Science.gov

Sample records for magnetic field probe

  1. Behavior of a Single Langmuir Probe in a Magnetic Field.

    ERIC Educational Resources Information Center

    Pytlinski, J. T.; And Others

    1978-01-01

    Describes an experiment to demonstrate the influence of a magnetic field on the behavior of a single Langmuir probe. The experiment introduces the student to magnetically supported plasma and particle behavior in a magnetic field. (GA)

  2. Micromagnetic simulation of CNT-MFM probes under magnetic field

    NASA Astrophysics Data System (ADS)

    Manago, Takashi; Asada, Hironori; Kuramochi, Hiromi

    2013-06-01

    On the ferromagnetic-film-coated carbon nanotube for a magnetic force microscope (CNT-MFM) probe, the stability of the magnetic structure in an external magnetic field was investigated using a three-dimensional micromagnetic simulation. When a magnetic field was applied along the longitudinal direction, in the direction opposite that of the magnetization of the probe, the direction of the magnetic moments of the probe remained the same up to -200 mT and then reversed all at once. When a magnetic field was applied along horizontal direction, the direction of the magnetic moments gradually tilts with increasing field. MFM observations seem to be possible for magnetic fields up to 100 ˜ 150 mT, judging from the magnetic structure of the probe. In contrast, the magnetic structures of pyramidal probes show vortex-like magnetic structure and low tolerance to an external magnetic field. The CNT-MFM probe is relatively robust under an external magnetic field due to the strong shape anisotropy attributed to its cylindrical shape.

  3. Field measuring probe for SSC (Superconducting Super Collider) magnets

    SciTech Connect

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-03-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage. Digital voltmeters are used to digitize the voltages from the rotating coil and several custom circuits control motor speeds in the probe. The overall diameter of the probe is approximately 2 cm and its length is 2.4 m; the field sensitive windings are 0.6 m in length.

  4. Magnetic force microscopy measurements in external magnetic fields—comparison between coated probes and an iron filled carbon nanotube probe

    NASA Astrophysics Data System (ADS)

    Wolny, F.; Mühl, T.; Weissker, U.; Leonhardt, A.; Wolff, U.; Givord, D.; Büchner, B.

    2010-07-01

    We performed magnetic force microscopy (MFM) measurements in external magnetic fields parallel to the sample plane to qualitatively study their effect on the magnetization of different kinds of MFM probes. As a test structure we used an array of rectangular ferromagnetic thin film elements aligned with the external magnetic field direction. MFM images were taken while the field was increased stepwise to monitor the onset of a tilt in the MFM probe magnetization. Three different probes were investigated: a conventional pyramidal probe coated with 40 nm of CoCrTa, a coated high aspect ratio MFM probe, and a MFM probe based on an iron filled carbon nanotube (FeCNT). The results show that the magnetization of the pyramidal probe is only stable in in-plane fields of up to ˜60 mT, in larger fields a considerable in-plane component of the tip magnetization is observed. This makes it difficult to distinguish the effect of the external field on the sample from those on the MFM probe. The coated high aspect ratio probe is at first stable up to ˜200 mT and then shows a history dependent behavior, in the second sweep the onset of the magnetization tilt is already visible at ˜100 mT. With the FeCNT probe, no tilt of the probe magnetization could be observed in in-plane fields up to the experimental limit of 230 mT. Due to the large shape anisotropy of the enclosed iron nanowire its direction of magnetization stays mainly oriented along the long axis even in moderate fields that deviate from this easy axis. Consequently, this probe is best suited for MFM measurements in external fields.

  5. Ultralow Magnetic Fields and Gravity Probe B Gyroscope Readout

    NASA Astrophysics Data System (ADS)

    Mester, J. C.; Lockhart, J. M.; Muhlfelder, B.; Murray, D. O.; Taber, M. A.

    We describe the generation of an ultralow magnetic field of < 10-11Tesla in the flight dewar of the Gravity Probe B Relativity Mission. The field was achieved using expanded-superconducting-shield techniques and is maintained with the aid of a magnetic materials control program. A high performance magnetic shield system is required for the proper function of gyroscope readout. The readout system employs a dc SQUID to measure the London moment generated by the superconducting gyro rotor in order to resolve sub-milliarcsecond changes in the gyro spin direction. In addition to a low residual dc magnetic field, attenuation of external field variation is required to be 1012 at the gyro positions. We discuss the measurement of the dc magnetic field and ac attenuation factor and the performance of the readout system

  6. Analysis of magnetic field plasma interactions using microparticles as probes.

    PubMed

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin S; Hyde, Truell W

    2015-08-01

    The interaction between a magnetic field and plasma close to a nonconductive surface is of interest for both science and technology. In space, crustal magnetic fields on celestial bodies without atmosphere can interact with the solar wind. In advanced technologies such as those used in fusion or spaceflight, magnetic fields can be used to either control a plasma or protect surfaces exposed to the high heat loads produced by plasma. In this paper, a method will be discussed for investigating magnetic field plasma interactions close to a nonconductive surface inside a Gaseous Electronics Conference reference cell employing dust particles as probes. To accomplish this, a magnet covered by a glass plate was exposed to a low power argon plasma. The magnetic field was strong enough to magnetize the electrons, while not directly impacting the dynamics of the ions or the dust particles used for diagnostics. In order to investigate the interaction of the plasma with the magnetic field and the nonconductive surface, micron-sized dust particles were introduced into the plasma and their trajectories were recorded with a high-speed camera. Based on the resulting particle trajectories, the accelerations of the dust particles were determined and acceleration maps over the field of view were generated which are representative of the forces acting on the particles. The results show that the magnetic field is responsible for the development of strong electric fields in the plasma, in both horizontal and vertical directions, leading to complex motion of the dust particles. PMID:26382535

  7. Analysis of magnetic field plasma interactions using microparticles as probes

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin S.; Hyde, Truell W.

    2015-08-01

    The interaction between a magnetic field and plasma close to a nonconductive surface is of interest for both science and technology. In space, crustal magnetic fields on celestial bodies without atmosphere can interact with the solar wind. In advanced technologies such as those used in fusion or spaceflight, magnetic fields can be used to either control a plasma or protect surfaces exposed to the high heat loads produced by plasma. In this paper, a method will be discussed for investigating magnetic field plasma interactions close to a nonconductive surface inside a Gaseous Electronics Conference reference cell employing dust particles as probes. To accomplish this, a magnet covered by a glass plate was exposed to a low power argon plasma. The magnetic field was strong enough to magnetize the electrons, while not directly impacting the dynamics of the ions or the dust particles used for diagnostics. In order to investigate the interaction of the plasma with the magnetic field and the nonconductive surface, micron-sized dust particles were introduced into the plasma and their trajectories were recorded with a high-speed camera. Based on the resulting particle trajectories, the accelerations of the dust particles were determined and acceleration maps over the field of view were generated which are representative of the forces acting on the particles. The results show that the magnetic field is responsible for the development of strong electric fields in the plasma, in both horizontal and vertical directions, leading to complex motion of the dust particles.

  8. PROBING PRIMORDIAL MAGNETIC FIELDS USING Ly{alpha} CLOUDS

    SciTech Connect

    Pandey, Kanhaiya L.; Sethi, Shiv K.

    2013-01-01

    From previous studies of the effect of primordial magnetic fields on early structure formation, we know that the presence of primordial magnetic fields during early structure formation could induce more perturbations at small scales (at present 1-10 h {sup -1} Mpc) as compared to the usual {Lambda}CDM theory. Matter power spectra over these scales are effectively probed by cosmological observables such as shear correlation and Ly{alpha} clouds. In this paper we discuss the implications of primordial magnetic fields on the distribution of Ly{alpha} clouds. We simulate the line-of-sight density fluctuation including the contribution coming from the primordial magnetic fields. We compute the evolution of Ly{alpha} opacity for this case and compare our theoretical estimates of Ly{alpha} opacity with the existing data to constrain the parameters of the primordial magnetic fields. We also discuss the case when the two density fields are correlated. Our analysis yields an upper bound of roughly 0.3-0.6 nG on the magnetic field strength for a range of nearly scale-invariant models, corresponding to a magnetic field power spectrum index n {approx_equal} -3.

  9. Miniature Magnetic Field Probes For Use in High Temperature Plasmas

    E-print Network

    Washington at Seattle, University of

    melting temperature, is the material thermal conductivity, is the material density, c is the material magnetic probes consisting of windings placed directly into fairly large stainless steel or quartz housings

  10. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    SciTech Connect

    Velas, K. M.; Milroy, R. D.

    2014-01-15

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub ?}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10?kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.

  11. Standard Practices for Usage of Inductive Magnetic Field Probes with Application to Electric Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Hill, Carrie S.; Turchi, Peter J.; Burton, Rodney L.; Messer, Sarah; Lovberg, Ralph H.; Hallock, Ashley K.

    2013-01-01

    Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are often employed to perform field measurements in electric propulsion applications where there are time-varying fields. Magnetic field probes provide the means to measure these magnetic fields and can even be used to measure the plasma current density indirectly through the application of Ampere's law. Measurements of this type can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. Results of the development of a standard for B-dot probe measurements are presented, condensing the available literature on the subject into an accessible set of rules, guidelines, and techniques to standardize the performance and presentation of future measurements.

  12. Pulsed field probe of real time magnetization dynamics in magnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Foulkes, T.; Syed, M.; Taplin, T.

    2015-05-01

    Magnetic nanoparticles (MNPs) are extensively used in biotechnology. These applications rely on magnetic properties that are a keen function of MNP size, distribution, and shape. Various magneto-optical techniques, including Faraday Rotation (FR), Cotton-Mouton Effect, etc., have been employed to characterize magnetic properties of MNPs. Generally, these measurements employ AC or DC fields. In this work, we describe the results from a FR setup that uses pulsed magnetic fields and an analysis technique that makes use of the entire pulse shape to investigate size distribution and shape anisotropy. The setup employs a light source, polarizing components, and a detector that are used to measure the rotation of light from a sample that is subjected to a pulsed magnetic field. This magnetic field "snapshot" is recorded alongside the intensity pulse of the sample's response. This side by side comparison yields useful information about the real time magnetization dynamics of the system being probed. The setup is highly flexible with variable control of pulse length and peak magnitude. Examining the raw data for the response of bare Fe3O4 and hybrid Au and Fe3O4 nanorods reveals interesting information about Brownian relaxation and the hydrodynamic size of these nanorods. This analysis exploits the self-referencing nature of this measurement to highlight the impact of an applied field on creating a field induced transparency for a longitudinal measurement. Possible sources for this behavior include shape anisotropy and field assisted aggregate formation.

  13. Probing correlations of early magnetic fields using ?-distortion

    SciTech Connect

    Ganc, Jonathan; Sloth, Martin S. E-mail: sloth@cp3.dias.sdu.dk

    2014-08-01

    The damping of a non-uniform magnetic field between the redshifts of about 10{sup 4} and 10{sup 6} injects energy into the photon-baryon plasma and causes the CMB to deviate from a perfect blackbody spectrum, producing a so-called ?-distortion. We can calculate the correlation (? T) of this distortion with the temperature anisotropy T of the CMB to search for a correlation ( B{sup 2}?) between the magnetic field B and the curvature perturbation ?; knowing the ( B{sup 2}?) correlation would help us distinguish between different models of magnetogenesis. Since the perturbations which produce the ?-distortion will be much smaller scale than the relevant density perturbations, the observation of this correlation is sensitive to the squeezed limit of ( B{sup 2}?), which is naturally parameterized by b{sub NL} (a parameter defined analogously to f{sub NL}). We find that a PIXIE-like CMB experiments has a signal to noise S/N? 1.0 × b{sub NL} ( B-tilde {sub ?}/10nG){sup 2}, where B-tilde {sub ?} is the magnetic field's strength on ?-distortion scales normalized to today's redshift; thus, a 10 nG field would be detectable with b{sub NL}=O(1). However, if the field is of inflationary origin, we generically expect it to be accompanied by a curvature bispectrum (?{sup 3}) induced by the magnetic field. For sufficiently small magnetic fields, the signal ( B{sup 2} ?) will dominate, but for B-tilde {sub ?}?> 1 nG, one would have to consider the specifics of the inflationary magnetogenesis model. We also discuss the potential post-magnetogenesis sources of a ( B{sup 2}?) correlation and explain why there will be no contribution from the evolution of the magnetic field in response to the curvature perturbation.

  14. Miniature-probe measurements of electric fields induced by 60 Hz magnetic fields in rats

    SciTech Connect

    Miller, D.L.

    1996-12-01

    Extremely-low-frequency (ELF) magnetic fields interact with an animal by inducing internal electric fields, which represent the internal dose from an external exposure. In this study, an electric field probe of approximately 2 mm resolution was used to measure fields induced in rate carcasses by a 60 Hz magnetic field at 1 mT. With the rat lying on its side, the probe was inserted through a small hole in the body wall, and scanned at 5 mm increments from the side with frontal and axial exposure (field horizontal) and from the front with lateral exposure (field vertical). The induced electric field declined from a maximum at the entrance to the abdomen and crossed zero to negative (180{degree} phase shift) values within the body as expected. In general, the magnitudes of the measurements inside the abdomen were less than expected from whole-body calculations that used homogeneous-ellipsoidal models of a rate in the three orientations. The low measurements did not appear to be explained by perpendicular field components, by conductivity differences between the tissue and the probe path, or by air in the lungs. The low measurements probably result from inhomogeneities in actual rats that include conductivity differences between tissues and biological membranes. For example, an alternative model considered the abdominal cavity to be electrically isolated from the body by the diaphragm and the peritoneum and calculations from this model were in better agreement with the measurements inside the abdomen (than were the whole-body calculations). Therefore, inhomogeneities in conductivity and biomembranes such as the peritoneum should be considered in order to fully understand ELF-induced field dosimetry.

  15. Magnification bias as a novel probe for primordial magnetic fields

    SciTech Connect

    Camera, S.; Fedeli, C.; Moscardini, L. E-mail: cosimo.fedeli@oabo.inaf.it

    2014-03-01

    In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation, galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 5 × 10{sup ?4} nG for values of the PMF power spectral index n{sub B} ? 0.

  16. Effect of magnetic field on dust charging and corresponding probe measurement

    NASA Astrophysics Data System (ADS)

    Kalita, D.; Kakati, B.; Saikia, B. K.; Bandyopadhyay, M.; Kausik, S. S.

    2015-11-01

    The effect of external magnetic field on the Langmuir probe measurement and dust charging are studied in low-pressure hydrogen plasma. The experiment is performed in a dusty plasma device where plasma is created by the hot cathode filament discharge technique. A strong Strontium ferrite magnet is used inside the plasma, near the dust zone. The plasma parameters are measured at different distances from the magnet with the help of Langmuir probe system. It is observed that even at "low magnetic field case," where rLe?rP , rLi>>rP ; the electron collection by the probe deviates strongly from the actual value, until rLe?10 rP . The observations of electron energy probability function show that at higher magnetic field, the Langmuir probe collects only the higher energy electrons compared to the low energy electrons. Both Quasi-neutrality condition and capacitance model are used separately to calculate the charge accumulated on the dust grain. Introducing the reduction factor on quasi-neutrality condition, it is observed that the influence of magnetic field on dust charge is almost negligible for "low magnetic field" case. The dust charge calculated from quasi-neutrality condition matches well with the experimentally observed dust current results, within the experimental error range. However, capacitance model deviates from the experimental results at higher magnetic field.

  17. Modified pulsar current analysis: probing magnetic field evolution

    E-print Network

    Igoshev, A P

    2014-01-01

    We use a modified pulsar current analysis to study magnetic field decay in radio pulsars. In our approach we analyse the flow, not along the spin period axis as has been performed in previous studies, but study the flow along the direction of growing characteristic age, $\\tau=P/(2\\dot P)$. We perform extensive tests of the method and find that in most of the cases it is able to uncover non-negligible magnetic field decay (more than a few tens of per cent during the studied range of ages) in normal radio pulsars for realistic initial properties of neutron stars. However, precise determination of the magnetic field decay timescale is not possible at present. The estimated timescale may differ by a factor of few for different sets of initial distributions of neutron star parameters. In addition, some combinations of initial distributions and/or selection effects can also mimic enhanced field decay. We apply our method to the observed sample of radio pulsars at distances $<10$ kpc in the range of characteristi...

  18. Standard Practices for Usage of Inductive Magnetic Field Probes with Application to Electric Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Hill, Carrie S.

    2013-01-01

    Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are useful for performing measurements in electric space thrusters and various plasma accelerator applications where a time-varying magnetic field is present. Magnetic field probes have proven to be a mainstay in diagnosing plasma thrusters where changes occur rapidly with respect to time, providing the means to measure the magnetic fields produced by time-varying currents and even an indirect measure of the plasma current density through the application of Ampère's law. Examples of applications where this measurement technique has been employed include pulsed plasma thrusters and quasi-steady magnetoplasmadynamic thrusters. The Electric Propulsion Technical Committee (EPTC) of the American Institute of Aeronautics and Astronautics (AIAA) was asked to assemble a Committee on Standards (CoS) for Electric Propulsion Testing. The assembled CoS was tasked with developing Standards and Recommended Practices for various diagnostic techniques used in the evaluation of plasma thrusters. These include measurements that can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. This paper presents a summary of the standard, describing the preferred methods for fabrication, calibration, and usage of inductive magnetic field probes for use in diagnosing plasma thrusters. Inductive magnetic field probes (also called B-dot probes throughout this document) are commonly used in electric propulsion (EP) research and testing to measure unsteady magnetic fields produced by time-varying currents. The B-dot probe is relatively simple in construction, and requires minimal cost, making it a low-cost technique that is readily accessible to most researchers. While relatively simple, the design of a B-dot probe is not trivial and there are many opportunities for errors in probe construction, calibration, and usage, and in the post-processing of data that is produced by the probe. There are typically several ways in which each of these steps can be approached, and different applications may require more or less vigorous attention to various issues.

  19. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    SciTech Connect

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in ?~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  20. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE PAGESBeta

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in ?~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore »and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less

  1. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    SciTech Connect

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V.; Dal Savio, C.; Karrai, K.; Dantelle, G.; Thiaville, A.; Rohart, S.

    2012-04-09

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  2. Versatile 4 K nuclear magnetic resonance probe and cryogenic system for small-bore high-field Bitter magnets

    NASA Astrophysics Data System (ADS)

    Reyes, A. P.; Bachman, H. N.; Halperin, W. P.

    1997-05-01

    A complete design for a versatile nuclear magnetic resonance cryostat/probe system specifically adapted for small 32 mm bore bitter magnets is described. The probe solves two main problems associated with constrained environments (1) high voltage arcing across cold tuned circuits in helium atmosphere and (2) loss of temperature control due to helium bubbles in a long Dewar tail at high fields. The probe implements a variable cold-tuned system with an evacuated space for tuning capacitors to avoid high voltage breakdown. The cryostat makes use of a unique counterflow design. The simple construction and disassembly ensures reliability and allows quick repair and replacement of parts.

  3. Modeling magnetic fields measured by surface probes embedded in a cylindrical flux conserver.

    PubMed

    Golingo, R P

    2007-03-01

    Calculating magnetic fields at the surface of a flux conserver, perfect conductor, for displaced plasma currents is useful for understanding modes of a Z-pinch. The magnetic fields measured at the flux conserver are a sum of the magnetic fields from the plasma current and the eddy currents which form in the walls to keep the flux constant. While the magnetic field at the wall from the plasma current alone is easily calculated using the Biot-Savart law, finding the eddy currents in the flux conserver which satisfy the boundary conditions can be a tedious process. A simple method of calculating the surface magnetic field for a given Z-pinch displacement off-axis is derived for a cylindrical flux conserver. This relationship does not require the explicit calculation of the eddy currents, saving time when analyzing surface magnetic probe measurements. Analytic expressions can be used to describe the surface magnetic field which increase the understanding of the magnetic probe measurements. PMID:17411182

  4. Magnetically driven filament probe

    SciTech Connect

    Schmid, A.; Herrmann, A.; Rohde, V.; Maraschek, M.; Mueller, H. W.

    2007-05-15

    A radially movable probe has been developed for studies of filamentary transport in ASDEX Upgrade during edge localized modes (ELMs) by means of Langmuir tips and magnetic pickup coils. The probe is permanently installed at the low field side in the ASDEX Upgrade vacuum vessel and is not subject to limitations in probe size, as, for example, probes on a shared manipulator are. The probe is moved by a magnetic drive, which allows for easy installation in the vessel, and has moderate machine requirements, as it will only require an electric feedthrough and an external power supply. The drive gives a linear motion with a radial range of 5 cm within 50 ms, where range and velocity can be largely scaled according to experimental requirements. The probe has been installed in the outer midplane of the ASDEX Upgrade vessel, where ELM filaments are expected to have their maximum amplitude. Filaments are coherent substructures within an ELM, carrying a fraction of the ELM released energy towards the wall. The new probe allows to measure the structure of these filaments, in particular, parameters such as filament rotation (by time delay measurements) and size (by peak width analysis). Activating the drive moves the probe from a safe position behind the limiter to a position in front of the limiters, i.e., exposes the Langmuir pins to the scrape-off layer plasma.

  5. PROBING THE LARGE-SCALE TOPOLOGY OF THE HELIOSPHERIC MAGNETIC FIELD USING JOVIAN ELECTRONS

    SciTech Connect

    Owens, M. J.; Horbury, T. S.; Arge, C. N.

    2010-05-10

    Jupiter's magnetosphere acts as a point source of near-relativistic electrons within the heliosphere. In this study, three solar cycles of Jovian electron data in near-Earth space are examined. Jovian electron intensity is found to peak for an ideal Parker spiral connection, but with considerable spread about this point. Assuming the peak in Jovian electron counts indicates the best magnetic connection to Jupiter, we find a clear trend for fast and slow solar wind to be over- and under-wound with respect to the ideal Parker spiral, respectively. This is shown to be well explained in terms of solar wind stream interactions. Thus, modulation of Jovian electrons by corotating interaction regions (CIRs) may primarily be the result of changing magnetic connection, rather than CIRs acting as barriers to cross-field diffusion. By using Jovian electrons to remote sensing magnetic connectivity with Jupiter's magnetosphere, we suggest that they provide a means to validate solar wind models between 1 and 5 AU, even when suitable in situ solar wind observations are not available. Furthermore, using Jovian electron observations as probes of heliospheric magnetic topology could provide insight into heliospheric magnetic field braiding and turbulence, as well as any systematic under-winding of the heliospheric magnetic field relative to the Parker spiral from footpoint motion of the magnetic field.

  6. BLAZAR HALOS AS PROBE FOR EXTRAGALACTIC MAGNETIC FIELDS AND MAXIMAL ACCELERATION ENERGY

    SciTech Connect

    Dolag, K.; Kachelriess, M.; Ostapchenko, S.; Tomas, R.

    2009-09-20

    High-energy photons from blazars interact within tens of kpc with the extragalactic photon background, initiating electromagnetic pair cascades. The charged component of such cascades is deflected by extragalactic magnetic fields (EGMFs), leading to halos even around initially point-like sources. We calculate the intensity profile of the resulting secondary high-energy photons for different assumptions on the initial source spectrum and the strength of the EGMF, employing also fields found earlier in a constrained simulation of structure formation including magnetohydrodynamics processes. We find that the observation of halos around blazars like Mrk 180 probes an interesting range of EGMF strengths and acceleration models: in particular, blazar halos test if the photon energy spectrum at the source extends beyond {approx}100 TeV and how anisotropic this high-energy component is emitted.

  7. Probing Magnetic Fields at the Base of the Solar Convection Zone with Meridional Flows

    NASA Astrophysics Data System (ADS)

    Liang, Zhi-Chao; Chou, Dean-Yi

    2015-08-01

    Solar magnetic fields are responsible for most of the activities on the Sun. Many theories predict that it is generated by a dynamo near the base of the convection zone (BCZ), located at 0.71{R}? . In this study, we use the solar-cycle variations of the meridional flow to probe magnetic field variations near the BCZ. A helioseismic time-distance method is used to measure the travel-time difference between opposite directions in meridional planes, which reflects the meridional flow at different depths. Two systematic effects, the surface magnetic effect and the center-to-limb effect, are removed. Using Solar and Heliospheric Observatory/Michelson Doppler Imager data, we measure the latitudinal distribution of travel-time difference for different travel distances, corresponding to meridional flow signals in the solar interior down to 0.54{R}? , over 15 years, including two solar minima and one maximum. The travel-time differences at the maximum and the minimum behave differently in three different depth ranges. The travel-time difference at the maximum is greater than that at the minimum above the BCZ, while it is smaller around the BCZ; both are close to zero below the BCZ. The difference in the travel-time difference between the maximum and the minimum changes about 0.1 s from the region above the BCZ to the region around the BCZ, corresponding to a change in flow velocity of about 10 m s-1 around the BCZ. We tend to attribute this change in the meridional flow to the variation in the magnetic field from the minimum to the maximum near the BCZ.

  8. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2013-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  9. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2012-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  10. Using the morphology and magnetic fields of tailed radio galaxies as environmental probes

    NASA Astrophysics Data System (ADS)

    Johnston-Hollitt, M.; Dehghan, S.; Pratley, L.

    2015-03-01

    Bent-tailed (BT) radio sources have long been known to trace over densities in the Universe up to z ~ 1 and there is increasing evidence this association persists out to redshifts of 2. The morphology of the jets in BT galaxies is primarily a function of the environment that they have resided in and so BTs provide invaluable clues as to their local conditions. Thus, not only can samples of BT galaxies be used as signposts of large-scale structure, but are also valuable for obtaining a statistical measurement of properties of the intra-cluster medium including the presence of cluster accretion shocks & winds, and as historical anemometers, preserving the dynamical history of their surroundings in their jets. We discuss the use of BTs to unveil large-scale structure and provide an example in which a BT was used to unlock the dynamical history of its host cluster. In addition to their use as density and dynamical indicators, BTs are useful probes of the magnetic field on their environment on scales which are inaccessible to other methods. Here we discuss a novel way in which a particular sub-class of BTs, the so-called `corkscrew' galaxies might further elucidate the coherence lengths of the magnetic fields in their vicinity. Given that BTs are estimated to make up a large population in next generation surveys we posit that the use of jets in this way could provide a unique source of environmental information for clusters and groups up to z = 2.

  11. Thermonuclear supernovae: probing magnetic fields by positrons and late-time IR line profiles

    SciTech Connect

    Penney, R.; Hoeflich, P. E-mail: rpenney@g.clemson.edu

    2014-11-01

    We show the importance of ? and positron transport for the formation of late-time spectra in Type Ia supernovae (SNe Ia). The goal is to study the imprint of magnetic fields (B) on late-time IR line profiles, particularly the [Fe II] feature at 1.644 ?m, which becomes prominent two to three months after the explosion. As a benchmark, we use the explosion of a Chandrasekhar mass (M {sub Ch}) white dwarf (WD) and, specifically, a delayed detonation model that can reproduce the light curves and spectra for a Branch-normal SN Ia. We assume WDs with initial magnetic surface fields between 1 and 10{sup 9} G. We discuss large-scale dipole and small-scale magnetic fields. We show that positron transport effects must be taken into account for the interpretation of emission features starting at about one to two years after maximum light, depending on the size of B. The [Fe II] line profile and its evolution with time can be understood in terms of the overall energy input by radioactive decay and the transition from a ?-ray to a positron-dominated regime. We find that the [Fe II] line at 1.644 ?m can be used to analyze the overall chemical and density structure of the exploding WD up to day 200 without considering B. At later times, positron transport and magnetic field effects become important. After about day 300, the line profile allows one to probe the size of the B-field. The profile becomes sensitive to the morphology of B at about day 500. In the presence of a large-scale dipole field, a broad line is produced in M {sub Ch} mass explosions that may appear flat-topped or rounded depending on the inclination at which the SN is observed. Small or no directional dependence of the spectra is found for small-scale B. We note that narrow-line profiles require central {sup 56}Ni as shown in our previous studies. Persistent broad-line, flat-topped profiles require high-density burning, which is the signature of a WD close to M {sub Ch}. Good time coverage is required to separate the effects of optical depth, the size and morphology of B, and the aspect angle of the observer. The spectra require a resolution of about 500 km s{sup –1} and a signal-to-noise ratio of about 20%. Two other strong near-IR spectral features at about 1.5 and 1.8 ?m are used to demonstrate the importance of line blending, which may invalidate a kinematic interpretation of emission lines. Flat-topped line profiles between 300 and 400 days have been observed and reported in the literature. They lend support for M {sub Ch} mass explosions in at least some cases and require magnetic fields equal to or in excess of 10{sup 6} G. We briefly discuss the effects of the size and morphology of B on light curves, as well as limitations. We argue that line profiles are a more direct measurement of B than light curves because they measure both the distribution of {sup 56}Ni and the redistribution of the energy input by positrons rather than the total energy input. Finally, we discuss possible mechanisms for the formation of high B-fields and the limitations of our analysis.

  12. Thermonuclear Supernovae: Probing Magnetic Fields by Positrons and Late-time IR Line Profiles

    NASA Astrophysics Data System (ADS)

    Penney, R.; Hoeflich, P.

    2014-11-01

    We show the importance of ? and positron transport for the formation of late-time spectra in Type Ia supernovae (SNe Ia). The goal is to study the imprint of magnetic fields (B) on late-time IR line profiles, particularly the [Fe II] feature at 1.644 ?m, which becomes prominent two to three months after the explosion. As a benchmark, we use the explosion of a Chandrasekhar mass (M Ch) white dwarf (WD) and, specifically, a delayed detonation model that can reproduce the light curves and spectra for a Branch-normal SN Ia. We assume WDs with initial magnetic surface fields between 1 and 109 G. We discuss large-scale dipole and small-scale magnetic fields. We show that positron transport effects must be taken into account for the interpretation of emission features starting at about one to two years after maximum light, depending on the size of B. The [Fe II] line profile and its evolution with time can be understood in terms of the overall energy input by radioactive decay and the transition from a ?-ray to a positron-dominated regime. We find that the [Fe II] line at 1.644 ?m can be used to analyze the overall chemical and density structure of the exploding WD up to day 200 without considering B. At later times, positron transport and magnetic field effects become important. After about day 300, the line profile allows one to probe the size of the B-field. The profile becomes sensitive to the morphology of B at about day 500. In the presence of a large-scale dipole field, a broad line is produced in M Ch mass explosions that may appear flat-topped or rounded depending on the inclination at which the SN is observed. Small or no directional dependence of the spectra is found for small-scale B. We note that narrow-line profiles require central 56Ni as shown in our previous studies. Persistent broad-line, flat-topped profiles require high-density burning, which is the signature of a WD close to M Ch. Good time coverage is required to separate the effects of optical depth, the size and morphology of B, and the aspect angle of the observer. The spectra require a resolution of about 500 km s-1 and a signal-to-noise ratio of about 20%. Two other strong near-IR spectral features at about 1.5 and 1.8 ?m are used to demonstrate the importance of line blending, which may invalidate a kinematic interpretation of emission lines. Flat-topped line profiles between 300 and 400 days have been observed and reported in the literature. They lend support for M Ch mass explosions in at least some cases and require magnetic fields equal to or in excess of 106 G. We briefly discuss the effects of the size and morphology of B on light curves, as well as limitations. We argue that line profiles are a more direct measurement of B than light curves because they measure both the distribution of 56Ni and the redistribution of the energy input by positrons rather than the total energy input. Finally, we discuss possible mechanisms for the formation of high B-fields and the limitations of our analysis.

  13. Probing of field-induced structures and tunable rheological properties of surfactant capped magnetically polarizable nanofluids.

    PubMed

    Felicia, Leona J; Philip, John

    2013-01-01

    Oil-based nanofluid containing surfactant-capped magnetite nanoparticles are synthesized by a simple coprecipitation approach, and their magnetorheological properties are studied for different magnetic field strengths and volume fractions. We observe a distinct "plateau-like region" in the shear thinning viscosity curve, under an external magnetic field, possibly due to a peculiar alignment of the chains with respect to the field direction where the structure is stable against fragmentation. The observed plateau regime is reminiscent to that of kinetically arrested gel networks. Interestingly, such a plateau regime has been observed only above certain critical magnetic field when the dipolar interaction strength is much greater than the thermal energy where the aggregation becomes a nonequilibrium transport-limited process. The good collapse of specific viscosity data against Mason number for different magnetic field strengths onto a single curve suggests the dominance of hydrodynamic and magnetic forces on thermal force above a certain magnetic field strength. The observed increase in both static and dynamic yield stresses under the magnetic field confirms the formation of columnar structures that hinder the flow behavior. The hysteresis observed in the magnetic sweep experiments shows the inability of the chains to relax within the measurement time. The dynamic measurements confirm that the field-induced structures impart elastic behavior to the dispersion, which is found to increase with magnetic field and saturates at higher field strengths. PMID:23210900

  14. High-Resolution B Dot Probe for Measuring 3D Magnetic Fields in the MOCHI Labjet Experiment

    NASA Astrophysics Data System (ADS)

    Azuara Rosales, Manuel; von der Linden, Jens; You, Setthivoine

    2014-10-01

    The MOCHI Labjet experiment will use a triple electrode planar plasma gun to explore canonical helicity transport in laboratory astrophysical jets. Canonical helicity transport suggests that destabilizing magnetic energy can be converted into stabilizing shear flows at two-fluid spatial scales li ~c/wpi . A high-resolution . B probe array, capable of measuring magnetic field dynamics at length and time scales important to canonical helicity transport is being built. The probe array consists of three tridents, made of 5 . 13 mm OD and 4 . 32 mm ID stainless steel tubes of 102 cm length, enclosing a total of 1215 commercial inductor chips with a three axis spatial resolution of 11 mm. The average value for the effective NA of each inductor chip is 1 . 21 .10-4 m2. The probe array lays in a plane perpendicular to the jet, and is axially translatable. This work is supported by US DOE Grant DE-SC0010340.

  15. Spectropolarimetry of Giant stars: Probing the influence of magnetic field on evolved stars Spectropolarimetry of Giant stars: Probing the influence of magnetic field on evolved stars

    NASA Astrophysics Data System (ADS)

    da Costa, Jefferson; Castro, Matthieu; Petit, Pascal; do Nascimento, José-Dias, Jr.

    2015-08-01

    It is know that lithium is element easily destroyed in stellar interior, the existence of lithium rich stars means a great challenge in stellar evolution. In this context our observations ravels the serendipitous discovery of an unusually high lithium abundance star. This is a K0III HD 150050, which has strong deepening on lithium line (6707.8 Å) this means lithium abundance of 2.81 0.2 dex, therefore this star belong a rare group called super Li-Rich stars. A possible source of the non-standard episodes required to produce Li-rich stars were identified in magneto-thermohaline mixing accounted by models of extra-mixing induced by magnetic buoyancy. However to better understand this is necessary more observational data. In last three decades several studies has showed that late type red giant stars presents a remarkable modifications in these outer atmosphere layers when they become late type star in HR diagram. These changes are founded through X-ray, Ultraviolet, and Chromospheric activity analyses, and then we can establish the called “Dividing lines”. We made spectropalarimetric observations with ESPaDOnS@CFHT to achieve two main objectives: analyze the influence of magnetic field in the Li-rich giant stars, and understand how works the magnetic field in late type giants and supergiants across the “dividing line”.

  16. Current-modulating magnetic force microscope probe

    SciTech Connect

    Wang, Frank Z.; Helian, Na; Clegg, Warwick W; Windmill, James F. C.; Jenkins, David

    2001-06-01

    A new current-modulating probe for the magnetic force microscope (MFM) is proposed in this article. The magnetic field, which will be used to interact with a magnetic specimen{close_quote}s stray field, is induced on the sharp tip of the conical magnetic core surrounded by a microfabricated single turn conductive coil. The reciprocity principle is used to obtain the force acting on the probe due to the specimen{close_quote}s stray field when scanned over a magnetic specimen. The magnetic field intensity is adjustable by control of the applied current. Images of specimens have been modeled using this probe. The suitability to different specimens is seen to be the biggest advantage of this scheme over the conventional probe designs. {copyright} 2001 American Institute of Physics.

  17. Anisotropy in the Cosmic Microwave background As a Probe for early Universe magnetic field

    NASA Astrophysics Data System (ADS)

    Duorah, H. L.

    2015-08-01

    The cosmic background radiation is the remnant of the Big Bang stretched into the microwave region characterized by a temperature of 2.725K. The fluctuation in the background produces anisotropies and it is detected with amplitude of ?T/T?10-5 . Various effects like the Sachs-Wolfe effect, Sunyaev-Zel’ dovich effect are imprinted in this background. The effect of a primordial magnetic field in the plasma at the last scattering surface is examined here. The high magnetic field generated during the phase transition in the early universe is found to be too small to produce the observed anisotropy. However it can be surmised that the magnetic field being ubiquitous can be found in the plasma at the last scattering surface to contribute to the anisotropy. A magnetic field of about 10-2G may produce the desired effect.

  18. A new probe of the magnetic field power spectrum in cosmic web filaments

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Greiner, Maksim; Ensslin, Torsten A.

    2015-08-01

    Establishing the properties of magnetic fields on scales larger than galaxy clusters is critical for resolving the unknown origin and evolution of galactic and cluster magnetism. More generally, observations of magnetic fields on cosmic scales are needed for assessing the impacts of magnetism on cosmology, particle physics, and structure formation over the full history of the Universe. However, firm observational evidence for magnetic fields in large scale structure remains elusive. In an effort to address this problem, we have developed a novel statistical method to infer the magnetic field power spectrum in cosmic web filaments using observation of the two-point correlation of Faraday rotation measures from a dense grid of extragalactic radio sources. Here we describe our approach, which embeds and extends the pioneering work of Kolatt (1998) within the context of Information Field Theory (a statistical theory for Bayesian inference on spatially distributed signals; Enfllin et al., 2009). We describe prospects for observation, for example with forthcoming data from the ultra-deep JVLA CHILES Con Pol survey and future surveys with the SKA.

  19. Probe of the solar magnetic field using the "cosmic-ray shadow" of the sun.

    PubMed

    Amenomori, M; Bi, X J; Chen, D; Chen, T L; Chen, W Y; Cui, S W; Danzengluobu; Ding, L K; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gou, Q B; Guo, Y Q; Hakamada, K; He, H H; He, Z T; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Jia, H Y; Jiang, L; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, H J; Li, W J; Liu, C; Liu, J S; Liu, M Y; Lu, H; Meng, X R; Mizutani, K; Munakata, K; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ozawa, S; Qian, X L; Qu, X B; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Shao, J; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, H; Wu, H R; Xue, L; Yamamoto, Y; Yang, Z; Yasue, S; Yuan, A F; Yuda, T; Zhai, L M; Zhang, H M; Zhang, J L; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X X

    2013-07-01

    We report on a clear solar-cycle variation of the Sun’s shadow in the 10 TeV cosmic-ray flux observed by the Tibet air shower array during a full solar cycle from 1996 to 2009. In order to clarify the physical implications of the observed solar cycle variation, we develop numerical simulations of the Sun’s shadow, using the potential field source surface model and the current sheet source surface (CSSS) model for the coronal magnetic field. We find that the intensity deficit in the simulated Sun’s shadow is very sensitive to the coronal magnetic field structure, and the observed variation of the Sun’s shadow is better reproduced by the CSSS model. This is the first successful attempt to evaluate the coronal magnetic field models by using the Sun’s shadow observed in the TeV cosmic-ray flux. PMID:24027782

  20. Magnetic Fields

    E-print Network

    Schöller, Markus

    2015-01-01

    In this chapter, we give a brief introduction into the use of the Zeeman effect in astronomy and the general detection of magnetic fields in stars, concentrating on the use of FORS2 for longitudinal magnetic field measurements.

  1. Probing the role of the magnetic field in the formation of structure in molecular clouds with Planck

    NASA Astrophysics Data System (ADS)

    Diego Soler, Juan

    2015-08-01

    The Planck observations of intensity and polarization of thermal emission from Galactic dust over the whole sky, and down to scales that probe the interiors of nearby molecular clouds, constitute an unprecedented data set for the study of the morphology of the magnetic field.Within ten nearby (d < 450 pc) Gould Belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The relative orientation is evaluated pixel by pixel and analyzed in bins of column density using the novel statistical tool called "Histogram of Relative Orientations".Within most clouds we find that the relative orientation changes progressively with increasing NH, from preferentially parallel or having no preferred orientation to preferentially perpendicular.In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck.We compare the deduced plane-of-the-sky magnetic field strength with estimates we obtain from the Davis-Chandrasekhar-Fermi method and with the line-of-sight magnetic field strengths derived from Zeeman splitting observations towards some of the studied regions.Finally, we discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.This work is presented on behalf of the Planck Collaboration.

  2. Hall probe measurements of the poloidal magnetic field in Compact Toroidal Hybrid plasmas

    NASA Astrophysics Data System (ADS)

    Stevenson, B. A.; Knowlton, S. F.; Hartwell, G. J.; Hanson, J. D.; Maurer, D. A.

    2014-09-01

    A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46 V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code.

  3. Hall probe measurements of the poloidal magnetic field in Compact Toroidal Hybrid plasmas.

    PubMed

    Stevenson, B A; Knowlton, S F; Hartwell, G J; Hanson, J D; Maurer, D A

    2014-09-01

    A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46?V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code. PMID:25273721

  4. Hall probe measurements of the poloidal magnetic field in Compact Toroidal Hybrid plasmas

    SciTech Connect

    Stevenson, B. A.; Knowlton, S. F.; Hartwell, G. J. Hanson, J. D.; Maurer, D. A.

    2014-09-15

    A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46?V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code.

