Science.gov

Sample records for magnetic field rings

  1. Magnetic fields in ring galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  2. IMPACT OF MAGNETIC FIELD INTERFERENCE IN THE SNS RING.

    SciTech Connect

    PAPAPHILIPPOU,Y.; LEE,Y.Y.; MENG,W.

    2001-06-18

    The modest size of the SNS accumulator ring and the use of short, large aperture magnets makes unavoidable the overlapping between the magnetic end fields of the quadrupoles with the adjacent multipole correctors. This interference effect can be quantified through magnetic field simulations and measurements. The impact to the beam dynamics is finally discussed.

  3. Ring Current Modeling in a Realistic Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Moore, T. E.

    1997-01-01

    A 3-dimensional kinetic model has been developed to study the dynamics of the storm time ring current in a dipole magnetic field. In this paper, the ring current model is extended to include a realistic, time-varying magnetic field model. The magnetic field is expressed as the cross product of the gradients of two Euler potentials and the bounce-averaged particle drifts are calculated in the Euler potential coordinates. A dipolarization event is modeled by collapsing a tail-like magnetosphere to a dipole-like configuration. Our model is able to simulate the sudden enhancements in the ring current ion fluxes and the corresponding ionospheric precipitation during the substorm expansion.

  4. Low-field giant magnetoresistance in layered magnetic rings

    NASA Astrophysics Data System (ADS)

    Castaño, F. J.; Morecroft, D.; Ross, C. A.

    2006-12-01

    The low-field magnetization reversal of NiFe/Cu/Co multilayer mesoscopic elliptical and circular rings has been investigated via magnetoresistance measurements and micromagnetic modeling. Minor loop measurements, in which the NiFe layer is cycled for a fixed Co layer configuration, show qualitatively different behavior depending on whether the Co layer is present in a vortex or an onion state. Micromagnetic simulations are in excellent agreement with the experimental data and confirm the dominant role played by magnetostatic interactions between the Co and NiFe layers, as a result of stray fields from the domain walls present in the layers. Multiple stable remanent resistance levels can be obtained by cycling the rings at modest fields.

  5. Externally controlled local magnetic field in a conducting mesoscopic ring coupled to a quantum wire

    SciTech Connect

    Maiti, Santanu K.

    2015-01-14

    In the present work, the possibility of regulating local magnetic field in a quantum ring is investigated theoretically. The ring is coupled to a quantum wire and subjected to an in-plane electric field. Under a finite bias voltage across the wire a net circulating current is established in the ring which produces a strong magnetic field at its centre. This magnetic field can be tuned externally in a wide range by regulating the in-plane electric field, and thus, our present system can be utilized to control magnetic field at a specific region. The feasibility of this quantum system in designing spin-based quantum devices is also analyzed.

  6. Ring current-atmosphere interactions model with stormtime magnetic field

    NASA Astrophysics Data System (ADS)

    Vapirev, Alexander Emilov

    An improved version of the ring current-atmosphere interactions kinetic model (RAM) is presented in this thesis. The recent stormtime empirical model T04s and the IGRF model are used to represent the Earth's external and internal magnetic fields respectively. Particle drifts, losses due to charge exchange with geocoronal hydrogen and atmospheric losses are included in the model as they are considered the main mechanisms of ring current development and its following decay. A numerical technique for bounce-averaging along the field lines is introduced and results for the calculated bounce-averaged hydrogen densities and magnetic gradient-curvature drift velocities (general case) for the moderate storm of April 21-25, 2001, are presented. A comparison in the calculations between T04s and a dipole field shows that the bounce-averaged hydrogen density for T04s differs with ˜ 5% from that for a dipole field for quiet time and it may become 30% smaller for disturbed conditions on the nightside for L > 4. The gradient-curvature velocities for T04s at large L-shells are ˜ 20% higher on the nightside and 20% lower on the dayside than those for a dipole field for quiet time. For disturbed conditions they are respectively ˜ 200% higher and 20% lower than the dipole values. The contribution of the cross-B term to the magnetic drift is ˜ 5%. Results for the time evolution of the trapped equatorial flux for H+, He+, and O+ ions for various particle energies and pitch angles obtained by the new model with a non-dipole field (RAM-ND) are presented. The new computations for the April 2001 storm using a Volland-Stern convection model show a slight continued increase in the flux and the total ring current energy for the three ion species even after the storm main phase. A higher increase in the flux is observed towards the dusk side for the RAM-ND model compared to RAM due the difference in the charge exchange rates and the azimuthal drifts for the two different geomagnetic field

  7. Planetary rings as relics of plasma proto-rings rotating in the magnetic field of a central body

    NASA Astrophysics Data System (ADS)

    Rabinovich, B.

    2007-08-01

    A possibility is discussed in accordance to hypothesis by H. Alfven, that the rings of large planets are relics of some plasma proto-rings rotating in the magnetic fields of central bodies. A finite-dimensional mathematical model of the system is synthesized using the solution of the boundary-value problem by the Boubnov - Galerkin method. The dipole magnetic field of the central body is assumed to have a small eccentricity, and the dipole axis - to be inclined at a small angle to the central body's axis of rotation which coincides with the ring's rotation axis. The proto-ring is supposed to be thin and narrow and having the same rotating axis as the central body. A medium forming the ring is cold rarefied plasma with high electron density, so that electric conductivity of the medium tends to infinity, as well as the magnetic Reynolds number. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. Emphasis is placed on the problems of stability of the ring's steady state rotation and quantization of the eigenvalues of nondimensional sector velocity of the ring with respect to the central body. The solutions corresponding to magneto-gravitational and to magneto-gyroscopic waves are considered It is demonstrated that some rings characterized by integral quantum numbers are stable and long-living, while the rings which are associated with half-integer quantum numbers (rings>) are unstable and short-living. As a result, an evolutionally rife rotating plasma ring turns out to be stratified into a large number of narrow elite rings separated by gaps whose position correspond to anti-rings. The regions of possible existence of elite rings in near-central body space are determined. The main result of eigenvalue spectrum's analysis is as follows. Quantum numbers determining elite eigenvalues of the sector velocity of a ring (normalized in a certain manner) coincide with the quantum

  8. Characteristics of Hot Electron Ring in a Simple Magnetic Mirror Field

    NASA Astrophysics Data System (ADS)

    Hosokawa, Minoru; Ikegami, Hideo

    1991-01-01

    Characteristics of a hot electron ring are studied in a simple magnetic mirror machine. Hot electron rings (n≈ 1010 cm-3, T≈ 100 keV) are most effectively generated under two conditions, when the magnetic field on the axis of the midplane is set near the fundamental, or the second harmonic electron cyclotron resonance to the applied microwave frequency (6.4 GHz). The density profile of the hot electrons is observed to take a so-called ring shape. The radial-cut view of the ring, however, indicates an M-shape density profile, and the density of hot electrons on the axis at the center and is about one-half of the peak ring density encircling the axis. The hot electron ring is susceptible to a few instabilities which can be artificially triggered. With the instability generated, the hot electron ring is observed to transform into a filled cylinder in a few microseconds and then disappears.

  9. Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase

    NASA Technical Reports Server (NTRS)

    Le, G.; Russell, C. T.; Slavin, J. A.; Lucek, E. A.

    2008-01-01

    We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L greater than 5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L less than 5). The precipitation loss

  10. On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics

    NASA Technical Reports Server (NTRS)

    Zheng, Y.; Zaharia, S. G.; Fok, M. H.

    2010-01-01

    Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents.

  11. Transient Response of Single-Domain Y-Ba-Cu-O Rings to Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Askew, T. R.; Weber, J. M.; Cha, Y. S.; Claus, H.; Veal, B. W.

    2002-08-01

    Shielding current limits and magnetic diffusion characteristics have been measured at 77 K for a set of YBCO single-domain rings. These were fabricated from melt-textured cylindrical YBCO monoliths that were densified to nearly 100%, and then oriented from a single seed. The rings were surrounded by a drive coil that can, under pulse conditions, achieve applied magnetic fields in excess of 1 T and induce currents in excess of 50 kA. Simultaneous magnetic characterization with a Rogowski coil and Hall probe was used to determine the induced current in the sample and the magnetic field in the center of the sample. Magnetic fields trapped in the samples were mapped with a scanning Hall probe. When compared with similar measurements on multidomain c-axisoriented YBCO rings, the flux penetration is faster and more uniform around the circumference of the ring. The observed critical current density, 15,000 A/cm2 at 77 K, is suitable for application in penetration-type fault current limiters. Separate measurements of the trapped magnetic field and critical current density in the rings are compared with results obtained by analysis of magnetic diffusion characteristics.

  12. Orbital and spin motion in a storage ring with static electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Mane, S. R.

    2012-09-01

    I present the fundamental electrodynamic equations of motion for the orbital and spin motion in a storage ring with static electric and magnetic fields, including motion in pure electrostatic fields. In particular, I treat strong focusing lattices and synchrotron oscillations. This generalizes and extends the work of previous authors. I also treat the spin motion, including a possible permanent electric dipole moment (EDM).

  13. Formation of field-reversed ion rings in a magnetized background plasma

    SciTech Connect

    Omelchenko, Y.A.; Sudan, R.N.

    1995-07-01

    In typical field-reversed ion ring experiments, an intense annular ion beam is injected across a magnetic cusp into neutral gas immersed in a solenoidal magnetic field. In anticipation of a new experimental thrust to create strong field-reversed ion rings the beam evolution is investigated in a preformed background plasma on a time scale greater than an ion cyclotron period, using a new two and a half-dimensional (21/2-D) hybrid, particle-in-cell (PIC) code FIRE, in which the beam and background ions are treated as macro-particles and the electrons as a massless fluid. It is shown that under appropriate conditions axial beam bunching occurs in the downstream applied field and a compact field-reversed ring is formed. It is observed that the ring is reflected in a ramped magnetic field. Upon reflection its axial velocity is very much less than that expected from a single particle model due to the transfer of the mean axial momentum to the background ions. This increases the time available to apply a pulsed mirror for trapping the ring experimentally. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. Exact unitary transformation for Rashba Rings in magnetic and electric fields

    NASA Astrophysics Data System (ADS)

    Kregar, A.; Ramšak, A.

    2016-03-01

    An exact solution for single electron states on mesoscopic rings with the Rashba coupling and in the presence of external magnetic and electric fields is derived by means of a unitary transformation. The transformation maps the model to a bare ring, which gives the possibility of a very simple formulation of single or many electron problems. As an example some exact results for spin and energy levels are presented.

  15. The magnetic field in the dust ring at the center of the Galaxy

    SciTech Connect

    Hildebrand, R.H.; Gonatas, D.P.; Platt, S.R.; Wu, X.D.; Davidson, J.A.; Werner, M.W. NASA, Ames Research Center, Moffett Field, CA )

    1990-10-01

    Measurements of the polarization of the far-infrared thermal emission from six points in the dust ring at Sgr A are presented. The position angles are approximately perpendicular to the long axis of the ring as projected on the sky. The inferred magnetic field is therefore approximately in the plane of the ring. The pattern traced by the polarization vectors resembles that expected for a magnetic accretion disk. The measurements indicate a field in which the outward radial component is much greater than the axial component at the surface of the disk. The field thus appears to satisfy the condition proposed by Blandford and Payne (1982) for removing energy and angular momentum through centrifugal acceleration of surface material moving along the field lines. 31 refs.

  16. The magnetic field in the dust ring at the center of the Galaxy

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.; Gonatas, D. P.; Platt, S. R.; Wu, X. D.; Davidson, J. A.; Werner, M. W.

    1990-01-01

    Measurements of the polarization of the far-infrared thermal emission from six points in the dust ring at Sgr A are presented. The position angles are approximately perpendicular to the long axis of the ring as projected on the sky. The inferred magnetic field is therefore approximately in the plane of the ring. The pattern traced by the polarization vectors resembles that expected for a magnetic accretion disk. The measurements indicate a field in which the outward radial component is much greater than the axial component at the surface of the disk. The field thus appears to satisfy the condition proposed by Blandford and Payne (1982) for removing energy and angular momentum through centrifugal acceleration of surface material moving along the field lines.

  17. Measurements of the normal state persistent current in Au rings at high and low magnetic fields

    NASA Astrophysics Data System (ADS)

    Petkovic, Ivana; Ngo, Dustin; Lollo, Anthony; Harris, Jack

    2014-03-01

    Flux biased normal metal rings smaller than the phase coherence length can sustain persistent current (PC). We employ cantilever torque magnetometry to detect PC with high sensitivity, efficient background rejection, and in an electromagnetically clean environment. Previously, our group focused on the high magnetic field regime, where the PC is well described by single-particle theory. However at low magnetic field (few flux quanta) interaction effects are expected to be dominant. Previous low field studies by other groups employing SQUID and resonator-based techniques have found that Au, Ag, Cu, and GaAs rings show a large diamagnetic average PC, indicative of attractive e-e interactions. One possible explanation is that the superconductivity that would normally arise from this interaction is suppressed by a small number of magnetic impurities (~ 1 ppm), while the interaction-enhanced persistent current is not. In this talk we will describe measurements of Au rings. We have fabricated arrays of 100,000 rings with 125 nm radius on ultrasensitive silicon cantilevers. At high magnetic fields, we find that the PC agrees with single-particle theory. We also describe the results at low field, expected to give further insight into the many body ground state of this system. We gratefully acknowledge support from NSF Grant #1205861.

  18. The field line topology of a uniform magnetic field superposed on the field of a distributed ring current

    SciTech Connect

    Chance, M.S. . Plasma Physics Lab.); Greene, J.M.; Jensen, T.H. )

    1991-07-01

    A magnetic field line topology with nulls, generated by superimposing a uniform magnetic field onto the field from a distributed ring current, is analyzed. This simple model is amenable to substantial analytical progress and also facilitates the visualization of the three dimensional field geometry. Four nulls are seen to exist and representative field lines and tubes of flux found by numerical integration are presented. An infinite number of topologically distinct flux bundles is found. A convenient mapping is defined which proves very useful in distinguishing between and following the paths of the different tubes of flux as they traverse through the null system. The complexities already present in this simple but nontrivial configuration serve to emphasize the difficulties in analyzing more complicated geometries, but the intuition gained from this study proves beneficial in those cases. One such example is the application to a model of plasmoid formations in the earth's magnetotail. 7 refs., 19 figs.

  19. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  20. Magnetospheric environments of outer planet rings - Influence of Saturn's axially symmetric magnetic field

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1987-01-01

    Saturn's main rings exist within a zone of negligible magnetospheric losses and surface alteration effects, substantially due to the solid-body absorption of inwardly diffusing magnetospheric particles. This process is presently shown to be especially efficient in the inner magnetosphere of Saturn, due to the near-axial symmetry of the planetary magnetic field relative to the equatorial rotation plane; under the assumption of comparable diffusion rates, the inward magnetospheric particle transport is far more inhibited in the inner Saturnian magnetosphere than in the same regions of Jupiter and Uranus, even when only rings of comparable widths and depths are considered. In light of this, ring particle surface exposure to the ion fluxes of the radiation belt remains a prepossessing rationale for low Uranian ring albedos.

  1. Magnetospheric environments of outer planet rings - influence of Saturn's axially symmetric magnetic field

    SciTech Connect

    Hood, L.L.

    1987-07-01

    Saturn's main rings exist within a zone of negligible magnetospheric losses and surface alteration effects, substantially due to the solid-body absorption of inwardly diffusing magnetospheric particles. This process is presently shown to be especially efficient in the inner magnetosphere of Saturn, due to the near-axial symmetry of the planetary magnetic field relative to the equatorial rotation plane; under the assumption of comparable diffusion rates, the inward magnetospheric particle transport is far more inhibited in the inner Saturnian magnetosphere than in the same regions of Jupiter and Uranus, even when only rings of comparable widths and depths are considered. In light of this, ring particle surface exposure to the ion fluxes of the radiation belt remains a prepossessing rationale for low Uranian ring albedos. 86 references.

  2. Ring Current Decay During Northward Turnings of The Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Monreal MacMahon, R.; Llop, C.; Miranda, R.

    The ring current formation and energization is thought to be the main consequence of geomagnetic storms and its strength is characterized by the Dst index which evolu- tion satisfies a simple and well-known differential equation introduced by Burton et al. (1975). Since then, several attempts and approaches have been done to study the evolution of the ring current whether introducing discrete values or continuous func- tions for the decay time involved. In this work, we study the character of the recovery phase of magnetic storms in response to well defined northward turnings of the inter- planetary magnetic field using our functional form of the decay time of ring current particles introduced previously.

  3. Guiding-Center Simulations of Stormtime Ring Current Electrons in a More Realistic Magnetic Field Model

    NASA Astrophysics Data System (ADS)

    Liu, S.; Chen, M.; Schulz, M.; Lyons, L.

    2003-12-01

    We examine the consequences of using a more realistic magnetic field for simulating stormtime electron ring current formation. In the past, we have simulated the guiding-center drift of electrons from the plasma sheet to the inner magnetosphere and their loss as they drift in a Dungey magnetic field model consisting of a dipole plus uniform southward field. We improve upon this in the present study by including realistic day-night asymmetry and time variations in the magnetic field by varying the magnitude of the added unidirectional southward field with time (UT) and magnetospheric longitude (MLT) so as to match the modeled polar cap boundary to the auroral poleward boundary provided by the empirically-based OVATION model [Newell et al.}, JGR, 2002]. Our model electric field consists of corotation, quiescent Stern-Volland convection, and storm-associated enhancements in the convection electric field that are less well shielded than the Stern-Volland field. Our enhancements in the cross-polar-cap potential are based on DMSP measurements. We trace the guiding-center drifts of representative equatorially-mirroring electrons with first adiabatic invariants μ = 1 -- 200 MeV/G for the 27 August 1990 storm. Using these simulation results, we map stormtime phase space distributions by invoking Liouville's Theorem modified by losses. Our boundary spectrum at geosynchronous orbit and our initial quiescent distribution are taken from CRRES observations. With both the static Dungey and the more realistic magnetic field model, there are significant stormtime enhancements of ring-current electron fluxes at equatorial radial distance r0 = 2.6 to 6.6 RE for energies from tens of keV up to 180 keV. However, the electron drift speed is slower on the dayside than on the nightside in the more realistic asymmetric magnetic field model because the magnetic field intensity is stronger on the dayside than the nightside at a given r0. This makes the stormtime electron ring current more

  4. Field reversed ion rings

    SciTech Connect

    Sudan, R.N.; Omelchenko, Y.A.

    1995-09-01

    In typical field-reversed ion ring experiments, an intense annular ion beam is injected across a plasma-filled magnetic cusp region into a neutral gas immersed in a ramped solenoidal magnetic field. Assuming the characteristic ionization time is much shorter than the long ({ital t}{approx_gt}2{pi}/{Omega}{sub {ital i}}) beam evolution time scale, we investigate the formation of an ion ring in the background plasma followed by field reversal, using a 21/2-D hybrid, PIC code FIRE, in which the beam and background ions are treated as particles and the electrons as a massless fluid. We show that beam bunching and trapping occurs downstream in a ramped magnetic field for an appropriate set of experimental parameters. We find that a compact ion ring is formed and a large field reversal {zeta}={delta}{ital B}/{ital B}{approx_gt}1 on axis develops. We also observe significant deceleration of the ring on reflection due to the transfer of its axial momentum to the background ions, which creates favorable trapping conditions. {copyright} {ital 1995 American Institute of Physics.}

  5. Contactless Magnetic Slip Ring

    NASA Technical Reports Server (NTRS)

    Kumagai, Hiroyuki (Inventor); Deardon, Joe D. (Inventor)

    1997-01-01

    A contactless magnetic slip ring is disclosed having a primary coil and a secondary coil. The primary and secondary coils are preferably magnetically coupled together, in a highly reliable efficient manner, by a magnetic layered core. One of the secondary and primary coils is rotatable and the contactless magnetic slip ring provides a substantially constant output.

  6. Magnetic field control of the intraband optical absorption in two-dimensional quantum rings

    SciTech Connect

    Olendski, O.; Barakat, T.

    2014-02-28

    Linear and nonlinear optical absorption coefficients of the two-dimensional semiconductor ring in the perpendicular magnetic field B are calculated within independent electron approximation. Characteristic feature of the energy spectrum are crossings of the levels with adjacent nonpositive magnetic quantum numbers as the intensity B changes. It is shown that the absorption coefficient of the associated optical transition is drastically decreased at the fields corresponding to the crossing. Proposed model of the Volcano disc allows to get simple mathematical analytical results, which provide clear physical interpretation. An interplay between positive linear and intensity-dependent negative cubic absorption coefficients is discussed; in particular, critical light intensity at which additional resonances appear in the total absorption dependence on the light frequency is calculated as a function of the magnetic field and levels' broadening.

  7. Field evolution of the magnetic normal modes in elongated permalloy nanometric rings.

    PubMed

    Gubbiotti, G; Madami, M; Tacchi, S; Carlotti, G; Pasquale, M; Singh, N; Goolaup, S; Adeyeye, A O

    2007-10-10

    The eigenmode spectrum of elongated permalloy rings with relatively wide arms is investigated by combined Brillouin light scattering and ferromagnetic resonance measurements as a function of the applied field intensity, encompassing both vortex and onion ground states. To reproduce the frequencies and the spatial profiles of the measured modes we performed micromagnetic simulations which solve the discretized Landau-Lifshitz-Gilbert equation in the time domain and calculate locally the Fourier transform. This allowed us to correlate the field dependence of different modes to their localization inside different portions of the rings. With the rings in the vortex ground state, in addition to radial, fundamental, and azimuthal modes, a localized mode, existing in the element portions where the internal field assumes its minima, has been measured and identified. This latter mode, whose frequency decreases for increasing field intensity, becomes soft near the transition from vortex to onion state and determines the change in symmetry of the magnetic ground state. After the transition, it is replaced by two edge modes, localized on the internal and external boundary of the rings, respectively. PMID:22049127

  8. Field evolution of the magnetic normal modes in elongated permalloy nanometric rings

    NASA Astrophysics Data System (ADS)

    Gubbiotti, G.; Madami, M.; Tacchi, S.; Carlotti, G.; Pasquale, M.; Singh, N.; Goolaup, S.; Adeyeye, A. O.

    2007-10-01

    The eigenmode spectrum of elongated permalloy rings with relatively wide arms is investigated by combined Brillouin light scattering and ferromagnetic resonance measurements as a function of the applied field intensity, encompassing both vortex and onion ground states. To reproduce the frequencies and the spatial profiles of the measured modes we performed micromagnetic simulations which solve the discretized Landau-Lifshitz-Gilbert equation in the time domain and calculate locally the Fourier transform. This allowed us to correlate the field dependence of different modes to their localization inside different portions of the rings. With the rings in the vortex ground state, in addition to radial, fundamental, and azimuthal modes, a localized mode, existing in the element portions where the internal field assumes its minima, has been measured and identified. This latter mode, whose frequency decreases for increasing field intensity, becomes soft near the transition from vortex to onion state and determines the change in symmetry of the magnetic ground state. After the transition, it is replaced by two edge modes, localized on the internal and external boundary of the rings, respectively.

  9. Inner Magnetosphere Modeling at the CCMC: Ring Current, Radiation Belt and Magnetic Field Mapping

    NASA Astrophysics Data System (ADS)

    Rastaetter, L.; Mendoza, A. M.; Chulaki, A.; Kuznetsova, M. M.; Zheng, Y.

    2013-12-01

    Modeling of the inner magnetosphere has entered center stage with the launch of the Van Allen Probes (RBSP) in 2012. The Community Coordinated Modeling Center (CCMC) has drastically improved its offerings of inner magnetosphere models that cover energetic particles in the Earth's ring current and radiation belts. Models added to the CCMC include the stand-alone Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model by M.C. Fok, the Rice Convection Model (RCM) by R. Wolf and S. Sazykin and numerous versions of the Tsyganenko magnetic field model (T89, T96, T01quiet, TS05). These models join the LANL* model by Y. Yu hat was offered for instant run earlier in the year. In addition to these stand-alone models, the Comprehensive Ring Current Model (CRCM) by M.C. Fok and N. Buzulukova joined as a component of the Space Weather Modeling Framework (SWMF) in the magnetosphere model run-on-request category. We present modeling results of the ring current and radiation belt models and demonstrate tracking of satellites such as RBSP. Calculations using the magnetic field models include mappings to the magnetic equator or to minimum-B positions and the determination of foot points in the ionosphere.

  10. Manipulating Majorana zero modes on atomic rings with an external magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Jian; Neupert, Titus; Bernevig, B. Andrei; Yazdani, Ali

    2016-01-01

    Non-Abelian quasiparticles have been predicted to exist in a variety of condensed matter systems. Their defining property is that an adiabatic braid between two of them results in a non-trivial change of the quantum state of the system. The simplest non-Abelian quasiparticles--the Majorana bound states--can occur in one-dimensional electronic nano-structures proximity-coupled to a bulk superconductor. Here we propose a set-up, based on chains of magnetic adatoms on the surface of a thin-film superconductor, in which the control over an externally applied magnetic field suffices to create and manipulate Majorana bound states. We consider specifically rings of adatoms and show that they allow for the creation, annihilation, adiabatic motion and braiding of pairs of Majorana bound states by varying the magnitude and orientation of the external magnetic field.

  11. Manipulating Majorana zero modes on atomic rings with an external magnetic field.

    PubMed

    Li, Jian; Neupert, Titus; Bernevig, B Andrei; Yazdani, Ali

    2016-01-01

    Non-Abelian quasiparticles have been predicted to exist in a variety of condensed matter systems. Their defining property is that an adiabatic braid between two of them results in a non-trivial change of the quantum state of the system. The simplest non-Abelian quasiparticles--the Majorana bound states--can occur in one-dimensional electronic nano-structures proximity-coupled to a bulk superconductor. Here we propose a set-up, based on chains of magnetic adatoms on the surface of a thin-film superconductor, in which the control over an externally applied magnetic field suffices to create and manipulate Majorana bound states. We consider specifically rings of adatoms and show that they allow for the creation, annihilation, adiabatic motion and braiding of pairs of Majorana bound states by varying the magnitude and orientation of the external magnetic field. PMID:26791080

  12. Manipulating Majorana zero modes on atomic rings with an external magnetic field

    PubMed Central

    Li, Jian; Neupert, Titus; Bernevig, B. Andrei; Yazdani, Ali

    2016-01-01

    Non-Abelian quasiparticles have been predicted to exist in a variety of condensed matter systems. Their defining property is that an adiabatic braid between two of them results in a non-trivial change of the quantum state of the system. The simplest non-Abelian quasiparticles—the Majorana bound states—can occur in one-dimensional electronic nano-structures proximity-coupled to a bulk superconductor. Here we propose a set-up, based on chains of magnetic adatoms on the surface of a thin-film superconductor, in which the control over an externally applied magnetic field suffices to create and manipulate Majorana bound states. We consider specifically rings of adatoms and show that they allow for the creation, annihilation, adiabatic motion and braiding of pairs of Majorana bound states by varying the magnitude and orientation of the external magnetic field. PMID:26791080

  13. Design of a three-axis magnetic field measurement system for the magnetic shield of the ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Rong, Chuiyu; Yao, Xu

    2015-10-01

    The magnetic field is one of the main causes of zero drift in a Ring Laser Gyroscope (RLG), which should be avoided by adopting a magnetic shielding system. The Gauss Meter is usually used to measure the magnetic shielding effectiveness. Generally, the traditional Gauss Meter has advantages of high measure range and high reliability, however, its drawbacks such as complex structure, high price and the PC client software cannot be customized at will, are also obvious. In this paper, aiming at a type of experimental magnetic shielding box of RLG, we design a new portable three-axis magnetic field measurement system. This system has both high modularity degree and reliability, with measuring range at ±48Gs, max resolution at 1.5mGs and can measure the magnetic field in x, y and z direction simultaneously. Besides, its PC client software can be easily customized to achieve the automatic DAQ, analysis, plotting and storage functions. The experiment shows that, this system can meet the measuring requirements of certain type of experimental magnetic shielding box for RLG, meanwhile, for the measurement of some other magnetic shielding effectiveness, this system is also applicable.

  14. Effects of electronic correlations and magnetic field on a molecular ring out of equilibrium

    NASA Astrophysics Data System (ADS)

    Nuss, Martin; von der Linden, Wolfgang; Arrigoni, Enrico

    2014-04-01

    We study the effects of electron-electron interactions on the steady-state characteristics of a hexagonal molecular ring in a magnetic field as a model for a benzene molecular junction. The system is driven out of equilibrium by applying a bias voltage across two metallic leads. We employ a model Hamiltonian approach to evaluate the effects of on-site as well as nearest-neighbor density-density-type interactions in a physically relevant parameter regime. Results for the steady-state current, charge density, and magnetization in three different junction setups (para, meta, and ortho) are presented. Our findings indicate that interactions beyond the mean-field level renormalize voltage thresholds as well as current plateaus. Electron-electron interactions lead to substantial charge redistribution as compared to the mean-field results. We identify a strong response of the circular current on the electronic structure of the metallic leads. Our results are obtained by steady-state cluster perturbation theory, a systematically improvable approximation to study interacting molecular junctions out of equilibrium, even in magnetic fields. Within this framework, general expressions for the current, charge density, and magnetization in the steady state are derived. The method is flexible and fast and can straightforwardly be applied to effective models as obtained from ab initio calculations.

  15. Ground Penetrating Radar and Magnetic Investigations of Phreatomagmatic Tephra Rings in the San Francisco Volcanic Field, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Marshall, A. M.; Kruse, S.; Macorps, E.; Charbonnier, S. J.

    2015-12-01

    Ground Penetrating Radar (GPR) can be a valuable geophysical tool for studying near-surface volcanic stratigraphy in areas where outcrops do not exist. Likewise, high resolution ground-based magnetic surveys have the potential to reveal significant features not exposed at the surface, especially in the case of small-volume basaltic volcanoes. Here we present the results of geophysical studies to investigate the eruptive history of deposits surrounding phreatomagmatic eruption sites, and why some may become magnetized. Magnetic surveys undertaken at basaltic phreatomagmatic sites suggest that some tuff rings carry no discernable magnetic signature, while others reveal slight to significant magnetic anomalies. Material deposited in the tephra ring could become magnetized through Thermal Remanent Magnetization - emplacement of magnetically susceptible material above 560° C. In this case tephra layers would need to be deposited in sufficient thickness to retain high temperatures long enough for the magnetic material to orient itself to the magnetic field. To test this hypothesis we examine GPR data collected at Rattlesnake Maar in the San Francisco Volcanic Field, Arizona, and we will collect GPR data at two other tephra rings in the same volcanic field. The first site, Sugarloaf Mountain, is an active quarry with excellent exposures of tephra ring stratigraphy. Although this site is rhyolitic in composition and not suitable for magnetic study, it is an excellent site to determine how well GPR reflectors correlate with actual stratigraphy. The second site, an un-named phreatomagmatic ring nearby, will then be studied by GPR and walking magnetic survey. GPR reflectors will be compared to depositional patterns defined in previous studies and correlated with magnetic survey results to determine if a correlation can be made - little to no magnetization where only thin units are recorded by GPR, and positive magnetization where thick units are recorded.

  16. Chiral phase transition in relativistic heavy-ion collisions with weak magnetic fields: Ring diagrams in the linear sigma model

    SciTech Connect

    Ayala, Alejandro; Bashir, Adnan; Raya, Alfredo; Sanchez, Angel

    2009-08-01

    Working in the linear sigma model with quarks, we compute the finite-temperature effective potential in the presence of a weak magnetic field, including the contribution of the pion ring diagrams and considering the sigma as a classical field. In the approximation where the pion self-energy is computed perturbatively, we show that there is a region of the parameter space where the effect of the ring diagrams is to preclude the phase transition from happening. Inclusion of the magnetic field has small effects that however become more important as the system evolves to the lowest temperatures allowed in the analysis.

  17. Magnetic field sensing subject to correlated noise with a ring spin chain.

    PubMed

    Guo, Li-Sha; Xu, Bao-Ming; Zou, Jian; Shao, Bin

    2016-01-01

    In this paper, we focus on the magnetic field sensing subject to a correlated noise. We use a ring spin chain with only the nearest neighbor interactions as our probe to estimate both the intensity B and the direction θ of the magnetic field when the probe reaches its steady state. We numerically calculate the quantum Fisher information (QFI) to characterize the estimation precision. On the one hand, for estimating B, we find that the coupling between spins in the probe plays an important role in the precision, and the largest value of the QFI can be achieved when θ = π/2 together with an optimal coupling. Moreover, for any direction, the precision scaling can be better than the Heisenberg-limit (HL) with a proper coupling. On the other hand, for estimating θ, we find that our probe can perform a high precision detection for θ ~ π/2, with the QFI much larger than that for any other directions, especially when the coupling is tuned to the optimal value. And we find that the precision scaling for θ ~ π/2 can be better than the HL, but for other directions, the precision scaling is only limited to the standard quantum limit (SQL). Due to the computational complexity we restrict the number of spins in the probe to 60. PMID:27623048

  18. Ion Rings for Magnetic Fusion

    SciTech Connect

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a

  19. Pitch angle dependence of the charge exchange lifetime of ring current ions in a Mead-Fairfield magnetic field model

    NASA Astrophysics Data System (ADS)

    Mukherjee, G. K.; Rajaram, R.

    1989-11-01

    This paper examines the necessity of using a realistic magnetospheric magnetic field geometry in the computation of the pitch-angle dependence of the charge exchange lifetime of ring current ions. The Chamberlain (1963) model is used for the atomic hydrogen density, and the pitch-angle dependence of the charge exchange lifetime, tau, has been computed for coefficients corresponding to different levels of geomagnetic activity in the Mead-Fairfield (1975) model of magnetic field. It is shown that using the correct model of the magnetic field is as important as adopting the proper exospheric temperature in the model for the neutral hydrogen model. A local time dependence of the pitch-angle dependence of tau also results from the adoption of a realistic description of the magnetic field.

