Science.gov

Sample records for magnetic field rings

  1. Magnetic fields in ring galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  2. IMPACT OF MAGNETIC FIELD INTERFERENCE IN THE SNS RING.

    SciTech Connect

    PAPAPHILIPPOU,Y.; LEE,Y.Y.; MENG,W.

    2001-06-18

    The modest size of the SNS accumulator ring and the use of short, large aperture magnets makes unavoidable the overlapping between the magnetic end fields of the quadrupoles with the adjacent multipole correctors. This interference effect can be quantified through magnetic field simulations and measurements. The impact to the beam dynamics is finally discussed.

  3. Ring Current Modeling in a Realistic Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Moore, T. E.

    1997-01-01

    A 3-dimensional kinetic model has been developed to study the dynamics of the storm time ring current in a dipole magnetic field. In this paper, the ring current model is extended to include a realistic, time-varying magnetic field model. The magnetic field is expressed as the cross product of the gradients of two Euler potentials and the bounce-averaged particle drifts are calculated in the Euler potential coordinates. A dipolarization event is modeled by collapsing a tail-like magnetosphere to a dipole-like configuration. Our model is able to simulate the sudden enhancements in the ring current ion fluxes and the corresponding ionospheric precipitation during the substorm expansion.

  4. Low-field giant magnetoresistance in layered magnetic rings

    NASA Astrophysics Data System (ADS)

    Castaño, F. J.; Morecroft, D.; Ross, C. A.

    2006-12-01

    The low-field magnetization reversal of NiFe/Cu/Co multilayer mesoscopic elliptical and circular rings has been investigated via magnetoresistance measurements and micromagnetic modeling. Minor loop measurements, in which the NiFe layer is cycled for a fixed Co layer configuration, show qualitatively different behavior depending on whether the Co layer is present in a vortex or an onion state. Micromagnetic simulations are in excellent agreement with the experimental data and confirm the dominant role played by magnetostatic interactions between the Co and NiFe layers, as a result of stray fields from the domain walls present in the layers. Multiple stable remanent resistance levels can be obtained by cycling the rings at modest fields.

  5. Externally controlled local magnetic field in a conducting mesoscopic ring coupled to a quantum wire

    SciTech Connect

    Maiti, Santanu K.

    2015-01-14

    In the present work, the possibility of regulating local magnetic field in a quantum ring is investigated theoretically. The ring is coupled to a quantum wire and subjected to an in-plane electric field. Under a finite bias voltage across the wire a net circulating current is established in the ring which produces a strong magnetic field at its centre. This magnetic field can be tuned externally in a wide range by regulating the in-plane electric field, and thus, our present system can be utilized to control magnetic field at a specific region. The feasibility of this quantum system in designing spin-based quantum devices is also analyzed.

  6. Ring current-atmosphere interactions model with stormtime magnetic field

    NASA Astrophysics Data System (ADS)

    Vapirev, Alexander Emilov

    An improved version of the ring current-atmosphere interactions kinetic model (RAM) is presented in this thesis. The recent stormtime empirical model T04s and the IGRF model are used to represent the Earth's external and internal magnetic fields respectively. Particle drifts, losses due to charge exchange with geocoronal hydrogen and atmospheric losses are included in the model as they are considered the main mechanisms of ring current development and its following decay. A numerical technique for bounce-averaging along the field lines is introduced and results for the calculated bounce-averaged hydrogen densities and magnetic gradient-curvature drift velocities (general case) for the moderate storm of April 21-25, 2001, are presented. A comparison in the calculations between T04s and a dipole field shows that the bounce-averaged hydrogen density for T04s differs with ˜ 5% from that for a dipole field for quiet time and it may become 30% smaller for disturbed conditions on the nightside for L > 4. The gradient-curvature velocities for T04s at large L-shells are ˜ 20% higher on the nightside and 20% lower on the dayside than those for a dipole field for quiet time. For disturbed conditions they are respectively ˜ 200% higher and 20% lower than the dipole values. The contribution of the cross-B term to the magnetic drift is ˜ 5%. Results for the time evolution of the trapped equatorial flux for H+, He+, and O+ ions for various particle energies and pitch angles obtained by the new model with a non-dipole field (RAM-ND) are presented. The new computations for the April 2001 storm using a Volland-Stern convection model show a slight continued increase in the flux and the total ring current energy for the three ion species even after the storm main phase. A higher increase in the flux is observed towards the dusk side for the RAM-ND model compared to RAM due the difference in the charge exchange rates and the azimuthal drifts for the two different geomagnetic field

  7. Planetary rings as relics of plasma proto-rings rotating in the magnetic field of a central body

    NASA Astrophysics Data System (ADS)

    Rabinovich, B.

    2007-08-01

    A possibility is discussed in accordance to hypothesis by H. Alfven, that the rings of large planets are relics of some plasma proto-rings rotating in the magnetic fields of central bodies. A finite-dimensional mathematical model of the system is synthesized using the solution of the boundary-value problem by the Boubnov - Galerkin method. The dipole magnetic field of the central body is assumed to have a small eccentricity, and the dipole axis - to be inclined at a small angle to the central body's axis of rotation which coincides with the ring's rotation axis. The proto-ring is supposed to be thin and narrow and having the same rotating axis as the central body. A medium forming the ring is cold rarefied plasma with high electron density, so that electric conductivity of the medium tends to infinity, as well as the magnetic Reynolds number. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. Emphasis is placed on the problems of stability of the ring's steady state rotation and quantization of the eigenvalues of nondimensional sector velocity of the ring with respect to the central body. The solutions corresponding to magneto-gravitational and to magneto-gyroscopic waves are considered It is demonstrated that some rings characterized by integral quantum numbers are stable and long-living, while the rings which are associated with half-integer quantum numbers (rings>) are unstable and short-living. As a result, an evolutionally rife rotating plasma ring turns out to be stratified into a large number of narrow elite rings separated by gaps whose position correspond to anti-rings. The regions of possible existence of elite rings in near-central body space are determined. The main result of eigenvalue spectrum's analysis is as follows. Quantum numbers determining elite eigenvalues of the sector velocity of a ring (normalized in a certain manner) coincide with the quantum

  8. Characteristics of Hot Electron Ring in a Simple Magnetic Mirror Field

    NASA Astrophysics Data System (ADS)

    Hosokawa, Minoru; Ikegami, Hideo

    1991-01-01

    Characteristics of a hot electron ring are studied in a simple magnetic mirror machine. Hot electron rings (n≈ 1010 cm-3, T≈ 100 keV) are most effectively generated under two conditions, when the magnetic field on the axis of the midplane is set near the fundamental, or the second harmonic electron cyclotron resonance to the applied microwave frequency (6.4 GHz). The density profile of the hot electrons is observed to take a so-called ring shape. The radial-cut view of the ring, however, indicates an M-shape density profile, and the density of hot electrons on the axis at the center and is about one-half of the peak ring density encircling the axis. The hot electron ring is susceptible to a few instabilities which can be artificially triggered. With the instability generated, the hot electron ring is observed to transform into a filled cylinder in a few microseconds and then disappears.

  9. Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase

    NASA Technical Reports Server (NTRS)

    Le, G.; Russell, C. T.; Slavin, J. A.; Lucek, E. A.

    2008-01-01

    We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L greater than 5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L less than 5). The precipitation loss

  10. On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics

    NASA Technical Reports Server (NTRS)

    Zheng, Y.; Zaharia, S. G.; Fok, M. H.

    2010-01-01

    Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents.

  11. Transient Response of Single-Domain Y-Ba-Cu-O Rings to Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Askew, T. R.; Weber, J. M.; Cha, Y. S.; Claus, H.; Veal, B. W.

    2002-08-01

    Shielding current limits and magnetic diffusion characteristics have been measured at 77 K for a set of YBCO single-domain rings. These were fabricated from melt-textured cylindrical YBCO monoliths that were densified to nearly 100%, and then oriented from a single seed. The rings were surrounded by a drive coil that can, under pulse conditions, achieve applied magnetic fields in excess of 1 T and induce currents in excess of 50 kA. Simultaneous magnetic characterization with a Rogowski coil and Hall probe was used to determine the induced current in the sample and the magnetic field in the center of the sample. Magnetic fields trapped in the samples were mapped with a scanning Hall probe. When compared with similar measurements on multidomain c-axisoriented YBCO rings, the flux penetration is faster and more uniform around the circumference of the ring. The observed critical current density, 15,000 A/cm2 at 77 K, is suitable for application in penetration-type fault current limiters. Separate measurements of the trapped magnetic field and critical current density in the rings are compared with results obtained by analysis of magnetic diffusion characteristics.

  12. Orbital and spin motion in a storage ring with static electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Mane, S. R.

    2012-09-01

    I present the fundamental electrodynamic equations of motion for the orbital and spin motion in a storage ring with static electric and magnetic fields, including motion in pure electrostatic fields. In particular, I treat strong focusing lattices and synchrotron oscillations. This generalizes and extends the work of previous authors. I also treat the spin motion, including a possible permanent electric dipole moment (EDM).

  13. Formation of field-reversed ion rings in a magnetized background plasma

    SciTech Connect

    Omelchenko, Y.A.; Sudan, R.N.

    1995-07-01

    In typical field-reversed ion ring experiments, an intense annular ion beam is injected across a magnetic cusp into neutral gas immersed in a solenoidal magnetic field. In anticipation of a new experimental thrust to create strong field-reversed ion rings the beam evolution is investigated in a preformed background plasma on a time scale greater than an ion cyclotron period, using a new two and a half-dimensional (21/2-D) hybrid, particle-in-cell (PIC) code FIRE, in which the beam and background ions are treated as macro-particles and the electrons as a massless fluid. It is shown that under appropriate conditions axial beam bunching occurs in the downstream applied field and a compact field-reversed ring is formed. It is observed that the ring is reflected in a ramped magnetic field. Upon reflection its axial velocity is very much less than that expected from a single particle model due to the transfer of the mean axial momentum to the background ions. This increases the time available to apply a pulsed mirror for trapping the ring experimentally. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. Exact unitary transformation for Rashba Rings in magnetic and electric fields

    NASA Astrophysics Data System (ADS)

    Kregar, A.; Ramšak, A.

    2016-03-01

    An exact solution for single electron states on mesoscopic rings with the Rashba coupling and in the presence of external magnetic and electric fields is derived by means of a unitary transformation. The transformation maps the model to a bare ring, which gives the possibility of a very simple formulation of single or many electron problems. As an example some exact results for spin and energy levels are presented.

  15. The magnetic field in the dust ring at the center of the Galaxy

    SciTech Connect

    Hildebrand, R.H.; Gonatas, D.P.; Platt, S.R.; Wu, X.D.; Davidson, J.A.; Werner, M.W. NASA, Ames Research Center, Moffett Field, CA )

    1990-10-01

    Measurements of the polarization of the far-infrared thermal emission from six points in the dust ring at Sgr A are presented. The position angles are approximately perpendicular to the long axis of the ring as projected on the sky. The inferred magnetic field is therefore approximately in the plane of the ring. The pattern traced by the polarization vectors resembles that expected for a magnetic accretion disk. The measurements indicate a field in which the outward radial component is much greater than the axial component at the surface of the disk. The field thus appears to satisfy the condition proposed by Blandford and Payne (1982) for removing energy and angular momentum through centrifugal acceleration of surface material moving along the field lines. 31 refs.

  16. The magnetic field in the dust ring at the center of the Galaxy

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.; Gonatas, D. P.; Platt, S. R.; Wu, X. D.; Davidson, J. A.; Werner, M. W.

    1990-01-01

    Measurements of the polarization of the far-infrared thermal emission from six points in the dust ring at Sgr A are presented. The position angles are approximately perpendicular to the long axis of the ring as projected on the sky. The inferred magnetic field is therefore approximately in the plane of the ring. The pattern traced by the polarization vectors resembles that expected for a magnetic accretion disk. The measurements indicate a field in which the outward radial component is much greater than the axial component at the surface of the disk. The field thus appears to satisfy the condition proposed by Blandford and Payne (1982) for removing energy and angular momentum through centrifugal acceleration of surface material moving along the field lines.

  17. Measurements of the normal state persistent current in Au rings at high and low magnetic fields

    NASA Astrophysics Data System (ADS)

    Petkovic, Ivana; Ngo, Dustin; Lollo, Anthony; Harris, Jack

    2014-03-01

    Flux biased normal metal rings smaller than the phase coherence length can sustain persistent current (PC). We employ cantilever torque magnetometry to detect PC with high sensitivity, efficient background rejection, and in an electromagnetically clean environment. Previously, our group focused on the high magnetic field regime, where the PC is well described by single-particle theory. However at low magnetic field (few flux quanta) interaction effects are expected to be dominant. Previous low field studies by other groups employing SQUID and resonator-based techniques have found that Au, Ag, Cu, and GaAs rings show a large diamagnetic average PC, indicative of attractive e-e interactions. One possible explanation is that the superconductivity that would normally arise from this interaction is suppressed by a small number of magnetic impurities (~ 1 ppm), while the interaction-enhanced persistent current is not. In this talk we will describe measurements of Au rings. We have fabricated arrays of 100,000 rings with 125 nm radius on ultrasensitive silicon cantilevers. At high magnetic fields, we find that the PC agrees with single-particle theory. We also describe the results at low field, expected to give further insight into the many body ground state of this system. We gratefully acknowledge support from NSF Grant #1205861.

  18. The field line topology of a uniform magnetic field superposed on the field of a distributed ring current

    SciTech Connect

    Chance, M.S. . Plasma Physics Lab.); Greene, J.M.; Jensen, T.H. )

    1991-07-01

    A magnetic field line topology with nulls, generated by superimposing a uniform magnetic field onto the field from a distributed ring current, is analyzed. This simple model is amenable to substantial analytical progress and also facilitates the visualization of the three dimensional field geometry. Four nulls are seen to exist and representative field lines and tubes of flux found by numerical integration are presented. An infinite number of topologically distinct flux bundles is found. A convenient mapping is defined which proves very useful in distinguishing between and following the paths of the different tubes of flux as they traverse through the null system. The complexities already present in this simple but nontrivial configuration serve to emphasize the difficulties in analyzing more complicated geometries, but the intuition gained from this study proves beneficial in those cases. One such example is the application to a model of plasmoid formations in the earth's magnetotail. 7 refs., 19 figs.

  19. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  20. Magnetospheric environments of outer planet rings - Influence of Saturn's axially symmetric magnetic field

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1987-01-01

    Saturn's main rings exist within a zone of negligible magnetospheric losses and surface alteration effects, substantially due to the solid-body absorption of inwardly diffusing magnetospheric particles. This process is presently shown to be especially efficient in the inner magnetosphere of Saturn, due to the near-axial symmetry of the planetary magnetic field relative to the equatorial rotation plane; under the assumption of comparable diffusion rates, the inward magnetospheric particle transport is far more inhibited in the inner Saturnian magnetosphere than in the same regions of Jupiter and Uranus, even when only rings of comparable widths and depths are considered. In light of this, ring particle surface exposure to the ion fluxes of the radiation belt remains a prepossessing rationale for low Uranian ring albedos.