  5. A challenge for probing the statistics of interstellar magnetic fields: beyond the Planck resolution with Herschel

    NASA Astrophysics Data System (ADS)

    Bracco, Andrea; André, Philippe; Boulanger, Francois

    2015-08-01

    The recent Planck results in polarization at sub-mm wavelengths allow us to gain insight into the Galactic magnetic field topology, revealing its statistical correlation with matter, from the diffuse interstellar medium (ISM), to molecular clouds (MCs) (Planck intermediate results. XXXII, XXXIII, XXXV). This correlation has a lot to tell us about the dynamics of the turbulent ISM, stressing the importance of considering magnetic fields in the formation of structures, some of which eventually undergo gravitational collapse producing new star-forming cores.Investigating the early phases of star formation has been a fundamental scope of the Herschel Gould Belt survey collaboration (http://gouldbelt-herschel.cea.fr), which, in the last years, has thoroughly characterized, at a resolution of few tens of arcseconds, the statistics of MCs, such as their filamentary structure, kinematics and column density.Although at lower angular resolution, the Planck maps of dust emission at 353GHz, in intensity and polarization, show that all MCs are complex environments, where we observe a non-trivial correlation between the magnetic field and their density structure. This result opens new perspectives on their formation and evolution, which we have started to explore.In this talk, I will present first results of a comparative analysis of the Herschel-Planck data, where we combine the high resolution Herschel maps of some MCs of the Gould Belt with the Planck polarization data, which sample the structure of the field weighted by the density.In particular, I will discuss the large-scale envelopes of the selected MCs, and, given the correlation between magnetic field and matter, I will show how to make use of the high resolution information of the density structure provided by Herschel to investigate the statistics of interstellar magnetic fields in the Planck data.

  6. Terahertz probes of magnetic field induced spin reorientation in YFeO{sub 3} single crystal

    SciTech Connect

    Lin, Xian; Jiang, Junjie; Ma, Guohong; Jin, Zuanming; Wang, Dongyang; Tian, Zhen; Han, Jiaguang; Cheng, Zhenxiang

    2015-03-02

    Using the terahertz time-domain spectroscopy, we demonstrate the spin reorientation of a canted antiferromagnetic YFeO{sub 3} single crystal, by evaluating the temperature and magnetic field dependence of resonant frequency and amplitude for the quasi-ferromagnetic (FM) and quasi-antiferromagnetic modes (AFM), a deeper insight into the dynamics of spin reorientation in rare-earth orthoferrites is established. Due to the absence of 4f-electrons in Y ion, the spin reorientation of Fe sublattices can only be induced by the applied magnetic field, rather than temperature. In agreement with the theoretical predication, the frequency of FM mode decreases with magnetic field. In addition, an obvious step of spin reorientation phase transition occurs with a relatively large applied magnetic field of 4?T. By comparison with the family members of RFeO{sub 3} (R?=?Y{sup 3+} or rare-earth ions), our results suggest that the chosen of R would tailor the dynamical rotation properties of Fe ions, leading to the designable spin switching in the orthoferrite antiferromagnetic systems.

  7. Magnetic nanostructures: radioactive probes and recent developments

    NASA Astrophysics Data System (ADS)

    Prandolini, M. J.

    2006-05-01

    The miniaturization of magnetic sensors and storage devices down to the nano-scale leads to drastic changes in magnetic phenomena compared with the same devices with a larger size. Excited-nuclear-probe (radioactive probe) techniques are ideal for investigating these new magnetic nanostructures. By observing the magnetic hyperfine fields (and in some cases the electric-field-gradients (EFGs)) at the nuclei of radioactive probes, microscopic information about the magnetic environment of the probes is acquired. The magnetic hyperfine field is particularly sensitive to the s-spin polarization of the conduction electrons and to the orbital magnetic moment of the probe atom. Three methods of inserting radioactive probes into magnetic nanostructures are presented; neutron activation, recoil implantation and 'soft-landing', followed by descriptions of their application to selected examples. In some cases, these methods offer the simultaneous creation and observation of new magnetic materials at the atomic scale. This review focuses firstly on the induced magnetism in noble-metal spacer layers between either ferromagnetic (FM) or FM/antiferromagnetic (AFM) layers in a trilayer structure. Using the method of low-temperature nuclear orientation, the s-spin polarization of noble-metal probes was measured and was found to be very sensitive to the magnetic properties at both the FM and AFM interfaces. Secondly, the recoil implantation of radioactive Fe probes into rare-earth hosts and d-band alloys and subsequent measurement using time-differential perturbed angular distribution offer the possibility of controlling the chemical composition and number of nearest-neighbours. This method was used to prepare local 3d-magnetic clusters in a non-magnetic matrix and to observe their magnetic behaviour. Finally, non-magnetic radioactive probes were 'soft-landed' onto Ni surfaces and extremely lattice-expanded ultrathin Ni films. By measuring the magnetic hyperfine fields and EFGs at 111Cd probes using time-differential perturbed angular correlation (TDPAC), it was possible to distinguish the interaction of Cd probes located at various surface sites, i.e. atop terraces, within terraces, at steps and at corners. These experimental results are compared with the ground-state properties determined by ab initio density-functional theory. This article was invited by Professor S Washburn.

  8. A biased probe analysis of potential well formation in an electron only, low beta Polywell magnetic field

    SciTech Connect

    Carr, Matthew; Khachan, Joe

    2013-05-15

    Orbital limited motion theory has been applied to two biased probes in a low beta Polywell. The cases studied include electron injection, magnetic field scaling, Polywell bias scaling, and radial position profiles. Langmuir's original orbital limited motion results for a monoenergetic electron beam are shown to be in excellent agreement for electron injection into the Polywell. A distribution function is proposed for the electron plasma characteristics in the centre of the magnetic null and confirmed with experimental results. A translational stage was used to measure the radial plasma potential profile. In other experiments, two probes were used to simultaneously measure the profiles in both the null and a position halfway along a corner cusp. The results confirm a radial potential well created by electron trapping in the device. In addition, we present preliminary results of the potential well scaling with the magnetic field, Polywell bias voltage, and the injected beam current. The electron population was found to maintain non-equilibrium in all cases studied.

  9. SQUID readout and ultra-low magnetic fields for Gravity Probe-B (GP-B)

    NASA Technical Reports Server (NTRS)

    Lockhart, James M.

    1986-01-01

    The superconducting readout system to be used for resolving 0.001 arcsec changes in the gyroscope spin direction in the Relativity Gyroscope (GP-B) experiment is described. This system couples the London magnetic moment flux of the spinning gyro to a low noise superconducting quantum interference device (SQUID) detector. Resolution limits and noise performance of the detection system are discussed, and improvements obtained and expected with advanced SQUIDs are presented. Also described is the novel use of superconducting magnetic shielding techniques to obtain a 250 dB attenuation of the earth's magnetic field at the location of the gyroscopes. In this approach, expanded superconducting foil shields are coupled with fixed cylindrical superconducting shields and special geometric considerations to obtain the extremely high attenuation factor required. With these shielding techniques, it appears that the 0.5-Gauss earth field (which appears to the gyroscopes as an ac field at the satellite roll rate) can be reduced to the 10 to the -13th G level required by the experiment. Recent results concerning improvements in the performance of the superconducting foil techniques obtained with the use of a new computer-controlled cooling system are presented.

  10. ANISOTROPY AS A PROBE OF THE GALACTIC COSMIC-RAY PROPAGATION AND HALO MAGNETIC FIELD

    SciTech Connect

    Qu, Xiao-bo; Zhang, Yi; Liu, Cheng; Hu, Hong-bo; Xue, Liang

    2012-05-01

    The anisotropy of cosmic rays (CRs) in the solar vicinity is generally attributed to CR streaming due to the discrete distribution of CR sources or local magnetic field modulation. Recently, the two-dimensional large-scale CR anisotropy has been measured by many experiments in the TeV-PeV energy range in both hemispheres. The tail-in excess along the tangential direction of the local spiral arm and the loss cone deficit pointing to the north Galactic pole direction agree with what have been obtained in tens to hundreds of GeV. The persistence of the two large-scale anisotropy structures in such a wide energy range suggests that the anisotropy might be due to global streaming of the Galactic CRs (GCRs). This work tries to extend the observed CR anisotropy picture from the solar system to the whole galaxy. In such a case, we can find a new interesting signature, a loop of GCR streaming, of the GCR propagation. We further calculate the overall GCR streaming induced magnetic field, and find a qualitative consistency with the observed structure of the halo magnetic field.

  11. Miniature-probe measurements of electric fields and currents induced by a 60-Hz magnetic field in rat and human models.

    PubMed

    Miller, D L

    1991-01-01

    A miniaturized probe was designed and built to provide detailed data on fields induced by a uniform 60-Hz magnetic field in homogeneous models of rat and human. The probe employed three silver wires twisted and potted in an 8-cm hypodermic needle. The exposed tips of the wires formed three sensing electrodes with a centered ground; highly sensitive voltage measurements were enabled by a lock-in amplifier. Tests were conducted in a 1-mT rms field that was uniform within +/- 5%. The models were made by casting 1.5% agar at 1-S/m conductivity into plastic-foam molds. The rat model was scaled 1:1 as an adult (22 cm length; mass about 640 g). The human model was scaled 1:4 as an adult (height = 46.5 cm; mass 1.4 kg). The probe was inserted into each model in several regions, and readings of induced fields were made under different exposure geometries. Maximal strengths of fields induced near the surface of the torso were as high as 120 microV/cm in the laterally exposed rat model. Data extrapolated from the quarter-scale human model revealed that an induced field as high as 700 microV/cm could occur at the torso of a frontally exposed human adult. An overall size-scale factor of about 5 appears to be appropriate for experimental exposures of rats that are intended to simulate currents induced in human beings by magnetic fields. The average strength of electric fields induced in the torso by a 1-mT magnetic field is comparable to that by a vertical electric-field at 60 kV/m and 28 kV/m, respectively, for the rat and human. PMID:1854353

  12. Probing Interfacial Friction and Dissipation in Granular Gold­ Nickel Alloys with a Quartz Crystal Oscillator in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Stevens, K. M.; Krim, J.

    2015-03-01

    We present here a quartz crystal microbalance study of two-phase gold nickel alloys whose internal granular properties are probed by exposure to a fluctuating external magnetic field. The work is motivated by prior studies demonstrating that granular two-phase materials exhibited lower friction and wear than solid solution alloys with identical compositions. In particular, we report a ``flexing'' effect which appears when an external magnetic field is applied, and is manifested as a decrease in the magnitude of oscillation amplitude that is synchronized with the applied field; the effect is not seen on the complimentary solid solution samples. The effect is consistent with internal interfacial friction between nickel and gold grains, indicating a degree of freedom which may decrease friction even in the absence of an external magnetic field. This is supported through analysis of energy dissipation in the system, using the Butterworth­-Van Dyke equivalent circuit model. Data and interpretation are also presented that rule out alternate explanations such as giant magnetoresistance and/or other resistive phenomenon within the film. Funding provided by NSF DMR0805204. Thanks to L. Pan for sample preparation.

  13. Polarized Light Propagating in a Magnetic Field as a Probe for Millicharged Fermions

    SciTech Connect

    Gies, Holger; Jaeckel, Joerg; Ringwald, Andreas

    2006-10-06

    Possible extensions of the standard model of particle physics suggest the existence of particles with small, unquantized electric charge. Photon-initiated pair production of millicharged fermions in a magnetic field would manifest itself as a vacuum magnetic (VM) dichroism. We show that laser polarization experiments searching for this effect yield, in the mass range below 0.1 eV, much stronger constraints on millicharged fermions than previous laboratory searches. VM birefringence due to virtual pair production gives a slightly better constraint for masses between 0.1 and a few eV. We comment on the possibility that the VM dichroism observed by PVLAS arises from pair production of such millicharged fermions rather than from single production of axionlike particles. Such a scenario can be confirmed or firmly excluded by a search for invisible decays of orthopositronium with a branching-fraction sensitivity of about 10{sup -9}.

  14. Triaxial Probe Magnetic Data Analysis

    NASA Technical Reports Server (NTRS)

    Shultz, Kimberly; Whittlesey, Albert; Narvaez, Pablo

    2007-01-01

    The Triaxial Magnetic Moment Analysis software uses measured magnetic field test data to compute dipole and quadrupole moment information from a hardware element. It is used to support JPL projects needing magnetic control and an understanding of the spacecraft-generated magnetic fields. Evaluation of the magnetic moment of an object consists of three steps: acquisition, conditioning, and analysis. This version of existing software was extensively rewritten for easier data acquisition, data analysis, and report presentation, including immediate feedback to the test operator during data acquisition. While prior JPL computer codes provided the same data content, this program has a better graphic display including original data overlaid with reconstructed results to show goodness of fit accuracy and better appearance of the report graphic page. Data are acquired using three magnetometers and two rotations of the device under test. A clean acquisition user interface presents required numeric data and graphic summaries, and the analysis module yields the best fit (least squares) for the magnetic dipole and/or quadrupole moment of a device. The acquisition module allows the user to record multiple data sets, selecting the best data to analyze, and is repeated three times for each of the z-axial and y-axial rotations. In this update, the y-axial rotation starting position has been changed to an option, allowing either the x- or z-axis to point towards the magnetometer. The code has been rewritten to use three simultaneous axes of magnetic data (three probes), now using two "rotations" of the device under test rather than the previous three rotations, thus reducing handling activities on the device under test. The present version of the software gathers data in one-degree increments, which permits much better accuracy of the fit ted data than the coarser data acquisition of the prior software. The data-conditioning module provides a clean data set for the analysis module. For multiple measurements at a given degree, the first measurement is used. For omitted measurements, the missing field is estimated by linear interpolation between the two nearest measurements. The analysis module was rewritten for the dual rotation, triaxial probe measurement process and now has better moment estimation accuracy, based on the finer one degree of data acquisition resolution. The magnetic moments thus computed are used as an input to summarize the total spacecraft field.

  15. Magnetic-field probing of an SU(4) Kondo resonance in a single-atom transistor.

    PubMed

    Tettamanzi, G C; Verduijn, J; Lansbergen, G P; Blaauboer, M; Calderón, M J; Aguado, R; Rogge, S

    2012-01-27

    Semiconductor devices have been scaled to the point that transport can be dominated by only a single dopant atom. As a result, in a Si fin-type field effect transistor Kondo physics can govern transport when one electron is bound to the single dopant. Orbital (valley) degrees of freedom, apart from the standard spin, strongly modify the Kondo effect in such systems. Owing to the small size and the s-like orbital symmetry of the ground state of the dopant, these orbital degrees of freedom do not couple to external magnetic fields which allows us to tune the symmetry of the Kondo effect. Here we study this tunable Kondo effect and demonstrate experimentally a symmetry crossover from an SU(4) ground state to a pure orbital SU(2) ground state as a function of magnetic field. Our claim is supported by theoretical calculations that unambiguously show that the SU(2) symmetric case corresponds to a pure valley Kondo effect of fully polarized electrons. PMID:22400874

  16. Magnetic-Field Probing of an SU(4) Kondo Resonance in a Single-Atom Transistor

    NASA Astrophysics Data System (ADS)

    Tettamanzi, G. C.; Verduijn, J.; Lansbergen, G. P.; Blaauboer, M.; Calderón, M. J.; Aguado, R.; Rogge, S.

    2012-01-01

    Semiconductor devices have been scaled to the point that transport can be dominated by only a single dopant atom. As a result, in a Si fin-type field effect transistor Kondo physics can govern transport when one electron is bound to the single dopant. Orbital (valley) degrees of freedom, apart from the standard spin, strongly modify the Kondo effect in such systems. Owing to the small size and the s-like orbital symmetry of the ground state of the dopant, these orbital degrees of freedom do not couple to external magnetic fields which allows us to tune the symmetry of the Kondo effect. Here we study this tunable Kondo effect and demonstrate experimentally a symmetry crossover from an SU(4) ground state to a pure orbital SU(2) ground state as a function of magnetic field. Our claim is supported by theoretical calculations that unambiguously show that the SU(2) symmetric case corresponds to a pure valley Kondo effect of fully polarized electrons.

  17. Probing the Shallow Convection Zone: Rising Motion of Subsurface Magnetic Fields in the Solar Active Region

    E-print Network

    Toriumi, Shin; Sekii, Takashi; Yokoyama, Takaaki

    2013-01-01

    In this Letter we present a seismological detection of a rising motion of magnetic flux in the shallow convection zone of the Sun, and show estimates of the emerging speed and its decelerating nature. In order to evaluate the speed of subsurface flux that creates an active region, we apply six Fourier filters to the Doppler data of NOAA AR 10488, observed with SOHO/MDI, to detect the reduction of acoustic power at six different depths from -15 to -2 Mm. All the filtered acoustic powers show reductions, up to 2 hours before the magnetic flux first appears at the visible surface. The start times of these reductions show a rising trend with a gradual deceleration. The obtained velocity is first several km s^-1 in a depth range of 15--10 Mm, then ~1.5 km s^-1 at 10-5 Mm, finally ~0.5 km s^-1 at 5-2 Mm. If we assume that the power reduction is actually caused by the magnetic field, the velocity of order of 1 km s^-1 is well in accordance with previous observations and numerical studies. Moreover, the gradual decel...

  18. PROBING THE SHALLOW CONVECTION ZONE: RISING MOTION OF SUBSURFACE MAGNETIC FIELDS IN THE SOLAR ACTIVE REGION

    SciTech Connect

    Toriumi, Shin; Yokoyama, Takaaki; Ilonidis, Stathis; Sekii, Takashi

    2013-06-10

    In this Letter, we present a seismological detection of a rising motion of magnetic flux in the shallow convection zone of the Sun, and show estimates of the emerging speed and its decelerating nature. In order to evaluate the speed of subsurface flux that creates an active region, we apply six Fourier filters to the Doppler data of NOAA AR 10488, observed with the Solar and Heliospheric Observatory/Michelson Doppler Imager, to detect the reduction of acoustic power at six different depths from -15 to -2 Mm. All the filtered acoustic powers show reductions, up to 2 hr before the magnetic flux first appears at the visible surface. The start times of these reductions show a rising trend with a gradual deceleration. The obtained velocity is first several km s{sup -1} in a depth range of 15-10 Mm, then {approx}1.5 km s{sup -1} at 10-5 Mm, and finally {approx}0.5 km s{sup -1} at 5-2 Mm. If we assume that the power reduction is actually caused by the magnetic field, the velocity of the order of 1 km s{sup -1} is well in accordance with previous observations and numerical studies. Moreover, the gradual deceleration strongly supports the theoretical model that the emerging flux slows down in the uppermost convection zone before it expands into the atmosphere to build an active region.

  19. Magnetic near fields as a probe of charge transport in spatially dispersive conductors

    E-print Network

    Harald R. Haakh; Carsten Henkel

    2011-07-12

    We calculate magnetic field fluctuations above a conductor with a nonlocal response (spatial dispersion) and consider a large range of distances. The cross-over from ballistic to diffusive charge transport leads to reduced noise spectrum at distances below the electronic mean free path, as compared to a local description. We also find that the mean free path provides a lower limit to the correlation (coherence) length of the near field fluctuations. The short-distance behavior is common to a wide range of materials, covering also semiconductors and superconductors. Our discussion is aimed at atom chip experiments where spin-flip transitions give access to material properties with mesoscopic spatial resolution. The results also hint at fundamental limits to the coherent operation of miniaturized atom traps and matter wave interferometers.

  20. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  1. Recurrent Cosmic-ray Variations as a Probe of the Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Burger, R. A.; Engelbrecht, E. E.

    2006-12-01

    A linear relationship between the observed 26-day recurrent cosmic-ray intensity variations and the global latitudinal gradient was first reported by Zhang (1997, ApJ, 488), who made extensive use of Ulysses data. This relationship is seen for all species considered and at all latitudes covered by the spacecraft. Burger and Hitge (2004, ApJL, 617) used a three-dimensional steady-state numerical modulation model and showed that a Fisk-type (Fisk 1996, JGR, 101) heliospheric magnetic field (HMF) can in principle explain these observations, at least at high latitudes. In this progress report we use a refinement of the Fisk-Parker hybrid HMF model of Burger and Hitge (2004) by Kruger (2006, MSc dissertation, NWU University) (see also Kruger, Burger and Hitge 2005, AGU Fall meeting abstracts SH23B-0341) to study these 26-day recurrent variations in more detail with the same modulation code. In Kruger's model the HMF is Parker-like at the highest latitudes, becomes Fisk- like at intermediate latitudes, and becomes Parker-like again in the region swept out by the wavy current sheet. By using an almost continuous range of latitudinal gradients for both solar magnetic polarity cycles and for both protons and electrons - in contrast to the limited number of values used by Burger and Hitge (2004) - the structure of the graphs of amplitude of the recurrent cosmic-ray intensity variations as function of global latitudinal gradient can be studied in detail. This was performed in a 100 AU model heliosphere for solar minimum conditions with the tilt angle of the heliospheric current sheet at 10 degrees. In all cases drift effects are included. We find that these curves for amplitude vs. latitudinal gradient are similar for protons and for electrons. By switching the sign of the modeled amplitudes when the latitudinal gradient becomes negative, the existence of a single relationship between the two quantities can be studied for the whole range of modeled latitudinal gradients. This study shows that a single second-order fit gives better results than a first-order fit for the whole range of latitudinal gradients (and consequently for both species and both solar magnetic polarities) and that there is a difference in the amplitudes for high- and for low rigidities, even if the latitudinal gradient is the same. This difference is a minimum at latitudes where the Fisk-type field is expected to dominate. In the ecliptic at 1 AU, we find that at high rigidity, the amplitude of the recurrent variations is larger for protons during A > 0 polarity epochs than for A < 0 epochs. This is in agreement with observational results of Richardson, Cane and Wibberenz (1999, JGR, 104). For the case of a Parker field, the modeled amplitudes have about the same magnitude for both polarity epochs. Note that what we discus here are preliminary results, and while they clearly suggest the existence of a Fisk-type HMF, the role of the diffusion tensor (and the associated turbulence quantities) has yet to be determined.

  2. Note: Fiber optic transport probe for Hall measurements under light and magnetic field at low temperatures: Case study of a two dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Bhadauria, P. P. S.; Gupta, Anurag; Kumar, Pramod; Dogra, Anjana; Budhani, R. C.

    2015-05-01

    A fiber optic based probe is designed and developed for electrical transport measurements in presence of quasi-monochromatic (360-800 nm) light, varying temperature (T = 1.8-300 K), and magnetic field (B = 0-7 T). The probe is tested for the resistivity and Hall measurements performed on a LaAlO3-SrTiO3 heterointerface system with a conducting two dimensional electron gas.

  3. Using Tailed Radio Galaxies to Probe the Environment and Magnetic Field of Galaxy Clusters in the SKA Era

    E-print Network

    Johnston-Hollitt, M; Pratley, L

    2015-01-01

    The morphology of tailed radio galaxies is an invaluable source of environmental information, in which a history of the past interactions in the intra-cluster medium, such as complex galaxy motions and cluster merger shocks, are preserved. In recent years, the use of tailed radio galaxies as environmental probes has gained momentum as a method for galaxy cluster detection, examining the dynamics of individual clusters, measuring the density and velocity flows in the intra-cluster medium, and for probing cluster magnetic fields. To date instrumental limitations in terms of resolution and sensitivity have confined this research to the local (z < 0.7) Universe. The advent of SKA1 surveys however will allow detection of roughly 1,000,000 tailed radio galaxies and their associated galaxy clusters out to redshifts of 2 or more. This is in fact ten times more than the current number of known clusters in the Universe. Additionally between 50,000 and 100,000 tailed radio galaxies will be sufficiently polarized to a...

  4. A new probe of magnetic fields during high-mass star formation: Zeeman splitting of 6.7 GHz methanol masers

    E-print Network

    W. H. T. Vlemmings

    2008-04-07

    Context: The role of magnetic fields during high-mass star formation is a matter of fierce debate, yet only a few direct probes of magnetic field strengths are available. Aims: The magnetic field is detected in a number of massive star-forming regions through polarization observations of 6.7 GHz methanol masers. Although these masers are the most abundant of the maser species occurring during high-mass star formation, most magnetic field measurements in the high-density gas currently come from OH and H2 O maser observations. Methods: The 100-m Effelsberg telescope was used to measure the Zeeman splitting of 6.7 GHz methanol masers for the first time. The observations were performed on a sample of 24 bright northern maser sources. Results: Significant Zeeman splitting is detected in 17 of the sources with an average magnitude of 0.56 m/s . Using the current best estimate of the 6.7 GHz methanol maser Zeeman splitting coefficient and a geometrical correction, this corresponds to an absolute magnetic field strength of 23 mG in the methanol maser region. Conclusions: The magnetic field is dynamically important in the dense maser regions. No clear relation is found with the available OH maser magnetic field measurements. The general sense of direction of the magnetic field is consistent with other Galactic magnetic field measurements, although a few of the masers display a change of direction between different maser features. Due to the abundance of methanol masers, measuring their Zeeman splitting provides the opportunity to construct a comprehensive sample of magnetic fields in high-mass star-forming regions.

  5. Elasticity of lyotropic chromonic liquid crystals probed by director reorientation in a magnetic field.

    PubMed

    Zhou, Shuang; Nastishin, Yu A; Omelchenko, M M; Tortora, L; Nazarenko, V G; Boiko, O P; Ostapenko, T; Hu, T; Almasan, C C; Sprunt, S N; Gleeson, J T; Lavrentovich, O D

    2012-07-20

    Using a magnetic Frederiks transition technique, we measure the temperature and concentration dependences of splay K1, twist K2, and bend K3 elastic constants for the lyotropic chromonic liquid crystal sunset yellow formed through noncovalent reversible aggregation of organic molecules in water. K1 and K3 are comparable to each other and are an order of magnitude higher than K2. At higher concentrations and lower temperatures, K1 and the ratios K1/K3 and K1/K2 increase, which is attributed to elongation of self-assembled lyotropic chromonic liquid crystal aggregates, a feature not found in conventional thermotropic and lyotropic liquid crystals formed by covalently bound units of a fixed length. PMID:22861899

  6. Elasticity of Lyotropic Chromonic Liquid Crystals Probed by Director Reorientation in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang; Nastishin, Yu. A.; Omelchenko, M. M.; Tortora, L.; Nazarenko, V. G.; Boiko, O. P.; Ostapenko, T.; Hu, T.; Almasan, C. C.; Sprunt, S. N.; Gleeson, J. T.; Lavrentovich, O. D.

    2012-07-01

    Using a magnetic Frederiks transition technique, we measure the temperature and concentration dependences of splay K1, twist K2, and bend K3 elastic constants for the lyotropic chromonic liquid crystal sunset yellow formed through noncovalent reversible aggregation of organic molecules in water. K1 and K3 are comparable to each other and are an order of magnitude higher than K2. At higher concentrations and lower temperatures, K1 and the ratios K1/K3 and K1/K2 increase, which is attributed to elongation of self-assembled lyotropic chromonic liquid crystal aggregates, a feature not found in conventional thermotropic and lyotropic liquid crystals formed by covalently bound units of a fixed length.

  7. Molecules in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana

    2015-08-01

    Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.

  8. Surface and Interface Magnetism Using Radioactive Probes

    NASA Astrophysics Data System (ADS)

    Manzhur, Y.; Prandolini, M. J.; Potzger, K.; Weber, A.; Zeitz, W.-D.; Bertschat, H. H.; Dietrich, M.

    2005-01-01

    Magnetic properties of impurities at ferromagnetic surfaces and interfaces have been investigated performing Perturbed Angular Correlation (PAC) measurements in the ultra-high vacuum chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) using different PAC probes. We present the measurements of magnetic hyperfine fields ( B hf) at 111Cd probe atoms (i) in Pd covered by Ni, (ii) on Pd-decorated Ni surfaces, (iii) and on pure Ni surfaces at a variety of local structures like terraces, steps, kinks. The results yield a deep insight into the interplay of structural surface roughness and magnetic roughness on the atomic scale. Correlating the experimental B hf values with the number of their nearest Ni and Pd neighbours, the coordination number, nonlinear dependences were found. These findings are compared with recent theoretical studies which were prompted by the experiments.

  9. A novel magnetic field probing technique for determining state of health of sealed lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Khare, Neeta; Singh, Pritpal; Vassiliou, John K.

    2012-11-01

    State of Health (SOH) is a critical index for a Sealed Lead-Acid (SLA) battery diagnostic which provides the information about battery replacement and aging effects. SOH is a complex function of chemical parameters of a battery such as stratification in electrolyte, electrode structure (sulfation and hard sulfation) in addition to electrical parameters of a battery. This paper describes a method of online determination of stratification, electrode structure, electrode polarization and current profile within the battery under the influence of a magnetic field. An AC magnetic field is used as a noninvasive tool during battery cycles. An induced emf in a secondary coil (SCV) is used as a measure of change in the magnetic field. The H+ proton density varies with change in sulfuric acid (electrolyte) concentration during battery cycles. The magnetic flux lines are affected by the density of H+ protons whose magnetic dipole moments try to align along the magnetic flux lines. The stratification is seen by a 12% decrease in magnetic flux linking from the top to the bottom of the electrolyte in a battery. Additional experimental results demonstrate the variation in magnetic flux linking which correlates with current profile across the electrode and electrode structure.

  10. Leptogenesis and primordial magnetic fields

    SciTech Connect

    Long, Andrew J.; Sabancilar, Eray; Vachaspati, Tanmay E-mail: eray.sabancilar@asu.edu

    2014-02-01

    The anomalous conversion of leptons into baryons during leptogenesis is shown to produce a right-handed helical magnetic field; in contrast, the magnetic field produced during electroweak baryogenesis is known to be left-handed. If the cosmological medium is turbulent, the magnetic field evolves to have a present day coherence scale ? 10 pc and field strength ? 10{sup ?18} Gauss. This result is insensitive to the energy scale at which leptogenesis took place. Observations of the amplitude, coherence scale, and helicity of the intergalactic magnetic field promise to provide a powerful probe of physics beyond the Standard Model and the very early universe.

  11. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  12. Research of optical electric field probe

    NASA Astrophysics Data System (ADS)

    Zhang, Wan; Li, Bin; Chen, Jingyao; Wang, Jifeng; Lu, Guizhen

    2012-10-01

    As an important modern measurement equipment of the electromagnetic field, electric field probe can measure the industrial, scientific and medical aspects of the leakage field. In the Electro Magnetic Compatibility (EMC) experiment, it can also check the high-frequency-sensitive parts of the devices and the parasitic radiations due to the mechanical movement. Especially in the field of Electromagnetic Compatibility, electric field probe is one of the most important test equipment. This paper introduces a type of optical electric field probe. In the system, a kind of antenna, which could provide a response nearly isotropic for all polarizations of the incident field, is used for receiving the signal of the electric field. The high-frequency signal received by the antenna then is detected by Schottky barrier diode detector. This low-frequency or Direct Current (DC) signal can be modulated to the band of light by the Electro-Absorption-Distributed Feed Back (EA-DFB) modulator, thus the probe can provide a wild band responds. Through the optical fiber, the optical signal is sent to the photoelectric detector. Based on the optical power value, the field intensity can be calculated. In this system, compared with traditional transmission line, optical fiber can minimize the electromagnetic interference and transmission-line attenuation. In addition to this, the system also has high test sensitivity and wide measurement bandwidth. Furthermore, the whole system has a simple structure and low manufacturing cost.

  13. Molecules as magnetic probes of starspots

    E-print Network

    Afram, Nadine

    2015-01-01

    Stellar dynamo processes can be explored by measuring the magnetic field. This is usually obtained using the atomic and molecular Zeeman effect in spectral lines. While the atomic Zeeman effect can only access warmer regions, the use of molecular lines is of advantage for studying cool objects. The molecules MgH, TiO, CaH, and FeH are suited to probe stellar magnetic fields, each one for a different range of spectral types, by considering the signal that is obtained from modeling various spectral types. We have analyzed the usefulness of different molecules (MgH, TiO, CaH, and FeH) as diagnostic tools for studying stellar magnetism on active G-K-M dwarfs. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and present synthetic Stokes profiles for the modeled spectral type. We modeled a star with a spot size of 10% of the stellar disk and a spot comprising either only longitudinal or only transverse magnetic fields and es...

  14. A new method of measuring the poloidal magnetic and radial electric fields in a tokamak using a laser-accelerated ion-beam trace probe

    SciTech Connect

    Yang, X. Y.; Chen, Y. H.; Lin, C.; Wang, X. G.; Xiao, C. J.; Wang, L.; Xu, M.

    2014-11-15

    Both the poloidal magnetic field (B{sub p}) and radial electric field (E{sub r}) are significant in magnetic confinement devices. In this paper, a new method was proposed to diagnose both B{sub p} and E{sub r} at the same time, which was named Laser-accelerated Ion-beam Trace Probe (LITP). This method based on the laser-accelerated ion beam, which has three properties: large energy spread, short pulse lengths, and multiple charge states. LITP can provide the 1D profiles, or 2D images of both B{sub p} and E{sub r}. In this paper, we present the basic principle and some preliminary theoretical results.

  15. The induced magnetic field.

    PubMed

    Islas, Rafael; Heine, Thomas; Merino, Gabriel

    2012-02-21

    Aromaticity is indispensable for explaining a variety of chemical behaviors, including reactivity, structural features, relative energetic stabilities, and spectroscopic properties. When interpreted as the spatial delocalization of ?-electrons, it represents the driving force for the stabilization of many planar molecular structures. A delocalized electron system is sensitive to an external magnetic field; it responds with an induced magnetic field having a particularly long range. The shape of the induced magnetic field reflects the size and strength of the system of delocalized electrons and can have a large influence on neighboring molecules. In 2004, we proposed using the induced magnetic field as a means of estimating the degree of electron delocalization and aromaticity in planar as well as in nonplanar molecules. We have since tested the method on aromatic, antiaromatic, and nonaromatic compounds, and a refinement now allows the individual treatment of core-, ?-, and ?-electrons. In this Account, we describe the use of the induced magnetic field as an analytical probe for electron delocalization and its application to a large series of uncommon molecules. The compounds include borazine; all-metal aromatic systems Al(4)(n-); molecular stars Si(5)Li(n)(6-n); electronically stabilized planar tetracoordinate carbon; planar hypercoordinate atoms inside boron wheels; and planar boron wheels with fluxional internal boron cluster moieties. In all cases, we have observed that planar structures show a high degree of electron delocalization in the ?-electrons and, in some examples, also in the ?-framework. Quantitatively, the induced magnetic field has contributions from the entire electronic system of a molecule, but at long range the contributions arising from the delocalized electronic ?-system dominate. The induced magnetic field can only indirectly be confirmed by experiment, for example, through intermolecular contributions to NMR chemical shifts. We show that calculating the induced field is a useful method for understanding any planar organic or inorganic system, as it corresponds to the intuitive Pople model for explaining the anomalous proton chemical shifts in aromatic molecules. Indeed, aromatic, antiaromatic, and nonaromatic molecules show differing responses to an external field; that is, they reduce, augment, or do not affect the external field at long range. The induced field can be dissected into different orbital contributions, in the same way that the nucleus-independent chemical shift or the shielding function can be separated into component contributions. The result is a versatile tool that is particularly useful in the analysis of planar, densely packed systems with strong orbital contributions directly atop individual atoms. PMID:21848282

  16. Energetic feedback from the Galactic center into the halo: probing the magnetic field structure of the Fermi bubbles

    NASA Astrophysics Data System (ADS)

    Su, Meng; Hales, Christopher A.; Mao, Sui Ann

    2015-08-01

    The Fermi bubbles are giant gamma-ray structures with sharp edges discovered using data from the Fermi-LAT. They rise up & down from the Galactic center with extents of ~50 degrees (~8.5 kpc), are well centered on longitude zero and close to latitude zero, and imply the acceleration of TeV electron energy particles. They could be related to past jet or outflow activity from the Galactic center. The gamma-ray bubbles have counterparts at microwave frequencies (the WMAP haze, confirmed by Planck). Sharp edges are also observed in X-ray utilizing ROSAT data, and more recently XMM-Newton pointings. Using rotation measures of background extragalactic sources from the archival NVSS catalog, we have studied the magnetic field structure at the interface between the Fermi bubbles and the Galactic halo. We have detected interesting changes in the mean value and r.m.s. of rotation measures across the eastern edge of the northern Fermi bubble. To confirm these preliminary findings and study the magnetic field structure in closer detail, we recently performed new Jansky VLA observations of the Fermi bubbles. Here we describe our findings and discuss implications for energy injection from the inner Galaxy to the Galactic halo ISM, cosmic ray propagation, and the Galactic halo magnetic field.

  17. OH MASER SOURCES IN W49N: PROBING MAGNETIC FIELD AND DIFFERENTIAL ANISOTROPIC SCATTERING WITH ZEEMAN PAIRS USING THE VERY LONG BASELINE ARRAY

    SciTech Connect

    Deshpande, Avinash A.; Goss, W. M.; Mendoza-Torres, J. E. E-mail: mgoss@aoc.nrao.edu

    2013-09-20

    Our analysis of a Very Long Baseline Array 12 hr synthesis observation of the OH masers in the well-known star-forming region W49N has yielded valuable data that enable us to probe distributions of magnetic fields in both the maser columns and the intervening interstellar medium (ISM). The data, consisting of detailed high angular resolution images (with beam width ?20 mas) of several dozen OH maser sources, or spots, at 1612, 1665, and 1667 MHz, reveal anisotropic scatter broadening with typical sizes of a few tens of milliarcseconds and axial ratios between 1.5 and 3. Such anisotropies have been reported previously by Desai et al. and have been interpreted as being induced by the local magnetic field parallel to the Galactic plane. However, we find (1) apparent angular sizes of, on average, a factor of about 2.5 less than those reported by Desai et al., indicating significantly less scattering than inferred previously, and (2) a significant deviation in the average orientation of the scatter-broadened images (by ?10°) from that implied by the magnetic field in the Galactic plane. More intriguingly, for a few Zeeman pairs in our set, significant differences (up to 6?) are apparent in the scatter-broadened images for the two hands of circular polarization, even when the apparent velocity separation is less than 0.1 km s{sup –1}. This may possibly be the first example of a Faraday rotation contribution to the diffractive effects in the ISM. Using the Zeeman pairs, we also study the distribution of the magnetic field in the W49N complex, finding no significant trend in the spatial structure function. In this paper, we present the details of our observations and analysis leading to these findings, discuss implications of our results for the intervening anisotropic magneto-ionic medium, and suggest possible implications for the structure of magnetic fields within this star-forming region.

  18. Spin-echo EPR spin-probe measurement of the microsecond-range magnetic field fluctuations near the surface of crystals of the nanomagnet Mn 12-Ac

    NASA Astrophysics Data System (ADS)

    Rakvin, Boris; Žili?, Dijana; Dalal, Naresh S.

    2005-12-01

    Electron spin-echo detected EPR (ED-EPR) at the X-band, using the spin probe N-methylphenazinium-tetracyanoquinodimethane (NMP-TCNQ), enabled us to detect fluctuations of the local magnetic field close to the surface of a single crystal of [Mn 12O 12(CH 3COO) 16(H 2O) 4]·2CH 3COOH·4H 2O (Mn 12-Ac) in its superparamagnetic regime. The ED-EPR signal from NMP-TCNQ is unexpectedly broad in comparison to standard sharp and intense spectrum detected by continuous wave EPR (CW-EPR). This broadened peak represents inhomogeneous broadening, whose homogenous component line width, ?, was related to its phase memory time TM as ?˜1/ TM˜1/T 2; TM was found to be in the microsecond range around 15 K. The temperature dependence of TM follows that of the bulk magnetization fluctuations. The Arrhenius activation energy for these probe detected fluctuations is ˜45 K, which is distinctly lower than that (˜60 K) for the bulk magnetization reversal for Mn 12-Ac, implicating a significant role for surface effects.

  19. Magnetic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynmcal hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypothes pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at lentgh-scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto-geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core- mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order l20 years is pseudo-scale-invarient. Magnetic spectra of other planets may differ; however, if a transition to non-conductmg fluid hydrogen in Jupiter acts as barrier to vertical flow, as well as current, then the shape of the jovi-magnetic spectrum could be remarkably Earth-like.

  20. Magnetic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynamical hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypothesis passes the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale range. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at length-scale 1/k, if one presumes kinetic energy is converted in either eddy-overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small-scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magnetogeostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core-mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order 120 years is pseudo-scale-invariant. Magnetic spectra of other planets may differ; however, if a transition to non-conducting fluid hydrogen in Jupiter acts as a barrier to vertical flow, as well as current, then the shape of the jovi-magnetic spectrum could be remarkably Earth-like.

  1. Energetic secondary electrons and the nonthermal galactic radio background - A probe of the magnetic field in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Brown, R. L.

    1978-01-01

    A previous analysis of the manifestations of charged-pion-decay secondary electrons in interstellar cloud material is extended to include those contributions to the Galactic radio and soft gamma-ray backgrounds that are directly attributable to energetic secondaries. The equilibrium distribution of secondary electrons in dense interstellar clouds is calculated, synchrotron emissivity from isolated interstellar clouds is examined, and it is shown how the value of the magnetic field in these clouds may be determined by observing the radio emission in their directions. The contribution that such clouds make to the integrated radio background is evaluated, and the Galactic distribution of bremsstrahlung gamma rays that arise from interactions of secondary electrons with thermal material in dense clouds is computed. The results indicate that a magnetic field of no more than 80 microgauss is characteristic of dense clouds and that the integrated synchrotron radiation from secondary electrons in interstellar clouds will contribute a significant fraction of the nonthermal brightness along the Galactic equator even if the mean cloud field is as low as 35 microgauss.