  20. Fulde-Ferrell-Larkin-Ovchinnikov states in a superconducting ring with magnetic fields: Phase diagram and the first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Yoshii, Ryosuke; Takada, Satoshi; Tsuchiya, Shunji; Marmorini, Giacomo; Hayakawa, Hisao; Nitta, Muneto

    2015-12-01

    We find the angular Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states (or the twisted kink crystals) in which a phase and an amplitude of a pair potential modulate simultaneously in a quasi-one-dimensional superconducting ring with a static Zeeman magnetic field applied on the ring and static Aharonov-Bohm magnetic flux penetrating the ring. The superconducting ring with magnetic flux produces a persistent current, whereas the Zeeman split of Fermi energy results in the spatial modulation of the pair potential. We show that these two magnetic fields stabilize the FFLO phase in a large parameter region of the magnetic fields. We further draw the phase diagram with the two kinds of first-order phase transitions; one corresponds to phase slips separating the Aharonov-Bohm magnetic flux, and the other separates the number of peaks of the pair amplitude for the Zeeman magnetic field.

  1. Electromagnetic field analysis of septum magnet for APS positron accumulator ring

    SciTech Connect

    Yokoi, Toshiaki; Turner, L.R.

    1995-07-01

    This report consists of three parts. The first part describes a numerical analysis method for the electromagnetic field analysis of a septum magnet. A novel improvement to the treatment of exciting currents in the time-domain is proposed. The second part discusses numerical predictions of the electromagnetic characteristics of the APS PAR septum. The time variations of stray field and eddy currents are shown for three magnet designs. The last part explores how decreasing the septum material conductivity affects the stray field. The decrease of conductivity may be caused by an inadequate manufacturing of the septum material. The significance of a high quality septum, or flat interface between copper and iron, is emphasized from a point of view of stray field. An ideal method for joining two different metals without distortion, called HIP (Hot Isostatic Pressing), is introduced and recommended based on the authors` experience.

  2. Saturn's periodic magnetic field perturbations caused by a rotating partial ring current

    NASA Astrophysics Data System (ADS)

    Brandt, P. C.; Khurana, K. K.; Mitchell, D. G.; Sergis, N.; Dialynas, K.; Carbary, J. F.; Roelof, E. C.; Paranicas, C. P.; Krimigis, S. M.; Mauk, B. H.

    2010-11-01

    We demonstrate that the periodic magnetic field perturbations as observed from Cassini are caused by the plasma pressure of the energetic (>2 keV) particle distributions that are periodically injected and subsequently drift around Saturn. Plasma pressures inferred from the Cassini Plasma Spectrometer (CAPS) (<2 keV) and the Magnetospheric Imaging Instrument (MIMI) (>2 keV) are used to compute the three-dimensional pressure-driven currents and their associated magnetic field perturbations. The distribution of the “hot” (>2 keV) plasma pressure is derived from Energetic Neutral Atom (ENA) images obtained by the Ion Neutral Camera (INCA) and in-situ spectral measurements. The radial profile of “cold” (<2 keV) plasma pressure is obtained from statistical studies and is assumed to be azimuthally symmetric.

  3. The dynamics of magnetic flux rings

    NASA Technical Reports Server (NTRS)

    Deluca, E. E.; Fisher, G. H.; Patten, B. M.

    1993-01-01

    The evolution of magnetic fields in the presence of turbulent convection is examined using results of numerical simulations of closed magnetic flux tubes embedded in a steady 'ABC' flow field, which approximate some of the important characteristics of a turbulent convecting flow field. Three different evolutionary scenarios were found: expansion to a steady deformed ring; collapse to a compact fat flux ring, separated from the expansion type of behavior by a critical length scale; and, occasionally, evolution toward an advecting, oscillatory state. The work suggests that small-scale flows will not have a strong effect on large-scale, strong fields.

  4. Magnetic connection for Saturn's rings and atmosphere

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    1986-01-01

    Latitudinal variations in images of Saturn's disk, upper atmospheric temperatures, and ionospheric electron densities are found in magnetic conjugacy with features in Saturn's ring plane. It is proposed that these latitudinal variations are the result of a variable influx of water transported along magnetic field lines from sources in Saturn's ring plane. These features are thus the surface expression of an electromagnetic erosion mechanism which transports water (in the form of high charge-to-mass ratio particles) from the rings to the atmosphere.

  5. Magnetization reversal in arrays of Co rings

    NASA Astrophysics Data System (ADS)

    Welp, U.; Vlasko-Vlasov, V. K.; Hiller, J. M.; Zaluzec, N. J.; Metlushko, V.; Ilic, B.

    2003-08-01

    The magnetization behavior of arrays of individual and coupled Co rings has been studied using superconducting quantum interference device magnetometry, magneto-optical imaging, and Lorentz transmission and scanning transmission electron microscopy. The transition from the polarized into the vortex state of isolated rings is shown to occur through the motion and annihilation of head-to-head domain boundaries. The chirality of the vortex state is fixed on subsequent magnetization cycles, indicating that it is predetermined by structural imperfections of the rings. The effect of interactions between the rings has been investigated in arrays of chains of touching rings. For fields applied parallel to the chains rings in extended sections of the chains are found to switch simultaneously. Neighboring rings in these sections can display alternating chirality as well as the same chirality accompanied by a 180° boundary on the nodes. For fields perpendicular to the chain direction the switching occurs pairwise. This coupling introduces a broad distribution of switching fields and correspondingly a magnetization curve that is significantly broader than that for the parallel orientation.

  6. Gravitomagnetic field of rotating rings

    NASA Astrophysics Data System (ADS)

    Ruggiero, Matteo Luca

    2016-04-01

    In the framework of the so-called gravitoelectromagnetic formalism, according to which the equations of the gravitational field can be written in analogy with classical electromagnetism, we study the gravitomagnetic field of a rotating ring, orbiting around a central body. We calculate the gravitomagnetic component of the field, both in the intermediate zone between the ring and the central body, and far away from the ring and central body. We evaluate the impact of the gravitomagnetic field on the motion of test particles and, as an application, we study the possibility of using these results, together with the Solar System ephemeris, to infer information on the spin of ring-like structures.

  7. Intrinsic anisotropy-defined magnetization reversal in submicron ring magnets

    NASA Astrophysics Data System (ADS)

    Li, S. P.; Lew, W. S.; Bland, J. A. C.; Natali, M.; Lebib, A.; Chen, Y.

    2002-12-01

    We report a study of the effect of magnetocrystalline anisotropy in the magnetization reversal of submicron Co rings fabricated by nanoimprint lithography. For weak magnetocrystalline anisotropy, the complete reversal takes place via a transition from saturation at large negative fields, into a vortex configuration at small fields, and back to reverse saturation at large positive fields. When the anisotropy strength is increased to a critical value, the intermediate vortex configuration no longer exists in the magnetization reversal along the easy axis; instead, the reversal occurs through a rapid jump. However, when the applied field direction is far from the easy axis, the presence of the magnetocrystalline anisotropy favors local vortex nucleation, and this leads to a similar switching process as found for low anisotropy. Micromagnetic simulations indicate that the magnetization reversal process of the rings, starts from a buckling-like reverse domain nucleation, followed by local vortex formation and an avalanche process of local vortex nucleation.

  8. On dynamics of a plasma ring rotating in the magnetic field of a central body: Magneto-gyroscopic waves. Problems of stability and quantization

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2006-03-01

    Based on a mathematical model described in [1], some new aspects of the dynamics of a thin planar plasma ring rotating in the magnetic field of a central body are considered. The dipole field is considered assuming that the dipole has a small eccentricity, and the dipole axis is inclined at a small angle to the central body’s axis of rotation. Emphasis is placed on the problem of stability of the ring’s stationary rotation. Unlike [1], the disturbed motion is considered which has a character of eddy magneto-gyroscopic waves. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. It is demonstrated that some “elite” rings characterized by integral quantum numbers are long-living, while “lethal” or unstable rings (antirings) are associated with half-integer quantum numbers. As a result, an evolutionally rife rotating ring of magnetized plasma turns out to be stratified into a large number of narrow elite rings separated by gaps whose positions correspond to antirings. The regions of possible existence of elite rings in near-central body space are considered. Quantum numbers determining elite eigenvalues of the mean sector velocity (normalized in a certain manner) of a ring coincide with the quantum numbers appearing in the solution to the Schrödinger equation for a hydrogen atom. Perturbations of elite orbits corresponding to these quantum numbers satisfy the de Brogli quantum-mechanical condition. This is one more illustration of the isomorphism of quantization in microcosm and macrocosm.

  9. Comparison of Simulated and Observed Ring Current Magnetic Field and Ion Fluxes and ENA Intensity during the 5 April 2010 Storm

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Lemon, C.; Guild, T. B.; Schulz, M.; Lui, A.; Keesee, A. M.; Goldstein, J.; Rodriguez, J. V.

    2011-12-01

    In this study we compare simulated and observed stormtime magnetic intensities, proton flux spectra and ENA intensity for the 5 April 2010 storm (minimum Dst ≈ -73 nT) to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet using the magnetically and electrostatically self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a time-varying magnetopause driven by upstream solar wind and interplanetary magnetic field (IMF) conditions. We use ion temperatures inferred from TWINS energetic neutral atom (ENA) images and THEMIS/ESA and SST ion data, and proton densities from the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003] to guide our specification of the plasma sheet at 10 RE, our plasma boundary location in the RCM-E. The oxygen to proton density ratio at the plasma boundary is specified from the empirical Young et al. [JGR, 1982] study. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous (GEO) altitude (6.6 Earth radii) and on THEMIS satellites. The simulated and observed proton spectra (GOES-14/MAGPD) at GEO and global ENA intensity (TWINS 1 and 2) are compared. We discuss the response of the ring current magnetic field and ion flux distribution to expansions and compressions of the magnetosphere associated with the dynamic solar wind pressure for this storm event.

  10. The remote sensing of Saturn's rings. 1: The magnetic alinement of the ring particles

    NASA Technical Reports Server (NTRS)

    Evans, L. C.

    1973-01-01

    Because of the potential implications for the optical properties of Saturn's rings, the orientation of nonspherical ring particles at equilibrium is investigated with respect to four stochastic influences: interactions with the interplanetary medium, interactions with the expected magnetic field of Saturn, thermal fluctuations due to the internal temperature of the ring particles; collisions between ring particles. The solution of the homogeneous Fokker-Planck equation for nearly spherical spheroids is presented and investigated in general. Values of the pertinent physical parameters in the vicinity of Saturn are estimated, and the implications for the alignment of the ring particles are investigated. It is concluded that for some alignment mechanisms, small ring particles can be expected to be almost completely aligned. This alignment results in each particle spinning around its shortest body axis with this axis parallel to the magnetic field direction (perpendicular to the ring plane).

  11. Ring magnet firing angle control

    DOEpatents

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-10-21

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle.

  12. Electric field induced magnetization rotation in patterned Ni ring/Pb(Mg1/3Nb2/3)O3](1-0.32)-[PbTiO3]0.32 heterostructures

    NASA Astrophysics Data System (ADS)

    Hockel, Joshua L.; Bur, Alexandre; Wu, Tao; Wetzlar, Kyle P.; Carman, Gregory P.

    2012-01-01

    Electric field induced magnetoelastic anisotropy is shown to rotate the magnetization of a ring-shaped magnet by 90° in a Ni ring/(011) Pb(Mg1/3Nb2/3)O3](1-0.32)-[PbTiO3]0.32 heterostructure. The 2000 nm diameter ring is initially field annealed forming the "onion" magnetization state. A 0.8 MV/m electric field is applied to the substrate creating anisotropic piezostrain and a perpendicular in-plane easy axis. Magnetic force microscopy confirms the 90° rotation of the vortex-type domain walls from the field annealing direction. Rotations are stable without electric field due to remnant strains induced during the poling process, supporting the viability of strain-based magnetic recording methods.

  13. Correction magnets for the Fermilab Recycler Ring

    SciTech Connect

    James T Volk et al.

    2003-05-27

    In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements.

  14. Magnetic transitions in ultra-small nanoscopic magnetic rings: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Singh, Deepak K.; Krotkov, Robert; Tuominen, Mark T.

    2009-05-01

    In this paper, we report on experimental and theoretical investigations of magnetic transitions in cobalt rings of size (diameter, width and thickness) comparable to the exchange length of cobalt. Magnetization measurements and calculations were performed for two sets of magnetic ring arrays: ultra-small magnetic rings (outer diameter 13 nm, inner diameter 5 nm and thickness 5 nm) and small magnetic rings (outer diameter 150 nm, width 5 nm, and thickness 5 nm). Our calculations suggest that if the linear dimensions of a magnetic ring are comparable to, or smaller than, the exchange length of the magnetic material, then only one magnetic state is important—the pure single-domain state. Vortex and onion-shape magnetic states do not arise. For a ring of larger diameter, magnetization reversal at zero field occurs via a vortex state. Theoretical calculations are based on an energetic analysis of pure and slightly distorted single-domain and vortex magnetic states. The calculations have been verified by micromagnetic simulations for ultra-small and small ring geometries. The hysteresis curves measured for small rings are consistent with the calculations, but there is a discrepancy for ultra-small rings. Micromagnetic simulations suggest that the discrepancies may be due to the variations in the shape and size of the ultra-small rings in the measured sample.

  15. MAGNETS FOR A MUON STORAGE RING.

    SciTech Connect

    PARKER, B.; ANERELLA, M.; GHOSH, A.; GUPTA, R.; HARRISON, M.; SCHMALZLE, J.; SONDERICKER, J.; WILLEN, E.

    2002-06-18

    We present a new racetrack coil magnet design, with an open midplane gap, that keeps decay particles in a neutrino factory muon storage ring from directly hitting superconducting coils. The structure is very compact because coil ends overlap middle sections top and bottom for skew focusing optics. A large racetrack coil bend radius allows ''react and wind'' magnet technology to be used for brittle Nb{sub 3}Sn superconductors. We describe two versions: Design-A, a magnet presently under construction and Design-B, a further iterated concept that achieves the higher magnetic field quality specified in the neutrino factory feasibility Study-II report. For Design-B reverse polarity and identical end design of consecutive long and short coils offers theoretically perfect magnet end field error cancellation. These designs avoid the dead space penalty from coil ends and interconnect regions (a large fraction in machines with short length but large aperture magnets) and provide continuous bending or focusing without interruption. The coil support structure and cryostat are carefully optimized.

  16. Stereo ENA Imaging of the Ring Current and Multi-point Measurements of Suprathermal Particles and Magnetic Fields by TRIO-CINEMA

    NASA Astrophysics Data System (ADS)

    Lin, R. P.; Sample, J. G.; Immel, T. J.; Lee, D.; Horbury, T. S.; Jin, H.; SEON, J.; Wang, L.; Roelof, E. C.; Lee, E.; Parks, G. K.; Vo, H.

    2012-12-01

    The TRIO (Triplet Ionospheric Observatory) - CINEMA (Cubesat for Ions, Neutrals, Electrons, & Magnetic fields) mission consists of three identical 3-u cubesats to provide high sensitivity, high cadence, stereo measurements of Energetic Neutral Atoms (ENAs) from the Earth's ring current with ~1 keV FWHM energy resolution from ~4 to ~200 keV, as well as multi-point in situ measurements of magnetic fields and suprathermal electrons (~2 -200 keV) and ions (~ 4 -200 keV) in the auroral and ring current precipitation regions in low Earth orbit (LEO). A new Suprathermal Electron, Ion, Neutral (STEIN) instrument, using a 32-pixel silicon semiconductor detector with an electrostatic deflection system to separate ENAs from ions and from electrons below 30 keV, will sweep over most of the sky every 15 s as the spacecraft spins at 4 rpm. In addition, inboard and outboard (on an extendable 1m boom) miniature magnetoresistive sensor magnetometers will provide high cadence 3-axis magnetic field measurements. An S-band transmitter will be used to provide ~8 kbps orbit-average data downlink to the ~11m diameter antenna of the Berkeley Ground Station.The first CINEMA (funded by NSF) is scheduled for launch on August 14, 2012 into a 65 deg. inclination LEO. Two more identical CINEMAs are being developed by Kyung Hee University (KHU) in Korea under the World Class University (WCU) program, for launch in November 2012 into a Sun-synchronous LEO to form TRIO-CINEMA. A fourth CINEMA is being developed for a 2013 launch into LEO. This LEO constellation of nanosatellites will provide unique measurements highly complementary to NASA's RBSP and THEMIS missions. Furthermore, CINEMA's development of miniature particle and magnetic field sensors, and cubesat-size spinning spacecraft may be important for future constellation space missions. Initial results from the first CINEMA will be presented if available.

  17. Optimal placement of magnets in Indus-2 storage ring

    NASA Astrophysics Data System (ADS)

    Riyasat, Husain; A, D. Ghodke; Singh, Gurnam

    2015-03-01

    In Indus-2, by optimizing the position of the magnetic elements, using the simulated annealing algorithm, at different locations in the ring with their field errors, the effects on beam parameters have been minimized. Closed orbit distortion and beta beat are considerably reduced by optimizing the dipole and quadrupole magnets positions in the ring. For the Indus-2 storage ring, sextupole optimization gives insignificant improvement in dynamic aperture with chromaticity-correcting sextupoles. The magnets have been placed in the ring with the optimized sequence and storage of the beam has been achieved at injection energy without energizing any corrector magnets. Magnet sorting has led to the easy beam current accumulation and the measurement of parameters such as closed orbit distortion, beta function, dispersion, dynamic aperture etc.

  18. Two-dimensional Magnetism in Arrays of Superconducting Rings

    NASA Astrophysics Data System (ADS)

    Reich, Daniel H.

    1996-03-01

    An array of superconducting rings in an applied field corresponding to a flux of Φ0 /2 per ring behaves like a 2D Ising antiferromagnet. Each ring has two energetically equivalent states with equal and opposite magnetic moments due to fluxoid quantization, and the dipolar coupling between rings favors antiparallel alignment of the moments. Using SQUID magnetometry and scanning Hall probe microscopy, we have studied the dynamics and magnetic configurations of micron-size aluminum rings on square, triangular, honeycomb, and kagomé lattices. We have found that there are significant antiferromagnetic correlations between rings, and that effects of geometrical frustration can be observed on the triangular and kagomé lattices. Long range correlations on the other lattices are suppressed by the analog of spin freezing that locks the rings in metastable states at low temperatures, and by quenched disorder due to imperfections in the fabrication. This disorder produces a roughly 1% variation in the rings' areas, which translates into an effective random field on the spins. The ring arrays are thus an extremely good realization of the 2D random-field Ising model. (Performed in collaboration with D. Davidović, S. Kumar, J. Siegel, S. B. Field, R. C. Tiberio, R. Hey, and K. Ploog.) (Supported by NSF grants DMR-9222541, and DMR-9357518, and by the David and Lucile Packard Foundation.)

  19. Mesoscopic thin-film magnetic rings (invited)

    NASA Astrophysics Data System (ADS)

    Ross, C. A.; Castaño, F. J.; Morecroft, D.; Jung, W.; Smith, Henry I.; Moore, T. A.; Hayward, T. J.; Bland, J. A. C.; Bromwich, T. J.; Petford-Long, A. K.

    2006-04-01

    The magnetic properties and magnetoresistance of thin-film circular and elliptical magnetic rings made from Co, NiFe, NiFe/FeMn, and Co/Cu/NiFe have been explored. Single-layer rings show stable onion and vortex states and metastable twisted states containing a 360° wall. For NiFe rings, four-point magnetotransport results can be explained quantitatively by anisotropic magnetoresistance. NiFe/FeMn exchange-biased rings show offset hysteresis loops, and the easy axis is determined by a combination of the ring ellipticity and the exchange coupling. In Co/Cu/NiFe multilayer rings the behavior is dominated by the magnetostatic coupling between the domain walls in the Co and NiFe. In the major loop the giant magnetoresistance varies between three distinct levels corresponding to combinations of onion and vortex states in the NiFe and Co layers.

  20. Controllable Magnetization Processes Induced by Nucleation Sites in Permalloy Rings

    NASA Astrophysics Data System (ADS)

    Ying-Jiun Chen,; Chia-Jung Hsu,; Chun-Neng Liao,; Hao-Ting Huang,; Chiun-Peng Lee,; Yi-Hsun Chiu,; Tzu-Yun Tung,; Mei-Feng Lai,

    2010-02-01

    Different arrangements of notches as nucleation sites are demonstrated experimentally and numerically to effectively control the magnetization processes of permalloy rings. In the ring with notches at the same side with respect to field direction, two same-helicity vortex domain walls in the onion state lead to two-step switching going through flux-closure state; in the ring with diagonal notches two opposite-helicity vortex domain walls lead to one-step switching skipping flux-closure state. The switching processes are repeatable in contrast to rings without notches where helicites of two vortex domain walls are random so the switching processes can not be controlled.

  1. Magnetic configurations in 160 520-nm-diameter ferromagnetic rings

    NASA Astrophysics Data System (ADS)

    Castaño, F. J.; Ross, C. A.; Eilez, A.; Jung, W.; Frandsen, C.

    2004-04-01

    The remanent states and hysteretic behavior of thin-film magnetic rings has been investigated experimentally and by micromagnetic modeling. Rings of diameters 160 520 nm, made from Co using lift-off processing, show three distinct remanent states: a vortex state, an “onion” state with two head-on walls, and a “twisted” state containing a 360° wall. The range of stability of these states varies with ring geometry, with smaller width rings showing higher switching fields and greater variability.

  2. Magnetic fields at neptune.

    PubMed

    Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1989-12-15

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes

  3. Magnetization reversal process in elongated Co rings with engineered defects

    NASA Astrophysics Data System (ADS)

    Gao, X. S.; Adeyeye, A. O.; Ross, C. A.

    2008-03-01

    We report a significant modification of the magnetization reversal process in thin film rings with engineered defects created by a focused ion beam. Using magnetic force microscopy, with in situ in-plane field, we observe that the traditional onion-vortex transition that occurs in defect-free rings can be suppressed, and the reversal instead takes place through domain wall motion. We have also investigated the effects of defect size, location, and distribution on the overall magnetization state. The results are explained in terms of pinning of domain walls by the engineered defects.

  4. Magnetic record associated with tree ring density: Possible climate proxy

    PubMed Central

    Kletetschka, Gunther; Pruner, Petr; Venhodova, Daniela; Kadlec, Jaroslav

    2007-01-01

    A magnetic signature of tree rings was tested as a potential paleo-climatic indicator. We examined wood from sequoia tree, located in Mountain Home State Forest, California, whose tree ring record spans over the period 600 – 1700 A.D. We measured low and high-field magnetic susceptibility, the natural remanent magnetization (NRM), saturation isothermal remanent magnetization (SIRM), and stability against thermal and alternating field (AF) demagnetization. Magnetic investigation of the 200 mm long sequoia material suggests that magnetic efficiency of natural remanence may be a sensitive paleoclimate indicator because it is substantially higher (in average >1%) during the Medieval Warm Epoch (700–1300 A.D.) than during the Little Ice Age (1300–1850 A.D.) where it is <1%. Diamagnetic behavior has been noted to be prevalent in regions with higher tree ring density. The mineralogical nature of the remanence carrier was not directly detected but maghemite is suggested due to low coercivity and absence of Verwey transition. Tree ring density, along with the wood's magnetic remanence efficiency, records the Little Ice Age (LIA) well documented in Europe. Such a record suggests that the European LIA was a global phenomenon. Magnetic analysis of the thermal stability reveals the blocking temperatures near 200 degree C. This phenomenon suggests that the remanent component in this tree may be thermal in origin and was controlled by local thermal condition. PMID:17381844

  5. Stability of equilibrium of a superconducting ring that levitates in the field of a fixed ring with constant current

    NASA Astrophysics Data System (ADS)

    Bishaev, A. M.; Bush, A. A.; Gavrikov, M. B.; Kamentsev, K. E.; Kozintseva, M. V.; Savel'ev, V. V.; Sigov, A. S.

    2015-11-01

    In order to develop a plasma trap with levitating superconducting magnetic coils, it is necessary to search for their stable levitating states. An analytical expression for the potential energy of a single superconducting ring that captures a fixed magnetic flux in the field of a fixed ring with constant current versus the coordinate of the free ring on the axis of the system, deviation angle of its axis from the axis of the system, and radial displacement of its plane is derived for uniform gravity field in the thin ring approximation. The calculated stable levitation states of the superconducting ring in the field of the ring with constant current are proven in experiments. The generalization of such an approach to the levitation of several rings makes it possible to search for stable levitation states of several coils that form a magnetic system of a multipole trap.

  6. Condenser for illuminating a ring field

    DOEpatents

    Sweatt, W.C.

    1994-11-01

    A series of segments of a parent aspheric mirror having one foci at a point source of radiation and the other foci at the radius of a ring field have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ring field camera about one of the beams and fall onto the ring field radius as a coincident image as an arc of the ring field. 5 figs.

  7. Condenser for illuminating a ring field

    DOEpatents

    Sweatt, William C.

    1994-01-01

    A series of segments of a parent aspheric mirror having one foci at at a si-point source of radiation and the other foci at the radius of a ring field have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ring field camera about one of the beams and fall onto the ring field radius as a coincident image as an arc of the ring field.

  8. Magnet design for a low-emittance storage ring.

    PubMed

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars Johan

    2014-09-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3-3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated `magnet block' units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  9. Magnet design for a low-emittance storage ring

    PubMed Central

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  10. Isochronous field study of the Rare-RI Ring

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Yamaguchi, Y.; Wakasugi, M.; Uesaka, T.; Ozawa, A.; Suzaki, F.; Nagae, D.; Miura, H.; Yamaguchi, T.; Yano, Y.

    2015-11-01

    Construction of the Rare-RI Ring to measure masses of short-lived rare-RI with a relative precision of 10-6 is in progress at RIKEN. The Rare-RI Ring consists of six sectors where each sector consists of four dipole magnets. Since the mass measurement is done by the isochronous mass spectrometry in the Rare-RI Ring, creating isochronous magnetic field is one of the important issues in mass measurements with the Rare-RI Ring. In order to make an isochronous field, we installed ten trim coils in the two outer dipoles among the four dipoles in each sector magnet. The isochronism of the magnetic field have been confirmed by measuring time-of-flight (TOF) of alpha particles from an alpha-source (241Am). We measured TOF of alpha particles while changing the radial gradient of the magnetic field by trim coils and evaluated the isochronism from standard deviation of the TOF spectrum. The TOF width is minimum for a radial gradient of magnetic field (\\partial {B}z/\\partial r)/B0 = 0.205 m-1, which is in good agreement with the simulated value.

  11. Magnet designs for muon collider ring and interactions regions

    SciTech Connect

    Zlobin, A.V.; Alexahin, Y.I.; Kashikhin, V.V.; Mokhov, N.V.; /Fermilab

    2010-05-01

    Conceptual designs of superconducting magnets for the storage ring of a Muon Collider with a 1.5 TeV c.o.m. energy and an average luminosity of 10{sup 34} cm{sup -2}s{sup -1} are presented. All magnets are based on Nb{sub 3}Sn superconductor and designed to provide an adequate operating field/field gradient in the aperture with the critical current margin required for reliable magnet operation in the machine. Magnet cross-sections were optimized to achieve the accelerator field quality in the magnet aperture occupied with beams. The magnets and corresponding protective measures are designed to handle about 0.5 kW/m of dynamic heat load from the muon beam decays. Magnet parameters are reported and compared with the requirements.

  12. Generation of vortex rings by nonstationary laser wake field

    SciTech Connect

    Tsintsadze, N.L.; Murtaza, G.; Shah, H.A.

    2006-01-15

    A new concept of generating quasistatic magnetic fields, vortex rings, and electron jets in an isotropic homogeneous plasma is presented. The propagation of plasma waves, generated by a relativistically intense short pulse laser, is investigated by using the kinetic model and a novel nonpotential, time-dependent ponderomotive force is derived by obtaining a hydrodynamic equation of motion. This force can in turn generate quasistatic magnetic fields, vortex rings, and electron jets. It is also shown that the vortex rings can become a means for accelerating electrons, which are initially in equilibrium. The conservation of canonical momentum circulation and the frozen-in condition for the vorticity is discussed. The excitation of the vortex waves by the modulation of the amplitude of the plasma waves is considered. These vortex waves, which generate a lower hybrid mode propagating across the generated magnetic field, are also investigated.

  13. Effects of two-temperature ions, magnetic field, and higher-order nonlinearity on the existence and stability of dust-acoustic solitary waves in Saturn's F ring

    SciTech Connect

    El-Labany, S. K.; Moslem, Waleed M.; Safy, F. M.

    2006-08-15

    Nonlinear propagation of dust-acoustic solitary waves (DASWs) in a strong magnetized dusty plasma comprising warm adiabatic variable-charged dust particles, isothermal electrons, and two-temperature ions is investigated. Applying a reductive perturbation theory, a nonlinear Zakharov-Kuznetsov (ZK) equation for the first-order perturbed potential and a linear inhomogeneous ZK-type equation for the second-order perturbed potential are derived. However, at a certain value of high-temperature ion density, the coefficient of the nonlinear terms of both ZK and ZK-type equations vanishes. Therefore, a new set of expansion physical parameters and stretched coordinates are then used to derive a modified Zakharov-Kuznetsov (mZK) equation for the first-order perturbed potential and a mZK-type equation for the second-order perturbed potential. Stationary solutions of these equations are obtained using a renormalization method. A condition for two-temperature ions assumption is examined for various cosmic dust-laden plasma systems. It is found that this condition is satisfied for Saturn's F ring. The effects of two-temperature ions, magnetic field, and higher-order nonlinearity on the behavior of the DASWs are discussed. To obtain the stability condition of the waves, a method based on energy consideration is used and the condition for stable solitons is derived.

  14. Inhomogeneities in spin states and magnetization reversal of geometrically identical elongated Co rings

    NASA Astrophysics Data System (ADS)

    Gao, X. S.; Adeyeye, A. O.; Goolaup, S.; Singh, N.; Jung, W.; Castaño, F. J.; Ross, C. A.

    2007-05-01

    The magnetic configurations and magnetic reversal processes in arrays of geometrically identical rounded rectangular Co rings have been investigated. Magnetic imaging reveals a range of configurations, including diagonal onion, horseshoe onion, and vortex states. Reversal from the onion to the vortex state can occur via different routes involving domain wall motion within the rings, and the mechanism depends on the applied field orientation.

  15. Magnetic response measurements of mesoscopic superconducting and normal metal rings

    NASA Astrophysics Data System (ADS)

    Bluhm, Hendrik

    The main part of this thesis reports three experiments on the magnetic response of mesoscopic superconducting and normal metal rings using a scanning SQUID microscope. The first experiment explores the magnetic response and fluxoid transitions of superconducting, mesoscopic bilayer aluminum rings in the presence of two coupled order parameters arising from the layered structure. For intermediate couplings, metastable states that have different phase winding numbers around the ring in each of the two order parameters were observed. Larger coupling locks the relative phase, so that the two order parameters are only manifest in the temperature dependence of the response. With increasing proximitization, this signature gradually disappears. The data can be described with a two-order-parameter Ginzburg-Landau theory. The second experiment concentrates on fluxoid transitions in similar, but single-layer rings. Near the critical temperature, the transitions, which are induced by applying a flux to the ring, only admit a single fluxoid at a time. At lower temperatures, several fluxoids enter or leave at once, and the final state approaches the ground state. Currently available theoretical frameworks cannot quantitatively explain the data. Heating and quasiparticle diffusion are likely important for a quantitative understanding of this experiment, which could provide a model system for studying the nonlinear dynamics of superconductors far from equilibrium. The third and most important scanning SQUID study concerns 33 individual mesoscopic gold rings. All measured rings show a paramagnetic linear susceptibility and a poorly understood anomaly around zero field, both of which are likely due to unpaired defect spins. The response of sufficiently small rings also has a component that is periodic in the flux through the ring, with a period close to h/e. Its amplitude varies in sign and magnitude from ring to ring, and its typical value and temperature dependence agree with

  16. Storm-scale ring current morphology inferred from high-resolution empirical magnetic field modeling: storms driven by CMEs, CIRs, and those containing sawtooth and SMC events

    NASA Astrophysics Data System (ADS)

    Stephens, G. K.; Sitnov, M. I.; Ukhorskiy, A. Y.; Ohtani, S.; Vandegriff, J. D.

    2012-12-01

    In spite of several decades of intense investigations, the detailed structure and dynamics of the magnetospheric currents remains unclear especially during disturbed periods associated with magnetic storms and substorms. Until recently, empirical magnetic field models were strongly limited because they were built using predefined, hand-made current structures. New capabilities in the empirical reconstruction of the storm-scale current morphology and its evolution have become possible in the new-generation empirical model, TS07D, where the distribution of storm-scale equatorial currents is determined by regular basis function expansions and is largely dictated by data. We discuss the results of TS07D-based empirical reconstruction of the magnetospheric currents for differing global conditions. Firstly, we examine storms produced by two different drivers, Coronal Mass Ejections (CME) and Corotating Interaction Regions (CIR), and secondly, we examine storms containing two different magnetospheric convection states, those containing quasi-periodic sawtooth events and Steady Magnetospheric Convection (SMC) intervals. A distinctive feature of CME-driven storms is the hook-shaped current developing in the main phase, which combines features of ring and tail currents, while CIR-driven storms are featured by the belt-shaped current and strong reduction of the strength of field-aligned currents. Storms containing sawtooth injections are characterized by the formation of the equatorial storm-time current with an unusually broad radial extension, far beyond geosynchronous orbit across all local times. SMC periods are distinguished by a higher total pressure in the inner magnetosphere extending to larger distances with the appropriate changes in the equatorial currents and their closure paths. New data analysis opportunities offered by the APL-hosted model interface, including run-on-request case studies, the database of pre-processed model coefficients and radiation belt

  17. Magnetoresistance behavior of elliptical ring nanomagnets in close proximity with magnetic elements

    NASA Astrophysics Data System (ADS)

    Jain, S.; Adeyeye, A. O.