  1. Magnetospheric environments of outer planet rings - influence of Saturn's axially symmetric magnetic field

    SciTech Connect

    Hood, L.L.

    1987-07-01

    Saturn's main rings exist within a zone of negligible magnetospheric losses and surface alteration effects, substantially due to the solid-body absorption of inwardly diffusing magnetospheric particles. This process is presently shown to be especially efficient in the inner magnetosphere of Saturn, due to the near-axial symmetry of the planetary magnetic field relative to the equatorial rotation plane; under the assumption of comparable diffusion rates, the inward magnetospheric particle transport is far more inhibited in the inner Saturnian magnetosphere than in the same regions of Jupiter and Uranus, even when only rings of comparable widths and depths are considered. In light of this, ring particle surface exposure to the ion fluxes of the radiation belt remains a prepossessing rationale for low Uranian ring albedos. 86 references.

  2. Ring Current Decay During Northward Turnings of The Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Monreal MacMahon, R.; Llop, C.; Miranda, R.

    The ring current formation and energization is thought to be the main consequence of geomagnetic storms and its strength is characterized by the Dst index which evolu- tion satisfies a simple and well-known differential equation introduced by Burton et al. (1975). Since then, several attempts and approaches have been done to study the evolution of the ring current whether introducing discrete values or continuous func- tions for the decay time involved. In this work, we study the character of the recovery phase of magnetic storms in response to well defined northward turnings of the inter- planetary magnetic field using our functional form of the decay time of ring current particles introduced previously.

  3. Guiding-Center Simulations of Stormtime Ring Current Electrons in a More Realistic Magnetic Field Model

    NASA Astrophysics Data System (ADS)

    Liu, S.; Chen, M.; Schulz, M.; Lyons, L.

    2003-12-01

    We examine the consequences of using a more realistic magnetic field for simulating stormtime electron ring current formation. In the past, we have simulated the guiding-center drift of electrons from the plasma sheet to the inner magnetosphere and their loss as they drift in a Dungey magnetic field model consisting of a dipole plus uniform southward field. We improve upon this in the present study by including realistic day-night asymmetry and time variations in the magnetic field by varying the magnitude of the added unidirectional southward field with time (UT) and magnetospheric longitude (MLT) so as to match the modeled polar cap boundary to the auroral poleward boundary provided by the empirically-based OVATION model [Newell et al.}, JGR, 2002]. Our model electric field consists of corotation, quiescent Stern-Volland convection, and storm-associated enhancements in the convection electric field that are less well shielded than the Stern-Volland field. Our enhancements in the cross-polar-cap potential are based on DMSP measurements. We trace the guiding-center drifts of representative equatorially-mirroring electrons with first adiabatic invariants μ = 1 -- 200 MeV/G for the 27 August 1990 storm. Using these simulation results, we map stormtime phase space distributions by invoking Liouville's Theorem modified by losses. Our boundary spectrum at geosynchronous orbit and our initial quiescent distribution are taken from CRRES observations. With both the static Dungey and the more realistic magnetic field model, there are significant stormtime enhancements of ring-current electron fluxes at equatorial radial distance r0 = 2.6 to 6.6 RE for energies from tens of keV up to 180 keV. However, the electron drift speed is slower on the dayside than on the nightside in the more realistic asymmetric magnetic field model because the magnetic field intensity is stronger on the dayside than the nightside at a given r0. This makes the stormtime electron ring current more

  4. Field reversed ion rings

    SciTech Connect

    Sudan, R.N.; Omelchenko, Y.A.

    1995-09-01

    In typical field-reversed ion ring experiments, an intense annular ion beam is injected across a plasma-filled magnetic cusp region into a neutral gas immersed in a ramped solenoidal magnetic field. Assuming the characteristic ionization time is much shorter than the long ({ital t}{approx_gt}2{pi}/{Omega}{sub {ital i}}) beam evolution time scale, we investigate the formation of an ion ring in the background plasma followed by field reversal, using a 21/2-D hybrid, PIC code FIRE, in which the beam and background ions are treated as particles and the electrons as a massless fluid. We show that beam bunching and trapping occurs downstream in a ramped magnetic field for an appropriate set of experimental parameters. We find that a compact ion ring is formed and a large field reversal {zeta}={delta}{ital B}/{ital B}{approx_gt}1 on axis develops. We also observe significant deceleration of the ring on reflection due to the transfer of its axial momentum to the background ions, which creates favorable trapping conditions. {copyright} {ital 1995 American Institute of Physics.}

  5. Contactless Magnetic Slip Ring

    NASA Technical Reports Server (NTRS)

    Kumagai, Hiroyuki (Inventor); Deardon, Joe D. (Inventor)

    1997-01-01

    A contactless magnetic slip ring is disclosed having a primary coil and a secondary coil. The primary and secondary coils are preferably magnetically coupled together, in a highly reliable efficient manner, by a magnetic layered core. One of the secondary and primary coils is rotatable and the contactless magnetic slip ring provides a substantially constant output.

  6. Magnetic field control of the intraband optical absorption in two-dimensional quantum rings

    SciTech Connect

    Olendski, O.; Barakat, T.

    2014-02-28

    Linear and nonlinear optical absorption coefficients of the two-dimensional semiconductor ring in the perpendicular magnetic field B are calculated within independent electron approximation. Characteristic feature of the energy spectrum are crossings of the levels with adjacent nonpositive magnetic quantum numbers as the intensity B changes. It is shown that the absorption coefficient of the associated optical transition is drastically decreased at the fields corresponding to the crossing. Proposed model of the Volcano disc allows to get simple mathematical analytical results, which provide clear physical interpretation. An interplay between positive linear and intensity-dependent negative cubic absorption coefficients is discussed; in particular, critical light intensity at which additional resonances appear in the total absorption dependence on the light frequency is calculated as a function of the magnetic field and levels' broadening.

  7. Field evolution of the magnetic normal modes in elongated permalloy nanometric rings

    NASA Astrophysics Data System (ADS)

    Gubbiotti, G.; Madami, M.; Tacchi, S.; Carlotti, G.; Pasquale, M.; Singh, N.; Goolaup, S.; Adeyeye, A. O.

    2007-10-01

    The eigenmode spectrum of elongated permalloy rings with relatively wide arms is investigated by combined Brillouin light scattering and ferromagnetic resonance measurements as a function of the applied field intensity, encompassing both vortex and onion ground states. To reproduce the frequencies and the spatial profiles of the measured modes we performed micromagnetic simulations which solve the discretized Landau-Lifshitz-Gilbert equation in the time domain and calculate locally the Fourier transform. This allowed us to correlate the field dependence of different modes to their localization inside different portions of the rings. With the rings in the vortex ground state, in addition to radial, fundamental, and azimuthal modes, a localized mode, existing in the element portions where the internal field assumes its minima, has been measured and identified. This latter mode, whose frequency decreases for increasing field intensity, becomes soft near the transition from vortex to onion state and determines the change in symmetry of the magnetic ground state. After the transition, it is replaced by two edge modes, localized on the internal and external boundary of the rings, respectively.

  8. Field evolution of the magnetic normal modes in elongated permalloy nanometric rings.

    PubMed

    Gubbiotti, G; Madami, M; Tacchi, S; Carlotti, G; Pasquale, M; Singh, N; Goolaup, S; Adeyeye, A O

    2007-10-10

    The eigenmode spectrum of elongated permalloy rings with relatively wide arms is investigated by combined Brillouin light scattering and ferromagnetic resonance measurements as a function of the applied field intensity, encompassing both vortex and onion ground states. To reproduce the frequencies and the spatial profiles of the measured modes we performed micromagnetic simulations which solve the discretized Landau-Lifshitz-Gilbert equation in the time domain and calculate locally the Fourier transform. This allowed us to correlate the field dependence of different modes to their localization inside different portions of the rings. With the rings in the vortex ground state, in addition to radial, fundamental, and azimuthal modes, a localized mode, existing in the element portions where the internal field assumes its minima, has been measured and identified. This latter mode, whose frequency decreases for increasing field intensity, becomes soft near the transition from vortex to onion state and determines the change in symmetry of the magnetic ground state. After the transition, it is replaced by two edge modes, localized on the internal and external boundary of the rings, respectively. PMID:22049127

  9. Inner Magnetosphere Modeling at the CCMC: Ring Current, Radiation Belt and Magnetic Field Mapping

    NASA Astrophysics Data System (ADS)

    Rastaetter, L.; Mendoza, A. M.; Chulaki, A.; Kuznetsova, M. M.; Zheng, Y.

    2013-12-01

    Modeling of the inner magnetosphere has entered center stage with the launch of the Van Allen Probes (RBSP) in 2012. The Community Coordinated Modeling Center (CCMC) has drastically improved its offerings of inner magnetosphere models that cover energetic particles in the Earth's ring current and radiation belts. Models added to the CCMC include the stand-alone Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model by M.C. Fok, the Rice Convection Model (RCM) by R. Wolf and S. Sazykin and numerous versions of the Tsyganenko magnetic field model (T89, T96, T01quiet, TS05). These models join the LANL* model by Y. Yu hat was offered for instant run earlier in the year. In addition to these stand-alone models, the Comprehensive Ring Current Model (CRCM) by M.C. Fok and N. Buzulukova joined as a component of the Space Weather Modeling Framework (SWMF) in the magnetosphere model run-on-request category. We present modeling results of the ring current and radiation belt models and demonstrate tracking of satellites such as RBSP. Calculations using the magnetic field models include mappings to the magnetic equator or to minimum-B positions and the determination of foot points in the ionosphere.

  10. Manipulating Majorana zero modes on atomic rings with an external magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Jian; Neupert, Titus; Bernevig, B. Andrei; Yazdani, Ali

    2016-01-01

    Non-Abelian quasiparticles have been predicted to exist in a variety of condensed matter systems. Their defining property is that an adiabatic braid between two of them results in a non-trivial change of the quantum state of the system. The simplest non-Abelian quasiparticles--the Majorana bound states--can occur in one-dimensional electronic nano-structures proximity-coupled to a bulk superconductor. Here we propose a set-up, based on chains of magnetic adatoms on the surface of a thin-film superconductor, in which the control over an externally applied magnetic field suffices to create and manipulate Majorana bound states. We consider specifically rings of adatoms and show that they allow for the creation, annihilation, adiabatic motion and braiding of pairs of Majorana bound states by varying the magnitude and orientation of the external magnetic field.

  11. Manipulating Majorana zero modes on atomic rings with an external magnetic field.

    PubMed

    Li, Jian; Neupert, Titus; Bernevig, B Andrei; Yazdani, Ali

    2016-01-01

    Non-Abelian quasiparticles have been predicted to exist in a variety of condensed matter systems. Their defining property is that an adiabatic braid between two of them results in a non-trivial change of the quantum state of the system. The simplest non-Abelian quasiparticles--the Majorana bound states--can occur in one-dimensional electronic nano-structures proximity-coupled to a bulk superconductor. Here we propose a set-up, based on chains of magnetic adatoms on the surface of a thin-film superconductor, in which the control over an externally applied magnetic field suffices to create and manipulate Majorana bound states. We consider specifically rings of adatoms and show that they allow for the creation, annihilation, adiabatic motion and braiding of pairs of Majorana bound states by varying the magnitude and orientation of the external magnetic field. PMID:26791080

  12. Manipulating Majorana zero modes on atomic rings with an external magnetic field

    PubMed Central

    Li, Jian; Neupert, Titus; Bernevig, B. Andrei; Yazdani, Ali

    2016-01-01

    Non-Abelian quasiparticles have been predicted to exist in a variety of condensed matter systems. Their defining property is that an adiabatic braid between two of them results in a non-trivial change of the quantum state of the system. The simplest non-Abelian quasiparticles—the Majorana bound states—can occur in one-dimensional electronic nano-structures proximity-coupled to a bulk superconductor. Here we propose a set-up, based on chains of magnetic adatoms on the surface of a thin-film superconductor, in which the control over an externally applied magnetic field suffices to create and manipulate Majorana bound states. We consider specifically rings of adatoms and show that they allow for the creation, annihilation, adiabatic motion and braiding of pairs of Majorana bound states by varying the magnitude and orientation of the external magnetic field. PMID:26791080

  13. Design of a three-axis magnetic field measurement system for the magnetic shield of the ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Rong, Chuiyu; Yao, Xu

    2015-10-01

    The magnetic field is one of the main causes of zero drift in a Ring Laser Gyroscope (RLG), which should be avoided by adopting a magnetic shielding system. The Gauss Meter is usually used to measure the magnetic shielding effectiveness. Generally, the traditional Gauss Meter has advantages of high measure range and high reliability, however, its drawbacks such as complex structure, high price and the PC client software cannot be customized at will, are also obvious. In this paper, aiming at a type of experimental magnetic shielding box of RLG, we design a new portable three-axis magnetic field measurement system. This system has both high modularity degree and reliability, with measuring range at ±48Gs, max resolution at 1.5mGs and can measure the magnetic field in x, y and z direction simultaneously. Besides, its PC client software can be easily customized to achieve the automatic DAQ, analysis, plotting and storage functions. The experiment shows that, this system can meet the measuring requirements of certain type of experimental magnetic shielding box for RLG, meanwhile, for the measurement of some other magnetic shielding effectiveness, this system is also applicable.

  14. Effects of electronic correlations and magnetic field on a molecular ring out of equilibrium

    NASA Astrophysics Data System (ADS)

    Nuss, Martin; von der Linden, Wolfgang; Arrigoni, Enrico

    2014-04-01

    We study the effects of electron-electron interactions on the steady-state characteristics of a hexagonal molecular ring in a magnetic field as a model for a benzene molecular junction. The system is driven out of equilibrium by applying a bias voltage across two metallic leads. We employ a model Hamiltonian approach to evaluate the effects of on-site as well as nearest-neighbor density-density-type interactions in a physically relevant parameter regime. Results for the steady-state current, charge density, and magnetization in three different junction setups (para, meta, and ortho) are presented. Our findings indicate that interactions beyond the mean-field level renormalize voltage thresholds as well as current plateaus. Electron-electron interactions lead to substantial charge redistribution as compared to the mean-field results. We identify a strong response of the circular current on the electronic structure of the metallic leads. Our results are obtained by steady-state cluster perturbation theory, a systematically improvable approximation to study interacting molecular junctions out of equilibrium, even in magnetic fields. Within this framework, general expressions for the current, charge density, and magnetization in the steady state are derived. The method is flexible and fast and can straightforwardly be applied to effective models as obtained from ab initio calculations.

  15. Ground Penetrating Radar and Magnetic Investigations of Phreatomagmatic Tephra Rings in the San Francisco Volcanic Field, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Marshall, A. M.; Kruse, S.; Macorps, E.; Charbonnier, S. J.