  2. Contributions of the electronic spin and orbital current to the CoCl{sub 4}{sup 2-} magnetic field probed in polarised neutron diffraction experiments

    SciTech Connect

    Cassam-Chenaie, Patrick; Jayatilaka, Dylan

    2012-08-14

    Polarised neutron diffraction experiments conducted at 4.2 K on Cs{sub 3}CoCl{sub 5} crystals have been analysed by using a four-dimensional model Hilbert space made of ab initio n-electron wave functions of the CoCl{sub 4}{sup 2-} molecular ion. Two spin-orbit mixing coefficients and several configuration interaction coefficients have been optimized by fitting calculated magnetic structure factors to experimental ones, to obtain the best ensemble density operator that is representable in the model space. A goodness of fit, {chi}{sup 2}, less then 1 has been obtained for the first time for the two experimental data sets available. In the present article, the optimized density operators are used to calculate the magnetic field densities that are the genuine observables probed in neutron diffraction experiments. Density maps of such observables are presented for the first time and numerical details are provided. The respective contributions of spin density and orbital current to the magnetic field density are analyzed.

  3. REVIEW OF SCIENTIFIC INSTRUMENTS 82, 103505 (2011) Design and use of an Elssser probe for analysis of Alfvn wave fields

    E-print Network

    Carter, Troy

    2011-01-01

    also known as a magnetic loop probe, or "b-dot" probe. When a time varying magnetic field passes an electric and magnetic field probe which simultaneously measure both quanti- ties in the directions perpendicular to the background magnetic field for application to Alfvén wave experiments in the Large Plasma

  4. Using ACE Observations of Interplanetary Particles and Magnetic Fields as Possible Contributors to Variations Observed at Van Allen Probes during Major events in 2013

    NASA Astrophysics Data System (ADS)

    Armstrong, T. P.; Manweiler, J. W.; Gerrard, A. J.; Gkioulidou, M.; Lanzerotti, L. J.; Patterson, J. D.

    2013-12-01

    Observations from ACE EPAM including energy spectra of protons, helium, and oxygen will be prepared for coordinated use in estimating the direct and indirect access of energetic particles to inner and outer geomagnetic trapping zones. Complete temporal coverage from ACE at 12 seconds, 5 minutes, 17 minutes, hourly and daily cadences will be used to catalog interplanetary events arriving at Earth including interplanetary magnetic field sector boundaries, interplanetary shocks, and interplanetary coronal mass ejections, ICMEs. The first 6 months of 2013 have included both highly disturbed times, March 17 and May 22, and extended quiet periods of little or no variations. Among the specific questions that ACE and Van Allen Probes coordinated observations may aid in resolving are: 1. How much, if any, direct capture of interplanetary energetic particles occurs and what conditions account for it? 2. How much influence do interplanetary field and particle variations have on energization and/or loss of geomagnetically trapped populations? The poster will also present important links and describe methods and important details of access to numerically expressed ACE EPAM and Van Allen Probes RBSPICE observations that can be flexibly and easily accessed via the internet for student and senior researcher use.

  5. Probing electric and magnetic vacuum fluctuations with quantum dots.

    PubMed

    Tighineanu, P; Andersen, M L; Sørensen, A S; Stobbe, S; Lodahl, P

    2014-07-25

    The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this Letter we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level. PMID:25105618

  6. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  7. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  8. Magnetic field mapper

    NASA Technical Reports Server (NTRS)

    Masters, R. M.; Stenger, F. J.

    1969-01-01

    Magnetic field mapper locates imperfections in cadmium sulphide solar cells by detecting and displaying the variations of the normal component of the magnetic field resulting from current density variations. It can also inspect for nonuniformities in other electrically conductive materials.

  9. An emerging population of BL Lacs with extreme properties: towards a class of EBL and cosmic magnetic field probes?

    NASA Astrophysics Data System (ADS)

    Bonnoli, G.; Tavecchio, F.; Ghisellini, G.; Sbarrato, T.

    2015-07-01

    High-energy observations of extreme BL Lac objects, such as 1ES 0229+200 or 1ES 0347-121, recently focused interest both for blazar and jet physics and for the implication on the extragalactic background light and intergalactic magnetic field estimate. However, the number of these extreme highly peaked BL Lac objects (EHBL) is still rather small. Aiming at increase their number, we selected a group of EHBL candidates starting from the BL Lac sample of Plotkin et al. (2011), considering those undetected (or only barely detected) by the Large Area Telescope onboard Fermi and characterized by a high X-ray versus radio flux ratio. We assembled the multiwavelength spectral energy distribution of the resulting nine sources, profiting of publicly available archival observations performed by Swift, GALEX, and Fermi satellites, confirming their nature. Through a simple one-zone synchrotron self-Compton model we estimate the expected very high energy flux, finding that in the majority of cases it is within the reach of present generation of Cherenkov arrays or of the forthcoming Cherenkov Telescope Array.

  10. Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet

    SciTech Connect

    Sunwong, P.; Higgins, J. S.; Hampshire, D. P.

    2014-06-15

    We present the designs of probes for making critical current density (J{sub c}) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ?0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J{sub c} measurements, made by uniformly ramping the current up to a maximum current (I{sub max}) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b{sup ?}), and the maximum safe temperature for the critical-current leads (T{sub max}). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI{sub max}/A=[1.46D{sup ?0.18}L{sup 0.4}(T{sub max}?300){sup 0.25D{sup ?{sup 0{sup .{sup 0{sup 9}}}}}}+750(b{sup ?}/I{sub max})D{sup 10{sup ?{sup 3I{sub m}{sub a}{sub x}?2.87b{sup ?}}}}]× 10{sup 6}A m{sup ?1} where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm{sup 2} is obtained when I{sub max} = 1000 A, T{sub max} = 400 K, D = 0.2, b{sup ?} = 0.3 l?h{sup ?1} and L = 1.0 m. The optimized helium consumption was found to be 0.7 l?h{sup ?1}. When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I{sub max?} ? (1.35 × 10{sup ?3})D{sup 0.41} l?h{sup ?1}?A{sup ?1}. A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high-field horizontal magnet. The variable-temperature system is based on the use of an inverted insulating cup that operates above 4.2 K in liquid helium and above 77.4 K in liquid nitrogen, with a stability of ±80 mK to ±150 mK. Uniaxial strains of ?1.4% to 1.0% can be applied to the sample, with a total uncertainty of better than ±0.02%, using a modified bending beam apparatus which includes a copper beryllium springboard-shaped sample holder.

  11. Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet

    NASA Astrophysics Data System (ADS)

    Sunwong, P.; Higgins, J. S.; Hampshire, D. P.

    2014-06-01

    We present the designs of probes for making critical current density (Jc) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ˜0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make Jc measurements, made by uniformly ramping the current up to a maximum current (Imax) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b'), and the maximum safe temperature for the critical-current leads (Tmax). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI_{max} /A = [1.46D^{ - 0.18} L^{0.4} (T_{max } - 300)^{0.25D^{ - 0.09} } + 750(b^' /I_{max })D^{10^{ - 3} I_{max } - 2.87b^' }] × 10^6 A m^{ - 1} where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm2 is obtained when Imax = 1000 A, Tmax = 400 K, D = 0.2, b' = 0.3 l h-1 and L = 1.0 m. The optimized helium consumption was found to be 0.7 l h-1. When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/Imax ? (1.35 × 10-3)D0.41 l h-1 A-1. A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high-field horizontal magnet. The variable-temperature system is based on the use of an inverted insulating cup that operates above 4.2 K in liquid helium and above 77.4 K in liquid nitrogen, with a stability of ±80 mK to ±150 mK. Uniaxial strains of -1.4% to 1.0% can be applied to the sample, with a total uncertainty of better than ±0.02%, using a modified bending beam apparatus which includes a copper beryllium springboard-shaped sample holder.

  12. Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet.

    PubMed

    Sunwong, P; Higgins, J S; Hampshire, D P

    2014-06-01

    We present the designs of probes for making critical current density (Jc) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ~0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J(c) measurements, made by uniformly ramping the current up to a maximum current (I(max)) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b'), and the maximum safe temperature for the critical-current leads (T(max)). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI(max)/A = [1.46D(-0.18)L(0.4)(T(max) - 300)(0.25D(-0.09)) + 750(b'/I(max))D(10(-3)I(max)-2.87b') × 10? A m?¹ where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm(2) is obtained when I(max) = 1000 A, T(max) = 400 K, D = 0.2, b' = 0.3 l?h(-1) and L = 1.0 m. The optimized helium consumption was found to be 0.7 l?h(-1). When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I(max)? ? (1.35 × 10(-3))D(0.41) l?h(?1)?A(-1). A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high-field horizontal magnet. The variable-temperature system is based on the use of an inverted insulating cup that operates above 4.2 K in liquid helium and above 77.4 K in liquid nitrogen, with a stability of ±80 mK to ±150 mK. Uniaxial strains of -1.4% to 1.0% can be applied to the sample, with a total uncertainty of better than ±0.02%, using a modified bending beam apparatus which includes a copper beryllium springboard-shaped sample holder. PMID:24985856

  13. Magnetic Fields Analogous to electric field, a magnet

    E-print Network

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic characteristic of elementary particles such as an electron #12;Magnetic Fields Magnetic field lines Direction

  14. Spin-lattice coupling in uranium dioxide probed by magnetostriction measurements at high magnetic fields (P08358-E001-PF)

    SciTech Connect

    Gofryk, K.; Jaime, M.

    2014-12-01

    Our preliminary magnetostriction measurements have already shown a strong interplay of lattice dynamic and magnetism in both antiferromagnetic and paramagnetic states, and give unambiguous evidence of strong spin- phonon coupling in uranium dioxide. Further studies are planned to address the puzzling behavior of UO2 in magnetic and paramagnetic states and details of the spin-phonon coupling.

  15. Second solar spectrum observed at the Pic-du-Midi: depth probing of the turbulent magnetic field intensity in a quiet region.

    NASA Astrophysics Data System (ADS)

    Derouich, M.; Malherbe, J. M.; Bommier, V.; Landi Degl'Innocenti, E.; Sahal-Bréchot, S.

    2004-12-01

    The installation of a new polarimeter at the Turret Dome of the Pic-du-Midi has permitted new observations of the "second solar spectrum" (which is the spectrum of the linear polarization observed near the solar limb), having a spatial resolution. On 2003 October 25, we have observed a quiet region located at the East limb equator, in the resonance line of neutral strontium at 4607 Å. The slit was positioned perpendicular to the limb: recording various limb distances provides a depth probing of the solar atmosphere. The intensity of the turbulent magnetic field has been derived from the Hanle effect interpretation, which is actually the only method for vectorial weak field determination. The theoretical profiles to be compared to the observed ones have been obtained by applying the atomic density matrix formalism (Landi Degl'Innocenti E., Bommier V., & Sahal-Bréchot S., 1990). The various collisional coefficients have been computed by applying semi-classical methods that are accurate to 20% or better: the one from Seaton (1962) and Sahal-Bréchot (1969a, 1969b) for the collisions with electrons, responsible for the inelastic transitions, and the one developed by Anstee & O'Mara (1991, 1995) for line broadening computations, generalized to the collisional depolarization by Derouich et al. (2003; see also Derouich, 2004), for the elastic collisions with neutral hydrogen atoms. The results have been found in full agreement with those previously obtained with THEMIS without any spatial resolution (at 9 limb distances). With the spatial resolution that we have now at the Pic-du-Midi (1 arcsec, 138 limb distances), it appears that the turbulent magnetic field intensity does not vary with depth, in the line formation region that ranges from ~200 to ~300 km above the tau5000=1 level.

  16. The Square Kilometre Array: A new probe of cosmic magnetism

    E-print Network

    Bryan M. Gaensler

    2006-03-02

    Magnetic fields are a fundamental part of many astrophysical phenomena, but the evolution, structure and origin of magnetic fields are still unresolved problems in physics and astrophysics. When and how were the first fields generated? Are present-day magnetic fields the result of standard dynamo action, or do they represent rapid or recent field amplification through other processes? What role do magnetic fields play in turbulence, cosmic ray acceleration and structure formation? I explain how the Square Kilometre Array (SKA), a next-generation radio telescope, can deliver stunning new data-sets that will address these currently unanswered issues. The foundation for these experiments will be an all-sky survey of rotation measures, in which Faraday rotation toward >10^7 background sources will provide a dense grid for probing magnetism in the Milky Way, nearby galaxies, and in distant galaxies, clusters and protogalaxies. Using these data, we can map out the evolution of magnetized structures from redshifts z > 3 to the present, can distinguish between different origins for seed magnetic fields in galaxies, and can develop a detailed model of the magnetic field geometry of the intergalactic medium and of the overall Universe. In addition, the SKA will certainly discover new magnetic phenomena beyond what we can currently predict or imagine.

  17. Magnetic microwire probes for the magnetic rod interfacial stress rheometer.

    PubMed

    Tajuelo, J; Pastor, J M; Martínez-Pedrero, F; Vázquez, M; Ortega, F; Rubio, R G; Rubio, M A

    2015-02-01

    The magnetic needle interfacial shear rheometer is a valuable tool for the study of the mechanical properties of thin fluid films or monolayers. However, it is difficult to differentiate the interfacial and subphase contributions to the drag on the needle. In principle, the problem can be addressed by decreasing the needle diameter, which decreases the bulk contribution while the interfacial contribution remains essentially the same. Here we show the results obtained when using a new type of needle, that of magnetic microwires with diameter approximately 10 times thinner than for commercial needles. We show that the lower inertia of the microwires calls for a new calibration procedure. We propose such a new calibration procedure based on the flow field solution around the needle introduced in refs 1 and 2. By measuring thin silicone oil films with well-controlled interfacial viscosities as well as eicosanol (C20) and pentadecanoic acid (PDA, C15) Langmuir monolayers, we show that the new calibration method works well for standard needles as well as for the microwire probes. Moreover, we show that the analysis of the force terms contributing to the force on the needle helps to ascertain whether the measurements obtained are reliable for given surface shear viscosity values. We also show that the microwire probes have at least a 10-fold-lower resolution limit, allowing one to measure interfacial viscosities as low as 10(-7) N·m/s. PMID:25495270

  18. Specialized probes with nanowhisker structures for high resolution magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Belousov, K. I.; Mozharov, A. M.; Mukhin, I. S.; Golubok, A. O.

    2015-11-01

    Creation and study of specialized nanowhisker probes with magnetic coating are performed for high-precision imaging of various objects by means of atomic force and magnetic force microscopy. Thin layers of Ni and Co are deposited on the surface of nanowhisker structures to perform visualization of magnetic fields on the sample surface, in particular, structure of pits on a hard disk drive (HDD). It is revealed that probes with nanowhisker structures covered with magnetic coating due to their high aspect ratio demonstrate a higher spatial resolution and contrast of magnetic fields visualization in comparison with standard magnetic probes.

  19. Magnetic Fields and Plasmas

    SciTech Connect

    Schep, T.J.

    2004-03-15

    Plasmas and magnetic fields are inseparably related in numerous physical circumstances. This is not only the case in natural occurring plasmas like the solar corona and the earth magnetic tail, but also in laboratory plasmas like tokamaks and stellarators.

  20. Harmonic phases of the nanoparticle magnetization: An intrinsic temperature probe

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Collantes, Juan-Mari; Garcia, Jose Angel; Plazaola, Fernando; Sandre, Olivier

    2015-09-01

    Magnetic fluid hyperthermia is a promising cancer therapy in which magnetic nanoparticles act as heat sources activated by an external AC magnetic field. The nanoparticles, located near or inside the tumor, absorb energy from the magnetic field and then heat up the cancerous tissues. During the hyperthermia treatment, it is crucial to control the temperature of different tissues: too high temperature can cause undesired damage in healthy tissues through an uncontrolled necrosis. However, the current thermometry in magnetic hyperthermia presents some important technical problems. The widely used optical fiber thermometers only provide the temperature in a discrete set of spatial points. Moreover, surgery is required to locate these probes in the correct place. In this scope, we propose here a method to measure the temperature of a magnetic sample. The approach relies on the intrinsic properties of the magnetic nanoparticles because it is based on monitoring the thermal dependence of the high order harmonic phases of the nanoparticle dynamic magnetization. The method is non-invasive and it does not need any additional probe or sensor attached to the magnetic nanoparticles. Moreover, this method has the potential to be used together with the magnetic particle imaging technique to map the spatial distribution of the temperature.

  1. A modified Katsumata probe--Ion sensitive probe for measurement in non-magnetized plasmas.

    PubMed

    ?ada, M; Hubi?ka, Z; Adámek, P; Olejní?ek, J; Kment, Š; Adámek, J; Stöckel, J

    2015-07-01

    A modified Katsumata probe has been developed for measurement of ion velocity distribution function (IVDF) in technological non-magnetized plasmas. A simple construction of the modified Katsumata probe consists of adding a pair of permanent Sm-Co magnets in front of Katsumata probe. A comparative study regarding IVDF measurement in a high power impulse magnetron sputtering system operating in pure argon atmosphere by means of developed modified Katsumata probe and commercially available gridded retarding field analyzer (RFA) has been carried out. A time-resolved measurement of IVDF for two different pressures whilst other plasma conditions have been kept unchanged has revealed that the main advantage of the modified Katsumata probe compared to the RFA consists in significantly smaller angular aperture of entrance orifice of modified Katsumata probe being approximately 15° in comparison with a commercial RFA having angular aperture more than 160°. It leads in much better velocity resolution in measured IVDF since the transversal part of velocity vector is much more suppressed compared to RFA. Furthermore, the modified Katsumata probe less suffers from collisions of ions in the space charge sheath in front or inside of the probe compared to the RFA. PMID:26233386

  2. Magnetic field generator

    DOEpatents

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  3. Magnetic Field & Right Hand Rule

    E-print Network

    Heller, Barbara

    Magnetic Field & Right Hand Rule Academic Resource Center #12;Magnetic Fields And Right Hand Rules By: Anthony Ruth #12;Magnetic Fields vs Electric Fields · Magnetic fields are similar to electric charges and stationary charges. · In addition, magnetic fields create a force only on moving charges

  4. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  5. Image-Optimized Coronal Magnetic Field Reconstructions

    NASA Astrophysics Data System (ADS)

    Jones, S. I.; Davila, J. M.; Uritsky, V. M.

    2014-12-01

    The magnetic field dominates many of the most important and puzzling processes in the corona. In the absence of direct measurements, solar physicists have struggled for decades to accurately reconstruct the coronal magnetic field using photospheric magnetograms. Even with today's excellent magnetographs, these reconstructions are plagued by several problems, among them long computation time, and poor agreement with the structures seen in EUV and coronagraph images. However no method exists for systematically improving the agreement between coronal images and magnetic reconstructions. Solar Orbiter and Solar Probe Plus will bring us closer to the sun we have ever been before, but taking full advantage of that opportunity requires accurate coronal magnetic field reconstructions so that we can connect the in situ observations offered by these unique missions to magnetic sources at the surface of the Sun. In this study we propose a method to improve coronal magnetic field reconstructions by optimizing agreement between the reconstructed field and white-light coronagraph images.

  6. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  7. Magnetosheath magnetic field variability

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    1994-01-01

    A case study using simulations IRM and CCE observations demonstrates that transient magnetospheric events correspond to pressure pulses in the magnetosheath, inward bow shock motion, and magnetopause compression. Statistical surveys indicate that the magnetosheath magnetic field orientation rarely remains constant during periods of magnetopause and bow shock motion (both characterized by periods of 1 to 10 min). There is no tendency for bow shock motion to occur for southward interplanetary magnetic field (IMF) orientations.

  8. Mapping the magnetic field vector in a fountain clock

    SciTech Connect

    Gertsvolf, Marina; Marmet, Louis

    2011-12-15

    We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.

  9. Magnetic and Langmuir Probe Measurements on the Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Eskridge, Richard; Lee, Michael H.; Martin, Adam; Hawk, Clark W.; Fimognan, Peter

    2004-01-01

    The Plasmoid Thruster Experiment (PTX) operates by inductively producing plasmoids in a conical theta-pinch coil and ejecting them at high velocity. A plasmoid is a plasma with an imbedded closed magnetic field structure. The shape and magnetic field structure of the translating plasmoids have been measured with of an array of magnetic field probes. Six sets of two B-dot probes were constructed for measuring B(sub z) and B(sub theta), the axial and azimuthal components of the magnetic field. The probes are wound on a square G10 form, and have an average (calibrated) NA of 9.37 x l0(exp -5) square meters, where N is the number of turns and A is the cross-sectional area. The probes were calibrated with a Helmholtz coil, driven by a high-voltage pulser to measure NA, and by a signal generator to determine the probe's frequency response. The plasmoid electron number density n(sub e) electron temperature T(sub e), and velocity ratio v/c(sub m), (where v is the bulk plasma flow velocity and c(sub m), is the ion thermal speed) have also been measured with a quadruple Langmuir probe. The Langmuir probe tips are 10 mm long, 20-mil diameter stainless steel wire, housed in a 6-inch long 4-bore aluminum rod. Measurements on PTX with argon and hydrogen from the magnetic field probes and quadruple Langmuir probe will be presented in this paper.

  10. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    SciTech Connect

    Martens, Daniel; Hsu, Scott C.

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  11. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  12. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  13. Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe

    E-print Network

    Nanni, Emilio A.

    We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B[subscript 1S]) profile was ...

  14. Probes of strong-field gravity

    E-print Network

    Stein, Leo Chaim

    2012-01-01

    In this thesis, I investigate several ways to probe gravity in the strong-field regime. These investigations focus on observables from the gravitational dynamics, i.e. when time derivatives are large: thus I focus on sources ...

  15. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-01

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles. PMID:17812894

  16. Mercury's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.

    2014-12-01

    Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal sources cannot be distinguished from core fields, nor cleanly separated from external fields. I will report on recent data acquired at altitudes as low as 25 km that have the potential to resolve these issues. The presence of remanent crustal fields would have profound implications for Mercury's thermal and dynamical histories.

  17. Magnetic probing of the solar interior

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Estes, R. H.

    1985-01-01

    The magnetic field patterns in the region beneath the solar photosphere is determined. An approximate method for downward extrapolation of line of sight magnetic field measurements taken at the solar photosphere was developed. It utilizes the mean field theory of electromagnetism in a form thought to be appropriate for the solar convection zone. A way to test that theory is proposed. The straightforward application of the lowest order theory with the complete model fit to these data does not indicate the existence of any reasonable depth at which flux conservation is achieved.

  18. Secondary resonance magnetic force microscopy using an external magnetic field for characterization of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dongzi; Mo, Kangxin; Ding, Xidong; Zhao, Liangbing; Lin, Guocong; Zhang, Yueli; Chen, Dihu

    2015-09-01

    A bimodal magnetic force microscopy (MFM) that uses an external magnetic field for the detection and imaging of magnetic thin films is developed. By applying the external modulation magnetic field, the vibration of a cantilever probe is excited by its magnetic tip at its higher eigenmode. Using magnetic nanoparticle samples, the capacity of the technique which allows single-pass imaging of topography and magnetic forces is demonstrated. For the detection of magnetic properties of thin film materials, its signal-to-noise ratio and sensitivity are demonstrated to be superior to conventional MFM in lift mode. The secondary resonance MFM technique provides a promising tool for the characterization of nanoscale magnetic properties of various materials, especially of magnetic thin films with weak magnetism.

  19. Field Mapping System for Solenoid Magnet

    NASA Astrophysics Data System (ADS)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  20. HMI Magnetic Field Products

    NASA Astrophysics Data System (ADS)

    Hoeksema, Jon T.; HMI Magnetic Field Team

    2013-07-01

    The Helioseismic and Magnetic Imager (HMI) on SDO has measured magnetic field, velocity, and intensity in the photosphere over the full disk continuously since May 2010 with arc-second resolution. Scalar images are measured every 45 seconds. From these basic observables the pipeline automatically identifies and tracks active regions on the solar disk. The vector magnetic field and a variety of summary quantities are determined every 720s in these tracked Space-weather HMI Active Region Patches (SHARPS). Synoptic and synchronic maps are constructed daily and after each Carrington Rotation Most data products are available with definitive scientific calibration after a few day deal at and in a quick-look near-real-time version a few minutes after the observations are made. Uncertainties are determined for the derived products. All of the magnetic field products along with movies and images suitable for browsing are available at http:://Hmi.stanford.edu/magnetic. Other products, e.g. coronal field over active regions, can be computed on demand.

  1. Fiber-optic magnetic-field imaging.

    PubMed

    Fedotov, I V; Doronina-Amitonova, L V; Sidorov-Biryukov, D A; Safronov, N A; Blakley, S; Levchenko, A O; Zibrov, S A; Fedotov, A B; Kilin, S Ya; Scully, M O; Velichansky, V L; Zheltikov, A M

    2014-12-15

    We demonstrate a scanning fiber-optic probe for magnetic-field imaging where nitrogen-vacancy (NV) centers are coupled to an optical fiber integrated with a two-wire microwave transmission line. The electron spin of NV centers in a diamond microcrystal attached to the tip of the fiber probe is manipulated by a frequency-modulated microwave field and is initialized by laser radiation transmitted through the optical tract of the fiber probe. The two-dimensional profile of the magnetic field is imaged with a high speed and high sensitivity using the photoluminescence spin-readout return from NV centers, captured and delivered by the same optical fiber. PMID:25503039

  2. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  3. Probing the magnetic states in a ferromagnet using a superconductor

    NASA Astrophysics Data System (ADS)

    Zhu, Leyi; Chen, Tingyong; Chien, Chia-Ling

    2009-03-01

    In a superconductor (S)/ferromagnet (F) bilayer, the superconducting properties of the S layer are sensitive to the domain pattern in the adjacent F layer.[1-2] We exploit this effect to investigate Ni films, which instead of retaining in-plane anisotropy as usual, unexpectedly acquire perpendicular anisotropy when the thickness is above a critical value. Using Ni/Nb bilayers, the perpendicular magnetization component can be sensitively probed by the measurements of the superconducting transition of Nb in a magnetic field, which alters the domain pattern in Ni. Above the critical Ni thickness, an in-plane magnetic field can manipulate the stripe domains in Ni between parallel stripes and random labyrinth states resulting in as much as 90 mK in the transition temperature of the Nb layer. This clearly demonstrates that superconductor is a sensitive probe of the magnetic domain state of a ferromagnet. In turn, the results also show that along the parallel stripe domains, superconductivity is less detrimental. [1]. A. Yu. Rusanov, M. Hesselberth, J. Aarts, and A. I. Buzdin, Phys. Rev. Lett. 93, 057002 (2004). [2]. L. Y. Zhu, T. Y. Chen, and C. L. Chien, Phys. Rev. Lett. 101, 017004 (2008).

  4. Progesterone-Targeted Magnetic Resonance Imaging Probes

    PubMed Central

    2015-01-01

    Determination of progesterone receptor (PR) status in hormone-dependent diseases is essential in ascertaining disease prognosis and monitoring treatment response. The development of a noninvasive means of monitoring these processes would have significant impact on early detection, cost, repeated measurements, and personalized treatment options. Magnetic resonance imaging (MRI) is widely recognized as a technique that can produce longitudinal studies, and PR-targeted MR probes may address a clinical problem by providing contrast enhancement that reports on PR status without biopsy. Commercially available MR contrast agents are typically delivered via intravenous injection, whereas steroids are administered subcutaneously. Whether the route of delivery is important for tissue accumulation of steroid-modified MRI contrast agents to PR-rich tissues is not known. To address this question, modification of the chemistry linking progesterone with the gadolinium chelate led to MR probes with increased water solubility and lower cellular toxicity and enabled administration through the blood. This attribute came at a cost through lower affinity for PR and decreased ability to cross the cell membrane, and ultimately it did not improve delivery of the PR-targeted MR probe to PR-rich tissues or tumors in vivo. Overall, these studies are important, as they demonstrate that targeted contrast agents require optimization of delivery and receptor binding of the steroid and the gadolinium chelate for optimal translation in vivo. PMID:25019183

  5. Axially Inserted Magnetic/Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Hannum, David; Bergerson, W.; Fiksel, G.; Forest, C. B.; Hegna, C.; Kendrick, R.; Oliva, S.; Sarff, J.

    2006-10-01

    A new probe has been designed to provide internal magnetic and Langmuir diagnostics throughout the rotating wall machine. The machine is a linear screw-pinch built to study the role of different wall boundary conditions on the resistive wall mode (RWM). Individual mode stability depends on the value of the safety factor at the plasma edge (qa). The plasma is produced by an array of nineteen guns, creating a column one meter in length and up to 20 cm in diameter. The central guns in the array can be biased to individually discharge 1 kA of plasma current. Different instabilities are studied by changing the current and density profiles of the guns. But profile measurement has been limited to the top and bottom of the plasma column by radial port access. The new axially-inserted Q-Tip probe can travel along the entire span of the column. The Q-Tip combines ten pickup loops with four triplets of electrodes for simultaneous magnetic and Langmuir measurements. The edge a and safety factor q of the plasma can now be found for different instabilities seen along the column. This poster tracks the change of ne, Te, ?p, and q throughout the plasma.

  6. Magnetic fields at Uranus

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Connerney, J. E. P.; Lepping, R. P.

    1986-01-01

    The conclusions drawn regarding the structure, behavior and composition of the Uranian magnetic field and magnetosphere as revealed by Voyager 2 data are summarized. The planet had a bipolar magnetotail and a bow shock wave which was observed 23.7 Uranus radii (UR) upstream and a magnetopause at 18.0 UR. The magnetic field observed can be represented by a dipole offset from the planet by 0.3 UR. The field vector and the planetary angular momentum vector formed a 60 deg angle, permitting Uranus to be categorized as an oblique rotator, with auroral zones occurring far from the rotation axis polar zones. The surface magnetic field was estimated to lie between 0.1-1.1 gauss. Both the field and the magnetotail rotated around the planet-sun line in a period of about 17.29 hr. Since the ring system is embedded within the magnetosphere, it is expected that the rings are significant absorbers of radiation belt particles.

  7. Magnetic fields at Uranus

    NASA Astrophysics Data System (ADS)

    Ness, N. F.; Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Connerney, J. E. P.; Lepping, R. P.

    1986-07-01

    The conclusions drawn regarding the structure, behavior and composition of the Uranian magnetic field and magnetosphere as revealed by Voyager 2 data are summarized. The planet had a bipolar magnetotail and a bow shock wave which was observed 23.7 Uranus radii (UR) upstream and a magnetopause at 18.0 UR. The magnetic field observed can be represented by a dipole offset from the planet by 0.3 UR. The field vector and the planetary angular momentum vector formed a 60 deg angle, permitting Uranus to be categorized as an oblique rotator, with auroral zones occurring far from the rotation axis polar zones. The surface magnetic field was estimated to lie between 0.1-1.1 gauss. Both the field and the magnetotail rotated around the planet-sun line in a period of about 17.29 hr. Since the ring system is embedded within the magnetosphere, it is expected that the rings are significant absorbers of radiation belt particles.

  8. UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS

    SciTech Connect

    Broderick, Avery E.; Blandford, Roger D.

    2010-08-01

    Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m{sup -2}){sup 1/4}(B/1 G){sup 1/2} MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, {nu}{sub SA}, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of {nu}{sub SA} range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, {nu}{sub SA} ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.

  9. Scanning Hall probe microscopy of a diluted magnetic semiconductor

    SciTech Connect

    Kweon, Seongsoo; Samarth, Nitin; Lozanne, Alex de

    2009-05-01

    We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga{sub 0.94}Mn{sub 0.06}As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 mum wide and fairly stable with temperature. Magnetic clusters are observed above T{sub C}, which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.

  10. Understanding the Geometry of Astrophysical Magnetic Fields

    E-print Network

    Broderick, Avery E

    2009-01-01

    Faraday rotation measurements have provided an invaluable technique with which to measure the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13 (RM/rad m^-2)^(1/4) (B/G)^(1/2) MHz, the character of Faraday rotation changes, entering what we term the ``super-adiabatic regime'' in which the rotation measure is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing rotation measures at high ...

  11. Radial magnetic field in magnetic confinement device

    NASA Astrophysics Data System (ADS)

    Xiong, Hao; Liu, Ming-Hai; Chen, Ming; Rao, Bo; Chen, Jie; Chen, Zhao-Quan; Xiao, Jin-Shui; Hu, Xi-Wei

    2015-09-01

    The intrinsic radial magnetic field (Br) in a tokamak is explored by the solution of the Grad-Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak should possess a three-dimensional magnetic field configuration, which could be reduced to a two-dimensional one when the radial position is greater than 0.6a. The radial magnetic field and the amzimuthal magnetic field have the same order of magnitude at the core of the device. These results can offer a reference for the analysis of the plasma instability, the property of the core plasma, and the magnetic field measurement. Project supported by the Special Domestic Program of ITER, China (Grant No. 2009GB105003).

  12. The complex magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1975-01-01

    An analysis of the characteristics of the magnetic field of the planet Jupiter is presented. The data were obtained during the flight of Pioneer 11 space probe, using a high field triaxial fluxgate magnetometer. The data are analyzed in terms of traditional Schmitt normalized spherical harmonic expansion fitted to the observations in a least squares sense. Tables of data and graphs are provided to summarize the findings.

  13. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  14. Spin Polarized Electron Probes and Magnetic Nanostructures

    SciTech Connect

    D.L. Mills

    2003-10-15

    OAK B188 This report summarizes progress to date in our theoretical research program, for the period from July 1, 2002 to November 1, 2003. In addition, our research priorities for the coming year are set forth. The reporting period has been a most exciting and significant one. For the past several years, one of our principal thrust areas has been development of the theory of spin dynamics in magnetic nanostructures with emphasis on the use of spin polarized electrons as probes of short wavelength spin dynamics in such entities. Our program stimulated the first experiment which detected large wave vector spin waves in ultrathin films in 1999 through spin polarized electron loss spectroscopy (SPEELS); the publication which announced this discovery was a joint publication between a group in Halle (Germany) with our theory effort. The continued collaboration has led to the design and implementation of the new SPEELS spectrometer and we now have in hand the first detailed measurements of spin wave dispersion in an ultrathin film. A second such spectrometer is now operational in the laboratory of Prof. H. Hopster, at UC Irvine. We are thus entering a most exciting new era in the spectroscopy of spin excitations in magnetic nanostructures. During the reporting period, we have completed very important new analyses which predict key aspects of the spectra which will be uncovered by these new instruments, and the calculations continue to be developed and to expand our understanding. In addition, we have initiated a new series of theoretical studies directed toward spin dynamics of single magnetic adatoms on metal surfaces, with STM based studies of this area n mind. In the near future, these studies will continue, and we will expand our effort into new areas of spin dynamics in magnetic nanostructures.

  15. The CMS Magnetic Field Map Performance

    E-print Network

    V. I. Klyukhin; N. Amapane; V. Andreev; A. Ball; B. Curé; A. Hervé; A. Gaddi; H. Gerwig; V. Karimaki; R. Loveless; M. Mulders; S. Popescu; L. I. Sarycheva; T. Virdee

    2011-10-04

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field values. The value of the field at a given point of a volume is obtained by interpolation from a regular grid of values resulting from a TOSCA calculation or, when available, from a parameterization. The results of the measurements and calculations are presented, compared and discussed.

  16. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  17. Antenna Near-Field Probe Station Scanner

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J. (Inventor); Lee, Richard Q. (Inventor); Darby, William G. (Inventor); Barr, Philip J. (Inventor); Lambert, Kevin M (Inventor); Miranda, Felix A. (Inventor)

    2011-01-01

    A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described.

  18. Seismic probes of solar interior magnetic structure.

    PubMed

    Hanasoge, Shravan; Birch, Aaron; Gizon, Laurent; Tromp, Jeroen

    2012-09-01

    Sun spots are prominent manifestations of solar magnetoconvection, and imaging their subsurface structure is an outstanding problem of wide physical importance. Travel times of seismic waves that propagate through these structures are typically used as inputs to inversions. Despite the presence of strongly anisotropic magnetic waveguides, these measurements have always been interpreted in terms of changes to isotropic wave speeds and flow-advection-related Doppler shifts. Here, we employ partial-differential-equation-constrained optimization to determine the appropriate parametrization of the structural properties of the magnetic interior. Seven different wave speeds fully characterize helioseismic wave propagation: the isotropic sound speed, a Doppler-shifting flow-advection velocity, and an anisotropic magnetic velocity. The structure of magnetic media is sensed by magnetoacoustic slow and fast modes and Alfvén waves, each of which propagates at a different wave speed. We show that even in the case of weak magnetic fields, significant errors may be incurred if these anisotropies are not accounted for in inversions. Translation invariance is demonstrably lost. These developments render plausible the accurate seismic imaging of magnetoconvection in the Sun. PMID:23005276

  19. Analysis and measurement of the 3D magnetic field in a rotating magnetic field driven FRC

    NASA Astrophysics Data System (ADS)

    Velas, K. M.; Milroy, R. D.

    2012-10-01

    A translatable three-axis probe was installed on TCSU shortly before its shutdown. The probe has 90 windings that simultaneously measure Br, B?, and Bz at 30 radial positions. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Probe measurements are used to calculate the end-shorting torque and the rotating magnetic field (RMF) torque. The torque applied to the plasma is the RMF torque reduced by the shorting torque. An estimate of the plasma resistivity is made based on the steady state balance between the applied torque and the resistive torque. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Data from even- and odd-parity experiments will be presented. The NIMROD code has been adapted to simulate the TCSU experiment using boundary conditions adjusted to match both even- and odd-parity experimental conditions. A comparison of the n=0 components of the calculated fields to the 3-axis probe measurements shows agreement in the magnetic field structure of the FRC as well as in the jet region.

  20. The Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Jansson, Ronnie; Farrar, Glennys R.

    2012-12-01

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength ?20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  1. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  2. Magnetic nanoparticle motion in external magnetic field

    NASA Astrophysics Data System (ADS)

    Usov, N. A.; Liubimov, B. Ya

    2015-07-01

    A set of equations describing the motion of a free magnetic nanoparticle in an external magnetic field in a vacuum, or in a medium with negligibly small friction forces is postulated. The conservation of the total particle momentum, i.e. the sum of the mechanical and the total spin momentum of the nanoparticle is taken into account explicitly. It is shown that for the motion of a nanoparticle in uniform magnetic field there are three different modes of precession of the unit magnetization vector and the director that is parallel the particle easy anisotropy axis. These modes differ significantly in the precession frequency. For the high-frequency mode the director points approximately along the external magnetic field, whereas the frequency and the characteristic relaxation time of the precession of the unit magnetization vector are close to the corresponding values for conventional ferromagnetic resonance. On the other hand, for the low-frequency modes the unit magnetization vector and the director are nearly parallel and rotate in unison around the external magnetic field. The characteristic relaxation time for the low-frequency modes is remarkably long. This means that in a rare assembly of magnetic nanoparticles there is a possibility of additional resonant absorption of the energy of alternating magnetic field at a frequency that is much smaller compared to conventional ferromagnetic resonance frequency. The scattering of a beam of magnetic nanoparticles in a vacuum in a non-uniform external magnetic field is also considered taking into account the precession of the unit magnetization vector and director.

  3. Planetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Stevenson, David J.

    2003-03-01

    The past several years have seen dramatic developments in the study of planetary magnetic fields, including a wealth of new data, mainly from the Galilean satellites and Mars, together with major improvements in our theoretical modeling effort of the dynamo process believed responsible for large planetary fields. These dynamos arise from thermal or compositional convection in fluid regions of large radial extent. The relevant electrical conductivities range from metallic values to values that may be only about 1% or less that of a typical metal, appropriate to ionic fluids and semiconductors. In all planets, the Coriolis force is dynamically important, but slow rotation may be more favorable for a dynamo than fast rotation. The maintenance and persistence of convection appears to be easy in gas giants and ice-rich giants, but is not assured in terrestrial planets because the quite high electrical conductivity of iron-rich cores guarantees a high thermal conductivity (through the Wiedemann-Franz law), which allows for a large core heat flow by conduction alone. In this sense, high electrical conductivity is unfavorable for a dynamo in a metallic core. Planetary dynamos mostly appear to operate with an internal field ˜(2 ??/ ?) 1/2 where ? is the fluid density, ? is the planetary rotation rate and ? is the conductivity (SI units). Earth, Ganymede, Jupiter, Saturn, Uranus, Neptune, and maybe Mercury have dynamos, Mars has large remanent magnetism from an ancient dynamo, and the Moon might also require an ancient dynamo. Venus is devoid of a detectable global field but may have had a dynamo in the past. The presence or absence of a dynamo in a terrestrial body (including Ganymede) appears to depend mainly on the thermal histories and energy sources of these bodies, especially the convective state of the silicate mantle and the existence and history of a growing inner solid core. Induced fields observed in Europa and Callisto indicate the strong likelihood of water oceans in these bodies.

  4. Parametric study of a pin-plane probe in moderately magnetized plasma

    NASA Astrophysics Data System (ADS)

    Binwal, S.; Gandhi, S.; Kabariya, H.; Karkari, S. K.

    2015-12-01

    The application of a planar Langmuir probe in magnetized plasma is found to be problematic due to significant perturbation of plasma along the magnetic field lines intercepting the probe surface. This causes the Ampere–Volts ‘I e(U)’ characteristics of the probe to deviate from its usual exponential law; in conjunction the electron saturation current I es is significantly reduced. Moreover estimating the electron temperature T e by considering the entire semi-log plot of I e(U) gives ambiguous values of T e. To address this problem, Pitts and Stangeby developed a formula for the reduction factor for I es. This formula depends on a number of uncertain parameters, namely; the ion temperature T +, electron cross-field diffusion coefficient {{D}\\bot ,\\text{e}} and the local potential hill V h estimated by applying a floating pin probe in the vicinity of the planar probe. Due to implicit dependence of these parameters on T e, the resulting analysis is not straightforward. This paper presents a parametric study of different parameters that influence the characteristics of a planar probe in magnetized plasma. For this purpose a pin-plane probe is constructed and applied in the magnetized plasma column. A comprehensive discussion is presented that highlights the practical methodology of using this technique for extracting useful information of plasma parameters in magnetized plasmas.