    2009-04-01

    We have investigated the giant magnetoresistance (GMR) responses of the pseudospin valve elliptical rings in close proximity with individual magnetic elements. Significant modifications of the GMR responses were observed due to the effects of magnetostatic coupling between the rings and the magnetic elements. We observed that the vortex state stability is significantly sensitive to the position, orientation of the magnetic elements, and the direction of the applied field. We also investigated the switching field reproducibility of the rings for onion→vortex and vortex→onion transitions and observed that the ring with asymmetrically placed magnetic elements shows the most reproducible switching states.

  18. Magnetic responses in 1D mesoscopic rings and cylinders

    NASA Astrophysics Data System (ADS)

    Maiti, Santanu K.

    2006-03-01

    I investigated a detailed study of persistent current and low-field magnetic susceptibility in one-dimensional mesoscopic rings and cylinders threaded by slowly varying magnetic flux φ in the tight-binding model. In perfect rings described by constant number of electrons Ne, current shows only saw-tooth variation with φ, while for those rings described by constant chemical potential μ, current varies saw-tooth like for some special choices of μ, but in all other cases it shows kink-like structures. On the other hand, in perfect cylinders I get both saw-tooth and kink-like structures in persistent current whether these cylinders are described by constant Ne or μ. In presence of impurity, current gets a continuous variation with φ only for the rings described by constant Ne, while in all other cases it depends on the choice of μ. My exact calculation predicts that the diamagnetic and paramagnetic sign of the low-field currents can be determined exactly for the rings described by constant Ne. In perfect rings, I get only diamagnetic currents both for odd and even Ne, while in presence of impurity current always shows diamagnetic sign for the rings with odd Ne and paramagnetic sign for the rings with even Ne. Both for the perfect and disordered rings described by constant μ the sign of the current cannot be mentioned exactly since it depends on the choice of μ and disordered configurations. Similar arguments are also true for the cylinders those are described either by constant Ne or by constant μ since the sign of the current in these systems depends on Ne, μ and disordered configurations.

  19. Dynamically controlled toroidal and ring-shaped magnetic traps

    SciTech Connect

    Fernholz, T.; Gerritsma, R.; Spreeuw, R. J. C.; Krueger, P.

    2007-06-15

    We present traps with toroidal (T{sup 2}) and ring-shaped topologies based on adiabatic potentials for radio-frequency-dressed Zeeman states in a ring-shaped magnetic quadrupole field. Simple adjustment of the radio-frequency fields provides versatile possibilities for dynamical parameter tuning, topology change, and controlled potential perturbation. We show how to induce toroidal and poloidal rotations, and demonstrate the feasibility of preparing degenerate quantum gases with reduced dimensionality and periodic boundary conditions. The great level of dynamical and even state-dependent control is useful for atom interferometry.

  20. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  1. Magnetic edge states in Aharonov-Bohm graphene quantum rings

    NASA Astrophysics Data System (ADS)

    Farghadan, R.; Saffarzadeh, A.; Heidari Semiromi, E.

    2013-12-01

    The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zero and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations.

  2. Magnetic measurements of the correction and adjustment magnets of the main ring

    SciTech Connect

    Trbojevic, D.

    1986-07-01

    Correction magnets correct the field imperfections and alignment errors of the main quadrupole and bend magnets. For reducing and controlling chromaticity there are 186 sextupoles and 78 octupoles, while for suppressing various resonances there are 12 normal and 18 skew sextupoles and 24 normal and 19 skew quadrupoles. Beam positions are individually controlled by 108 horizontal and 108 skew dipoles. This report includes results of the all Main Ring correction and adjustment magnet harmonic measurements. The measurement principle and basic equations are described.

  3. Magnetization reversal in individual micrometer-sized polycrystalline Permalloy rings

    NASA Astrophysics Data System (ADS)

    Moore, T. A.; Hayward, T. J.; Tse, D. H. Y.; Bland, J. A. C.; Castaño, F. J.; Ross, C. A.

    2005-03-01

    The magnetization reversal of individual 2 μm and 5 μm diameter polycrystalline Permalloy rings, with respective widths 0.75 μm and 1 μm, thickness 45 nm, has been investigated by focused magneto-optic Kerr effect (MOKE) magnetometry. Micromagnetic simulation of the reversal in the 2 μm diameter ring reveals that the onion-to-vortex state switching occurs by nucleation and subsequent annihilation of vortex walls that span the width of the ring, and that the vortex-to-reverse-onion state switching occurs by expansion of a reverse domain. The hysteresis loop shows good agreement with the experimental MOKE loop. Measurements of the switching through one-half of a 5 μm diameter ring enable the determination of the circulation of the vortex states accessed during one applied field cycle. The rings switch via one vortex state (either clockwise or anticlockwise) on both downward and upward applied field sweeps. The number of applied field cycles spent switching via one vortex state before changing to switch via the opposite vortex state is random, likely to be due to the history of the spin configuration and thermal fluctuations.

  4. A volume birdcage coil with an adjustable sliding tuner ring for neuroimaging in high field vertical magnets: ex and in vivo applications at 21.1 T

    PubMed Central

    Qian, Chunqi; Masad, Ihssan S.; Rosenberg, Jens T.; Elumalai, Malathy; Brey, William W.; Grant, Samuel C.; Gor’kov, Peter L.

    2012-01-01

    A tunable 900 MHz transmit/receive volume coil was constructed for 1H MR imaging of biological samples in a 21.1 T vertical bore magnet. To accommodate a diverse range of specimen and RF loads at such a high frequency, a sliding-ring adaptation of a low-pass birdcage was implemented through simultaneous alteration of distributed capacitance. To make efficient use of the constrained space inside the vertical bore, a modular probe design was implemented with a bottom-adjustable tuning and matching apparatus. The sliding ring coil displays good homogeneity and sufficient tuning range for different samples of various dimensions representing large span of RF loads. High resolution in vivo and ex vivo images of large rats (up to 350 g), mice and human postmortem tissues were obtained to demonstrate coil functionality and to provide examples of potential applications at 21.1 T. PMID:22750638

  5. Magnetic Structure, Magnetization Reversal and Spin Dynamics of Micron-sized Permalloy Ring

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaobin; Liu, Zhigang; Malac, Marek; Qian, Hui; Freeman, Mark; Metlushko, Vitali; Ilic, Bojan

    2004-03-01

    The magnetic ring structure is currently of great interest due to its potential application for magnetic storage and sensors [1]. In this talk, we present a study of 2 μm sized Permalloy rings on 25 nm SiN membrane prepared by electron beam lithography. The magnetic structures are examined by Lorentz microscopy. The Lorentz microscopy images indicate that the demagnetized state is the expected circulation of the magnetization. The head-to-head or tail-to-tail domains in the onion states (remanence after saturation) are found to be vortices. Diffractional magnetooptic Kerr effect magnetometry [2] is used (in zero, first, and second orders) to study the magnetization reversal, and the results are compared to the micromagnetic modeling based on Landau-Liftshitz-Gilbert equation. Finally, ultrafast scanning Kerr microscopy in spectroscopic mode is used to study the spin dynamics of the ring [3]. The ultrafast transient field is applied perpendicular to the rings, while a dc bias is applied in the plane. We find that the processional frequency in the circulating magnetization state is almost bias field-independent, while it splits into two field-dependent frequencies at larger bias (>100 Oe). These results will also be discussed in relation to micromagnetic modeling. [1] J.-G. Zhu, et al., JAP 87, 6668 (2000). [2] P. Vavassori, et al., PRB 67, 134429 (2003). [3] W. K. Hiebert, et al., PRL 79, 1134 (1997).

  6. Large magnetic storage ring for Bose-Einstein condensates

    SciTech Connect

    Arnold, A. S.; Garvie, C. S.; Riis, E.

    2006-04-15

    Cold atomic clouds and Bose-Einstein condensates have been stored in a 10 cm diameter vertically oriented magnetic ring. An azimuthal magnetic field enables low-loss propagation of atomic clouds over a total distance of 2 m, with a heating rate of less than 50 nK/s. The vertical geometry was used to split an atomic cloud into two counter-rotating clouds which were recombined after one revolution. The system will be ideal for studying condensate collisions and ultimately Sagnac interferometry.

  7. Axial translation of field-reversing relativistic electron rings

    NASA Astrophysics Data System (ADS)

    Rej, D. J.

    1981-08-01

    As a consequence of experiments: (1) rings were generated for the first time in a low pressure ambient neutral gas (-10 mTorr H1 and D2), increasing their collisionally limited field-reversal times to over 1 millisecond or more than five times over that previously observed; (2) the first experimental test of adiabatic magnetic compression resulted in greater than factor of ten increases in the ring kinetic energy densities; and (3) two axially separted nonfield-reversed rings, generated from a single accelerator pulse, were successfully combined or stacked to form one field-reversed ring. A quantitative analysis of the translation data is made using retarding force calculations. The rings moved axially at the terminal speed associated with a balance between the accelerating and retarding forces. Conditions were found where the major contribution to the retarding force was due to either the resistive wall or plasma currents. The wall (plasma) force dominated when the rings were moved through the low (high) pressure background gas and inside of the higher (lower) conductivity wall.

  8. Magnetically induced pumping and memory storage in quantum rings

    NASA Astrophysics Data System (ADS)

    Cini, Michele; Perfetto, Enrico

    2011-12-01

    Nanoscopic rings pierced by external magnetic fields and asymmetrically connected to wires behave in sharp contrast with classical expectations. By studying the real-time evolution of tight-binding models in different geometries, we show that the creation of a magnetic dipole by a bias-induced current is a process that can be reversed: connected rings excited by an internal ac flux produce ballistic currents in the external wires. In particular we point out that by employing suitable flux protocols, single-parameter nonadiabatic pumping can be achieved, and an arbitrary amount of charge can be transferred from one side to the other. We also propose a setup that could serve a memory device, in which both the operations of writing and erasing can be efficiently performed.

  9. Controlling the magnetic susceptibility in an artificial elliptical quantum ring by magnetic flux and external Rashba effect

    SciTech Connect

    Omidi, Mahboubeh Faizabadi, Edris

    2015-03-21

    Magnetic susceptibility is investigated in a man-made elliptical quantum ring in the presence of Rashba spin-orbit interactions and the magnetic flux. It is shown that magnetic susceptibility as a function of magnetic flux changes between negative and positive signs periodically. The periodicity of the Aharonov-Bohm oscillations depends on the geometry of the region where magnetic field is applied, the eccentricity, and number of sites in each chain ring (the elliptical ring is composed of chain rings). The magnetic susceptibility sign can be reversed by tuning the Rashba spin-orbit strength as well. Both the magnetic susceptibility strength and sign can be controlled via external spin-orbit interactions, which can be exploited in spintronics and nanoelectronics.

  10. The Magnetic and Shielding Effects of Ring Current on Radiation Belt Dynamics

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching

    2012-01-01

    The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.

  11. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  12. Domain-specific magnetization reversals on a Permalloy square ring array

    NASA Astrophysics Data System (ADS)

    Lee, D. R.; Freeland, J. W.; Srajer, G.; Metlushko, V.; You, Chun-Yeol

    2004-06-01

    We present domain-specific magnetization reversals extracted from soft x-ray resonant magnetic scattering measurements on a Permalloy square ring array. The extracted domain-specific hysteresis loops reveal that the magnetization of the domain parallel to the field is strongly pinned, while those of other domains rotate continuously. In comparison with the micromagnetic simulation, the hysteresis loop on the pinned domain indicates a possibility of the coexistence of the square rings with the vortex and onion states.

  13. Tunable magnetic flux sensor using a metallic Rashba ring with half-metal electrodes

    SciTech Connect

    Chen, J.; Jalil, M. B. A.; Tan, S. G.

    2011-04-01

    We propose a magnetic field sensor consisting of a square ring made of metal with a strong Rashba spin-orbital coupling (RSOC) and contacted to half-metal electrodes. Due to the Aharonov-Casher effect, the presence of the RSOC imparts a spin-dependent geometric phase to conduction electrons in the ring. The combination of the magnetic flux emanating from the magnetic sample placed below the ring, and the Aharonov-Casher effect due to RSOC results in spin interference, which modulates the spin transport in the ring nanostructure. By using the tight-binding nonequilibrium Green's function formalism to model the transport across the nanoring detector, we theoretically show that with proper optimization, the Rashba ring can function as a sensitive and tunable magnetic probe to detect magnetic flux.

  14. Four-state magnetic configuration in a tri-layer asymmetric ring

    NASA Astrophysics Data System (ADS)

    Popescu, Horia; Fortuna, Franck; Delaunay, Renaud; Spezzani, Carlo; Lopez-Flores, Victor; Jaouen, Nicolas; Sacchi, Maurizio

    2015-11-01

    Ring-shaped multilayered sub-micron dots have the potential for the development of non-volatile multi-bit devices. We show that a Co/Cu/FeNi asymmetric ring can take four distinct remanent magnetic states, each one stabilized by applying a magnetic field pulse along one of four in-plane orthogonal directions. We use element selective x-ray holography for imaging the Co magnetic configuration following a magnetic pulse. Micro-magnetic simulations support our experimental findings; they also provide an estimate of the system magnetization dynamics, setting out the conditions for further time-resolved experiments.

  15. Multi-ring-shaped optical field

    NASA Astrophysics Data System (ADS)

    Mei, Zhangrong; Zhao, Daomu; Gu, Juguan; Mao, Yonghua

    2016-04-01

    We introduce a novel class of planar random source producing far fields with multi-ring-shaped average intensity patterns by modeling the source degree of coherence, and confirm that such sources are physically genuine. Further, we derive the analytical expressions for the cross-spectral density (CSD) function of the beam-like fields generated by the novel source propagating in free space and in a linear isotropic random medium, and analyze the evolution of the spectral density and the state of coherence. It is shown that at some distance from the source the spectral density of the propagating beam in free space takes on the shape-invariant multi-ring profile, and the number of rings and intensity profiles of the beams can be flexibly adjusted by changing the source parameters. However, in atmospheric turbulence, we find that at sufficiently large distances from the source, the multi-ring profiles are destroyed by the medium, even if it remains such for intermediate distances from the source.

  16. The magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.

  17. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  18. On Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Florido, E.; Battaner, E.

    2010-12-01

    Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.

  19. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  20. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  1. Cobalt double-ring and double-dot structures: Magnetic properties

    NASA Astrophysics Data System (ADS)

    López-Urías, F.; Torres-Heredia, J. J.; Muñoz-Sandoval, E.

    2016-02-01

    The magnetization reversal mechanism of nanostructures of cobalt double-rings (D-rings) and double-dots (D-dots) is investigated in the framework of micromagnetic simulations. The arrays contain two identical coupled rings (wide and narrow) or dots with outer diameter of 200 nm and thicknesses ranging from 2-20 nm. Hysteresis loops, dipole-dipole and exchange energies are systematically calculated for the cases of the structures touching and the structures with a 50-nm inter-magnet separation; moreover, magnetization states along the hysteresis curve are analyzed. The results of both dot and ring D-magnets are compared with the corresponding individual magnets. Our results reveal that all D-ring (in contact and separated) arrays containing narrow rings exhibit non-null remanent magnetization; furthermore, higher coercive fields are promoted when the magnet thickness is increased. It is observed that the magnetization reversal is driven mainly by a clockwise rotation of onion-states, followed by states of frustrated vortices. Our results could help improve the understanding of the magnetic interactions in nanomagnet arrays.

  2. Correlation between magnetic spin structure and the three-dimensional geometry in chemically synthesized nanoscale magnetite rings

    NASA Astrophysics Data System (ADS)

    Eltschka, M.; Kläui, M.; Rüdiger, U.; Kasama, T.; Cervera-Gontard, L.; Dunin-Borkowski, R. E.; Luo, F.; Heyderman, L. J.; Jia, C.-J.; Sun, L.-D.; Yan, C.-H.

    2008-06-01

    The correlation between magnetic spin structure and geometry in nanoscale chemically synthesized Fe3O4 rings has been investigated by transmission electron microscopy. We find primarily the flux closure vortex states but in rings with thickness variations, an effective stray field occurs. Using tomography, we determine the complete three-dimensional geometries of thicker rings. A direct correlation between the geometry and the magnetization which points out of plane in the thickest parts of the ring yielding an intermediate magnetic state between the vortex state and the tube state is found. The interaction between exchange coupled rings leads to antiparallel vortex states and extended onion states.

  3. Intrinsic nonlinear effects of dipole magnets in small rings

    NASA Astrophysics Data System (ADS)

    Xu, H. S.; Huang, W. H.; Tang, C. X.; Lee, S. Y.

    2016-06-01

    We find that dynamic aperture depends significantly on the bending radii of dipole magnets when designing a small storage ring for Tsinghua Thomson scattering X-ray source (TTX) mainly because of the nonlinearity of the dipole field. In this paper, we present systematic studies on the intrinsic-geometric nonlinearity of dipole magnets. The Hamiltonian approach is used to determine the expressions of the geometric nonlinear potential and the corresponding third-order resonance strengths. Simulations are conducted to study these resonances. Our analysis results agree well with the tracking results at the third-order resonances 3 νx=ℓ and νx±2 νz=ℓ , where ℓ 's are the integer multiple of the number of superperiods.

  4. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  5. Localization for robotic capsule looped by axially magnetized permanent-magnet ring based on hybrid strategy

    PubMed Central

    Yang, Wanan; Li, Yan; Qin, Fengqing

    2015-01-01

    To actively maneuver a robotic capsule for interactive diagnosis in the gastrointestinal tract, visualizing accurate position and orientation of the capsule when it moves in the gastrointestinal tract is essential. A possible method that encloses the circuits, batteries, imaging device, etc into the capsule looped by an axially magnetized permanent-magnet ring is proposed. Based on expression of the axially magnetized permanent-magnet ring’s magnetic fields, a localization and orientation model was established. An improved hybrid strategy that combines the advantages of particle-swarm optimization, clone algorithm, and the Levenberg–Marquardt algorithm was found to solve the model. Experiments showed that the hybrid strategy has good accuracy, convergence, and real time performance. PMID:25733935

  6. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  7. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  8. Magnetization reversal of submicrometer Co rings with uniaxial anisotropy via scanning magnetoresistance microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyong; Mazumdar, D.; Schrag, B. D.; Shen, W.; Xiao, Gang

    2004-07-01

    We have investigated the magnetization reversal mechanism of narrow submicrometer Co rings using scanning magnetoresistance microscopy. Thermal annealing in a magnetic field introduced a uniaxial anisotropy and significant structural changes in the samples. We have observed a complicated multidomain state at intermediate field ranges, and onion states at saturation, for samples annealed in a field. This observation is in contrast to the flux-closed vortex state for unannealed rings. Micromagnetic simulations have shown that the switching occurs through a gradual noncoherent buckling-like reversal process followed by coherent rotation.

  9. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  10. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  11. Analysis on the magnetic sensitivity in a total reflection prisms (TRP) ring resonator

    NASA Astrophysics Data System (ADS)

    Li, Dong; Zhao, Jianlin; Bi, Chao

    2015-07-01

    Based on the theory of transfer matrix and the condition of eigenmode self-reproduction, the model of the magnetic sensitivity in a total reflection prisms (TRP) ring laser resonator is established. Then the influences of the slight nonplanar effect on the output frequency difference and the magnetic sensitivity are analyzed theoretically and numerically. The results show that the slightly nonplanar effect will bring an additional ellipticity of the eigenmode and the environment magnetic field can produce an additional output frequency difference in a TRP ring laser resonator. It can also be found that the output frequency difference increases versus the augment of nonplanar angle and the intensity of magnetic field. These interesting results may be useful for designing and optimizing the structure of super high precision TRP ring laser gyroscopes.

  12. Transverse Field Profile of the NLC Damping Rings Eletromagnet Wiggler (LCC-0038)

    SciTech Connect

    Ross, M

    2004-03-19

    The primary effort for damping ring wiggler studies has been to develop a credible radiation hard electromagnet wiggler conceptual design that meets NLC main electron and positron damping ring physics requirements [1]. Based upon an early assessment of requirements, a hybrid magnet similar to existing designs satisfies basic requirements. However, radiation damage is potentially a serious problem for the Nd-Fe-B permanent magnet material, and cost remains an issue for samarium cobalt magnets. Superconducting magnet designs have not been pursued due to their increased complexity and our unfamiliarity with the technology. Having produced and developed an electromagnet design, we now find that the transverse field roll-off is severe, and recognizing similar experience with beamline 11 at SSRL we believe that the resulting beam quality will not meet the damping ring requirements. We therefore propose, in parallel with more detailed optics studies of the wiggler field requirements, to revisit the hybrid permanent magnet design.

  13. Analysis of ringing due to magnetic core materials used in pulsed nuclear magnetic resonance applications

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, Neelam; Nlebedim, Cajetan; Hadimani, Ravi; Bulu, Irfan; Song, Yi-Qiao; Mina, Mani; Jiles, David

    Oil-field well logging instruments employ pulsed nuclear magnetic resonance (NMR) techniques and use inductive sensors to detect and evaluate the presence of particular fluids in geological formations. Acting as both signal transmitters and receivers most inductive sensors employ magnetic cores to enhance the quality and amplitude of signals recorded during field measurements. It is observed that the magnetic core also responds to the applied input signal thereby generating a signal (`ringing') that interferes with the measurement of the signals from the target formations. This causes significant noise and receiver dead time and it is beneficial to eliminate/suppress the signals received from the magnetic core. In this work a detailed analysis of the magnetic core response and in particular loading of the sensor due to the presence of the magnetic core is presented. Pulsed NMR measurements over a frequency band of 100 kHz to 1MHz are used to determine the amplitude and linewidth of the signals acquired from different magnetic core materials. A lower signal amplitude and a higher linewidth are vital since these would correspond to minimal contributions from the magnetic core to the inductive sensor response and thus leading to minimized receiver dead time.

  14. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  15. Geomagnetic Tail and Ring Current Dynamics and Structure during July 6, 2013 magnetic storm

    NASA Astrophysics Data System (ADS)

    Nazarkov, Ilya

    According to THEMIS and POES satellites the structure and spatial dimensions of ring current and geotal current system are restored. Using models of the main magnetic field of Earth (IGRF-11) and a magnetospheric magnetic field (A2000), the magnetic field of the currents other than the tail and the ring currents was subtracted from measurements. The hourly analysis of dynamics and position of current system of a tail was carried out. Evolution of ring current is estimated by data fluxes of STEB particles, measured by POES satellites at low latitudes. Isotropic boundary, determined by data of POES satellites, was projected to equatorial plane and compared with position of the inner edge of geomagnetic tail current, obtained from THEMIS measurements.

  16. DEGRADATION OF MAGNET EPOXY AT NSLS X-RAY RING.

    SciTech Connect

    HU,J.P.; ZHONG,Z.; HAAS,E.; HULBERT,S.; HUBBARD,R.

    2004-05-24

    Epoxy resin degradation was analyzed for NSLS X-ring magnets after two decades of 2.58-2.8 GeV continuous electron-beam operation, based on results obtained from thermoluminescent dosimeters irradiated along the NSLS ring and epoxy samples irradiated at the beamline target location. A Monte Carlo-based particle transport code, MCNP, was utilized to verify the dose from synchrotron radiation distributed along the axial- and transverse-direction in a ring model, which simulates the geometry of a ring quadrupole magnet and its central vacuum chamber downstream of the bending-magnet photon ports. The actual life expectancy of thoroughly vacuum baked-and-cured epoxy resin was estimated from radiation tests on similar polymeric materials using a radiation source developed for electrical insulation and mechanical structure studies.

  17. Ring-shaped velocity distribution functions in energy-dispersed structures formed at the boundaries of a proton stream injected into a transverse magnetic field: Test-kinetic results

    NASA Astrophysics Data System (ADS)

    Voitcu, Gabriel; Echim, Marius M.

    2012-02-01

    In this paper, we discuss the formation of ring-shaped and gyro-phase restricted velocity distribution functions (VDFs) at the edges of a cloud of protons injected into non-uniform distributions of the electromagnetic field. The velocity distribution function is reconstructed using the forward test-kinetic method. We consider two profiles of the electric field: (1) a non-uniform E-field obtained by solving the Laplace equation consistent with the conservation of the electric drift and (2) a constant and uniform E-field. In both cases, the magnetic field is similar to the solutions obtained for tangential discontinuities. The initial velocity distribution function is Liouville mapped along numerically integrated trajectories. The numerical results show the formation of an energy-dispersed structure due to the energy-dependent displacement of protons towards the edges of the cloud by the gradient-B drift. Another direct effect of the gradient-B drift is the formation of ring-shaped velocity distribution functions within the velocity-dispersed structure. Higher energy particles populate the edges of the proton beam, while smaller energies are located in the core. Non-gyrotropic velocity distribution functions form on the front-side and trailing edge of the cloud; this effect is due to remote sensing of energetic particles with guiding centers inside the beam. The kinetic features revealed by the test-kinetic solutions have features similar to in-situ velocity distribution functions observed by Cluster satellites in the magnetotail, close to the neutral sheet.

  18. Particle optics of quadrupole doublet magnets in Spallation Neutron Source accumulator ring

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    2006-12-01

    The Spallation Neutron Source ring employs doublet quadrupoles and dipole correctors in its straight sections. The electromagnetic quadrupoles have a large aperture, small aspect ratio, and relatively short iron-to-iron distance. The corrector is even closer to one of the quads. There have been concerns on the magnetic fringe field and interference in the doublet magnets and their assemblies. We have performed 3D computing simulations to study magnetic field distributions in the doublet magnets. Further, we have analyzed the particle optics based on the z-dependent focusing functions of the quads. The effect of the magnetic fringe field and interference, including the third-order aberrations, on the particle motion are investigated. The lens parameters and the first-order hard edge models are derived and compared with the parameters used in the ring lattice calculations.

  19. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    SciTech Connect

    Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  20. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  1. The interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.

    1972-01-01

    Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

  2. Correlation of lunar far-side magnetized regions with ringed impact basins

    USGS Publications Warehouse

    Anderson, K.A.; Wilhelms, D.E.

    1979-01-01

    By the method of electron reflection, we have identified seven well-defined magnetized regions in the equatorial belt of the lunar far side sampled by the Apollo 16 Particles and Fields subsatellite. Most of these surface magnetic fields lie within one basin radius from the rim of a ringed impact basin, where thick deposits of basin ejecta are observed or inferred. The strongest of the seven magnetic features is linear, at least 250 km long, and radial to the Freundlich-Sharonov basin. The apparent correlation with basin ejecta suggests some form of impact origin for the observed permanently magnetized regions. ?? 1979.

  3. Power supply control units for APS ring magnets

    SciTech Connect

    Despe, O.D.

    1990-04-15

    The APS storage ring (1104 meters) is divided into 40 sectors. Each sector has 38 magnet coils in five magnet bases. Every alternate sector has an additional quadrupole magnet for skew correction. AR the main dipole magnets, two in each sector are connected in series and fed from one power supply unit. A base is controlled by one power supply control unit (PSCU). Each PSCU is connected to the host computer via a local area network (LAN). This note discusses the hardware configuration of the typical power supply control system used by the APS magnets and the software commands supported by the PSCU.

  4. Magnetic flux shielding for the precision muon g-2 storage ring superconducting inflector

    SciTech Connect

    Danby, G.T.; Meng, W.; Sampson, W.B.; Woodle, K.

    1993-12-31

    A muon g-2 experiment (E821) at the AGS requires knowledge of the magnetic field over muon orbits at the level of 0.1 ppM. The superconducting inflector involves a double cosine theta winding; this design approximately cancels its fringe field. Nevertheless its residual field would effect the homogeneity of the storage ring magnetic field. A method of using a superconducting sheet surrounding the inflector to further reduce the fringe field was proposed by one of the authors, W. Meng. An experimental program to explore this technique is described. Part of the test results are presented.

  5. Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Ravat, D.; Frawley, James J.

    1999-01-01

    Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

  6. Magnetization dynamics using ultrashort magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Tudosa, Ioan

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic

  7. Magnetization reversal and dynamics in non-interacting NiFe mesoscopic ring arrays

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Husale, S.; Varandani, D.; Gupta, A.; Senguttuvan, T. D.; Mehta, B. R.; Budhani, R. C.

    2014-04-01

    The dynamics of magnetization (M) reversal and relaxation as a function of temperature (T) are reported in three non-interacting NiFe ring arrays having fixed ring outer diameter and varying widths. Additionally, the dependence of M(H) loop on the angle (θ) between magnetic field (H) and the plane of the rings is addressed. The M(H) loops show a double step transition from onion state (OS) to vortex state (VS) at all temperatures (T = 3 to 300 K) and angles (θ = 0 to 90°). The critical reversal fields HC1 (OS to VS) and HC2 (VS to OS) show a pronounced dependence on T, ring width, and θ. Estimation of the transverse and vortex domain wall energies reveals that the latter is favored in the OS. The OS is also the remanent state in the smallest rings and decays with the effective energy scale (U0/T) of 50 and 32 meV/K at 10 and 300 K, respectively. The robust in-plane anisotropy of magnetization of ring assemblies is established by scaling the M(H) with θ.

  8. Magnet design for an ultralow emittance storage ring

    NASA Astrophysics Data System (ADS)

    Saeidi, F.; Razazian, M.; Rahighi, J.; Pourimani, R.

    2016-03-01

    The Iranian Light Source Facility (ILSF) is a new 3 GeV synchrotron radiation laboratory which is in the design stage. The ILSF storage ring (SR) is based on a Five-Bend Achromat (5BA) lattice providing an ultra-low beam emittance of 0.48 nm rad. The ring is comprised of 100 pure dipole magnets, 320 quadrupoles, and 320 sextupoles with additional coils for dipole and skew quadrupole correctors. In this paper, we present some design features of the SR magnets and discuss the detailed physical design of these electromagnets. The related electrical and cooling calculations and mechanical design issues have been investigated as well.

  9. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  10. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  11. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  12. Magnetic Response in 1d Non-Interacting Mesoscopic Rings:. Long-Range Hopping in Shortest Path

    NASA Astrophysics Data System (ADS)

    Maiti, Santanu K.

    Persistent current and low-field magnetic susceptibility in single-channel normal metal rings threaded by a magnetic flux ϕ are studied in the tight-binding model considering long-range hopping of the electrons in shortest path. The higher order hopping integrals try to reduce the effect of disorder by delocalizing the energy eigenstates and accordingly, current amplitude in disordered rings is comparable to that of an ordered ring. The calculations of low-field magnetic susceptibility predict that the sign of the currents can be mentioned precisely for the rings with fixed number of electrons even in the presence of impurity in the rings. At low-fields current shows only diamagnetic sign in perfect rings irrespective of the total number of electrons, Ne. On the other hand, in disordered rings it exhibits diamagnetic and paramagnetic sign, respectively, for the rings with odd and even Ne. In the rings described by fixed chemical potentials μ, the sign of the low-field currents cannot be predicted precisely since then it strongly depends on the values of μ and the specific realizations of disordered configurations.

  13. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  14. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  15. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  16. Reconnection of Magnetic Fields

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.

  17. Magnetic fields and stardust

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1988-01-01

    The purpose of this paper is to outline the principles governing the use of far-infrared and submillimeter polarimetry to investigate magnetic fields and dust in interstellar clouds. Particular topics of discussion are the alignment of dust grains in dense clouds, the dependence on wavelength of polarization due to emission or to partial absorption by aligned grains, the nature of that dependence for mixtures of grains with different properties, and the problem of distinguishing between (1) the effects of the shapes and dielectric functions of the grains and (2) the degree and direction of their alignment.

  18. Tuning Fano resonances by magnetic forces for electron transport through a quantum wire side coupled to a quantum ring

    NASA Astrophysics Data System (ADS)

    Szafran, B.; Poniedziałek, M. R.

    2010-08-01

    We consider electron transport in a quantum wire with a side-coupled quantum ring in a two-dimensional model that accounts for a finite width of the channels. We use the finite difference technique to solve the scattering problem as well as to determine the ring-localized states of the energy continuum. The backscattering probability exhibits Fano peaks for magnetic fields for which a ring-localized states appear at the Fermi level. We find that the width of the Fano resonances changes at high magnetic field. The width is increased (decreased) for resonant states with current circulation that produce the magnetic dipole moment that is parallel (antiparallel) to the external magnetic field. We indicate that the opposite behavior of Fano resonances due to localized states with clockwise and counterclockwise currents results from the magnetic forces which change the strength of their coupling to the channel and modify the lifetime of localized states.

  19. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    SciTech Connect

    Prabhu Gaunkar, N. Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  20. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  1. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  2. Empirical models of the magnetospheric magnetic field

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.

    1994-01-01

    A general overview of magnetospheric modeling is given, along with a more detailed discussion of several empirical models which are widely used. These models are composed of representations of the Earth's main internal field (basically a bipolar field), plus external field contributions due to ring currents (carried by the particles in the Van Allen radiation belts), magnetopause currents (the boundary surface between the Earth's magnetic field and interplanetary magnetic field carried by the solar wind), and tail currents (carried by particles in the neutral sheet of the magnetotail). The empirical models presented here are the Mead-Fairfield, Olsen-Pfitzer tilt-dependent (1977), Tsyganenko-Usamo, Tsyganenko (1987), Olsen-Pfitzer dynamic (1988), Tsyganenko (1989), and Hilmer-Voight models. The derivations, agreement with quiet time and storm time data from the two satellite programs, Spacecraft Charging at High Altitudes (SCATHA) and Combined Release Radiation Effects Satellite (CRRES), and computational requirements of these models are compared.

  3. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  4. The magnetic fields of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Ness, N. F.

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

  5. Comparisons of Simulated and Observed Stormtime Magnetic Intensities and Ion Densities in the Ring Current

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Guild, T. B.; Lemon, C. L.; Schulz, M.

