amplitude of 175-mA rms. It is shown that each voxel value of sequential images obtained by the proposed pulse sequence is modulated similar to a single tone broadband frequency modulated (FM) waveform with the ac magnetic field strength determining the modulation index. An algorithm is developed to calculate the ac magnetic field intensity at each voxel using the frequency spectrum of the voxel signal. Experimental results show that the proposed algorithm can be used to calculate ac magnetic field distribution within a conducting sample that is placed in an MRI system. PMID:9368117

Ider, Y Z; Muftuler, L T

1997-10-01

386

The Magnetic Field in the Solar Atmosphere  

E-print Network

This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsible for all solar activity in its numerous manifestations. Thus, dynamic phenomena such as coronal mass ejections and flares are magnetically driven. In addition, the field also plays a crucial role in heating the solar chromosphere and corona as well as in accelerating the solar wind. Our main emphasis is the magnetic field in the upper solar atmosphere so that photospheric and chromospheric magnetic structures are mainly discussed where relevant for higher solar layers. Also, the discussion of the solar atmosphere and activity is limited to those topics of direct relevance to the magnetic field. After giving a brief overview about the solar magnetic field in general and its global structure, we discuss in more detail the magnetic field in active regions, the quie...

Wiegelmann, Thomas; Solanki, Sami K

2014-01-01

387

Warm inflation in presence of magnetic fields  

E-print Network

We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.

Gabriella Piccinelli; Angel Sanchez; Alejandro Ayala; Ana Julia Mizher

2013-11-03

388

‘Clean’ observations of magnetic field fluctuations on planetary surfaces  

Microsoft Academic Search

Magnetic field measurements on planetary surfaces are disturbed by various internal and external sources. We discuss methods to reduce their influence on the quality of magnetic field experiments aboard surface stations. Our major emphasis is on terrestrial seismo-magnetic measurements, but magnetic cleanliness procedures for the ROSETTA lander magnetic field experiment is discussed too. We consider not only disturbing magnetic field

K. Schwingenschuh; G. Prattes; M. Delva; H. U. Eichelberger; G. Berghofer; W. Magnes; M. Vellante; P. Nenovski; V. Wesztergom; H. U. Auster; K.-H. Fornacon

2012-01-01

389

Casimir effect in external magnetic field  

E-print Network

In this paper we examine the Casimir effect for charged fields in presence of external magnetic field. We consider scalar field (connected with spinless particles) and the Dirac field (connected with 1/2-spin particles). In both cases we describe quantum field using the canonical formalism. We obtain vacuum energy by direct solving field equations and using the mode summation method. In order to compute the renormalized vacuum energy we use the Abel-Plana formula.

Marcin Ostrowski

2005-04-13

390

A Large Volume Double Channel 1H-X RF Probe for Hyperpolarized Magnetic Resonance at 0.0475 Tesla  

PubMed Central

In this work we describe a large volume 340 mL 1H-X magnetic resonance (MR) probe for studies of hyperpolarized compounds at 0.0475 T. 1H/13C and 1H/15N probe configurations are demonstrated with the potential for extension to 1H/129Xe. The primary applications of this probe are preparation and quality assurance of 13C and 15N hyperpolarized contrast agents using PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) and other parahydrogen-based methods of hyperpolarization. The probe is efficient and permits 62 ?s 13C excitation pulses at 5.3 Watts, making it suitable for portable operation. The sensitivity and detection limits of this probe, tuned to 13C, are compared with a commercial radio frequency (RF) coil operating at 4.7 T. We demonstrate that low field MR of hyperpolarized contrast agents could be as sensitive as conventional high field detection and outline potential improvements and optimization of the probe design for preclinical in vivo MRI. PASADENA application of this low-power probe is exemplified with 13C hyperpolarized 2-hydroxyethyl propionate-1-13C,2,3,3-d3. PMID:22706029

Coffey, Aaron M.; Shchepin, Roman V.; Wilkens, Ken; Waddell, Kevin W.; Chekmenev, Eduard Y.

2012-01-01

391

Magnetic fields in noninvasive brain stimulation.  

PubMed

The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

2014-04-01

392

Magnetic monopole field exposed by electrons  

E-print Network

Magnetic monopoles have provided a rich field of study, leading to a wide area of research in particle physics, solid state physics, ultra-cold gases, superconductors, cosmology, and gauge theory. So far, no true magnetic monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the central results of quantum physics, shows however, that an effective monopole field can be produced. Understanding the effects of such a monopole field on its surroundings is crucial to its observation and provides a better grasp of fundamental physical theory. We realize the diffraction of fast electrons at a magnetic monopole field generated by a nanoscopic magnetized ferromagnetic needle. Previous studies have been limited to theoretical semiclassical optical calculations of the motion of electrons in such a monopole field. Solid state systems like the recently studied 'spin ice' provide a constrained system to study similar fields, but make it impossible to separate the monopole from the material. Free space ...