  5. Suppression of probe background signals via B(1) field inhomogeneity.

    PubMed

    Feng, Jian; Reimer, Jeffrey A

    2011-04-01

    A new approach combining a long pulse with the DEPTH sequence (Cory and Ritchey, Journal of Magnetic Resonance, 1988) greatly improves the efficiency for suppressing probe background signals arising from spinning modules. By applying a long initial excitation pulse in the DEPTH sequence, instead of a ?/2 pulse, the inhomogeneous B(1) fields outside the coil can dephase the background coherence in the nutation frame. The initial long pulse and the following two consecutive EXORCYCLE ? pulses function complementarily and prove most effective in removing background signals from both strong and weak B? fields. Experimentally, the length of the long pulse can be optimized around odd multiples of the ?/2 pulse, depending on the individual probe design, to preserve signals inside the coil while minimizing those from probe hardware. This method extends the applicability of the DEPTH sequence to probes with small differences in B? field strength between the inside and outside of the coil, and can readily combine with well-developed double resonance experiments for quantitative measurement. In general, spin systems with weak internal interactions are required to attain efficient and uniform excitation for powder samples, and the principles to determine the applicability are discussed qualitatively in terms of the relative strength of spin interactions, r.f. power and spinning rate. PMID:21349751

  6. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  7. Magnetic field therapy: a review.

    PubMed

    Markov, Marko S

    2007-01-01

    There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation. PMID:17454079

  8. What Are Electric and Magnetic Fields? (EMF)

    MedlinePLUS

    ... Print this page Share What are Electric and Magnetic Fields? (EMF) Electric and Magnetic Fields Electricity is an essential part of our ... we take for granted. What are electric and magnetic fields? Electric and magnetic fields (EMF) are invisible ...

  9. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  10. Magnetic Propeller for Uniform Magnetic Field Levitation

    E-print Network

    Krinker, Mark

    2008-01-01

    Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

  11. Magnetic Propeller for Uniform Magnetic Field Levitation

    E-print Network

    Mark Krinker; Alexander Bolonkin

    2008-07-12

    Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

  12. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  13. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  14. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  15. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  16. Magnetic fields in early-type stars

    NASA Astrophysics Data System (ADS)

    Grunhut, Jason H.; Neiner, Coralie

    2015-10-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M ?) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have furthered our understanding of the interactions between the magnetic field and stellar wind, as well as the consequences and connections of this interaction with other observed phenomena.

  17. Evolution of twisted magnetic fields

    SciTech Connect

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  18. Using Coordinated Observations in Polarised White Light and Faraday Rotation to Probe the Spatial Position and Magnetic Field of an Interplanetary Sheath

    E-print Network

    Xiong, Ming; Feng, Xueshang; Owens, Mathew J; Harrison, Richard A; Davis, Chris J; Liu, Ying D

    2013-01-01

    Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White-light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons, and therefore depend on both the viewing geometry and the electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component $B_\\parallel$, and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modelling of an Earth-directed shock and synthesise the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depen...

  19. USING COORDINATED OBSERVATIONS IN POLARIZED WHITE LIGHT AND FARADAY ROTATION TO PROBE THE SPATIAL POSITION AND MAGNETIC FIELD OF AN INTERPLANETARY SHEATH

    SciTech Connect

    Xiong, Ming; Feng, Xueshang; Liu, Ying D.; Davies, Jackie A.; Harrison, Richard A.; Owens, Mathew J.; Davis, Chris J.

    2013-11-01

    Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B{sub ?} and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression I?r {sup –3}. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r{sub sheath} and the mass of plasma at that position M{sub sheath} can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B{sub ?sheath} at r{sub sheath} can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.

  20. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  1. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  2. The origin, evolution and signatures of primordial magnetic fields

    E-print Network

    Subramanian, Kandaswamy

    2015-01-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak $\\sim 10^{-16}$ Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and other phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, ...

  3. Vestibular stimulation by magnetic fields.

    PubMed

    Ward, Bryan K; Roberts, Dale C; Della Santina, Charles C; Carey, John P; Zee, David S

    2015-04-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging studies, these reports have become more common. It was recently learned that humans, mice, and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  4. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  5. THE OUTER MAGNETIC FIELD OF L183

    SciTech Connect

    Clemens, Dan P.

    2012-03-20

    The L183 (= L134N) dark molecular cloud has been probed using deep near-infrared imaging polarimetry of stars to beyond 14 mag in H band (1.6 {mu}m), using the Mimir instrument on the 1.83 m Perkins Telescope. Nearly 400 arcmin{sup 2} were surveyed, including the dense core in L183, as seen in WISE Band 3 (12 {mu}m) extinction, and the near surroundings, revealing 35 stars with either detected polarizations or significant upper limits. Stars with detected polarizations are reddened if closer than 8 arcmin (0.25 pc at the 110 pc cloud distance) and unreddened beyond. The polarimetric sample probes as close to the core as 3 arcmin (0.1 pc), where A{sub V} {approx} 14 mag. Compared to the relatively unextincted surrounding stars, the reddened stars show no increase in polarization with extinction, suggesting that all of the polarization is induced in the outer layers of the cloud. This 0.25 pc radius envelope magnetic field does show a strong interaction with the L183 dark cloud. The envelope field is also virtually perpendicular, on the plane of the sky, to the field seen at 850 {mu}m, though more closely aligned with the rotation axis of the dense gas core. The physical size scale at which the envelope and the core magnetic fields either decouple from each other or strongly modify their directions must be inside the 0.1 pc region probed here.

  6. ANCHORING MAGNETIC FIELD IN TURBULENT MOLECULAR CLOUDS

    SciTech Connect

    Li Huabai; Goodman, Alyssa; Darren Dowell, C.; Hildebrand, Roger; Novak, Giles

    2009-10-20

    One of the key problems in star formation research is to determine the role of magnetic fields. Starting from the atomic intercloud medium which has density n {sub H} approx 1 cm{sup -3}, gas must accumulate from a volume several hundred pc across in order to form a typical molecular cloud. Star formation usually occurs in cloud cores, which have linear sizes below 1 pc and densities n {sub H2} > 10{sup 5} cm{sup -3}. With current technologies, it is hard to probe magnetic fields at scales lying between the accumulation length and the size of cloud cores, a range corresponds to many levels of turbulent eddy cascade, and many orders of magnitude of density amplification. For field directions detected from the two extremes, however, we show here that a significant correlation is found. Comparing this result with molecular cloud simulations, only the sub-Alfvenic cases result in field orientations consistent with our observations.

  7. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  8. Estimation of fluctuating magnetic fields by an atomic magnetometer

    SciTech Connect

    Petersen, Vivi; Moelmer, Klaus

    2006-10-15

    We present a theoretical procedure to estimate with an atomic magnetometer the time dependence of a magnetic field that fluctuates according to an Ornstein-Uhlenbeck process. The magnetometer applies the detected polarization rotation of an optical probe to measure a collective atomic spin, which precesses due to the magnetic field. Based on the noisy optical detection record, our consistent Gaussian update formalism provides an estimator for the magnetic fields, and we identify analytically the steady-state performance of this estimator. We show that the estimate of the current value of the magnetic field is further improved if noisy measurement data obtained also at later times are taken into account.

  9. The Magnetic Field in Tapia's Globule 2

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Carretti, Ettore; Bhat, Ramesh; Robishaw, Timothy; Crutcher, Richard; Vaillancourt, John

    2014-04-01

    We propose to measure the magnetic field in the Southern Coalsack using the Zeeman effect in OH at 1665 and 1667 MHz. This is motivated by (1) the measurement of a large magnetic field (B~90 uG) in the Coalsack region from optical and near infrared polarimetry and (2) a very low magnetic field (B~1 uG) measured ~30' from the cloud edge using pulsar Faraday rotation measurements. While the derived field strength in the cloud is significantly larger than usually seen in the interstellar medium, the existence of an X-ray emitting envelope around the cloud that contains significant amounts of O VI ions puts the magnetic pressure at approximate equipartition with the thermal pressure of such gas. A chain of observational results indicate that the Coalsack might be a unique, nearby example of externally triggered star formation. This chain starts with the passage of the Upper Centaurus-Lupus super bubble over the cloud, eventually causing triggered star formation. Probing the high magnetic field strength and providing accurate constraints for the interpretation of the observations of the cloud is therefore of great importance for testing this hypothesis.

  10. Measurement of the CMS Magnetic Field

    E-print Network

    V. I. Klyukhin; A. Ball; F. Bergsma; D. Campi; B. Curé; A. Gaddi; H. Gerwig; A. Hervé; J. Korienek; F. Linde; C. Lindenmeyer; R. Loveless; M. Mulders; T. Nebel; R. P. Smith; D. Stickland; G. Teafoe; L. Veillet; J. K. Zimmerman

    2011-10-03

    The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the initial magnetic flux density in steel at the maximum field to an accuracy of a few percent. The results of the measurements made at 4 T are reported and compared with a three-dimensional model of the CMS magnet system calculated with TOSCA.

  11. Reionization constraints on primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Pandey, Kanhaiya L.; Choudhury, T. Roy; Sethi, Shiv K.; Ferrara, Andrea

    2015-08-01

    We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: 6 < z < 10. We perform a comprehensive Markov chain Monte Carlo (MCMC) physical analysis allowing the variation of parameters related to primordial magnetic fields (strength, B0, and power-spectrum index n_{B}), reionization and ? cold dark matter cosmological model. We find that magnetic field strengths in the range: B0 ? 0.05-0.3 nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the Wilkinson Microwave Anisotropy Probe and quasar absorption spectra data. Our analysis puts upper limits on the magnetic field strength B0 < 0.358, 0.120 and 0.059 nG (95 per cent c.l.) for n_{B} = -2.95, -2.9 and -2.85, respectively. These represent the strongest magnetic field constraints among those available from other cosmological observables.

  12. Laboratory Measurements of Astrophysical Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Murphy, C. D.; Miniati, F.; Edwards, M.; Mithen, J.; Bell, A. R.; Constantin, C.; Everson, E.; Schaeffer, D.; Niemann, C.; Ravasio, A.; Brambrink, E.; Benuzzi-Mounaix, A.; Koenig, M.; Gregory, C.; Woolsey, N.; Park, H.-S.; Remington, B.; Ryutov, D.; Bingham, R.; Gargate, L.; Spitkovsky, A.; Gregori, G.

    2010-11-01

    It has been proposed that high Mach number collisionless shocks propagating in an initially unmagnetized plasma play a major role in the magnetization of large scale structures in the Universe. A detailed study of the experimental configuration necessary to scale such environments down to laboratory dimensions will be presented. We will show initial results from preliminary experiments conducted at the Phoenix laser (UCLA) and the LULI laser (Ecole Polytechnique) where collisionless shocks are generated by the expansion of exploding foils driven by energetic laser beams. The time evolution of the magnetic field is probed with induction coils placed at 10 cm from the laser focus. We will discuss various mechanisms of magnetic field generation and compare them with the experimental results.

  13. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)??G if the energy scale of inflation is few×10(16)??GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

  14. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  15. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  16. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-06-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  17. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  18. Magnetic field depression within electron holes

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F.; Artemyev, A. V.; Jovanovic, D.

    2015-04-01

    We analyze electron holes that are spikes of the electrostatic field (up to 500 mV/m) observed by Van Allen Probes in the outer radiation belt. The unexpected feature is the magnetic field depression of about several tens of picotesla within many of the spikes. The earlier observations showed amplification or negligible perturbations of the magnetic field within the electron holes. We suggest that the observed magnetic field depression is due to the diamagnetic current of hot and highly anisotropic population of electrons trapped within the electron holes. The required trapped population should have a density up to 65% of the background plasma density, a temperature up to several keV, and a temperature anisotropy T?/T?˜2. We argue that the observed electron holes could be generated due to injections of highly anisotropic plasma sheet electrons into the outer radiation belt. These electron holes may present a source of the seed population due to transport of trapped electrons to higher latitudes and can be potentially used for distant probing of plasma properties in their source region.

  19. A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments

    SciTech Connect

    Smith, Doran D.; Alexson, Dimitri A.; Garbini, Joseph L.

    2013-09-15

    The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 ?m diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.

  20. Magnetic fields in early-type stars

    E-print Network

    Grunhut, Jason H

    2015-01-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M_sun) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have fu...

  1. MANUFACTURING OF MAGNETIC PROBE COILS FOR DIII-D

    SciTech Connect

    BOZEK,A.S; STRAIT,E.J

    2003-10-01

    OAK-B135 The magnetic diagnostics program at DIII-D adds to its in-vessel installations of induction-type loops and coils almost every year. The current design of toroidal and poloidal magnetic field coils (45-50 kHz, N {center_dot} A = 0.06 m{sup 2}) has been in existence since 1987. Many coils were installed in DIII-D during that year and are still operating and reliable today. The high reliability of the coils is owing to the use of a continuous length of mineral-insulated cable, eliminating any electrical connections inside the vacuum vessel. The geometry of the probes was designed to achieve a bandwidth of 50 kHz, despite the conducting shell formed by the stainless steel sheath of the mineral-insulated cable. The bandwidth is sensitive to the details of the cable dimensions and winding technique, and care must be taken in the fabrication in order to maintain this specification. With possible future magnetic diagnostics installations IN ITER and other long-pulse machines requiring large numbers of coils and/or multiple layers per coil, the manufacturing scale-up, quality control, and the development of layered coils should all be investigated in addition to the obvious issues such as irradiation effects.

  2. Catheter based magnetic resonance compatible perfusion probe

    E-print Network

    Toretta, Cara Lynne

    2007-01-01

    Neurosurgeons are using a thermal based technique to quantify brain perfusion. The thermal diffusion probe (TDP) technology measures perfusion in a relatively small volume of brain tissue. The neurosurgeon chooses the ...

  3. Field quality measurements of a 2-Tesla transmission line magnet

    SciTech Connect

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  4. Observation of low magnetic field density peaks in helicon plasma

    SciTech Connect

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C.

    2013-04-15

    Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peak value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.

  5. Pattern Formation in a Complex Plasma in High Magnetic Fields

    SciTech Connect

    Schwabe, M.; Konopka, U.; Bandyopadhyay, P.; Morfill, G. E.

    2011-05-27

    Low-pressure room-temperature neon, argon, krypton, and air plasmas were studied in magnetic fields up to flux densities of 2.3 T. Filaments appeared parallel to the magnetic field lines, and patterns such as spirals and concentric circles formed in the perpendicular direction. We link these effects to the magnetization of the ions. We also used a layer of embedded microparticles as probes in the plasma. Their motion changed dramatically from a collective rotation of the whole ensemble in moderate magnetic fields to a rotation in several small vortices centered at the filaments.

  6. Time-dependent meson melting in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, M.; Charmchi, F.; Davody, A.; Ebrahim, H.; Shahkarami, L.

    2015-05-01

    The dynamics of a probe D7-brane in an asymptotically anti-de Sitter-Vaidya background has been investigated in the presence of an external magnetic field. Holographically, this is dual to the dynamical meson melting in the N =2 super Yang-Mills theory. If the final temperature of the system is large enough, the probe D7-brane will dynamically cross the horizon (the black hole embedding). By turning on the external magnetic field and raising it sufficiently, the final embedding of the corresponding D7-brane changes to a Minkowski embedding. On the field theory side, this means that the mesons which melt due to the raise in the temperature will form bound states again by applying an external magnetic field. We also show that the evolution of the system to its final equilibrium state is postponed due to the presence of the magnetic field.

  7. Time-Dependent Meson Melting in External Magnetic Field

    E-print Network

    Ali-Akbari, M; Davody, A; Ebrahim, H; Shahkarami, L

    2015-01-01

    The dynamics of a probe D7-brane in an asymptotically AdS-Vaidya background has been investigated in the presence of an external magnetic field. Holographically, this is dual to the dynamical meson melting in the N = 2 super Yang-Milles theory. If the final temperature of the system is large enough, the probe D7-brane will dynamically cross the horizon (black hole embedding). By turning on the external magnetic field and raising it sufficiently, the final embedding of the corresponding D7-brane changes to Minkowski embedding. In the field theory side, this means that the mesons which melt due to the raise in the temperature, will form bound states again by applying an external magnetic field. We will also show that the evolution of the system to its final equilibrium state is postponed due to the presence of the magnetic field.

  8. Time-Dependent Meson Melting in External Magnetic Field

    E-print Network

    M. Ali-Akbari; F. Charmchi; A. Davody; H. Ebrahim; L. Shahkarami

    2015-03-15

    The dynamics of a probe D7-brane in an asymptotically AdS-Vaidya background has been investigated in the presence of an external magnetic field. Holographically, this is dual to the dynamical meson melting in the N = 2 super Yang-Milles theory. If the final temperature of the system is large enough, the probe D7-brane will dynamically cross the horizon (black hole embedding). By turning on the external magnetic field and raising it sufficiently, the final embedding of the corresponding D7-brane changes to Minkowski embedding. In the field theory side, this means that the mesons which melt due to the raise in the temperature, will form bound states again by applying an external magnetic field. We will also show that the evolution of the system to its final equilibrium state is postponed due to the presence of the magnetic field.

  9. Probing cellular traction forces with magnetic nanowires and microfabricated force sensor This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-print Network

    Chen, Christopher S.

    nanowires' for separating and positioning cells in suspension under the control of external magnetic fieldsProbing cellular traction forces with magnetic nanowires and microfabricated force sensor arrays.1088/0957-4484/23/7/075101 Probing cellular traction forces with magnetic nanowires and microfabricated force sensor arrays Yi

  10. Static magnetic fields enhance turbulence

    E-print Network

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  11. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  12. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  13. Magnetic Field Generation in Stars

    NASA Astrophysics Data System (ADS)

    Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

    2015-10-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.

  14. Neutron scattering in magnetic fields

    SciTech Connect

    Koehler, W.C.

    1984-01-01

    The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two general areas of application can be distinguished. In one the field acts to change the properties of the scattering sample; in the second the field acts on the neutron itself. Several examples are discussed. Precautions necessary for high precision polarized beam measurements are reviewed. 33 references.

  15. Reconnection of stressed magnetic fields

    NASA Technical Reports Server (NTRS)

    Hassam, A. B.

    1992-01-01

    It is shown that magnetized plasma configurations under magnetic stress relax irreversibly to the state of minimum stress at a rate that is essentially Alfvenic provided a magnetic null is present. The relaxation is effected by the reconnection at the field null and proceeds at a rate proportional to the absolute value of ln(eta) exp-1, where eta is the resistivity. An analytic calculation in the linear regime is presented.

  16. Magnetically insulated baffled probe for real-time monitoring of equilibrium and fluctuating values of space potentials, electron and ion temperatures, and densities

    SciTech Connect

    Demidov, V. I.; Koepke, M. E.; Raitses, Y.

    2010-10-15

    By restricting the electron-collection area of a cold Langmuir probe compared to the ion-collection area, the probe floating potential can become equal to the space potential, and thus conveniently monitored, rather than to a value shifted from the space potential by an electron-temperature-dependent offset, i.e., the case with an equal-collection-area probe. This design goal is achieved by combining an ambient magnetic field in the plasma with baffles, or shields, on the probe, resulting in species-selective magnetic insulation of the probe collection area. This permits the elimination of electron current to the probe by further adjustment of magnetic insulation which results in an ion-temperature-dependent offset when the probe is electrically floating. Subtracting the floating potential of two magnetically insulated baffled probes, each with a different degree of magnetic insulation, enables the electron or ion temperature to be measured in real time.

  17. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  18. Black Holes and Magnetic Fields

    E-print Network

    Filip Hejda; Ji?í Bi?ák

    2015-10-01

    We briefly summarise the basic properties of spacetimes representing rotating, charged black holes in strong axisymmetric magnetic fields. We concentrate on extremal cases, for which the horizon surface gravity vanishes. We investigate their properties by finding simpler spacetimes that exhibit their geometries near degenerate horizons. Employing the simpler geometries obtained by near-horizon limiting description we analyse the Meissner effect of magnetic field expulsion from extremal black holes.

  19. Magnetic fields on the Sun

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1981-01-01

    Synoptic observations of solar magnetic fields are discussed. Seen in long-term averages, the magnetic fields of the Sun show distinctive behavior. The active-region latitudes are characterized by magnetic fields of preceding polarity. The flow of following polarity fields to make up the polar fields is episodic, not continuous. This field motion is a directed poleward flow and is not due to diffusion. The total magnetic flux on the solar surface, which is related linearly to the calcium emission in integrated sunlight, varies from activity minimum to maximum by a factor of 2 or 3. Nearly all this flux is seen at active-region latitudes-only about 1% is at the poles. The total flux of the Sun disappears from the surface at a very rapid rate and is replaced by new flux. All the field and flux patterns that we see originate in active-region latitudes. The polar magnetic fields of the Sun were observed to change polarity recently. The variations of the full-disk solar flux are shown to lead to the proper rotation rate of the Sun, but the phase of the variations is constant for only a year or two at most.

  20. Dynamic nuclear polarization at high magnetic fields

    PubMed Central

    Maly, Thorsten; Debelouchina, Galia T.; Bajaj, Vikram S.; Hu, Kan-Nian; Joo, Chan-Gyu; Mak–Jurkauskas, Melody L.; Sirigiri, Jagadishwar R.; van der Wel, Patrick C. A.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (?w) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (?e/?l), being ?660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (?5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms—the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in ?w and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments. PMID:18266416

  1. Magnetic field induced dynamical chaos

    SciTech Connect

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-15

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  2. Dynamical Field Line Connectivity in Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Ruffolo, D. J.; Matthaeus, W. H.

    2014-12-01

    Point-to-point magnetic connectivity has a stochastic character whenever magnetic fluctuations cause a field line random walk, with observable manifestations such as dropouts of solar energetic particles and upstream events at Earth's bow shock. This can also change due to dynamical activity. Comparing the instantaneous magnetic connectivity to the same point at two different times, we provide a nonperturbative analytic theory for the ensemble average perpendicular displacement of the magnetic field line, given the power spectrum of magnetic fluctuations. For simplicity, the theory is developed in the context of transverse turbulence, and is numerically evaluated for two specific models: reduced magnetohydrodynanmics (RMHD), a quasi-two dimensional model of anisotropic turbulence that is applicable to low-beta plasmas, and two-dimensional (2D) plus slab turbulence, which is a good parameterization for solar wind turbulence. We take into account the dynamical decorrelation of magnetic fluctuations due to wave propagation, nonlinear distortion, random sweeping, and convection by a bulk wind flow relative to the observer. The mean squared time-differenced displacement increases with time and with parallel distance, becoming twice the field line random walk displacement at long distances and/or times, corresponding to a pair of uncorrelated random walks. These results are relevant to a variety of astrophysical processes, such as electron transport and heating patterns in coronal loops and the solar transition region, changing magnetic connection to particle sources near the Sun or at a planetary bow shock, and thickening of coronal hole boundaries. Partially supported by the Thailand Research Fund, the US NSF (AGS-1063439 and SHINE AGS-1156094), NASA (Heliophysics Theory NNX11AJ44G), and by the Solar Probe Plus Project through the ISIS Theory team.

  3. Magnetic field effect on hemin

    NASA Astrophysics Data System (ADS)

    Bartoszek, Mariola; Balanda, Maria; Skrzypek, Danuta; Drzazga, Zofia

    2001-12-01

    Magnetic behaviour of hemin has been investigated by means of magnetostatic methods, AC-susceptibility measurements and EPR spectroscopy. The measurements were made using polycrystalline and oriented samples of hemin in the temperature range 2.3-292 K and in magnetic fields up to 6 T. In the paramagnetic region, the susceptibility obeys the Curie-Weiss law with positive Curie-Weiss temperature. At low temperature, a rapid increase of the susceptibility is noticed but up to 2 K no long-range correlations are observed. The studies show that the iron ion in hemin exists in two spin states ( S= {5}/{2} and {1}/{2}). The applied magnetic field increases the occupation of the low-spin state. Hemin shows high-field-induced magnetic anisotropy which, similar to the susceptibility, increases with decreasing temperature.

  4. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect

    SciTech Connect

    Fang, Jiancheng; Wang, Tao Quan, Wei; Yuan, Heng; Li, Yang; Zhang, Hong; Zou, Sheng

    2014-06-15

    A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelength of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz{sup 1/2}, which was mainly dominated by the noise of the magnetic shield.

  5. Ion beam probing of electrostatic fields

    NASA Technical Reports Server (NTRS)

    Persson, H.

    1979-01-01

    The determination of a cylindrically symmetric, time-independent electrostatic potential V in a magnetic field B with the same symmetry by measurements of the deflection of a primary beam of ions is analyzed and substantiated by examples. Special attention is given to the requirements on canonical angular momentum and total energy set by an arbitrary, nonmonotone V, to scaling laws obtained by normalization, and to the analogy with ionospheric sounding. The inversion procedure with the Abel analysis of an equivalent problem with a one-dimensional fictitious potential is used in a numerical experiment with application to the NASA Lewis Modified Penning Discharge. The determination of V from a study of secondary beams of ions with increased charge produced by hot plasma electrons is also analyzed, both from a general point of view and with application to the NASA Lewis SUMMA experiment. Simple formulas and geometrical constructions are given for the minimum energy necessary to reach the axis, the whole plasma, and any point in the magnetic field. The common, simplifying assumption that V is a small perturbation is critically and constructively analyzed; an iteration scheme for successively correcting the orbits and points of ionization for the electrostatic potential is suggested.

  6. Magnetic fields in quiescent prominences

    NASA Technical Reports Server (NTRS)

    Van Ballegooijen, A. A.; Martens, P. C. H.

    1990-01-01

    The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.

  7. The origin, evolution and signatures of primordial magnetic fields

    E-print Network

    Kandaswamy Subramanian

    2015-04-09

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak $\\sim 10^{-16}$ Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and other phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-$\\alpha$ forest are outlined. Constraints from radio and $\\gamma$-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  8. Tracing ultrafast dynamics of strong fields at plasma-vacuum interfaces with longitudinal proton probing

    SciTech Connect

    Abicht, F.; Braenzel, J.; Koschitzki, Ch.; Schnürer, M.; Priebe, G.; Andreev, A. A.; Nickles, P. V.; Sandner, W.

    2014-07-21

    If regions of localized strong fields at plasma-vacuum interfaces are probed longitudinally with laser accelerated proton beams their velocity distribution changes sensitively and very fast. Its measured variations provide indirectly a higher temporal resolution as deduced from deflection geometries which rely on the explicit temporal resolution of the proton beam at the position of the object to probe. With help of reasonable models and comparative measurements changes of proton velocity can trace the field dynamics even at femtosecond time scale. In longitudinal probing, the very low longitudinal emittance together with a broad band kinetic energy distribution of laser accelerated protons is the essential prerequisite of the method. With a combination of energy and one-dimensional spatial resolution, we resolve fast field changes down to 100 fs. The used pump probe setup extends previous schemes and allows discriminating simultaneously between electric and magnetic fields in their temporal evolution.

  9. Sensor probes and phantoms for advanced transcranial magnetic stimulation system developments

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Patel, Prashil; Trivedi, Sudhir; Du, Xiaoming; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Transcranial magnetic stimulation (TMS) has become one of the most widely used noninvasive method for brain tissue stimulation and has been used as a treatment tool for various neurological and psychiatric disorders including migraine, stroke, Parkinson's disease, dystonia, tinnitus and depression. In the process of developing advanced TMS deep brain stimulation tools, we need first to develop field measurement devices like sensory probes and brain phantoms, which can be used to calibrate the TMS systems. Currently there are commercially available DC magnetic or electric filed measurement sensors, but there is no instrument to measure transient fields. In our study, we used a commercial figure-8 shaped TMS coil to generate transient magnetic field and followed induced field and current. The coil was driven by power amplified signal from a pulse generator with tunable pulse rate, amplitude, and duration. In order to obtain a 3D plot of induced vector electric field, many types of probes were designed to detect single component of electric-field vectors along x, y and z axis in the space around TMS coil. We found that resistor probes has an optimized signal-to-noise ratio (SNR) near 3k ohm but it signal output is too weak compared with other techniques. We also found that inductor probes can have very high output for Curl E measurement, but it is not the E-field distribution we are interested in. Probes with electrical wire wrapped around iron coil can directly measure induced E-field with high sensitivity, which matched computer simulation results.

  10. The magnetic field of Uranus

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.

    1987-01-01

    Aspherical harmonic model of the planetary magnetic field of Uranus is obtained from the Voyager 2 encounter observations using generalized inverse techniques which allow partial solutions to complex (underdetermined) problems. The Goddard Space Flight Center 'Q3' model is characterized by a large dipole tilt (58.6 deg) relative to the rotation axis, a dipole moment of 0.228 G R(Uranus radii cubed) and an unusually large quadrupole moment. Characteristics of this complex model magnetic field are illustrated using contour maps of the field on the planet's surface and discussed in the context of possible dynamo generation in the relatively poorly conducting 'ice' mantle.

  11. Jovian magnetic fields is complex, Pioneer 11 shows

    NASA Technical Reports Server (NTRS)

    Panagakos, N.; Waller, P.

    1975-01-01

    An analysis of the magnetic field of the planet Jupiter is presented. The data are based on the information returned by Pioneer 11 space probe. It was determined that the magnetic field stretches across 9 million miles of space at some times and shrinks in volume by three-fourths or more at other times. It was also determined that electrons trapped in the magnetic field of Jupiter are 10,000 times more intense than those in the Van Allen radiation belts which circle the earth. Additional data were obtained on the polar regions, atmospheric circulation, and the nature of the moons.

  12. Helical Magnetic Fields from Sphaleron Decay and Baryogenesis

    SciTech Connect

    Copi, Craig J.; Ferrer, Francesc; Vachaspati, Tanmay; Achucarro, Ana

    2008-10-24

    Many models of baryogenesis rely on anomalous particle physics processes to give baryon number violation. By numerically evolving the electroweak equations on a lattice, we show that baryogenesis in these models creates helical cosmic magnetic fields, though the helicity created is smaller than earlier analytical estimates. After a transitory period, electroweak dynamics is found to conserve the Chern-Simons number and the total electromagnetic helicity. We argue that baryogenesis could lead to magnetic fields of nano-Gauss strength today on astrophysical length scales. In addition to being astrophysically relevant, such helical magnetic fields can provide an independent probe of baryogenesis and CP violation in particle physics.

  13. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  14. Magnetic field effects in hybrid perovskite devices

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the ?g model. We validate this model by measuring large ?g (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  15. X-Ray Detected Magnetic Resonance: A Unique Probe of the Precession Dynamics of Orbital Magnetization Components

    PubMed Central

    Goulon, Jo?e; Rogalev, Andrei; Goujon, Gérard; Wilhelm, Fabrice; Ben Youssef, Jamal; Gros, Claude; Barbe, Jean-Michel; Guilard, Roger

    2011-01-01

    X-ray Detected Magnetic Resonance (XDMR) is a novel spectroscopy in which X-ray Magnetic Circular Dichroism (XMCD) is used to probe the resonant precession of local magnetization components in a strong microwave pump field. We review the conceptual bases of XDMR and recast them in the general framework of the linear and nonlinear theories of ferromagnetic resonance (FMR). Emphasis is laid on the information content of XDMR spectra which offer a unique opportunity to disentangle the precession dynamics of spin and orbital magnetization components at given absorbing sites. For the sake of illustration, we focus on selected examples in which marked differences were found between FMR and XDMR spectra simultaneously recorded on ferrimagnetically ordered iron garnets. With pumping capabilities extended up to sub-THz frequencies, high-field XDMR should allow us to probe the precession of orbital magnetization components in paramagnetic organometallic complexes with large zero-field splitting. Even more challenging, we suggest that XDMR spectra might be recorded on selected antiferromagnetic crystals for which orbital magnetism is most often ignored in the absence of any supporting experimental evidence. PMID:22272105

  16. Magnetic field fluctuations during substorms

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1971-01-01

    Before a magnetospheric substorm and during its early phases the magnetic field magnitude in the geomagnetic tail increases and field lines in the nighttime hemisphere assume a more tail-like configuration. Before the substorm onset a minimum amount of magnetic flux is observed to cross the neutral sheet which means that the neutral sheet currents attain their most earthward locations and their greatest current densities. This configuration apparently results from an increased transport of magnetic flux to the tail caused by a southward interplanetary magnetic field. The field begins relaxing toward a more dipolar configuration at the time of a substorm onset with the recovery probably occurring first between 6 and 10 R sub E. This recovery must be associated with magnetospheric convection which restores magnetic flux to the dayside hemisphere. Field aligned currents appear to be required to connect magnetospheric currents to the auroral electrojets, implying that a net current flows in a limited range of longitudes. Space measurements supporting current systems are limited. More evidence exists for the occurrence of double current sheets which do not involve net current at a given longitude.

  17. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  18. Detecting solar axions using Earth's magnetic field.

    PubMed

    Davoudiasl, Hooman; Huber, Patrick

    2006-10-01

    We show that solar axion conversion to photons in the Earth's magnetosphere can produce an x-ray flux, with average energy omega approximately 4 keV, which is measurable on the dark side of the Earth. The smallness of the Earth's magnetic field is compensated by a large magnetized volume. For axion masses m(a) less, similar10(-4) eV, a low-Earth-orbit x-ray detector with an effective area of 10(4) cm(2), pointed at the solar core, can probe the photon-axion coupling down to 10(-11) GeV-1, in 1 yr. Thus, the sensitivity of this new approach will be an order of magnitude beyond current laboratory limits. PMID:17155238

  19. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.

  20. Matched dipole probe for magnetized low electron density laboratory plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-07-01

    In this paper, a diagnostic method for magnetized and unmagnetized laboratory plasma is proposed, based on impedance measurements of a short matched dipole. The range of the measured electron densities is limited to low density plasmas (1012-1015 m-3), where other diagnostic methods have strong limitations on the magnetic field strength and topology, plasma dimensions, and boundary conditions. The method is designed for use in both large- and small-dimension plasma (<10 cm) without or with strong non-homogeneous magnetic field, which can be undefined within the probe size. The design of a matched dipole probe allows to suppress the sheath resonance effects and to reach high sensitivity at relatively small probe dimensions. Validation experiments are conducted in both magnetized (B ˜ 170 G) and unmagnetized (B = 0) low density (7 × 1012 m-3-7 × 1013 m-3) low pressure (1 mTorr) 10 cm scale plasmas. The experimentally measured data show very good agreement with an analytical theory both for a non-magnetized and a magnetized case. The electron density measured by the matched dipole and Langmuir probes in the range of 7 × 1012 m-3-7 × 1013 m-3 show less than 30% difference. An experimentally measured tolerance/uncertainty of the dipole probe method is estimated to ±1% for plasma densities above 2 × 1013 m-3. A spatial resolution is estimated from the experiments to be about 3d, where d is the dipole diameter. The diagnostic method is also validated by comparing the measured plasma impedance curves with results of analytical modelling.

  1. Three axis vector magnet set-up for cryogenic scanning probe microscopy.

    PubMed

    Galvis, J A; Herrera, E; Guillamón, I; Azpeitia, J; Luccas, R F; Munuera, C; Cuenca, M; Higuera, J A; Díaz, N; Pazos, M; García-Hernandez, M; Buendía, A; Vieira, S; Suderow, H

    2015-01-01

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor ?-Bi2Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert. PMID:25638089

  2. Practical method using superposition of individual magnetic fields for initial arrangement of undulator magnets

    SciTech Connect

    Tsuchiya, K.; Shioya, T.

    2015-04-15

    We have developed a practical method for determining an excellent initial arrangement of magnetic arrays for a pure-magnet Halbach-type undulator. In this method, the longitudinal magnetic field distribution of each magnet is measured using a moving Hall probe system along the beam axis with a high positional resolution. The initial arrangement of magnetic arrays is optimized and selected by analyzing the superposition of all distribution data in order to achieve adequate spectral quality for the undulator. We applied this method to two elliptically polarizing undulators (EPUs), called U#16-2 and U#02-2, at the Photon Factory storage ring (PF ring) in the High Energy Accelerator Research Organization (KEK). The measured field distribution of the undulator was demonstrated to be excellent for the initial arrangement of the magnet array, and this method saved a great deal of effort in adjusting the magnetic fields of EPUs.

  3. Magnetic Field Issues in Magnetic Resonance Imaging.

    NASA Astrophysics Data System (ADS)

    Petropoulos, Labros Spiridon

    Advances in Magnetic Resonance Imaging depend on the capability of the available hardware. Specifically, for the main magnet configuration, using derivative constraints, we can create a static magnetic field with reduced levels of inhomogeneity over a prescribed imaging volume. In the gradient coil, the entire design for the axial elliptical coil, and the mathematical foundation for the transverse elliptical coil have been presented. Also, the design of a self-shielded cylindrical gradient coil with a restricted length has been presented. In order to generate gradient coils adequate for head imaging without including the human shoulders in the design, asymmetric cylindrical coils in which the gradient center is shifted axially towards the end of a finite cylinder have been introduced and theoretical as well as experimental results have been presented. In order to eliminate eddy current effects in the design of the non-shielded asymmetric gradient coils, the self-shielded asymmetric cylindrical gradient coil geometry has been introduced. Continuing the development of novel geometries for the gradient coils, the complete set of self-shielded cylindrical gradient coils, which are designed such that the x component of the magnetic field varies linearly along the three traditional gradient axes, has been presented. In order to understand the behavior of the rf field inside a dielectric object, a mathematical model is briefly presented. Although specific methods can provide an indication of the rf behavior inside a loosely dielectric object, finite element methodology is the ultimate approach for modeling the human torso and generating an accurate picture for the shape of the rf field inside this dielectric object. For this purpose we have developed a 3D finite element model, using the Coulomb gauge condition as a constraint. Agreement with the heterogeneous multilayer planar model has been established, while agreement with theoretical results from the spherical model and experimental results from the cylindrical model at 170 M H z is very good and provides an encouraging sign for using this finite element approach for modeling the rf inside the human body. (Abstract shortened by UMI.).

  4. Probing the energy barriers and magnetization reversal processes of nanoperforated membrane based percolated media.

    PubMed

    Neu, V; Schulze, C; Faustini, M; Lee, J; Makarov, D; Suess, D; Kim, S-K; Grosso, D; Schultz, L; Albrecht, M

    2013-04-12

    Magnetization reversal processes in Co/Pt multilayers prepared on nanoperforated templates are probed by magnetization relaxation measurements. The signature of pinning controlled domain wall movement as expected for percolated media is identified. This contrasts with the nucleation-type reversal mechanism of a Co/Pt reference film prepared on a smooth substrate. A zero field energy barrier of 93kBT is determined by fluctuation field measurements and is elucidated by micromagnetic calculations using the nudged elastic band method. This value is sufficiently large to qualify the material as a promising percolated medium. PMID:23507583

  5. Wall scanning probe for high-field side plasma measurements on Alcator C-Mod

    SciTech Connect

    Smick, Noah; LaBombard, Brian

    2009-02-15

    A new, high-field side scanning probe has been added to Alcator C-Mod's complement of edge diagnostics. The wall scanning probe is designed to provide all the benefits of a linear plunge, multielectrode scanning probe while working from the confined space of the inner tokamak wall. The drive mechanism is an embedded coil which produces a torque with the ambient toroidal magnetic field when energized, thus allowing the probe to plunge to different preprogramed depths at different times during a plasma discharge. The probe tip is designed for easy replacement and is presently configured to operate as a modified, high heat-flux ''Gundestrup-type'' probe with four tungsten electrodes. The probe has demonstrated the ability to obtain cross-field profiles for electron temperature, density, floating potential, and plasma flow information (parallel and perpendicular to B) up to a depth of a few millimiters inside the last-closed flux surface in standard C-Mod discharges. The tungsten-tipped probe has proved very robust and shows little or no damage though it routinely handles surface heat fluxes on the order of 100 MW/m{sup 2} at peak insertion.

  6. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  7. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our Newtonian results are excellent approximations for slowly spinning black holes. We proceed to address the issue of the spin dependence of the Blandford & Znajek power. The result we choose to highlight is our finding that given the validity of our assumption for the dynamical behavior of the so-called plunge region in black hole accretors, rotating black holes produce maximum Poynting flux via the Blandford & Znajek process for a black hole spin parameter of about a [approximate] 0.8. This is contrary to the conventional claim that the maximum electromagnetic flux is achieved for highest black hole spin.

  8. Supplementary Notes: 1. Simulated magnetic field pattern

    E-print Network

    Cai, Long

    magnetic field B0 and the MNP- labeled cell's magnetization vector: || = = ! "# $ !% & '. (3 here, under a 400 G magnetizing field B0) uniformly distributed on a 15-µm diameter spherical cell with the applied bias magnetic field B0 to create a characteristic 2-lobed shape common to all labeled cells

  9. Quantum probe and design for a chemical compass with magnetic nanostructures

    E-print Network

    Jianming Cai

    2011-03-01

    Magnetic fields as weak as Earth's may affect the outcome of certain photochemical reactions that go through a radical pair intermediate. When the reaction environment is anisotropic, this phenomenon can form the basis of a chemical compass and has been proposed as a mechanism for animal magnetoreception. Here, we demonstrate how to optimize the design of a chemical compass with a much better directional sensitivity simply by a gradient field, e.g. from a magnetic nanostructure. We propose an experimental test of these predictions, and suggest design principles for a hybrid metallic-organic chemical compass. In addition to the practical interest in designing a biomimetic weak magnetic field sensor, our result shows that gradient fields can server as powerful tools to probe spin correlations in radical pair reactions.