    2015-12-01

    Ground Penetrating Radar (GPR) can be a valuable geophysical tool for studying near-surface volcanic stratigraphy in areas where outcrops do not exist. Likewise, high resolution ground-based magnetic surveys have the potential to reveal significant features not exposed at the surface, especially in the case of small-volume basaltic volcanoes. Here we present the results of geophysical studies to investigate the eruptive history of deposits surrounding phreatomagmatic eruption sites, and why some may become magnetized. Magnetic surveys undertaken at basaltic phreatomagmatic sites suggest that some tuff rings carry no discernable magnetic signature, while others reveal slight to significant magnetic anomalies. Material deposited in the tephra ring could become magnetized through Thermal Remanent Magnetization - emplacement of magnetically susceptible material above 560° C. In this case tephra layers would need to be deposited in sufficient thickness to retain high temperatures long enough for the magnetic material to orient itself to the magnetic field. To test this hypothesis we examine GPR data collected at Rattlesnake Maar in the San Francisco Volcanic Field, Arizona, and we will collect GPR data at two other tephra rings in the same volcanic field. The first site, Sugarloaf Mountain, is an active quarry with excellent exposures of tephra ring stratigraphy. Although this site is rhyolitic in composition and not suitable for magnetic study, it is an excellent site to determine how well GPR reflectors correlate with actual stratigraphy. The second site, an un-named phreatomagmatic ring nearby, will then be studied by GPR and walking magnetic survey. GPR reflectors will be compared to depositional patterns defined in previous studies and correlated with magnetic survey results to determine if a correlation can be made - little to no magnetization where only thin units are recorded by GPR, and positive magnetization where thick units are recorded.

  16. Chiral phase transition in relativistic heavy-ion collisions with weak magnetic fields: Ring diagrams in the linear sigma model

    SciTech Connect

    Ayala, Alejandro; Bashir, Adnan; Raya, Alfredo; Sanchez, Angel

    2009-08-01

    Working in the linear sigma model with quarks, we compute the finite-temperature effective potential in the presence of a weak magnetic field, including the contribution of the pion ring diagrams and considering the sigma as a classical field. In the approximation where the pion self-energy is computed perturbatively, we show that there is a region of the parameter space where the effect of the ring diagrams is to preclude the phase transition from happening. Inclusion of the magnetic field has small effects that however become more important as the system evolves to the lowest temperatures allowed in the analysis.

  17. Magnetic field sensing subject to correlated noise with a ring spin chain.

    PubMed

    Guo, Li-Sha; Xu, Bao-Ming; Zou, Jian; Shao, Bin

    2016-01-01

    In this paper, we focus on the magnetic field sensing subject to a correlated noise. We use a ring spin chain with only the nearest neighbor interactions as our probe to estimate both the intensity B and the direction θ of the magnetic field when the probe reaches its steady state. We numerically calculate the quantum Fisher information (QFI) to characterize the estimation precision. On the one hand, for estimating B, we find that the coupling between spins in the probe plays an important role in the precision, and the largest value of the QFI can be achieved when θ = π/2 together with an optimal coupling. Moreover, for any direction, the precision scaling can be better than the Heisenberg-limit (HL) with a proper coupling. On the other hand, for estimating θ, we find that our probe can perform a high precision detection for θ ~ π/2, with the QFI much larger than that for any other directions, especially when the coupling is tuned to the optimal value. And we find that the precision scaling for θ ~ π/2 can be better than the HL, but for other directions, the precision scaling is only limited to the standard quantum limit (SQL). Due to the computational complexity we restrict the number of spins in the probe to 60. PMID:27623048

  18. Ion Rings for Magnetic Fusion

    SciTech Connect

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a

  19. Pitch angle dependence of the charge exchange lifetime of ring current ions in a Mead-Fairfield magnetic field model

    NASA Astrophysics Data System (ADS)

    Mukherjee, G. K.; Rajaram, R.

    1989-11-01

    This paper examines the necessity of using a realistic magnetospheric magnetic field geometry in the computation of the pitch-angle dependence of the charge exchange lifetime of ring current ions. The Chamberlain (1963) model is used for the atomic hydrogen density, and the pitch-angle dependence of the charge exchange lifetime, tau, has been computed for coefficients corresponding to different levels of geomagnetic activity in the Mead-Fairfield (1975) model of magnetic field. It is shown that using the correct model of the magnetic field is as important as adopting the proper exospheric temperature in the model for the neutral hydrogen model. A local time dependence of the pitch-angle dependence of tau also results from the adoption of a realistic description of the magnetic field.

  20. Fulde-Ferrell-Larkin-Ovchinnikov states in a superconducting ring with magnetic fields: Phase diagram and the first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Yoshii, Ryosuke; Takada, Satoshi; Tsuchiya, Shunji; Marmorini, Giacomo; Hayakawa, Hisao; Nitta, Muneto

    2015-12-01

    We find the angular Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states (or the twisted kink crystals) in which a phase and an amplitude of a pair potential modulate simultaneously in a quasi-one-dimensional superconducting ring with a static Zeeman magnetic field applied on the ring and static Aharonov-Bohm magnetic flux penetrating the ring. The superconducting ring with magnetic flux produces a persistent current, whereas the Zeeman split of Fermi energy results in the spatial modulation of the pair potential. We show that these two magnetic fields stabilize the FFLO phase in a large parameter region of the magnetic fields. We further draw the phase diagram with the two kinds of first-order phase transitions; one corresponds to phase slips separating the Aharonov-Bohm magnetic flux, and the other separates the number of peaks of the pair amplitude for the Zeeman magnetic field.

  1. Electromagnetic field analysis of septum magnet for APS positron accumulator ring

    SciTech Connect

    Yokoi, Toshiaki; Turner, L.R.

    1995-07-01

    This report consists of three parts. The first part describes a numerical analysis method for the electromagnetic field analysis of a septum magnet. A novel improvement to the treatment of exciting currents in the time-domain is proposed. The second part discusses numerical predictions of the electromagnetic characteristics of the APS PAR septum. The time variations of stray field and eddy currents are shown for three magnet designs. The last part explores how decreasing the septum material conductivity affects the stray field. The decrease of conductivity may be caused by an inadequate manufacturing of the septum material. The significance of a high quality septum, or flat interface between copper and iron, is emphasized from a point of view of stray field. An ideal method for joining two different metals without distortion, called HIP (Hot Isostatic Pressing), is introduced and recommended based on the authors` experience.

  2. Saturn's periodic magnetic field perturbations caused by a rotating partial ring current

    NASA Astrophysics Data System (ADS)

    Brandt, P. C.; Khurana, K. K.; Mitchell, D. G.; Sergis, N.; Dialynas, K.; Carbary, J. F.; Roelof, E. C.; Paranicas, C. P.; Krimigis, S. M.; Mauk, B. H.

    2010-11-01

    We demonstrate that the periodic magnetic field perturbations as observed from Cassini are caused by the plasma pressure of the energetic (>2 keV) particle distributions that are periodically injected and subsequently drift around Saturn. Plasma pressures inferred from the Cassini Plasma Spectrometer (CAPS) (<2 keV) and the Magnetospheric Imaging Instrument (MIMI) (>2 keV) are used to compute the three-dimensional pressure-driven currents and their associated magnetic field perturbations. The distribution of the “hot” (>2 keV) plasma pressure is derived from Energetic Neutral Atom (ENA) images obtained by the Ion Neutral Camera (INCA) and in-situ spectral measurements. The radial profile of “cold” (<2 keV) plasma pressure is obtained from statistical studies and is assumed to be azimuthally symmetric.

  3. The dynamics of magnetic flux rings

    NASA Technical Reports Server (NTRS)

    Deluca, E. E.; Fisher, G. H.; Patten, B. M.

    1993-01-01

    The evolution of magnetic fields in the presence of turbulent convection is examined using results of numerical simulations of closed magnetic flux tubes embedded in a steady 'ABC' flow field, which approximate some of the important characteristics of a turbulent convecting flow field. Three different evolutionary scenarios were found: expansion to a steady deformed ring; collapse to a compact fat flux ring, separated from the expansion type of behavior by a critical length scale; and, occasionally, evolution toward an advecting, oscillatory state. The work suggests that small-scale flows will not have a strong effect on large-scale, strong fields.

  4. Magnetic connection for Saturn's rings and atmosphere

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    1986-01-01

    Latitudinal variations in images of Saturn's disk, upper atmospheric temperatures, and ionospheric electron densities are found in magnetic conjugacy with features in Saturn's ring plane. It is proposed that these latitudinal variations are the result of a variable influx of water transported along magnetic field lines from sources in Saturn's ring plane. These features are thus the surface expression of an electromagnetic erosion mechanism which transports water (in the form of high charge-to-mass ratio particles) from the rings to the atmosphere.

  5. Magnetization reversal in arrays of Co rings

    NASA Astrophysics Data System (ADS)

    Welp, U.; Vlasko-Vlasov, V. K.; Hiller, J. M.; Zaluzec, N. J.; Metlushko, V.; Ilic, B.

    2003-08-01

    The magnetization behavior of arrays of individual and coupled Co rings has been studied using superconducting quantum interference device magnetometry, magneto-optical imaging, and Lorentz transmission and scanning transmission electron microscopy. The transition from the polarized into the vortex state of isolated rings is shown to occur through the motion and annihilation of head-to-head domain boundaries. The chirality of the vortex state is fixed on subsequent magnetization cycles, indicating that it is predetermined by structural imperfections of the rings. The effect of interactions between the rings has been investigated in arrays of chains of touching rings. For fields applied parallel to the chains rings in extended sections of the chains are found to switch simultaneously. Neighboring rings in these sections can display alternating chirality as well as the same chirality accompanied by a 180° boundary on the nodes. For fields perpendicular to the chain direction the switching occurs pairwise. This coupling introduces a broad distribution of switching fields and correspondingly a magnetization curve that is significantly broader than that for the parallel orientation.

  6. Gravitomagnetic field of rotating rings

    NASA Astrophysics Data System (ADS)

    Ruggiero, Matteo Luca

    2016-04-01

    In the framework of the so-called gravitoelectromagnetic formalism, according to which the equations of the gravitational field can be written in analogy with classical electromagnetism, we study the gravitomagnetic field of a rotating ring, orbiting around a central body. We calculate the gravitomagnetic component of the field, both in the intermediate zone between the ring and the central body, and far away from the ring and central body. We evaluate the impact of the gravitomagnetic field on the motion of test particles and, as an application, we study the possibility of using these results, together with the Solar System ephemeris, to infer information on the spin of ring-like structures.

  7. Intrinsic anisotropy-defined magnetization reversal in submicron ring magnets

    NASA Astrophysics Data System (ADS)

    Li, S. P.; Lew, W. S.; Bland, J. A. C.; Natali, M.; Lebib, A.; Chen, Y.

    2002-12-01

    We report a study of the effect of magnetocrystalline anisotropy in the magnetization reversal of submicron Co rings fabricated by nanoimprint lithography. For weak magnetocrystalline anisotropy, the complete reversal takes place via a transition from saturation at large negative fields, into a vortex configuration at small fields, and back to reverse saturation at large positive fields. When the anisotropy strength is increased to a critical value, the intermediate vortex configuration no longer exists in the magnetization reversal along the easy axis; instead, the reversal occurs through a rapid jump. However, when the applied field direction is far from the easy axis, the presence of the magnetocrystalline anisotropy favors local vortex nucleation, and this leads to a similar switching process as found for low anisotropy. Micromagnetic simulations indicate that the magnetization reversal process of the rings, starts from a buckling-like reverse domain nucleation, followed by local vortex formation and an avalanche process of local vortex nucleation.

  8. On dynamics of a plasma ring rotating in the magnetic field of a central body: Magneto-gyroscopic waves. Problems of stability and quantization

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2006-03-01

    Based on a mathematical model described in [1], some new aspects of the dynamics of a thin planar plasma ring rotating in the magnetic field of a central body are considered. The dipole field is considered assuming that the dipole has a small eccentricity, and the dipole axis is inclined at a small angle to the central body’s axis of rotation. Emphasis is placed on the problem of stability of the ring’s stationary rotation. Unlike [1], the disturbed motion is considered which has a character of eddy magneto-gyroscopic waves. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. It is demonstrated that some “elite” rings characterized by integral quantum numbers are long-living, while “lethal” or unstable rings (antirings) are associated with half-integer quantum numbers. As a result, an evolutionally rife rotating ring of magnetized plasma turns out to be stratified into a large number of narrow elite rings separated by gaps whose positions correspond to antirings. The regions of possible existence of elite rings in near-central body space are considered. Quantum numbers determining elite eigenvalues of the mean sector velocity (normalized in a certain manner) of a ring coincide with the quantum numbers appearing in the solution to the Schrödinger equation for a hydrogen atom. Perturbations of elite orbits corresponding to these quantum numbers satisfy the de Brogli quantum-mechanical condition. This is one more illustration of the isomorphism of quantization in microcosm and macrocosm.

  9. Comparison of Simulated and Observed Ring Current Magnetic Field and Ion Fluxes and ENA Intensity during the 5 April 2010 Storm

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Lemon, C.; Guild, T. B.; Schulz, M.; Lui, A.; Keesee, A. M.; Goldstein, J.; Rodriguez, J. V.

    2011-12-01

    In this study we compare simulated and observed stormtime magnetic intensities, proton flux spectra and ENA intensity for the 5 April 2010 storm (minimum Dst ≈ -73 nT) to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet using the magnetically and electrostatically self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a time-varying magnetopause driven by upstream solar wind and interplanetary magnetic field (IMF) conditions. We use ion temperatures inferred from TWINS energetic neutral atom (ENA) images and THEMIS/ESA and SST ion data, and proton densities from the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003] to guide our specification of the plasma sheet at 10 RE, our plasma boundary location in the RCM-E. The oxygen to proton density ratio at the plasma boundary is specified from the empirical Young et al. [JGR, 1982] study. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous (GEO) altitude (6.6 Earth radii) and on THEMIS satellites. The simulated and observed proton spectra (GOES-14/MAGPD) at GEO and global ENA intensity (TWINS 1 and 2) are compared. We discuss the response of the ring current magnetic field and ion flux distribution to expansions and compressions of the magnetosphere associated with the dynamic solar wind pressure for this storm event.

  10. The remote sensing of Saturn's rings. 1: The magnetic alinement of the ring particles

    NASA Technical Reports Server (NTRS)

    Evans, L. C.

    1973-01-01

    Because of the potential implications for the optical properties of Saturn's rings, the orientation of nonspherical ring particles at equilibrium is investigated with respect to four stochastic influences: interactions with the interplanetary medium, interactions with the expected magnetic field of Saturn, thermal fluctuations due to the internal temperature of the ring particles; collisions between ring particles. The solution of the homogeneous Fokker-Planck equation for nearly spherical spheroids is presented and investigated in general. Values of the pertinent physical parameters in the vicinity of Saturn are estimated, and the implications for the alignment of the ring particles are investigated. It is concluded that for some alignment mechanisms, small ring particles can be expected to be almost completely aligned. This alignment results in each particle spinning around its shortest body axis with this axis parallel to the magnetic field direction (perpendicular to the ring plane).