Béché, A; Van Tendeloo, G; Verbeeck, J

2013-01-01

393

Origin of magnetic fields in galaxies  

SciTech Connect

Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation -dissipation theorem, predicts {approx}0.034 {mu}G fields over {approx}0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation-dissipation theorem are not completely random, microgauss fields over regions > or approx. 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in < or approx. 10{sup 9} years in high redshift galaxies.

Souza, Rafael S. de; Opher, Reuven [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)

2010-03-15

394

Modeling solar force-free magnetic fields  

NASA Astrophysics Data System (ADS)

A class of nonlinear force-free magnetic fields is presented, described in terms of the solutions to a second-order, nonlinear ordinary differential equation. These magnetic fields are three-dimensional, filling the infinite half-space above a plane where the lines of force are anchored. They model the magnetic fields of the sun over active regions with a striking geometric realism. The total energy and the free energy associated with the electric current are finite and can be calculated directly from the magnetic field at the plane boundary using the virial theorem. In the study of solar magnetic fields with data from vector magnetographs, there is a long-standing interest in devising algorithms to extrapolate for the force-free magnetic field in a given domain from prescribed field values at the boundary. The closed-form magnetic fields of this paper open up an opportunity for testing the reliability and accuracy of algorithms that claim the capability of performing this extrapolation. The extrapolation procedure as an ill-posed mathematical problem is discussed.

Low, B. C.; Lou, Y. Q.

1990-03-01

395

Magnetic-field-controlled reconfigurable semiconductor logic.  

PubMed

Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices. PMID:23364687

Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

2013-02-01

396

The Measurement of Magnetic Fields  

ERIC Educational Resources Information Center

Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

Berridge, H. J. J.

1973-01-01

397

AC Magnetic Susceptibility Probe for Use in a Commercial SQUID Magnetometer  

NASA Astrophysics Data System (ADS)

An AC magnetic susceptibility probe, employing a typical set of mutual inductance coils, has been constructed for operation in a commercial SQUID magnetometer operating down to 1.7 K and up to 7 T. The primary (˜1000 turns) and counterwound secondary (each ˜1300 turns) coils were wound with 44 AWG Cu wire on a Kapton tube possessing an ID of 6.4 mm. The ensemble of coils is ˜30 mm long and has an OD of 8.7 mm, thereby allowing clearance into the sample region of the SQUID magnetometer. One variation of the probe included optical fibers that passed down the center of the stainless steel support rod. The detection electronics involve a lock-in amplifier and the experiment is controlled by LabView software. Typical AC (1 Hz - 1 kHz) fields of ˜10 ?T afford the study of the temperature, frequency, and dc-field bias dependencies of magnetically interesting samples such as the spin ice material Ho2Ti2O7 [1] and nanoparticles of Prussian blue analogs [2].[1] M. Orend'ac et al., elsewhere in these proceedings.[2] D. M. Pajerowski, F. A. Frye, D. R. Talham, and M. W. Meisel, New J. Phys. 9 (2007) 222.

Cohen, J. D.; Pajerowski, D. M.; Meisel, M. W.

2009-03-01

398

QCD vacuum structure in strong magnetic fields  

Microsoft Academic Search

We study the response of the QCD vacuum to strong magnetic fields, using a potential model for the quark-antiquark interaction. We find that production of spin-polarized u¯ u pairs is energetically favorable for fields B > Bcrit ? 10 GeV2. We contrast the resulting uu condensate with the quark condensate which is present at zero magnetic field, and we estimate

Daniel Kabata; Kimyeong Leea; Erick Weinberg

399

Ohm's law for mean magnetic fields  

SciTech Connect

The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.

Boozer, A.H.