  10. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  11. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  12. Heliospheric Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Popescu, Adrian Sabin

    2007-09-01

    From the Maxwell equations in the local Minkowski spacetime chart (derived from the DEUS topology) we obtain the relations to be particularized for a solar type star and a massive star, and later to be used for a 3D representation of the electric and magnetic field topology (in heliosphere or in a stellar atmosphere) and of its evolution with the cosmological time.

  13. The fine magnetic image of a high TC SQUID probe microscope

    NASA Astrophysics Data System (ADS)

    Hayashi, Tadayuki; Itozaki, Hideo

    2005-01-01

    We have developed a high TC SQUID probe microscope. A high permeability probe was used as a flux guide to improve its spatial resolution. The SQUID head with the flux guide makes it possible to measure samples with high spatial resolution in air at room temperature. The end of the flux guide and the SQUID were in vacuum with a 0.1 mm separation. The tip of the flux guide was in air. The rod diameter and length of the flux guide were 0.6 and 7 mm, respectively. The sharp tip of the flux guide required for high spatial resolution was prepared by microelectropolishing. Its tip radius was less than 1 µm. The static magnetic field pattern of magnetized toner particles was detected by this system and we obtained a high-resolution magnetic image with a spatial resolution of several microns.

  14. Separation of magnetic field lines

    SciTech Connect

    Boozer, Allen H.

    2012-11-15

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

  15. Thermomagnetism with external and internal magnetic field quantities

    NASA Astrophysics Data System (ADS)

    Egolf, Peter W.; Gama, Sergio; Vuarnoz, Didier

    2015-07-01

    In magnetism literature, usually the applied or external field H0 is taken to present the results of an investigation. But for certain purposes, it is advantageous to work with the internal magnetic field H that occurs inside a magnetic body. It is well-known that the susceptibility of the material and the demagnetization effect, given by the geometry of a body, link the two usually different fields under consideration. If a probe is a long needle with the external magnetic field and the magnetization in the probe parallel to the axis of the slender body, the two fields are identical. But when building thermomagnetic machines, other demands may require also other shapes (porous materials, particle beds, wavy structures, etc.) of the magnetized material and then a correct distinction of these fields becomes important and in some cases also laborious if one of them must be theoretically determined from the other. This article shows how—from a theoretical point of view—the most important physical properties of thermomagnetism/magnetocalorics, namely, the adiabatic entropy change, the effective specific heat capacity, and the adiabatic temperature change must be transformed. Furthermore, this theory reveals the invariants of magnetocalorics, which are combinations of these three most important properties.

  16. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  17. Stray fields above artificial magnetic in-plane domains

    NASA Astrophysics Data System (ADS)

    Ahrend, F.; Holzinger, D.; Fohler, M.; Pofahl, S.; Wolff, U.; DeKieviet, M.; Schaefer, R.; Ehresmann, A.

    2015-05-01

    The out-of-plane component of the magnetic stray field over a magnetically patterned exchange biased layer system was quantitatively determined by scanning ?-Hall measurements. These were performed over a Cu50 nm/Ir17Mn8310 nm/Co70Fe305 nm/Au8 nm layer system patterned by light-ion bombardment induced magnetic patterning. The system consists of artificial 5 ?m wide magnetic parallel-stripe domains with head-to-head/tail-to-tail magnetizations in adjacent domains. The experimental data were taken within a height range relevant for magnetic micro-particle transport (0.75-2.65 ?m). We fit the experimental results by two different simulation approaches and discuss the feasibility of extrapolating the simulations to even closer surface distances. The models are used to extract stray field data as they would be measured by an ideal point-like probe.

  18. The magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.

  19. Measuring Magnetic Fields Near and Far with the SKA via the Zeeman Effect

    E-print Network

    Robishaw, Timothy; Surcis, Gabriele; Vlemmings, Wouter; Richards, A M S; Etoka, Sandra; Bourke, Tyler; Fish, Vincent; Gray, Malcolm; Imai, Hiroshi; Kramer, Busaba; McBride, James; Momjian, Emmanuel; Sarma, Anuj; Zijlstra, Albert

    2015-01-01

    The measurement of Zeeman splitting in spectral lines---both in emission and absorption---can provide direct estimates of the magnetic field strength and direction in atomic and molecular clouds, both in our own Milky Way and in external galaxies. This method will probe the magnetic field in the warm and cold neutral components of the interstellar medium, providing a complement to the extensive SKA Faraday studies planning to probe the field in the ionized components.

  20. Stray Field Magnetic Resonance Tomography using Ferromagnetic Spheres

    E-print Network

    Barbic, M; Barbic, Mladen; Scherer, Axel

    2006-01-01

    The methodology for obtaining two- and three-dimensional magnetic resonance images by using azimuthally symmetric dipolar magnetic fields from ferromagnetic spheres is described. We utilize the symmetric property of a geometric sphere in the presence of a large externally applied magnetic field to demonstrate that a complete two- or three-dimensional structured rendering of a sample can be obtained without the motion of the sample relative to the sphere. Sequential positioning of the integrated sample-sphere system in an external magnetic field at various angular orientations provides all the required imaging slices for successful computerized tomographic image reconstruction. The elimination of the requirement to scan the sample relative to the ferromagnetic tip in this imaging protocol is a potentially valuable simplification compared to previous scanning probe magnetic resonance imaging proposals.

  1. The incidence of magnetic fields in cool DZ white dwarfs

    NASA Astrophysics Data System (ADS)

    Hollands, M. A.; Gänsicke, B. T.; Koester, D.

    2015-06-01

    Little is known about the incidence of magnetic fields among the coolest white dwarfs. Their spectra usually do not exhibit any absorption lines as the bound-bound opacities of hydrogen and helium are vanishingly small. Probing these stars for the presence of magnetic fields is therefore extremely challenging. However, external pollution of a cool white dwarf by, e.g. planetary debris, leads to the appearance of metal lines in its spectral energy distribution. These lines provide a unique tool to identify and measure magnetism in the coolest and oldest white dwarfs in the Galaxy. We report the identification of seven strongly metal polluted, cool (Teff < 8000 K) white dwarfs with magnetic field strengths ranging from 1.9 to 9.6 MG. An analysis of our larger magnitude-limited sample of cool DZ yields a lower limit on the magnetic incidence of 13 ± 4 per cent, noticeably much higher than among hot DA white dwarfs.

  2. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  3. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  4. Bacterial Growth in Weak Magnetic Field

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    2015-03-01

    We study the growth of bacteria in a weak magnetic field. Computational analysis of experimental data shows that the growth rate of bacteria is affected by the magnetic field. The effect of magnetic field depends on the strength and type of magnetic field. It also depends on the type of bacteria. We mainly study gram positive and gram negative bacteria of rod type as well as spherical bacteria. Preliminary results show that the weak magnetic field enhances the growth of rod shape gram negative bacteria. Gram positive bacteria can be even killed in the inhomogeneous magnetic field.

  5. Batch-fabrication of cantilevered magnets on attonewton-sensitivity mechanical oscillators for scanned-probe nanoscale magnetic resonance imaging

    PubMed Central

    Hickman, Steven A.; Moore, Eric W.; Lee, SangGap; Longenecker, Jonilyn G.; Wright, Sarah J.; Harrell, Lee E.; Marohn, John A.

    2015-01-01

    We have batch-fabricated cantilevers with ~100 nm diameter nickel nanorod tips and force sensitivities of a few attonewtons at 4.2 kelvin. The magnetic nanorods were engineered to overhang the leading edge of the cantilever and, consequently, the cantilevers experience what we believe is the lowest surface noise ever achieved in a scanned probe experiment. Cantilever magnetometry indicated that the tips were well magnetized, with a ? 20 nm dead layer; the composition of the dead layer was studied by electron microscopy and electron energy loss spectroscopy. In what we believe is the first demonstration of scanned probe detection of electron-spin resonance from a batch fabricated tip, the cantilevers were used to observe electron-spin resonance from nitroxide spin labels in a film via force-gradient-induced shifts in cantilever resonance frequency. The magnetic field dependence of the magnetic resonance signal suggests a non-uniform tip magnetization at an applied field near 0.6 T. PMID:21082863

  6. Magnetic field dependence of the correlation gap in SmB{sub 6}

    SciTech Connect

    Cooley, J.C.; Aronson, M.C.; Lacerda, A.; Canfield, P.C.; Fisk, Z.

    1994-06-11

    We have used magnetoresistance measurements to probe the effect of large magnetic fields on the stability of the electronic gap {delta} in SmB{sub 6}. Although the Zeeman splitting in a 18 Telsa field is comparable to the ambient pressure {delta}, and even exceeds {delta} at 56 kbar, {delta} is in both cases almost completely unaffected by the magnetic field.

  7. Novel rotating field probe for inspection of tubes

    NASA Astrophysics Data System (ADS)

    Xin, J.; Tarkleson, E.; Lei, N.; Udpa, L.; Udpa, S. S.

    2012-05-01

    Inspection of steam generator tubes in nuclear power plants is extremely critical for safe operation of the power plant. In the nuclear industry, steam generator tube inspection using eddy current techniques has evolved over the years from a single bobbin coil, to rotating probe coil (RPC) and array probe, in an attempt to improve the speed and reliability of inspection. The RPC probe offers the accurate spatial resolution but involves complex mechanical rotation. This paper presents a novel design of eddy current probes based on rotating fields produced by three identical coils excited by a balanced three-phase supply. The sensor thereby achieves rotating probe functionality by electronic means and eliminates the need for mechanical rotation. The field generated by the probe is largely radial that result in induced currents that flow circularly around the radial axis and rotating around the tube at a synchronous speed effectively producing induced eddy currents that are multidirectional. The probe will consequently be sensitive to cracks of all orientations in the tube wall. The finite element model (FEM) results of the rotating fields and induced currents are presented. A prototype probe is being built to validate simulation results.

  8. Compressing magnetic fields with high-energy lasersa)

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.; Gotchev, O. V.; Chang, P. Y.; Meyerhofer, D. D.; Polomarov, O.; Betti, R.; Frenje, J. A.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Rygg, J. R.; Séguin, F. H.

    2010-05-01

    Laser-driven magnetic-field compression producing a magnetic field of tens of megaGauss is reported for the first time. A shock wave formed during the implosion of a cylindrical target traps an initial (seed) magnetic field that is amplified via conservation of magnetic flux. Such large fields are expected to magnetize the electrons in the hot, central plasma, leading to a cyclotron frequency exceeding the collision frequency. The Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] was used to implode cylindrical CH targets filled with deuterium gas and seeded with an external field (>50 kG) from a magnetic pulse generator. This seed field is trapped and rapidly compressed by the imploding shell, minimizing the effect of resistive flux diffusion. The compressed field was probed via proton deflectrometry using 14.7 MeV protons from the D+H3e fusion reaction emitted by an imploding glass microballoon. Line-averaged magnetic fields of the imploded core were measured to between 30 and 40 MG. Experimental data were analyzed with both a magnetohydrodynamic version of the one-dimensional hydrocode LILAC [J. Delettrez et al., Phys. Rev. A 36, 3926 (1987); N. W. Jang et al., Bull. Am. Phys. Soc. 51, 144 (2006)] and the particle propagation code GEANT4 [S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)].

  9. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  10. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  11. An investigation of receiver probe development for magnetic resonance microscopy 

    E-print Network

    Boyer, Jeffrey Scott

    1995-01-01

    Much research in Magnetic Resonance Imaging has been directed toward the development of new hardware systems that can obtain high resolution images, typically on the order of tens of microns, for small field-of-views, ...

  12. Explaining Mercury's peculiar magnetic field

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.

    2014-05-01

    MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken and we explore two scenarios. Increasing the heat flux through the northern hemisphere of the core-mantle boundary is an obvious choice but is not supported by current models for Mercury's mantle. We find that a combination of internal rather than bottom driving and an increased heat flux through the equatorial region of the core-mantle boundary also promotes the required symmetry breaking and results in very Mercury like fields. The reason is that the imposed heat flux pattern, though being equatorially symmetric, lowers the critical Rayleigh number for the onset of equatorially anti-symmetric convection modes. In both scenarios, a stably stratified layer or a feedback coupling to the magnetospheric field is required for lowering the field strength to Mercury-like values.

  13. MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2

    E-print Network

    Fornberg, Bengt

    MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value to the formation of an azimuthal rope of twisted magnetic field embedded within the global field, and to the energy

  14. Field errors in superconducting magnets

    SciTech Connect

    Barton, M.Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  15. Dynamics of positive probes in underdense, strongly magnetized, E×B drifting plasma: Particle-in-cell simulations

    SciTech Connect

    Heinrich, Jonathon R.; Cooke, David L.

    2013-09-15

    Electron trapping, electron heating, space-charge wings, wake eddies, and current collection by a positive probe in E×B drifting plasma were studied in three-dimensional electromagnetic particle-in-cell simulations. In these simulations, electrons and ions were magnetized with respect to the probe and the plasma was underdense (?{sub pe}probe was created with background electric and magnetic fields. Four distinct regions developed in the presences of the positive probe: a quasi-trapped electron region, an electron-depletion wing, an ion-rich wing, and a wake region. We report on the observations of strong electron heating mechanisms, space-charge wings, ion cyclotron charge-density eddies in the wake, electron acceleration due to a magnetic presheath, and the current-voltage relationship.

  16. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  17. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  18. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  19. Minireview: Biological effects of magnetic fields

    SciTech Connect

    Villa, M.; Mustarelli, P. ); Caprotti, M. )

    1991-01-01

    The literature about the biological effects of magnetic fields is reviewed. The authors begin by discussing the weak and/or time variable fields, responsible for subtle changes in the circadian rhythms of superior animals, which are believed to be induced by same sort of resonant mechanism. The safety issues related with the strong magnetic fields and gradients generated by clinical NMR magnets are then considered. The last portion summarizes the debate about the biological effects of strong and uniform magnetic fields.

  20. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  1. A multichannel magnetic probe system for analysing magnetic fluctuations in helical axis plasmas

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Blackwell, B. D.; Seiwald, B.; Hole, M. J.; Pretty, D. G.; Howard, J.; Wach, J.

    2013-09-01

    The need to understand the structure of magnetic fluctuations in H-1NF heliac [S. Hamberger et al., Fusion Technol. 17, 123 (1990)] plasmas has motivated the installation of a sixteen former, tri-axis helical magnetic probe Mirnov array (HMA). The new array complements two existing poloidal Mirnov arrays by providing polarisation information, higher frequency response, and improved toroidal resolution. The helical placement is ideal for helical axis plasmas because it positions the array as close as possible to the plasma in regions of varying degrees of favourable curvature in the magnetohydrodynamic sense, but almost constant magnetic angle. This makes phase variation with probe position near linear, greatly simplifying the analysis of the data. Several of the issues involved in the design, installation, data analysis, and calibration of this unique array are presented including probe coil design, frequency response measurements, mode number identification, orientation calculations, and mapping probe coil positions to magnetic coordinates. Details of specially designed digitally programmable pre-amplifiers, which allow gains and filters to be changed as part of the data acquisition initialisation sequence and stored with the probe signals, are also presented. The low shear heliac geometry [R. Jiménez-Gómez et al., Nucl. Fusion 51, 033001 (2011)], 10.1088/0029-5515/51/3/033001, flexibility of the H-1NF heliac, and wealth of information provided by the HMA create a unique opportunity for detailed study of Alfvén eigenmodes, which could be a serious issue for future fusion reactors.

  2. A multichannel magnetic probe system for analysing magnetic fluctuations in helical axis plasmas

    SciTech Connect

    Haskey, S. R.; Blackwell, B. D.; Seiwald, B.; Hole, M. J.; Pretty, D. G.; Howard, J.; Wach, J.

    2013-09-15

    The need to understand the structure of magnetic fluctuations in H-1NF heliac [S. Hamberger et al., Fusion Technol. 17, 123 (1990)] plasmas has motivated the installation of a sixteen former, tri-axis helical magnetic probe Mirnov array (HMA). The new array complements two existing poloidal Mirnov arrays by providing polarisation information, higher frequency response, and improved toroidal resolution. The helical placement is ideal for helical axis plasmas because it positions the array as close as possible to the plasma in regions of varying degrees of favourable curvature in the magnetohydrodynamic sense, but almost constant magnetic angle. This makes phase variation with probe position near linear, greatly simplifying the analysis of the data. Several of the issues involved in the design, installation, data analysis, and calibration of this unique array are presented including probe coil design, frequency response measurements, mode number identification, orientation calculations, and mapping probe coil positions to magnetic coordinates. Details of specially designed digitally programmable pre-amplifiers, which allow gains and filters to be changed as part of the data acquisition initialisation sequence and stored with the probe signals, are also presented. The low shear heliac geometry [R. Jiménez-Gómez et al., Nucl. Fusion 51, 033001 (2011)], flexibility of the H-1NF heliac, and wealth of information provided by the HMA create a unique opportunity for detailed study of Alfvén eigenmodes, which could be a serious issue for future fusion reactors.

  3. Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method

    PubMed Central

    1985-01-01

    The motions of magnetic particles contained within organelles of living cells were followed by measuring magnetic fields generated by the particles. The alignment of particles was sensed magnetometrically and was manipulated by external fields, allowing non-invasive detection of particle motion as well as examination of cytoplasmic viscoelasticity. Motility and rheology data are presented for pulmonary macrophages isolated from lungs of hamsters 1 d after the animals had breathed airborne gamma-Fe2O3 particles. The magnetic directions of particles within phagosomes and secondary lysosomes were aligned, and the weak magnetic field produced by the particles was recorded. For dead cells, this remanent field was constant, but for viable macrophages, the remanent field decreased rapidly so that only 42% of its initial magnitude remained 5 min after alignment. A twisting field was applied perpendicular to the direction of alignment and the rate at which particles reoriented to this new direction was followed. The same twisting was repeated for particles suspended in a series of viscosity standards. Based on this approach, the low-shear apparent intracellular viscosity was estimated to be 1.2-2.7 X 10(3) Pa.s (1.2-2.7 X 10(4) poise). Time-lapse video microscopy confirmed the alignment of ingested particles upon magnetization and showed persistent cellular motility during randomization of alignment. Cytochalasin D and low temperature both reduced cytoplasmic activity and remanent-field decay, but affected rheology differently. Magnetic particles were observed in association with the microtubule organizing center by immunofluorescence microscopy; magnetization did not affect microtubule distribution. However, both vimentin intermediate filaments and f-actin reorganized after magnetization. These data demonstrate that magnetometry of isolated phagocytic cells can probe organelle movements, rheology, and physical properties of the cytoskeleton in living cells. PMID:4040136

  4. Mapping magnetism with atomic resolution using aberrated electron probes

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan; Rusz, Ján; McGuire, Michael A.; Symons, Christopher T.; Vatsavai, Ranga Raju; Lupini, Andrew R.

    2015-03-01

    In this talk, we report a direct experimental real-space mapping of magnetic circular dichroism with atomic resolution in aberration-corrected scanning transmission electron microscopy (STEM). Using an aberrated electron probe with customized phase distribution, we reveal with electron energy-loss (EEL) spectroscopy the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The aberrated probes allow the collection of EEL spectra using the transmitted beam, which results in a magnetic circular dichroic signal with intrinsically larger signal-to-noise ratios than those obtained via nanodiffraction techniques (where most of the transmitted electrons are discarded). The novel experimental setup presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution. This research was supported by DOE SUFD MSED, by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US DOE, and by the Swedish Research Council and Swedish National Infrastructure for Computing (NSC center)

  5. Axion Dark Matter Coupling to Resonant Photons via Magnetic Field

    E-print Network

    McAllister, Ben T; Tobar, Michael E

    2015-01-01

    We show that the magnetic component of the photon field produced by dark matter axions via the two-photon coupling mechanism in a Sikivie Haloscope is an important parameter passed over in previous analysis and experiments. The interaction of the produced photons will be resonantly enhanced as long as they couple to the electric or magnetic mode structure of the Haloscope cavity. For typical Haloscope experiments the electric and magnetic coupling is the same and implicitly assumed in past sensitivity calculations. However, for future planned searches such as those at high frequency, which synchronize multiple cavities, the sensitivity will be altered due to different magnetic and electric couplings. We discuss the implications of the full electromagnetic form factor and propose new experiments using lumped 3D LC resonators (or re-entrant cavities) with separated electric and magnetic fields to probe currently unbounded regions of the axion mass parameter space.

  6. Axion Dark Matter Coupling to Resonant Photons via Magnetic Field

    E-print Network

    Ben T. McAllister; Stephen R. Parker; Michael E. Tobar

    2015-12-21

    We show that the magnetic component of the photon field produced by dark matter axions via the two-photon coupling mechanism in a Sikivie Haloscope is an important parameter passed over in previous analysis and experiments. The interaction of the produced photons will be resonantly enhanced as long as they couple to the electric or magnetic mode structure of the Haloscope cavity. For typical Haloscope experiments the electric and magnetic coupling is the same and implicitly assumed in past sensitivity calculations. However, for future planned searches such as those at high frequency, which synchronize multiple cavities, the sensitivity will be altered due to different magnetic and electric couplings. We discuss the implications of the full electromagnetic form factor and propose new experiments using lumped 3D LC resonators (or re-entrant cavities) with separated electric and magnetic fields to probe currently unbounded regions of the axion mass parameter space.

  7. Magnetic monopole and the nature of the static magnetic field

    E-print Network

    Xiuqing Huang

    2008-12-10

    We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

  8. Lightning-Driven Electric and Magnetic Fields Measured in the Stratosphere: Implications for Sprites

    E-print Network

    Thomas, Jeremy N.

    Lightning-Driven Electric and Magnetic Fields Measured in the Stratosphere: Implications made from microform." Signature Date #12;#12;University of Washington Abstract Lightning impedance, dou- ble Langmuir probe instrument is designed specifically for measuring these large lightning

  9. Cluster Magnetic Fields from Galactic Outflows

    E-print Network

    J. Donnert; K. Dolag; H. Lesch; E. Müller

    2008-10-24

    We performed cosmological, magneto-hydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields are galactic outflows during the star-burst phase of galactic evolution. To do this we coupled a semi-analytical model for magnetized galactic winds as suggested by \\citet{2006MNRAS.370..319B} to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy clusters fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude that magnetized galactic outflows and their subsequent evolution within the intra-cluster medium can fully account for the observed magnetic fields in galaxy clusters. Our findings also suggest that measuring cosmological magnetic fields in low-density environments such as filaments is much more useful than observing cluster magnetic fields to infer their possible origin.

  10. Magnetic field sources and their threat to magnetic media

    NASA Technical Reports Server (NTRS)

    Jewell, Steve

    1993-01-01

    Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

  11. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 ?T; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 ?T), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  12. Design and calibration of high-frequency magnetic probes for the SUNIST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Liu, Yangqing; Tan, Yi; Pan, Ou; Ke, Rui; Wang, Wenhao; Gao, Zhe

    2014-11-01

    A new high-frequency magnetic diagnostic system is designed, installed, and calibrated in the Sino-United Spherical Tokamak (SUNIST) to investigate Alfvén waves (AWs). The system consists of a fixed toroidal array and a movable radial array of high-frequency magnetic probes (HFMPs) with 21 and 60 probes, respectively. Based on the method of vacuum enameled wire wound on ceramic bobbins, the fixed toroidal array is located as near as possible to the plasma and carefully shielded to reduce the attenuation of high-frequency magnetic field. Meanwhile, by using the technology of commercial chip inductors mounted on printed circuit boards, the movable radial array is inserted into a thin quartz tube that allows positioning along radial direction. A Helmholtz coil is utilized to calibrate the effective areas as well as the frequency response of each HFMP. The calibration results are consistent with the calculated results of an equivalent probe-and-cable circuit model. High-frequency magnetic signals related to AW are detected with these HFMPs. These HFMPs are expected to play a key role in analyzing Alfvén eigenmodes excited by AW antenna in the SUNIST.

  13. Design and calibration of high-frequency magnetic probes for the SUNIST spherical tokamak.

    PubMed

    Liu, Yangqing; Tan, Yi; Pan, Ou; Ke, Rui; Wang, Wenhao; Gao, Zhe

    2014-11-01

    A new high-frequency magnetic diagnostic system is designed, installed, and calibrated in the Sino-United Spherical Tokamak (SUNIST) to investigate Alfvén waves (AWs). The system consists of a fixed toroidal array and a movable radial array of high-frequency magnetic probes (HFMPs) with 21 and 60 probes, respectively. Based on the method of vacuum enameled wire wound on ceramic bobbins, the fixed toroidal array is located as near as possible to the plasma and carefully shielded to reduce the attenuation of high-frequency magnetic field. Meanwhile, by using the technology of commercial chip inductors mounted on printed circuit boards, the movable radial array is inserted into a thin quartz tube that allows positioning along radial direction. A Helmholtz coil is utilized to calibrate the effective areas as well as the frequency response of each HFMP. The calibration results are consistent with the calculated results of an equivalent probe-and-cable circuit model. High-frequency magnetic signals related to AW are detected with these HFMPs. These HFMPs are expected to play a key role in analyzing Alfvén eigenmodes excited by AW antenna in the SUNIST. PMID:25430367

  14. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    SciTech Connect

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-15

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10{sup -4} Pa Xe (3.3x10{sup -6} Torr Xe) to 1.1x10{sup -3} Pa Xe (8.4x10{sup -6} Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures.

  15. Probing neutrino magnetic moments at Spallation Neutron Source facilities

    E-print Network

    T. S. Kosmas; O. G. Miranda; D. K. Papoulias; M. Tortola; J. W. F. Valle

    2015-07-15

    Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrino-nucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of a chi^2 analysis employing realistic nuclear structure calculations in the context of the quasi-particle random phase approximation. We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for Standard Model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge-radius. We illustrate our results for various choices of experimental setup and target material.

  16. Probing neutrino magnetic moments at Spallation Neutron Source facilities

    E-print Network

    Kosmas, T S; Papoulias, D K; Tortola, M; Valle, J W F

    2015-01-01

    Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrino-nucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of a $\\chi^2$ analysis employing realistic nuclear structure calculations in the context of the quasi-particle random phase approximation (QRPA). We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for Standard Model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge-radius. We illustrate our results for various choices of experimental setup and target material.

  17. Probing neutrino magnetic moments at the Spallation Neutron Source facility

    NASA Astrophysics Data System (ADS)

    Kosmas, T. S.; Miranda, O. G.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2015-07-01

    Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrino-nucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of a ?2 analysis employing realistic nuclear structure calculations in the context of the quasiparticle random phase approximation. We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for standard model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge radius. We illustrate our results for various choices of experimental setup and target material.

  18. Can we probe the conductivity of the lithosphere and upper mantle using satellite tidal magnetic signals?

    NASA Astrophysics Data System (ADS)

    Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.

    2015-05-01

    A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.

  19. Magnetic field distribution inside the aperture of a steerer magnet prototype

    NASA Astrophysics Data System (ADS)

    Chiri??, Ionel; Dan, Daniel; T?nase, Nicolae

    2015-11-01

    The High Energy Storage Ring (HESR), an important part of the Facility for Antiproton and Ion Research (FAIR) international project [1], which will be set up in Darmstadt in the next years, contains, among other magnets, several corrector magnets used for vertical and horizontal beam deviation. A prototype of a 2mrad vertical steerer magnet was designed by National Institute for R&D in Electrical Engineering (ICPE-CA) Romania in close cooperation with Forschungszentrum Jülich Germany [2] and then manufactured and tested by ICPE-CA [3], Romanian Institute for Electrical Engineering—Advanced Research. Magnetic field measurements using a 3D Hall probe were performed. Measured data and their analysis are presented. The system used for Hall probe positioning and data acquisition is also described.

  20. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  1. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  2. Design and validation of the ball-pen probe for measurements in a low-temperature magnetized plasma

    SciTech Connect

    Bousselin, G.; Cavalier, J.; Pautex, J. F.; Heuraux, S.; Lemoine, N.; Bonhomme, G.

    2013-01-15

    Ball-pen probes have been used in fusion devices for direct measurements of the plasma potential. Their application in low-temperature magnetized plasma devices is still subject to studies. In this context, a ball-pen probe has been recently implemented on the linear plasma device Mirabelle. Produced by a thermionic discharge, the plasma is characterized by a low electron temperature and a low density. Plasma confinement is provided by an axial magnetic field that goes up to 100 mT. The principle of the ball-pen probe is to adjust the saturation current ratio to 1 by reducing the electron current contribution. In that case, the floating potential of the probe is close to the plasma potential. A thorough study of the ball-pen probe operation is performed for different designs of the probe over a large set of plasma conditions. Comparisons between ball-pen, Langmuir, and emissive probes are conducted in the same plasma conditions. The ball-pen probe is successfully measuring the plasma potential in these specific plasma conditions only if an adapted electronics and an adapted probe size to the plasma characteristic lengths ({lambda}{sub D}, {rho}{sub ce}) are used.

  3. Atomic Probes of Noncommutative Field Theory

    E-print Network

    Charles D. Lane

    2002-01-07

    We consider the role of Lorentz symmetry in noncommutative field theory. We find that a Lorentz-violating standard-model extension involving ordinary fields is general enough to include any realisitc noncommutative field theory as a subset. This leads to various theoretical consequences, as well as bounds from existing experiments at the level of (10 TeV)$^{-2}$ on the scale of the noncommutativity parameter.

  4. Full 180° Magnetization Reversal with Electric Fields

    PubMed Central

    Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

  5. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  6. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  7. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  8. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  9. Magnetic field effect on charged Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.

    2016-01-01

    We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.

  10. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  11. A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR

    PubMed Central

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.

    2007-01-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306

  12. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1994-01-01

    The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

  13. Probing arrays of circular magnetic microdots by ferromagnetic resonance.

    SciTech Connect

    Kakazei, G. N.; Mewes, T.; Wigen, P. E.; Hammel, P. C.; Slavin, A. N.; Pogorelov, Y. G.; Costa, M. D.; Golub, V. O.; Guslienko, K. Y.; Novosad, V.

    2008-06-01

    X-band ferromagnetic resonance (FMR) was used to characterize in-plane magnetic anisotropies in rectangular and square arrays of circular nickel and Permalloy microdots. In the case of a rectangular lattice, as interdot distances in one direction decrease, the in-plane uniaxial anisotropy field increases, in good agreement with a simple theory of magnetostatically interacting uniformly magnetized dots. In the case of a square lattice a four-fold anisotropy of the in-plane FMR field H(r) was found when the interdot distance a gets comparable to the dot diameter D. This anisotropy, not expected in the case of uniformly magnetized dots, was explained by a non-uniform magnetization m(r) in a dot in response to dipolar forces in the patterned magnetic structure. It is well described by an iterative solution of a continuous variation procedure. In the case of perpendicular magnetization multiple sharp resonance peaks were observed below the main FMR peak in all the samples, and the relative positions of these peaks were independent of the interdot separations. Quantitative description of the observed multiresonance FMR spectra was given using the dipole-exchange spin wave dispersion equation for a perpendicularly magnetized film where in-plane wave vector is quantized due to the finite dot radius, and the inhomogenetiy of the intradot static demagnetization field in the nonellipsoidal dot is taken into account. It was demonstrated that ferromagnetic resonance force microscopy (FMRFM) can be used to determine both local and global properties of patterned submicron ferromagnetic samples. Local spectroscopy together with the possibility to vary the tip-sample spacing enables the separation of those two contributions to a FMRFM spectrum. The global FMR properties of circular submicron dots determined using magnetic resonance force microscopy are in a good agreement with results obtained using conventional FMR and with theoretical descriptions.

  14. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  15. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    PubMed Central

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-01-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet ? singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580

  16. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S. (Oak Ridge, TN)

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  17. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  18. On Magnetic Field Generation Mechanisms in Astrophysics

    NASA Astrophysics Data System (ADS)

    Cherny, O. G.

    Magnetic chemically peculiar stars (CP stars) are characterized by a strong magnetic field, peculiar chemical composition and slow rotation. Since the origin and evolution of CP stars may be responsible for such unusual features, understanding the mechanisms of generation of the magnetic field is one of the ways to learn more about the CP star characteristics. At present there are two mechanisms of magnetic field generation considered in astrophysics, a fossil field hypothesis and turbulent dynamo theory. However, there is another mechanism of magnetic field generation. All the elementary particles including the most abundant, i. e. the protons, electrons, neutrons, have their own angular momenta and the corresponding magnetic momenta. Microscopic magnetic fields are determined generally by these magnetic momenta. Provided that microscopic magnetic fields are aligned, large-scale magnetic fields may be generated, which has been proved in the experiments of Barnett, Einstein and de Haas. This phenomenon is best illustrated by the experiments with iron. Analysis performed in the current study showed that all the large bodies of the Solar System have both an iron-nickel core and a magnetic field, which is proportional to the planet's core volume and its rotational velocity. We hypothesize that the reason for this phenomenon is a magnetic interaction of ferromagnetic materials, which occurred during the formation of the Solar System. We show that the magnitude of the magnetic field of the Earth and a change of magnetic field polarity can be explained by the gyromagnetic effect. In the beginning of formation of the Solar System the prospective Sun was the main attractive center. Therefore, there is a possibility that the Sun contains a massive (relative to the Earth) iron-nickel core.

  19. Investigation of Electromagnetic Field Penetration in ICP and Weakly-Magnetized ICP Discharges

    E-print Network

    Chen, Francis F.

    is performed using a multi-turn loop antenna wrapped around a cylindrical squat bell jar (Fig. 1), rather than#12;Investigation of Electromagnetic Field Penetration in ICP and Weakly-Magnetized ICP Discharges the more complicated "stove-top" antenna configuration. An RF-compensated Langmuir probe and a Bz-dot probe

  20. The Protogalactic Origin for Cosmic Magnetic Fields

    E-print Network

    Russell M. Kulsrud; Renyue Cen; Jeremiah P. Ostriker; Dongsu Ryu

    1996-07-28

    It is demonstrated that strong magnetic fields are produced from a zero initial magnetic field during the pregalactic era, when galaxies are first forming. Their development proceeds in three phases. In the first phase, weak magnetic fields are created by the Biermann battery mechanism, acting in shocked parts of the intergalactic medium where caustics form and intersect. In the second phase, these weak magnetic fields are amplified to strong magnetic fields by the Kolmogoroff turbulence endemic to gravitational structure formation of galaxies. During this second phase, the magnetic fields reach saturation with the turbulent power, but they are coherent only on the scale of the smallest eddy. In the third phase, the magnetic field strength increases to equipartition with the turbulent energy, and the coherence length of the magnetic fields increases to the scale of the largest turbulent eddy, comparable to the scale of the entire galaxy. The resulting magnetic field represents a galactic magnetic field of primordial origin. No further dynamo action is necessary, after the galaxy forms, to explain the origin of magnetic fields. However, the magnetic field may be altered by dynamo action once the galaxy and the galactic disk have formed. It is first shown by direct numerical simulations, that thermoelectric currentsassociated with the Biermann battery, build the field up from zero to $10^{-21}$ G in the regions about to collapse into galaxies, by $z\\sim3$. For weak fields, in the absence of dissipation, the cyclotron frequency ${\\bf \\omega_{cyc}}=e{\\bf B } /m_H c $ and $ {\\bf \\omega}/(1+ \\chi )$, where ${\\bf \\omega = \

  1. Stable magnetic field gradient levitation of Xenopus laevis: toward low-gravity simulation.

    PubMed

    Valles, J M; Lin, K; Denegre, J M; Mowry, K L

    1997-08-01

    We have levitated, for the first time, living biological specimens, embryos of the frog Xenopus laevis, using a large inhomogeneous magnetic field. The magnetic field/field gradient product required for levitation was 1430 kG2/cm, consistent with the embryo's susceptibility being dominated by the diamagnetism of water and protein. We show that unlike any other earth-based technique, magnetic field gradient levitation of embryos reduces the body forces and gravity-induced stresses on them. We discuss the use of large inhomogeneous magnetic fields as a probe for gravitationally sensitive phenomena in biological specimens. PMID:9251829

  2. Field measurements of topsoil moisture profiles by vertical TDR probes

    NASA Astrophysics Data System (ADS)

    Greco, Roberto; Guida, Andrea

    2008-01-01

    SummaryA recently developed inverse method for the estimation of water content profiles from single time domain reflectometry (TDR) waveforms in laboratory has been adapted and applied to field measurements of topsoil moisture profiles in a pyroclastic sandy loam. Three metallic probes of the lengths of 30 cm, 45 cm and 60 cm were vertically installed in an experimental field for the measurement of vertical water content profiles. One 15 cm long probe was inserted vertically into soil surface and five 10.5 cm long probes were buried horizontally at various depths for the measurement of local values of mean water content by means of the classical TDR approach. The experimental campaign lasted 28 days, during which daily rainfall heights and daily maximum and minimum temperatures were measured at the experimental field. TDR waveforms acquisition was carried out twice a day. The agreement between local volumetric water content measurements and vertical profiles was in general satisfactory, although some of the vertical profiles failed in detecting a layer with systematically smaller water content values indicated by the horizontal probe buried at the depth of 30 cm below soil surface. Such small water content values could be probably ascribed to the presence of a large amount of pumice stones in the soil around that depth, affecting the water content measured by TDR probes and thus increasing estimated moisture spatial variability.

  3. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  4. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  5. Magnetic Field Structure in Molecular Clouds by Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Su, B. H.; Eswaraiah, C.; Pandey, A. K.; Wang, C. W.; Lai, S. P.; Tamura, M.; Sato, S.

    2015-03-01

    We report on a program to delineate magnetic field structure inside molecular clouds by optical and infrared polarization observations. An ordered magnetic field inside a dense cloud may efficiently align the spinning dust grains to cause a detectable level of optical and near-infrared polarization of otherwise unpolarized background starlight due to dichroic extinction. The near-infrared polarization data were taken by SIRPOL mounted on IRSF in SAAO. Here we present the SIRPOL results in RCW 57, for which the magnetic field is oriented along the cloud filaments, and in Carina Nebula, for which no intrinsic polarization is detected in the turbulent environment. We further describe TRIPOL, a compact and efficient polarimer to acquire polarized images simultaneously at g', r', and i' bands, which is recently developed at Nagoya University for adaption to small-aperture telescopes. We show how optical observations probe the translucent outer parts of a cloud, and when combining with infrared observations probing the dense parts, and with millimeter and submillimeter observations to sutdy the central embedded protostar, if there is one, would yield the magnetic field structure on different length scales in the star-formation process.

  6. Static uniform magnetic fields and amoebae

    SciTech Connect

    Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.

    1997-03-01

    Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

  7. Proof-of-principle demonstration of a translating coils-based method for measuring the magnetic field of axially-symmetric magnets

    NASA Astrophysics Data System (ADS)

    Arpaia, P.; Buzio, M.; Kazazi, M.; Russenschuck, S.

    2015-02-01

    In axially-symmetric magnets for particle accelerators, the magnetic field is usually surveyed by expensive and time-consuming 3D Hall-probe mappers. Problems arise for a coherent treatment among beam physics requirements, magnet design and manufacturing, and magnetic measurements. For example, when the longitudinal direction of the mapper is misaligned with respect to the magnet, the measured fringe fields will show spurious components. In this paper, an alternative measurement method, exploiting the inherent axial symmetry of the magnetic field, is proposed. The magnetic flux linked with a pair of sensing coils is measured as a function of the longitudinal position. An induction transducer, sensitive to the longitudinal and radial components of the magnetic field, and a measurement system have been designed and prototyped. The experimental proof-of-principle demonstration of the method in comparison with a Hall-probe mapper is presented for a solenoid magnet.

  8. Magnetic field measurements for study of fast electron transport in magnetized HED plasma

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Griffin, Brandon; Presura, Radu; Haque, Showera; Sentoku, Yasuhiko

    2014-10-01

    Interaction of megagauss magnetic fields with high energy density (HED) plasma is of great interest in the field of magnetized plasma. The field changes fundamental properties of the HED plasma such as thermal and magnetic diffusion. A coupled capability utilizing the 1.0 MA Zebra pulsed power generator and the 50 TW Leopard laser at Nevada Terawatt Facility enables to create such a condition for studies of magnetized plasma properties. We have conducted an experiment to measure magnetic fields generated by a 1.0 MA, 100 ns Zebra pulsed current in stainless steel coils. Using a 532 nm continuous laser from a single longitudinal mode laser system, the temporal change in the magnetic field was measured with the Faraday rotation in F2 glass. The probe laser passing through the 1.5 mm in radius and 1.75 mm thick glass placed in the vicinity of the inductive coils was split with a Glan-Taylor prism to measure vertical and horizontal polarization components with photodiodes. We will present the analysis of the experimental result and a design of a coupled experiment for study of fast electron transport in the magnetized plasma.

  9. Magnetic shielding of an inhomogeneous magnetic field source by a bulk superconducting tube

    NASA Astrophysics Data System (ADS)

    Hogan, K.; Fagnard, J.-F.; Wéra, L.; Vanderheyden, B.; Vanderbemden, P.