  11. Ring magnet firing angle control

    DOEpatents

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-10-21

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle.

  12. Electric field induced magnetization rotation in patterned Ni ring/Pb(Mg1/3Nb2/3)O3](1-0.32)-[PbTiO3]0.32 heterostructures

    NASA Astrophysics Data System (ADS)

    Hockel, Joshua L.; Bur, Alexandre; Wu, Tao; Wetzlar, Kyle P.; Carman, Gregory P.

    2012-01-01

    Electric field induced magnetoelastic anisotropy is shown to rotate the magnetization of a ring-shaped magnet by 90° in a Ni ring/(011) Pb(Mg1/3Nb2/3)O3](1-0.32)-[PbTiO3]0.32 heterostructure. The 2000 nm diameter ring is initially field annealed forming the "onion" magnetization state. A 0.8 MV/m electric field is applied to the substrate creating anisotropic piezostrain and a perpendicular in-plane easy axis. Magnetic force microscopy confirms the 90° rotation of the vortex-type domain walls from the field annealing direction. Rotations are stable without electric field due to remnant strains induced during the poling process, supporting the viability of strain-based magnetic recording methods.

  13. Correction magnets for the Fermilab Recycler Ring

    SciTech Connect

    James T Volk et al.

    2003-05-27

    In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements.

  14. Magnetic transitions in ultra-small nanoscopic magnetic rings: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Singh, Deepak K.; Krotkov, Robert; Tuominen, Mark T.

    2009-05-01

    In this paper, we report on experimental and theoretical investigations of magnetic transitions in cobalt rings of size (diameter, width and thickness) comparable to the exchange length of cobalt. Magnetization measurements and calculations were performed for two sets of magnetic ring arrays: ultra-small magnetic rings (outer diameter 13 nm, inner diameter 5 nm and thickness 5 nm) and small magnetic rings (outer diameter 150 nm, width 5 nm, and thickness 5 nm). Our calculations suggest that if the linear dimensions of a magnetic ring are comparable to, or smaller than, the exchange length of the magnetic material, then only one magnetic state is important—the pure single-domain state. Vortex and onion-shape magnetic states do not arise. For a ring of larger diameter, magnetization reversal at zero field occurs via a vortex state. Theoretical calculations are based on an energetic analysis of pure and slightly distorted single-domain and vortex magnetic states. The calculations have been verified by micromagnetic simulations for ultra-small and small ring geometries. The hysteresis curves measured for small rings are consistent with the calculations, but there is a discrepancy for ultra-small rings. Micromagnetic simulations suggest that the discrepancies may be due to the variations in the shape and size of the ultra-small rings in the measured sample.

  15. MAGNETS FOR A MUON STORAGE RING.

    SciTech Connect

    PARKER, B.; ANERELLA, M.; GHOSH, A.; GUPTA, R.; HARRISON, M.; SCHMALZLE, J.; SONDERICKER, J.; WILLEN, E.

    2002-06-18

    We present a new racetrack coil magnet design, with an open midplane gap, that keeps decay particles in a neutrino factory muon storage ring from directly hitting superconducting coils. The structure is very compact because coil ends overlap middle sections top and bottom for skew focusing optics. A large racetrack coil bend radius allows ''react and wind'' magnet technology to be used for brittle Nb{sub 3}Sn superconductors. We describe two versions: Design-A, a magnet presently under construction and Design-B, a further iterated concept that achieves the higher magnetic field quality specified in the neutrino factory feasibility Study-II report. For Design-B reverse polarity and identical end design of consecutive long and short coils offers theoretically perfect magnet end field error cancellation. These designs avoid the dead space penalty from coil ends and interconnect regions (a large fraction in machines with short length but large aperture magnets) and provide continuous bending or focusing without interruption. The coil support structure and cryostat are carefully optimized.

  16. Stereo ENA Imaging of the Ring Current and Multi-point Measurements of Suprathermal Particles and Magnetic Fields by TRIO-CINEMA

    NASA Astrophysics Data System (ADS)

    Lin, R. P.; Sample, J. G.; Immel, T. J.; Lee, D.; Horbury, T. S.; Jin, H.; SEON, J.; Wang, L.; Roelof, E. C.; Lee, E.; Parks, G. K.; Vo, H.

    2012-12-01

    The TRIO (Triplet Ionospheric Observatory) - CINEMA (Cubesat for Ions, Neutrals, Electrons, & Magnetic fields) mission consists of three identical 3-u cubesats to provide high sensitivity, high cadence, stereo measurements of Energetic Neutral Atoms (ENAs) from the Earth's ring current with ~1 keV FWHM energy resolution from ~4 to ~200 keV, as well as multi-point in situ measurements of magnetic fields and suprathermal electrons (~2 -200 keV) and ions (~ 4 -200 keV) in the auroral and ring current precipitation regions in low Earth orbit (LEO). A new Suprathermal Electron, Ion, Neutral (STEIN) instrument, using a 32-pixel silicon semiconductor detector with an electrostatic deflection system to separate ENAs from ions and from electrons below 30 keV, will sweep over most of the sky every 15 s as the spacecraft spins at 4 rpm. In addition, inboard and outboard (on an extendable 1m boom) miniature magnetoresistive sensor magnetometers will provide high cadence 3-axis magnetic field measurements. An S-band transmitter will be used to provide ~8 kbps orbit-average data downlink to the ~11m diameter antenna of the Berkeley Ground Station.The first CINEMA (funded by NSF) is scheduled for launch on August 14, 2012 into a 65 deg. inclination LEO. Two more identical CINEMAs are being developed by Kyung Hee University (KHU) in Korea under the World Class University (WCU) program, for launch in November 2012 into a Sun-synchronous LEO to form TRIO-CINEMA. A fourth CINEMA is being developed for a 2013 launch into LEO. This LEO constellation of nanosatellites will provide unique measurements highly complementary to NASA's RBSP and THEMIS missions. Furthermore, CINEMA's development of miniature particle and magnetic field sensors, and cubesat-size spinning spacecraft may be important for future constellation space missions. Initial results from the first CINEMA will be presented if available.

  17. Optimal placement of magnets in Indus-2 storage ring

    NASA Astrophysics Data System (ADS)

    Riyasat, Husain; A, D. Ghodke; Singh, Gurnam

    2015-03-01

    In Indus-2, by optimizing the position of the magnetic elements, using the simulated annealing algorithm, at different locations in the ring with their field errors, the effects on beam parameters have been minimized. Closed orbit distortion and beta beat are considerably reduced by optimizing the dipole and quadrupole magnets positions in the ring. For the Indus-2 storage ring, sextupole optimization gives insignificant improvement in dynamic aperture with chromaticity-correcting sextupoles. The magnets have been placed in the ring with the optimized sequence and storage of the beam has been achieved at injection energy without energizing any corrector magnets. Magnet sorting has led to the easy beam current accumulation and the measurement of parameters such as closed orbit distortion, beta function, dispersion, dynamic aperture etc.

  18. Two-dimensional Magnetism in Arrays of Superconducting Rings

    NASA Astrophysics Data System (ADS)

    Reich, Daniel H.

    1996-03-01

    An array of superconducting rings in an applied field corresponding to a flux of Φ0 /2 per ring behaves like a 2D Ising antiferromagnet. Each ring has two energetically equivalent states with equal and opposite magnetic moments due to fluxoid quantization, and the dipolar coupling between rings favors antiparallel alignment of the moments. Using SQUID magnetometry and scanning Hall probe microscopy, we have studied the dynamics and magnetic configurations of micron-size aluminum rings on square, triangular, honeycomb, and kagomé lattices. We have found that there are significant antiferromagnetic correlations between rings, and that effects of geometrical frustration can be observed on the triangular and kagomé lattices. Long range correlations on the other lattices are suppressed by the analog of spin freezing that locks the rings in metastable states at low temperatures, and by quenched disorder due to imperfections in the fabrication. This disorder produces a roughly 1% variation in the rings' areas, which translates into an effective random field on the spins. The ring arrays are thus an extremely good realization of the 2D random-field Ising model. (Performed in collaboration with D. Davidović, S. Kumar, J. Siegel, S. B. Field, R. C. Tiberio, R. Hey, and K. Ploog.) (Supported by NSF grants DMR-9222541, and DMR-9357518, and by the David and Lucile Packard Foundation.)

  19. Mesoscopic thin-film magnetic rings (invited)

    NASA Astrophysics Data System (ADS)

    Ross, C. A.; Castaño, F. J.; Morecroft, D.; Jung, W.; Smith, Henry I.; Moore, T. A.; Hayward, T. J.; Bland, J. A. C.; Bromwich, T. J.; Petford-Long, A. K.

    2006-04-01

    The magnetic properties and magnetoresistance of thin-film circular and elliptical magnetic rings made from Co, NiFe, NiFe/FeMn, and Co/Cu/NiFe have been explored. Single-layer rings show stable onion and vortex states and metastable twisted states containing a 360° wall. For NiFe rings, four-point magnetotransport results can be explained quantitatively by anisotropic magnetoresistance. NiFe/FeMn exchange-biased rings show offset hysteresis loops, and the easy axis is determined by a combination of the ring ellipticity and the exchange coupling. In Co/Cu/NiFe multilayer rings the behavior is dominated by the magnetostatic coupling between the domain walls in the Co and NiFe. In the major loop the giant magnetoresistance varies between three distinct levels corresponding to combinations of onion and vortex states in the NiFe and Co layers.

  20. Controllable Magnetization Processes Induced by Nucleation Sites in Permalloy Rings

    NASA Astrophysics Data System (ADS)

    Ying-Jiun Chen,; Chia-Jung Hsu,; Chun-Neng Liao,; Hao-Ting Huang,; Chiun-Peng Lee,; Yi-Hsun Chiu,; Tzu-Yun Tung,; Mei-Feng Lai,

    2010-02-01

    Different arrangements of notches as nucleation sites are demonstrated experimentally and numerically to effectively control the magnetization processes of permalloy rings. In the ring with notches at the same side with respect to field direction, two same-helicity vortex domain walls in the onion state lead to two-step switching going through flux-closure state; in the ring with diagonal notches two opposite-helicity vortex domain walls lead to one-step switching skipping flux-closure state. The switching processes are repeatable in contrast to rings without notches where helicites of two vortex domain walls are random so the switching processes can not be controlled.

  1. Magnetic configurations in 160 520-nm-diameter ferromagnetic rings

    NASA Astrophysics Data System (ADS)

    Castaño, F. J.; Ross, C. A.; Eilez, A.; Jung, W.; Frandsen, C.

    2004-04-01

    The remanent states and hysteretic behavior of thin-film magnetic rings has been investigated experimentally and by micromagnetic modeling. Rings of diameters 160 520 nm, made from Co using lift-off processing, show three distinct remanent states: a vortex state, an “onion” state with two head-on walls, and a “twisted” state containing a 360° wall. The range of stability of these states varies with ring geometry, with smaller width rings showing higher switching fields and greater variability.

  2. Magnetic fields at neptune.

    PubMed

    Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1989-12-15

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes

  3. Magnetization reversal process in elongated Co rings with engineered defects

    NASA Astrophysics Data System (ADS)

    Gao, X. S.; Adeyeye, A. O.; Ross, C. A.

    2008-03-01

    We report a significant modification of the magnetization reversal process in thin film rings with engineered defects created by a focused ion beam. Using magnetic force microscopy, with in situ in-plane field, we observe that the traditional onion-vortex transition that occurs in defect-free rings can be suppressed, and the reversal instead takes place through domain wall motion. We have also investigated the effects of defect size, location, and distribution on the overall magnetization state. The results are explained in terms of pinning of domain walls by the engineered defects.

  4. Magnetic record associated with tree ring density: Possible climate proxy

    PubMed Central

    Kletetschka, Gunther; Pruner, Petr; Venhodova, Daniela; Kadlec, Jaroslav

    2007-01-01

    A magnetic signature of tree rings was tested as a potential paleo-climatic indicator. We examined wood from sequoia tree, located in Mountain Home State Forest, California, whose tree ring record spans over the period 600 – 1700 A.D. We measured low and high-field magnetic susceptibility, the natural remanent magnetization (NRM), saturation isothermal remanent magnetization (SIRM), and stability against thermal and alternating field (AF) demagnetization. Magnetic investigation of the 200 mm long sequoia material suggests that magnetic efficiency of natural remanence may be a sensitive paleoclimate indicator because it is substantially higher (in average >1%) during the Medieval Warm Epoch (700–1300 A.D.) than during the Little Ice Age (1300–1850 A.D.) where it is <1%. Diamagnetic behavior has been noted to be prevalent in regions with higher tree ring density. The mineralogical nature of the remanence carrier was not directly detected but maghemite is suggested due to low coercivity and absence of Verwey transition. Tree ring density, along with the wood's magnetic remanence efficiency, records the Little Ice Age (LIA) well documented in Europe. Such a record suggests that the European LIA was a global phenomenon. Magnetic analysis of the thermal stability reveals the blocking temperatures near 200 degree C. This phenomenon suggests that the remanent component in this tree may be thermal in origin and was controlled by local thermal condition. PMID:17381844

  5. Stability of equilibrium of a superconducting ring that levitates in the field of a fixed ring with constant current

    NASA Astrophysics Data System (ADS)

    Bishaev, A. M.; Bush, A. A.; Gavrikov, M. B.; Kamentsev, K. E.; Kozintseva, M. V.; Savel'ev, V. V.; Sigov, A. S.

    2015-11-01

    In order to develop a plasma trap with levitating superconducting magnetic coils, it is necessary to search for their stable levitating states. An analytical expression for the potential energy of a single superconducting ring that captures a fixed magnetic flux in the field of a fixed ring with constant current versus the coordinate of the free ring on the axis of the system, deviation angle of its axis from the axis of the system, and radial displacement of its plane is derived for uniform gravity field in the thin ring approximation. The calculated stable levitation states of the superconducting ring in the field of the ring with constant current are proven in experiments. The generalization of such an approach to the levitation of several rings makes it possible to search for stable levitation states of several coils that form a magnetic system of a multipole trap.

  6. Condenser for illuminating a ring field

    DOEpatents

    Sweatt, W.C.

    1994-11-01

    A series of segments of a parent aspheric mirror having one foci at a point source of radiation and the other foci at the radius of a ring field have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ring field camera about one of the beams and fall onto the ring field radius as a coincident image as an arc of the ring field. 5 figs.

  7. Condenser for illuminating a ring field

    DOEpatents

    Sweatt, William C.

    1994-01-01

    A series of segments of a parent aspheric mirror having one foci at at a si-point source of radiation and the other foci at the radius of a ring field have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ring field camera about one of the beams and fall onto the ring field radius as a coincident image as an arc of the ring field.