    2008-12-01

    Recent progress in ring current and plasma sheet modeling has shown the importance of a self-consistent treatment of particle transport and magnetic and electric fields in the inner magnetosphere. For example, the feedback of the ring current tends to mitigate the build-up of the asymmetric ring current and associated magnetic depressions during storm main phase. Models with and without self-consistency can lead to significantly different magnitudes and spatial distributions of plasma pressure and magnetic intensity during disturbed times. In this study we compare simulated and observed stormtime magnetic intensities and ion densities at geosynchronous altitude to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet for conditions corresponding to the 12-14 August 2000 storm using the self-consistent Rice Convection Model-Equilibrium (RCM-E) [ Lemon et al., JGR, 2004]. Using the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 RE as the plasma boundary location in the RCM- E. We compare the simulated magnetic intensity at geosynchronous altitude (6.6 RE) with the magnetic intensity measured by magnetometers on the GOES G8, G10, and G11 satellites. The simulated ion densities at different magnetic local times are compared with those from the re-analysis model of LANL/MPA densities of O'Brien and Lemon [Space Weather, 2007]. This is a first step towards a more extensive comparison that will include other datasets, such as ion and magnetic field data from Polar, at locations closer to the Earth than geosynchronous altitude.

  6. Sequence of Rotating Plasma Rings Configurations in the Prevalent Gravitational Field of a Central Object

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Rousseau, F.

    2005-10-01

    The search for the axisymmetric equilibrium configurations of thin differentially rotating plasma structures in the prevalent gravitational field of a central object has led to identify a new kind of configuration consisting of a sequence of pairs of plasma rings corresponding to pairs of oppositely directed current channels. The plasma pressure is of the order of the magnetic energy density associated with the currents flowing within the rings, but larger than that of the field in which the rings are immersed. The magnetic configuration has a ``crystal structure'' of the type found first for accretion disksootnotetextB. Coppi, Phys. of Plasmas 12, 057302 (2005). with relatively low magnetic energy densities. The ``sequence of plasma rings'' solutionootnotetextB. Coppi and F. Rousseau, M.I.T. LNS Report HEP 05/01,(2005). of the relevant equilibrium equations may in fact be extended to dusty plasmas, and be of interest in planetary physicsootnotetextC.K. Goertz and G. Morfill, Icarus 53, 219 (1983). A necessary condition is that the plasma rotation frequency is constant on magnetic surfaces requiring relatively large electrical conductivity. Moreover, accretion structures for which the magnetic configuration has a dominant effect are suitable to represent those from which jets can emerge. Sponsored in part by the U.S. Department of Energy.

  7. Magnetic tunnel junctions for low magnetic field sensing

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyong

    In this thesis, we did a comprehensive investigation on the relationship between spin-dependent tunneling and structural variation in junction devices. Magnetic, microstructural, and transport studies have shown a significant improvement in exchange-bias, a reduced barrier roughness, and an enhanced magnetoresistance for samples after magnetic annealing. We have examined different magnetic configurations required for sensing applications and presented some results of using MTJ sensors to detect AC magnetic fields created by electrical current flow and DC stray field distributions of patterned magnetic materials. We have studied the low frequency noise in MTJ sensors. We have found that the 1/f noise in MTJs has magnetic as well as electrical origins, and is strongly affected by the junction's internal structure. The magnetic noise comes from magnetization fluctuations in the free FM layer and can be understood using the fluctuation-dissipation theorem. While the field-independent electrical noise due to charge trapping in the barrier, is observed in the less optimized MTJs sensors, and has an amplitude at least one order of magnitude higher than the noise component due to magnetization fluctuations. In addition, we have studied the magnetization switching of Cobalt rings with varying anisotropy utilizing scanning magnetoresistive microscopy. We have for the first time observed a complicated multi-domain intermediate phase during the transition between onion states for samples with strong anisotropy. This is in contrast to as deposited samples, which reverse by simple domain wall motion and feature an intermediate vortex state. The result is further analyzed by micro magnetic simulations.

  8. Observations of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.

  9. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  10. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  11. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  12. PERMANENT MAGNET DESIGNS WITH LARGE VARIATIONS IN FIELD STRENGTH.

    SciTech Connect

    GUPTA,R.

    2004-01-21

    The use of permanent magnets has been investigated as an option for electron cooling ring for the proposed luminosity upgrade of RHIC. Several methods have been developed that allow a large variation in field strength. These design concepts were verified with computer simulations using finite element codes. It will be shown that the field uniformity is maintained while the field strength is mechanically adjusted.

  13. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  14. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  15. Exposure guidelines for magnetic fields.

    PubMed

    Miller, G

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields. PMID:3434538

  16. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  17. [Magnetic fields and fish behavior].

    PubMed

    Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25438567

  18. [Magnetic fields and fish behavior].

    PubMed

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25508098

  19. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  20. Structuring Light by Concentric-Ring Patterned Magnetic Metamaterial Cavities.

    PubMed

    Zeng, Jinwei; Gao, Jie; Luk, Ting S; Litchinitser, Natalia M; Yang, Xiaodong

    2015-08-12

    Ultracompact and tunable beam converters pose a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. Here we design and demonstrate concentric-ring patterned structures of magnetic metamaterial cavities capable of tailoring both polarization and phase of light by converting circularly polarized light into a vector beam with an orbital angular momentum. We experimentally illustrate the realization of both radially and azimuthally polarized vortex beams using such concentric-ring patterned magnetic metamaterials. These results contribute to the advanced complex light manipulation with optical metamaterials, making it one step closer to realizing the simultaneous control of polarization and orbital angular momentum of light on a chip. PMID:26121268

  1. Residual Field Correction of Pulsed Bending Magnet

    NASA Astrophysics Data System (ADS)

    Takano, Junpei; Igarashi, Susumu; Kamikubota, Norihiko; Meigo, Shin-ichiro; Sato, Kenichi; Shirakata, Masashi; Yamada, Shuei

    The Japan Proton Accelerator Research Complex (J-PARC) has an accelerator chain, Linac, Rapid Cycling Synchrotron (RCS), and Main Ring (MR). The RCS accelerates the proton beam up to 3 GeV every 40 msec. After the beam is extracted from the RCS, it is delivered to a beam transport line, which is 3NBT for the Material and Life Science Experimental Facility (MLF). Some bunches of the proton beam are bended from the 3NBT to another beam transport line, which is 3-50BT for the MR, by using a pulsed bending magnet (PB) [1]. However, the beam orbit in the 3NBT is kicked by the residual magnetic field of the PB. In order to correct the residual magnetic field, additional coils had been wound on the PB poles. As a result of scanning the current pattern of the correction coils, the orbit distortion in the 3NBT has been reduced.

  2. Magnetization switching in a mesoscopic NiFe ring with nanoconstrictions of wire

    NASA Astrophysics Data System (ADS)

    Lu, Zhengqi; Zhou, Yun; Du, Yuqing; Wilton, D.; Pan, G.; Chen, Yifang; Cui, Zheng

    2006-04-01

    Magnetoresistance in a mesoscopic NiFe ring with nanoconstrictions of wire has been measured. For the applied field tilted from the perpendicular direction, it is shown that the applied current has an effect on the switching fields and finally the transition process due to the spin torque effect. The decrease or increase in the switching field from the vortex state to the onion state depends on the electron flow with respect to the direction of domain propagation. The magnetization in the ring exhibits only a double switching process at a low applied current. However, when the applied current is higher than the critical current density, the magnetization shows a combination of single and double switching processes. For the applied field direction perpendicular to the wire, an enhancement in magnetoresistance is obtained around zero fields at a low applied current, which is due to the domain wall trapped at nanoconstrictions. Furthermore, it is found that the magnetization in the ring goes via a single onion to onion switching process at whatever value of the applied current.

  3. Magnetic fields in nearby spirals

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohui; Lenc, Emil

    2013-10-01

    Magnetic fields play an important role in star formation process and dynamic evolution of galaxies. Previous studies of magnetic fields relied on narrow band polarisation observations and difficult to disentangle magnetised structures along line of sight. Thanks to the broad bandwidth and multi-channels of CABB we are now able to recover the 3D structures of magnetic fields using RM synthesis and QU-fitting. We propose to observe two nearby spirals M83 and NGC 4945 to build clear pictures of their magnetic fields.

  4. Radiation effects in a muon collider ring and dipole magnet protection

    SciTech Connect

    Mokhov, N.V.; Kashikhin, V.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2011-03-01

    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 10{sup 34} cm{sup -2}s{sup -1}. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

  5. Practical method using superposition of individual magnetic fields for initial arrangement of undulator magnets

    SciTech Connect

    Tsuchiya, K.; Shioya, T.

    2015-04-15

    We have developed a practical method for determining an excellent initial arrangement of magnetic arrays for a pure-magnet Halbach-type undulator. In this method, the longitudinal magnetic field distribution of each magnet is measured using a moving Hall probe system along the beam axis with a high positional resolution. The initial arrangement of magnetic arrays is optimized and selected by analyzing the superposition of all distribution data in order to achieve adequate spectral quality for the undulator. We applied this method to two elliptically polarizing undulators (EPUs), called U#16-2 and U#02-2, at the Photon Factory storage ring (PF ring) in the High Energy Accelerator Research Organization (KEK). The measured field distribution of the undulator was demonstrated to be excellent for the initial arrangement of the magnet array, and this method saved a great deal of effort in adjusting the magnetic fields of EPUs.

  6. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  7. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  8. Magnetic quantum dots and rings in two dimensions

    NASA Astrophysics Data System (ADS)

    Downing, C. A.; Portnoi, M. E.

    2016-07-01

    We consider the motion of electrons confined to a two-dimensional plane with an externally applied perpendicular inhomogeneous magnetic field, both with and without a Coulomb potential. We find that as long as the magnetic field is slowly decaying, bound states in magnetic quantum dots are indeed possible. Several example cases of such magnetic quantum dots are considered in which one can find the eigenvalues and eigenfunctions in closed form, including two hitherto unknown quasi-exactly-solvable models treated with confluent and biconfluent Heun polynomials. It is shown how a modulation of the strength of the magnetic field can exclude magnetic vortexlike states, rotating with a certain angular momenta and possessing a definite spin orientation, from forming. This indicates one may induce localization-delocalization transitions and suggests a mechanism for spin separation.

  9. Localized domain wall nucleation dynamics in asymmetric ferromagnetic rings revealed by direct time-resolved magnetic imaging

    NASA Astrophysics Data System (ADS)

    Richter, Kornel; Krone, Andrea; Mawass, Mohamad-Assaad; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2016-07-01

    We report time-resolved observations of field-induced domain wall nucleation in asymmetric ferromagnetic rings using single direction field pulses and rotating fields. We show that the asymmetric geometry of a ring allows for controlling the position of nucleation events, when a domain wall is nucleated by a rotating magnetic field. Direct observation by scanning transmission x-ray microscopy (STXM) reveals that the nucleation of domain walls occurs through the creation of transient ripplelike structures. This magnetization state is found to exhibit a surprisingly high reproducibility even at room temperature and we determine the combinations of field strengths and field directions that allow for reliable nucleation of domain walls and directly quantify the stability of the magnetic states. Our analysis of the processes occurring during field induced domain wall nucleation shows how the effective fields determine the nucleation location reproducibly, which is a key prerequisite toward using domain walls for spintronic devices.

  10. Sub-nanosecond resolution x-ray magnetic circular dichroism photoemission electron microscopy of magnetization processes in a permalloy ring

    NASA Astrophysics Data System (ADS)

    Neeb, D.; Krasyuk, A.; Oelsner, A.; Nepijko, S. A.; Elmers, H. J.; Kuksov, A.; Schneider, C. M.; Schönhense, G.

    2005-04-01

    Fast magnetization processes in a microstructured permalloy ring with 80 µm o.d. and 30 nm thickness have been observed by photoemission electron microscopy exploiting x-ray magnetic circular dichroism as the magnetic contrast mechanism. As a high speed probe we employed synchrotron radiation pulses at the ESRF (Grenoble) operated in 16-bunch mode, yielding photon pulses of 105 ps FWHM with a period of 176 ns. Fast magnetic field pulses have been generated by means of current pulses through coplanar waveguides with the magnetic structure being lithographically prepared on their surface. A stroboscopic pump-probe set-up with a variable time delay between the field pulse and photon pulse allowed us to take snapshots of the dynamic response of the magnetic domain structure. We observed coherent magnetization rotation during the leading edge part of the field pulse, the formation of a characteristic domain pattern ('onion state') in the plateau region of the pulse and the fast formation of a striped domain pattern (incoherent magnetization rotation) during the trailing edge part of the field pulse. A numerical simulation confirmed essential features of the stroboscopic image series.

  11. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  12. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)  G if the energy scale of inflation is few×10(16)  GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

  13. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  14. Non-disjunction mutations in Drosophila exposed to magnetic fields

    NASA Astrophysics Data System (ADS)

    Levengood, W. C.

    1987-09-01

    The frequency of XO mutations in Drosophila melanogaster was significantly higher than normal in magnetic field exposed, immature males, than in exposed, mature males. Mutation levels increased with magnetic field strength. Intercellular rings of black magnetic particles were formed in the high magnetic flux region of dorsally exposed, early stage pupae and to a lesser degree in the abdomen of young adult females. Orientation of minute, chromosome associated, magnetic domains within the microenvironment of the developing organism was believed to alter oxidative processes within maturing X+ sperm which during fertilization were incompatible with and destructive to an Xw chromosome in the zygote.

  15. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    NASA Astrophysics Data System (ADS)

    Harada, Kentaro; Kobayashi, Yukinori; Miyajima, Tsukasa; Nagahashi, Shinya

    2007-12-01

    We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM) with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR) in High Energy Accelerator Research Organization (KEK). The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3T/m and a shorter pulse width of 2.4μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  16. Rings

    SciTech Connect

    Davis, R.L.

    1989-01-01

    The essence of vortex physics is that at certain low-energy scales elementary excitations of a point particle theory can behave like strings rather than particles. Vortices are the resulting string-like solutions; their thickness sets the distance scale beyond which physics is string-like rather than particle-like. String degrees of freedom are massless in the sense that excitations on a string can have an arbitrarily low frequency. Non-string degrees of freedom correspond to massive particles and are absent from the low energy spectrum. This article considers only field theories with vortices at low energies. The possible existence of a class of solitons in these vortex theories will be discussed. They are vortex rings: they are localized and finite in energy, and able to carry the quantum numbers of point particles. Rings are thus particle-like solutions of a vortex theory, which is itself a limit of a point particle field theory.

  17. Piston ring microwelding: Field/lab correlation and prevention

    SciTech Connect

    Shuster, M.; Mahler, F.; Deis, M.; Macy, D.; Frame, R.

    1996-12-31

    This paper will discuss the microwelding phenomenon between aluminum pistons and iron piston rings in internal combustion engines. The mechanism of microwelding as observed on field run engine hardware has been correlated with the microwelding mechanism generated in an accelerated laboratory bench test. Hardness distribution measurements, metallography, scanning electron microscopy, and EDS spectrometer have been used in the analysis of this surface damage mechanism. In this work, the metallurgical parameters were formulated which describe the microwelding phenomenon after field usage and after accelerated testing. It was demonstrated that the high output water-cooled two-stroke engine accelerated bench test reproduces the field run engine microwelding phenomenon in 30 minutes. It was shown that the best prevention of the microwelding phenomenon was provided when the piston and piston ring surfaces were separated by a soft, wear and heat resistant coating, integrally bonded to the piston ring.

  18. Neutron interference in the gravitational field of a ring laser

    NASA Astrophysics Data System (ADS)

    Fischetti, Robert D.; Mallett, Ronald L.

    2015-07-01

    The neutron split-beam interferometer has proven to be particularly useful in measuring Newtonian gravitational effects such as those studied by Colella, Overhauser, and Werner (COW). The development of the ring laser has led to numerous applications in many areas of physics including a recent general relativistic prediction of frame dragging in the gravitational field produced by the electromagnetic radiation in a ring laser. This paper introduces a new general technique based on a canonical transformation of the Dirac equation for the gravitational field of a general linearized spacetime. Using this technique it is shown that there is a phase shift in the interference of two neutron beams due to the frame-dragging nature of the gravitational field of a ring laser.

  19. Magnetic fields in young galaxies

    NASA Astrophysics Data System (ADS)

    Nordlund, Åke; Rögnvaldsson, Örnólfur

    We have studied the fate of initial magnetic fields in the hot halo gas out of which the visible parts of galaxies form, using three-dimensional numerical MHD-experiments. The halo gas undergoes compression by several orders of magnitude in the subsonic cooling flow that forms the cold disk. The magnetic field is carried along and is amplified considerably in the process, reaching μG levels for reasonable values of the initial ratio of magnetic to thermal energy density.

  20. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  1. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  2. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  3. Monte Carlo simulation for thermal assisted reversal process of micro-magnetic torus ring with bistable closure domain structure

    NASA Astrophysics Data System (ADS)

    Terashima, Kenichi; Suzuki, Kenji; Yamaguchi, Katsuhiko

    2016-04-01

    Monte Carlo simulations were performed for temperature dependences of closure domain parameter for a magnetic micro-torus ring cluster under magnetic field on limited temperature regions. Simulation results show that magnetic field on tiny limited temperature region can reverse magnetic closure domain structures when the magnetic field is applied at a threshold temperature corresponding to intensity of applied magnetic field. This is one of thermally assisted switching phenomena through a self-organization process. The results show the way to find non-wasteful pairs between intensity of magnetic field and temperature region for reversing closure domain structure by temperature dependence of the fluctuation of closure domain parameter. Monte Carlo method for this simulation is very valuable to optimize the design of thermally assisted switching devices.

  4. DC septum magnets for the damping rings of the SLC SLAC Linear Collider

    SciTech Connect

    Bijleveld, J.; Peterson, J.M.; Jensen, D.

    1986-07-01

    The injection/extraction systems of the 1.21 GeV Stanford Linear Collider (SLC) damping rings uses four pairs of water cooled septum magnets. Each pair consists of a thin-septum, low-field (3 mm, 3 kilogauss) magnet plus a thick-septum, high-field (12 mm, 8 kilogauss) model. In the latest design cooling reliability was improved by using stainless-steel tubing imbedded in the copper. The operating current in each is 2600 amperes, at a density of up to 120 amperes per mmS. Plasma-sprayed alumina is used to provide electrical insulation. The magnet system is compatible with 10 Z torr ultra-high vacuum. The magnet design, fabrication, and measurements are described.

  5. Performance improvement of an extraction Lambertson septum magnet in the SNS accumulator ring

    SciTech Connect

    Wang, Jian-Guang

    2009-04-01

    The SNS ring Extraction Lambertson Septum magnet contains a strong skew quadrupole term, which has been identified as the source of causing a beam profile distortion on the target. We have performed 3D computer simulations to study the magnetic field quality in the magnet. The skew quad term is computed with different methods in simulations and is compared to measurement data. The origin of the large skew quad term is thoroughly investigated. The remedy for minimizing the skew quad term by modifying the magnet is proposed. Particle tracking is performed to verify the beam profile evolution through the existing and modified septum. The magnetic interference to the septum performance from an adjacent quadrupole is also assessed.

  6. Magnetization reversal process and domain wall resistance in a water drop shape ring

    NASA Astrophysics Data System (ADS)

    Chen, D. C.; Chiang, D. P.; Yao, Y. D.

    2006-03-01

    Patterned permalloy (Ni80-Fe20) materials have been fabricated by e-beam lithography in the shape of water drop ring. A tip is intentionally added into ring as geometrical defects to interrupt the continuity of magnetization reversal process, in order to create domain wall. Image from Magnetic force microscopy (MFM) with real- time external field confirmed this domain structure. As a result of magneto- resistance (MR) measurement, the ratio of MR is about 0.137 ˜ 0.233% and 0.23 ˜ 0.71% at sweeping angles of samples and sweeping external field, respectively. The ratio of the change in the electric resistance which is measured by I-V curve is just about the value of domain wall MR ratio which is measured by sweeping angles and external field. In summary, we have successfully demonstrated that the domain wall motion along the direction of perimeter in a ferromagnetic ring at its onion state; and the critical field to form onion state is near 200 Oe and the lowest field which can still drag the domain wall is between 100 and 50 Oe.

  7. The Primordial Origin Model of Magnetic Fields in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro

    2010-10-01

    We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.

  8. Magnetic field synthesis for microwave magnetics

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  9. Clinical applications of magnetic rings in colorectal anastomosis.

    PubMed

    Jansen, A; Brummelkamp, W H; Davies, G A; Klopper, P J; Keeman, J N

    1981-10-01

    Based upon experiments on animals, an anastomotic apparatus, consisting of two magnetic rings of polymer bonded, rare earth cobalt magnets embedded in polyester, was developed. There are three types of polyester device with diameters of 25, 28, and 30 millimeters, respectively. The force between the magnets varied between 2.5 Newtons at 4 centimer separation and 11.8 Newtons at union. For the low colorectal anastomosis, a magnet holder, connecting rod and spherical cap were developed. The aim of the technique is a quick restoration of the underbroken submucosal intestinal cylinder by optimal circular apposition of the submucosal layer. The working mechanism is based upon progressive compression, leading to necrosis of the intermediate mucosal and submucosal layers by increasing the magnetic force while intestinal healing takes place. After seven to 12 days, the magnets cut through the disappear from the anastomotic region by intestinal peristalsis. From the initial series of 21 patients, 11 resections of the sigmoid colon and nine low anterior resections were performed. Dehiscence of the suture line was noted in two instances. One patient required reoperation. The other patient had a small area of dehiscence at the suture line after evacuation of an infected hematoma with a further uncomplicated course. One patient died on the third postoperative day of recurrent myocardial infarction. In the other 18 patients, primary intestinal healing was demonstrated roentgenologically and sigmoidoscopically. PMID:7280943

  10. Magnetic field structure evolution in rotating magnetic field plasmas

    SciTech Connect

    Petrov, Yuri; Yang Xiaokang; Huang, T.-S.

    2008-07-15

    A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.

  11. Electroplated FeNi ring cores for fluxgates with field induced radial anisotropy

    NASA Astrophysics Data System (ADS)

    Butta, M.; Ripka, P.; Janosek, M.; Pribil, M.

    2015-05-01

    Being able to control the anisotropy of a magnetic core plays an important role in the development of a fluxgate sensor. Our aim is to induce anisotropy orthogonal to the direction of excitation because it generates a stable, low-noise fluxgate, as cited in the literature. In this paper, we present an original method for electroplating a ring core for a fluxgate with built-in radial anisotropy by performing the electroplating in a radial field produced by a novel yoke. The results show that the resulting anisotropy is homogeneously radial and makes the magnetization rotate, avoiding domain wall movement for low excitation fields.

  12. PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

    SciTech Connect

    Yamamoto, Tetsuya T.; Kusano, K.

    2012-06-20

    Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

  13. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  14. MonitoRing - Magnetic induction measurement at your fingertip

    NASA Astrophysics Data System (ADS)

    Teichmann, D.; Foussier, J.; Löschcke, D.; Leonhardt, S.; Walter, M.

    2013-04-01

    The device presented in this paper is a sensor for monitoring pulse by measuring the bioimpedance of the thumb in an unobtrusive way. The sensor is based on magnetic induction measurement, a non-contact technique for measuring impedance changes of objects [1]. The sensor head of the presented system has the form of a ring and is worn on the finger. The developed technique renders the possibility of easy and unnoticed pulse recording during every day activities without the need for, e.g. electrodes, a pulse belt around the chest, or a pulse photoplethysmographic finger or ear clip.

  15. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  16. Fabrication and test of prototype ring magnets for the ALS (Advanced Light Source)

    SciTech Connect

    Tanabe, J.; Avery, R.; Caylor, R.; Green, M.I.; Hoyer, E.; Halbach, K.; Hernandez, S.; Humphries, D.; Kajiyama, Y.; Keller, R.; Low, W.; Marks, S.; Milburn, J.; Yee, D.

    1989-03-01

    Prototype Models for the Advanced Light Source (ALS) Booster Dipole, Quadrupole and Sextupole and the Storage Ring Gradient Magnet, Quadrupole and Sextupole have been constructed. The Booster Magnet Prototypes have been tested. The Storage Ring Magnets are presently undergoing tests and magnetic measurements. This paper reviews the designs and parameters for these magnets, briefly describes features of the magnet designs which respond to the special constraints imposed by the requirements for both accelerator rings, and reviews some of the results of magnet measurements for the prototype. 13 refs., 7 figs., 1 tab.

  17. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  18. Magnetic fields and scintillator performance

    SciTech Connect

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  19. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  20. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  1. SCALING LAW FOR THE IMPACT OF MAGNET FRINGE FIELDS.

    SciTech Connect

    WEI,J.; PAPAPHILIPPOU,Y.; TALMAN,R.

    2000-06-30

    A general scaling law can be derived for the relative momentum deflection produced on a particle beam by fringe fields, to leading order. The formalism is applied to two concrete examples, for magnets having dipole and quadrupole symmetry. During recent years, the impact of magnet fringe fields is becoming increasingly important for rings of relatively small circumference but large acceptance. A few years ago, following some heuristic arguments, a scaling law was proposed [1], for the relative deflection of particles passing through a magnet fringe-field. In fact, after appropriate expansion of the magnetic fields in Cartesian coordinates, which generalizes the expansions of Steffen [2], one can show that this scaling law is true for any multipole magnet, at leading order in the transverse coefficients [3]. This paper intends to provide the scaling law to estimate the impact of fringe fields in the special cases of magnets with dipole and quadrupole symmetry.

  2. Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field

    NASA Astrophysics Data System (ADS)

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2016-01-01

    We report on the nonlinear magnetization dynamics of a HoFeO3 crystal induced by a strong terahertz magnetic field resonantly enhanced with a split ring resonator and measured with magneto-optical Kerr effect microscopy. The terahertz magnetic field induces a large change (˜40%) in the spontaneous magnetization. The frequency of the antiferromagnetic resonance decreases in proportion to the square of the magnetization change. A modified Landau-Lifshitz-Gilbert equation with a phenomenological nonlinear damping term quantitatively reproduced the nonlinear dynamics.

  3. Evolution of ring-field systems in microlithography

    NASA Astrophysics Data System (ADS)

    Williamson, David M.

    1998-09-01

    Offner's ring-field all-reflecting triplet was the first successful projection system used in microlithography. It evolved over several generations, increasing NA and field size, reducing the feature sizes printed from three down to one micron. Because of its relative simplicity, large field size and broad spectral bandwidth it became the dominant optical design used in microlithography until the early 1980's, when the demise of optical lithography was predicted. Rumours of the death of optics turned out to be exaggerated; what happened instead was a metamorphosis to more complex optical designs. A reduction ring-field system was developed, but the inevitable loss of concentricity led to a dramatic increase in complexity. Higher NA reduction projection optics have therefore been full-field, either all-refracting or catadioptric using a beamsplitter and a single mirror. At the present time, the terminal illness of optical lithography is once again being prognosed, but now at 0.1 micro feature sizes early in the next millenium. If optics has a future beyond that, it lies at wavelengths below the practical transmission cut-off of all refracting materials. Scanning all-reflecting ring-field systems are therefore poised for a resurgence, based on their well-established advantage of rotational symmetry and consequent small aberration variations over a small, annular field. This paper explores some such designs that potentially could take optical lithography down to the region of 0.025 micron features.

  4. Study of in situ magnetization reversal processes for nanoscale Co rings using off-axis electron holography

    NASA Astrophysics Data System (ADS)

    Hu, H.; Wang, H.; McCartney, M. R.; Smith, David J.

    2005-03-01

    We report a study of the magnetic switching behavior of nanoscale Co rings using off-axis electron holography. Arrays of 10nm thick polycrystalline Co rings with 400nm outer diameter (OD) and different inner diameter (ID) were fabricated by electron-beam lithography. The switching behavior of the rings was studied for different OD/ID ratios, and two kinds of reversal mechanism were identified. For OD/ID of 400nm/250nm and 400nm/50nm, the reversal started from the so-called onion (bidomain) state, proceeding to a stable vortex state, and finally to the reversed onion state. For intermediate OD/ID of 400nm/150nm, the reversal was instead accomplished via rotation of head-to-head domain walls around the rings to the reversed onion state without formation of a vortex state. The OD/ID ratio of the rings thus played the most important role in determining the switching process. Irrespective of the reversal mechanism, the coercive field of the rings and the range of the field needed to reverse their magnetization, both increased as the inner ring diameter was increased (i.e., narrower ring). The significance of different contributions to the total energy in causing these differences in switching behavior is briefly discussed.

  5. Bioluminescence under static magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Ueno, S.

    1998-06-01

    In the present study, the effect of magnetic fields on the emission of light by a living system was studied. The fireflies Hotaria parvula and Luciola cruciata were used as the bioluminescence systems. The firefly light organ was fixed at the edge of an optical fiber. The emitted light was introduced into a single-channel photon-counting system using an optical fiber. We measured both the spectrum of a constant light emission and, the time course of bioluminescence pulses. Two horizontal-type superconducting magnets, which produced 8 and 14 T magnetic fields at their center, were used as the magnetic-field generators. We also carried out an in vitro study of bioluminescence. The enzymatic activity of luciferase was measured under a 14 T magnetic field. We measured emission spectra of bioluminescence over the interval 500-600 nm at 25 °C in a stable emission state. It was observed that the peak wavelength around 550 nm shifted to 560 nm under a 14 T magnetic field. However, the effects of magnetic fields were not significant. Also, we measured the time course of emissions at 550 nm in a transient emission state. The rate in the light intensity under a 14 T magnetic field increased compared to the control. There is a possibility that the change in the emission intensities under a magnetic field is related to a change in the biochemical systems of the firefly, such as the enzymatic process of luciferase and the excited singlet state with subsequent light emission.

  6. Fast and reliable kicker magnets for the SLC damping rings

    SciTech Connect

    Mattison, T.S.; Cassel, R.L.; Donaldson, A.R.; Gross, G.

    1995-06-01

    The design, construction, and operation of a kicker magnet with superior electromagnetic performance and greatly improved radiation tolerance is described. A short flux return of high mu ferrite improves the field strength and linearity with current, and novel metallic field-confining structures minimize the inductance. An 8-cell structure with capacitance integrated into each cell makes the magnet a nearly perfect transmission line. The capacitor dielectric is 1 cm thick alumina-loaded epoxy, processed to eliminate air voids, and cast in a multiple step procedure developed to circumvent epoxy shrinkage. The magnet operates with pulses of up to 40 kV and 3.2 kA at 120 Hz, with magnet transit times of less than 35 nsec and field rise and fall times of less than 60 nsec.

  7. Magnetic field structure of Mercury

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.

    2012-04-01

    Recently planet Mercury - an unexplored territory in our solar system - has been of much interest to the scientific community due to recent flybys of the spacecraft MESSENGER that discovered its intrinsic stationary and large-scale dipole like magnetic field structure with an intensity of ˜300nT confirming Mariner 10 observations. In the present study, with the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is modeled as a solution of magnetic diffusion equation. In this study, Mercury's internal structure mainly consists of a stable stratified fluid core and the convective mantle. For simplicity, magnetic diffusivity in both parts of the structure is considered to be uniform and constant with a value represented by a suitable averages. It is further assumed that vigorous convection in the mantle disposes of the electric currents leading to a very high diffusivity in that region. Thus, in order to satisfy observed atmospheric magnetic field structure, Mercury's most likely magnetic field structure consists of a solution of MHD diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. With imposition of appropriate boundary conditions at the core-mantle boundary for the first two diffusion eigen modes, in order to satisfy the observed field structure, present study puts the constraint on Mercury's core radius to be ˜2000km. From the estimated magnetic diffusivity and the core radius, it is also possible to estimate the two diffusion eigen modes with their diffusion time scales of ˜8.6 and 3.7 billion years respectively suggesting that the planet inherits its present-day magnetic field structure from the solar Nebula. It is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during

  8. Magnetic Field Generation in Stars

    NASA Astrophysics Data System (ADS)

    Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

    2015-10-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.

  9. A RING OF POLARIZED LIGHT: EVIDENCE FOR TWISTED CORONAL MAGNETISM IN CAVITIES

    SciTech Connect

    Dove, J. B.; Gibson, S. E.; Rachmeler, L. A.; Tomczyk, S.; Judge, P.

    2011-04-10

    Coronal prominence cavities may be manifestations of twisted or sheared magnetic fields capable of storing the energy required to drive solar eruptions. The Coronal Multi-Channel Polarimeter (CoMP), recently installed at Mauna Loa Solar Observatory, can measure polarimetric signatures of current-carrying magnetohydrodynamic (MHD) systems. For the first time, this instrument offers the capability of daily full-Sun observations of the forbidden lines of Fe XIII with high enough spatial resolution and throughput to measure polarimetric signatures of current-carrying MHD systems. By forward-calculating CoMP observables from analytic MHD models of spheromak-type magnetic flux ropes, we show that a predicted observable for such flux ropes oriented along the line of sight is a bright ring of linear polarization surrounding a region where the linear polarization strength is relatively depleted. We present CoMP observations of a coronal cavity possessing such a polarization ring.

  10. Magnetic confinement in a ring-cusp ion thruster discharge plasma

    SciTech Connect

    Sengupta, Anita

    2009-05-01

    An experimental investigation, in conjunction with a volume averaged analytical model, has been developed to improve the confinement and production of the discharge plasma for plasma thrusters and ion sources. The research conducted explores the discharge performance of a ring-cusp ion source based on the magnetic field configuration, geometry, and power level. Analytical formulations for electron and ion confinement are developed to predict the ionization efficiency for a given discharge chamber design. Explicit determination of discharge loss and volume averaged plasma parameters are obtained via a series of experimental measurements on a ring-cusp NASA Solar Technology Application Readiness (NSTAR) ion thruster to assess the validity of the analytical model. Measurements of the discharge loss with multiple magnetic field configurations compare well with plasma parameter predictions for propellant utilizations between 80% and 95%. The results indicate that increasing the magnetic strength of the first closed magnetic contour line reduces Maxwellian electron diffusion and electrostatically confines the ion population and subsequent loss to the anode wall. The results also indicate that increasing the strength and minimizing the area of the magnetic cusps improves primary electron confinement, increasing the probability of an ionization collision prior to loss at the cusp.