    2015-03-01

    Bulk type-II irreversible superconductors can act as excellent passive magnetic shields, with a strong attenuation of low frequency magnetic fields. Up to now, the performances of superconducting magnetic shields have mainly been studied in a homogenous magnetic field, considering only immunity problems, i.e. when the field is applied outside the tube and the inner field should ideally be zero. In this paper, we aim to investigate experimentally and numerically the magnetic response of a high-Tc bulk superconducting hollow cylinder at 77 K in an emission problem, i.e. when subjected to the non-uniform magnetic field generated by a source coil placed inside the tube. A bespoke 3D mapping system coupled with a three-axis Hall probe is used to measure the magnetic flux density distribution outside the superconducting magnetic shield. A finite element model is developed to understand how the magnetic field penetrates into the superconductor and how the induced superconducting shielding currents flow inside the shield in the case where the emitting coil is placed coaxially inside the tube. The finite element modelling is found to be in excellent agreement with the experimental data. Results show that a concentration of the magnetic flux lines occurs between the emitting coil and the superconducting screen. This effect is observed both with the modelling and the experiment. In the case of a long tube, we show that the main features of the field penetration in the superconducting walls can be reproduced with a simple analytical 1D model. This model is used to estimate the maximum flux density of the emitting coil that can be shielded by the superconductor.

  10. Magnetic field depression in electron holes

    NASA Astrophysics Data System (ADS)

    Vasko, Ivan; Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton

    2015-04-01

    We analyze spikes of the electrostatic field observed by Van Allen Probes in the outer radiation belt. These spikes exhibit the classical signatures of electron holes, i.e. a positive hump of the electrostatic potential (depleted electron density) and a propagation velocity of the order of an electron thermal velocity. The characteristic amplitude, velocity and spatial scale of these electron holes are several tens of mV/m, several thousand of km/s and about several km, respectively. The unexpected feature is the magnetic field depression of about several tens of pT within the observed electron holes. We suggest that this depression is due to the diamagnetic current of an electron population trapped within the electron hole. We estimate that the trapped population has a density up to 50% of the background plasma density, a temperature of about hundreds of eV and a high temperature anisotropy, T?/T||~ 3.5. We argue that the observed electron holes could be generated due to the injection of the highly-anisotropic plasma into the outer radiation belts.

  11. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1991-01-01

    The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

  12. Magnetic field effects on plasma ionization balance

    SciTech Connect

    Weisheit, J.C.

    1995-12-31

    Magnetic fields give rise to several phenomena that can significantly affect ionization balance in a plasma. Theoretical models commonly used to determine the charge state distribution (viz., ) of ions in non-magnetized plasmas are reviewed first, for both equilibrium and non-equilibrium situations. Then, after a brief survey of laboratory and cosmic plasmas with strong fields, B > 10{sup 6} Gauss, some of the ways such magnetic fields influence are highlighted. Most key problems have yet to be tackled.

  13. Magnetization measurements reveal the local shear stiffness of hydrogels probed by ferromagnetic nanorods

    NASA Astrophysics Data System (ADS)

    Bender, P.; Tschöpe, A.; Birringer, R.

    2014-12-01

    The local mechanical coupling of ferromagnetic nanorods in hydrogels was characterized by magnetization measurements. Nickel nanorods were synthesized by the AAO-template method and embedded in gelatine hydrogels with mechanically soft or hard matrix properties determined by the gelatine weight fraction. By applying a homogeneous magnetic field during gelation the nanorods were aligned along the field resulting in uniaxially textured ferrogels. The magnetization curves of the soft ferrogel exhibited not only important similarities but also characteristic differences as compared to the hard ferrogel. The hystereses measured in a field parallel to the texture axis were almost identical for both samples indicating effective coupling of the nanorods with the polymer network. By contrast, measurements in a magnetic field perpendicular to the texture axis revealed a much higher initial susceptibility of the soft as compared to the hard ferrogel. This difference was attributed to the additional rotation of the nanorods allowed by the reduced shear modulus in the soft ferrogel matrix. Two methods for data analysis were presented which enabled us to determine the shear modulus of the gelatine matrix which was interpreted as a local rather than macroscopic quantity in consideration of the nanoscale of the probe particles.

  14. Minimizing magnetic fields for precision experiments

    NASA Astrophysics Data System (ADS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  15. Toxoplasma gondii DNA detection with a magnetic molecular beacon probe

    NASA Astrophysics Data System (ADS)

    Xu, Shichao; Yao, Cuicui; Wei, Shuoming; Zhang, Jimei; Dai, Zhao; Zheng, Guo; Sun, Bo; Han, Qing; Hu, Fei; Zhou, Hongming

    2008-12-01

    Toxoplasma Gondii infection is widespread in humans worldwide and reported infection rates range from 3%-70%, depending on the populations or geographic areas, and it has been recognized as a potential food safety hazard in our daily life. A magnetic molecular beacon probe (mMBP), based on theory of fluorescence resonance energy transfer (FRET), was currently reported to detect Toxoplasma Gondii DNA. Nano-sized Fe3O4 were primarily prepared by coprecipitation method in aqueous phase with NaOH as precipitator, and was used as magnetic core. The qualified coreshell magnetic quantum dots (mQDs), i.e. CdTe(symbol)Fe3O4, were then achieved by layer-by-layer method when mol ratio of Fe3O4/CdTe is 1/3, pH at 6.0, 30 °C, and reactant solution was refluxed for 30 min, the size of mQDs were determined to be 12-15 nm via transmission electron microscopy (TEM). Over 70% overlap between emission spectrum of mQDs and absorbance spectrum of BHQ-2 was observed, this result suggests the synthesized mQDs and BHQ-2 can be utilized as energy donor and energy acceptor, respectively. The sensing probe was fabricated and a stem-loop Toxoplasma Gondii DNA oligonucleotide was labeled with mQDs at the 5' end and BHQ-2 at 3' end, respectively. Target Toxoplasma gondii DNA was detected under conditions of 37 °C, hybridization for 2h, at pH8.0 in Tris-HCl buffer. About 30% recovery of fluorescence intensity was observed via fluorescence spectrum (FS) after the Toxoplasma gondii DNA was added, which suggested that the Toxoplasma Gondii DNA was successfully detected. Specificity investigation of the mMBP indicated that relative low recovery of fluorescence intensity was obtained when the target DNA with one-base pair mismatch was added, this result indicated the high specificity of the sensing probe. Our research simultaneously indicated that mMBP can be conveniently separated from the unhybridized stem-loop DNA and target DNA, which will be meaningful in DNA sensing and purification process.

  16. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  17. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  18. Five years of magnetic field management

    SciTech Connect

    Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

    1995-01-01

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors` experiences and shows the results of the specific projects completed in recent years.

  19. Magnetic fields in anisotropic relativistic stars

    E-print Network

    Vladimir Folomeev; Vladimir Dzhunushaliev

    2015-02-28

    Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.

  20. Magnetic Fields in the Milky Way

    NASA Astrophysics Data System (ADS)

    Haverkorn, Marijke

    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.

  1. The CASSIOPE/e-POP Magnetic Field Instrument (MGF)

    NASA Astrophysics Data System (ADS)

    Wallis, D. D.; Miles, D. M.; Narod, B. B.; Bennest, J. R.; Murphy, K. R.; Mann, I. R.; Yau, A. W.

    2015-06-01

    Field-aligned currents couple energy between the Earth's magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (˜50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz.

  2. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2013-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  3. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  4. Non-linear magnetization dynamics probed with X-rays: 1. Broken cylindrical symmetry of uniform modes

    NASA Astrophysics Data System (ADS)

    Goulon, J.; Brouder, Ch.; Rogalev, A.; Goujon, G.; Wilhelm, F.

    2014-10-01

    We discuss how X-ray magnetic circular dichroism (XMCD) and X-ray magnetic linear dichroism (XMLD) may complement each other to probe the nonlinear nature of the resonant precession of either spin or orbital magnetization components in aligned ferro-, ferri- or even antiferro-magnets. The Landau-Lifshitz-Gilbert (LLG) equation is solved in a rotating frame locked to the microwave pump field, while treating as time-dependent perturbations the terms which, in the formulation of the free energy density, break down the cylindrical symmetry of precession. Concretely, we analyze the time-oscillating deviations of the magnetization from the steady-state solutions of the LLG equation hereafter called SS-modes. At any perturbation order, one may derive magnetic dipole components which oscillate at harmonic frequencies of the pump frequency and could be probed with XMCD. Under bichromatic pumping, frequency mixing arises from a time-dependent Zeeman coupling between two rotating frames locked to each individual pump field. Similarly, we expect magnetic quadrupole components to oscillate at the same frequencies. For consistency, their derivation requires a perturbation calculation up to second order. The latter time-reversal even, rank-2 magnetic tensor components can be probed only with XMLD. Beyond the (reciprocal) linear dichroism classically measured in ferri- or antiferromagnetic samples, a non-reciprocal XMLD signal is to be expected when space parity is lost. Nonlinear effects strongly depend upon the relative orientations of the external bias field and of the pump field with respect to the symmetry axes of the magnetic system. This holds true for the foldover lineshape distortions, harmonic generation, frequency mixing or multiquanta excitations.

  5. High-field magnetization of polycrystalline praseodymium

    SciTech Connect

    Leyarovski, E.; Mrachkov, J.; Gilewski, A.; Mydlarz, T.

    1987-06-01

    The field dependence of the induced magnetic moment in polycrystalline Pr is studied in impulse magnetic fields up to 45 T at 4.2 K and in stationary magnetic fields up to 18 T at 20 and 30 K. No anomalies in the magnetization have been observed which might be associated with the metamagnetic phase transition in single crystals at 31.5 T (K. A. McEwen, G. J. Cock, L. W. Roeland, and A. R. Mackinstosh, Phys. Rev. Lett. 30, 287 (1973)), as well as with any changes of the orientation of the magnetic moments characteristic for an antiferromagnetic. The observed magnetization is satisfactorily described using a molecular field Hamiltonian including the crystal electric field potential, exchange interactions, and Zeeman-effect term.

  6. High-field magnetization of polycrystalline praseodymium

    NASA Astrophysics Data System (ADS)

    Leyarovski, E.; Mrachkov, J.; Gilewski, A.; Mydlarz, T.

    1987-06-01

    The field dependence of the induced magnetic moment in polycrystalline Pr is studied in impulse magnetic fields up to 45 T at 4.2 K and in stationary magnetic fields up to 18 T at 20 and 30 K. No anomalies in the magnetization have been observed which might be associated with the metamagnetic phase transition in single crystals at 31.5 T [K. A. McEwen, G. J. Cock, L. W. Roeland, and A. R. Mackinstosh, Phys. Rev. Lett. 30, 287 (1973)], as well as with any changes of the orientation of the magnetic moments characteristic for an antiferromagnetic. The observed magnetization is satisfactorily described using a molecular field Hamiltonian including the crystal electric field potential, exchange interactions, and Zeeman-effect term.

  7. Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field

    NASA Astrophysics Data System (ADS)

    Orlof, A.; Shylau, A. A.; Zozoulenko, I. V.

    2015-08-01

    We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation of compressible strips in the potential profile and the electron density. We numerically solve the Dirac equations describing the electron dynamics in quantum dots, and we demonstrate that compressible strips lead to the appearance of plateaus in the electron energies as a function of the magnetic field. Finally, we discuss how our predictions can be observed using the Kelvin probe force microscope measurements.

  8. Probing the electromagnetic field distribution within a metallic nanodisk.

    PubMed

    Meneses-Rodríguez, David; Ferreiro-Vila, Elías; Prieto, Patricia; Anguita, José; González, María U; García-Martín, José M; Cebollada, Alfonso; García-Martín, Antonio; Armelles, Gaspar

    2011-12-01

    A Co nanolayer is used as a local probe to evaluate the vertical inhomogeneous distribution of the electromagnetic (EM) field within a resonant metallic nanodisk. Taking advantage of the direct relation between the magneto-optical activity and the electromagnetic field intensity in the Co layer, it is shown that the nonuniform EM distribution within the nanodisk under plasmon resonant conditions has maximum values close to the upper and lower flat faces, and a minimum value in the middle. PMID:21972067

  9. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    SciTech Connect

    Zanáška, M.; Kudrna, P.; Tichý, M.; Adámek, J.; Peterka, M.

    2015-03-15

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I{sub sat}{sup ?}/I{sub sat}{sup +} to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10?mT/Pa.

  10. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect

    Shikama, T. Hasuo, M.; Kitaoka, H.

    2014-07-15

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30?eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  11. Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2008-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.

  12. The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Nakotte, Heinz

    2001-11-01

    The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

  13. Imaging and Probe Techniques for Wave Dispersion Estimates in Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Light, A. D.

    Fluctuations in magnetized laboratory plasmas are ubiquitous and complex. In addition to deleterious effects, like increasing heat and particle transport in magnetic fusion energy devices, fluctuations also provide a diagnostic opportunity. Identification of a fluctuation with a particular wave or instability gives detailed information about the properties of the underlying plasma. In this work, diagnostics and spectral analysis techniques for fluctuations are developed and applied to two different laboratory plasma experiments. The first part of this dissertation discusses imaging measurements of coherent waves in the Controlled Shear Decorrelation Experiment (CSDX) at the University of California, San Diego. Visible light from ArII line emission is collected at high frame rates using an intensified digital camera. A cross-spectral phase technique allows direct visualization of dominant phase structures as a function of frequency, as well as identification of azimuthal asymmetries present in the system. Experimental dispersion estimates are constructed from imaging data alone. Drift-like waves are identified by comparison with theoretical dispersion curves, and a tentative match of a low- frequency spectral feature to Kelvin-Helmholtz-driven waves is presented. Imaging measurements are consistent with previous results, and provide non-invasive, single-shot measurements across the entire plasma cross-section. Relationships between imaging and electrostatic probe measurements are explored. The second part of this dissertation discusses the design and construction of diagnostics for the Colorado Field-Reversed Configuration (CFRC), as well as preliminary results. A triple probe, a Mach probe, a multi-chord heterodyne interferometer, Rogowski coils, a single-point, three-axis magnetic probe, and a 16-point, three-axis magnetic probe have been constructed. Each diagnostic is designed for fluctuation measurements up to the data acquisition Nyquist frequency of 20 MHz. A histogram cross-spectral analysis technique allows experimental dispersion estimates to be made from multi-channel magnetic measurements. Hints of waves in the range of ion-cyclotron frequency harmonics are observed, but lack of global information about the plasma objects formed in CFRC prevents definitive interpretation.

  14. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  15. Measuring exposed magnetic fields of welders in working time.

    PubMed

    Yamaguchi-Sekino, Sachiko; Ojima, Jun; Sekino, Masaki; Hojo, Minoru; Saito, Hiroyuki; Okuno, Tsutomu

    2011-01-01

    The assessment of the occupational electromagnetic field exposure of welders is of great importance, especially in shielded-arc welding, which uses relatively high electric currents of up to several hundred amperes. In the present study, we measured the magnetic field exposure level of welders in the course of working. A 3-axis Hall magnetometer was attached to a subject's wrist in order to place the sensor probe at the closest position to the magnetic source (a cable from the current source). Data was acquired every 5 s from the beginning of the work time. The maximum exposed field was 0.35-3.35 mT (Mean ± SD: 1.55 ± 0.93 mT, N=17) and the average value per day was 0.04-0.12 mT (Mean ± SD: 0.07 ± 0.02 mT, N=17). We also conducted a finite element method-based analysis of human hand tissue for the electromagnetic field dosimetry. In addition, the magnetic field associated with grinders, an air hammer, and a drill using electromagnetic anchorage were measured; however, the magnetic fields were much lower than those generated in the welding process. These results agreed well with the results of the electromagnetic field dosimetry (1.49 mT at the wrist position), and the calculated eddy current (4.28 mA/m(2)) was much lower than the well-known guideline thresholds for electrical nerve or muscular stimulation. PMID:21670555

  16. Estimation of fluctuating magnetic fields by an atomic magnetometer

    E-print Network

    Vivi Petersen; Klaus Molmer

    2006-05-29

    We present a theoretical analysis of the ability of atomic magnetometers to estimate a fluctuating magnetic field. Our analysis makes use of a Gaussian state description of the atoms and the probing field, and it presents the estimator of the field and a measure of its uncertainty which coincides in the appropriate limit with the achievements for a static field. We show by simulations that the estimator for the current value of the field systematically lags behind the actual value of the field, and we suggest a more complete theory, where measurement results at any time are used to update and improve both the estimate of the current value and the estimate of past values of the B-field.

  17. Graphene Nanoribbon in Sharply Localized Magnetic Fields

    E-print Network

    Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal

    2013-03-20

    We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.

  18. Control of magnetism by electric fields

    NASA Astrophysics Data System (ADS)

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

  19. Interferometric methods for mapping static electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2014-02-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity Equation. Among these approaches, image-plane off-axis electron holography in the transmission electron microscope has acquired a prominent role thanks to its quantitative capabilities and broad range of applicability. After a brief overview of the main ideas and methods behind field mapping, we focus on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p-n junctions in semiconductors, quantized magnetic flux in superconductors and magnetization topographies in nanoparticles and other magnetic materials) and electron-optical geometries (including multiple biprism, amplitude and mixed-type set-ups). We conclude by highlighting the emerging perspectives of (i) three-dimensional field mapping using electron holographic tomography and (ii) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.

  20. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  1. Magnetic field evolution of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ?, r ? ?-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B??1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/?)-1. The characteristic time of decreasing of the magnetic field ? is equal to ? ? 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  2. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  3. Energy of magnetic moment of superconducting current in magnetic field

    NASA Astrophysics Data System (ADS)

    Gurtovoi, V. L.; Nikulov, A. V.

    2015-09-01

    The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment.

  4. Magnetic field perturbations in the systems where only poloidal magnetic field is present*

    E-print Network

    magnetic field is present). Examples include FRC, levitated dipoles, and long diffuse pinches. We consider · Small perturbations in the general geometry · Uniform magnetic field imposed on the levitated dipole an infinitesimal perturbation causes a dramatic change of the magnetic topology: without perturbations, each field

  5. The National High Magnetic Field Laboratory

    NASA Astrophysics Data System (ADS)

    Jaime, M.; Lacerda, A.; Takano, Y.; Boebinger, G. S.

    2006-11-01

    The National High Magnetic Field Laboratory, established in 1990 with support from the National Science Foundation, the State of Florida, and the US Department of Energy, is a facility open to external users around the world. The experimental capabilities are distributed in three campuses. In Tallahassee, Florida, continuous magnetic fields are produced by means of superconducting and resistive magnets reaching fields of up to 33T (resistive), and 45T (hybrid). EMR, ICR, and a 900MHz wide bore NMR magnet are also available. The facility in Gainesville, Florida, is devoted to generating extremely low temperatures in the presence of external magnetic fields (15T, down to 0.4mK), and large MRI imaging capabilities. In Los Alamos, New Mexico, a 9 kV-capable capacitor bank and a number of different liquid Nitrogen-cooled resistive magnets produce repetitive pulses up to 75 T and now a single-shot pulsed up to 300T.

  6. Diffusion of magnetic field via turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar.

  7. Magnetic fields in the early Universe

    NASA Astrophysics Data System (ADS)

    Grasso, D.; Rubinstein, H. R.

    2001-07-01

    This review concerns the origin and the possible effects of magnetic fields in the early Universe. We start by providing the reader with a short overview of the current state of the art of observations of cosmic magnetic fields. We then illustrate the arguments in favor of a primordial origin of magnetic fields in the galaxies and in the clusters of galaxies. We argue that the most promising way to test this hypothesis is to look for possible imprints of magnetic fields on the temperature and polarization anisotropies of the cosmic microwave background radiation (CMBR). With this purpose in mind, we provide a review of the most relevant effects of magnetic fields on the CMBR. A long chapter of this review is dedicated to particle-physics-inspired models which predict the generation of magnetic fields during the early Universe evolution. Although it is still unclear if any of these models can really explain the origin of galactic and intergalactic magnetic fields, we show that interesting effects may arise anyhow. Among these effects, we discuss the consequences of strong magnetic fields on the big-bang nucleosynthesis, on the masses and couplings of the matter constituents, on the electroweak phase transition, and on the baryon and lepton number violating sphaleron processes. Several intriguing common aspects, and possible interplay, of magnetogenesis and baryogenesis are also discussed.

  8. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  9. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  10. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O. (Mountain View, CA)

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  11. Using Experiment and Computer Modeling to Determine the Off-Axis Magnetic Field of a Solenoid

    ERIC Educational Resources Information Center

    Lietor-Santos, Juan Jose

    2014-01-01

    The study of the ideal solenoid is a common topic among introductory-based physics textbooks and a typical current arrangement in laboratory hands-on experiences where the magnetic field inside a solenoid is determined at different currents and at different distances from its center using a magnetic probe. It additionally provides a very simple…

  12. Real-time magnetic nanothermometry: the use of magnetization of magnetic nanoparticles assessed under low frequency triangle-wave magnetic fields.

    PubMed

    Zhong, Jing; Liu, Wenzhong; Jiang, Ling; Yang, Ming; Morais, Paulo Cesar

    2014-09-01

    In this study, we propose and demonstrate the usefulness of employing time-varying magnetization of a magnetic nanoparticle (MNP) based sample, induced by low frequency (f = 25 Hz) triangular-wave magnetic field, to achieve the approach of real-time recording of magnetization curve, which allows precise and noninvasive temperature probing with real-time performance. Moreover, the present report introduces the design and performed the test of a detection system for accurate and real-time recording of the magnetization curve of MNP-based samples. We found that by employing the magnetization curve of a magnetic fluid sample containing magnetite nanoparticles of about 30 nm in diameter the accuracy of the temperature probing is about 0.32 K (0.1% relative accuracy), with response time of 1 s. Furthermore, an increase in response time from 1 to 8 s improves the accuracy of temperature probing from 0.32 to 0.20 K. Finally, we envisage that breakthroughs in clinical hyperthermia, targeted drug delivery and basic cell research can be accomplished while using the approach reported in this study. PMID:25273762

  13. Structure of magnetic fields in intracluster cavities

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, Konstantinos Nektarios; Braithwaite, Jonathan; Lyutikov, Maxim

    2010-12-01

    Observations of clusters of galaxies show ubiquitous presence of X-ray cavities, presumably blown by the active galactic nuclei (AGN) jets. We consider magnetic field structures of these cavities. Stability requires that they contain both toroidal and poloidal magnetic fields, while realistic configurations should have vanishing magnetic field on the boundary. For axisymmetric configurations embedded in unmagnetized plasma, the continuity of poloidal and toroidal magnetic field components on the surface of the bubble then requires solving the elliptical Grad-Shafranov equation with both Dirichlet and Neumann boundary conditions. This leads to a double eigenvalue problem, relating the pressure gradients and the toroidal magnetic field to the radius of the bubble. We have found fully analytical stable solutions. This result is confirmed by numerical simulation. We present synthetic X-ray images and synchrotron emission profiles and we evaluate the rotation measure for radiation transversing the bubble.

  14. Magnetic fields in Neutron Stars

    E-print Network

    Viganò, Daniele; Miralles, Juan A; Rea, Nanda

    2015-01-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  15. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  16. Diffusion in Electronegative Discharges with Magnetic Fields.

    NASA Astrophysics Data System (ADS)

    Bell, David Eugene

    Electronegative plasmas are important in a variety of electric discharge applications, such as plasma reactors, negative ion sources, and even electropositive discharges when contaminated with an electronegative impurity. The need for an understanding of the processes and phenomena associated with these electronegative discharges has spurred the development of numerical simulations and models. While many of the devices incorporate various configurations of external magnetic fields, specific attention to the influence of the magnetic field on the discharge operating point, structure, and stability is lacking. To address this deficiency, a collisional model for diffusion in three -component plasmas with an applied magnetic field is developed; it is an extension of Schottky theory allowing for negative ions and a magnetic field. This study analyzes the effect of magnetic fields on diffusion in three-component plasmas; provides an analytic solution for the collisional model in a magnetic field; evaluates the validity of effective diffusion coefficients through an analysis of the afterglow; and provides a regime of validity for the model in terms of magnetic field strength by analytically establishing the critical magnetic field for the onset of "anomalous" diffusion. When a discharge operating at constant current is subjected to an increase in axial magnetic field, the ionization frequency decreases more rapidly in an electronegative discharge than an electropositive discharge, due to negative ions reducing the ambipolar electric field. The model is compared qualitatively to a hydrogen discharge and quantitatively to a sulfur hexafluoride discharge with good agreement. The time-dependent model shows that, for a hydrogen discharge, one can obtain an enhancement of the negative ion density in the afterglow. Electronegative discharges are more unstable with respect to the helical mode instability than electropositive discharges, due to the larger axial electric field and weaker ambipolar electric field in an electronegative discharge.

  17. Pulsed field magnetization characteristics of a holed superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Yokoyama, K.; Igarashi, R.; Togasaki, R.; Oka, T.

    2015-11-01

    We have proposed a holed superconducting bulk magnet to trap the magnetic field efficiently in the high-performance material excited by pulsed field magnetization. Previously, a single pulsed field was applied with varying amplitudes of the magnetic fields and temperatures to a GdBCO bulk material with four 2-mm-diameter holes, and the time responses of flux density on the bulk surface and trapped field distributions were measured. The experimental results suggested that the number of holes was too high because a large distortion appeared in the trapped field distributions. In this paper, we processed only a single hole with a different hole size and investigated the magnetization characteristics. After estimating the trapped field performance by applying a single pulsed field with varying its amplitude and temperature in the original material, a 1-mm-diameter hole was drilled; then the hole was extended to 2 mm in diameter, and the same experiments were carried out in each sample. A total magnetic flux of both 1-mm-diameter hole and 2-mm-diameter hole samples was about 10 percent higher than that of a four-hole sample at a low temperature. On the other hand, the value of a 2-mm-diameter hole sample was the same as that of a four-hole sample at a high temperature. The experimental results suggested that about 1 mm in diameter was proper for the hole size.

  18. Probing boundary magnetization through exchange bias in heterostructures with competing anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Binek, Christian

    2013-03-01

    Cr2O3 (chromia) is a magnetoelectric antiferromagnet with a bulk TN of 307 K. It has been utilized for electrically controlled exchange bias (EB) by taking advantage of voltage-controllable boundary magnetization (BM) occurring as a generic property in magnetoelectric single domain antiferromagnets.[2] In the perpendicular Cr2O3(0001)/CoPd EB system the EB-field shows an order parameter type T-dependence close to TN reflecting the T-dependence of the BM. At about 150 K a decrease of the EB-field sets in with decreasing temperature suggesting canting of the BM. To evidence this mechanism we use EB as a probe. Specifically, we investigate EB in Permalloy(5nm)/Cr2O3 (0001)(100nm) with Permalloy and chromia having competing anisotropies. We measure easy axis magnetic hysteresis loops via longitudinal magneto-optical Kerr effect for various temperatures after perpendicular and in-plane magnetic field-cooling. The T-dependence of the EB field supports the canting mechanism. In addition to the all thin film EB system, we explore a Permalloy(10nm)/Cr2O3(0001 single crystal) heterostructure where magnetoelectric annealing allows selecting Cr2O3 single domain states. Here the effect of T-dependent canting of the BM is compared with findings in the complementary perpendicular EB system. Financial support by NSF through MRSEC and the Nanoelectronic Research Initiative.

  19. Investigation of the arcjet plume near field using electrostatic probes

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.

    1990-01-01

    The near field plum of a 1 kW class arcjet thruster was investigated using electrostatic probes of various geometries. The electron number densities and temperatures were determined in a simulated hydrazine plume at axial distances between 3 cm (1.2 in) and 15 cm (5.9 in) and radial distances extending to 10 cm (3.9 in) off centerline. Values of electron number densities obtained using cylindrical and spherical probes of different geometries agreed very well. The electron density on centerline followed a source flow approximation for axial distances as near as 3 cm (1.2 in) from the nozzle exit plane. The model agreed well with previously obtained data in the far field. The effects of propellant mass flow rate and input power level were also studied. Cylindrical probes were used to obtain ion streamlines by changing the probe orientation with respect to the flow. The effects of electrical configuration on the plasma characteristics of the plume were also investigated by using a segmented anode/nozzle thruster. The results showed that the electrical configuration in the nozzle affected the distribution of electrons in the plume.

  20. Investigation of the Arcjet near Field Plume Using Electrostatic Probes

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.

    1990-01-01

    The near field plume of a 1 kW class arcjet thruster was investigated using electrostatic probes of various geometries. The electron number densities and temperatures were determined in a simulated hydrazine plume at axial distances between 3 cm (1.2 in.) and 15 cm (5.9 in.) and radial distances extending to 10 cm (3.9 in.) off centerline. Values of electron number densities obtained using cylindrical and spherical probes of different geometries agreed very well. The electron density on centerline followed a source flow approximation for axial distances as near as 3 cm (1.2 in.) from the nozzle exit plane. The model agreed well with previously obtained data in the far field. The effects of propellant mass flow rate and input power level were also studied. Cylindrical probes were used to obtain ion streamlines by changing the probe orientation with respect to the flow. The effects of electrical configuration on the plasma characteristics of the plume were also investigated by using a segmented anode/nozzle thruster. The results showed that the electrical configuration in the nozzle affected the distribution of electrons in the plume.

  1. Exoplanet Magnetic Fields and Their Detectability

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tian, B. Y.; Vilim, R.

    2014-12-01

    The investigation of planetary magnetic fields in our solar system provides a wealth of information on planetary interior structure and dynamics. Satellite magnetic data demonstrates that planetary dynamos can produce a range of magnetic field morphologies and intensities. Numerical dynamo simulations are working towards determining relationships between planetary properties and the resulting magnetic field characteristics. However, with only a handful of planetary dynamos in our solar system, it is challenging to determine specific dependence of magnetic field properties on planetary characteristics. Extrasolar planets therefore provide a unique opportunity by significantly increasing the number of planets for study as well as offering a much larger range of planetary properties to investigate. Although detection of exoplanet magnetic fields is challenging at present, the increasing sophistication of observational tools available to astronomers implies these extrasolar planetary magnetic fields may eventually be detectable. This presentation will discuss potential observational trends for magnetic field strength and morphology for exoplanets based on numerical simulations and interior structure modeling. We will focus on the influence of planetary age, environment, composition and structure.

  2. The magnetic field of ? Orionis A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J.-C.; Rivinius, Th.

    2015-10-01

    Context. ? Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. Aims: We aim at verifying the presence of a magnetic field in ? Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field. Methods: Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the least-squares deconvolution technique to extract the magnetic information. Results: We confirm that ? Ori A is magnetic. We find that the supergiant component ? Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~140 G. Because the magnetic field is weak and the stellar wind is strong, ? Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion ? Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ~300 G. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.Appendix A is available in electronic form at http://www.aanda.org

  3. A large volume double channel 1H-X RF probe for hyperpolarized magnetic resonance at 0.0475 T

    NASA Astrophysics Data System (ADS)

    Coffey, Aaron M.; Shchepin, Roman V.; Wilkens, Ken; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2012-07-01

    In this work we describe a large volume 340 mL 1H-X magnetic resonance (MR) probe for studies of hyperpolarized compounds at 0.0475 T. 1H/13C and 1H/15N probe configurations are demonstrated with the potential for extension to 1H/129Xe. The primary applications of this probe are preparation and quality assurance of 13C and 15N hyperpolarized contrast agents using PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) and other parahydrogen-based methods of hyperpolarization. The probe is efficient and permits 62 ?s 13C excitation pulses at 5.3 W, making it suitable for portable operation. The sensitivity and detection limits of this probe, tuned to 13C, are compared with a commercial radio frequency (RF) coil operating at 4.7 T. We demonstrate that low field MR of hyperpolarized contrast agents could be as sensitive as conventional high field detection and outline potential improvements and optimization of the probe design for preclinical in vivo MRI. PASADENA application of this low-power probe is exemplified with 13C hyperpolarized 2-hydroxyethyl propionate-1-13C,2,3,3-d3.

  4. Perpendicular magnetic fields in cantilever beam magnetometry

    NASA Astrophysics Data System (ADS)

    Koch, R.; Das, A. K.; Yamaguchi, H.; Pampuch, C.; Ney, A.

    2004-09-01

    Cantilever beam magnetometry is a common technique to determine the magnetoelastic (ME) coupling constants of thin films by measuring the stress that develops when the film magnetization is changed. In cantilever beam experiments performed so far the film magnetization was mainly rotated within the film plane. Here we discuss the measurement of the ME coupling constants, when the magnetizing field is chosen so that it rotates the film magnetization out of the film plane. A major stress contribution, which arises additionally to the ME stress, originates in the torque that magnetic dipoles experience in a magnetic field. In order to separate torque effects from ME contributions in cantilever beam experiments a general method is proposed. With this method the ME coupling constants can be quantitatively determined and furthermore the film magnetization as well as its perpendicular anisotropy constant are obtained quantitatively.

  5. Magnetic-field-controlled reconfigurable semiconductor logic.

    PubMed

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

    2013-02-01

    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices. PMID:23364687

  6. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

  7. External-field-free magnetic biosensor

    SciTech Connect

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6?dB from one iron oxide magnetic nanoparticle with 8?nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200?nm?×?200?nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3?dB is achieved for 30??l magnetic nanoparticles suspension (30?nm iron oxide particles, 1?mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  8. Decay of Resonaces in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2015-08-01

    We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of K±*, K0* vector mesons as well as ?* (1520) and ?0* baryonic states is considered in static fields 1013-1015 T. In particular, n = 0 Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from ?0(770) mesons may occur if strong decay channel ?0 ? ?+?- is significantly suppressed. CP - violating ?+?- decays of pseudoscalar ?c and ?(547) mesons in the magnetic field are discussed, and superpositions of quarkonium states ?c,b and ?c,b(nP) with ?(nS), ?(nS) mesons in the external field are considered.

  9. AC Magnetic Susceptibility Probe for Use in a Commercial SQUID Magnetometer

    NASA Astrophysics Data System (ADS)

    Cohen, J. D.; Pajerowski, D. M.; Meisel, M. W.

    2009-03-01

    An AC magnetic susceptibility probe, employing a typical set of mutual inductance coils, has been constructed for operation in a commercial SQUID magnetometer operating down to 1.7 K and up to 7 T. The primary (˜1000 turns) and counterwound secondary (each ˜1300 turns) coils were wound with 44 AWG Cu wire on a Kapton tube possessing an ID of 6.4 mm. The ensemble of coils is ˜30 mm long and has an OD of 8.7 mm, thereby allowing clearance into the sample region of the SQUID magnetometer. One variation of the probe included optical fibers that passed down the center of the stainless steel support rod. The detection electronics involve a lock-in amplifier and the experiment is controlled by LabView software. Typical AC (1 Hz - 1 kHz) fields of ˜10 ?T afford the study of the temperature, frequency, and dc-field bias dependencies of magnetically interesting samples such as the spin ice material Ho2Ti2O7 [1] and nanoparticles of Prussian blue analogs [2].[1] M. Orend'ac et al., elsewhere in these proceedings.[2] D. M. Pajerowski, F. A. Frye, D. R. Talham, and M. W. Meisel, New J. Phys. 9 (2007) 222.

  10. Skyrmion in a uniform magnetic field

    E-print Network

    He, Bing-Ran

    2015-01-01

    We investigate the skyrmion properties in a uniform magnetic field. Based on the symmetry of the system, we propose an axially symmetric ansatz of a soliton for studying the skyrmion properties. We show the baryon number is always conserved even in a nonzero magnetic background. We find that with increasing magnetic field strength, the static mass of the skyrmion first decreases and then increases as the dominant role shifts from the linear term of the magnetic field to the quadratic term of the magnetic field. On the other hand, the soliton size first increases and then decreases as the magnetic field strength increases. We find that the distribution of the baryon number density and energy density is anisotropic in a uniform magnetic background. Furthermore, the x- and z-axis projection of the radius of the baryon number density is strongly dependent on the increase of the magnetic field, while the energy density does not have this dependency. Finally, in the core part of the magnetar, the equation of state ...

  11. Surface magnetic fields across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Landstreet, John D.

    2015-10-01

    The past 20 years have seen remarkable advances in spectropolarimetric instrumentation that have allowed us, for the first time, to identify some magnetic stars in most major stages of stellar evolution. We are beginning to see the broad outline of how such fields change during stellar evolution, to confront theoretical hypotheses and models of magnetic field structure and evolution with detailed data, and to understand more of the ways in which the presence of a field in turn affects stellar structure and evolution.

  12. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  13. Tuning permanent magnets with adjustable field clamps

    SciTech Connect

    Schermer, R.I.

    1987-01-01

    The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius.

  14. Magnetic fields near Mars - First results

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Schwingenschuh, K.; Moehlmann, D.; Oraevskii, V. N.; Eroshenko, E.; Slavin, J.

    1989-01-01

    The magnetic fields of Mars have been measured from Phobos 2 with high temporal resolution in the tail and down to an 850-km altitude. During four successive highly elliptical orbits, the position of the bow shock as well as that of a transition layer, the 'planetopause', were identified. Subsequent circular orbits at 6000-km altitude provided the first high-resolution data in the planetary tail and indicate that the interplanetary magnetic field mainly controls the magnetic tail. Magnetic turbulence was also detected when the spacecraft crossed the orbit of Phobos, indicating the possible existence of a torus near the orbit of this moon.

  15. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  16. Pulsed field magnets at the United States National High Magnetic Field Laboratory

    SciTech Connect

    Campbell, L.J.; Parkin, D.M.; Crow, J.E.; Schneider-Muntau, H.J.; Sullivan, N.S.

    1993-11-01

    The pulsed field facility of the National High Magnetic Field Laboratory (NHMFL) consists of four components. Now available are (1) explosive driven flux compression, (2) capacitor-driven magnets, and (3) a 20 T superconducting magnet. The fourth component, a 60 T quasi-continuous magnet, has been designed and is scheduled for installation in early 1995. All magnets have He-4 cryostats giving temperatures from room temperature (RT) to 2.2--1.5 K. Dilution refrigerators for the superconducting 20 T magnet and the 50 T pulsed magnet will be installed by early 1994. A wide range of experiments has been completed within the past year.

  17. External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles.

    PubMed

    Shanehsazzadeh, Saeed; Lahooti, Afsaneh; Hajipour, Mohammad Javad; Ghavami, Mahdi; Azhdarzadeh, Morteza

    2015-12-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are recognized as one of the promising nanomaterials for applications in various field of nanomedicine such as targeted imaging/drug delivery, tissue engineering, hyperthermia, and gene therapy. Besides their suitable biocompatibility, SPIONs' unique magnetic properties make them an outstanding candidate for theranostic nanomedicine. Very recent progress in the field revealed that the presence of external magnetic fields may cause considerable amount of SPIONs' agglomeration in their colloidal suspension. As variation of physicochemical properties of colloidal nanoparticles has strong effect on their biological outcomes, one can expect that the SPIONs' agglomeration in the presence of external magnetic fields could change their well-recognized biological impacts. In this case, here, we probed the cellular uptake and toxicity of the SPIONs before and after exposure to external magnetic fields. We found that the external magnetic fields can affect the biological outcome of magnetic nanoparticles. PMID:26613856

  18. Laser-generated magnetic fields in quasi-hohlraum geometries

    NASA Astrophysics Data System (ADS)

    Pollock, Bradley; Turnbull, David; Ross, Steven; Hazi, Andrew; Ralph, Joseph; Lepape, Sebastian; Froula, Dustin; Haberberger, Dan; Moody, John

    2014-10-01

    Laser-generated magnetic fields of 10--40 T have been produced with 100--4000 J laser drives at Omega EP and Titan. The fields are generated using the technique described by Daido et al. [Phys. Rev. Lett. 56, 846 (1986)], which works by directing a laser through a hole in one plate to strike a second plate. Hot electrons generated in the laser-produced plasma on the second plate collect on the first plate. A strap connects the two plates allowing a current of 10 s of kA to flow and generate a solenoidal magnetic field. The magnetic field is characterized using Faraday rotation, b-dot probes, and proton radiography. Further experiments to study the effect of the magnetic field on hohlraum performance are currently scheduled for Omega. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA-27344.

  19. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    SciTech Connect

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of an scanning transmission electron microscope. The phase distribution of the probe depends on the magnetic symmetry and crystal structure of the sample. The calculations indicate that EMCD signals utilizing the phase of the electron probe are as strong as those obtained by nanodiffraction methods.

  20. Diffusion in electronegative discharges with magnetic fields

    NASA Astrophysics Data System (ADS)

    Bell, David E.

    1993-12-01

    Electronegative plasmas are important in a variety of electric discharge applications, such as plasma reactors, negative ion sources, and even electropositive discharges when contaminated with an electronegative impurity. The need for an understanding of the processes and phenomena associated with these electronegative discharges has spurred the development of numerical simulations and models. While many of the devices incorporate various configurations of external magnetic fields, specific attention to the influence of the magnetic field on the discharge operating point, structure, and stability is lacking. To address this deficiency, a collisional model for diffusion in three-component plasmas with an applied magnetic field is developed; it is an extension of Schottky theory allowing for negative ions and a magnetic field. This study analyzes the effect of magnetic fields on diffusion in three-component plasmas; provides an analytic solution for the collisional model in a magnetic field; evaluates the validity of effective diffusion coefficients through an analysis of the afterglow; and provides a regime of validity for the model in terms of magnetic field strength by looking at the onset of anomalous diffusion.