  8. Magnet design for a low-emittance storage ring.

    PubMed

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars Johan

    2014-09-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3-3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated `magnet block' units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  9. Magnet design for a low-emittance storage ring

    PubMed Central

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  10. Isochronous field study of the Rare-RI Ring

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Yamaguchi, Y.; Wakasugi, M.; Uesaka, T.; Ozawa, A.; Suzaki, F.; Nagae, D.; Miura, H.; Yamaguchi, T.; Yano, Y.

    2015-11-01

    Construction of the Rare-RI Ring to measure masses of short-lived rare-RI with a relative precision of 10-6 is in progress at RIKEN. The Rare-RI Ring consists of six sectors where each sector consists of four dipole magnets. Since the mass measurement is done by the isochronous mass spectrometry in the Rare-RI Ring, creating isochronous magnetic field is one of the important issues in mass measurements with the Rare-RI Ring. In order to make an isochronous field, we installed ten trim coils in the two outer dipoles among the four dipoles in each sector magnet. The isochronism of the magnetic field have been confirmed by measuring time-of-flight (TOF) of alpha particles from an alpha-source (241Am). We measured TOF of alpha particles while changing the radial gradient of the magnetic field by trim coils and evaluated the isochronism from standard deviation of the TOF spectrum. The TOF width is minimum for a radial gradient of magnetic field (\\partial {B}z/\\partial r)/B0 = 0.205 m-1, which is in good agreement with the simulated value.

  11. Magnet designs for muon collider ring and interactions regions

    SciTech Connect

    Zlobin, A.V.; Alexahin, Y.I.; Kashikhin, V.V.; Mokhov, N.V.; /Fermilab

    2010-05-01

    Conceptual designs of superconducting magnets for the storage ring of a Muon Collider with a 1.5 TeV c.o.m. energy and an average luminosity of 10{sup 34} cm{sup -2}s{sup -1} are presented. All magnets are based on Nb{sub 3}Sn superconductor and designed to provide an adequate operating field/field gradient in the aperture with the critical current margin required for reliable magnet operation in the machine. Magnet cross-sections were optimized to achieve the accelerator field quality in the magnet aperture occupied with beams. The magnets and corresponding protective measures are designed to handle about 0.5 kW/m of dynamic heat load from the muon beam decays. Magnet parameters are reported and compared with the requirements.

  12. Generation of vortex rings by nonstationary laser wake field

    SciTech Connect

    Tsintsadze, N.L.; Murtaza, G.; Shah, H.A.

    2006-01-15

    A new concept of generating quasistatic magnetic fields, vortex rings, and electron jets in an isotropic homogeneous plasma is presented. The propagation of plasma waves, generated by a relativistically intense short pulse laser, is investigated by using the kinetic model and a novel nonpotential, time-dependent ponderomotive force is derived by obtaining a hydrodynamic equation of motion. This force can in turn generate quasistatic magnetic fields, vortex rings, and electron jets. It is also shown that the vortex rings can become a means for accelerating electrons, which are initially in equilibrium. The conservation of canonical momentum circulation and the frozen-in condition for the vorticity is discussed. The excitation of the vortex waves by the modulation of the amplitude of the plasma waves is considered. These vortex waves, which generate a lower hybrid mode propagating across the generated magnetic field, are also investigated.

  13. Effects of two-temperature ions, magnetic field, and higher-order nonlinearity on the existence and stability of dust-acoustic solitary waves in Saturn's F ring

    SciTech Connect

    El-Labany, S. K.; Moslem, Waleed M.; Safy, F. M.

    2006-08-15

    Nonlinear propagation of dust-acoustic solitary waves (DASWs) in a strong magnetized dusty plasma comprising warm adiabatic variable-charged dust particles, isothermal electrons, and two-temperature ions is investigated. Applying a reductive perturbation theory, a nonlinear Zakharov-Kuznetsov (ZK) equation for the first-order perturbed potential and a linear inhomogeneous ZK-type equation for the second-order perturbed potential are derived. However, at a certain value of high-temperature ion density, the coefficient of the nonlinear terms of both ZK and ZK-type equations vanishes. Therefore, a new set of expansion physical parameters and stretched coordinates are then used to derive a modified Zakharov-Kuznetsov (mZK) equation for the first-order perturbed potential and a mZK-type equation for the second-order perturbed potential. Stationary solutions of these equations are obtained using a renormalization method. A condition for two-temperature ions assumption is examined for various cosmic dust-laden plasma systems. It is found that this condition is satisfied for Saturn's F ring. The effects of two-temperature ions, magnetic field, and higher-order nonlinearity on the behavior of the DASWs are discussed. To obtain the stability condition of the waves, a method based on energy consideration is used and the condition for stable solitons is derived.

  14. Inhomogeneities in spin states and magnetization reversal of geometrically identical elongated Co rings

    NASA Astrophysics Data System (ADS)

    Gao, X. S.; Adeyeye, A. O.; Goolaup, S.; Singh, N.; Jung, W.; Castaño, F. J.; Ross, C. A.

    2007-05-01

    The magnetic configurations and magnetic reversal processes in arrays of geometrically identical rounded rectangular Co rings have been investigated. Magnetic imaging reveals a range of configurations, including diagonal onion, horseshoe onion, and vortex states. Reversal from the onion to the vortex state can occur via different routes involving domain wall motion within the rings, and the mechanism depends on the applied field orientation.

  15. Magnetic response measurements of mesoscopic superconducting and normal metal rings

    NASA Astrophysics Data System (ADS)

    Bluhm, Hendrik

    The main part of this thesis reports three experiments on the magnetic response of mesoscopic superconducting and normal metal rings using a scanning SQUID microscope. The first experiment explores the magnetic response and fluxoid transitions of superconducting, mesoscopic bilayer aluminum rings in the presence of two coupled order parameters arising from the layered structure. For intermediate couplings, metastable states that have different phase winding numbers around the ring in each of the two order parameters were observed. Larger coupling locks the relative phase, so that the two order parameters are only manifest in the temperature dependence of the response. With increasing proximitization, this signature gradually disappears. The data can be described with a two-order-parameter Ginzburg-Landau theory. The second experiment concentrates on fluxoid transitions in similar, but single-layer rings. Near the critical temperature, the transitions, which are induced by applying a flux to the ring, only admit a single fluxoid at a time. At lower temperatures, several fluxoids enter or leave at once, and the final state approaches the ground state. Currently available theoretical frameworks cannot quantitatively explain the data. Heating and quasiparticle diffusion are likely important for a quantitative understanding of this experiment, which could provide a model system for studying the nonlinear dynamics of superconductors far from equilibrium. The third and most important scanning SQUID study concerns 33 individual mesoscopic gold rings. All measured rings show a paramagnetic linear susceptibility and a poorly understood anomaly around zero field, both of which are likely due to unpaired defect spins. The response of sufficiently small rings also has a component that is periodic in the flux through the ring, with a period close to h/e. Its amplitude varies in sign and magnitude from ring to ring, and its typical value and temperature dependence agree with

  16. Storm-scale ring current morphology inferred from high-resolution empirical magnetic field modeling: storms driven by CMEs, CIRs, and those containing sawtooth and SMC events

    NASA Astrophysics Data System (ADS)

    Stephens, G. K.; Sitnov, M. I.; Ukhorskiy, A. Y.; Ohtani, S.; Vandegriff, J. D.

    2012-12-01

    In spite of several decades of intense investigations, the detailed structure and dynamics of the magnetospheric currents remains unclear especially during disturbed periods associated with magnetic storms and substorms. Until recently, empirical magnetic field models were strongly limited because they were built using predefined, hand-made current structures. New capabilities in the empirical reconstruction of the storm-scale current morphology and its evolution have become possible in the new-generation empirical model, TS07D, where the distribution of storm-scale equatorial currents is determined by regular basis function expansions and is largely dictated by data. We discuss the results of TS07D-based empirical reconstruction of the magnetospheric currents for differing global conditions. Firstly, we examine storms produced by two different drivers, Coronal Mass Ejections (CME) and Corotating Interaction Regions (CIR), and secondly, we examine storms containing two different magnetospheric convection states, those containing quasi-periodic sawtooth events and Steady Magnetospheric Convection (SMC) intervals. A distinctive feature of CME-driven storms is the hook-shaped current developing in the main phase, which combines features of ring and tail currents, while CIR-driven storms are featured by the belt-shaped current and strong reduction of the strength of field-aligned currents. Storms containing sawtooth injections are characterized by the formation of the equatorial storm-time current with an unusually broad radial extension, far beyond geosynchronous orbit across all local times. SMC periods are distinguished by a higher total pressure in the inner magnetosphere extending to larger distances with the appropriate changes in the equatorial currents and their closure paths. New data analysis opportunities offered by the APL-hosted model interface, including run-on-request case studies, the database of pre-processed model coefficients and radiation belt

  17. Magnetoresistance behavior of elliptical ring nanomagnets in close proximity with magnetic elements

    NASA Astrophysics Data System (ADS)

    Jain, S.; Adeyeye, A. O.

    2009-04-01

    We have investigated the giant magnetoresistance (GMR) responses of the pseudospin valve elliptical rings in close proximity with individual magnetic elements. Significant modifications of the GMR responses were observed due to the effects of magnetostatic coupling between the rings and the magnetic elements. We observed that the vortex state stability is significantly sensitive to the position, orientation of the magnetic elements, and the direction of the applied field. We also investigated the switching field reproducibility of the rings for onion→vortex and vortex→onion transitions and observed that the ring with asymmetrically placed magnetic elements shows the most reproducible switching states.

  18. Magnetic responses in 1D mesoscopic rings and cylinders

    NASA Astrophysics Data System (ADS)

    Maiti, Santanu K.

    2006-03-01

    I investigated a detailed study of persistent current and low-field magnetic susceptibility in one-dimensional mesoscopic rings and cylinders threaded by slowly varying magnetic flux φ in the tight-binding model. In perfect rings described by constant number of electrons Ne, current shows only saw-tooth variation with φ, while for those rings described by constant chemical potential μ, current varies saw-tooth like for some special choices of μ, but in all other cases it shows kink-like structures. On the other hand, in perfect cylinders I get both saw-tooth and kink-like structures in persistent current whether these cylinders are described by constant Ne or μ. In presence of impurity, current gets a continuous variation with φ only for the rings described by constant Ne, while in all other cases it depends on the choice of μ. My exact calculation predicts that the diamagnetic and paramagnetic sign of the low-field currents can be determined exactly for the rings described by constant Ne. In perfect rings, I get only diamagnetic currents both for odd and even Ne, while in presence of impurity current always shows diamagnetic sign for the rings with odd Ne and paramagnetic sign for the rings with even Ne. Both for the perfect and disordered rings described by constant μ the sign of the current cannot be mentioned exactly since it depends on the choice of μ and disordered configurations. Similar arguments are also true for the cylinders those are described either by constant Ne or by constant μ since the sign of the current in these systems depends on Ne, μ and disordered configurations.

  19. Dynamically controlled toroidal and ring-shaped magnetic traps

    SciTech Connect

    Fernholz, T.; Gerritsma, R.; Spreeuw, R. J. C.; Krueger, P.

    2007-06-15

    We present traps with toroidal (T{sup 2}) and ring-shaped topologies based on adiabatic potentials for radio-frequency-dressed Zeeman states in a ring-shaped magnetic quadrupole field. Simple adjustment of the radio-frequency fields provides versatile possibilities for dynamical parameter tuning, topology change, and controlled potential perturbation. We show how to induce toroidal and poloidal rotations, and demonstrate the feasibility of preparing degenerate quantum gases with reduced dimensionality and periodic boundary conditions. The great level of dynamical and even state-dependent control is useful for atom interferometry.

  20. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  1. Magnetic edge states in Aharonov-Bohm graphene quantum rings

    NASA Astrophysics Data System (ADS)

    Farghadan, R.; Saffarzadeh, A.; Heidari Semiromi, E.

    2013-12-01

    The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zero and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations.

  2. Magnetic measurements of the correction and adjustment magnets of the main ring

    SciTech Connect

    Trbojevic, D.

    1986-07-01

    Correction magnets correct the field imperfections and alignment errors of the main quadrupole and bend magnets. For reducing and controlling chromaticity there are 186 sextupoles and 78 octupoles, while for suppressing various resonances there are 12 normal and 18 skew sextupoles and 24 normal and 19 skew quadrupoles. Beam positions are individually controlled by 108 horizontal and 108 skew dipoles. This report includes results of the all Main Ring correction and adjustment magnet harmonic measurements. The measurement principle and basic equations are described.

  3. Magnetization reversal in individual micrometer-sized polycrystalline Permalloy rings

    NASA Astrophysics Data System (ADS)

    Moore, T. A.; Hayward, T. J.; Tse, D. H. Y.; Bland, J. A. C.; Castaño, F. J.; Ross, C. A.

    2005-03-01

    The magnetization reversal of individual 2 μm and 5 μm diameter polycrystalline Permalloy rings, with respective widths 0.75 μm and 1 μm, thickness 45 nm, has been investigated by focused magneto-optic Kerr effect (MOKE) magnetometry. Micromagnetic simulation of the reversal in the 2 μm diameter ring reveals that the onion-to-vortex state switching occurs by nucleation and subsequent annihilation of vortex walls that span the width of the ring, and that the vortex-to-reverse-onion state switching occurs by expansion of a reverse domain. The hysteresis loop shows good agreement with the experimental MOKE loop. Measurements of the switching through one-half of a 5 μm diameter ring enable the determination of the circulation of the vortex states accessed during one applied field cycle. The rings switch via one vortex state (either clockwise or anticlockwise) on both downward and upward applied field sweeps. The number of applied field cycles spent switching via one vortex state before changing to switch via the opposite vortex state is random, likely to be due to the history of the spin configuration and thermal fluctuations.

  4. A volume birdcage coil with an adjustable sliding tuner ring for neuroimaging in high field vertical magnets: ex and in vivo applications at 21.1 T

    PubMed Central

    Qian, Chunqi; Masad, Ihssan S.; Rosenberg, Jens T.; Elumalai, Malathy; Brey, William W.; Grant, Samuel C.; Gor’kov, Peter L.