1986-05-01

400

Combined nonlinear-optical electric and magnetic field response in a cadmium manganese telluride crystal  

Microsoft Academic Search

Utilizing experimental results, which demonstrate the presence of both Faraday rotation and electric-field-induced linear birefringence in a diluted-magnetic-semiconductor crystal of cadmium manganese telluride (CMT), a single probe that is capable of sensing both electric and magnetic fields independently has been developed. A higher field sensitivity and greater accuracy are observed for the CMT crystal when compared to a lithium tantalate

Chia-Chu Chen; John F. Whitaker

2008-01-01

401

An Extraordinary Magnetic Field Map of Mars  

NASA Technical Reports Server (NTRS)

The Mars Global Surveyor spacecraft has completed two Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriguing in both its global distribution and geometric properties [2,3]. Measurements of the vector magnetic field have been used to map the magnetic field of crustal origin to high accuracy [4]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from > 2 full years of MGS night-side observations, and uses along-track filtering to greatly reduce noise due to external field variations.

Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.; Mitchell, D. L.; Lin, R. P.

2004-01-01

402

Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA-457Mv2 Hall Thruster  

NASA Technical Reports Server (NTRS)

In order to further the design of future high-power Hall thrusters and provide experimental validation for ongoing modeling efforts, plasma potential and Langmuir probe measurements were performed on the 50-kW NASA-457Mv2. An electrostatic probe array comprised of a near-field Faraday probe, single Langmuir probe, and emissive probe was used to interrogate the near-field plume from approximately 0.1 - 2.0 mean thruster diameters downstream of the thruster exit plane at the following operating conditions: 300 V, 400 V and 500 V at 30 kW and 500 V at 50 kW. Results have shown that the acceleration zone is limited to within 0.4 mean thruster diameters of the exit plane while the high-temperature region is limited to 0.25 mean thruster diameters from the exit plane at all four operating conditions. Maximum plasma potentials in the near-field at 300 and 400 V were approximately 50 V with respect to cathode potential, while maximum electron temperatures varied from 24 - 32 eV, depending on operating condition. Isothermal lines at all operating conditions were found to strongly resemble the magnetic field topology in the high-temperature regions. This distribution was found to create regions of high temperature and low density near the magnetic poles, indicating strong, thick sheath formation along these surfaces. The data taken from this study are considered valuable for future design as well as modeling validation.

Shastry, Rohit; Huang, Wensheng; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

2012-01-01

403

Plasma Potential and Langmuir Probe Measurements in the Near-Field Plume of the NASA-457Mv2 Hall Thruster  

NASA Technical Reports Server (NTRS)

In order to further the design of future high-power Hall thrusters and provide experimental validation for ongoing modeling efforts, plasma potential and Langmuir probe measurements were performed on the 50-kW NASA-457Mv2. An electrostatic probe array comprised of a near-field Faraday probe, single Langmuir probe, and emissive probe was used to interrogate the near-field plume from approximately 0.1 ? 2.0 mean thruster diameters downstream of the thruster exit plane at the following operating conditions: 300 V, 400 V and 500 V at 30 kW and 500 V at 50 kW. Results have shown that the acceleration zone is limited to within 0.4 mean thruster diameters of the exit plane while the high-temperature region is limited to 0.25 mean thruster diameters from the exit plane at all four operating conditions. Maximum plasma potentials in the near-field at 300 and 400 V were approximately 50 V with respect to cathode potential, while maximum electron temperatures varied from 24 ? 32 eV, depending on operating condition. Isothermal lines at all operating conditions were found to strongly resemble the magnetic field topology in the high-temperature regions. This distribution was found to create regions of high temperature and low density near the magnetic poles, indicating strong, thick sheath formation along these surfaces. The data taken from this study are considered valuable for future design as well as modeling validation.

Shastry, Rohit; Huang, Wensheng; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

2012-01-01

404

Ultrafast heating and magnetic switching with weak external magnetic field  

NASA Astrophysics Data System (ADS)

The TbFeCo magneto-optical media with the coercivity of bigger than 1.0 kOe are used for the investigation of ultrafast heating and magnetic switching with the weak external magnetic field. It has been found that the laser-induced active region becomes larger with an external magnetic field because the boundary of the active region is magnetized with the assistance of the external field during the ultrafast heating. According to this physical phenomenon, the so called "mark expansion method" has been proposed for visual observation of ultrafast switching marks. Using this method, the ultrafast magnetic switching in TbFeCo media has been studied using 40 fs laser pulse with linear polarization. The result shows that the ultrafast magnetic switching can be implemented by the laser pulse with assistance of the weak external field of about 0.7 kOe. Further studies show that the area percentage of the magnetic mark expansion relative to its thermal mark decreases with the increasing of the laser pulse energy. There exists the threshold pulse energy that the active region is fully magnetized. The theoretical analysis of electron, spin, and lattice temperatures has been conducted to the active region of the media where the maximum spin temperature is close to the Curie temperature of the media. The result indicates that the media become active at 4.137 ps and the ultrafast heating plays a key role for the ultrafast magnetic switching. The weak external magnetic field provides sufficient driving force to control the magnetization direction in the media.