  11. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  12. Effects of Magnetic Fields on Bar Substructures in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae

    2015-03-01

    To study the effects of magnetic fields on the properties of bar substructures, we run two-dimensional, ideal MHD simulations of barred galaxies under the influence of a non-axisymmetric bar potential. In the bar regions, magnetic fields reduce density compression in the dust-lane shocks, while removing angular momentum further from the gas at the shocks. This evidently results in a smaller and more distributed ring, and a larger mass inflows rate to the galaxy center in models with stronger magnetic fields. In the outer regions, an MHD dynamo due to the combined action of the bar potential and background shear operates, amplifying magnetic fields near the corotation resonance. In the absence of spiral arms, the amplified fields naturally shape into trailing magnetic arms with strong fields and low density. The reader is refereed to Kim & Stone (2012) for a detailed presentation of the simulation outcomes.

  13. The magnetic field of Mercury

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1977-01-01

    The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.

  14. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  15. Magnetic field induced dynamical chaos

    SciTech Connect

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-15

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  16. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

    SciTech Connect

    Casadei, Cecilia

    2011-01-01

    The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr8 antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr3+ ion with diamagnetic Cd2+ (Cr7Cd) and with Ni2+ (Cr7Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both 53Cr-NMR and 19F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant 19F - M+ where M+ = Cr3+, Ni2+ in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.

  17. Passive temperature compensation in hybrid magnets with application to the Fermilab stacker and recycler ring dipole design

    SciTech Connect

    Schlueter, R.D.; Marks, S.; Loper, C.; Halbach, K.

    1995-06-01

    Design theory of hybrid (permanent magnet plus iron) accelerator magnets with application to the proposed permanent magnet recycler and stacker rings at the Fermi National Laboratory is presented. Field stability in such devices requires that changes in the strength of the permanent magnet material with temperature be compensated. Field tuning techniques, including those employing variable capacitance between energized pole and magnet yoke and those employing variable energization of magnet pole pieces, are described. Mechanical configurations capable of achieving temperature compensation passively, including use of expanding liquids/gases and bimetallic springs are outlined. Active configurations, relying on a actuator, in addition to temperature compensation, have the additional benefit of enabling magnet tuning about a nominal operating field level.

  18. Numerical analyses of trapped field magnet and stable levitation region of HTSC

    SciTech Connect

    Tsuchimoto, M.; Kojima, T.; Waki, H.; Honma, T.

    1995-05-01

    Stable levitation with a permanent magnet and a bulk high {Tc} superconductor (HTSC) is examined numerically by using the critical state model and the frozen field model. Differences between a permanent magnet and a trapped field magnet are first discussed from property of levitation force. Stable levitation region of the HTSC on a ring magnet and on a solenoid coil are calculated with the numerical methods. Obtained results are discussed from difference of the magnetic field configuration.

  19. RANDOM AND SYSTEMATIC FIELD ERRORS IN THE SNS RING: A STUDY OF THEIR EFFECTS AND COMPENSATION

    SciTech Connect

    GARDNER,C.J.; LEE,Y.Y.; WENG,W.T.

    1998-06-22

    The Accumulator Ring for the proposed Spallation Neutron Source (SNS) [l] is to accept a 1 ms beam pulse from a 1 GeV Proton Linac at a repetition rate of 60 Hz. For each beam pulse, 10{sup 14} protons (some 1,000 turns) are to be accumulated via charge-exchange injection and then promptly extracted to an external target for the production of neutrons by spallation. At this very high intensity, stringent limits (less than two parts in 10,000 per pulse) on beam loss during accumulation must be imposed in order to keep activation of ring components at an acceptable level. To stay within the desired limit, the effects of random and systematic field errors in the ring require careful attention. This paper describes the authors studies of these effects and the magnetic corrector schemes for their compensation.

  20. Magnetic fields in quiescent prominences

    NASA Technical Reports Server (NTRS)

    Van Ballegooijen, A. A.; Martens, P. C. H.

    1990-01-01

    The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.

  1. Comparisons of Simulated and Observed Stormtime Magnetic Intensities and Ion Plasma Parameters in the Ring Current

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Guild, T. B.; Lemon, C.; Roeder, J. L.; Le, G.; Schulz, M.

    2009-12-01

    Recent progress in ring current and plasma sheet modeling has shown the importance of a self-consistent treatment of particle transport and magnetic and electric fields in the inner magnetosphere. Models with and without self-consistency can lead to significantly different magnitudes and spatial distributions of plasma pressure and magnetic intensity during disturbed times. In this study we compare simulated and observed stormtime magnetic intensities (GOES and Polar/MFE) and ion densities (LANL/MPA and Polar/CAMMICE) to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet for conditions corresponding to the 11 August 2000 storm using the self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a constant magnetopause location. Using the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 RE as the plasma boundary location in the RCM-E. The simulated ion densities at different magnetic local times agree fairly well with those from the re-analysis model of LANL/MPA densities of O’Brien and Lemon [Space Weather, 2007]. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous altitude (6.6 RE) and on the Polar satellite. Agreement between the simulated and observed magnetic intensities tends to agree better on the nightside than on the dayside in the inner magnetosphere. In particular, the model cannot account for observed drops in the dayside magnetic intensity during decreases in the solar wind pressure. We will modify the RCM-E to include a time-varying magnetopause location to simulate compressions and expansions associated with variations in the solar wind pressure. We investigate whether this will lead to improved agreement between the simulated and model magnetic intensities.

  2. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  3. Magnetic Fields in Stellar Jets

    NASA Astrophysics Data System (ADS)

    Hartigan, Patrick; Frank, Adam; Varniére, Peggy; Blackman, Eric G.

    2007-06-01

    Although several lines of evidence suggest that jets from young stars are driven magnetically from accretion disks, existing observations of field strengths in the bow shocks of these flows imply that magnetic fields play only a minor role in the dynamics at these locations. To investigate this apparent discrepancy we performed numerical simulations of expanding magnetized jets with stochastically variable input velocities with the AstroBEAR MHD code. Because the magnetic field B is proportional to the density n within compression and rarefaction regions, the magnetic signal speed drops in rarefactions and increases in the compressed areas of velocity-variable flows. In contrast, B~n0.5 for a steady state conical flow with a toroidal field, so the Alfvén speed in that case is constant along the entire jet. The simulations show that the combined effects of shocks, rarefactions, and divergent flow cause magnetic fields to scale with density as an intermediate power 1>p>0.5. Because p>0.5, the Alfvén speed in rarefactions decreases on average as the jet propagates away from the star. Hence, a typical Alfvén velocity in the jet close to the star is significantly larger than it is in the rarefactions ahead of bow shocks at larger distances. We find that the observed values of weak fields at large distances are consistent with strong fields required to drive the observed mass loss close to the star. Typical velocity perturbations, which form shocks at large distances, will produce only magnetic waves close to the star. For a typical stellar jet the crossover point inside which velocity perturbations of 30-40 km s-1 no longer produce shocks is ~300 AU from the source.

  4. Hysteresis in rotation magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanyi, Amalia

    2000-01-01

    The different properties of the vector Jiles-Atherton hysteresis operator is proved under forced H- and B-field supply. Feeding the magnetic material with alternating and circular polarised rotational excitation, the different properties of the model under the input field intensity and the flux density are investigated and the results are proved in figures.

  5. Fast Magnetic Domain-Wall Motion in a Ring-Shaped Nanowire Driven by a Voltage.

    PubMed

    Hu, Jia-Mian; Yang, Tiannan; Momeni, Kasra; Cheng, Xiaoxing; Chen, Lei; Lei, Shiming; Zhang, Shujun; Trolier-McKinstry, Susan; Gopalan, Venkatraman; Carman, Gregory P; Nan, Ce-Wen; Chen, Long-Qing

    2016-04-13

    Magnetic domain-wall motion driven by a voltage dissipates much less heat than by a current, but none of the existing reports have achieved speeds exceeding 100 m/s. Here phase-field and finite-element simulations were combined to study the dynamics of strain-mediated voltage-driven magnetic domain-wall motion in curved nanowires. Using a ring-shaped, rough-edged magnetic nanowire on top of a piezoelectric disk, we demonstrate a fast voltage-driven magnetic domain-wall motion with average velocity up to 550 m/s, which is comparable to current-driven wall velocity. An analytical theory is derived to describe the strain dependence of average magnetic domain-wall velocity. Moreover, one 180° domain-wall cycle around the ring dissipates an ultrasmall amount of heat, as small as 0.2 fJ, approximately 3 orders of magnitude smaller than those in current-driven cases. These findings suggest a new route toward developing high-speed, low-power-dissipation domain-wall spintronics. PMID:27002341

  6. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

    2004-10-03

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

  7. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  8. Exact transfer functions for the PEP storage ring magnets and some general characteristics and techniques

    SciTech Connect

    Spencer, J.E.

    1982-05-01

    The exact, ion-optical transfer functions for the dipoles, quadrupoles and sextupoles of the PEP standard PODC cell are calculated for any single particle with initial coordinates (r, p, s). Modifications resulting from radiative energy loss are also calculated and discussed. These functions allow one to characterize individual magnets or classes of magnets by their aberrations and thereby simplify their study and correction. In contrast to high-energy spectrometers where aberrations are often analyzed away, those in storage rings drive series of high order resonances, even for perfect magnets (2), that can produce stop bands and other effects which can seriously limit performance. Thus, one would like to eliminate them altogether or failing this to develop local and global correction schemes. Even then, one should expect higher order effects to influence injection, extraction or single-pass systems either because of orbit distortions or overly large phase spece distortions such as may occur in low-beta insertions or any final-focus optics. The term exact means that the results here are based on solving the relativistic Lorentz force equation with accurate representations of measured magnetostatic fields. Such fields satisfy Maxwell's equations and are the actual fields seen by a particle as it propagates around a real storage ring. This is discussed in detail and illustrated with examples that show that this is possible, practical and may even be useful.

  9. Intermolecular shielding from molecular magnetic susceptibility. A new view of intermolecular ring current effects.

    PubMed

    Facelli, Julio C

    2006-03-01

    This paper presents calculations of the NICS (nuclear independent chemical shieldings) in a rectangular grid surrounding the molecules of benzene, naphthalene and coronene. Using the relationship between calculated NICS and the induced magnetic field, the calculated NICS are used to predict intermolecular effects due to molecular magnetic susceptibility or ring current effects. As expected from approximate ring current models, these intermolecular shielding effects are concentrated along the direction perpendicular to the molecular plane and they approach asymptotically to a dipolar functional dependence, i.e. (1-3 cos(2)theta)/r(3)). The deviations from the dipolar functional form require that the calculations of these intermolecular effects be done using a suitable interpolation scheme of the NICS calculated on the grid. The analysis of the NICS tensor components shows that these intermolecular shielding effects should be primarily expected on shielding components of the neighboring molecules nuclei, which are perpendicular to the molecular plane of the aromatic compound generating the induced field. The analysis of the calculated NICS along the series benzene, naphthalene and coronene shows that these intermolecular effects increase monotonically with the number of aromatic rings. PMID:16477673

  10. Magnetic field fluctuations during substorms

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1971-01-01

    Before a magnetospheric substorm and during its early phases the magnetic field magnitude in the geomagnetic tail increases and field lines in the nighttime hemisphere assume a more tail-like configuration. Before the substorm onset a minimum amount of magnetic flux is observed to cross the neutral sheet which means that the neutral sheet currents attain their most earthward locations and their greatest current densities. This configuration apparently results from an increased transport of magnetic flux to the tail caused by a southward interplanetary magnetic field. The field begins relaxing toward a more dipolar configuration at the time of a substorm onset with the recovery probably occurring first between 6 and 10 R sub E. This recovery must be associated with magnetospheric convection which restores magnetic flux to the dayside hemisphere. Field aligned currents appear to be required to connect magnetospheric currents to the auroral electrojets, implying that a net current flows in a limited range of longitudes. Space measurements supporting current systems are limited. More evidence exists for the occurrence of double current sheets which do not involve net current at a given longitude.

  11. Variable-field permanent magnet quadrupole for the SSC

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-10-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90{degrees} rotation of the outer ring of iron and magnet material.

  12. Optimization of the permanent magnet optical klystron for the SUPER-ACO storage ring free electron laser

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Bazin, C.; Billardon, M.

    1989-06-01

    A permanent magnet optical klystron has been optimized for free electron laser experiments and optical harmonic generation on the new storage ring SUPER-ACO at Orsay. The conditions of the optimization and the different steps of the field characterization measurements of this insertion device are discussed. Its effects on the stored beam and the undulator radiation measurements are described.

  13. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  14. FAST TRACK COMMUNICATION: Electrical observation of asymmetric magnetization configurations in the vortex state of NiFe and Co rings

    NASA Astrophysics Data System (ADS)

    Nam, Chunghee; Mascaro, M. D.; Ng, B. G.; Ross, C. A.

    2009-11-01

    Anisotropic magnetoresistance (AMR) measurements have been used to probe the detailed reversal mechanism of 3 µm diameter, 15 nm thick NiFe and Co rings. In the vortex state, small changes in the resistance are associated with distortion or buckling in the section of the ring magnetized antiparallel to the applied field, and the resistance changes can be similar in magnitude to the domain-wall resistance. Micromagnetic simulations showed that a distorted-vortex state forms just before the vortex-onion transition, and a reversible change between the distorted-vortex state and a fully symmetric vortex state is expected during minor loop magnetic cycling. The distorted-vortex state enables the vortex chirality in a single magnetic ring to be detected using AMR measurements.

  15. Observations of Mercury's magnetic field

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  16. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  17. Mars Crustal Magnetic Field Remnants

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.

    This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.

    The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.

    These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.

  18. The magnetic field of the Milky Way

    NASA Astrophysics Data System (ADS)

    Reid, Mark J.

    Models of the magnetic field configuration of the Milky Way are reviewed. Current analyses of rotation measure data suggest that the Milky Way possesses a bisymmetric-like spiral magnetic field, that field reversals among spiral arms exist, and that the magnetic spiral may not closely match the mass spiral structure. Zeeman measurements of OH masers may provide alternative magnetic field information.

  19. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  20. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  1. The Giotto magnetic-field investigation

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Acuna, M. H.; Burlaga, L. F.; Franke, B.; Gramkow, B.; Mariani, F.; Musmann, G.; Ness, N. F.; Schmidt, H. U.; Terenzi, T.

    1986-01-01

    The objectives of the Giotto magnetometer experiment are the investigation of the interaction between Comet Halley and the solar wind 0.9 AU from the Sun, to within 500 km of the cometary nucleus, and the study of the interplanetary magnetic field. The instrumentation consists of a triaxial and a separate biaxial system of fluxgate sensors of the ring-core type, the associated analog electronics and a digital processor. The measuring ranges of + or 1 16 up to + or - 65536 nT are digitized by a 12-bit analog-to-digital converter. Memory modes allow the bridging of gaps in telemetry coverage of up to 10 days. Because of the dust hazard near closest approach, a magnetometer boom could not be included in the spacecraft design. The magnetic contamination problem was attacked by the use of two magnetometers and by a magnetic-cleanliness program. In-flight results show that the instrument is working flawlessly, though magnetic-contamination problems remain.

  2. Cosmological magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Motta, Leonardo

    In this thesis we review the methods for computation of cosmological correlations in the early universe known as the in-in formalism which are then applied to the problem of magnetogenesis from inflation. For this computation, a power-law single field slow- roll inflation is assumed together with a coupling of the form eφ/nuF μnuFμnu between the inflaton φ and the electrodynamical field strength Fμnu. For certain choice of parameters, the model produces a scale-invariant power spectrum that can be as high as 10-12 G at cosmological scales at present time. Finally, we compute the correlation between the magnetic field energy density and scalar metric fluctuations at tree-level from which the shape of the resulting non-gaussianity is analyzed.We show that the corresponding bispectrum is of order 10-5 times the power spectrum of magnetic fields.

  3. Pioneer 10 and 11 (Jupiter and Saturn) magnetic field experiments

    NASA Technical Reports Server (NTRS)

    Jones, D. E.

    1986-01-01

    Magnet field data obtained by the vector helium magnetometer (VHM) during the encounters of Jupiter (Pioneer 10 and 11) and Saturn (Pioneer 11) was analyzed and interpreted. The puzzling characteristics of the Jovian and Saturnian magnetospheric magnetic fields were studied. An apparent substorm (including thinning of the dayside tail current sheet) was observed at Jupiter, as well as evidence suggesting that at the magnetopause the cusp is at an abnormally low latitude. The characteristics of Saturn's ring current as observed by Pioneer 11 were dramatically different from those suggested by the Voyager observations. Most importantly, very strong perturbations in the azimuthal ring current magnetic field suggest that the plane of the ring was not in the dipole equatorial plane, being tilted 5 to 10 deg. relative to the dipole and undergoing significant changes during the encounter. When these changing currents were corrected for, an improved planetary field determination was obtained. In addition, the ring and azimuthal currents at Saturn displayed significantly different time dependences.

  4. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  5. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  6. Simulations of Stormtime Ion Ring Current Formation with AMIE Electric Field

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Schulz, M.; Lu, G.; Lyons, L. R.

    2002-12-01

    In the past we have traced the bounce-averaged drift motions of particles conserving their first two adiabatic invariants (μ and J) in simplified models of the magnetospheric convection electric field, so as to explain their inward transport to form the ring current. Recently we have begun to trace such guiding-center motions in the more realistic AMIE electric field. The magnetic field model we use for these studies is the Dungey model, which consists of a dipole field plus a uniform southward ``tail'' field (which some interpret as the IMF). Here we map an analytical expansion of the AMIE ionospheric electric potential, expressed as a function of magnetic latitude and magnetic local time, along magnetic field lines (at least for L >= 2) throughout this model magnetosphere and thereby trace the guiding-center drifts of representative singly charged ions for μ values of 1-30 MeV/G (corresponding for J = 0 to energies of 11-330 keV at L = 3). Using these simulation results, we map proton phase space densities according to Liouville's theorem but taking into account losses due to charge exchange. For the purpose of phase space mapping we specify an ``initial" proton ring current distribution by solving the steady-state transport equation that balances quiescent radial diffusion against charge exchange. We use MLT-binned quiet time LANL ion data of Korth et al. [JGR, 104, 25,047-25,061, 1999] as the reference phase space density at geosynchronous altitude. For our stormtime boundary conditions we make use of the Kp-dependent LANL ion data but map them adiabatically (conserving μ while maintaining J = 0) to the boundary of our model magnetosphere. For this study we have performed simulations of the large 19 October 1998 storm and of the extremely large 15 July 2000 ``Bastille Day'' storm. During the 19 October 1998 storm the large AMIE electric field in the evening sector would have led to much faster (access time ~ 20 minutes) inward transport from the plasma sheet

  7. The effects of magnetic field in plume region on the performance of multi-cusped field thruster

    SciTech Connect

    Hu, Peng Liu, Hui Yu, Daren; Gao, Yuanyuan; Mao, Wei

    2015-10-15

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field in the plume region were investigated. Five magnetic field shielding rings were separately mounted near the exit of discharge channel to decrease the strength of magnetic field in the plume region in different levels, while the magnetic field in the upstream was well maintained. The test results show that the electron current increases with the decrease of magnetic field strength in the plume region, which gives rise to higher propellant utilization and lower current utilization. On the other hand, the stronger magnetic field in the plume region improves the performance at low voltages (high current mode) while lower magnetic field improves the performance at high voltages (low current mode). This work can provide some optimal design ideas of the magnetic strength in the plume region to improve the performance of thruster.

  8. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  9. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  10. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  11. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  12. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  13. Magnetic fields in irregular galaxies

    NASA Astrophysics Data System (ADS)

    Chyzy, Krzysztof T.

    Radio data of large irregular galaxies reveal some extended synchrotron emission with a substantial degree of polarization. In the case of NGC 4449 strong galaxy-scale regular magnetic fields were found, in spite of the lack of ordered rotation required for the conventional dynamo action. The rigidly rotating large irregular NGC 55 shows vertical polarized spurs connected with a network of ionized gas filaments. Small dwarf irregulars show only isolated polarized spots.

  14. Modeling and analysis of magnetic field distribution of square pane permanent magnet for intelligent ball joint

    NASA Astrophysics Data System (ADS)

    Zhu, Liang; Hu, Penghao; Yang, Wenguo; Dang, Xueming; Zhang, Lisong

    2016-01-01

    The reasonable permanent magnetic field distribution has an important influence on improving the measuring accuracy in intelligent ball joint. In view of the defects on the ring permanent magnet in the previous experiment scheme, a new method on Square Pane Permanent Magnet (SPPM) is put forward. It possesses distinct advantages on orientation identification and model simplification. This paper proposes an optimized theory model of the magnetic field distribution of SPPM and gives the magnetic field theoretical expressions. The experiments have shown that the experimental data basically agreed with the theory value which is less than 4.3% error in full scale. This result verified the correctness of the analytic work and paves the way for improving the measurement accuracy in intelligent ball joint.

  15. Dynamic domain wall chirality rectification by rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Bisig, Andre; Mawass, Mohamad-Assaad; Stärk, Martin; Moutafis, Christoforos; Rhensius, Jan; Heidler, Jakoba; Gliga, Sebastian; Weigand, Markus; Tyliszczak, Tolek; Van Waeyenberge, Bartel; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2015-03-01

    We report on the observation of magnetic vortex domain wall chirality reversal in ferromagnetic rings that is controlled by the sense of rotation of a magnetic field. We use time-resolved X-ray microscopy to dynamically image the chirality-switching process and perform micromagnetic simulations to deduce the switching details from time-resolved snapshots. We find experimentally that the switching occurs within less than 4 ns and is observed in all samples with ring widths ranging from 0.5 μm to 2 μm, ring diameters between 2 μm and 5 μm, and a thickness of 30 nm, where a vortex domain wall is present in the magnetic onion state of the ring. From the magnetic contrast in the time-resolved images, we can identify effects of thermal activation, which plays a role for the switching process. Moreover, we find that the process is highly reproducible so that the domain wall chirality can be set with high fidelity.

  16. Comparing Magnetic Fields on Earth and Mars

    NASA Video Gallery

    This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

  17. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  18. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  19. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  20. Performance analysis of a brushless dc motor due to magnetization distribution in a continuous ring magnet

    NASA Astrophysics Data System (ADS)

    Hur, Jin; Jung, In-Soung; Sung, Ha-Gyeong; Park, Soon-Sup

    2003-05-01

    This paper represents the force performance of a brushless dc motor with a continuous ring-type permanent magnet (PM), considering its magnetization patterns: trapezoidal, trapezoidal with dead zone, and unbalanced trapezoidal magnetization with dead zone. The radial force density in PM motor causes vibration, because vibration is induced the traveling force from the rotating PM acting on the stator. Magnetization distribution of the PM as well as the shape of the teeth determines the distribution of force density. In particular, the distribution has a three-dimensional (3-D) pattern because of overhang, that is, it is not uniform in axial direction. Thus, the analysis of radial force density required dynamic analysis considering the 3-D shape of the teeth and overhang. The results show that the force density as a source of vibration varies considerably depending on the overhang and magnetization distribution patterns. In addition, the validity of the developed method, coupled 3-D equivalent magnetic circuit network method, with driving circuit and motion equation, is confirmed by comparison of conventional method using 3D finite element method.

  1. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  2. Mobility inhibition of 1-phenylethanol chiral molecules in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Kozlova, Svetlana G.; Kompankov, Nikolay B.; Ryzhikov, Maxim R.; Slepkov, Vladimir A.

    2015-12-01

    Experimental evidences are first obtained to demonstrate the effect of external magnetic field on the mobility of 1-phenylethanol molecules characterized by conjugated ring bonds. Enantiomers of these molecules are shown to have different mobilities in chiral polarized mediums composed of these enantiomers taken in various proportions. The difference diminishes when the external magnetic field increases.

  3. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Haagmans, R.; Menard, Y.; Floberghagen, R.; Plank, G.; Drinkwater, M. R.

    2010-12-01

    Swarm is the fifth Earth Explorer mission in ESA’s Living Planet Programme. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The Mission shall deliver data that allow access to new insights into the Earth system by improving our understanding of the Earth’s interior and near-Earth electro-magnetic environment. After release from a single launcher, a side-by-side flying slowly decaying lower pair of satellites will be released at an initial altitude of about 490 km together with a third satellite that will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations that are required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission aims to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the development phase, will be addressed. The mission is scheduled for launch in 2012.

  4. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  5. Current-assisted magnetization switching in a mesoscopic NiFe ring with nanoconstrictions of a wire

    NASA Astrophysics Data System (ADS)

    Lu, Zhengqi; Zhou, Yun; Du, Yuqing; Moate, Roy; Wilton, David; Pan, Genhua; Chen, Yifang; Cui, Zheng

    2006-04-01

    A mesoscopic NiFe ring with nanoconstrictions of a wire was fabricated by electron beam lithography and lift-off techniques. Magnetic switching and reversal process have been measured by magnetoresistance as a function of the applied current. It is shown that the applied current has an effect on the switching fields and finally affects the reversal process. The decrease or increase in the switching field from the vortex state to the onion state depends on the electron flow with respect to the direction of domain propagation. The spin in the ring switches from an onion state to the opposite onion state in the low applied current via the double switching process. However, the spin in the ring switches directly from an onion state to the opposite due to the spin torque effect when the applied current is higher than the critical current density (of 107A/cm2).

  6. Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field

    SciTech Connect

    Mauel, M; Ryutov, D; Kesner, J

    2003-12-02

    In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.

  7. Electrostatic ion acceleration across a diverging magnetic field

    NASA Astrophysics Data System (ADS)

    Ichihara, D.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.

    2016-08-01

    Electrostatic ion acceleration across a diverging magnetic field, which is generated by a solenoid coil, permanent magnets, and a yoke between an upstream ring anode and a downstream off-axis hollow cathode, is investigated. The cathode is set in an almost magnetic-field-free region surrounded by a cusp. Inside the ring anode, an insulating wall is set to form an annular slit through which the working gas is injected along the anode inner surface, so the ionization of the working gas is enhanced there. By supplying 1.0 Aeq of argon as working gas with a discharge voltage of 225 V, the ion beam energy reached about 60% of a discharge voltage. In spite of this unique combination of electrodes and magnetic field, a large electrical potential drop is formed almost in the axial direction, located slightly upstream of the magnetic-field-free region. The ion beam current almost equals the equivalent working gas flow rate. These ion acceleration characteristics are useful for electric propulsion in space.

  8. Primordial magnetic field limits from cosmological data

    SciTech Connect

    Kahniashvili, Tina; Tevzadze, Alexander G.; Sethi, Shiv K.; Pandey, Kanhaiya; Ratra, Bharat

    2010-10-15

    We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

  9. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  10. High efficiency ICF driver employing magnetically confined plasma rings

    SciTech Connect

    Meeker, D.J.; Hammer, J.H.; Hartman, C.W.

    1985-03-04

    We discuss the possibility of achieving energy, power and power density necessary for ICF by magnetically accelerating plasma confined by a compact torus (CT) field configuration. The CT, which consists of a dipole (poloidal) field and imbedded toroidal field formed by force-free, plasma current, is compressed and accelerated between coaxial electrodes by B/sub THETA/ fields as in a coaxial railgun. Compression and acceleration over several meters by a 9.4 MJ capacitor bank is predicted to give a 5.7 cm radius, 0.001 gm CT 5 MJ kinetic energy (10/sup 7/ m/sec). Transport and focussing several meters by a disposable lithium pipe across the containment vessel is predicted to bring 4.8 MJ into the pellet region in 0.5 cm/sup 2/ area in 0.3 ns. The high efficiency (approx.50%) and high energy delivery of the CT accelerator could lead to low cost, few hundred MW power plants that are economically viable.

  11. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  12. The Giotto magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.

    1983-01-01

    The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.

  13. Neutron Interference in the Gravitational Field of a Ring Laser

    NASA Astrophysics Data System (ADS)

    Fischetti, Robert

    2013-04-01

    A number of analyses of neutron interference effects due to various metric perturbations have been found in the literature [1,2]. However, the approach of each author depends on a specific metric. I will present a new general technique giving the Foldy-Wouthuysen transformed Hamiltonian for a Dirac particle in the most general linearized space-time metric. I will then apply this new technique to calculate the phase shift on a neutron beam interferometer due to the gravitational field of a ring laser [3].[4pt] [1] D. M Greenberger and A. W. Overhauser, Rev. Mod. Phys. 51, 43--78 (1979).[0pt] [2] F. W. Hehl and W. T. Ni, Phys. Rev. D, vol 42, no. 6, pp. 2045-2048, 1990.[0pt] [3] R. L. Mallett, Phys. Lett. A 269, 214 (2000).

  14. Spectral Study of the Equatorial Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Rothman, R.; Nicolls, M. J.

    2007-05-01

    We report on the spectral analysis of four years of daytime electric and magnetic field data obtained near the magnetic equator. The former were obtained using the JULIA radar system at the Jicamarca Radio Observatory using the so-called 150 km echo, which can be used reliably to determine the zonal electric field component during daytime. The magnetic field data were obtained using magnetometers located at Jicamarca and Piura in Peru. Due to the nighttime data gap, we can study variations with periods longer than two days and shorter than eight hours. Our goal for the longer periods is to study the variability of atmospheric drivers of the equatorial electrojet. This is straightforward for the electric field, but requires subtracting the ring current and other external effects from the magnetic field data. This is done by using the Gonzales/Anderson technique and employing the two magnetic field measurements. The electrojet strength decreased almost linearly over the four-year period as the solar cycle wound down. Spectral analysis reveals a clear semi-annual peak with maxima at the equinoxes and a secondary peak with a period of fourteen days. The latter seems to indicate that the lunar gravitational tide adds constructively to the semi-diurnal solar thermal tide. At higher frequencies the data must be parsed according to magnetic activity and solar wind conditions due to the importance of penetrating electric fields from the solar wind, and will be presented in this format.

  15. Suppression of magnetic relaxation by a transverse alternating magnetic field

    SciTech Connect

    Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. Yampol'skii, V. A.

    2007-07-15

    The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.

  16. Magnetic field sources and their threat to magnetic media

    NASA Technical Reports Server (NTRS)

    Jewell, Steve

    1993-01-01

    Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

  17. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets

    PubMed Central

    Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris

    2015-01-01

    Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation. PMID:26182891

  18. The Galactic Magnetic Field as Viewed from the VLA

    NASA Astrophysics Data System (ADS)

    van Eck, Cameron; Brown, Jo-Anne

    2009-05-01

    Interstellar magnetic fields play critical roles in many astrophysical processes. Yet despite their importance, our knowledge about magnetic fields in our Galaxy remains limited. For the field within the Milky Way much of what we do know comes from radio astronomy, through observations of polarization and Faraday rotation measures (RMs) of extragalactic sources and pulsars. A high angular density of RM measurements in several critical areas of the Galaxy is needed to clarify the Galactic magnetic field structure. Understanding the overall structure of the magnetic field will subsequently help us determine the origin and evolution of the field. In an effort to determine the overall structure of the field, Sun et al. (2008) produced 3 models of the Galactic magnetic field based on RM measurements available at the time. These models made distinct predictions for RMs in a region of the inner Galaxy at low Galactic latitude. Using observations made with the Very Large Array (VLA), we have determined RMs for sources in this critical region. In this talk we will present the results of our study and show how the RMs strongly support the ASS+RING model.

  19. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  20. Application of permanent magnets in accelerators and electron storage rings

    SciTech Connect

    Halbach, K.

    1984-09-01

    After an explanation of the general circumstances in which the use of permanent magnets in accelerators is desirable, a number of specific magnets will be discussed. That discussion includes magnets needed for the operation of accelerators as well as magnets that are employed for the utilization of charged particle beams, such as the production of synchrotron radiation. 15 references, 8 figures.

  1. Ring formation in the quasi-two-dimensional system of the patchy magnetic spheres

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-yu; Jian, Xing-liang; Lu, Wei

    2016-04-01

    Fabricating new functional materials has always been at the center of colloidal science, and how to form circular rings is a meaningful challenge due to their special electronic, magnetic and optical properties. Magnetic colloidal spheres can self-assemble into rings, but these rings have an uncontrollable length and shape and also have to coexist with chains and defected clusters. To make the most of magnetic spheres being able to self-assemble into rings, a patch is added to the surface of the sphere to form a chiral link between particles. The structural transition in the system of patchy magnetic spheres is studied using the Monte Carlo simulation. When the patch angle is in the interval {{60}{^\\circ}} to {{75}{^\\circ}} , rings become the dominant structure if the strength of patchy interaction exceeds a particular threshold and the shape of these rings is close to the circle. With an increase in the patch angle, the threshold of patchy interaction decreases and the average length of the circular ring increases approximately from 5 to 8.5.

  2. Chiral plasmons without magnetic field.

    PubMed

    Song, Justin C W; Rudner, Mark S

    2016-04-26

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  3. Chiral plasmons without magnetic field

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.

    2016-04-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.

  4. Magnetic Fields in Irregular Galaxies: NGC 4214

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.

    2006-12-01

    Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.