    2012-01-01

    A tunable 900 MHz transmit/receive volume coil was constructed for 1H MR imaging of biological samples in a 21.1 T vertical bore magnet. To accommodate a diverse range of specimen and RF loads at such a high frequency, a sliding-ring adaptation of a low-pass birdcage was implemented through simultaneous alteration of distributed capacitance. To make efficient use of the constrained space inside the vertical bore, a modular probe design was implemented with a bottom-adjustable tuning and matching apparatus. The sliding ring coil displays good homogeneity and sufficient tuning range for different samples of various dimensions representing large span of RF loads. High resolution in vivo and ex vivo images of large rats (up to 350 g), mice and human postmortem tissues were obtained to demonstrate coil functionality and to provide examples of potential applications at 21.1 T. PMID:22750638

  5. Magnetic Structure, Magnetization Reversal and Spin Dynamics of Micron-sized Permalloy Ring

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaobin; Liu, Zhigang; Malac, Marek; Qian, Hui; Freeman, Mark; Metlushko, Vitali; Ilic, Bojan

    2004-03-01

    The magnetic ring structure is currently of great interest due to its potential application for magnetic storage and sensors [1]. In this talk, we present a study of 2 μm sized Permalloy rings on 25 nm SiN membrane prepared by electron beam lithography. The magnetic structures are examined by Lorentz microscopy. The Lorentz microscopy images indicate that the demagnetized state is the expected circulation of the magnetization. The head-to-head or tail-to-tail domains in the onion states (remanence after saturation) are found to be vortices. Diffractional magnetooptic Kerr effect magnetometry [2] is used (in zero, first, and second orders) to study the magnetization reversal, and the results are compared to the micromagnetic modeling based on Landau-Liftshitz-Gilbert equation. Finally, ultrafast scanning Kerr microscopy in spectroscopic mode is used to study the spin dynamics of the ring [3]. The ultrafast transient field is applied perpendicular to the rings, while a dc bias is applied in the plane. We find that the processional frequency in the circulating magnetization state is almost bias field-independent, while it splits into two field-dependent frequencies at larger bias (>100 Oe). These results will also be discussed in relation to micromagnetic modeling. [1] J.-G. Zhu, et al., JAP 87, 6668 (2000). [2] P. Vavassori, et al., PRB 67, 134429 (2003). [3] W. K. Hiebert, et al., PRL 79, 1134 (1997).

  6. Large magnetic storage ring for Bose-Einstein condensates

    SciTech Connect

    Arnold, A. S.; Garvie, C. S.; Riis, E.

    2006-04-15

    Cold atomic clouds and Bose-Einstein condensates have been stored in a 10 cm diameter vertically oriented magnetic ring. An azimuthal magnetic field enables low-loss propagation of atomic clouds over a total distance of 2 m, with a heating rate of less than 50 nK/s. The vertical geometry was used to split an atomic cloud into two counter-rotating clouds which were recombined after one revolution. The system will be ideal for studying condensate collisions and ultimately Sagnac interferometry.

  7. Axial translation of field-reversing relativistic electron rings

    NASA Astrophysics Data System (ADS)

    Rej, D. J.

    1981-08-01

    As a consequence of experiments: (1) rings were generated for the first time in a low pressure ambient neutral gas (-10 mTorr H1 and D2), increasing their collisionally limited field-reversal times to over 1 millisecond or more than five times over that previously observed; (2) the first experimental test of adiabatic magnetic compression resulted in greater than factor of ten increases in the ring kinetic energy densities; and (3) two axially separted nonfield-reversed rings, generated from a single accelerator pulse, were successfully combined or stacked to form one field-reversed ring. A quantitative analysis of the translation data is made using retarding force calculations. The rings moved axially at the terminal speed associated with a balance between the accelerating and retarding forces. Conditions were found where the major contribution to the retarding force was due to either the resistive wall or plasma currents. The wall (plasma) force dominated when the rings were moved through the low (high) pressure background gas and inside of the higher (lower) conductivity wall.

  8. Magnetically induced pumping and memory storage in quantum rings

    NASA Astrophysics Data System (ADS)

    Cini, Michele; Perfetto, Enrico

    2011-12-01

    Nanoscopic rings pierced by external magnetic fields and asymmetrically connected to wires behave in sharp contrast with classical expectations. By studying the real-time evolution of tight-binding models in different geometries, we show that the creation of a magnetic dipole by a bias-induced current is a process that can be reversed: connected rings excited by an internal ac flux produce ballistic currents in the external wires. In particular we point out that by employing suitable flux protocols, single-parameter nonadiabatic pumping can be achieved, and an arbitrary amount of charge can be transferred from one side to the other. We also propose a setup that could serve a memory device, in which both the operations of writing and erasing can be efficiently performed.

  9. Controlling the magnetic susceptibility in an artificial elliptical quantum ring by magnetic flux and external Rashba effect

    SciTech Connect

    Omidi, Mahboubeh Faizabadi, Edris

    2015-03-21

    Magnetic susceptibility is investigated in a man-made elliptical quantum ring in the presence of Rashba spin-orbit interactions and the magnetic flux. It is shown that magnetic susceptibility as a function of magnetic flux changes between negative and positive signs periodically. The periodicity of the Aharonov-Bohm oscillations depends on the geometry of the region where magnetic field is applied, the eccentricity, and number of sites in each chain ring (the elliptical ring is composed of chain rings). The magnetic susceptibility sign can be reversed by tuning the Rashba spin-orbit strength as well. Both the magnetic susceptibility strength and sign can be controlled via external spin-orbit interactions, which can be exploited in spintronics and nanoelectronics.

  10. The Magnetic and Shielding Effects of Ring Current on Radiation Belt Dynamics

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching

    2012-01-01

    The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.

  11. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  12. Domain-specific magnetization reversals on a Permalloy square ring array

    NASA Astrophysics Data System (ADS)

    Lee, D. R.; Freeland, J. W.; Srajer, G.; Metlushko, V.; You, Chun-Yeol

    2004-06-01

    We present domain-specific magnetization reversals extracted from soft x-ray resonant magnetic scattering measurements on a Permalloy square ring array. The extracted domain-specific hysteresis loops reveal that the magnetization of the domain parallel to the field is strongly pinned, while those of other domains rotate continuously. In comparison with the micromagnetic simulation, the hysteresis loop on the pinned domain indicates a possibility of the coexistence of the square rings with the vortex and onion states.

  13. Tunable magnetic flux sensor using a metallic Rashba ring with half-metal electrodes

    SciTech Connect

    Chen, J.; Jalil, M. B. A.; Tan, S. G.

    2011-04-01

    We propose a magnetic field sensor consisting of a square ring made of metal with a strong Rashba spin-orbital coupling (RSOC) and contacted to half-metal electrodes. Due to the Aharonov-Casher effect, the presence of the RSOC imparts a spin-dependent geometric phase to conduction electrons in the ring. The combination of the magnetic flux emanating from the magnetic sample placed below the ring, and the Aharonov-Casher effect due to RSOC results in spin interference, which modulates the spin transport in the ring nanostructure. By using the tight-binding nonequilibrium Green's function formalism to model the transport across the nanoring detector, we theoretically show that with proper optimization, the Rashba ring can function as a sensitive and tunable magnetic probe to detect magnetic flux.

  14. Four-state magnetic configuration in a tri-layer asymmetric ring

    NASA Astrophysics Data System (ADS)

    Popescu, Horia; Fortuna, Franck; Delaunay, Renaud; Spezzani, Carlo; Lopez-Flores, Victor; Jaouen, Nicolas; Sacchi, Maurizio

    2015-11-01

    Ring-shaped multilayered sub-micron dots have the potential for the development of non-volatile multi-bit devices. We show that a Co/Cu/FeNi asymmetric ring can take four distinct remanent magnetic states, each one stabilized by applying a magnetic field pulse along one of four in-plane orthogonal directions. We use element selective x-ray holography for imaging the Co magnetic configuration following a magnetic pulse. Micro-magnetic simulations support our experimental findings; they also provide an estimate of the system magnetization dynamics, setting out the conditions for further time-resolved experiments.

  15. Multi-ring-shaped optical field

    NASA Astrophysics Data System (ADS)

    Mei, Zhangrong; Zhao, Daomu; Gu, Juguan; Mao, Yonghua

    2016-04-01

    We introduce a novel class of planar random source producing far fields with multi-ring-shaped average intensity patterns by modeling the source degree of coherence, and confirm that such sources are physically genuine. Further, we derive the analytical expressions for the cross-spectral density (CSD) function of the beam-like fields generated by the novel source propagating in free space and in a linear isotropic random medium, and analyze the evolution of the spectral density and the state of coherence. It is shown that at some distance from the source the spectral density of the propagating beam in free space takes on the shape-invariant multi-ring profile, and the number of rings and intensity profiles of the beams can be flexibly adjusted by changing the source parameters. However, in atmospheric turbulence, we find that at sufficiently large distances from the source, the multi-ring profiles are destroyed by the medium, even if it remains such for intermediate distances from the source.

  16. The magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.

  17. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  18. On Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Florido, E.; Battaner, E.

    2010-12-01

    Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.

  19. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  20. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  1. Cobalt double-ring and double-dot structures: Magnetic properties

    NASA Astrophysics Data System (ADS)

    López-Urías, F.; Torres-Heredia, J. J.; Muñoz-Sandoval, E.

    2016-02-01

    The magnetization reversal mechanism of nanostructures of cobalt double-rings (D-rings) and double-dots (D-dots) is investigated in the framework of micromagnetic simulations. The arrays contain two identical coupled rings (wide and narrow) or dots with outer diameter of 200 nm and thicknesses ranging from 2-20 nm. Hysteresis loops, dipole-dipole and exchange energies are systematically calculated for the cases of the structures touching and the structures with a 50-nm inter-magnet separation; moreover, magnetization states along the hysteresis curve are analyzed. The results of both dot and ring D-magnets are compared with the corresponding individual magnets. Our results reveal that all D-ring (in contact and separated) arrays containing narrow rings exhibit non-null remanent magnetization; furthermore, higher coercive fields are promoted when the magnet thickness is increased. It is observed that the magnetization reversal is driven mainly by a clockwise rotation of onion-states, followed by states of frustrated vortices. Our results could help improve the understanding of the magnetic interactions in nanomagnet arrays.

  2. Correlation between magnetic spin structure and the three-dimensional geometry in chemically synthesized nanoscale magnetite rings

    NASA Astrophysics Data System (ADS)

    Eltschka, M.; Kläui, M.; Rüdiger, U.; Kasama, T.; Cervera-Gontard, L.; Dunin-Borkowski, R. E.; Luo, F.; Heyderman, L. J.; Jia, C.-J.; Sun, L.-D.; Yan, C.-H.

    2008-06-01

    The correlation between magnetic spin structure and geometry in nanoscale chemically synthesized Fe3O4 rings has been investigated by transmission electron microscopy. We find primarily the flux closure vortex states but in rings with thickness variations, an effective stray field occurs. Using tomography, we determine the complete three-dimensional geometries of thicker rings. A direct correlation between the geometry and the magnetization which points out of plane in the thickest parts of the ring yielding an intermediate magnetic state between the vortex state and the tube state is found. The interaction between exchange coupled rings leads to antiparallel vortex states and extended onion states.

  3. Intrinsic nonlinear effects of dipole magnets in small rings

    NASA Astrophysics Data System (ADS)

    Xu, H. S.; Huang, W. H.; Tang, C. X.; Lee, S. Y.

    2016-06-01

    We find that dynamic aperture depends significantly on the bending radii of dipole magnets when designing a small storage ring for Tsinghua Thomson scattering X-ray source (TTX) mainly because of the nonlinearity of the dipole field. In this paper, we present systematic studies on the intrinsic-geometric nonlinearity of dipole magnets. The Hamiltonian approach is used to determine the expressions of the geometric nonlinear potential and the corresponding third-order resonance strengths. Simulations are conducted to study these resonances. Our analysis results agree well with the tracking results at the third-order resonances 3 νx=ℓ and νx±2 νz=ℓ , where ℓ 's are the integer multiple of the number of superperiods.

  4. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  5. Localization for robotic capsule looped by axially magnetized permanent-magnet ring based on hybrid strategy

    PubMed Central

    Yang, Wanan; Li, Yan; Qin, Fengqing

    2015-01-01

    To actively maneuver a robotic capsule for interactive diagnosis in the gastrointestinal tract, visualizing accurate position and orientation of the capsule when it moves in the gastrointestinal tract is essential. A possible method that encloses the circuits, batteries, imaging device, etc into the capsule looped by an axially magnetized permanent-magnet ring is proposed. Based on expression of the axially magnetized permanent-magnet ring’s magnetic fields, a localization and orientation model was established. An improved hybrid strategy that combines the advantages of particle-swarm optimization, clone algorithm, and the Levenberg–Marquardt algorithm was found to solve the model. Experiments showed that the hybrid strategy has good accuracy, convergence, and real time performance. PMID:25733935

  6. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  7. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  8. Magnetization reversal of submicrometer Co rings with uniaxial anisotropy via scanning magnetoresistance microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyong; Mazumdar, D.; Schrag, B. D.; Shen, W.; Xiao, Gang

    2004-07-01

    We have investigated the magnetization reversal mechanism of narrow submicrometer Co rings using scanning magnetoresistance microscopy. Thermal annealing in a magnetic field introduced a uniaxial anisotropy and significant structural changes in the samples. We have observed a complicated multidomain state at intermediate field ranges, and onion states at saturation, for samples annealed in a field. This observation is in contrast to the flux-closed vortex state for unannealed rings. Micromagnetic simulations have shown that the switching occurs through a gradual noncoherent buckling-like reversal process followed by coherent rotation.

  9. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  10. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  11. Analysis on the magnetic sensitivity in a total reflection prisms (TRP) ring resonator

    NASA Astrophysics Data System (ADS)

    Li, Dong; Zhao, Jianlin; Bi, Chao

    2015-07-01

    Based on the theory of transfer matrix and the condition of eigenmode self-reproduction, the model of the magnetic sensitivity in a total reflection prisms (TRP) ring laser resonator is established. Then the influences of the slight nonplanar effect on the output frequency difference and the magnetic sensitivity are analyzed theoretically and numerically. The results show that the slightly nonplanar effect will bring an additional ellipticity of the eigenmode and the environment magnetic field can produce an additional output frequency difference in a TRP ring laser resonator. It can also be found that the output frequency difference increases versus the augment of nonplanar angle and the intensity of magnetic field. These interesting results may be useful for designing and optimizing the structure of super high precision TRP ring laser gyroscopes.

  12. Transverse Field Profile of the NLC Damping Rings Eletromagnet Wiggler (LCC-0038)

    SciTech Connect

    Ross, M

    2004-03-19

    The primary effort for damping ring wiggler studies has been to develop a credible radiation hard electromagnet wiggler conceptual design that meets NLC main electron and positron damping ring physics requirements [1]. Based upon an early assessment of requirements, a hybrid magnet similar to existing designs satisfies basic requirements. However, radiation damage is potentially a serious problem for the Nd-Fe-B permanent magnet material, and cost remains an issue for samarium cobalt magnets. Superconducting magnet designs have not been pursued due to their increased complexity and our unfamiliarity with the technology. Having produced and developed an electromagnet design, we now find that the transverse field roll-off is severe, and recognizing similar experience with beamline 11 at SSRL we believe that the resulting beam quality will not meet the damping ring requirements. We therefore propose, in parallel with more detailed optics studies of the wiggler field requirements, to revisit the hybrid permanent magnet design.