  1. Pigtailed electro-optic probes for vectorial electric field mapping

    NASA Astrophysics Data System (ADS)

    Warzecha, Adriana; Gaborit, Gwenaël; Ruaro, Mickael; Duvillaret, Lionel; Lassere, Jean-Louis

    2010-04-01

    Electro-optic measurement (EO) constitutes an efficient technique to characterize electrical (E) fields : indeed, the Pockel's effect properties (linear modification of refractive indices of some non-centrosymetric crystals induced by the E-field)1 leads to a vectorial measurement. Thus, it allows to map the E-field vector and its transient evolution, either in free space or inside guiding structures. Pigtailed EO sensors are naturally becoming a reliable and consistent mean of characterization for many applications, e.g. high power microwaves (HPM), electromagnetic interference (EMI), on chip diagnostic, bio-electromagnetism (e.g. influence of mobile phones on the human body). Even if these non-invasive sensors provide a greater temporal and spatial resolution (femtosecond and sub-millimeter, respectively) than commonly used sensors (antennas, bolometers), it remains temperature dependant and quite low sensitive. EO probes are based on the modification of a laser beam (either its polarization, phase or amplitude) crossing an EO crystal. We demonstrate here the last developments and improvements for EO probes as well as for whole EO setups, exploiting polarization state or amplitude modulation. The sensor is constituted by a polarization maintaining (PM) fiber carrying the beam to the crystal and taking it back once modulated, gradient index lense(s) managing the shape of the beam, half or quarter wave plate controlling the input and output polarizations and a crystal (either anisotropic: LiTaO3, LiNb03, DAST, KTP or isotropic : ZnTe, InP) converting the E-field into a modulation. Our probes are fully dielectric and cylindrically shaped (length ~ 1 cm and diameter ~ 2-3 mm). The setup is made of a 1.5 ?m DFB laser, some photodiodes (low and high speed) added with a polarization state analyser arrangement in case of EO probes based on polarization state modulation scheme. The measurement bench is fully automated and compensate/measure the temperature deviation simultaneously. Sensitivity of our EO probe reaches 0.7 V.m-1Hz-1/2, the bandwidth covers an ultra wide frequency band (kHz - and more than 20 GHz), the selectivity (orthogonal E-field components rejection) is about 25 dB, and a spatial resolution greater than 100 ?m is achieved. Transient and frequency measurements and 2D E-field mapping will be presented during the conference.

  2. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-05-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple ``open`` configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic ``bottles,`` still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  3. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-01-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple open'' configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic bottles,'' still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  4. Magnetic Field Measurement with Ground State Alignment

    NASA Astrophysics Data System (ADS)

    Yan, Huirong; Lazarian, A.

    Observational studies of magnetic fields are crucial. We introduce a process "ground state alignment" as a new way to determine the magnetic field direction in diffuse medium. The alignment is due to anisotropic radiation impinging on the atom/ion. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1 G ? B ? 10^{-15} G). In fact, the effects of atomic/ionic alignment were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this chapter, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields in the Epoch of Reionization.

  5. Magnetic field spectrum at cosmological recombination revisited

    E-print Network

    Shohei Saga; Kiyotomo Ichiki; Keitaro Takahashi; Naoshi Sugiyama

    2015-06-03

    If vector type perturbations are present in the primordial plasma before recombination, the generation of magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard cosmological perturbation theory, non-linear couplings of first-order scalar perturbations create second-order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and extend it by newly taking into account the time evolution of purely second-order vector perturbations with a newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the product-terms of the first-order scalar modes is consistent with the result in our previous study. However, we find, both numerically and analytically, that the magnetic fields from the purely second-order vector perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the magnetic fields on small scales, $k \\gtrsim 10~h{\\rm Mpc}^{-1}$, is smaller than the previous estimates. The amplitude of the generated magnetic fields at cosmological recombination is about $B_{\\rm rec} =5.0\\times 10^{-24}~{\\rm Gauss}$ on $k = 5.0 \\times 10^{-1}~h{\\rm Mpc}^{-1}$. Finally, we discuss the reason of the discrepancies that exist in estimates of the amplitude of magnetic fields among other authors.

  6. The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Bonnell, J. W.; Goetz, K.; Ergun, R. E.; Mozer, F. S.; Bale, S. D.; Ludlam, M.; Turin, P.; Harvey, P. R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malsapina, D. M.; Bolton, M. K.; Hudson, M.; Strangeway, R. J.; Baker, D. N.; Li, X.; Albert, J.; Foster, J. C.; Chaston, C. C.; Mann, I.; Donovan, E.; Cully, C. M.; Cattell, C. A.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A.; Tao, J. B.

    2013-11-01

    The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ˜15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the "highest quality" events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

  7. How are static magnetic fields detected biologically?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2009-03-01

    There is overwhelming evidence that life, from bacteria to birds to bats, detects magnetic fields, using the fields for orientation or navigation. Indeed there are recent reports (based on Google Earth imagery) that cattle and deer align themselves with the earth's magnetic field. [1]. The development of frog and insect eggs are changed by high magnetic fields, probably through known physical mechanisms. However, the mechanisms for eukaryotic navigation and alignment are not clear. Persuasive published models will be discussed. Evidence, that static magnetic fields might produce therapeutic effects, will be updated [2]. [4pt] [1] S. Begall, et al., Proc Natl Acad Sci USA, 105:13451 (2008). [0pt] [2] L. Finegold and B.L. Flamm, BMJ, 332:4 (2006).

  8. Normal glow discharge in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Surzhikov, S.; Shang, J.

    2014-10-01

    Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

  9. Electric-field guiding of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.

    2015-10-01

    We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.

  10. The magnetic field of Mercury, part 1

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1974-01-01

    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

  11. Theory of cosmological seed magnetic fields

    SciTech Connect

    Saleem, H.

    2007-07-15

    A theory for the generation of seed magnetic field and plasma flow on cosmological scales driven by externally given baroclinic vectors is presented. The Beltrami-like plasma fields can grow from zero values at initial time t=0 from a nonequilibrium state. Exact analytical solutions of the set of two-fluid equations are obtained that are valid for large plasma {beta}-values as well. Weaknesses of previous models for seed magnetic field generation are also pointed out. The analytical calculations predict the galactic seed magnetic field generated by this mechanism to be of the order of 10{sup -14} G, which may be amplified later by the {alpha}{omega} dynamo (or by some other mechanism) to the present observed values of the order of {approx}(2-10) {mu}G. The theory has been applied to laser-induced plasmas as well and the estimate of the magnetic field's magnitude is in agreement with the experimentally observed values.

  12. ASYMMETRIC DIFFUSION OF MAGNETIC FIELD LINES

    SciTech Connect

    Beresnyak, Andrey

    2013-04-20

    Stochasticity of magnetic field lines is important for particle transport properties. Magnetic field lines separate faster than diffusively in turbulent plasma, which is called superdiffusion. We discovered that this superdiffusion is pronouncedly asymmetric, so that the separation of field lines along the magnetic field direction is different from the separation in the opposite direction. While the symmetry of the flow is broken by the so-called imbalance or cross-helicity, the difference between forward and backward diffusion is not directly due to imbalance, but a non-trivial consequence of both imbalance and non-reversibility of turbulence. The asymmetric diffusion perpendicular to the mean magnetic field entails a variety of new physical phenomena, such as the production of parallel particle streaming in the presence of perpendicular particle gradients. Such streaming and associated instabilities could be significant for particle transport in laboratory, space, and astrophysical plasmas.

  13. Ultracold atoms in strong synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    2015-03-01

    The Harper Hofstadter Hamiltonian describes charged particles in the lowest band of a lattice at high magnetic fields. This Hamiltonian can be realized with ultracold atoms using laser assisted tunneling which imprints the same phase into the wavefunction of neutral atoms as a magnetic field dose for electrons. I will describe our observation of a bosonic superfluid in a magnetic field with half a flux quantum per lattice unit cell, and discuss new possibilities for implementing spin-orbit coupling. Work done in collaboration with C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton, and Woo Chang Chung.

  14. Studies of the formation of field reversed plasma by a magnetized co-axial plasma gun

    SciTech Connect

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1980-05-28

    The gun injects axially into a drift tank followed by a magnetic mirror. For the experiments reported here, only the guide coils outside the vacuum vessel and solenoids on the plasma gun electrodes were used; the mirror coil was not energized. A stainless steel flux conserver is placed in the mirror throat to prevent the plasma from contacting the nonconducting vacuum wall in the region of the mirror. An axis encircling array of magnetic loop probes includes four diamagnetic loops and a loop which measures the azimuthally averaged outward pointing radial component of magnetic field. These loop probes are stainless steel jacketed and form a flux conserving boundary (at a radius = 30 cm) for plasma emitted from the gun. A five tip probe that can be positioned anywhere along the axis of the experiment is used to measure internal components of magnetic field.

  15. Relativistic stars with purely toroidal magnetic fields

    SciTech Connect

    Kiuchi, Kenta; Yoshida, Shijun

    2008-08-15

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  16. Texturing Nd-Fe-B magnets under high magnetic field

    NASA Astrophysics Data System (ADS)

    Rivoirard, S.; Barthem, V. M. T. S.; Bres, R.; Beaugnon, E.; de Miranda, P. E. V.; Givord, D.

    2008-08-01

    An original approach is explored in the preparation of anisotropic hard magnetic alloys. This constitutes a proof of principle toward the preparation of anisotropic bonded magnets. Nd-Fe-B ribbons (50% Nd2Fe14B+50% Nd-Cu alloy), constituted of Nd2Fe14B grains embedded in a Nd-Cu eutectic matrix, were annealed under an applied magnetic field up to 16 T at various temperatures above the Nd-Cu melting temperature. The grain orientation mechanism is described in terms of a competition between the aligning magnetic field torque acting on the solid magnetic grains and the friction counter torque at the interface between the grains and the liquid matrix. The large temperature effect on the orientation behavior is attributed to the associated increase in the liquid phase volume fraction.

  17. Near field optical probe for critical dimension measurements

    DOEpatents

    Stallard, B.R.; Kaushik, S.

    1999-05-18

    A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.

  18. Near field optical probe for critical dimension measurements

    DOEpatents

    Stallard, Brian R. (Albuquerque, NM); Kaushik, Sumanth (Cambridge, MA)

    1999-01-01

    A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations.

  19. Probing magnetic properties of ferrofluids using temperature dependent magnetic hyperthermia studies

    NASA Astrophysics Data System (ADS)

    Nemala, Humeshkar; Thakur, Jagdish; Naik, Vaman; Naik, Ratna

    2014-03-01

    Tuning the properties of magnetic nanoparticles is essential for biomedical and technological applications. An important phenomenon displayed by these nanoparticles is the generation of heat in the presence of an external oscillating magnetic field and is known as magnetic hyperthermia (MHT). The heat dissipation by the magnetic nanoparticles occurs via Neel relaxation (the flip of the internal magnetic moment of the nanoparticles) and Brownian relaxation (the physical rotation of the nanoparticles in the suspended media). Dextran coated iron oxide (Fe3O4) nanoparticles were synthesized using the co-precipitation method and characterized using XRD, TEM and DC magnetometry measurements. Roughly spherical in shape the particles have an average size of 13nm and a saturation magnetization of 65 emu/g. The MHT properties of these nanoparticles suspended in a weakly basic solution (ferrofluid) have been investigated as a function of the frequency and amplitude of magnetic field by incorporating a complete thermodynamical analysis of the experimental set-up. The heat generation is quantified using the specific power loss (SPL) and compared with the predictions of linear response theory. This analysis sheds light on important physical and magnetic properties of the nanoparticles.

  20. All-Electric Access to the Magnetic-Field-Invariant Magnetization of Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Kosub, Tobias; Kopte, Martin; Radu, Florin; Schmidt, Oliver G.; Makarov, Denys

    2015-08-01

    The rich physics of thin film antiferromagnets can be harnessed for prospective spintronic devices given that all-electric assessment of the tiny uncompensated magnetic moment is achieved. On the example of magnetoelectric antiferromagnetic Cr2O3 , we prove that spinning-current anomalous Hall magnetometry serves as an all-electric method to probe the field-invariant uncompensated magnetization of antiferromagnets. We obtain direct access to the surface magnetization of magnetoelectric antiferromagnets providing a read-out method for ferromagnet-free magnetoelectric memory. Owing to the great sensitivity, the technique bears a strong potential to address the physics of antiferromagnets. Exemplarily, we apply the method to access the criticality of the magnetic transition for an antiferromagnetic thin film. We reveal the presence of field-invariant uncompensated magnetization even in 6-nm-thin IrMn films and clearly distinguish two contributions, of which only the minor one is involved in interfacial magnetic coupling. This approach is likely to advance the fundamental understanding of the anomalous Hall and magnetic proximity effects.

  1. All-Electric Access to the Magnetic-Field-Invariant Magnetization of Antiferromagnets.

    PubMed

    Kosub, Tobias; Kopte, Martin; Radu, Florin; Schmidt, Oliver G; Makarov, Denys

    2015-08-28

    The rich physics of thin film antiferromagnets can be harnessed for prospective spintronic devices given that all-electric assessment of the tiny uncompensated magnetic moment is achieved. On the example of magnetoelectric antiferromagnetic Cr2O3, we prove that spinning-current anomalous Hall magnetometry serves as an all-electric method to probe the field-invariant uncompensated magnetization of antiferromagnets. We obtain direct access to the surface magnetization of magnetoelectric antiferromagnets providing a read-out method for ferromagnet-free magnetoelectric memory. Owing to the great sensitivity, the technique bears a strong potential to address the physics of antiferromagnets. Exemplarily, we apply the method to access the criticality of the magnetic transition for an antiferromagnetic thin film. We reveal the presence of field-invariant uncompensated magnetization even in 6-nm-thin IrMn films and clearly distinguish two contributions, of which only the minor one is involved in interfacial magnetic coupling. This approach is likely to advance the fundamental understanding of the anomalous Hall and magnetic proximity effects. PMID:26371676

  2. Dynamo Models for Saturn's Axisymmetric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tajdaran, K.

    2012-12-01

    Magnetic field measurements by the Cassini mission have confirmed the earlier Pioneer 11 and Voyager missions' results that Saturn's observed magnetic field is extremely axisymmetric . For example, Saturn's dipole tilt is less than 0.06 degrees (Cao et al., 2011) . The nearly-perfect axisymmetry of Saturn's dipole is troubling because of Cowling's Theorem which states that an axisymmetric magnetic field cannot be maintained by a dynamo. However, Cowling's Theorem applies to the magnetic field generated inside the dynamo source region and we can avert any contradiction with Cowling's Theorem if we can find reason for a non-axisymmetric field generated inside the dynamo region to have an axisymmetrized potential field observed at satellite altitude. Stevenson (1980) proposed a mechanism for this axisymmetrization. He suggested that differential rotation in a stably-stratified electrically conducting layer (i.e. the helium rain-out layer) surrounding the dynamo could act to shear out the non-axisymmetry and hence produce an axisymmetric observed magnetic field. In previous work, we used three-dimensional self-consistent numerical dynamo models to demonstrate that a thin helium rain-out layer can produce a more axisymmetrized field (Stanley, 2010). We also found that the direction of the zonal flows in the layer is a crucial factor for magnetic field axisymmetry. Here we investigate the influence of the thickness of the helium rain-out layer and the intensity of the thermal winds on the axisymmetrization of the field. We search for optimal regions in parameter space for producing axisymmetric magnetic fields with similar spectral properties to the observed Saturnian field.

  3. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  4. The Magnetic Field of Cloud 3 in L204

    NASA Astrophysics Data System (ADS)

    Cashman, Lauren R.; Clemens, D. P.

    2014-10-01

    The L204 dark cloud complex is a nearby filamentary structure in Ophiuchus North that has no signs of active star formation. Past studies show that L204 is interacting with the nearby runaway O star, ? Oph, and hosts a magnetic field that is coherent across parsec-length scales. Near-infrared H-band (1.6 ?m) linear polarization measurements were obtained for 3896 background stars across a 1° × 1.°5 region centered on the dense Cloud 3 in L204, using the Mimir near-infrared instrument on the 1.8 m Perkins Telescope. Analysis of these observations reveals both large-scale properties and small-scale changes in the magnetic field direction in Cloud 3. In the northern and western ? Oph facing regions of the cloud, the magnetic field appears to be pushed up against the face of the cloud. This may indicate that the UV flux from ? Oph has compressed the magnetic field on the western edge of L204. The plane-of-sky magnetic field strength is estimated to be ~11-26 ?G using the Chandrasekhar-Fermi method. The polarimetry data also reveal that the polarization efficiency (PE ? P H/A V) steadily decreases with distance from ? Oph (-0.09% ± 0.03% mag-1 pc-1). Additionally, power-law fits of PE versus A V for localized samples of probe stars show steeper negative indices with distance from ? Oph. Both findings highlight the importance of external illumination, here from ? Oph, in aligning dust grains to embedded magnetic fields.

  5. The magnetic field of cloud 3 in L204

    SciTech Connect

    Cashman, Lauren R.; Clemens, D. P. E-mail: clemens@bu.edu

    2014-10-01

    The L204 dark cloud complex is a nearby filamentary structure in Ophiuchus North that has no signs of active star formation. Past studies show that L204 is interacting with the nearby runaway O star, ? Oph, and hosts a magnetic field that is coherent across parsec-length scales. Near-infrared H-band (1.6 ?m) linear polarization measurements were obtained for 3896 background stars across a 1° × 1.°5 region centered on the dense Cloud 3 in L204, using the Mimir near-infrared instrument on the 1.8 m Perkins Telescope. Analysis of these observations reveals both large-scale properties and small-scale changes in the magnetic field direction in Cloud 3. In the northern and western ? Oph facing regions of the cloud, the magnetic field appears to be pushed up against the face of the cloud. This may indicate that the UV flux from ? Oph has compressed the magnetic field on the western edge of L204. The plane-of-sky magnetic field strength is estimated to be ?11-26 ?G using the Chandrasekhar-Fermi method. The polarimetry data also reveal that the polarization efficiency (PE ? P {sub H}/A {sub V}) steadily decreases with distance from ? Oph (–0.09% ± 0.03% mag{sup –1} pc{sup –1}). Additionally, power-law fits of PE versus A {sub V} for localized samples of probe stars show steeper negative indices with distance from ? Oph. Both findings highlight the importance of external illumination, here from ? Oph, in aligning dust grains to embedded magnetic fields.

  6. Magnetic Field Strengths in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Anish Roshi, D.; Jeyakumar, S.; Bania, T. M.; Montet, Benjamin T.; Shitanishi, J. A.

    2016-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 {{GHz}} toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B? 100{--}300 ? {{G}} in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B? 200{--}1000 ? {{G}}. H i and OH Zeeman measurements of the line of sight magnetic field strength ({B}{{los}}), taken from the literature, are between a factor of ? 0.5{--}1 of the lower bound of our carbon RRL magnetic field strength estimates. Since | {B}{{los}}| ?slant B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths.

  7. Intergalactic Magnetic Fields from Quasar Outflows

    E-print Network

    Steven Furlanetto; Abraham Loeb

    2001-02-05

    Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and calculate their distribution as a function of size and magnetic field strength at different redshifts. We generically find that by a redshift z=3, about 5-20% of the IGM volume is filled by magnetic fields with an energy density >10% of the mean thermal energy density of a photo-ionized IGM (at T=10^4 K). As massive galaxies and X-ray clusters condense out of the magnetized IGM, the adiabatic compression of the magnetic field could result in the field strength observed in these systems without a need for further dynamo amplification. The intergalactic magnetic field could also provide a nonthermal contribution to the pressure of the photo-ionized gas that may account for the claimed discrepancy between the simulated and observed Doppler width distributions of the Ly-alpha forest.

  8. The theory of the Galactic magnetic field

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1987-01-01

    The paper discusses the role of the magnetic field in determining the large scale structure and dynamics of the interstellar medium. It then discusses the origin and maintenance of the Galactic field. The two major competing theories are that the field is primordial and connected to an intergalactic field or that the field is removed from and regenerated within the Galaxy. Finally, cosmic ray acceleration and confinement in the interstellar medium are discussed.

  9. High Field Pulse Magnets with New Materials

    NASA Astrophysics Data System (ADS)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  10. Magnetic monopoles in field theory and cosmology.

    PubMed

    Rajantie, Arttu

    2012-12-28

    The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems. PMID:23166376

  11. Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide

    SciTech Connect

    Guikema, Janice Wynn; /SLAC, SSRL

    2005-12-02

    Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with the theory. Chapter 5 discusses imaging of isolated vortices as a function of T{sub c}. Vortex images were fit with theoretical magnetic field profiles in order to extract the apparent vortex size. The data for the lowest T{sub c}'s (5 and 6.5 K) show some inhomogeneity and suggest that {lambda}{sub ab} might be larger than predicted by the T{sub c} {proportional_to} n{sub s}(0)/m* relation first suggested by results of Uemura et al. (1989) for underdoped cuprates. Finally, Chapter 6 examines observations of apparent ''partial vortices'' in the crystals. My studies of these features indicate that they are likely split pancake vortex stacks. Qualitatively, these split stacks reveal information about pinning and anisotropy in the samples. Collectively these magnetic imaging studies deepen our knowledge of cuprate superconductivity, especially in the important regime of low superfluid density.

  12. Atom probe field ion microscopy and related topics: A bibliography 1991

    SciTech Connect

    Russell, K.F.; Miller, M.K.

    1993-01-01

    This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory.

  13. On the helicity of open magnetic fields

    SciTech Connect

    Prior, C.; Yeates, A. R.

    2014-06-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  14. Juno and Jupiter's Magnetic Field (Invited)

    NASA Astrophysics Data System (ADS)

    Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.

    2013-12-01

    The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.

  15. Fast Advection of Magnetic Fields by Hot Electrons

    SciTech Connect

    Willingale, L.; Thomas, A. G. R.; Krushelnick, K.; Nilson, P. M.; Kaluza, M. C.; Dangor, A. E.; Evans, R. G.; Fernandes, P.; Haines, M. G.; Kamperidis, C.; Kingham, R. J.; Ridgers, C. P.; Sherlock, M.; Wei, M. S.; Najmudin, Z.; Bandyopadhyay, S.; Notley, M.; Minardi, S.; Tatarakis, M.; Rozmus, W.

    2010-08-27

    Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 10{sup 15} W cm{sup -2} and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A. Nishiguchi et al., Phys. Rev. Lett. 53, 262 (1984)] at significantly higher velocities than the fluid velocity. Two-dimensional implicit Vlasov-Fokker-Planck modeling shows that the Nernst effect allows advection and self-generation transports magnetic fields at significantly faster than the ion fluid velocity, v{sub N}/c{sub s{approx_equal}}10.

  16. Nonlinear microrheology of wormlike micelle solutions using magnetic nanowire probes

    NASA Astrophysics Data System (ADS)

    Cappallo, Nathan; Lapointe, Clayton; Leheny, Robert L.; Reich, Daniel H.

    2006-03-01

    Using ferromagnetic Ni nanowires we investigate the local mechanical properties of wormlike micelle solutions composed of equimolar concentrations of the surfactant cetylpyridinium chloride (CPCl) and sodium salicylate (NaSal). Rotating the nanowires with external magnetic fields, we access both linear and nonlinear regimes of the fluid's rheology. The linear viscosity at low rotation rates is strongly temperature dependent as expected from mechanical rheometry experiments. At high rotation rates the viscosity exhibits pronounced shear thinning that is independent of temperature. The onset of the nonlinear response is characterized by a hysteretic shear thickening that is strongly dependent on temperature, but has no counterpart in the macroscopic rheometry. Further, the nonlinear regime coincides with a transient, anisotropic shear-induced state in the fluid that generates a torque on the wire, causing it to tip out of the plane of rotation when the field is removed.

  17. The magnetic field of zeta Orionis A

    E-print Network

    Blazère, A; Tkachenko, A; Bouret, J -C; Rivinius, Th

    2015-01-01

    Zeta Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. We aim at verifying the presence of a magnetic field in zeta Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field.Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the Least-Squares Deconvolution (LSD) technique to extract the magnetic information. We confirm that zeta Ori A is magnetic. We find that the supergiant component zeta Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a per...

  18. Magnetic Field Effects in Fermion Pairings

    E-print Network

    Vivian de la Incera

    2013-07-29

    This paper considers various fermion pairings of interest for the QCD phases. The effects of an external magnetic field on the pairing mechanisms, on the realization of new condensates, and on the properties of the magnetized phases are all explored and discussed.

  19. Plasma Potential and Langmuir Probe Measurements in the Near-Field Plume of the NASA-457Mv2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    In order to further the design of future high-power Hall thrusters and provide experimental validation for ongoing modeling efforts, plasma potential and Langmuir probe measurements were performed on the 50-kW NASA-457Mv2. An electrostatic probe array comprised of a near-field Faraday probe, single Langmuir probe, and emissive probe was used to interrogate the near-field plume from approximately 0.1 ? 2.0 mean thruster diameters downstream of the thruster exit plane at the following operating conditions: 300 V, 400 V and 500 V at 30 kW and 500 V at 50 kW. Results have shown that the acceleration zone is limited to within 0.4 mean thruster diameters of the exit plane while the high-temperature region is limited to 0.25 mean thruster diameters from the exit plane at all four operating conditions. Maximum plasma potentials in the near-field at 300 and 400 V were approximately 50 V with respect to cathode potential, while maximum electron temperatures varied from 24 ? 32 eV, depending on operating condition. Isothermal lines at all operating conditions were found to strongly resemble the magnetic field topology in the high-temperature regions. This distribution was found to create regions of high temperature and low density near the magnetic poles, indicating strong, thick sheath formation along these surfaces. The data taken from this study are considered valuable for future design as well as modeling validation.

  20. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA-457Mv2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    In order to further the design of future high-power Hall thrusters and provide experimental validation for ongoing modeling efforts, plasma potential and Langmuir probe measurements were performed on the 50-kW NASA-457Mv2. An electrostatic probe array comprised of a near-field Faraday probe, single Langmuir probe, and emissive probe was used to interrogate the near-field plume from approximately 0.1 - 2.0 mean thruster diameters downstream of the thruster exit plane at the following operating conditions: 300 V, 400 V and 500 V at 30 kW and 500 V at 50 kW. Results have shown that the acceleration zone is limited to within 0.4 mean thruster diameters of the exit plane while the high-temperature region is limited to 0.25 mean thruster diameters from the exit plane at all four operating conditions. Maximum plasma potentials in the near-field at 300 and 400 V were approximately 50 V with respect to cathode potential, while maximum electron temperatures varied from 24 - 32 eV, depending on operating condition. Isothermal lines at all operating conditions were found to strongly resemble the magnetic field topology in the high-temperature regions. This distribution was found to create regions of high temperature and low density near the magnetic poles, indicating strong, thick sheath formation along these surfaces. The data taken from this study are considered valuable for future design as well as modeling validation.

  1. Magnetic space-based field measurements

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1981-01-01

    Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.

  2. Novel handheld magnetometer probe based on magnetic tunnelling junction sensors for intraoperative sentinel lymph node identification.

    PubMed

    Cousins, A; Balalis, G L; Thompson, S K; Forero Morales, D; Mohtar, A; Wedding, A B; Thierry, B

    2015-01-01

    Using magnetic tunnelling junction sensors, a novel magnetometer probe for the identification of the sentinel lymph node using magnetic tracers was developed. Probe performance was characterised in vitro and validated in a preclinical swine model. Compared to conventional gamma probes, the magnetometer probe showed excellent spatial resolution of 4.0 mm, and the potential to detect as few as 5 ?g of magnetic tracer. Due to the high sensitivity of the magnetometer, all first-tier nodes were identified in the preclinical experiments, and there were no instances of false positive or false negative detection. Furthermore, these preliminary data encourage the application of the magnetometer probe for use in more complex lymphatic environments, such as in gastrointestinal cancers, where the sentinel node is often in close proximity to other non-sentinel nodes, and high spatial resolution detection is required. PMID:26038833

  3. Novel Handheld Magnetometer Probe Based on Magnetic Tunnelling Junction Sensors for Intraoperative Sentinel Lymph Node Identification

    PubMed Central

    Cousins, A.; Balalis, G. L.; Thompson, S. K.; Forero Morales, D.; Mohtar, A.; Wedding, A. B.; Thierry, B.

    2015-01-01

    Using magnetic tunnelling junction sensors, a novel magnetometer probe for the identification of the sentinel lymph node using magnetic tracers was developed. Probe performance was characterised in vitro and validated in a preclinical swine model. Compared to conventional gamma probes, the magnetometer probe showed excellent spatial resolution of 4.0?mm, and the potential to detect as few as 5??g of magnetic tracer. Due to the high sensitivity of the magnetometer, all first-tier nodes were identified in the preclinical experiments, and there were no instances of false positive or false negative detection. Furthermore, these preliminary data encourage the application of the magnetometer probe for use in more complex lymphatic environments, such as in gastrointestinal cancers, where the sentinel node is often in close proximity to other non-sentinel nodes, and high spatial resolution detection is required. PMID:26038833

  4. Discontinuities in the magnetic field near Enceladus

    NASA Astrophysics Data System (ADS)

    Simon, Sven; Saur, Joachim; Treeck, Shari C.; Kriegel, Hendrik; Dougherty, Michele K.

    2014-05-01

    The plasma interaction of Saturn's icy moon Enceladus generates a hemisphere coupling current system that directly connects the giant planet's northern and southern polar magnetosphere. Based on Cassini magnetometer observations from all 20 targeted Enceladus flybys between 2004 and 2014, we study the magnetic field discontinuities associated with these hemisphere coupling currents. We identify a total number of 11 events during which the magnetic field was discontinuous at the surface of the Enceladus flux tube (defined by the bundle of magnetic field lines tangential to the solid body of the moon). A minimum variance analysis is applied to calculate the surface normals of these discontinuities. In agreement with theoretical expectations, the normals are found to be perpendicular to the surface of the Enceladus flux tube. The variation of the hemisphere coupling currents with Enceladean longitude leaves a clear imprint in the strengths of the observed magnetic field jumps as well.

  5. Discontinuities in the Magnetic Field near Enceladus

    NASA Astrophysics Data System (ADS)

    Simon, S.; Saur, J.; van Treeck, S.; Kriegel, H.; Dougherty, M. K.

    2014-12-01

    The plasma interaction of Saturn's icy moon Enceladus generates a hemisphere coupling current system that directly connects the giant planet's northern and southern polar magnetosphere. Based on Cassini magnetometer observations from all 20 targeted Enceladus flybys between 2004 and 2014, we study the magnetic field discontinuities associated with these hemisphere coupling currents. We identify a total number of 11 events during which the magnetic field was discontinuous at the surface of the Enceladus fluxtube (defined by the bundle of magnetic field lines tangential to the solid body of the moon). A Minimum Variance Analysis is applied to calculate the surface normals of these discontinuities. In agreement with theoretical expectations, the normals are found to be perpendicular to the surface of the Enceladus fluxtube. The variation of the hemisphere coupling currents with Enceladean longitude leaves a clear imprint in the strengths of the observed magnetic field jumps as well.

  6. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  7. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  8. Lunar magnetic field measurements with a cubesat

    E-print Network

    Garrick-Bethell, Ian

    We have developed a mission concept that uses 3-unit cubesats to perform new measurements of lunar magnetic fields, less than 100 meters above the Moon’s surface. The mission calls for sending the cubesats on impact ...

  9. High-beta effects and anomalous diffusion in plasmas expanding into magnetic fields

    NASA Technical Reports Server (NTRS)

    Koopman, D. W.

    1976-01-01

    A metallic laser-produced plasma is allowed to expand transversely into an applied magnetic field, under conditions where the typical ion cyclotron radius is much larger, and the electron cyclotron radius much smaller, than the experimental dimensions. A stationary background plasma may also be present. Initially, the flow energy density exceeds (B squared/8 times pi), where B is the ambient magnetic field. Magnetic coil probes, Langmuir probes, and microwave diagnostics are used to study the plasma-field interaction. Field compression at the leading edge and field exclusion within the expanding plasma are seen. The diagnostic measurements and comparison with a theoretical model demonstrate plasma turbulence and anomalously high diffusion of field into the expanding plasma.

  10. Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires.

    PubMed

    Huang, Hao-Ting; Lai, Mei-Feng; Hou, Yun-Fang; Wei, Zung-Hang

    2015-05-13

    We investigated the influence of magnetic domain walls and magnetic fields on the thermal conductivity of suspended magnetic nanowires. The thermal conductivity of the nanowires was obtained using steady-state Joule heating to measure the change in resistance caused by spontaneous heating. The results showed that the thermal conductivity coefficients of straight and wavy magnetic nanowires decreased with an increase in the magnetic domain wall number, implying that the scattering between magnons and domain walls hindered the heat transport process. In addition, we proved that the magnetic field considerably reduced the thermal conductivity of a magnetic nanowire. The influence of magnetic domain walls and magnetic fields on the thermal conductivity of polycrystalline magnetic nanowires can be attributed to the scattering of long-wavelength spin waves mediated by intergrain exchange coupling. PMID:25839230

  11. Tracing Magnetic Fields by Atomic Alignment in Extended Radiation Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong; Dong, Le

    2015-05-01

    Tracing magnetic field is crucial as magnetic field plays an important role in many astrophysical processes. Earlier studies have demonstrated that ground state alignment (GSA) is an effective way to detect a weak magnetic field (1G? B? {{10}-15} G) in a diffuse medium. We explore the atomic alignment in the presence of an extended radiation field for both absorption lines and emission lines. The alignment in the circumstellar medium, binary systems, disks, and the local interstellar medium are considered in order to study the alignment in the radiation field where the pumping source has a clear geometric structure. Furthermore, the multipole expansion method is adopted to study GSA induced in the radiation field with unidentified pumping sources. We study the alignment in the dominant radiation components of the general radiation field: the dipole and quadrupole radiation field. We discuss the approximation of GSA in a general radiation field by summing the contribution from the dipole and quadrupole radiation field. We conclude that GSA is a powerful tool for detecting weak magnetic fields in the diffuse medium in general radiation fields.

  12. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  13. Miniaturized magnetic-driven scanning probe for endoscopic optical coherence tomography.

    PubMed

    Pang, Ziwei; Wu, Jigang

    2015-06-01

    We designed and implemented a magnetic-driven scanning (MDS) probe for endoscopic optical coherence tomography (OCT). The probe uses an externally-driven tiny magnet in the distal end to achieve unobstructed 360-degree circumferential scanning at the side of the probe. The design simplifies the scanning part inside the probe and thus allows for easy miniaturization and cost reduction. We made a prototype probe with an outer diameter of 1.4 mm and demonstrated its capability by acquiring OCT images of ex vivo trachea and artery samples from a pigeon. We used a spectrometer-based Fourier-domain OCT system and the system sensitivity with our prototype probe was measured to be 91 dB with an illumination power of 850 ?W and A-scan exposure time of 1 ms. The axial and lateral resolutions of the system are 6.5 ?m and 8.1 ?m, respectively. PMID:26114041

  14. Miniaturized magnetic-driven scanning probe for endoscopic optical coherence tomography

    PubMed Central

    Pang, Ziwei; Wu, Jigang

    2015-01-01

    We designed and implemented a magnetic-driven scanning (MDS) probe for endoscopic optical coherence tomography (OCT). The probe uses an externally-driven tiny magnet in the distal end to achieve unobstructed 360-degree circumferential scanning at the side of the probe. The design simplifies the scanning part inside the probe and thus allows for easy miniaturization and cost reduction. We made a prototype probe with an outer diameter of 1.4 mm and demonstrated its capability by acquiring OCT images of ex vivo trachea and artery samples from a pigeon. We used a spectrometer-based Fourier-domain OCT system and the system sensitivity with our prototype probe was measured to be 91 dB with an illumination power of 850 ?W and A-scan exposure time of 1 ms. The axial and lateral resolutions of the system are 6.5 ?m and 8.1 ?m, respectively. PMID:26114041

  15. Magnetic fields of the W4 superbubble

    NASA Astrophysics Data System (ADS)

    Gao, X. Y.; Reich, W.; Reich, P.; Han, J. L.; Kothes, R.

    2015-06-01

    Context. Superbubbles and supershells are the channels for transferring mass and energy from the Galactic disk to the halo. Magnetic fields are believed to play a vital role in their evolution. Aims: We study the radio continuum and polarized emission properties of the W4 superbubble to determine its magnetic field strength. Methods: New sensitive radio continuum observations were made at ?6 cm, ?11 cm, and ?21 cm. The total intensity measurements were used to derive the radio spectrum of the W4 superbubble. The linear polarization data were analysed to determine the magnetic field properties within the bubble shells. Results: The observations show a multi-shell structure of the W4 superbubble. A flat radio continuum spectrum that stems from optically thin thermal emission is derived from 1.4 GHz to 4.8 GHz. By fitting a passive Faraday screen model and considering the filling factor fne, we obtain the thermal electron density ne = 1,0/??ne (±5%) cm-3 and the strength of the line-of-sight component of the magnetic field B// = 5,0/??ne (±10%) ?G (i.e. pointing away from us) within the western shell of the W4 superbubble. When the known tilted geometry of the W4 superbubble is considered, the total magnetic field Btot in its western shell is greater than 12 ?G. The electron density and the magnetic field are lower and weaker in the high-latitude parts of the superbubble. The rotation measure is found to be positive in the eastern shell but negative in the western shell of the W4 superbubble, which is consistent with the case where the magnetic field in the Perseus arm is lifted up from the plane towards high latitudes. Conclusions: The magnetic field strength and the electron density we derived for the W4 superbubble are important parameters for evolution models of superbubbles breaking out of the Galactic plane.

  16. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ?}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 ?m obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ?0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (? 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  17. Nonlinear diffusion waves in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Datsko, I. M.; Rybka, D. V.; Ratakhin, N. A.; Khishchenko, K. V.

    2015-11-01

    The nonlinear diffusion of a magnetic field and the large-scale instabilities arising upon an electrical explosion of conductors in a superstrong (2-3 MG) magnetic field were investigated experimentally on the MIG high-current generator (up to 2.5 peak current, 100 ns current rise time). It was observed that in the nonlinear stage of the process, the wavelength of thermal instabilities (striations) increased with a rate of 1.5-3 km/s.

  18. Magnetic Fields and Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Zhang, Qizhou; Qiu, Keping; Girart, Josep M.; (Baobab Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Li, Zhi-Yun; Keto, Eric; Ho, Paul T. P.; Rao, Ramprasad; Lai, Shih-Ping; Ching, Tao-Chung; Frau, Pau; Chen, How-Huan; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain; Csengeri, Timea; Juárez, Carmen

    2014-09-01

    Massive stars (M > 8 M ?) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 ?m obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of lsim0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (lsim 103 AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  19. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus.

  20. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field.

    PubMed

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus. PMID:26520987

  1. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L. (Hamburg, DE)

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  2. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  3. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  4. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R. (Coram, NY)

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  5. Asymptotic freedom in strong magnetic fields.

    PubMed

    Andreichikov, M A; Orlovsky, V D; Simonov, Yu A

    2013-04-19

    Perturbative gluon exchange interaction between quark and antiquark, or in a 3q system, is enhanced in a magnetic field and may cause vanishing of the total qq[over ¯] or 3q mass, and even unlimited decrease of it-recently called the magnetic collapse of QCD. The analysis of the one-loop correction below shows a considerable softening of this phenomenon due to qq[over ¯] loop contribution, similar to the Coulomb case of QED, leading to approximately logarithmic damping of gluon exchange interaction (?O(1/ln|eB|)) at large magnetic field. PMID:23679595

  6. Magnetic Field Apparatus (MFA) Hardware Test

    NASA Technical Reports Server (NTRS)

    Anderson, Ken; Boody, April; Reed, Dave; Wang, Chung; Stuckey, Bob; Cox, Dave

    1999-01-01

    The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.

  7. Super-resolution high sensitivity AC Magnetic Field Imaging with NV Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Bauch, Erik; Jaskula, Jean-Christophe; Trifonov, Alexei; Walsworth, Ronald

    2015-05-01

    The Nitrogen-Vacancy center in diamond (NV center), a defect consisting of a nitrogen atom next to a missing atom, has been successfully applied to sense magnetic field, electric field, temperature and can also be used as fluorescence marker and single photon emitter. We will present super-resolution imaging of NV centers and simultaneous sensing of AC magnetic fields with high sensitivity. To demonstrate the applicability of super-resolution magnetic field imaging, we resolve several NV centers with an optical resolution smaller than 20 nm and probe locally the gradient of a externally applied magnetic field. Additionally, we demonstrate the detection of magnetic field signals from 1H protons with subdiffraction image resolution. We will also show that our super-resolution magnetometer will benefit from a new readout method based on a spin-to-charge mapping that we have developed to increase the readout contrast.

  8. Fast Reconnection of Weak Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1998-01-01

    Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.

  9. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect

    Canabal, A.; Tajima, T.; Dolgashev, V.A.; Tantawi, S.G.; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  10. Magnetic field dependence of plasma relaxation times

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Joyce, G.; Turner, L.

    1974-01-01

    A previously derived Fokker-Planck collision integral for an electron plasma in a dc magnetic field is examined in the limit in which the Debye length is greater than the thermal gyroradius, which is in turn greater than the mean distance of closest approach. It is demonstrated that the collision integral can be satisfactorily approximated by the classical Landau value (which ignores the presence of a dc magnetic field) if the following replacement is made: In the Coulomb logarithm, the Debye length is replaced by the gyroradius. This induces a fundamental logarithmic dependence on magnetic field in the relaxation times. Numerical comparison of the asymptotic approximations with the previously derived exact results is made, and good agreement is found. The simplification this introduces into the description of collision processes in magnetized plasma is considerable.

  11. Mechanical propulsion from unsymmetrical magnetic induction fields

    SciTech Connect

    Schlicher, R.L.; Biggs, A.W.; Tedeschi, W.J.

    1995-06-01

    A method is reported for generating mechanical spacecraft propulsion from unsymmetrical magnetic induction fields. It is based on an unsymmetrical three-dimensional loop antenna structure driven by a repetitively-pulsed high-current power supply. Antenna geometry is optimized for generating propulsive thrust rather than radiating electromagnetic energy. Part of this antenna consists of flat electrical conductors, which form a partially-closed quasi-cylindrical volume around a center conductor. Magnetic flux concentrates at the closed end of the quasicylindrical volume thereby creating a magnetic field flux density gradient along a single axis collinear to the Center Conductor. This magnetic field density gradient imbalances the magneto-mechanical forces that result from the interactions of the internal magnetic induction field with the current in the conductors of the antenna structure, in accordance with Lorentz`s Force Law. Also, there are electrically isolated prismatic conductor surfaces attached to the inside surface of the flat conductors which form the closed end of the quasi-cylindrical volume. Mechanical pressures occur on these conductor prisms because of the changing internal magnetic field and are a consequence of Faraday`s Induction Law and Lenz`s Law. Input current rise time and wave shape are crucial to maximizing spacecraft propulsive thrust.