  5. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  6. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1994-01-01

    The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

  7. Biomonitoring of atmospheric particulate matter using magnetic properties of Salix matsudana tree ring cores.

    PubMed

    Zhang, Chunxia; Huang, Baochun; Piper, John D A; Luo, Rensong

    2008-04-01

    Magnetic properties of atmospheric particulate matter collected by both natural and artificial dust receptors are increasingly being used as proxy parameters for environmental analyses. This study reports the first investigation of the relationship between smelting factory activity and the impact on the environment as recorded by the magnetic signature in Salix matsudana tree rings. Magnetic techniques including low-temperature experiments, successive acquisition of isothermal remanent magnetisation (IRM), hysteresis loops and measurements of saturated IRM (SIRM) indicated that magnetic particles were omnipresent in tree bark and trunk wood, and that these particles were predominantly magnetite with multidomain properties. The magnetic properties of tree trunk and branch cores sampled from different directions and heights implied that the acquisition of magnetic particles by a tree depends on both orientation and height. The differences of SIRM values of tree ring cores indicated that pollution source-facing tree trunk wood contained significantly more magnetic particles than other faces. The results indicated that magnetic particles are most likely to be intercepted and collected by tree bark and then enter into tree xylem tissues during the growing season to become finally enclosed into the tree ring by lignification. There was a significant correlation between time-dependent SIRM values of tree ring cores and the annual iron production of the smelting factory. From the dependence of magnetic properties with sampling direction and height, it is argued that magnetic particles in the xylem cannot move between tree rings. Accordingly, the SIRM of tree ring cores from the source-facing side can contribute to historic studies of atmospheric particulate matter produced by heavy metal smelting activities. PMID:18234289

  8. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  9. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  10. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  11. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  12. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  13. Magnetic field effect on charged Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.

    2016-01-01

    We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.

  14. Magnetic field calculation and measurement of active magnetic bearings

    NASA Astrophysics Data System (ADS)

    Ding, Guoping; Zhou, Zude; Hu, Yefa

    2006-11-01

    Magnetic Bearings are typical devices in which electric energy and mechanical energy convert mutually. Magnetic Field indicates the relationship between 2 of the most important parameters in a magnetic bearing - current and force. This paper presents calculation and measurement of the magnetic field distribution of a self-designed magnetic bearing. Firstly, the static Maxwell's equations of the magnetic bearing are presented and a Finite Element Analysis (FEA) is found to solve the equations and get post-process results by means of ANSYS software. Secondly, to confirm the calculation results a Lakeshore460 3-channel Gaussmeter is used to measure the magnetic flux density of the magnetic bearing in X, Y, Z directions accurately. According to the measurement data the author constructs a 3D magnetic field distribution digital model by means of MATLAB software. Thirdly, the calculation results and the measurement data are compared and analyzed; the comparing result indicates that the calculation results are consistent with the measurement data in allowable dimension variation, which means that the FEA calculation method of the magnetic bearing has high precision. Finally, it is concluded that the magnetic field calculation and measurement can accurately reflect the real magnetic distribution in the magnetic bearing and the result can guide the design and analysis of the magnetic bearing effectively.

  15. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  16. Magnetic Trapping of Bacteria at Low Magnetic Fields.

    PubMed

    Wang, Z M; Wu, R G; Wang, Z P; Ramanujan, R V

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  17. Magnetic Trapping of Bacteria at Low Magnetic Fields

    PubMed Central

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  18. The moving-ring field-reversed mirror prototype reactor

    NASA Astrophysics Data System (ADS)

    Smith, A. C., Jr.; Carlson, G. A.; Fleischmann, H. H.; Grossman, W., Jr.; Kammash, T.; Schultz, K. R.; Woodall, D. M.

    1981-03-01

    A prototype fusion reactor was designed based on magnetic field reversed plasma confinement. A set of physics, technology, and mechanical design criteria were developed in order to make this concept attractive. Six major criteria guide the commercial prototype design. The prototype must: (1) produce net electricity decisively P sub net 70% of P sub gross; (2) scale to an economical commercial plant and have small physical size; (3) have all features required of a correcial upgrade plant (H-3 breeding, etc.); (4) minimize exotic technology and maintenance complexity; (5) promise significantly lower safety hazards than fission plants (environmentally and socially acceptable); and (6) be modular in design to permit repetitive production of components.

  19. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  20. Magnetizing technique for permanent magnets by intense static fields generated by HTS bulk magnets: Numerical Analysis

    NASA Astrophysics Data System (ADS)

    N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.

    A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.

  1. Magnetic field concentrator for probing optical magnetic metamaterials.

    PubMed

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-01

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials. PMID:21164936

  2. Frustrated magnets in high magnetic fields-selected examples.

    PubMed

    Wosnitza, J; Zvyagin, S A; Zherlitsyn, S

    2016-07-01

    An indispensable parameter to study strongly correlated electron systems is the magnetic field. Application of high magnetic fields allows the investigation, modification and control of different states of matter. Specifically for magnetic materials experimental tools applied in such fields are essential for understanding their fundamental properties. Here, we focus on selected high-field studies of frustrated magnetic materials that have been shown to host a broad range of fascinating new and exotic phases. We will give brief insights into the influence of geometrical frustration on the critical behavior of triangular-lattice antiferromagnets, the accurate determination of exchange constants in the high-field saturated state by use of electron spin resonance measurements, and the coupling of magnetic degrees of freedom to the lattice evidenced by ultrasound experiments. The latter technique as well allowed new, partially metastable phases in strong magnetic fields to be revealed. PMID:27310818

  3. Influence of Segmentation of Ring-Shaped NdFeB Magnets with Parallel Magnetization on Cylindrical Actuators

    PubMed Central

    Eckert, Paulo Roberto; Goltz, Evandro Claiton; Filho, Aly Ferreira Flores

    2014-01-01

    This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines. PMID:25051032

  4. Ring Current and Field Aligned Currents from Cluster-Swarm Observations

    NASA Astrophysics Data System (ADS)

    Yang, J.; Dunlop, M. W.; Yang, Y.; Xiong, C.; Shen, C.; Luhr, H.; Bogdanova, Y.; Olsen, N.; Zhang, Q. H.; Cao, J.; Ritter, P.; Masson, A.; Carr, C.; Haagmans, R.

    2015-12-01

    We explore the capability of Swarm-Cluster coordination for probing the behavior of the field aligned currents (FAC) adjacent to the ring current (RC) at medium and low orbits and show statistical analysis of the local time variation of R1/R2 FACs. The RC and connecting R2 FACs influence the geomagnetic field at low Earth orbit (LEO) and are sampled in situ by the four Cluster spacecraft. Coordination of the configuration of three Swarm spacecraft configurations with the constellation of the four Cluster spacecraft is possible; providing a set of distributed, multi-point measurements covering this region. Particular events showing close coordination of all spacecraft are considered during the start of the Swarm operations. We report here preliminary results of joint signatures of R1 and R2 FACs and demonstrate the use and application of new analysis techniques derived from the calculation of curl B and magnetic gradients to compare estimates of the current distributions. Multi-spacecraft analysis can access perpendicular currents associated with the FAC signatures at the Swam locations. We also show preliminary statistical results of FAC correlations between Swarm spacecraft to reveal local time behaviour. For context, we identify the associated auroral boundaries determine from FAC intensity gradients in order to help interpret and resolve the R1 and R2 FACs. We also show preliminary results of an extended survey of the ring current crossings for different years, using estimates of the local current density, field curvature and total current.

  5. Ring Current and Field Aligned Currents from Cluster-Swarm Observations

    NASA Astrophysics Data System (ADS)

    Dunlop, Malcolm; Yang, Junying; Yang, Yanyan; Xiong, Chao; Lühr, Hermann; Finlay, Christopher C.; Olsen, Nils; Shen, Chao; Bogdanova, Yulia. V.; Zhang, Qinghe; Cao, Jinbin; Ritter, Patricia; Masson, Arnaud; Carr, Chris; Haagmans, Roger

    2016-04-01

    We explore the capability of Swarm-Cluster coordination for probing the behavior of the field aligned currents (FAC) adjacent to the ring current (RC) at medium and low orbits and show statistical analysis of the local time variation of R1/R2 FACs. The RC and connecting R2 FACs influence the geomagnetic field at low Earth orbit (LEO) and are sampled in situ by the four Cluster spacecraft. Coordination of the configuration of three Swarm spacecraft configurations with the constellation of the four Cluster spacecraft is possible; providing a set of distributed, multi-point measurements covering this region. Particular events showing close coordination of all spacecraft are considered during the start of the Swarm operations. We report here preliminary results of joint signatures of R1 and R2 FACs and demonstrate the use and application of new analysis techniques derived from the calculation of curl B and magnetic gradients to compare estimates of the current distributions. Multi-spacecraft analysis can access perpendicular currents associated with the FAC signatures at the Swam locations. For context, we identify the associated auroral boundaries determine from FAC intensity gradients in order to help interpret and resolve the R1 and R2 FACs. We also show preliminary results of an extended survey of the ring current crossings for different years, using estimates of the local current density, field curvature and total current.

  6. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  7. Abnormal magnetic field effects on electrogenerated chemiluminescence.

    PubMed

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-01-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes in solution at room temperature. PMID:25772580

  8. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    PubMed Central

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-01-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580

  9. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  10. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  11. Application peculiarities of magnetic materials for protection from magnetic fields

    NASA Astrophysics Data System (ADS)

    Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.

    2016-02-01

    In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.

  12. Quantum ring solitons and nonlocal effects in plasma wake field excitations

    SciTech Connect

    Fedele, R.; Tanjia, F.; De Nicola, S.; Jovanovic, D.; Shukla, P. K.

    2012-10-15

    A theoretical investigation of the quantum transverse beam motion for a cold relativistic charged particle beam travelling in a cold, collisionless, strongly magnetized plasma is carried out. This is done by taking into account both the individual quantum nature of the beam particles (single-particle uncertainty relations and spin) and the self consistent interaction generated by the plasma wake field excitation. By adopting a fluid model of a strongly magnetized plasma, the analysis is carried out in the overdense regime (dilute beams) and in the long beam limit. It is shown that the quantum description of the collective transverse beam dynamics is provided by a pair of coupled nonlinear governing equations. It comprises a Poisson-like equation for the plasma wake potential (driven by the beam density) and a 2D spinorial Schroedinger equation for the wave function, whose squared modulus is proportional to the beam density, that is obtained in the Hartree's mean field approximation, after disregarding the exchange interactions. The analysis of this pair of equations, which in general exhibits a strong nonlocal character, is carried out analytically as well as numerically in both the linear and the nonlinear regimes, showing the existence of the quantum beam vortices in the form of Laguerre-Gauss modes and ring envelope solitons, respectively. In particular, when the relation between the plasma wake field response and the beam probability density is strictly local, the pair of the governing equations is reduced to the 2D Gross-Pitaevskii equation that allows one to establish the conditions for the self focusing and collapse. These conditions include the quantum nature of the beam particles. Finally, when the relation between the plasma wake field response and the beam probability density is moderately nonlocal, the above pair of equations permits to follow the spatio-temporal evolution of a quantum ring envelope soliton. Such a structure exhibits small or violent

  13. Early experiences with magnetic rings in resection of the distal colon.

    PubMed

    Jansen, A; Keeman, J N; Davies, G A; Klopper, P J

    1980-01-01

    We have developed an anastomosis technique for resection of the distal colon based on the principle of submucosal layer apposition. The anastomosis apparatus consists of two rings of Ertalyte (polyester-polyethyleneterephtalate) containing two magnetic rings of polymer bonded rare earth cobalt. For low anastomoses we developed a magnetic ring holder, protecting cap and hexagonal connecting rod. The working principle is based on progressive compression leading to necrosis of the intermediate mucosal and submucosal layers by increasing magnetic force while bowel healing takes place. After 7 to 17 days the magnets cut through and are propelled by peristalis out of the anastomotic region. From our initial series of five patients we performed three sigmoid resections and two low anterior resections. There were no postoperative complications. Sigmoidoscopic and radiological investigations two weeks postoperatively, showed no evidence of leakage or anastomotic narrowing. The technique and the special advantages of the apparatus are discussed. PMID:7366876

  14. Current-driven vortex formation in a magnetic multilayer ring

    NASA Astrophysics Data System (ADS)

    Nam, Chunghee; Ng, B. G.; Castaño, F. J.; Mascaro, M. D.; Ross, C. A.

    2009-02-01

    Current-driven domain wall (DW) motion has been studied in the NiFe layer of a Co/Cu/NiFe thin film ring using giant-magnetoresistance measurements in a four-point contact geometry. The NiFe layer is initially in an onion state configuration with two 180° DWs. An electric current drives the walls around the ring so that they annihilate and the NiFe layer forms a DW-free vortex state. The direction of motion of the two DWs is determined by the current polarity, enabling the vortex chirality to be selected.

  15. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1991-01-01

    The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

  16. Control of Magnetic States of Cobalt Nanorings by an External Azimuthal Field

    NASA Astrophysics Data System (ADS)

    Pradhan, Nihar; Yang, Tianyu; Licht, Abbey; Li, Yihan; Tuominen, Mark; Aidala, Katherine

    2011-03-01

    Ferromagnetic nanorings attract interest due to their potential application in high density data storage and Magnetoresistive Random Access Memory (MRAM) devices. These nanorings show multidomain stable states that need to be well controlled by external in-plane or circular magnetic fields. This talk presents a new method to generate circular magnetic fields to control the magnetic states in different geometries of Cobalt nanoring structures, of varying diameter, width and thickness. A solid platinum AFM tip was used to pass current through a single nanoring, generating a circular magnetic field. In applying this field we were able to change the state of the individual ring without affecting the states of other neighboring rings. The evolution of the magnetic states of individual symmetric and asymmetric Cobalt nanorings with applied azimuthal field will be presented. The work was supported by the National Science Foundation under DMR Grant 906832 and Research Corporation Grant 7889.

  17. Rings and Bent Chain Galaxies in the GEMS and GOODS Fields

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.

    2006-11-01

    Twenty-four galaxies with rings or partial rings were studied in the GEMS and GOODS fields out to z~1.4. Most resemble local collisional ring galaxies in morphology, size, and clumpy star formation. Clump ages range from 108 to 109 yr, and clump masses go up to several × 108 Msolar, based on color evolution models. The clump ages are consistent with the expected lifetimes of ring structures if they are formed by collisions. Fifteen other galaxies that resemble the arcs in partial ring galaxies but have no evident disk emission were also studied. Their clumps have bluer colors at all redshifts compared to the clumps in the ring and partial ring sample, and their clump ages are younger than in rings and partial rings by a factor of ~10. In most respects, they resemble chain galaxies except for their curvature; we refer to them as ``bent chains.'' Several rings are symmetric with centered nuclei and no obvious companions. They could be outer Lindblad resonance rings, although some have no obvious bars or spirals to drive them. If these symmetric cases are resonance rings, then they could be the precursors of modern resonance rings, which are only ~30% larger on average. This similarity in radius suggests that the driving pattern speed has not slowed by more by ~30% during the last ~7 Gyr. Those without bars could be examples of dissolved bars.

  18. On the Motion of the Field of a Permanent Magnet

    ERIC Educational Resources Information Center

    Leus, Vladimir; Taylor, Stephen

    2011-01-01

    A description is given of a series of recent experiments using a rotating magnetic circuit comprising a permanent magnet ring and yoke, and a stationary conductor in the air gap between the ring and yoke. The EMF induced in this case cannot be described by a simple application of Faraday's flux law. This is because the magnetic flux in the air gap…

  19. The CASSIOPE/e-POP Magnetic Field Instrument (MGF)

    NASA Astrophysics Data System (ADS)

    Wallis, D. D.; Miles, D. M.; Narod, B. B.; Bennest, J. R.; Murphy, K. R.; Mann, I. R.; Yau, A. W.

    2015-06-01

    Field-aligned currents couple energy between the Earth's magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (˜50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz.

  20. Magnetic Field Induced Shear Flow in a Strongly Coupled Complex Plasma

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P.; Konopka, U.; Jiang, K.; Morfill, G.

    2011-11-01

    We address an experimental observation of shear flow of micron sized dust particles in a strongly coupled complex plasma in presence of a homogeneous magnetic field. Two concentric Aluminum rings of different size are placed on the lower electrode of a radio frequency (rf) parallel plate discharge. The modified local sheath electric field is pointing outward/inward close to the inner/outher ring, respectively. The microparticles, confined by the rings and subject to an ion wind that driven by the local sheath electric field and deflected by an externally applied magnetic field, start flowing in azimuthal direction. Depending upon the rf amplitudes on the electrodes, the dust layers show rotation in opposite direction at the edges of the ring-shaped cloud resulting a strong shear in its center. MD simulations shows a good agreement with the experimental results.

  1. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  2. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  3. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  4. Static uniform magnetic fields and amoebae

    SciTech Connect

    Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.

    1997-03-01

    Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

  5. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  6. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  7. Pitch Angle Scattering of Ring Current Ions During a Magnetic Storm

    NASA Astrophysics Data System (ADS)

    Walt, M.; Voss, H. D.

    2001-05-01

    On August 6, 1998, a magnetic storm occurred with a minimum Dst of 138 nT. Pitch angle distributions of the ring current ions were obtained with the SEPS/CEPPAD charged particle spectrometer on the NASA POLAR satellite during its passes through the radiation belt region. When SEPS was oriented parallel to the geomagnetic field, SEPS measured the downward and upward ion fluxes inside the loss cones with an angular resolution of about 1.5 deg. During the day following minimum Dst fluxes of 155 keV ions were observed inside the downward loss cone, comparable in intensity to the trapped fluxes measured at equatorial pitch angles of 50 deg. The distributions within the loss cone were uniform, suggesting that strong diffusion was occurring equatorward of the satellite latitude of 45 deg. At L values between 4 and 5 the scattering was strong enough to dominate the losses of ring current ions. During the early recovery phase of the storm the precipitation was greater in the afternoon sector (16:00 MLT) than in the morning sector (4:00 MLT).

  8. Effects of magnetic non-linearities on a stored proton beam and their implications for superconducting storage rings

    SciTech Connect

    Cornacchia, M.; Evans, L.

    1985-06-01

    A nonlinear lens may be used to study the effect of high-order multipolar field imperfections on a stored proton beam. Such a nonlinear lens is particulary suitable to simulate field imperfections of the types encountered in coil dominated superconducting magnets. We have studied experimentally at the SPS the effect of high order (5th and 8th) single isolated resonances driven by the nonlinear lens. The width of these resonances is of the order one expects to be caused by field errors in superconducting magnets of the SSC type. The experiment shows that, in absence of tune modulation, these resonances are harmless. Slow crossings of the resonance, on the other hand, have destructive effects on the beam, much more so than fast crossings caused by synchrotron oscillations. In the design of future storage rings, sources of low-frequency tune modulation should be avoided as a way to reduce the harmful effects of high order multipolar field imperfection.

  9. Lunar surface magnetic field concentrations antipodal to young large impact basins

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Anderson, K. A.; Hood, L. L.

    1988-01-01

    Planetary electron reflection magnetometry data of the Apollo 15 and 16 subsatellites indicate the presence of major regions of strong surface magnetic fields near the antipodes of four large, young, ringed impact basins. While mechanisms yielding surface magnetic field concentrations antipodal to impact basins are not yet clear, the present results' indicated period of strong lunar magnetic fields, at between about 3.85 and 3.6 aeons, is consistent with lunar paleomagnetic sample data. The origin of the strong surface magnetic fields is discussed.

  10. Minimizing magnetic fields for precision experiments

    SciTech Connect

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  11. Operating a magnetic nozzle helicon thruster with strong magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira

    2016-03-01

    A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  12. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  13. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting.

    PubMed

    Tseng, Hubert; Gage, Jacob A; Haisler, William L; Neeley, Shane K; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G; Wagoner, Matthew; Souza, Glauco R

    2016-01-01

    Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945

  14. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting

    PubMed Central

    Tseng, Hubert; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G.; Wagoner, Matthew; Souza, Glauco R.

    2016-01-01

    Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945

  15. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  16. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  17. Magnetic fields of the spinning bodies

    NASA Astrophysics Data System (ADS)

    Trenčevski, Kostadin

    2015-03-01

    In this paper we show that the Thomas precession of the spinning bodies, which is in general case constrained in all rigid bodies, induces magnetic field of the spinning bodies. This is one of the main reasons for the magnetic field of the spinning bodies. The general formula for this magnetic field is deduced and if it is applied to the Earth, its magnetic field changes between 0.295 G at the equator and 0.59 G at the poles, assuming that the density inside the Earth is uniform.

  18. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  19. Rydberg EIT in High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  20. Free oscillations of magnetic fluid in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  1. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  2. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  3. Cosmic Magnetic Fields (IAU S259)

    NASA Astrophysics Data System (ADS)

    Strassmeier, Klaus G.; Kosovichev, Alexander G.; Beckman, John E.

    2009-06-01

    Preface K. G. Strassmeier, A. G. Kosovichev and J. E. Beckman; Organising committee; Conference photograph; Conference participants; Session 1. Interstellar magnetic fields, star-forming regions and the Death Valley Takahiro Kudoh and Elisabeta de Gouveia Dal Pino; Session 2. Multi-scale magnetic fields of the Sun; their generation in the interior, and magnetic energy release Nigel O. Weiss; Session 3. Planetary magnetic fields and the formation and evolution of planetary systems and planets; exoplanets Karl-Heinz Glassmeier; Session 4. Stellar magnetic fields: cool and hot stars Swetlana Hubrig; Session 5. From stars to galaxies and the intergalactic space Dimitry Sokoloff and Bryan Gaensler; Session 6. Advances in methods and instrumentation for measuring magnetic fields across all wavelengths and targets Tom Landecker and Klaus G. Strassmeier; Author index; Object index; Subject index.

  4. Van Allen Probes based investigation of storm time enhancements in the duskward electric field to lower L shells and its effect on ring current formation and plasmasphere erosion.

    NASA Astrophysics Data System (ADS)

    Thaller, S. A.; Wygant, J. R.; Dai, L.; Breneman, A. W.; Kersten, K.; Kletzing, C.; Kurth, W. S.; De Pascuale, S.; Bonnell, J. W.; Hospodarsky, G. B.; Gkioulidou, M.; Fennell, J. F.

    2014-12-01

    The large scale convection electric field plays a central role in the dynamics of the inner magnetosphere; among which processes are ring current particle injection and plasmasphere erosion. Both of these are important for radiation belt dynamics. The ring current affects magnetic field geometry which in turn affects particle drift paths and plasmasphere erosion shrinks the region characterized by plasmaspheric hiss which would otherwise be present to scatter population of radiation belt seed electrons. Using the Van Allen Probes we investigate enhancements in the duskward electric field to lower L shells (L < 4 RE) and its role in ring current particle energization and erosion of the plasmasphere during two major storms; June 1, 2013 and February 19, 2014. During these storms, the electric field enhanced to low L shells with magnitudes ~1-2 mV/m in the co-rotating frame. The corresponding storm time ring current enhancements and plasmasphere erosions are examined in the context of these electric fields. The intensification in the duskward electric field is of long enough duration to transport particles from locations characteristic of the earthward edge of the plasma sheet (L shells ~ 8-10 RE) to the observed location of the ring current while energizing them though conservation of the first adiabatic invariant to energies typical of the ring current. It is also observed that the range in L shell over which the most intense nightside, duskward, electric field is observed is also that over which the higher pressure region of the ring current is located.

  5. The AGN origin of cluster magnetic fields

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    The origin of magnetic fields in galaxy clusters is one of the most fascinating but challenging problems in astrophysics. In this dissertation, the possibility of an Active Galactic Nucleus (AGN) origin of cluster magnetic fields is studied through state of the art simulations of magnetic field evolution in large scale structure formation using a newly developed cosmological Adaptive Mesh Refinement (AMR) Magnetohydrodynamics (MHD) code -- EnzoMHD. After presenting a complete but concise description and verification of the code, we discuss the creation of magnetic fields through the Biermann Battery effect during first star formation and galaxy cluster formation. We find that magnetic fields are produced as predicted by theory in both cases. For the first star formation, we obtain a lower limit of (~ 10 -9 G) for magnetic fields when the first generation stars form. On the other hand, we find that the magnetic energy is amplified 4 orders of magnitude within ~ 10 Gyr during cluster formation. We then study magnetic field injection from AGN into the Intra- Cluster Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as well as weak shocks seen in observations in the simulation, and further confirm the idea that AGN outburst must contain lots of magnetic energy (up to 10 61 ergs) and the magnetic fields play an important part in the formation of jet/lobe system. We present high resolution simulations of cluster formation with magnetic fields injected from high redshift AGN. We find that these local magnetic fields are spread quickly throughout the whole cluster by cluster mergers. The ICM is in a turbulent state with a Kolmogorov-like power spectrum. Magnetic fields are amplified to and maintained at the observational level of a few mG by bulk flows at large scale and the ICM turbulence at small scale. The total magnetic energy increases about 25 times to ~ 1.2 × 10^61 ergs at the present time. We conclude that magnetic fields from AGN at high

  6. Improved field stability in RFQ structures with vane-coupling rings

    SciTech Connect

    Schneider, H.R.; Lancaster, H.

    1983-03-01

    The small apertures common in many RFQ linac designs lead to tuning difficulties, primarily because asymmetries in the quadrant fields can arise as a result of small non-uniformities in the vane-to-vane capacitances. Sensitivity to such capacitance or other tuning variation in the quadrants is greatly reduced by the introduction of pairs of vane-coupling rings that provide periodic electrical connections between diametrically opposite vanes. Results of measurements on a cold model RFQ structure with and without vane-coupling rings are presented. The number of rings required for field stabilization and the effect of rings on mode frequencies are discussed.

  7. Studying dynamic chaos in microwave ring generators based on normally magnetized ferromagnetic film

    NASA Astrophysics Data System (ADS)

    Kondrashov, A. V.; Ustinov, A. B.; Kalinikos, B. A.

    2016-02-01

    We present results of an experimental investigation of the transition to a microwave dynamic chaos regime in ring oscillators based on normally magnetized yttrium iron garnet (YIG) films. It is established that an increase in the ring gain leads to the sequential generation of monochromatic, periodic, quasi-periodic, and chaotic signals. The quasi-periodic regime is characterized by the appearance of secondary modulation of the signal amplitude. In the regime of dynamic chaos generation, the parameters can be controlled by gain of the ring.

  8. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  9. Coronal magnetic fields and the solar wind

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.

    1972-01-01

    Current information is presented on coronal magnetic fields as they bear on problems of the solar wind. Both steady state fields and coronal transient events are considered. A brief critique is given of the methods of calculating coronal magnetic fields including the potential (current free) models, exact solutions for the solar wind and field interaction, and source surface models. These solutions are compared with the meager quantitative observations which are available at this time. Qualitative comparisons between the shapes of calculated magnetic field lines and the forms visible in the solar corona at several recent eclipses are displayed. These suggest that: (1) coronal streamers develop above extended magnetic arcades which connect unipolar regions of opposite polarity; and (2) loops, arches, and rays in the corona correspond to preferentially filled magnetic tubes in the approximately potential field.

  10. The Evolution of the Earth's Magnetic Field.

    ERIC Educational Resources Information Center

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  11. Observation of field-induced domain wall propagation in magnetic nanowires by magnetic transmission X-ray microscopy

    SciTech Connect

    Bryan, M. T.; Fry, P. W.; Fischer, P.; Allwood, D. A.

    2007-12-01

    Magnetic transmission X-ray microscopy (M-TXM) is used to image domain walls in magnetic ring structures formed by a 300 nm wide, 24 nm thick Ni{sub 81}Fe{sub 19} nanowire. Both transverse and vortex type domain walls are observed after application of different field sequences. Domain walls can be observed by comparing images obtained from opposite field sequences, or else domain wall propagation observed by comparing successive images in a particular field sequence. This demonstrates the potential use of M-TXM in developing and understanding planar magnetic nanowire behavior.

  12. Observation of field-induced domain wall propagation in magnetic nanowires by magnetic transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Bryan, M. T.; Fry, P. W.; Fischer, P. J.; Allwood, D. A.

    2008-04-01

    Magnetic transmission x-ray microscopy (M-TXM) is used to image domain walls in magnetic ring structures formed by a 300nm wide, 24nm thick Ni81Fe19 nanowire. Both transverse- and vortex-type domain walls are observed after application of different field sequences. Domain walls can be observed by comparing images obtained from opposite field sequences or else domain wall propagation observed by comparing successive images in a particular field sequence. This demonstrates the potential use of M-TXM in developing and understanding planar magnetic nanowire behavior.

  13. Control of magnetism by electric fields.

    PubMed

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field. PMID:25740132

  14. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  15. Coronal magnetic fields produced by photospheric shear

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Yang, W.-H.

    1987-01-01

    The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear, by a simple functional form.

  16. Quadrupole magnet field mapping for FRIB

    NASA Astrophysics Data System (ADS)

    Portillo, M.; Amthor, A. M.; Chouhan, S.; Cooper, K.; Gehring, A.; Hausmann, M.; Hitchcock, S.; Kwarsick, J.; Manikonda, S.; Sumithrarachchi, C.

    2013-12-01

    Extensive magnetic field map measurements have been done on a newly built superconducting quadrupole triplet with sextupole and octupole coils nested within every quadrupole. The magnetic field multipole composition and fringe field distributions have been analyzed and an improved parameterization of the field has been developed within the beam transport simulation framework. Parameter fits yielding standard deviations as low as 0.3% between measured and modeled values are reported here.

  17. Extended Magnetization of Superconducting Pellets in Highly Inhomogeneous Magnetic Field

    NASA Astrophysics Data System (ADS)

    Maynou, R.; López, J.; Granados, X.; Torres, R.; Bosch, R.

    The magnetization of superconducting pellets is a worth point in the development of trapped flux superconducting motors. Experimental and simulated data have been reported extensively according to the framework of one or several pulses of a homogeneous magnetizing field applied to a pellet or a set of pellets. In case of cylindrical rotors of low power motors with radial excitation, however, the use of the copper coils to produce the starting magnetization of the pellets produces a highly inhomogeneous magnetic field which cannot be reduced to a 2D standard model. In this work we present an analysis of the magnetization of the superconducting cylindrical rotor of a small motor by using a commercial FEM program, being the rotor magnetized by the working copper coils of the motor. The aim of the study is a report of the magnetization obtained and theheat generated in the HTSC pellets.

  18. Magnetic isotope and magnetic field effects on the DNA synthesis

    PubMed Central

    Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.

    2013-01-01

    Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases β with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases β carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases β with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases β with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636

  19. CONSTRUCTION AND POWER TEST OF THE EXTRACTION KICKER MAGNET FOR SNS ACCUMULATOR RING.

    SciTech Connect

    PAI, C.; HAHN, H.; HSEUH, H.; LEE, Y.; MENG, W.; MI,J.; SANDBERG, J.; TODD, R.; ET AL.

    2005-05-16

    Two extraction kicker magnet assemblies that contain seven individual pulsed magnet modules each will kick the proton beam vertically out of the SNS accumulator ring into the aperture of the extraction Lambertson septum magnet. The proton beam then travels to the 1.4 MW SNS target assembly. The 14 kicker magnets and major components of the kicker assembly have been fabricated in BNL. The inner surfaces of the kicker magnets were coated with TiN to reduce the secondary electron yield. All 14 PFN power supplies have been built, tested and delivered to OWL. Before final installation, a partial assembly of the kicker system with three kicker magnets was assembled to test the functions of each critical component in the system. In this paper we report the progress of the construction of the kicker components, the TIN coating of the magnets, the installation procedure of the magnets and the full power test of the kicker with the PFN power supply.

  20. The magnetic field of ζ Ori A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Bouret, J.-C.; Tkachenko, A.

    2015-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation (Wade et al. 2013) and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of ζ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in ζ Ori A. We identify that it belongs to ζ Ori Aa and characterize it.

  1. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  2. Diffusion of magnetic field via turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the

  3. Effects and Correction of Closed Orbit Magnet Errors in the SNS Ring

    SciTech Connect

    Bunch, S.C.; Holmes, J.

    2004-01-01

    We consider the effect and correction of three types of orbit errors in SNS: quadrupole displacement errors, dipole displacement errors, and dipole field errors. Using the ORBIT beam dynamics code, we focus on orbit deflection of a standard pencil beam and on beam losses in a high intensity injection simulation. We study the correction of these orbit errors using the proposed system of 88 (44 horizontal and 44 vertical) ring beam position monitors (BPMs) and 52 (24 horizontal and 28 vertical) dipole corrector magnets. Correction is carried out numerically by adjusting the kick strengths of the dipole corrector magnets to minimize the sum of the squares of the BPM signals for the pencil beam. In addition to using the exact BPM signals as input to the correction algorithm, we also consider the effect of random BPM signal errors. For all three types of error and for perturbations of individual magnets, the correction algorithm always chooses the three-bump method to localize the orbit displacement to the region between the magnet and its adjacent correctors. The values of the BPM signals resulting from specified settings of the dipole corrector kick strengths can be used to set up the orbit response matrix, which can then be applied to the correction in the limit that the signals from the separate errors add linearly. When high intensity calculations are carried out to study beam losses, it is seen that the SNS orbit correction system, even with BPM uncertainties, is sufficient to correct losses to less than 10-4 in nearly all cases, even those for which uncorrected losses constitute a large portion of the beam.

  4. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  5. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  6. Paramagnetic ellipsoidal microswimmer in a magnetic field

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Fan, Louis; Pak, On Shun

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at low-Reynolds-number and subject to a magnetic field. Its corresponding mean-square displacement tensor showing the effect of particles's shape, activity and magnetic field, on the microswimmer's diffusion is analytically obtained. A comparison among analytical and computational results is also made and we obtain excellent agreement.

  7. Solar Magnetic Field: Zeeman and Hanle Effects

    NASA Astrophysics Data System (ADS)

    Stenflo, J.; Murdin, P.

    2001-10-01

    An external magnetic field causes the atomic energy levels to split into different sublevels, and the emitted radiation becomes polarized. This phenomenon is called the ZEEMAN EFFECT. When atoms in a magnetic field scatter radiation via bound-bound transitions, the phase relations or quantum interferences between the Zeeman-split sublevels give rise to POLARIZATION phenomena that go under the nam...

  8. Modeling the evolution of galactic magnetic fields

    SciTech Connect

    Yar-Mukhamedov, D.

    2015-04-15

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means.

  9. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    SciTech Connect

    Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A.; Cohen, S. A.