Li, J. M.; Xu, B. X.; Zhang, J.; Ye, K. D.

2013-01-01

405

Internal Magnetic Field Measurement on C-2 FRC Plasma  

NASA Astrophysics Data System (ADS)

Three-axis internal magnetic probes are being developed to measure simultaneously Bz, Bt and Br of a field-reversed configuration (FRC) plasma from the geometric axis (r=0) to outside of the separatrix in C-2. The probe assembly consists of 30 commercial chip-inductors (10 different radial positions of each field-component with 5 cm apart), OD˜0.25'' stainless-steel tube with 5-mil wall for the vacuum boundary, and interlocking Boron-Nitride jackets as a plasma facing material. In C-2, it is important to understand field-structure of FRC plasma during translation and colliding two-FRCs in the confinement section as well as the equilibrium/quiescent phase. With 6-chord interferometry located in the midplane of C-2, the internal structure of FRC can be compared and discussed by using a rigid-rotor profile model for the field and the density of FRCs. The preliminary result of internal field measurements will be presented at the meeting as well as the detailed probe design.

Gota, Hiroshi; Knapp, Kurt; Deng, Bihe; Thompson, Matthew; Tuszewski, Michel; van Drie, Alan

2010-11-01

406

Real-time magnetic nanothermometry: The use of magnetization of magnetic nanoparticles assessed under low frequency triangle-wave magnetic fields  

NASA Astrophysics Data System (ADS)

In this study, we propose and demonstrate the usefulness of employing time-varying magnetization of a magnetic nanoparticle (MNP) based sample, induced by low frequency (f = 25 Hz) triangular-wave magnetic field, to achieve the approach of real-time recording of magnetization curve, which allows precise and noninvasive temperature probing with real-time performance. Moreover, the present report introduces the design and performed the test of a detection system for accurate and real-time recording of the magnetization curve of MNP-based samples. We found that by employing the magnetization curve of a magnetic fluid sample containing magnetite nanoparticles of about 30 nm in diameter the accuracy of the temperature probing is about 0.32 K (0.1% relative accuracy), with response time of 1 s. Furthermore, an increase in response time from 1 to 8 s improves the accuracy of temperature probing from 0.32 to 0.20 K. Finally, we envisage that breakthroughs in clinical hyperthermia, targeted drug delivery and basic cell research can be accomplished while using the approach reported in this study.

Zhong, Jing; Liu, Wenzhong; Jiang, Ling; Yang, Ming; Morais, Paulo Cesar

2014-09-01

407

Tuning permanent magnets with adjustable field clamps  

SciTech Connect

The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius.

Schermer, R.I.

1987-01-01

408

Particle Transport in Therapeutic Magnetic Fields  

NASA Astrophysics Data System (ADS)

Iron oxide magnetic nanoparticles, in ferrofluids or as magnetic microspheres, offer magnetic maneuverability, biochemical surface functionalization, and magnetic relaxation under the influence of an alternating field. The use of these properties for clinical applications requires an understanding of particles, forces, and scalar transport at various length scales. This review explains the behavior of magnetic nano- and microparticles during magnetic drug targeting and magnetic fluid hyperthermia, and the microfluidic transport of these particles in bioMEMS (biomedical microelectromechanical systems) devices for ex vivo therapeutic and diagnostic applications. Magnetic particle transport, the momentum interaction of these particles with a host fluid in a flow, and thermal transport in a particle-infused tissue are characterized through the governing electrodynamic, hydrodynamic, and scalar transport equations.

Puri, Ishwar K.; Ganguly, Ranjan

2014-01-01

409

Achieving Atomic Resolution Magnetic Dichroism by Controlling the Phase Symmetry of an Electron Probe  

NASA Astrophysics Data System (ADS)

The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase distribution using the aberration-corrected optics of a scanning transmission electron microscope. The required phase distribution of the probe depends on the magnetic symmetry and crystal structure of the sample. The calculations indicate that EMCD signals utilizing the phase of the electron probe are as strong as those obtained by nanodiffraction methods.