  12. Magnetic fields of Jupiter and Saturn

    SciTech Connect

    Ness, N.F.

    1981-01-01

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

  13. Magnetic nanoparticles for applications in oscillating magnetic field

    SciTech Connect

    Peeraphatdit, Chorthip

    2010-12-15

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific loss power of PNIPAM-coated Fe{sub 3}O{sub 4} was peculiarly high, and the heat loss mechanism of this material remains to be elucidated. Since thermocatalysis is a long-term goal of this project, we also investigated the effects of the oscillating magnetic field system for the synthesis of 7-hydroxycoumarin-3-carboxylic acid. Application of an oscillating magnetic field in the presence of magnetic particles with high thermal response was found to effectively increase the reaction rate of the uncatalyzed synthesis of the coumarin derivative compared to the room temperature control.

  14. Molecular processes and turbulent magnetic fields in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Shapiro, A. I.

    2008-08-01

    Coherent scattering in the solar atmosphere leads to the formation of the linearly polarized solar spectrum, just like Rayleigh scattering leads to the polarization of the blue sky. One of the most prominent features of the linearly polarized solar spectrum is the CN violet system as it is also in the unpolarized spectrum. This thesis is devoted to the modeling and interpretation of this system in both spectra and developing it into a very sensitive tool for studying the magnetic fields and the temperature structure of the solar atmosphere. The understanding of the solar magnetic field structure is very important as it is connected with and even controls most of the solar activity phenomena. Zeeman effect diagnostics allows to measure strong directed magnetic fields which only cover about 1% of the solar atmosphere. The remaining part is occupied by weak entangled magnetic fields with mixed polarity, which might significantly contribute to the overall solar magnetic energy. These fields are invisible to the Zeeman effect due to signal cancellation. Therefore the discovery of the linearly polarized solar spectrum opened a new epoch in solar physics. The polarization due to the scattering processes is modified by weak entangled magnetic fields via the Hanle effect and thus, provides us with a unique possibility to access and study such "hidden" magnetic fields. Molecular lines are very useful for probing magnetic fields as, due to their strong temperature sensitivity, different molecules sample different, narrow layers of the solar atmosphere. Therefore the extension of the atomic Hanle effect to molecular lines can provide the 3D structure of the solar turbulent magnetic field. Moreover, due to the broad range of magnetic sensitivities within narrow spectral regions molecular lines can be used for employing the differential Hanle effect technique, which allows dramatically reduced model dependence of the obtained magnetic field. This thesis consists of two main parts which reflect the two consecutive steps in the modeling of the polarized solar spectrum. First, the physical properties of the molecular scattering process have to be understood. For the CN violet system, it implies taking into account the Paschen-Back effect on the fine structure (which results in a change of intensities and line positions) and interference effects between the fine structure components itself. Both effects influence the Hanle effect and lead to the consequences which are analyzed in detail in the first part of this thesis. Then, to connect the coherent scattering and physical properties of the solar plasma with the emerged solar radiation, which is measured by our detectors, radiative transfer theory has to be applied. The presence of the scattering processes implies the non-equilibrium nature of the problem. Its self-consistent solution is especially complicated for molecular bands as they usually consist of a huge number of transitions which couple the numerous vibrational-rotational molecular levels. This, for example, makes the two-level approximation, often used in atomic calculations unsuitable. Moreover, there is a strong lack of information about the molecular collision rates so they basically enter the calculations as additional free parameter. In the second part of the thesis we present two radiative transfer models with different degrees of complexity and applicability. These models allow us to successfully fit the observations of the CN violet system in both polarized and unpolarized spectra and provide us with a magnetic field estimation. We discuss in detail the model-dependence of our results and general problems of the 1D solar spectrum modeling. The enormous potential of the linearly polarized solar spectrum makes it one of the main tools for studying solar magnetic fields, which becomes very urgent nowadays, as they can affect the Earth's climate and, hence, our life.

  15. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA-300M Hall Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Shastry, Rohit; Huang, Wensheng; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    In order to aid in the design of high-power Hall thrusters and provide experimental validation for existing modeling efforts, plasma potential and Langmuir probe measurements were performed in the near-field plume of the NASA-300M Hall thruster. A probe array consisting of a Faraday probe, Langmuir probe, and emissive probe was used to interrogate the plume from approximately 0.1 - 2.0 mean thruster diameters downstream of the thruster exit plane at four operating conditions: 300 V, 400 V, and 500 V at 20 kW as well as 300 V at 10 kW. Results show that the acceleration zone and high-temperature region were contained within 0.3 mean thruster diameters from the exit plane at all operating conditions. Isothermal lines were shown to strongly follow magnetic field lines in the near-field, with maximum temperatures ranging from 19 - 27 eV. The electron temperature spatial distribution created large drops in measured floating potentials in front of the magnetic pole surfaces where the plasma density was low, which suggests strong sheaths at these surfaces. The data taken have provided valuable information for future design and modeling validation, and complements ongoing internal measurement efforts on the NASA-300M.

  16. Determining the exchange parameters of spin-1 metal-organic molecular magnets in pulsed magnetic fields

    SciTech Connect

    Mcdonald, Ross D; Singleton, John; Lancaster, Tom; Goddard, Paul; Manson, Jamie

    2011-01-14

    We nave measured the high-field magnetization of a number of Ni-based metal-organic molecular magnets. These materials are self-assembly coordination polymers formed from transition metal ions and organic ligands. The chemistry of the compounds is versatile allowing many structures with different magnetic properties to be formed. These studies follow on from previous measurements of the Cu-based analogues in which we showed it was possible to extract the exchange parameters of low-dimensional magnets using pulsed magnetic fields. In our recent experiments we have investigated the compound (Ni(HF{sub 2})(pyz){sub 2})PF{sub 6}, where pyz = pyrazine, and the Ni-ions are linked in a quasi-two-dimensional (Q2D) square lattice via the pyrazine molecules, with the layers held together by HF{sub 2} ligands. We also investigated Ni(NCS){sub 2}(pyzdo){sub 2}, where pyzdo = pyrazine dioxide. The samples are grown at Eastern Washington University using techniques described elsewhere. Measurements are performed at the pulsed magnetic field laboratory in Los Alamos. The magnetization of powdered samples is determined using a compensated coil magnetometer in a 65 T short pulse magnet. Temperatures as low as 500 mK are achievable using a {sup 3}He cryostat. The main figure shows the magnetization of the spin-1 [Ni(HF{sub 2})(pyz){sub 2}]PF{sub 6} compound at 1.43 K. The magnetization rises slowly at first, achieving a rounded saturation whose midpoint is around 19 T. A small anomaly is also seen in the susceptibility at low fields ({approx}3 T), which might be attributed to a spin-flop transition. In contrast, the spin-1/2 [Cu(HF{sub 2})(pyz){sub 2}]PF{sub 6} measured previously has a saturation magnetization of 35.5 T and a strongly concave form of M(B) below this field. This latter compound was shown to be a good example of a Q2D Heisenberg antiferromagnet with the strong exchange coupling (J{sub 2D} = 12.4 K, J{sub {perpendicular}}/J{sub 2D} {approx} 10{sup -2}) directed along the Cu-pyz-Cu directions. The structure of the two compounds is similar, but in the case of the Cu-compound the Cu-Cu pathways are linear, whereas in the Ni-compound they are kinked. The pulsed-field data combined with information from temperature-dependent susceptibility, muon-spin rotation, electron-spin resonance and ligand-field calculations suggest that, far from being magnetically Q2D, the Ni-compound is fairly one-dimensional with the dominant exchange (J{sub 1D} = 3.1 K and J{sub {perpendicular}}/J{sub 1D} = 0.63) directed along the Ni-FHF-Ni direction. Ni(NCS){sub 2}(pyzdo){sub 2} was also investigated. Previous ultra-high field measurements using the 100 T magnet have shown that this compound has a saturation field close to 80 T. The purpose of the present studies is to map out the phase diagram of this material at mid-range fields. The data are shown in the inset to the figure. This continuing project probes the ability of organic ligands to mediate magnetic exchange, the link between structure, dimensionality and bulk magnetic properties, as well as the role of spin number in quantum magnets. Ultimately the investigations aim to determine to what extent it is possible to produce self-assembly molecular materials with tailor-made magnetic characteristics.

  17. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    SciTech Connect

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  18. Poloidal magnetic fields in superconducting neutron stars

    NASA Astrophysics Data System (ADS)

    Henriksson, K. T.; Wasserman, I.

    2013-06-01

    We develop the formalism for computing the magnetic field within an axisymmetric neutron star with a strong type II superconductor core surrounded by a normal conductor. The formalism takes full account of the constraints imposed by hydrostatic equilibrium with a barotropic equation of state. A characteristic of this problem is that the currents and fields need to be determined simultaneously and self-consistently. Within the core, the strong type II limit B ? H allows us to compute the shapes of individual field lines. We specialize to purely poloidal magnetic fields that are perpendicular to the equator, and develop the `most dipolar case' in which field lines are vertical at the outer radius of the core, which leads to a magnetic field at the stellar surface that is as close to a dipole as possible. We demonstrate that although field lines from the core may only penetrate a short distance into the normal shell, boundary conditions at the inner radius of the normal shell control the field strength on the surface. Remarkably, we find that for a Newtonian N = 1 polytrope, the surface dipole field strength is Bsurf ? Hb?b/3, where Hb is the magnetic field strength at the outer boundary of the type II core and ?bR is the thickness of the normal shell. For reasonable models, Hb ? 1014 G and ?b ? 0.1 so the surface field strength is Bsurf ? 3 × 1012 G, comparable to the field strengths of many radio pulsars. In general, Hb and ?b are both determined by the equation of state of nuclear matter and by the mass of the neutron star, but Bsurf ˜ 1012 G is probably a robust result for the `most dipolar' case. We speculate on how the wide range of neutron star surface fields might arise in situations with less restrictions on the internal field configuration. We show that quadrupolar distortions are ˜-10-9(Hb/1014 G)2 and arise primarily in the normal shell for B ? Hb.

  19. Lightning Magnetic Field Measurements around Langmuir Laboratory

    NASA Astrophysics Data System (ADS)

    Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.

    2010-12-01

    In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.

  20. Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.

    2006-01-24

    The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.

  1. Magnetic Resonance Relaxometry at Low and Ultra low Fields.

    PubMed

    Volegov, P; Flynn, M; Kraus, R; Magnelind, P; Matlashov, A; Nath, P; Owens, T; Sandin, H; Savukov, I; Schultz, L; Urbaitis, A; Zotev, V; Espy, M

    2010-01-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are ubiquitous tools in science and medicine. NMR provides powerful probes of local and macromolecular chemical structure and dynamics. Recently it has become possible and practical to perform MR at very low fields (from 1 ?T to 1 mT), the so-called ultra-low field (ULF) regime. Pulsed pre-polarizing fields greatly enhance the signal strength and allow flexibility in signal acquisition sequences. Improvements in SQUID sensor technology allow ultra-sensitive detection in a pulsed field environment.In this regime the proton Larmor frequencies (1 Hz - 100 kHz) of ULF MR overlap (on a time scale of 10 ?s to 100 ms) with "slow" molecular dynamic processes such as diffusion, intra-molecular motion, chemical reactions, and biological processes such as protein folding, catalysis and ligand binding. The frequency dependence of relaxation at ultra-low fields may provide a probe for biomolecular dynamics on the millisecond timescale (protein folding and aggregation, conformational motions of enzymes, binding and structural fluctuations of coupled domains in allosteric mechanisms) relevant to host-pathogen interactions, biofuels, and biomediation. Also this resonance-enhanced coupling at ULF can greatly enhance contrast in medical applications of ULF-MRI resulting in better diagnostic techniques.We have developed a number of instruments and techniques to study relaxation vs. frequency at the ULF regime. Details of the techniques and results are presented.Ultra-low field methods are already being applied at LANL in brain imaging, and detection of liquid explosives at airports. However, the potential power of ultra-low field MR remains to be fully exploited. PMID:21796269

  2. Magnetic Resonance Relaxometry at Low and Ultra low Fields

    PubMed Central

    Volegov, P.; Flynn, M.; Kraus, R.; Magnelind, P.; Matlashov, A.; Nath, P.; Owens, T.; Sandin, H.; Savukov, I.; Schultz, L.; Urbaitis, A.; Zotev, V.; Espy, M.

    2011-01-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are ubiquitous tools in science and medicine. NMR provides powerful probes of local and macromolecular chemical structure and dynamics. Recently it has become possible and practical to perform MR at very low fields (from 1 ?T to 1 mT), the so-called ultra-low field (ULF) regime. Pulsed pre-polarizing fields greatly enhance the signal strength and allow flexibility in signal acquisition sequences. Improvements in SQUID sensor technology allow ultra-sensitive detection in a pulsed field environment. In this regime the proton Larmor frequencies (1 Hz – 100 kHz) of ULF MR overlap (on a time scale of 10 ?s to 100 ms) with “slow” molecular dynamic processes such as diffusion, intra-molecular motion, chemical reactions, and biological processes such as protein folding, catalysis and ligand binding. The frequency dependence of relaxation at ultra-low fields may provide a probe for biomolecular dynamics on the millisecond timescale (protein folding and aggregation, conformational motions of enzymes, binding and structural fluctuations of coupled domains in allosteric mechanisms) relevant to host-pathogen interactions, biofuels, and biomediation. Also this resonance-enhanced coupling at ULF can greatly enhance contrast in medical applications of ULF-MRI resulting in better diagnostic techniques. We have developed a number of instruments and techniques to study relaxation vs. frequency at the ULF regime. Details of the techniques and results are presented. Ultra-low field methods are already being applied at LANL in brain imaging, and detection of liquid explosives at airports. However, the potential power of ultra-low field MR remains to be fully exploited. PMID:21796269

  3. Infrared Spectroscopy of Graphene in Ultrahigh Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Booshehri, Layla Goli

    Graphene - a two-dimensional honeycomb lattice of sp2-bonded carbon atoms - possesses unusual zero-gap band structure with linear band dispersions, accommodating photon-like, massless electrons that have exhibited a variety of surprising phenomena, primarily in DC transport, in the last several years. In this thesis dissertation, we investigate graphene’s AC or infrared properties in the presence of an ultrahigh magnetic field, produced by a destructive pulsed method. The linear dispersions of graphene lead to unequally spaced Landau levels in a magnetic field, which we probe through cyclotron resonance (CR) spectroscopy in the magnetic quantum limit. Specifically, using magnetic fields up to 170T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 µm, we experimentally investigated CR in large-area graphene grown by chemical vapor deposition. Circular-polarization-dependent studies revealed strong p-type doping for as-grown graphene, and the dependence of the CR fields on the radiation wavelength allowed for an accurate determination of the Fermi energy. Upon annealing the sample to remove physisorbed molecules, which shifts the Fermi energy closer to the Dirac point, we made the unusual observation that hole and electron CR emerges in the magnetic quantum limit, even though the sample is still p-type. We theoretically show that this non-intuitive phenomenon is a direct consequence of the unusual Landau level structure of graphene. Namely, if the Fermi energy lies in the n = 0 Landau level, then CR is present for both electron-active and hole-active circular polarizations. Furthermore, if the Fermi level lies in the n = 0 Landau level, the ratio of CR absorption between the electron-active and hole-active peaks allows one to accurately determine the Fermi level and carrier density. Hence, high-field CR studies allow not only for fundamental studies but also for characterization of large-area, low-mobility graphene samples.

  4. Magnetic field imaging with NV ensembles

    E-print Network

    L. M. Pham; D. Le Sage; P. L. Stanwix; T. K. Yeung; D. Glenn; A. Trifonov; P. Cappellaro; P. R. Hemmer; M. D. Lukin; H. Park; A. Yacoby; R. L. Walsworth

    2012-07-13

    We demonstrate a method of imaging spatially varying magnetic fields using a thin layer of nitrogen-vacancy (NV) centers at the surface of a diamond chip. Fluorescence emitted by the two-dimensional NV ensemble is detected by a CCD array, from which a vector magnetic field pattern is reconstructed. As a demonstration, AC current is passed through wires placed on the diamond chip surface, and the resulting AC magnetic field patterns are imaged using an echo-based technique with sub-micron resolution over a 140 \\mu m x 140 \\mu m field of view, giving single-pixel sensitivity ~100 nT/\\sqrt{Hz}. We discuss ongoing efforts to further improve sensitivity and potential bioimaging applications such as real-time imaging of activity in functional, cultured networks of neurons.

  5. Measurements of Photospheric and Chromospheric Magnetic Fields

    E-print Network

    Lagg, Andreas; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-01-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Conseque...

  6. ECE 390 Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields.

    E-print Network

    ECE 390 ­ Electric & Magnetic Fields Catalog Description: Static and quasi-static electric), A. Jander (secondary) Course Content: · Introduction, review of vector analysis · Static electric fields in free space: Coulomb's law, Gauss's law, and electric potential, electric dipole · Static

  7. The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission

    E-print Network

    Wygant, J. R.

    The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency ...

  8. Magnetic field structure in Monoceros R2

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Novak, G.; Xie, T.; Goldsmith, P. F.

    1994-01-01

    We have carried out polarimetric observations to investigate the geometry of the magnetic field in the giant molecular cloud Monoceros R2. This study is based upon deep R-band charge coupled device (CCD) polarimetry, covering a total area of 0.5 deg(exp 2) of the giant molecular cloud. The data were calibrated using a new technique that relies on obtaining broad-band photometry of stars simultaneously with polarimetric photometry of the Mon R2 fields, thus providing an accurate means of measuring the electric vectors of starlight which is polarized by the fore-ground dust grains aligned by the magnetic field in the Mon R2 GMC. In this work, (1) we were able to continuously trace magnetic field lines from the largest scales in Mon R2 to the detailed structure of the field in the dense core, as determined from infrared polarimetry; and (2) we have found that the ambient field is apparently modified by a large-scale structure in the Mon R2 cloud. The mean angle of polarization for the complete sample we measured is 158 deg, which is roughly coincident with the local Galactic magnetic field (155 deg). The dispersion in the angle of polarization is 33 deg, similar to that found in the Orion GMC. The dispersion in angle of polarization for stars located along the western side of the three CCD fields is 22 deg. The CCD fields are bisected by a dense ridge of gas defining the boundary of an expanding gas shell that recent observational results at millimeter wavelengths now reveal dominates the Mon R2 GMC. Our results suggest th at the expanding shell has distorted the magnetic field lines extending from the core to the northern gas structure comprising Mon R2.

  9. Primordial magnetic fields from self-ordering scalar fields

    NASA Astrophysics Data System (ADS)

    Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sekiguchi, Toyokazu; Sugiyama, Naoshi

    2015-04-01

    A symmetry-breaking phase transition in the early universe could have led to the formation of cosmic defects. Because these defects dynamically excite not only scalar and tensor type cosmological perturbations but also vector type ones, they may serve as a source of primordial magnetic fields. In this study, we calculate the time evolution and the spectrum of magnetic fields that are generated by a type of cosmic defects, called global textures, using the non-linear sigma (NLSM) model. Based on the standard cosmological perturbation theory, we show, both analytically and numerically, that a vector-mode relative velocity between photon and baryon fluids is induced by textures, which inevitably leads to the generation of magnetic fields over a wide range of scales. We find that the amplitude of the magnetic fields is given by B~10?9((1+z)/103)?2.5(v/mpl)2(k/Mpc?1)3.5/?N Gauss in the radiation dominated era for klesssim 1 Mpc?1, with v being the vacuum expectation value of the O(N) symmetric scalar fields. By extrapolating our numerical result toward smaller scales, we expect that B~ 10?14.5((1+z)/103)1/2(v/mpl)2(k/Mpc?1)1/2/?N Gauss on scales of kgtrsim 1 Mpc?1 at redshift 0zgtrsim 110. This might be a seed of the magnetic fields observed on large scales today.

  10. Can a solid FeS layer help explain Mercury's unique magnetic field?

    NASA Astrophysics Data System (ADS)

    Vilim, R.; Stanley, S.

    2014-12-01

    The origin of Mercury's weak magnetic field and displaced magnetic equator remains poorly understood. While the field is likely generated by a planetary dynamo in the iron core of Mercury, producing a weak dipolar magnetic field with a displaced magnetic equator has proven to be a challenge for dynamo modelers. Recent gravity measurements from the MESSENGER probe allow for a solid, dense layer at the base of Mercury's mantle. The authors of this study have suggested that this could be a solid layer of FeS. This solid FeS could reduce the observed field strength due to the electromagnetic skin effect. It may also affect the character of the dynamo by coupling to the fluid flow via the Lorenz force. We use a numerical dynamo model with an electrically conducting, solid mantle layer to determine whether this solid layer can help produce the strength and morphology of Mercury's magnetic field.

  11. Scaling the energy conversion rate from magnetic field reconnection to different bodies

    SciTech Connect

    Mozer, F. S.; Hull, A.

    2010-10-15

    Magnetic field reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar coronae, and other astrophysical objects. Because of the huge dynamic range of magnetic fields in these bodies, it is important to understand energy conversion as a function of magnetic field strength and related parameters. It is conjectured theoretically and shown experimentally that the energy conversion rate per unit area in reconnection scales as the cube of an appropriately weighted magnetic field strength divided by the square root of an appropriately weighted density. With this functional dependence, the energy release in flares on the Sun, the large and rapid variation of the magnetic flux in the tail of Mercury, and the apparent absence of reconnection on Jupiter and Saturn, may be understood. Electric fields at the perihelion of the Solar Probe Plus mission may be tens of V/m.

  12. Polarization of Water Masers in the presence of Velocity and Magnetic Field Gradients

    E-print Network

    W. H. T. Vlemmings

    2005-09-15

    Through polarization observations water masers are excellent probes of magnetic fields in the maser region. Magnetic field strengths, such as those in the water masers regions of the envelopes of late-type stars and star-forming regions, are typically determined using a direct relation between the field strength and the observed circular polarization. Here it is shown that velocity and magnetic field gradients along the maser have a significant effect on the field strengths obtained from circular polarization observations. Due to velocity gradients the actual magnetic field strength could be up to 100% higher than the field strength derived from the observations. Additionally, when a magnetic field gradient is present, the resulting circular polarization derived is caused predominantly by the average magnetic field in the unsaturated maser core. Measurements of the fractional linear polarization are not affected by velocity or magnetic field strength gradients, though changes in the magnetic field angle along the maser do quench the linear polarization intensity when the maser saturates.

  13. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2010-01-01

    The Spiral Magnetic Motor, which can accelerate a magnetized rotor through 90% of its cycle with only permanent magnets, was an energy milestone for the 20th century patents by Kure Tekkosho in the 1970's. However, the Japanese company used old ferrite magnets which are relatively weak and an electrically-powered coil to jump start every cycle, which defeated the primary benefit of the permanent magnet motor design. The principle of applying an inhomogeneous, anisotropic magnetic field gradient force Fz = ? cos ? dB/dz, with permanent magnets is well-known in physics, e.g., Stern-Gerlach experiment, which exploits the interaction of a magnetic moment with the aligned electron spins of magnetic domains. In this case, it is applied to dB/d? in polar coordinates, where the force F? depends equally on the magnetic moment, the cosine of the angle between the magnetic moment and the field gradient. The radial magnetic field increases in strength (in the attractive mode) or decreases in strength (in the repulsive mode) as the rotor turns through one complete cycle. An electromagnetic pulsed switching has been historically used to help the rotor traverse the gap (detent) between the end of the magnetic stator arc and the beginning (Kure Tekko, 1980). However, alternative magnetic pulse and switching designs have been developed, as well as strategic eddy current creation. This work focuses on the switching mechanism, novel magnetic pulse methods and advantageous angular momentum improvements. For example, a collaborative effort has begun with Toshiyuki Ueno (University of Tokyo) who has invented an extremely low power, combination magnetostrictive-piezoelectric (MS-PZT) device for generating low frequency magnetic fields and consumes "zero power" for static magnetic field production (Ueno, 2004 and 2007a). Utilizing a pickup coil such as an ultra-miniature millihenry inductor with a piezoelectric actuator or simply Wiegand wire geometry, it is shown that the necessary power for magnetic field switching device can be achieved in order to deflect the rotor magnet in transit. The Wiegand effect itself (bistable FeCoV wire called "Vicalloy") invented by John Wiegand (Switchable Magnetic Device, US Patent ?4,247,601), utilizing Barkhausen jumps of magnetic domains, is also applied for a similar achievement (Dilatush, 1977). Conventional approaches for spiral magnetic gradient force production have not been adequate for magnetostatic motors to perform useful work. It is proposed that integrating a magnetic force control device with a spiral stator inhomogeneous axial magnetic field motor is a viable approach to add a sufficient nonlinear boundary shift to apply the angular momentum and potential energy gained in 315 degrees of the motor cycle.

  14. Electric/magnetic field sensor

    DOEpatents

    Schill, Jr., Robert A. (Henderson, NV); Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  15. Magnetism in Complex Oxides Probed by Magnetocaloric Effect and Transverse Susceptibility

    NASA Astrophysics Data System (ADS)

    Bingham, Nicholas S.

    Magnetic oxides exhibit rich complexity in their fundamental physical properties determined by the intricate interplay between structural, electronic and magnetic degrees of freedom. The common themes that are often present in these systems are the phase coexistence, strong magnetostructural coupling, and possible spin frustration induced by lattice geometry. While a complete understanding of the ground state magnetic properties and cooperative phenomena in this class of compounds is key to manipulating their functionality for applications, it remains among the most challenging problems facing condensed-matter physics today. To address these outstanding issues, it is essential to employ experimental methods that allow for detailed investigations of the temperature and magnetic field response of the different phases. In this PhD dissertation, I will demonstrate the relatively unconventional experimental methods of magnetocaloric effect (MCE) and radio-frequency transverse susceptibility (TS) as powerful probes of multiple magnetic transitions, glassy phenomena, and ground state magnetic properties in a large class of complex magnetic oxides, including La0.7Ca0.3- xSrxMnO3 (x = 0, 0.05, 0.1, 0.2 and 0.25), Pr0.5Sr0.5MnO3, Pr1-xSrxCoO 3 (x = 0.3, 0.35, 0.4 and 0.5), La5/8- xPrxCa3/8MnO3 (x = 0.275 and 0.375), and Ca3Co2O 6. First, the influences of strain and grain boundaries, via chemical substitution and reduced dimensionality, were studied via MCE in La0.7Ca 0.3-xSrxMnO 3. Polycrystalline, single crystalline, and thin-film La0.7Ca 0.3-xSrxMnO 3 samples show a paramagnetic to ferromagnetic transition at a wide variety of temperatures as well as an observed change in the fundamental nature of the transition (i.e. first-order magnetic transition to second order magnetic transition) that is dependent on the chemical concentration and dimensionality. Systematic TS and MCE experiments on Pr0.5Sr0.5MnO 3 and Pr0.5Sr0.5CoO3 have uncovered the different nature of low-temperature magnetic phases and demonstrate the importance of coupled structural/magnetocrystalline anisotropy in these half-doped perovskite systems. These findings point to the existence of a distinct class of phenomena in transition-metal oxide materials due to the unique interplay between structure and magnetic anisotropy, and provide evidence for the interplay of spin and orbital order as the origin of intrinsic phase separation in manganites. While Pr0.5Sr0.5MnO3 provides important insights into the influence of first- and second-order transitions on the MCE and refrigerant capacity (RC) in a single material, giving a good guidance on the development of magnetocaloric materials for active magnetic refrigeration, Pr1-xSrxCoO 3 provides an excellent system for determining the structural entropy change and its contribution to the MCE in magnetocaloric materials. We have demonstrated that the structural entropy contributes significantly to the total entropy change and the structurally coupled magnetocrystalline anisotropy plays a crucial role in tailoring the magnetocaloric properties for active magnetic refrigeration technology. In the case of La5/8-xPr xCa3/8MnO3, whose bulk form is comprised of micron-sized regions of ferromagnetic (FM), paramagnetic (PM), and charge-ordered (CO) phases, TS and MCE experiments have evidenced the dominance of low-temperature FM and high-temperature CO phases. The "dynamic" strain liquid state is strongly dependent on magnetic field, while the "frozen" strain-glass state is almost magnetic field independent. The sharp changes in the magnetization, electrical resistivity, and magnetic entropy just below the Curie temperature occur via the growth of FM domains already present in the material, even in zero magnetic field. The subtle balance of coexisting phases and kinetic arrest are also probed by MCE and TS experiments, leading to a new and more comprehensive magnetic phase diagram. A geometrically frustrated spin chain compound Ca3Co 2O6 provides an interesting case study for understanding the cooperative pheno

  16. Dissipation function in a magnetic field (Review)

    NASA Astrophysics Data System (ADS)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  17. Reducing blood viscosity with magnetic fields

    NASA Astrophysics Data System (ADS)

    Tao, R.; Huang, K.

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ˜1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells’ normal function. This technology has much potential for physical therapy.

  18. Holographic Gauge Theory with Maxwell Magnetic Field

    E-print Network

    Wung-Hong Huang

    2010-03-13

    We first apply the transformation of mixing azimuthal with wrapped coordinate to the 11D M-theory with a stack N M5-branes to find the spacetime of a stack of N D4-branes with magnetic field in 10D IIA string theory, after the Kaluza-Klein reduction. In the near-horizon limit the background becomes the Melvin magnetic field deformed $AdS_6 \\times S^4$. Although the solution represents the D-branes under the Melvin RR one-form we use a simple observation to see that it also describes the solution of D-branes under the Maxwell magnetic field. As the magnetic field we consider is the part of the background itself we have presented an alternative to previous literature, because our method does not require the assumption of negligible back reaction. Next, we use the found solution to investigate the meson property through D4/D8 system (Sakai-Sugimoto model) and compare it with those studied by other authors. Finally, we present a detailed analysis about the Wilson loop therein and results show that the external Maxwell magnetic field will enhance the quark-antiquark potential.

  19. Cosmic Magnetic Fields: Observations and Prospects

    E-print Network

    Beck, Rainer

    2011-01-01

    Synchrotron emission, its polarization and its Faraday rotation at radio frequencies of 0.2-10 GHz are powerful tools to study the strength and structure of cosmic magnetic fields. The observational results are reviewed for spiral, barred and flocculent galaxies, the Milky Way, halos and relics of galaxy clusters, and for the intergalactic medium. Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of cosmic magnetic fields and will help to understand their origin. At low frequencies, LOFAR (10-250 MHz) will allow us to map the structure of weak magnetic fields in the outer regions and halos of galaxies and galaxy clusters. Polarization at higher frequencies (1-10 GHz), as observed with the EVLA, ASKAP, MeerKAT, APERTIF and the SKA, will trace magnetic fields in the disks and central regions of nearby galaxies in unprecedented detail. Surveys of Faraday rotation measures of pulsars will map the Milky Way's magnetic field with high precision. All-sky sur...

  20. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  1. Refocusing properties of periodic magnetic fields

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1976-01-01

    The use of depressed collectors for the efficient collection of spent beams from linear-beam microwave tubes depends on a refocusing procedure in which the space charge forces and transverse velocity components are reduced. The refocusing properties are evaluated of permanent magnet configurations whose axial fields are approximated by constant plateaus or linearly varying fields. The results provide design criteria and show that the refocusing properties can be determined from the plateau fields alone.

  2. Exploring Magnetic Fields with a Compass

    NASA Astrophysics Data System (ADS)

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this paper, we present a series of simple activities adapted from the Matter & Interactions textbook for doing just this. Interestingly, these simple measurements are comparable to predictions made by the Bohr model of the atom. Although antiquated, Bohr's atom can lead the way to a deeper analysis of the atomic properties of magnets. Although originally developed for an introductory calculus-based course, these activities can easily be adapted for use in an algebra-based class or even at the high school level.

  3. Mechanism of magnetic field effect in cryptochrome

    E-print Network

    Solov'yov, Ilia A

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a concrete light-driven reaction cycle in cryptochrome that lets a magnetic field influence the signaling state of the photoreceptor. The reaction cycle ties together transient absorption and electron-spin-resonance observations with known facts on avian magnetoreception. Our analysis establishes the feasibility of cryptochrome to act as a g...

  4. Electric Field Double Probe Measurements for Ionospheric Space Plasma Experiments

    NASA Technical Reports Server (NTRS)

    Pfaff, R.

    1999-01-01

    Double probes represent a well-proven technique for gathering high quality DC and AC electric field measurements in a variety of space plasma regimes including the magnetosphere, ionosphere, and mesosphere. Such experiments have been successfully flown on a variety of spacecraft including sounding rockets and satellites. Typical instrument designs involve a series of trades, depending on the science objectives, type of platform (e.g., spinning or 3-axis stabilized), expected plasma regime where the measurements will be made, available telemetry, budget, etc. In general, ionospheric DC electric field instruments that achieve accuracies of 0.1 mV/m or better, place spherical sensors at large distances (10m or more) from the spacecraft body in order to extend well beyond the spacecraft wake and sheath and to achieve large signal-to-noise ratios for DC and long wavelength measurements. Additional sets of sensors inboard of the primary, outermost sensors provide useful additional information, both for diagnostics of the plasma contact potentials, which particularly enhance the DC electric field measurements on non-spinning spacecraft, and for wavelength and phase velocity measurements that use the spaced receiver or "interferometer" technique. Accurate attitude knowledge enables B times V contributions to be subtracted from the measured potentials, and permits the measured components to be rotated into meaningful geophysical reference frames. We review the measurement technique for both DC and wave electric field measurements in the ionosphere discussing recent advances involving high resolution burst memories, multiple baseline double probes, new sensor surface materials, biasing techniques, and other considerations.

  5. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John (Oak Ridge, TN) [Oak Ridge, TN; Kisner, Roger (Knoxville, TN) [Knoxville, TN; Ludtka, Gerard (Oak Ridge, TN) [Oak Ridge, TN; Ludtka, Gail (Oak Ridge, TN) [Oak Ridge, TN; Jaramillo, Roger (Knoxville, TN) [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  6. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  7. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Yuen, Clement

    2011-07-01

    The current gold standard method of Malaria diagnosis relies on the blood smears examination. The method is laborintensive, time consuming and requires the expertise for data interpretation. In contrast, Raman scattering from a metabolic byproduct of the malaria parasite (Hemozoin) shows the possibility of rapid and objective diagnosis of malaria. However, hemozoin concentration is usually extremely low especially at the early stage of malaria infection, rendering weak Raman signal. In this work, we propose the sensitive detection of enriched ?-hematin, whose spectroscopic properties are equivalent to hemozoin, based on surface enhanced Raman spectroscopy (SERS) by using magnetic nanoparticles. A few orders of magnitude enhancement in the Raman signal of ?-hematin can be achieved using magnetic nanoparticles. Furthermore, the effect of magnetic field on SERS enhancement is investigated. Our result demonstrates the potential of SERS using magnetic nanoparticles in the effective detection of hemozoin for malaria diagnosis.

  8. Magnetic Field Effects on Plasma Plumes

    NASA Technical Reports Server (NTRS)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  9. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  10. Whistler Modes with Wave Magnetic Fields Exceeding the Ambient Field

    SciTech Connect

    Stenzel, R.L.; Urrutia, J.M.; Strohmaier, K.D.

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  11. Whistler modes with wave magnetic fields exceeding the ambient field.

    PubMed

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background. PMID:16606272

  12. Mechanical Response of Elastomers to Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Munoz, B. C.; Jolly, M. R.

    1996-01-01

    Elastomeric materials represent an important class of engineering materials, which are widely used to make components of structures, machinery, and devices for vibration and noise control. Elastomeric material possessing conductive or magnetic properties have been widely used in applications such as conductive and magnetic tapes, sensors, flexible permanent magnets, etc. Our interest in these materials has focussed on understanding and controlling the magnitude and directionality of their response to applied magnetic fields. The effect of magnetic fields on the mechanical properties of these materials has not been the subject of many published studies. Our interest and expertise in controllable fluids have given us the foundation to make a transition to controllable elastomers. Controllable elastomers are materials that exhibit a change in mechanical properties upon application of an external stimuli, in this case a magnetic field. Controllable elastomers promise to have more functionality than conventional elastomers and therefore could share the broad industrial application base with conventional elastomers. As such, these materials represent an attractive class of smart materials, and may well be a link that brings the applications of modern control technologies, intelligent structures and smart materials to a very broad industrial area. This presentation will cover our research work in the area of controllable elastomers at the Thomas Lord Research Center. More specifically, the presentation will discuss the control of mechanical properties and mathematical modeling of the new materials prepared in our laboratories along with experiments to achieve adaptive vibration control using the new materials.

  13. Topology of magnetic fields from MDI data: Background field

    NASA Astrophysics Data System (ADS)

    Knyazeva, I. S.; Makarenko, N. G.; Karimova, L. M.

    2010-08-01

    A quantitative description of the geometry and topology of the magnetic field of the Sun is given in terms of Minkowski functionals: the Euler characteristic and the perimeter of excursion sets for specified levels. Methods of mathematical morphology are applied to background fragments of magnetograms for the entire solar disk. The results obtained show that the topological characteristics of the background field are stable in time and correspond to log-normal, intermittent random fields.

  14. Modeling Solar Magnetic Fields Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Lee, G.; Malanushenko, A. V.; DeRosa, M. L.

    2014-12-01

    Previous research reconstructed a three-dimensional model of the magnetic field of an active region on the Sun from using solar coronal loops as guides for modeling(Malanushenko et al., ApJ,2009, 707:1044). In this study, we test the consistency of such reconstructions with data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) by applying the aformentioned method to additional active regions with varying amounts of solar activity. To create an initial model of a magnetic field surrounding an active region, we first manually trace the coronal loops on the coronal images in the following wavelengths: 171Å, 193Å, 211Å, 94Å, 131Å, and 335Å. The manually traced loops are then used as a guide for a computer reconstruction of the individual three-dimensional field lines with differing heights and degrees of local twist. The reconstructed field lines are then adjusted by a partially automated algorithm, so that the constructed field line would correspond to a coronal loop on the Sun. These fitted loops serve as a skeleton to create a model of the magnetic field of the active region. We expect that our modeling can be used in future works to predict future solar events. Implications of this ability include being able to prepare a response for a solar event before it happens.

  15. Human melatonin during continuous magnetic field exposure

    SciTech Connect

    Graham, C.; Cook, M.R.; Riffle, D.W.

    1997-05-01

    This report describes the third in a series of double-blind, laboratory-based studies that were aimed at determining the effects of nocturnal exposure to power frequency magnetic fields on blood levels of melatonin in human volunteers. The two earlier studies evaluated effects on melatonin of intermittent exposure to 60 Hz circularly polarized magnetic fields at 10 and 200 mG. No overall effects on melatonin levels were found. In the present study, men were exposed continuously rather than intermittently through the night to the same 200 mG magnetic field condition that was used previously; again, no overall effects on melatonin levels were found. The authors conclude that the intermittent and continuous exposure conditions used in the laboratory to date are not effective in altering nocturnal blood levels of melatonin in human volunteers.

  16. Neutrino dispersion in external magnetic fields

    SciTech Connect

    Kuznetsov, A. V.; Mikheev, N. V.; Vassilevskaya, L. A.; Raffelt, G. G.

    2006-01-15

    We calculate the neutrino self-energy operator {sigma}(p) in the presence of a magnetic field B. In particular, we consider the weak-field limit eB<field' m{sub l}{sup 2}<field, we show that it is crucial to include the contributions from all Landau levels of the intermediate charged lepton, not just the ground state. For the conditions of the early universe where the background medium consists of a charge-symmetric plasma, the pure B-field contribution to the neutrino dispersion relation is proportional to (eB){sup 2} and thus comparable to the contribution of the magnetized plasma.

  17. Vertical gradients of sunspot magnetic fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  18. The symmetry properties of planetary magnetic fields

    NASA Technical Reports Server (NTRS)

    Raedler, Karl-Heinz; Ness, Norman F.

    1990-01-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For earth, Jupiter, and Saturn, the centered dipole, quadrupole, and octupole contributions are included, while at Uranus only the dipole and quadrupole contributions are considered. It is found that there are a number of common features of the magnetic fields of earth and Jupiter. Compared to earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets.

  19. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    NASA Astrophysics Data System (ADS)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  20. A magnetically field-controllable phononic crystal

    NASA Astrophysics Data System (ADS)

    Bayat, Alireza; Gordaninejad, Faramarz

    2014-04-01

    Phononic crystals are periodic structures consist of different materials in an elastic medium designed to interact with elastic waves. These crystals have practical applications, such as, frequency filters, beam splitters, sound or vibration protectors, acoustic lasers, acoustic mirrors and elastic waveguides. In this study, the wave propagation in a tunable phononic crystal is investigated. The magnetically controllable phononic crystal consists of a soft magnetorheological elastic medium undergoing large deformations upon the application of a magnetic field. Finite deformations and induced magnetic fields influence wave propagation characteristics in the periodic structure. The soft matrix is modeled as a hyperelastic elastomer to take into account the material nonlinearity. The integrated effects of material properties, transformation of the geometry of the unit cell, and the induced magnetic field, are used to tune the band structure of the periodic structure. Both analytical and finite element methods are employed to evaluate the dispersion diagrams considering Bloch boundary conditions. Results show that the applied magnetic field significantly affect the width and the position of band-gaps.