  13. Analysis of ringing due to magnetic core materials used in pulsed nuclear magnetic resonance applications

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, Neelam; Nlebedim, Cajetan; Hadimani, Ravi; Bulu, Irfan; Song, Yi-Qiao; Mina, Mani; Jiles, David

    Oil-field well logging instruments employ pulsed nuclear magnetic resonance (NMR) techniques and use inductive sensors to detect and evaluate the presence of particular fluids in geological formations. Acting as both signal transmitters and receivers most inductive sensors employ magnetic cores to enhance the quality and amplitude of signals recorded during field measurements. It is observed that the magnetic core also responds to the applied input signal thereby generating a signal (`ringing') that interferes with the measurement of the signals from the target formations. This causes significant noise and receiver dead time and it is beneficial to eliminate/suppress the signals received from the magnetic core. In this work a detailed analysis of the magnetic core response and in particular loading of the sensor due to the presence of the magnetic core is presented. Pulsed NMR measurements over a frequency band of 100 kHz to 1MHz are used to determine the amplitude and linewidth of the signals acquired from different magnetic core materials. A lower signal amplitude and a higher linewidth are vital since these would correspond to minimal contributions from the magnetic core to the inductive sensor response and thus leading to minimized receiver dead time.

  14. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  15. Geomagnetic Tail and Ring Current Dynamics and Structure during July 6, 2013 magnetic storm

    NASA Astrophysics Data System (ADS)

    Nazarkov, Ilya

    According to THEMIS and POES satellites the structure and spatial dimensions of ring current and geotal current system are restored. Using models of the main magnetic field of Earth (IGRF-11) and a magnetospheric magnetic field (A2000), the magnetic field of the currents other than the tail and the ring currents was subtracted from measurements. The hourly analysis of dynamics and position of current system of a tail was carried out. Evolution of ring current is estimated by data fluxes of STEB particles, measured by POES satellites at low latitudes. Isotropic boundary, determined by data of POES satellites, was projected to equatorial plane and compared with position of the inner edge of geomagnetic tail current, obtained from THEMIS measurements.

  16. DEGRADATION OF MAGNET EPOXY AT NSLS X-RAY RING.

    SciTech Connect

    HU,J.P.; ZHONG,Z.; HAAS,E.; HULBERT,S.; HUBBARD,R.

    2004-05-24

    Epoxy resin degradation was analyzed for NSLS X-ring magnets after two decades of 2.58-2.8 GeV continuous electron-beam operation, based on results obtained from thermoluminescent dosimeters irradiated along the NSLS ring and epoxy samples irradiated at the beamline target location. A Monte Carlo-based particle transport code, MCNP, was utilized to verify the dose from synchrotron radiation distributed along the axial- and transverse-direction in a ring model, which simulates the geometry of a ring quadrupole magnet and its central vacuum chamber downstream of the bending-magnet photon ports. The actual life expectancy of thoroughly vacuum baked-and-cured epoxy resin was estimated from radiation tests on similar polymeric materials using a radiation source developed for electrical insulation and mechanical structure studies.

  17. Ring-shaped velocity distribution functions in energy-dispersed structures formed at the boundaries of a proton stream injected into a transverse magnetic field: Test-kinetic results

    NASA Astrophysics Data System (ADS)

    Voitcu, Gabriel; Echim, Marius M.

    2012-02-01

    In this paper, we discuss the formation of ring-shaped and gyro-phase restricted velocity distribution functions (VDFs) at the edges of a cloud of protons injected into non-uniform distributions of the electromagnetic field. The velocity distribution function is reconstructed using the forward test-kinetic method. We consider two profiles of the electric field: (1) a non-uniform E-field obtained by solving the Laplace equation consistent with the conservation of the electric drift and (2) a constant and uniform E-field. In both cases, the magnetic field is similar to the solutions obtained for tangential discontinuities. The initial velocity distribution function is Liouville mapped along numerically integrated trajectories. The numerical results show the formation of an energy-dispersed structure due to the energy-dependent displacement of protons towards the edges of the cloud by the gradient-B drift. Another direct effect of the gradient-B drift is the formation of ring-shaped velocity distribution functions within the velocity-dispersed structure. Higher energy particles populate the edges of the proton beam, while smaller energies are located in the core. Non-gyrotropic velocity distribution functions form on the front-side and trailing edge of the cloud; this effect is due to remote sensing of energetic particles with guiding centers inside the beam. The kinetic features revealed by the test-kinetic solutions have features similar to in-situ velocity distribution functions observed by Cluster satellites in the magnetotail, close to the neutral sheet.

  18. Particle optics of quadrupole doublet magnets in Spallation Neutron Source accumulator ring

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    2006-12-01

    The Spallation Neutron Source ring employs doublet quadrupoles and dipole correctors in its straight sections. The electromagnetic quadrupoles have a large aperture, small aspect ratio, and relatively short iron-to-iron distance. The corrector is even closer to one of the quads. There have been concerns on the magnetic fringe field and interference in the doublet magnets and their assemblies. We have performed 3D computing simulations to study magnetic field distributions in the doublet magnets. Further, we have analyzed the particle optics based on the z-dependent focusing functions of the quads. The effect of the magnetic fringe field and interference, including the third-order aberrations, on the particle motion are investigated. The lens parameters and the first-order hard edge models are derived and compared with the parameters used in the ring lattice calculations.

  19. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    SciTech Connect

    Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  20. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  1. The interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.

    1972-01-01

    Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

  2. Correlation of lunar far-side magnetized regions with ringed impact basins

    USGS Publications Warehouse

    Anderson, K.A.; Wilhelms, D.E.

    1979-01-01

    By the method of electron reflection, we have identified seven well-defined magnetized regions in the equatorial belt of the lunar far side sampled by the Apollo 16 Particles and Fields subsatellite. Most of these surface magnetic fields lie within one basin radius from the rim of a ringed impact basin, where thick deposits of basin ejecta are observed or inferred. The strongest of the seven magnetic features is linear, at least 250 km long, and radial to the Freundlich-Sharonov basin. The apparent correlation with basin ejecta suggests some form of impact origin for the observed permanently magnetized regions. ?? 1979.

  3. Power supply control units for APS ring magnets

    SciTech Connect

    Despe, O.D.

    1990-04-15

    The APS storage ring (1104 meters) is divided into 40 sectors. Each sector has 38 magnet coils in five magnet bases. Every alternate sector has an additional quadrupole magnet for skew correction. AR the main dipole magnets, two in each sector are connected in series and fed from one power supply unit. A base is controlled by one power supply control unit (PSCU). Each PSCU is connected to the host computer via a local area network (LAN). This note discusses the hardware configuration of the typical power supply control system used by the APS magnets and the software commands supported by the PSCU.

  4. Magnetic flux shielding for the precision muon g-2 storage ring superconducting inflector

    SciTech Connect

    Danby, G.T.; Meng, W.; Sampson, W.B.; Woodle, K.

    1993-12-31

    A muon g-2 experiment (E821) at the AGS requires knowledge of the magnetic field over muon orbits at the level of 0.1 ppM. The superconducting inflector involves a double cosine theta winding; this design approximately cancels its fringe field. Nevertheless its residual field would effect the homogeneity of the storage ring magnetic field. A method of using a superconducting sheet surrounding the inflector to further reduce the fringe field was proposed by one of the authors, W. Meng. An experimental program to explore this technique is described. Part of the test results are presented.

  5. Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Ravat, D.; Frawley, James J.

    1999-01-01

    Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

  6. Magnetization dynamics using ultrashort magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Tudosa, Ioan

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic

  7. Magnetization reversal and dynamics in non-interacting NiFe mesoscopic ring arrays

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Husale, S.; Varandani, D.; Gupta, A.; Senguttuvan, T. D.; Mehta, B. R.; Budhani, R. C.

    2014-04-01

    The dynamics of magnetization (M) reversal and relaxation as a function of temperature (T) are reported in three non-interacting NiFe ring arrays having fixed ring outer diameter and varying widths. Additionally, the dependence of M(H) loop on the angle (θ) between magnetic field (H) and the plane of the rings is addressed. The M(H) loops show a double step transition from onion state (OS) to vortex state (VS) at all temperatures (T = 3 to 300 K) and angles (θ = 0 to 90°). The critical reversal fields HC1 (OS to VS) and HC2 (VS to OS) show a pronounced dependence on T, ring width, and θ. Estimation of the transverse and vortex domain wall energies reveals that the latter is favored in the OS. The OS is also the remanent state in the smallest rings and decays with the effective energy scale (U0/T) of 50 and 32 meV/K at 10 and 300 K, respectively. The robust in-plane anisotropy of magnetization of ring assemblies is established by scaling the M(H) with θ.

  8. Magnet design for an ultralow emittance storage ring

    NASA Astrophysics Data System (ADS)

    Saeidi, F.; Razazian, M.; Rahighi, J.; Pourimani, R.

    2016-03-01

    The Iranian Light Source Facility (ILSF) is a new 3 GeV synchrotron radiation laboratory which is in the design stage. The ILSF storage ring (SR) is based on a Five-Bend Achromat (5BA) lattice providing an ultra-low beam emittance of 0.48 nm rad. The ring is comprised of 100 pure dipole magnets, 320 quadrupoles, and 320 sextupoles with additional coils for dipole and skew quadrupole correctors. In this paper, we present some design features of the SR magnets and discuss the detailed physical design of these electromagnets. The related electrical and cooling calculations and mechanical design issues have been investigated as well.

  9. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  10. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  11. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  12. Magnetic Response in 1d Non-Interacting Mesoscopic Rings:. Long-Range Hopping in Shortest Path

    NASA Astrophysics Data System (ADS)

    Maiti, Santanu K.

    Persistent current and low-field magnetic susceptibility in single-channel normal metal rings threaded by a magnetic flux ϕ are studied in the tight-binding model considering long-range hopping of the electrons in shortest path. The higher order hopping integrals try to reduce the effect of disorder by delocalizing the energy eigenstates and accordingly, current amplitude in disordered rings is comparable to that of an ordered ring. The calculations of low-field magnetic susceptibility predict that the sign of the currents can be mentioned precisely for the rings with fixed number of electrons even in the presence of impurity in the rings. At low-fields current shows only diamagnetic sign in perfect rings irrespective of the total number of electrons, Ne. On the other hand, in disordered rings it exhibits diamagnetic and paramagnetic sign, respectively, for the rings with odd and even Ne. In the rings described by fixed chemical potentials μ, the sign of the low-field currents cannot be predicted precisely since then it strongly depends on the values of μ and the specific realizations of disordered configurations.

  13. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  14. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  15. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  16. Reconnection of Magnetic Fields

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.

  17. Magnetic fields and stardust

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1988-01-01

    The purpose of this paper is to outline the principles governing the use of far-infrared and submillimeter polarimetry to investigate magnetic fields and dust in interstellar clouds. Particular topics of discussion are the alignment of dust grains in dense clouds, the dependence on wavelength of polarization due to emission or to partial absorption by aligned grains, the nature of that dependence for mixtures of grains with different properties, and the problem of distinguishing between (1) the effects of the shapes and dielectric functions of the grains and (2) the degree and direction of their alignment.

  18. Tuning Fano resonances by magnetic forces for electron transport through a quantum wire side coupled to a quantum ring

    NASA Astrophysics Data System (ADS)

    Szafran, B.; Poniedziałek, M. R.

    2010-08-01

    We consider electron transport in a quantum wire with a side-coupled quantum ring in a two-dimensional model that accounts for a finite width of the channels. We use the finite difference technique to solve the scattering problem as well as to determine the ring-localized states of the energy continuum. The backscattering probability exhibits Fano peaks for magnetic fields for which a ring-localized states appear at the Fermi level. We find that the width of the Fano resonances changes at high magnetic field. The width is increased (decreased) for resonant states with current circulation that produce the magnetic dipole moment that is parallel (antiparallel) to the external magnetic field. We indicate that the opposite behavior of Fano resonances due to localized states with clockwise and counterclockwise currents results from the magnetic forces which change the strength of their coupling to the channel and modify the lifetime of localized states.

  19. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    SciTech Connect

    Prabhu Gaunkar, N. Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  20. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  1. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  2. Empirical models of the magnetospheric magnetic field

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.

    1994-01-01

    A general overview of magnetospheric modeling is given, along with a more detailed discussion of several empirical models which are widely used. These models are composed of representations of the Earth's main internal field (basically a bipolar field), plus external field contributions due to ring currents (carried by the particles in the Van Allen radiation belts), magnetopause currents (the boundary surface between the Earth's magnetic field and interplanetary magnetic field carried by the solar wind), and tail currents (carried by particles in the neutral sheet of the magnetotail). The empirical models presented here are the Mead-Fairfield, Olsen-Pfitzer tilt-dependent (1977), Tsyganenko-Usamo, Tsyganenko (1987), Olsen-Pfitzer dynamic (1988), Tsyganenko (1989), and Hilmer-Voight models. The derivations, agreement with quiet time and storm time data from the two satellite programs, Spacecraft Charging at High Altitudes (SCATHA) and Combined Release Radiation Effects Satellite (CRRES), and computational requirements of these models are compared.

  3. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  4. The magnetic fields of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Ness, N. F.

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

  5. Comparisons of Simulated and Observed Stormtime Magnetic Intensities and Ion Densities in the Ring Current

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Guild, T. B.; Lemon, C. L.; Schulz, M.

    2008-12-01

    Recent progress in ring current and plasma sheet modeling has shown the importance of a self-consistent treatment of particle transport and magnetic and electric fields in the inner magnetosphere. For example, the feedback of the ring current tends to mitigate the build-up of the asymmetric ring current and associated magnetic depressions during storm main phase. Models with and without self-consistency can lead to significantly different magnitudes and spatial distributions of plasma pressure and magnetic intensity during disturbed times. In this study we compare simulated and observed stormtime magnetic intensities and ion densities at geosynchronous altitude to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet for conditions corresponding to the 12-14 August 2000 storm using the self-consistent Rice Convection Model-Equilibrium (RCM-E) [ Lemon et al., JGR, 2004]. Using the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 RE as the plasma boundary location in the RCM- E. We compare the simulated magnetic intensity at geosynchronous altitude (6.6 RE) with the magnetic intensity measured by magnetometers on the GOES G8, G10, and G11 satellites. The simulated ion densities at different magnetic local times are compared with those from the re-analysis model of LANL/MPA densities of O'Brien and Lemon [Space Weather, 2007]. This is a first step towards a more extensive comparison that will include other datasets, such as ion and magnetic field data from Polar, at locations closer to the Earth than geosynchronous altitude.