Rusz, Ján; Idrobo, Juan-Carlos; Bhowmick, Somnath

2014-10-01

410

Prediction of DC magnetic fields for magnetic cleanliness on spacecraft  

Microsoft Academic Search

Magnetometry is among the most used techniques in space exploration, e.g. to study complex plasma interactions between the solar wind and the Earth's magnetosphere, to map the planetary or interplanetary magnetic fields, or to retrieve information about the structural composition of planets. The success of each mission relies on the attainment of an adequate level of magnetic cleanliness at the

Axel Junge; Filippo Marliani

2011-01-01

411

Magnetic reconnection at the edge of Uranus's magnetic field  

NASA Astrophysics Data System (ADS)

A new modeling study sheds light on how the magnetosphere of Uranus compares to those of other planets. Magnetospheres around the inner planets Mercury and Earth are primarily driven by the solar wind—the charged particles spewed out from the Sun—through magnetic reconnection, in which the planet's magnetic field lines break and reconnect, releasing energy in the process.

Balcerak, Ernie

2014-09-01

412

An investigation of receiver probe development for magnetic resonance microscopy  

E-print Network

of the magnetic field directly above a conductor . . 38 3. 5 Flowchart for measurement of current distribution. . . . . 39 3. 6 Diagram of the measurement system. 40 3. 7 Measured and calculated mutual impedances at 63 MHz for the b) loop- loop, c) butterfly-butterfly..., and d) loop-butterfly configurations shown in a). . . . . . . . . . . . 43 3. 8 Measured mutual reactance a) surface and b) contour data and calculated mutual reactance c) surface and d) contour data for the loop-butterfly configuration at 63 MHz 45...

Boyer, Jeffrey Scott

2012-06-07

413

Melt textured YBCO: High trapped fields and superconducting magnetic bearing  

SciTech Connect

Bulk melt textured YBCO samples in the shape of discs were prepared by a top seeding method using Sm-123 crystals. The field distribution of the trapped field on the surface of the samples was measured at 77 K by means of a Hall probe. In single grains with diameter of 20 mm the trapped field reached maximum values up to 0.56 T at 77 K. Investigating the temperature dependence of the maximum trapped field, a value of 5.5 T at 30 K was found for the best sample. At the same temperature, degradation of the trapped field by a factor of about 10 was observed for a second sample after field cooling in a field of 7 T. This degradation is explained by damage to the sample due to magnetic stresses. At the centre of the sample a magnetic stress of 11 MPa is estimated to be responsible for this damage. Additionally YBCO material has been tested in a high speed motor with superconducting magnetic bearings (SMB) in order to demonstrate the passive stabilization properties of SMB. In first tests the shaft rotated with a speed of 12,000 rpm limited by air drag.

Stoye, P.; Fuchs, G.; Krabbes, G.; Schaetzle, P. [Institut fuer Festkoerper- und Werkstofforschung, Dresden (Germany)] [and others

1996-12-01

414

Magnetic field induced transition in vanadium spinels.  

PubMed

We study vanadium spinels AV2O4 (A = Cd,Mg) in pulsed magnetic fields up to 65 T. A jump in magnetization at ?0H?40??T is observed in the single-crystal MgV2O4, indicating a field induced quantum phase transition between two distinct magnetic orders. In the multiferroic CdV2O4, the field induced transition is accompanied by a suppression of the electric polarization. By modeling the magnetic properties in the presence of strong spin-orbit coupling characteristic of vanadium spinels, we show that both features of the field induced transition can be successfully explained by including the effects of the local trigonal crystal field. PMID:24483929

Mun, E D; Chern, Gia-Wei; Pardo, V; Rivadulla, F; Sinclair, R; Zhou, H D; Zapf, V S; Batista, C D

2014-01-10

415

Velocity-Magnetic Field Correlation of Pulsars  

NASA Astrophysics Data System (ADS)

Monte Carlo simulations of the evolution of pulsars are carried out in order to compare with the recent measurement of the pulsar transverse velocity by Lyne & Lorimer (1994). The new electron density distribution model of Taylor & Cordes (1993) is adopted in the simulation. Accurate pulsar o rbits in the Galactic gravitational field are calculated. It is found that the constant magnetic field model of pulsars can account for the new measurement of the pulsar transverse velocity, and the apparent correlat ion between the strength of the magnetic field and the transverse velocity of the pulsars. The present finding confirms the validity of the constant magnetic field model of pulsars, and consolidates the idea that the app arent correlation between the strength of the magnetic field and the transverse velocity of the pulsars is cau sed by observational selection effects.

Itoh, N.; Kotouda, T.