    2011-01-05

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  10. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  11. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  12. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  13. Magnetic diode for measurement of magnetic-field strength

    SciTech Connect

    Fedotov, S.I.; Zalkind, V.M.

    1988-02-01

    The accuracy of fabrication and assembly of the elements of the magnetic systems of thermonuclear installations of the stellarator type is checked by study of the topography of the confining magnetic field and is determined by the space resolution and accuracy of the measuring apparatus. A magnetometer with a galvanomagnetic sensor is described that is used to adjust the magnetic system of the Uragan-3 stellarator. The magnetometer measure magnetic-field induction in the range of 6 x 10/sup -7/-10/sup -2/ T with high space resolution.

  14. Levitation of a magnet by an alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Gough, W.; Hunt, M. O.; Summerskill, W. S. H.

    2013-01-01

    An experiment is described in which a small strong cylindrical magnet is levitated by a vertical non-uniform alternating magnetic field. Surprisingly, no superimposed constant field is necessary, but the levitation can be explained when the vertical motion of the magnet is taken into account. The theoretical mean levitation force is (0.26 ± 0.06) N, which is in good agreement with the levitated weight of (0.239 ± 0.001) N. This experiment is suitable for an undergraduate laboratory, particularly as a final year project. Students have found it interesting, and it sharpens up knowledge of basic magnetism.

  15. Orienting Paramecium with intense static magnetic fields

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  16. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  17. Controlling the magnetization reversal in planar nanostructures with wire-ring morphology

    NASA Astrophysics Data System (ADS)

    Corona, R. M.; Aranda, A.; Palma, J. L.; Lopez, C. E.; Escrig, J.

    2014-08-01

    Magnetization reversal in planar nanowires has been controlled using structures with a larger area pad connected to a nanowire or by means of patterned variations in the planar nanowire such as notches. In this letter, we have introduced a magnetic nanostructure defined as a planar nanostructure with wire-ring morphology. In particular, we have performed micromagnetic simulations to investigate how the magnetic properties (coercivity and remanence) change as a function of the geometric parameters of the nanostructure. Additionally, we observe that when the ring is very thin, the system reverses its magnetization by nucleation and propagation of domain walls along the nanowire. Conversely, when the ring has very thick walls, or directly turns into a solid cylinder, the system nucleates a vortex in the ring/cylinder, and then propagates the domain walls toward the nanowire sections. This reversal process is characterized by a step or plateau in the hysteresis curve, that is, a region in which differential magnetic susceptibility presents a local minimum or, ideally, vanishes. Finally, this nanostructure can be used in many potential applications related to the control of domain walls in planar nanowires.

  18. METALLIZATION OF CERAMIC VACUUM CHAMBERS FOR SNS RING INJECTION KICKER MAGNETS.

    SciTech Connect

    HE,P.; HSEUH,H.C.; TODD,R.J.

    2002-04-22

    Ceramic chambers will be used in the pulsed kicker magnets for the injection of H{sup -} into the US Spallation Neutron Source (SNS) accumulator ring. There are two reasons for using ceramic chambers in kickers: (1) to avoid shielding of a fast-changing external magnetic field by metallic chamber walls; and (2) to reduce heating due to eddy currents. The inner surfaces of the ceramic chambers will be coated with a conductive layer, possibly titanium (Ti) or copper with a titanium nitride (TiN) overlayer, to reduce the beam coupling impedance and provide passage for beam image current. This paper describes the development of sputtering method for the 0.83m long 16cm inner diameter ceramic chambers. Coatings of Ti, Cu and TiN with thicknesses up to 10 {micro}m were produced by means of DC magnetron sputtering. The difficulty of coating insulators was overcome with the introduction of an anode screen. Films with good adhesion, uniform longitudinal thickness, and conductivity were produced.

  19. Magnetic field distribution inside the aperture of a steerer magnet prototype

    NASA Astrophysics Data System (ADS)

    Chiriţă, Ionel; Dan, Daniel; Tănase, Nicolae

    2015-11-01

    The High Energy Storage Ring (HESR), an important part of the Facility for Antiproton and Ion Research (FAIR) international project [1], which will be set up in Darmstadt in the next years, contains, among other magnets, several corrector magnets used for vertical and horizontal beam deviation. A prototype of a 2mrad vertical steerer magnet was designed by National Institute for R&D in Electrical Engineering (ICPE-CA) Romania in close cooperation with Forschungszentrum Jülich Germany [2] and then manufactured and tested by ICPE-CA [3], Romanian Institute for Electrical Engineering—Advanced Research. Magnetic field measurements using a 3D Hall probe were performed. Measured data and their analysis are presented. The system used for Hall probe positioning and data acquisition is also described.

  20. Chaotic magnetic fields: Particle motion and energization

    SciTech Connect

    Dasgupta, Brahmananda; Ram, Abhay K.; Li, Gang; Li, Xiaocan

    2014-02-11

    Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

  1. How do galaxies get their magnetic fields?

    NASA Astrophysics Data System (ADS)

    Beck, Alexander; Dolag, Klaus; Lesch, Harald

    2015-08-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of $\\mu$G amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution

  2. How do galaxies get their magnetic fields?

    NASA Astrophysics Data System (ADS)

    Beck, Alexander M.

    2016-06-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of μG amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution. The

  3. Magnetic field amplification in young galaxies

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2013-12-01

    The Universe at present is highly magnetized, with fields of a few 10-5 G and coherence lengths greater than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was already amplified to these values during the formation and the early evolution of galaxies. Turbulence in young galaxies is driven by accretion, as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial seed fields on short timescales. Amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth rate on the smallest nonresistive scale. In the following nonlinear phase the magnetic energy is shifted toward larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively, we modeled the microphysics in the interstellar medium (ISM) of young galaxies and determined the growth rate of the small-scale dynamo. We estimated the resulting saturation field strengths and dynamo timescales for two turbulent forcing mechanisms: accretion-driven turbulence and SN-driven turbulence. We compare them to the field strength that is reached when only stellar magnetic fields are distributed by SN explosions. We find that the small-scale dynamo is much more efficient in magnetizing the ISM of young galaxies. In the case of accretion-driven turbulence, a magnetic field strength on the order of 10-6 G is reached after a time of 24-270 Myr, while in SN-driven turbulence the dynamo saturates at field strengths of typically 10-5 G after only 4-15 Myr. This is considerably shorter than the Hubble time. Our work can help for understanding why present-day galaxies are highly magnetized.

  4. Construction of cardiac tissue rings using a magnetic tissue fabrication technique.

    PubMed

    Akiyama, Hirokazu; Ito, Akira; Sato, Masanori; Kawabe, Yoshinori; Kamihira, Masamichi

    2010-01-01

    Here we applied a magnetic force-based tissue engineering technique to cardiac tissue fabrication. A mixture of extracellular matrix precursor and cardiomyocytes labeled with magnetic nanoparticles was added into a well containing a central polycarbonate cylinder. With the use of a magnet, the cells were attracted to the bottom of the well and allowed to form a cell layer. During cultivation, the cell layer shrank towards the cylinder, leading to the formation of a ring-shaped tissue that possessed a multilayered cell structure and contractile properties. These results indicate that magnetic tissue fabrication is a promising approach for cardiac tissue engineering. PMID:21152282

  5. Exact scattering matrix of graphs in magnetic field and quantum noise

    SciTech Connect

    Caudrelier, Vincent; Mintchev, Mihail; Ragoucy, Eric

    2014-08-15

    We consider arbitrary quantum wire networks modelled by finite, noncompact, connected quantum graphs in the presence of an external magnetic field. We find a general formula for the total scattering matrix of the network in terms of its local scattering properties and its metric structure. This is applied to a quantum ring with N external edges. Connecting the external edges of the ring to heat reservoirs, we study the quantum transport on the graph in ambient magnetic field. We consider two types of dynamics on the ring: the free Schrödinger and the free massless Dirac equations. For each case, a detailed study of the thermal noise is performed analytically. Interestingly enough, in presence of a magnetic field, the standard linear Johnson-Nyquist law for the low temperature behaviour of the thermal noise becomes nonlinear. The precise regime of validity of this effect is discussed and a typical signature of the underlying dynamics is observed.

  6. Exoplanet Magnetic Fields and Their Detectability

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tian, B. Y.; Vilim, R.

    2014-12-01

    The investigation of planetary magnetic fields in our solar system provides a wealth of information on planetary interior structure and dynamics. Satellite magnetic data demonstrates that planetary dynamos can produce a range of magnetic field morphologies and intensities. Numerical dynamo simulations are working towards determining relationships between planetary properties and the resulting magnetic field characteristics. However, with only a handful of planetary dynamos in our solar system, it is challenging to determine specific dependence of magnetic field properties on planetary characteristics. Extrasolar planets therefore provide a unique opportunity by significantly increasing the number of planets for study as well as offering a much larger range of planetary properties to investigate. Although detection of exoplanet magnetic fields is challenging at present, the increasing sophistication of observational tools available to astronomers implies these extrasolar planetary magnetic fields may eventually be detectable. This presentation will discuss potential observational trends for magnetic field strength and morphology for exoplanets based on numerical simulations and interior structure modeling. We will focus on the influence of planetary age, environment, composition and structure.

  7. Beam tracking of SXLS with realistic magnetic field

    SciTech Connect

    Huang, Yun-Xiang

    1991-09-01

    In early 1977, while working for NSLS at Brookhaven National Lab., Dr. Ohnuma noticed that tunes of NSLS calculated with code SYNCH were significantly different from those obtained with code PATRICIA. This problem surfaced again in 1991 when people at BNL discovered discrepancies in their compact ring SXLS chromaticities calculated with different code. One potential source of the ambiguities is the different treatment of the edge field and the combined function field of dipole magnet. There are two dipoles each of which with the bending angle of 180{degrees} instead of at most a few degrees which is common in high energy synchrotrons. The calculation of a three-dimensional field using TOSCA indicates that the fringe field extends to cover the whole region between the dipole and the quadrupole, having a vertical field strength of 250 gauss at the edge of the quadrupole. In this case, the fringe multiple field will undoubtedly play a nontrival role in determining basic machine parameters. Therefore, the classical treatment for simulating particle motion in synchrotron, which uses the isomagnetic approximation plus then lens kicks, no longer accurately models the closed orbit of the machine. In order to correctly calculate tunes, chromaticities as well as the dynamic aperture in such kind of machine with a large magnetic bending angle, it is necessary to integrate the exact equations of motion in a realistic representation of the magnetic field.

  8. Warm inflation in presence of magnetic fields

    SciTech Connect

    Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia

    2013-07-23

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.

  9. Bending of magnetic filaments under a magnetic field

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Valera P.; Winklhofer, Michael

    2004-12-01

    Magnetic beads and superparamagnetic (SP) colloid particles have successfully been employed for micromechanical manipulation of soft material, in situ probing of elastic properties, and design of smart materials (ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two end-member cases, (a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes, and (b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing SP particles. Our analysis yields also metastable equilibrium states (MES’s), which only exist above a critical filament length, but become more stable with increasing magnetic field. The MES’s for case (a) are, like the ground state, circular arcs, but more strongly bent. The multiform MES’s in case (b), which comprise hairpin, sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization, case (a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments may hold advantages over tips usually employed in magnetic force microscopy.

  10. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  11. The magnetic field of ζ Orionis A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J.-C.; Rivinius, Th.

    2015-10-01

    Context. ζ Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. Aims: We aim at verifying the presence of a magnetic field in ζ Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field. Methods: Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the least-squares deconvolution technique to extract the magnetic information. Results: We confirm that ζ Ori A is magnetic. We find that the supergiant component ζ Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~140 G. Because the magnetic field is weak and the stellar wind is strong, ζ Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion ζ Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ~300 G. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.Appendix A is available in electronic form at http://www.aanda.org

  12. The magnetic field in the disk of our Galaxy

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Qiao, G. J.

    1994-08-01

    The magnetic field in the disk of our Galaxy is investigated by using the Rotation Measures (RMs) of pulsars and Extragalactic Radio Sources (ERSes). Through analyses of the RMs of carefully selected pulsar samples, it is found that the Galaxy has a global field of BiSymmetric Spiral (BSS) configuration, rather than a concentric ring or an AxiSymmetric Spiral (ASS) configuration. The Galactic magnetic field of BSS structure is supposed to be of primordial origin. The pitch angle of the BSS structure is -8.2deg+/-0.5deg. The field geometry shows that the field goes along the Carina-Sagittarius arm, which is delineated by Giant Molecular Clouds (GMCs). The amplitude of the BSS field is 1.8+/-0.3μG. The first field strength maximum is at r_0_=11.9+/-0.15 kpc in the direction of l=180deg. The field is strong in the interarm regions and it reverses in the arm regions. In the vicinity of the Sun, it has a strength of ~1.4μG and reverses at 0.2-0.3kpc in the direction of l=0deg. Because of the unknown electron distribution of the Galaxy and other difficulties, it is impossible to derive the galactic field from the RMs of ERSes very quantitatively. Nevertheless, the RMs of ERSes located in the region of the two galactic poles are used to estimate the vertical component of the local galactic field, which is found to have a strength of 0.2-0.3μG and is directed from the south galactic pole to the north galactic pole. The scale height of the magnetic disk of the Galaxy is estimated from the RMs of all-sky distributed ERSes, being about 1.2+/-0.4pc. The regular magnetic field of our Galaxy, which is probably similar to that of M81, extends far from the optical disk.

  13. Morphology and magnetic flux distribution in superparamagnetic, single-crystalline Fe3O4 nanoparticle rings

    PubMed Central

    Takeno, Yumu; Murakami, Yasukazu; Sato, Takeshi; Tanigaki, Toshiaki; Park, Hyun Soon; Shindo, Daisuke; Ferguson, R. Matthew

    2014-01-01

    This study reports on the correlation between crystal orientation and magnetic flux distribution of Fe3O4 nanoparticles in the form of self-assembled rings. High-resolution transmission electron microscopy demonstrated that the nanoparticles were single-crystalline, highly monodispersed, (25 nm average diameter), and showed no appreciable lattice imperfections such as twins or stacking faults. Electron holography studies of these superparamagnetic nanoparticle rings indicated significant fluctuations in the magnetic flux lines, consistent with variations in the magnetocrystalline anisotropy of the nanoparticles. The observations provide useful information for a deeper understanding of the micromagnetics of ultrasmall nanoparticles, where the magnetic dipolar interaction competes with the magnetic anisotropy. PMID:25422526

  14. On the magnetic fields in voids

    NASA Astrophysics Data System (ADS)

    Beck, A. M.; Hanasz, M.; Lesch, H.; Remus, R.-S.; Stasyszyn, F. A.

    2013-02-01

    We study the possible magnetization of cosmic voids by void galaxies. Recently, observations revealed isolated star-forming galaxies within the voids. Furthermore, a major fraction of a voids volume is expected to be filled with magnetic fields of a minimum strength of about 10-15 G on Mpc scales. We estimate the transport of magnetic energy by cosmic rays (CR) from the void galaxies into the voids. We assume that CRs and winds are able to leave small isolated void galaxies shortly after they assembled, and then propagate within the voids. For a typical void, we estimate the magnetic field strength and volume-filling factor depending on its void galaxy population and possible contributions of strong active galactic nuclei (AGNs) which border the voids. We argue that the lower limit on the void magnetic field can be recovered, if a small fraction of the magnetic energy contained in the void galaxies or void bordering AGNs is distributed within the voids.

  15. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

  16. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    SciTech Connect

    Whang, Y. C.

    2010-02-20

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma beta-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  17. Dynamic Magnetic Field Applications for Materials Processing

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

  18. Ohm's law for mean magnetic fields

    SciTech Connect

    Boozer, A.H.

    1984-11-01

    Spatially complicated magnetic fields are frequently treated as the sum of a large, slowly varying, mean field and a small, rapidly varying, field. The primary effect of the small field is to modify the Ohm's law of the mean field. A set of plausible assumptions leads to a form of the mean field Ohm's law which is fundamentally different from the conventional alpha effect of dynamo theory.

  19. External-field-free magnetic biosensor

    SciTech Connect

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  20. Harmonics suppression in electromagnets with application to the ALS storage ring corrector magnet design

    SciTech Connect

    Schlueter, R.D.

    1991-01-28

    This memo presents an analytical development for prediction of skew harmonics in a iron core C-magnet to due arbitrarily positioned electromagnet coils. A structured approach is presented for the suppression of an arbitrary number of harmonic components to arbitrarily low values. Application of the analytical harmonic strength calculations coupled to the structured harmonic suppression approach is presented in the context of the design of the ALS storage ring corrector magnets.

  1. Surface magnetic fields across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Landstreet, John D.

    2015-10-01

    The past 20 years have seen remarkable advances in spectropolarimetric instrumentation that have allowed us, for the first time, to identify some magnetic stars in most major stages of stellar evolution. We are beginning to see the broad outline of how such fields change during stellar evolution, to confront theoretical hypotheses and models of magnetic field structure and evolution with detailed data, and to understand more of the ways in which the presence of a field in turn affects stellar structure and evolution.

  2. Quantitative modeling of planetary magnetospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Walker, R. J.

    1979-01-01

    Three new quantitative models of the earth's magnetospheric magnetic field have recently been presented: the Olson-Pfitzer model, the Tsyganenko model, and the Voigt model. The paper reviews these models in some detail with emphasis on the extent to which they have succeeded in improving on earlier models. The models are compared with the observed field in both magnitude and direction. Finally, the application to other planetary magnetospheres of the techniques used to model the earth's magnetospheric magnetic field is briefly discussed.

  3. Manipulating Cells with Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Valles, J. M.; Guevorkian, K.

    2005-07-01

    We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

  4. Ohm's law for mean magnetic fields

    SciTech Connect

    Boozer, A.H.

    1986-05-01

    The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.

  5. An Extraordinary Magnetic Field Map of Mars

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.; Mitchell, D. L.; Lin, R. P.

    2004-01-01

    The Mars Global Surveyor spacecraft has completed two Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriguing in both its global distribution and geometric properties [2,3]. Measurements of the vector magnetic field have been used to map the magnetic field of crustal origin to high accuracy [4]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from > 2 full years of MGS night-side observations, and uses along-track filtering to greatly reduce noise due to external field variations.

  6. Magnetocaloric effect in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Tishin, A. M.

    Calculations of magnetic entropy change, Δ SM, and magnetocaloric effect, Δ T, in 3d and 4f magnetics have been carried out, based on the molecular field theory. Δ SM and Δ T have been studied as a function of Debye temperature, θ D, Lande factor, gj, quantum number of total mechanical momentum, J, and also of magnetic phase transition temperatures. Limiting values of Δ SM and Δ T have been determined in extremely strong magnetic fields. The results obtained are compared with experimental data. It is shown that the use of ferromagnetic alloys Tb x Gd 1-x as operating devices of magnetic refrigerating machines in the room temperature range is more efficient than the use of pure Gd. These alloys have been found to have high specific refrigerant capacity over a wide range of fields from 0.1 to 6 T, which enables one to develop highly economic refrigeration devices in which weak fields are applied.

  7. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  8. Computer studies of a combined-function bend magnet for a proposed redesign of the SLAC SLC damping rings

    SciTech Connect

    Early, R.A.; Raubenheimer, T.O.

    1993-04-01

    A proposed redesign of the SLAC SLC Damping Ring requires a combined-function bending magnet. The magnet will operate with a main field of 1.8338 T, and quadrupole and sextupole gradients dB{sub y}/dx, d{sup 2}B{sub y}/dx{sup 2} of {minus}14.1 T/m and {minus}477 T/m{sup 2}, respectively. Because the orbit sagitta in the magnet is in excess of 2 cm, the pole will be curved with a 2 m radius of curvature. Furthermore, since the current must be variable over a range of {plus_minus}2 percent, we have considered using vanadium permendur poles to avoid a adverse saturation effects. Studies were done using POISSON in 2-D and TOSCA for 3-D end effects.

  9. Antiaromatic character of 16 π electron octaethylporphyrins: magnetically induced ring currents from DFT-GIMIC calculations.

    PubMed

    Fliegl, Heike; Pichierri, Fabio; Sundholm, Dage

    2015-03-19

    The magnetically induced current density susceptibility, also called current density, has been calculated for a recently synthesized octaethylporphyrin (OEP) zinc(II) dication with formally 16 π electrons. Numerical integration of the current density passing selected chemical bonds yields the current pathway around the porphyrinoid ring and the strength of the ring current. The current strengths show that the OEP-Zn(II) dication is strongly antiaromatic, as also concluded experimentally. The calculation of the ring current pathway shows that all 24 π electrons participate in the transport of the ring current because the current splits into inner and outer branches of practically equal strengths at the four pyrrolic rings. The corresponding neutral octaethylporphyrinoid without Zn and inner hydrogens is found to be antiaromatic, sustaining a paratropic ring current along the inner pathway with 16 π electrons. The neutral OEP-Zn(II) molecule with formally 18 π electrons is found to be almost as aromatic as free-base porphyrin. However, also in this case, all 26 π electrons contribute to the ring current, as for free-base porphyrin. A comparison of calculated and measured (1)H NMR chemical shifts is presented. The current strength susceptibility under experimental conditions has been estimated by assuming a linear relation between experimental shielding constants and calculated current strengths. PMID:25141236

  10. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm. PMID:24316186

  11. MICE Spectrometer Solenoid Magnetic Field Measurements

    SciTech Connect

    Leonova, M.

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  12. Magnetic ring anastomosis of suprahepatic vena cava: novel technique for liver transplantation in rat.

    PubMed

    Shi, Yuan; Zhang, Wei; Deng, Yong-lin; Zhang, Ya-min; Zhang, Quan-sheng; Zhang, Wei-ye; Zheng, Hong; Pan, Cheng; Shen, Zhong-Yang

    2015-01-01

    To improve the technique of suprahepatic vena cava (SHVC) reconstruction in rat OLT, novel magnetic rings were designed and manufactured to facilitate reconstruction of SHVC and shorten the anhepatic time. One-hundred and twenty adult male Wistar rats were randomly divided into two groups: rings group (n = 30), using magnetic rings for SHVC reconstruction; suture group (n = 30), 7/0 prolene suture was used for SHVC running anastomosis as control. Cuff techniques were used for portal vein and infrahepatic vena cava reconstruction as Kamada and Calne described. The bile duct was reconnected with a stent. The hepatic re-arterialization was omitted. In the rings group, the SHVC reconstruction took 0.91 ± 0.24 (mean ± SD) min; the anhepatic phase and the recipient operation time were 5.63 ± 0.65 min and 36.02 ± 8.02 min, respectively. In suture group, the anastomotic time of SHVC was 10.40 ± 2.11 min; the anhepatic phase and the recipient operation time were 17.76 ± 2.51 and 49.38 ± 12.06 min, respectively, and there was statistically significant difference between the two groups. The ALT levels reached peak at 24 h post-OLT (186.2 ± 32.5 IU/l) and restored to normal level at 96 h gradually. In the rings group, 29 of 30 rats survived at day 7 and 28 of 30 rats survived at day 30. In contrast, only 25 of 30 recipients in suture group remained alive at day 7 and 22 of 30 remained alive at day 30 (P < 0.05). Better anastomotic healing was founded in rings group by pathology and scanning electron microscope. The magnetic rings technique provides a novel, simple method for SHVC reconstruction of OLT in rat. It significantly shortens anhepatic phase, while the success rate of the operation is satisfactory. PMID:25132515

  13. Efficient magnetic fields for supporting toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Landreman, Matt; Boozer, Allen H.

    2016-03-01

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However, the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The efficiency of an externally generated magnetic field is a measure of the field's shaping component magnitude at the plasma compared to the magnitude near the coils; the efficiency of a plasma equilibrium can be measured using the efficiency of the required external shaping field. Counterintuitively, plasma shapes with low curvature and spectral width may have low efficiency, whereas plasma shapes with sharp edges may have high efficiency. Two precise measures of magnetic field efficiency, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix yields an efficiency ordered basis for the magnetic field distributions. Calculations are carried out for both tokamak and stellarator cases. For axisymmetric surfaces with circular cross-section, the SVD is calculated analytically, and the range of poloidal and toroidal mode numbers that can be controlled to a given desired level is determined. If formulated properly, these efficiency measures are independent of the coordinates used to parameterize the surfaces.

  14. Magnetic drug targeting: biodistribution and dependency on magnetic field strength

    NASA Astrophysics Data System (ADS)

    Alexiou, Ch.; Schmidt, A.; Klein, R.; Hulin, P.; Bergemann, Ch.; Arnold, W.

    2002-11-01

    "Magnetic drug targeting," a model of locoregional chemotherapy showed encouraging results in treatment of VX2-squamous cell carcinoma in rabbits. In the present study we investigated the biokinetic behavior of Iod [123]-labelled ferrofluids in vivo and showed in vitro that the ferrofluid concentration is dependent on the magnetic field strength.

  15. Quark matter under strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Peres Menezes, Débora; Laércio Lopes, Luiz

    2016-02-01

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model.

  16. Evolution of the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple 'open' configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CME's) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CME's contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be one of the following: plasmoids that are completely disconnected from the Sun; magnetic 'bottles,' still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CME's indicate that CME's generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occur above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  17. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-01-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple open'' configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic bottles,'' still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  18. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-05-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple ``open`` configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic ``bottles,`` still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  19. How are static magnetic fields detected biologically?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2009-03-01

    There is overwhelming evidence that life, from bacteria to birds to bats, detects magnetic fields, using the fields for orientation or navigation. Indeed there are recent reports (based on Google Earth imagery) that cattle and deer align themselves with the earth's magnetic field. [1]. The development of frog and insect eggs are changed by high magnetic fields, probably through known physical mechanisms. However, the mechanisms for eukaryotic navigation and alignment are not clear. Persuasive published models will be discussed. Evidence, that static magnetic fields might produce therapeutic effects, will be updated [2]. [4pt] [1] S. Begall, et al., Proc Natl Acad Sci USA, 105:13451 (2008). [0pt] [2] L. Finegold and B.L. Flamm, BMJ, 332:4 (2006).

  20. The magnetic field of Mercury, part 1

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1974-01-01

    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

  1. Normal glow discharge in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Surzhikov, S.; Shang, J.

    2014-10-01

    Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

  2. Magnetic fields from heterotic cosmic strings

    SciTech Connect

    Gwyn, Rhiannon; Alexander, Stephon H.; Brandenberger, Robert H.; Dasgupta, Keshav

    2009-04-15

    Large-scale magnetic fields are observed today to be coherent on galactic scales. While there exists an explanation for their amplification and their specific configuration in spiral galaxies--the dynamo mechanism--a satisfying explanation for the original seed fields required is still lacking. Cosmic strings are compelling candidates because of their scaling properties, which would guarantee the coherence on cosmological scales of any resultant magnetic fields at the time of galaxy formation. We present a mechanism for the production of primordial seed magnetic fields from heterotic cosmic strings arising from M theory. More specifically, we make use of heterotic cosmic strings stemming from M5-branes wrapped around four of the compact internal dimensions. These objects are stable on cosmological time scales and carry charged zero modes. Therefore a scaling solution of such defects will generate seed magnetic fields which are coherent on galactic scales today.

  3. The conductance of auroral magnetic field lines

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.; Gurnett, D. A.; Goertz, C. K.

    1986-01-01

    DE-1 high-resolution double-probe electric-field data and simultaneous magnetic-field measurements are reported for two 1981 events with large electric fields which reversed over short distances. The data are presented graphically and analyzed in detail. A field-line conductance of about 1 nmho/sq m is determined for both upward and downward currents, and the ionospheric conductivity is shown, in the short-wavelength limit, to have little effect on the relationship between the (N-S) electric and (E-W) magnetic fields above the potential drop parallel to the magnetic-field lines. The results are found to be consistent with a linear relationship between the field-aligned current density and the parallel potential drop.

  4. Dissipative charged fluid in a magnetic field

    NASA Astrophysics Data System (ADS)

    Abbasi, Navid; Davody, Ali

    2016-05-01

    We study the collective excitations in a dissipative charged fluid at zero chemical potential when an external magnetic field is present. While in the absence of magnetic field, four collective excitations appear in the fluid, we find five hydrodynamic modes here. This implies that the magnetic field splits the degeneracy between the transverse shear modes. Using linear response theory, we then compute the retarded response functions. In particular, it turns out that the correlation between charge and the energy fluctuations will no longer vanish, even at zero chemical potential. By use of the response functions, we also derive the relevant Kubo formulas for the transport coefficients.

  5. Relativistic electron in curved magnetic fields

    NASA Technical Reports Server (NTRS)

    An, S.

    1985-01-01

    Making use of the perturbation method based on the nonlinear differential equation theory, the author investigates the classical motion of a relativistic electron in a class of curved magnetic fields which may be written as B=B(O,B sub phi, O) in cylindrical coordinates (R. phi, Z). Under general astrophysical conditions the author derives the analytical expressions of the motion orbit, pitch angle, etc., of the electron in their dependence upon parameters characterizing the magnetic field and electron. The effects of non-zero curvature of magnetic field lines on the motion of electrons and applicabilities of these results to astrophysics are also discussed.

  6. Magnetic field quality analysis using ANSYS

    SciTech Connect

    Dell'Orco, D.; Chen, Y.

    1991-03-01

    The design of superconducting magnets for particles accelerators requires a high quality of the magnetic field. This paper presents an ANSYS 4.4A Post 1 macro that computes the field quality performing a Fourier analysis of the magnetic field. The results show that the ANSYS solution converges toward the analytical solution and that the error on the multipole coefficients depends linearly on the square of the mesh size. This shows the good accuracy of ANSYS in computing the multipole coefficients. 2 refs., 16 figs., 4 tabs.

  7. Magnetic fields of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1993-01-01

    The four terrestrial planets, together with the Earth's Moon, provide a significant range of conditions under which dynamo action could occur. All five bodies have been visited by spacecraft, and from three of the five bodies (Earth, Moon and Mars) we have samples of planetary material upon which paleomagnetic studies have been undertaken. At the present time, only the Earth and Mercury appear to have a significant dipole magnetic field. However, the Moon, and possibly Mars, appear to have had ancient planetary dynamos. Venus does not now have a significant planetary magnetic field, and the high surface temperatures should have prevented the recording of evidence of any ancient magnetic field. Since the solidification of the solid inner core is thought to be the energy source for the terrestrial magnetic field, and since smaller bodies evolve thermally more rapidly than larger bodies, we conjecture that the terrestrial planets are today in three different phases of magnetic activity. Venus is in a predynamo phase, not having cooled to the point of core solidification. Mercury and the Earth are in the middle of their dynamo phase, with Mercury perhaps near the end of its activity. Mars and the Moon seem to be well past their dynamo phase. Much needs to be done in the study of the magnetism of the terrestrial planets. We need to characterize the multipole harmonic structure of the Mercury magnetic field plus its secular variation, and we need to analyze returned samples to attempt to unfold the long-term history of Mercury's dynamo. We need to more thoroughly map the magnetism of the lunar surface and to analyze samples obtained from a wider area of the lunar surface. We need a more complete survey of the present Martian magnetic field and samples from a range of different ages of Martian surface material. Finally, a better characterization of the secular variation of the terrestrial magnetic field is needed in order to unfold the workings of the terrestrial dynamo.

  8. Environmental magnetic fields: Influences on early embryogenesis

    SciTech Connect

    Cameron, I.L.; Hardman, W.E.; Winters, W.D.; Zimmerman, S.; Zimmerman, A.M. )

    1993-04-01

    A 10-mG, 50 to 60-Hz magnetic field is in the intensity and frequency range that people worldwide are often exposed to in homes and in the workplace. Studies about the effects of 50- to 100-Hz electromagnetic fields on various species of animal embryos (fish, chick, fly, sea urchin, rat, and mouse) indicate that early stages of embryonic development are responsive to fluctuating magnetic fields. Chick, sea urchin, and mouse embryos are responsive to magnetic field intensities of 10-100 mG. Results from studies on sea urchin embryos indicate that exposure to conditions of rotating 60-Hz magnetic fields, e.g., similar to those in our environment, interferes with cell proliferation at the morula stage in a manner dependent on field intensity. The cleavage stages, prior to the 64-cell stage, were not delayed by this rotating 60-Hz magnetic field suggesting that the ionic surges, DNA replication, and translational events essential for early cleavage stages were not significantly altered. Studies of histone synthesis in early sea urchin embryos indicated that the rotating 60-Hz magnetic field decreased zygotic expression of early histone genes at the morula stage and suggests that this decrease in early histone production was limiting to cell proliferation. Whether these comparative observations from animal development studies will be paralleled by results from studies of human embryogenesis, as suggested by some epidemiology studies, has yet to be established. 38 refs.

  9. Aligning Paramecium caudatum with static magnetic fields.

    PubMed

    Guevorkian, Karine; Valles, James M

    2006-04-15

    As they negotiate their environs, unicellular organisms adjust their swimming in response to various physical fields such as temperature, chemical gradients, and electric fields. Because of the weak magnetic properties of most biological materials, however, they do not respond to the earth's magnetic field (5 x 10(-5) Tesla) except in rare cases. Here, we show that the trajectories of Paramecium caudatum align with intense static magnetic fields >3 Tesla. Otherwise straight trajectories curve in magnetic fields and eventually orient parallel or antiparallel to the applied field direction. Neutrally buoyant immobilized paramecia also align with their long axis in the direction of the field. We model this magneto-orientation as a strictly passive, nonphysiological response to a magnetic torque exerted on the diamagnetically anisotropic components of the paramecia. We have determined the average net anisotropy of the diamagnetic susceptibility, Deltachi(p), of a whole Paramecium: Deltachi(p) = (6.7+/- 0.7) x 10(-23) m(3). We show how the measured Deltachi(p) compares to the anisotropy of the diamagnetic susceptibilities of the components in the cell. We suggest that magnetic fields can be exploited as a novel, noninvasive, quantitative means to manipulate swimming populations of unicellular organisms. PMID:16461406

  10. The field of a screened magnetic dipole

    NASA Technical Reports Server (NTRS)

    Greene, J. M.; Miller, R. L.