416

ASYMMETRIC DIFFUSION OF MAGNETIC FIELD LINES  

SciTech Connect

Stochasticity of magnetic field lines is important for particle transport properties. Magnetic field lines separate faster than diffusively in turbulent plasma, which is called superdiffusion. We discovered that this superdiffusion is pronouncedly asymmetric, so that the separation of field lines along the magnetic field direction is different from the separation in the opposite direction. While the symmetry of the flow is broken by the so-called imbalance or cross-helicity, the difference between forward and backward diffusion is not directly due to imbalance, but a non-trivial consequence of both imbalance and non-reversibility of turbulence. The asymmetric diffusion perpendicular to the mean magnetic field entails a variety of new physical phenomena, such as the production of parallel particle streaming in the presence of perpendicular particle gradients. Such streaming and associated instabilities could be significant for particle transport in laboratory, space, and astrophysical plasmas.

Beresnyak, Andrey [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2013-04-20

417

Normal glow discharge in axial magnetic field  

NASA Astrophysics Data System (ADS)

Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1–5 Torr, emf of power supply 1–2 kV, and magnetic field induction B = 0–0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

Surzhikov, S.; Shang, J.

2014-10-01

418

Gravity Probe C(lock) - Probing the gravitomagnetic field of the Earth by means of a clock experiment  

E-print Network

We outline a mission with the aim of directly detecting the gravitomagnetic field of the Earth. This mission is called Gravity Probe C. Gravity Probe C(lock) is based on a recently discovered and surprisingly large gravitomagnetic clock effect. The main idea is to compare the proper time of two standard clocks in direct and retrograde orbits around the Earth. After one orbit the proper time difference of two such clocks is predicted to be of the order of $2\\times 10^{-7}$ s. The conceptual difficulty to perform Gravity Probe C is expected to be comparable to that of the Gravity Probe B--mission.

Frank Gronwald; Eleonora Gruber; Herbert Lichtenegger; Roland A. Puntigam

1997-12-11

419

Tracing Magnetic Fields by Atomic Alignment in Extended Radiation Fields  

E-print Network

Tracing magnetic fields is crucial as magnetic fields play an important role in many astrophysical processes. Earlier studies have demonstrated that Ground State Alignment (GSA) is a unique way to detect weak magnetic fields (1G> B> 1exp(-15)G) in diffuse media, they consider the situation when the pumping source is a point source, which applies when the star is very far away from the diffuse media. In this paper, we explore the GSA in the presence of extended radiation fields. For the radiation fields with a clear geometric structure, we consider the alignment in circumstellar medium, binary systems, disc, and Local Interstellar Medium (LISM). For the radiation fields with unidentified pumping sources, we apply the method of multipole expansion and discuss the GSA induced by each component. We demonstrate that for general radiation fields, it is adequate to consider the contribution from dipole and quadrupole radiation components. We find that in general polarization of absorption arizing from GSA coincides ...

Zhang, Heshou; Dong, Le

2014-01-01

420

Quantum Electrodynamics in a Uniform Magnetic Field  

E-print Network

A systematic formalism for quantum electrodynamics in a classical uniform magnetic field is discussed. The first order radiative correction to the ground state energy of an electron is calculated. This then leads to the anomalous magnetic moment of an electron without divergent integrals. Thorough analyses of this problem are given for the weak magnetic field limit. A new expression for the radiative correction to the ground state energy is obtained. This contains only one integral with an additional summation with respect to each Landau level. The importance of this formalism is also addressed in order to deal with quantum electrodynamics in an intense external field.

Jun Suzuki

2005-12-28

421

Magnetic fields from second-order interactions  

E-print Network

It is well known that when two types of perturbations interact in cosmological perturbation theory, the interaction may lead to the generation of a third type. In this article we discuss the generation of magnetic fields from such interactions. We determine conditions under which the interaction of a first-order magnetic field with a first-order scalar-or vector-, or tensor-perturbations would lead to the generation of second order magnetic field. The analysis is done in a covariant-index-free approach, but could be done in the standard covariant indexed-approach.

Bob Osano

2014-03-21

422

Joule heating in high magnetic field pulsars  

E-print Network

We study the efficiency of Joule heating in the crustal layers of young neutron stars. It is shown that dissipation of the magnetic field is highly inhomogeneous in the crust with much faster dissipation in relatively low density layers. In young neutron stars, the rate of Joule heating in the crust can exceed the standard luminosity of non-magnetic star and can even be comparable to the luminosity of magnetars. The results of calculations are compared with the available observational data. We argue that the crustal field model can well account for the data on the surface temperature and magnetic field of young neutron stars.

Urpin, V

2008-01-01