    1994-01-01

    The purpose of this note is to quantitatively study the asymptotic behavior of the dipole magnetic field in the tail region of a paraboloidal or cylindrical model of the magnetosphere, assuming the complete screening of the internal field by magnetopause currents. This screening assumption is equivalent to imposing the boundary condition that the normal component of the magnetic field is zero at the magnetopause. With this boundary condition, the screened dipole field falls off exponentially with distance down the tail, in sharp constrast to the bare dipole field. Analytic expressions for a cylindrical and paraboloidal magnetopause are given.

  11. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  12. Magnetic Field Strengths in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Anish Roshi, D.; Jeyakumar, S.; Bania, T. M.; Montet, Benjamin T.; Shitanishi, J. A.

    2016-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 {{GHz}} toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B∼ 100{--}300 μ {{G}} in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B∼ 200{--}1000 μ {{G}}. H i and OH Zeeman measurements of the line of sight magnetic field strength ({B}{{los}}), taken from the literature, are between a factor of ∼ 0.5{--}1 of the lower bound of our carbon RRL magnetic field strength estimates. Since | {B}{{los}}| ≤slant B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths.

  13. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  14. Magnetic field dependence of magnetic domains in Co doped Mn2Sb using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Singh, Vikram; Saha, Pampi; Kushwaha, Pallavi; Thamizhavel, A.; Rawat, Rajeev

    2016-05-01

    Magnetic domains in the ferrimagnetic state of Co doped Mn2Sb single crystal has been visualized using Magnetic Force Microscopy. It shows fractal like domain structure. With the application of magnetic field, single domain state is achieved around 2000 Oe. The MFM images collected during field increasing and decreasing cycles show different morphology for same field value.

  15. Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Hendrickson, Christopher L; Blakney, Greg T; Nikolaev, Eugene

    2015-01-01

    A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design. PMID:26307725

  16. Compact Electric- And Magnetic-Field Sensor

    NASA Technical Reports Server (NTRS)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  17. The topological description of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Berger, Mitchell A.

    1986-01-01

    Determining the structure and behavior of solar coronal magnetic fields is a central problem in solar physics. At the photosphere, the field is believed to be strongly localized into discrete flux tubes. After providing a rigorous definition of field topology, how the topology of a finite collection of flux tubes may be classified is discussed.

  18. Recent biophysical studies in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Maret, Georg

    1990-06-01

    A brief overview of biophysical effects of steady magnetic fields is given. The need of high field strength is illustrated by several recent diamagnetic orientation experiments. They include rod-like viruses, purple membranes and chromosomes. Results of various studies on bees, quails, rats and pigeons exposed to fields above 7 T are also resumed.

  19. High Field Pulse Magnets with New Materials

    NASA Astrophysics Data System (ADS)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  20. Magnetic properties and hyperfine interactions in Cr8, Cr7Cd, and Cr7Ni molecular rings from 19F-NMR

    SciTech Connect

    Bordonali, L; Garlatti, E; Casadei, C M; Furukawa, Y; Lascialfari, A; Carretta, S; Troiani, F; Timco, G; Winpenny, R E; Borsa, F

    2014-04-14

    A detailed experimental investigation of the 19F nuclear magnetic resonance is made on single crystals of the homometallic Cr₈ antiferromagnetic molecular ring and heterometallic Cr₇Cd and Cr₇ Ni rings in the low temperature ground state. Since the F- ion is located midway between neighboring magnetic metal ions in the ring, the 19F-NMR spectra yield information about the local electronic spin density and ¹⁹F hyperfine interactions. In Cr8, where the ground state is a singlet with total spin S T = 0, the ¹⁹F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the ¹⁹F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S T = 1. In the heterometallic rings, Cr₇Cd and Cr₇ Ni, whose ground state is magnetic with S T = 3/2 and S T = 1/2, respectively, the ¹⁹F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the 19F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F⁻-Ni2⁺ and the F⁻-Cd2⁺ bonds. The values of the hyperfine constants compare well to the ones known for F⁻-Ni2⁺ in KNiF₃ and NiF₂ and for F⁻-Cr³⁺ in K₂NaCrF₆. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F⁻ ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

  1. Constraints on primordial magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Kobayashi, Takeshi

    2016-03-01

    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as Treh lesssim 102 MeV can magnetic fields of 10-15 G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative time kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.

  2. On the helicity of open magnetic fields

    SciTech Connect

    Prior, C.; Yeates, A. R.

    2014-06-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  3. Juno and Jupiter's Magnetic Field (Invited)

    NASA Astrophysics Data System (ADS)

    Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.

    2013-12-01

    The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.

  4. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R.

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  5. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  6. Multi-function ring magnet power supply for rapid-cycling synchrotrons

    SciTech Connect

    Praeg, W.F.

    1985-01-01

    Ring magnet power supply (RMPS) circuits that produce a wide range of magnet current waveshapes for rapid-cycling synchrotrons (RCS) are described. The shapes range from long flat-tops separated by a biased dual frequency cosine wave to those having a flat-bottom (injection), followed by a lower frequency cosine half wave (acceleration), a flat-top (extraction), and a higher frequency cosine half wave (magnet reset). Applications of these circuits for proposed synchrotrons are outlined. Solid-state switching circuits and the results of proof-of-concept tests are shown. 8 refs., 12 figs.

  7. MRS photodiode in strong magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Tartaglia, M.A.; Zutshi, v.; /Northern Illinois U.

    2004-12-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported.

  8. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  9. Magnetic space-based field measurements

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1981-01-01

    Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.

  10. 3-D Magnetic Field Analysis of Permanent Magnet Motor Considering Magnetizing, Demagnetizing and Eddy Current Loss

    NASA Astrophysics Data System (ADS)

    Miyata, Koji; Aoyama, Yasuaki; Yokoyama, Tomonori; Ohashi, Ken; Kondo, Minoru; Matsuoka, Koichi

    Rare-earth magnets, which have high energy product, have been widely used in several industrial applications such as voice coil motors for hard disk drives, MRI for medical devices and motors for electric vehicle. In order to realize a small and high performance device, the magnetic field analysis techniques are required. In this paper, we applied the magnetic field analysis to design the permanent magnet synchronous motors into the rail traction system. In the inverter fed motor drive, the eddy current loss in the permanent magnet increased. We simulated the effect that eddy current was decreased by using a divided permanent magnet. Furthermore, the permanent magnet tends to be demagnetized due to the effect of a demagnetizing field formed at high temperatures. However, according to our analysis, demagnetization does not occur within the range of our design specifications. Also, we performed magnetic field analysis assuming a pulse-type magnetization process and designed an optimal magnetizing coil.

  11. Radio observations of the Jovian magnetic field

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Carr, T. D.

    1992-01-01

    Radio observations of Jupiter are reviewed and discussed in relation to the planet's magnetic field. Early ground-based decameter- and decimeter-wave observations lead to a first estimate of the magnetic field strength which was subsequently confirmed by space-borne measurements. Decametric, hectometric and decimetric measurements of the Jovian rotation period offer the possibility of detecting a real change in the magnetic field structure within the next few decades. Solar wind control of the radio emission allows inferences to be made concerning the magnetic field and the emission regions at decametric, hectometric and kilometric frequencies. The decametric and the hectometric radiation may originate in hollow-cone emission sources at high (auroral) latitudes on Jupiter. The broad-band kilometric emission appears to originate at the outer edge of the Io torus.

  12. End fields of CBA superconducting magnets

    SciTech Connect

    Kirk, H.G.; Herrera, J.; Willen, E.

    1983-01-01

    Measurements of the two dimensional harmonic content of the end fields generated by the Brookhaven CBA dipole and quadrupole superconducting magnets are presented. Both the local longitudinal structure and the integrated end effects are examined.

  13. Local Magnetic Field Role in Star Formation

    NASA Astrophysics Data System (ADS)

    Koch, P. M.; Tang, Y. W.; Ho, P. T. P.; Zhang, Q.; Girart, J. M.; Chen, H. R. V.; Lai, S. P.; Li, H. B.; Li, Z. Y.; Liu, H. B.; Padovani, M.; Qiu, K.; Rao, R.; Yen, H. W.; Frau, P.; Chen, H. H.; Ching, T. C.

    2016-05-01

    We highlight distinct and systematic observational features of magnetic field morphologies in polarized submm dust continuum. We illustrate this with specific examples and show statistical trends from a sample of 50 star-forming regions.

  14. Fractal structure of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Klein, L. W.

    1985-01-01

    Under some conditions, time series of the interplanetary magnetic field strength and components have the properties of fractal curves. Magnetic field measurements made near 8.5 AU by Voyager 2 from June 5 to August 24, 1981 were self-similar over time scales from approximately 20 sec to approximately 3 x 100,000 sec, and the fractal dimension of the time series of the strength and components of the magnetic field was D = 5/3, corresponding to a power spectrum P(f) approximately f sup -5/3. Since the Kolmogorov spectrum for homogeneous, isotropic, stationary turbulence is also f sup -5/3, the Voyager 2 measurements are consistent with the observation of an inertial range of turbulence extending over approximately four decades in frequency. Interaction regions probably contributed most of the power in this interval. As an example, one interaction region is discussed in which the magnetic field had a fractal dimension D = 5/3.

  15. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  16. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  17. Ring-field TMA for PRISMA: theory, optical design, and performance measurements

    NASA Astrophysics Data System (ADS)

    Calamai, Luciano; Barsotti, Stefano; Fossati, Enrico; Formaro, Roberto; Thompson, Kevin P.

    2015-09-01

    PRISMA (PRecursore IperSpettrale della Missione Applicativa) Hyperspectral Payload is an Electro-Optical instrument developed in Selex ES for the dedicated ASI (Italian Space Agency) mission for Earth observation. The performance requirements for this mission are stringent and have led to an instrument design that is based on a Ring-Field Three Mirror Anastigmat (Ring-Field TMA), a two channel prism dispersion based spectrometer (VNIR and SWIR), and a Panchromatic Camera. The Ring-Field TMA contains three mirrors (two conics and one conic with some higher order correction). Exceptional performance has been achieved by not only introducing 3rd order astigmatism to balance the 5th astigmatism at the ring field zone as is traditional in an Offner-type design but, additionally, 3rd order coma has been controlled to align the balance of the linear and field cubic coma terms at the same ring field zone. The predicted wavefront performance of the design over the field of view will be highlighted. An assembly and alignment procedure for the Ring-Field TMA has been developed from the results of the sensitivity and tolerances analysis. The tilt and decenter sensitivity of the design form is nearly exclusively determined by 3rd order binodal astigmatism. The nodal position is linear with perturbation, which greatly simplifies the decisions on alignment compensators. The manufactured mirrors of the Ring-Field TMA have been aligned at Selex ES and as will be reported the preliminary results in terms of optical quality are in good agreement with the predicted as-built performance, both on-axis and in the field.

  18. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  19. Bounce averaged diffusion coefficients in a physics based magnetic field geometry from RAM-SCB

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2014-10-01

    In this work we explore wave-particle interaction in the radiation belt. By applying quasilinear theory, we obtain the particle diffusion coefficients in both pitch angle and energy for different configurations of the Earth's magnetic field. We consider the Earth's magnetic dipole field as a reference, and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with RAM-SCB, a code that models the Earth's ring current and provide a realistic modeling of the Earth's magnetic field. The bounce averaged electron pitch angle diffusion coefficients are calculated for each magnetic field configuration. The equatorial pitch angle, wave frequency and spectral distribution of whistler waves are shown to affect the bounce averaged diffusion coefficients. In addition, wave-particle resonance is significantly influenced by the magnetic field configuration: in storm conditions, diffusion is strongly reduced for some equatorial pitch angles.

  20. The magnetic field investigation on Cluster

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.

    1988-01-01

    The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.

  1. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  2. Nonlinear diffusion waves in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Datsko, I. M.; Rybka, D. V.; Ratakhin, N. A.; Khishchenko, K. V.

    2015-11-01

    The nonlinear diffusion of a magnetic field and the large-scale instabilities arising upon an electrical explosion of conductors in a superstrong (2-3 MG) magnetic field were investigated experimentally on the MIG high-current generator (up to 2.5 peak current, 100 ns current rise time). It was observed that in the nonlinear stage of the process, the wavelength of thermal instabilities (striations) increased with a rate of 1.5-3 km/s.

  3. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.; Gillies, D. C.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time- independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  4. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Gillies, D. C.; Volz, M. P.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time-independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  5. Untwisting magnetic fields in the solar corona

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Ramit; Smolarkiewicz, Piotr; Chye Low, Boon

    2012-07-01

    The solar corona is the tenuous atmosphere of the Sun characterized by a temperature of the order of million degrees Kelvin, an ambient magnetic field of 10 to 15 Gauss and a very high magnetic Reynolds number because of which it qualifies as a near-ideal magnetofluid system. It is well known that for such a system, the magnetic flux across every fluid surface remains effectively constant to a good approximation. Under this so called ``frozen-in'' condition then, it is possible to partition this magnetofluid into contiguous magnetic subvolumes each entrapping its own subsystem of magnetic flux. Thin magnetic flux tubes are an elementary example of such magnetic subvolumes evolving in time with no exchange of fluid among them. The internal twists and interweaving of these flux tubes, collectively referred as the magnetic topology, remains conserved under the frozen-in condition. Because of the dynamical evolution of the magnetofluid, two such subvolumes can come into direct contact with each other by expelling a third interstitial subvolume. In this process, the magnetic field may become discontinuous across the surface of contact by forming a current sheet there. Because of the small spatial scales generated by steepening of magnetic field gradient, the otherwise negligible resistivity becomes dominant and allows for reconnection of field lines which converts magnetic energy into heat. This phenomenon of spontaneous current sheet formation and its subsequent resistive decay is believed to be a possible mechanism for heating the solar corona to its million degree Kelvin temperature. In this work the dynamics of spontaneous current sheet formation is explored through numerical simulations and the results are presented.

  6. Driving magnetic skyrmions with microwave fields

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Beg, Marijan; Zhang, Bin; Kuch, Wolfgang; Fangohr, Hans

    2015-07-01

    We show theoretically by numerically solving the Landau-Lifshitz-Gilbert equation with a classical spin model on a two-dimensional system that both magnetic skyrmions and skyrmion lattices can be moved with microwave magnetic fields. The mechanism is enabled by breaking the axial symmetry of the skyrmion, for example, through application of a static in-plane external field. The net velocity of the skyrmion depends on the frequency and amplitude of the microwave fields as well as the strength of the in-plane field. The maximum velocity is found where the frequency of the microwave coincides with the resonance frequency of the breathing mode of the skyrmions.

  7. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  8. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L.

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  9. The magnetic field of a permanent hollow cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.

    2015-12-01

    Based on the rational version of Muc(AXWELL)'s equations according to Tuc(RUESDELL) and Tuc(OUPIN) or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider Muc(AXWELL)'s equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.

  10. Dynamic signatures of quiet sun magnetic fields

    NASA Technical Reports Server (NTRS)

    Martin, S. F.

    1983-01-01

    The collision and disappearance of opposite polarity fields is observed most frequently at the borders of network cells. Due to observational limitations, the frequency, magnitude, and spatial distribution of magnetic flux loss have not yet been quantitatively determined at the borders or within the interiors of the cells. However, in agreement with published hypotheses of other authors, the disapperance of magnetic flux is speculated to be a consequence of either gradual or rapid magnetic reconnection which could be the means of converting magnetic energy into the kinetic, thermal, and nonthermal sources of energy for microflares, spicules, the solar wind, and the heating of the solar corona.

  11. Nuclear magnetic resonance in magnets with a helicoidal magnetic structure in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Tankeyev, A. P.; Borich, M. A.; Smagin, V. V.

    2014-11-01

    In this review, the static and dynamic properties of a magnet with a helicoidal magnetic structure placed in an external magnetic field are discussed. The results of the investigation of its ground state and spectra, as well as the amplitudes of the spin excitations are presented. The temperature and field dependences of the basic thermodynamic characteristics (heat capacity, magnetization, and magnetic susceptibility) have been calculated in the spin-wave approximation. The results of calculating the local and integral dynamic magnetic susceptibility are given. This set of data represents a methodical basis for constructing a consistent (in the framework of unified approximations) picture of the NMR absorption in the magnet under consideration. Both local NMR characteristics (resonance frequency, line broadening, enhancement coefficient) and integral characteristics (resultant shape of the absorption line with its specific features) have been calculated. The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins through spin waves has been constructed. The second moment and the local broadening of the line of the NMR absorption caused by this interaction have been calculated. The role of the basic local inhomogeneities in the formation of the integral line of the NMR absorption has been analyzed. The opportunities for the experimental NMR investigations in magnets with a chiral spin structure are discussed.

  12. Hanle Effect Diagnostics of the Coronal Magnetic Field: A Test Using Realistic Magnetic Field Configurations

    NASA Astrophysics Data System (ADS)

    Raouafi, N.-E.; Solanki, S. K.; Wiegelmann, T.

    2009-06-01

    Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H I Lyα and β lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H I Lyβ, are useful for such measurements.

  13. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field.

    PubMed

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus. PMID:26520987

  14. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus.

  15. Magnetic Field Apparatus (MFA) Hardware Test

    NASA Technical Reports Server (NTRS)

    Anderson, Ken; Boody, April; Reed, Dave; Wang, Chung; Stuckey, Bob; Cox, Dave

    1999-01-01

    The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.

  16. QCD quark condensate in external magnetic fields

    NASA Astrophysics Data System (ADS)

    Bali, G. S.; Bruckmann, F.; Endrődi, G.; Fodor, Z.; Katz, S. D.; Schäfer, A.

    2012-10-01

    We present a comprehensive analysis of the light condensates in QCD with 1+1+1 sea quark flavors (with mass-degenerate light quarks of different electric charges) at zero and nonzero temperatures of up to 190 MeV and external magnetic fields B<1GeV2/e. We employ stout smeared staggered fermions with physical quark masses and extrapolate the results to the continuum limit. At low temperatures we confirm the magnetic catalysis scenario predicted by many model calculations while around the crossover the condensate develops a complex dependence on the external magnetic field, resulting in a decrease of the transition temperature.

  17. Asymptotic freedom in strong magnetic fields.

    PubMed

    Andreichikov, M A; Orlovsky, V D; Simonov, Yu A

    2013-04-19

    Perturbative gluon exchange interaction between quark and antiquark, or in a 3q system, is enhanced in a magnetic field and may cause vanishing of the total qq[over ¯] or 3q mass, and even unlimited decrease of it-recently called the magnetic collapse of QCD. The analysis of the one-loop correction below shows a considerable softening of this phenomenon due to qq[over ¯] loop contribution, similar to the Coulomb case of QED, leading to approximately logarithmic damping of gluon exchange interaction (≈O(1/ln|eB|)) at large magnetic field. PMID:23679595

  18. Magnetic reconnection in collisionless plasmas - Prescribed fields

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Drake, J. F.; Chen, J.

    1990-01-01

    The structure of the dissipation region during magnetic reconnection in collisionless plasma is investigated by examining a prescribed two-dimensional magnetic x line configuration with an imposed inductive electric field E(y). The calculations represent an extension of recent MHD simulations of steady state reconnection (Biskamp, 1986; Lee and Fu, 1986) to the collisionless kinetic regime. It is shown that the structure of the x line reconnection configuration depends on only two parameters: a normalized inductive field and a parameter R which represents the opening angle of the magnetic x lines.

  19. Magnetic buoyancy and the escape of magnetic fields from stars

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1984-01-01

    A loss of magnetic flux through the free surface of a star into the surrounding space has important implications for the generation of the field within the star. The present investigation is concerned with the physics of the escape of net azimuthal flux from a star. The obtained results are used as a basis for the interpretation of some recent observations of the detailed behavior of magnetic fields emerging through the surface of the sun. The buoyancy of an isolated horizontal magnetic flux tube beneath the surface of a star causes the tube to rise at a rate comparable to the Alfven speed. The necessary conditions for escape of the flux are considered along with aspects of magnetic buoyancy, and the conditions on the sun. It appears that the observed retraction of bipolar magnetic fields at the end of their life at the surface is the one phenomenon which requires dynamical intervention. Attention is given to known dynamical effects which suppress the buoyant rise of an azimuthal magnetic field.

  20. Effects of static magnetic fields on plants.

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O.

    In our recent experiment on STS-107 (MFA-Biotube) we took advantage of the magnetic heterogeneity of the gravity receptor cells of flax roots, namely stronger diamagnetism of starch-filled amyloplasts compared to cytoplasm (Δ ≊ < 0). High gradient magnetic fields (HGMF, grad(H2/2) up to 109-1010 Oe2/cm) of the experimental chambers (MFCs) repelled amyloplasts from the zones of stronger field thus providing a directional stimulus for plant gravisensing system in microgravity, and causing the roots to react. Such reaction was observed in the video downlink pictures. Unfortunately, the ``Columbia'' tragedy caused loss of the plant material and most of the images, thus preventing us from detailed studies of the results. Currently we are looking for a possibility to repeat this experiment. Therefore, it is very important to understand, what other effects (besides displacing amyloplasts) static magnetic fields with intensities 0 to 2.5104 Oe, and with the size of the area of non-uniformity 10-3 to 1 cm. These effects were estimated theoretically and tested experimentally. No statistically significant differences in growth rates or rates of gravicurvature were observed in experiments with Linum, Arabidopsis, Hordeum, Avena, Ceratodon and Chara between the plants grown in uniform magnetic fields of various intensities (102 to 2.5104 Oe) and those grown in the Earth's magnetic field. Microscopic studies also did not detect any structural differences between test and control plants. The magnitudes of possible effects of static magnetic fields on plant cells and organs (including effects on ion currents, magneto-hydrodynamic effects in moving cytoplasm, ponderomotive forces on other cellular structures, effects on some biochemical reactions and biomolecules) were estimated theoretically. The estimations have shown, that these effects are small compared to the thermodynamic noise and thus are insignificant. Both theoretical estimations and control experiments confirm, that

  1. Thomson scattering in a magnetic field. II - Arbitrary field orientation

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.

    1991-01-01

    This paper presents solutions to the equation of transfer for Thomson scattering in a constant magnetic field of arbitrary orientation. Results from several atmospheres are combined to give the flux from a dipole star. The results are compared to the polarization data of the magnetic white dwarf Grw + 70 deg 8247. The fit is good, though it implies a very large polarization in the ultraviolet. Thomson scattering is not thought to be an important opacity source in white dwarfs, so the good fit is either fortuitous or is perhaps explained by assuming the magnetic field affects the polarization processes in all opacities similarly.

  2. Causes of Ring-Related Leg Injuries in Birds – Evidence and Recommendations from Four Field Studies

    PubMed Central

    Griesser, Michael; Schneider, Nicole A.; Collis, Mary-Anne; Overs, Anthony; Guppy, Michael; Guppy, Sarah; Takeuchi, Naoko; Collins, Pete; Peters, Anne; Hall, Michelle L.

    2012-01-01

    One of the main techniques for recognizing individuals in avian field research is marking birds with plastic and metal leg rings. However, in some species individuals may react negatively to rings, causing leg injuries and, in extreme cases, the loss of a foot or limb. Here, we report problems that arise from ringing and illustrate solutions based on field data from Brown Thornbills (Acanthiza pusilla) (2 populations), Siberian Jays (Perisoreus infaustus) and Purple-crowned Fairy-wrens (Malurus coronatus). We encountered three problems caused by plastic rings: inflammations triggered by material accumulating under the ring (Purple-crowned Fairy-wrens), contact inflammations as a consequence of plastic rings touching the foot or tibio-tarsal joint (Brown Thornbills), and toes or the foot getting trapped in partly unwrapped flat-band colour rings (Siberian Jays). Metal rings caused two problems: the edges of aluminium rings bent inwards if mounted on top of each other (Brown Thornbills), and too small a ring size led to inflammation (Purple-crowned Fairy-wrens). We overcame these problems by changing the ringing technique (using different ring types or larger rings), or using different adhesive. Additionally, we developed and tested a novel, simple technique of gluing plastic rings onto metal rings in Brown Thornbills. A review of studies reporting ring injuries (N = 23) showed that small birds (<55 g body weight) are more prone to leg infections while larger birds (>35 g) tend to get rings stuck over their feet. We give methodological advice on how these problems can be avoided, and suggest a ringing hazard index to compare the impact of ringing in terms of injury on different bird species. Finally, to facilitate improvements in ringing techniques, we encourage online deposition of information regarding ringing injuries of birds at a website hosted by the European Union for Bird Ringing (EURING). PMID:23300574

  3. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect

    Canabal, A.; Tajima, T.; Dolgashev, V.A.; Tantawi, S.G.; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  4. Fast Reconnection of Weak Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1998-01-01

    Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.

  5. Magnetic fields in early-type stars

    NASA Astrophysics Data System (ADS)

    Grunhut, Jason H.; Neiner, Coralie

    2015-10-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M ⊙) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have furthered our understanding of the interactions between the magnetic field and stellar wind, as well as the consequences and connections of this interaction with other observed phenomena.

  6. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    SciTech Connect

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  7. Magnetic fields in Local Group dwarf irregulars

    NASA Astrophysics Data System (ADS)

    Chyży, K. T.; Weżgowiec, M.; Beck, R.; Bomans, D. J.

    2011-05-01

    Aims: We wish to clarify whether strong magnetic fields can be effectively generated in typically low-mass dwarf galaxies and to assess the role of dwarf galaxies in the magnetization of the Universe. Methods: We performed a search for radio emission and magnetic fields in an unbiased sample of 12 Local Group (LG) irregular and dwarf irregular galaxies with the 100-m Effelsberg telescope at 2.64 GHz. Three galaxies were detected. A higher frequency (4.85 GHz) was used to search for polarized emission in five dwarfs that are the most luminous ones in the infrared domain, of which three were detected. Results: Magnetic fields in LG dwarfs are weak, with a mean value of the total field strength of <4.2 ± 1.8 μG, three times lower than in the normal spirals. The strongest field among all LG dwarfs of 10 μG (at 2.64 GHz) is observed in the starburst dwarf IC 10. The production of total magnetic fields in dwarf systems appears to be regulated mainly by the star-formation surface density (with the power-law exponent of 0.30 ± 0.04) or by the gas surface density (with the exponent 0.47 ± 0.09). In addition, we find systematically stronger fields in objects of higher global star-formation rate. The dwarf galaxies follow a similar far-infrared relationship (with a slope of 0.91 ± 0.08) to that determined for high surface brightness spiral galaxies. The magnetic field strength in dwarf galaxies does not correlate with their maximum rotational velocity, indicating that a small-scale rather than a large-scale dynamo process is responsible for producting magnetic fields in dwarfs. If magnetization of the Universe by galactic outflows is coeval with its metal enrichment, we show that more massive objects (such as Lyman break galaxies) can efficiently magnetize the intergalactic medium with a magnetic field strength of about 0.8 nG out to a distance of 160-530 kpc at redshifts 5-3, respectively. Magnetic fields that are several times weaker and shorter magnetization

  8. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    NASA Astrophysics Data System (ADS)

    Harada, S.; Baba, T.; Uchigashima, A.; Yokota, S.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.; Shimizu, H.

    2014-11-01

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.

  9. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    SciTech Connect

    Harada, S.; Baba, T.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yokota, S.; Yamazaki, T.; Shimizu, H.

    2014-11-10

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.

  10. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    NASA Astrophysics Data System (ADS)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  11. Slowly rotating pulsars and magnetic field decay

    NASA Astrophysics Data System (ADS)

    Han, J. L.

    1997-02-01

    Two dozen long period pulsars are separated from the swarm of ordinary pulsars by an obvious gap in the P versus Sd diagram (where Sd=log˙(P)+21.0), with a plausible upper boundary for ordinary pulsars. Possible pulsar evolutionary tracks are discussed to explain the diagram in terms of previously suggested scenarios of magnetic field decay. The (P-Sd) diagram is difficult to understand if there is no magnetic field decay during the active life of pulsars. However, if the magnetic fields of neutron stars decay exponentially, almost all slowly rotating pulsars must have been injected with a very long initial spin period of about 2 seconds, which seems impossible. Based on qualitative analyses, it is concluded that magnetic fields of neutron stars decay as a power-law, with a time scale related to the initial field strengths. The plausible boundary and the gap are suggested to naturally divide pulsars with distinct magnetic "genes", ie. pulsars which were born from strongly magnetized progenitors -- such as Bp stars, and pulsars born from normal massive stars. The possibility remains open that a fraction of slowly rotating pulsars were injected with long initial spin periods, while others would have a classical pulsar evolution history. It is suggested that PSR B1849+00 was born in the supernova remnant Kes-79 with an initial period of about 2 seconds.

  12. Magnetic Field Analysis of a Permanent-Magnet Induction Generator

    NASA Astrophysics Data System (ADS)

    Tsuda, Toshihiro; Fukami, Tadashi; Kanamaru, Yasunori; Miyamoto, Toshio

    The permanent-magnet induction generator (PMIG) is a new type of induction machine that has a permanent-magnet rotor inside a squirrel-cage rotor. In this paper, a new technique for the magnetic field analysis of the PMIG is proposed. The proposed technique is based on the PMIG's equivalent circuit and the two-dimensional finite-element analysis (2D-FEA). To execute the 2D-FEA, the phasors of primary and secondary currents are calculated from the equivalent circuit, and the input data for the 2D-FEA is found by converting these phasors into the space vectors. As a result, the internal magnetic fields of the PMIG can be easily analyzed without complicated calculations.

  13. Plasma separation from magnetic field lines in a magnetic nozzle

    NASA Technical Reports Server (NTRS)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  14. Review of magnetic field observations.

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1972-01-01

    Recent observations in previously unexplored regions of the magnetosphere, particularly in the polar-cusp region, compliment and reinforce emphasis on particle access to the plasma sheet via the polar neutral points. Significant distortions of the geomagnetic field in the polar-cusp region suggest field-aligned currents at large geocentric distances which can be related to low-altitude polar-cap phenomena. Studies of the microstructure of the field reversal region of the plasma sheet embedded in the geomagnetic tail suggest a periodic structure of more complexity than earlier assumed simplified single neutral-line models.

  15. New methodology for use in rotating field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Jachman, Rebecca Corina

    High-resolution NMR spectra of samples with anisotropic broadening are simplified to their isotropic spectra by fast rotation of the sample at the magic angle 54.7°. This dissertation concerns the development of novel Nuclear Magnetic Resonance (NMR) methodologies which would rotate the magnetic field instead of the sample, i.e. rotating field NMR. It also provides an overview of the NMR concepts, procedures, and experiments needed to understand the methodologies that will be used for rotating field NMR. A simple two-dimensional shimming method based on harmonic corrector rings provides arbitrary multiple order shimming corrections that are necessary for rotating field systems, but can be used in shimming other systems as well. Those results demonstrate, for example, that quadrupolar order shimming improves the linewidth by up to a factor of ten. An additional order of magnitude reduction is in principle achievable by utilizing this shimming method for z-gradient correction and higher order xy gradients. Additionally, initial investigations into a specialized pulse sequence for the rotating field NMR experiment, which allows for spinning at angles other than the magic angle and spinning slower than the anisotropic broadening is discussed. This will be useful for rotating field NMR because there are limits on how fast a field can be spun and difficulties of reaching the magic angle. This pulse sequence is a combination of the previously established projected magic angle spinning (p-MAS) and magic angle turning (MAT) pulse sequences. One of the goals of this project is for rotating field NMR to be used on biological systems. The p-MAS pulse sequence was successfully tested on bovine tissue samples, which suggests that it will be a viable methodology to use in rotating field NMR. A side experiment on steering magnetic particles by MRI gradients was also carried out. Initial investigations indicate some movement, but for total steering control, further experiments are

  16. Measurements of Photospheric and Chromospheric Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-12-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.

  17. Multisubband transport and magnetic deflection of Fermi electron trajectories in three terminal junctions and rings.

    PubMed

    Poniedziałek, M R; Szafran, B

    2012-02-29

    We study the electron transport in three terminal junctions and quantum rings looking for the classical deflection of electron trajectories in the presence of intersubband scattering. We indicate that although the Aharonov-Bohm oscillations and the Lorentz force effects co-exist in the low subband transport, for higher Fermi energies a simultaneous observation of both effects is difficult and calls for carefully formed structures. In particular, in quantum rings with channels wider than the input lead the Lorentz force is well resolved but the Aharonov-Bohm periodicity is lost in chaotic scattering events. In quantum rings with equal lengths of the channels and T-shaped junctions the Aharonov-Bohm oscillations are distinctly periodic but the Lorentz force effects are not well pronounced. We find that systems with wedge-shaped junctions allow for observation of both the periodic Aharonov-Bohm oscillations and the magnetic deflection. PMID:22277600

  18. Secondary resonance magnetic force microscopy using an external magnetic field for characterization of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dongzi; Mo, Kangxin; Ding, Xidong; Zhao, Liangbing; Lin, Guocong; Zhang, Yueli; Chen, Dihu

    2015-09-01

    A bimodal magnetic force microscopy (MFM) that uses an external magnetic field for the detection and imaging of magnetic thin films is developed. By applying the external modulation magnetic field, the vibration of a cantilever probe is excited by its magnetic tip at its higher eigenmode. Using magnetic nanoparticle samples, the capacity of the technique which allows single-pass imaging of topography and magnetic forces is demonstrated. For the detection of magnetic properties of thin film materials, its signal-to-noise ratio and sensitivity are demonstrated to be superior to conventional MFM in lift mode. The secondary resonance MFM technique provides a promising tool for the characterization of nanoscale magnetic properties of various materials, especially of magnetic thin films with weak magnetism.

  19. Electric/magnetic field sensor

    DOEpatents

    Schill, Jr., Robert A.; Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  20. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    NASA Astrophysics Data System (ADS)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P.; Najera, Alberto; Beléndez, Augusto

    2015-11-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.