  6. Magnetic tunnel junctions for low magnetic field sensing

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyong

    In this thesis, we did a comprehensive investigation on the relationship between spin-dependent tunneling and structural variation in junction devices. Magnetic, microstructural, and transport studies have shown a significant improvement in exchange-bias, a reduced barrier roughness, and an enhanced magnetoresistance for samples after magnetic annealing. We have examined different magnetic configurations required for sensing applications and presented some results of using MTJ sensors to detect AC magnetic fields created by electrical current flow and DC stray field distributions of patterned magnetic materials. We have studied the low frequency noise in MTJ sensors. We have found that the 1/f noise in MTJs has magnetic as well as electrical origins, and is strongly affected by the junction's internal structure. The magnetic noise comes from magnetization fluctuations in the free FM layer and can be understood using the fluctuation-dissipation theorem. While the field-independent electrical noise due to charge trapping in the barrier, is observed in the less optimized MTJs sensors, and has an amplitude at least one order of magnitude higher than the noise component due to magnetization fluctuations. In addition, we have studied the magnetization switching of Cobalt rings with varying anisotropy utilizing scanning magnetoresistive microscopy. We have for the first time observed a complicated multi-domain intermediate phase during the transition between onion states for samples with strong anisotropy. This is in contrast to as deposited samples, which reverse by simple domain wall motion and feature an intermediate vortex state. The result is further analyzed by micro magnetic simulations.

  7. Sequence of Rotating Plasma Rings Configurations in the Prevalent Gravitational Field of a Central Object

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Rousseau, F.

    2005-10-01

    The search for the axisymmetric equilibrium configurations of thin differentially rotating plasma structures in the prevalent gravitational field of a central object has led to identify a new kind of configuration consisting of a sequence of pairs of plasma rings corresponding to pairs of oppositely directed current channels. The plasma pressure is of the order of the magnetic energy density associated with the currents flowing within the rings, but larger than that of the field in which the rings are immersed. The magnetic configuration has a ``crystal structure'' of the type found first for accretion disksootnotetextB. Coppi, Phys. of Plasmas 12, 057302 (2005). with relatively low magnetic energy densities. The ``sequence of plasma rings'' solutionootnotetextB. Coppi and F. Rousseau, M.I.T. LNS Report HEP 05/01,(2005). of the relevant equilibrium equations may in fact be extended to dusty plasmas, and be of interest in planetary physicsootnotetextC.K. Goertz and G. Morfill, Icarus 53, 219 (1983). A necessary condition is that the plasma rotation frequency is constant on magnetic surfaces requiring relatively large electrical conductivity. Moreover, accretion structures for which the magnetic configuration has a dominant effect are suitable to represent those from which jets can emerge. Sponsored in part by the U.S. Department of Energy.

  8. Observations of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.

  9. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  10. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  11. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  12. PERMANENT MAGNET DESIGNS WITH LARGE VARIATIONS IN FIELD STRENGTH.

    SciTech Connect

    GUPTA,R.

    2004-01-21

    The use of permanent magnets has been investigated as an option for electron cooling ring for the proposed luminosity upgrade of RHIC. Several methods have been developed that allow a large variation in field strength. These design concepts were verified with computer simulations using finite element codes. It will be shown that the field uniformity is maintained while the field strength is mechanically adjusted.

  13. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  14. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  15. Exposure guidelines for magnetic fields.

    PubMed

    Miller, G

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields. PMID:3434538

  16. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  17. [Magnetic fields and fish behavior].

    PubMed

    Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25438567

  18. [Magnetic fields and fish behavior].

    PubMed

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25508098

  19. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  20. Structuring Light by Concentric-Ring Patterned Magnetic Metamaterial Cavities.

    PubMed

    Zeng, Jinwei; Gao, Jie; Luk, Ting S; Litchinitser, Natalia M; Yang, Xiaodong

    2015-08-12

    Ultracompact and tunable beam converters pose a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. Here we design and demonstrate concentric-ring patterned structures of magnetic metamaterial cavities capable of tailoring both polarization and phase of light by converting circularly polarized light into a vector beam with an orbital angular momentum. We experimentally illustrate the realization of both radially and azimuthally polarized vortex beams using such concentric-ring patterned magnetic metamaterials. These results contribute to the advanced complex light manipulation with optical metamaterials, making it one step closer to realizing the simultaneous control of polarization and orbital angular momentum of light on a chip. PMID:26121268

  1. Residual Field Correction of Pulsed Bending Magnet

    NASA Astrophysics Data System (ADS)

    Takano, Junpei; Igarashi, Susumu; Kamikubota, Norihiko; Meigo, Shin-ichiro; Sato, Kenichi; Shirakata, Masashi; Yamada, Shuei

    The Japan Proton Accelerator Research Complex (J-PARC) has an accelerator chain, Linac, Rapid Cycling Synchrotron (RCS), and Main Ring (MR). The RCS accelerates the proton beam up to 3 GeV every 40 msec. After the beam is extracted from the RCS, it is delivered to a beam transport line, which is 3NBT for the Material and Life Science Experimental Facility (MLF). Some bunches of the proton beam are bended from the 3NBT to another beam transport line, which is 3-50BT for the MR, by using a pulsed bending magnet (PB) [1]. However, the beam orbit in the 3NBT is kicked by the residual magnetic field of the PB. In order to correct the residual magnetic field, additional coils had been wound on the PB poles. As a result of scanning the current pattern of the correction coils, the orbit distortion in the 3NBT has been reduced.

  2. Magnetization switching in a mesoscopic NiFe ring with nanoconstrictions of wire

    NASA Astrophysics Data System (ADS)

    Lu, Zhengqi; Zhou, Yun; Du, Yuqing; Wilton, D.; Pan, G.; Chen, Yifang; Cui, Zheng

    2006-04-01

    Magnetoresistance in a mesoscopic NiFe ring with nanoconstrictions of wire has been measured. For the applied field tilted from the perpendicular direction, it is shown that the applied current has an effect on the switching fields and finally the transition process due to the spin torque effect. The decrease or increase in the switching field from the vortex state to the onion state depends on the electron flow with respect to the direction of domain propagation. The magnetization in the ring exhibits only a double switching process at a low applied current. However, when the applied current is higher than the critical current density, the magnetization shows a combination of single and double switching processes. For the applied field direction perpendicular to the wire, an enhancement in magnetoresistance is obtained around zero fields at a low applied current, which is due to the domain wall trapped at nanoconstrictions. Furthermore, it is found that the magnetization in the ring goes via a single onion to onion switching process at whatever value of the applied current.

  3. Magnetic fields in nearby spirals

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohui; Lenc, Emil

    2013-10-01

    Magnetic fields play an important role in star formation process and dynamic evolution of galaxies. Previous studies of magnetic fields relied on narrow band polarisation observations and difficult to disentangle magnetised structures along line of sight. Thanks to the broad bandwidth and multi-channels of CABB we are now able to recover the 3D structures of magnetic fields using RM synthesis and QU-fitting. We propose to observe two nearby spirals M83 and NGC 4945 to build clear pictures of their magnetic fields.

  4. Radiation effects in a muon collider ring and dipole magnet protection

    SciTech Connect

    Mokhov, N.V.; Kashikhin, V.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2011-03-01

    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 10{sup 34} cm{sup -2}s{sup -1}. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

  5. Practical method using superposition of individual magnetic fields for initial arrangement of undulator magnets

    SciTech Connect

    Tsuchiya, K.; Shioya, T.

    2015-04-15

    We have developed a practical method for determining an excellent initial arrangement of magnetic arrays for a pure-magnet Halbach-type undulator. In this method, the longitudinal magnetic field distribution of each magnet is measured using a moving Hall probe system along the beam axis with a high positional resolution. The initial arrangement of magnetic arrays is optimized and selected by analyzing the superposition of all distribution data in order to achieve adequate spectral quality for the undulator. We applied this method to two elliptically polarizing undulators (EPUs), called U#16-2 and U#02-2, at the Photon Factory storage ring (PF ring) in the High Energy Accelerator Research Organization (KEK). The measured field distribution of the undulator was demonstrated to be excellent for the initial arrangement of the magnet array, and this method saved a great deal of effort in adjusting the magnetic fields of EPUs.

  6. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  7. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  8. Magnetic quantum dots and rings in two dimensions

    NASA Astrophysics Data System (ADS)

    Downing, C. A.; Portnoi, M. E.

    2016-07-01

    We consider the motion of electrons confined to a two-dimensional plane with an externally applied perpendicular inhomogeneous magnetic field, both with and without a Coulomb potential. We find that as long as the magnetic field is slowly decaying, bound states in magnetic quantum dots are indeed possible. Several example cases of such magnetic quantum dots are considered in which one can find the eigenvalues and eigenfunctions in closed form, including two hitherto unknown quasi-exactly-solvable models treated with confluent and biconfluent Heun polynomials. It is shown how a modulation of the strength of the magnetic field can exclude magnetic vortexlike states, rotating with a certain angular momenta and possessing a definite spin orientation, from forming. This indicates one may induce localization-delocalization transitions and suggests a mechanism for spin separation.

  9. Localized domain wall nucleation dynamics in asymmetric ferromagnetic rings revealed by direct time-resolved magnetic imaging

    NASA Astrophysics Data System (ADS)

    Richter, Kornel; Krone, Andrea; Mawass, Mohamad-Assaad; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2016-07-01

    We report time-resolved observations of field-induced domain wall nucleation in asymmetric ferromagnetic rings using single direction field pulses and rotating fields. We show that the asymmetric geometry of a ring allows for controlling the position of nucleation events, when a domain wall is nucleated by a rotating magnetic field. Direct observation by scanning transmission x-ray microscopy (STXM) reveals that the nucleation of domain walls occurs through the creation of transient ripplelike structures. This magnetization state is found to exhibit a surprisingly high reproducibility even at room temperature and we determine the combinations of field strengths and field directions that allow for reliable nucleation of domain walls and directly quantify the stability of the magnetic states. Our analysis of the processes occurring during field induced domain wall nucleation shows how the effective fields determine the nucleation location reproducibly, which is a key prerequisite toward using domain walls for spintronic devices.

  10. Sub-nanosecond resolution x-ray magnetic circular dichroism photoemission electron microscopy of magnetization processes in a permalloy ring

    NASA Astrophysics Data System (ADS)

    Neeb, D.; Krasyuk, A.; Oelsner, A.; Nepijko, S. A.; Elmers, H. J.; Kuksov, A.; Schneider, C. M.; Schönhense, G.

    2005-04-01

    Fast magnetization processes in a microstructured permalloy ring with 80 µm o.d. and 30 nm thickness have been observed by photoemission electron microscopy exploiting x-ray magnetic circular dichroism as the magnetic contrast mechanism. As a high speed probe we employed synchrotron radiation pulses at the ESRF (Grenoble) operated in 16-bunch mode, yielding photon pulses of 105 ps FWHM with a period of 176 ns. Fast magnetic field pulses have been generated by means of current pulses through coplanar waveguides with the magnetic structure being lithographically prepared on their surface. A stroboscopic pump-probe set-up with a variable time delay between the field pulse and photon pulse allowed us to take snapshots of the dynamic response of the magnetic domain structure. We observed coherent magnetization rotation during the leading edge part of the field pulse, the formation of a characteristic domain pattern ('onion state') in the plateau region of the pulse and the fast formation of a striped domain pattern (incoherent magnetization rotation) during the trailing edge part of the field pulse. A numerical simulation confirmed essential features of the stroboscopic image series.

  11. Non-disjunction mutations in Drosophila exposed to magnetic fields

    NASA Astrophysics Data System (ADS)

    Levengood, W. C.

    1987-09-01

    The frequency of XO mutations in Drosophila melanogaster was significantly higher than normal in magnetic field exposed, immature males, than in exposed, mature males. Mutation levels increased with magnetic field strength. Intercellular rings of black magnetic particles were formed in the high magnetic flux region of dorsally exposed, early stage pupae and to a lesser degree in the abdomen of young adult females. Orientation of minute, chromosome associated, magnetic domains within the microenvironment of the developing organism was believed to alter oxidative processes within maturing X+ sperm which during fertilization were incompatible with and destructive to an Xw chromosome in the zygote.

  12. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  13. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)  G if the energy scale of inflation is few×10(16)  GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

  14. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  15. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    NASA Astrophysics Data System (ADS)

    Harada, Kentaro; Kobayashi, Yukinori; Miyajima, Tsukasa; Nagahashi, Shinya

    2007-12-01

    We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM) with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR) in High Energy Accelerator Research Organization (KEK). The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3T/m and a shorter pulse width of 2.4μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  16. Rings

    SciTech Connect

    Davis, R.L.

    1989-01-01

    The essence of vortex physics is that at certain low-energy scales elementary excitations of a point particle theory can behave like strings rather than particles. Vortices are the resulting string-like solutions; their thickness sets the distance scale beyond which physics is string-like rather than particle-like. String degrees of freedom are massless in the sense that excitations on a string can have an arbitrarily low frequency. Non-string degrees of freedom correspond to massive particles and are absent from the low energy spectrum. This article considers only field theories with vortices at low energies. The possible existence of a class of solitons in these vortex theories will be discussed. They are vortex rings: they are localized and finite in energy, and able to carry the quantum numbers of point particles. Rings are thus particle-like solutions of a vortex theory, which is itself a limit of a point particle field theory.

  17. Piston ring microwelding: Field/lab correlation and prevention

    SciTech Connect

    Shuster, M.; Mahler, F.; Deis, M.; Macy, D.; Frame, R.

    1996-12-31

    This paper will discuss the microwelding phenomenon between aluminum pistons and iron piston rings in internal combustion engines. The mechanism of microwelding as observed on field run engine hardware has been correlated with the microwelding mechanism generated in an accelerated laboratory bench test. Hardness distribution measurements, metallography, scanning electron microscopy, and EDS spectrometer have been used in the analysis of this surface damage mechanism. In this work, the metallurgical parameters were formulated which describe the microwelding phenomenon after field usage and after accelerated testing. It was demonstrated that the high output water-cooled two-stroke engine accelerated bench test reproduces the field run engine microwelding phenomenon in 30 minutes. It was shown that the best prevention of the microwelding phenomenon was provided when the piston and piston ring surfaces were separated by a soft, wear and heat resistant coating, integrally bonded to the piston ring.

  18. Neutron interference in the gravitational field of a ring laser

    NASA Astrophysics Data System (ADS)

    Fischetti, Robert D.; Mallett, Ronald L.

    2015-07-01

    The neutron split-beam interferometer has proven to be particularly useful in measuring Newtonian gravitational effects such as those studied by Colella, Overhauser, and Werner (COW). The development of the ring laser has led to numerous applications in many areas of physics including a recent general relativistic prediction of frame dragging in the gravitational field produced by the electromagnetic radiation in a ring laser. This paper introduces a new general technique based on a canonical transformation of the Dirac equation for the gravitational field of a general linearized spacetime. Using this technique it is shown that there is a phase shift in the interference of two neutron beams due to the frame-dragging nature of the gravitational field of a ring laser.

  19. Magnetic fields in young galaxies

    NASA Astrophysics Data System (ADS)

    Nordlund, Åke; Rögnvaldsson, Örnólfur

    We have studied the fate of initial magnetic fields in the hot halo gas out of which the visible parts of galaxies form, using three-dimensional numerical MHD-experiments. The halo gas undergoes compression by several orders of magnitude in the subsonic cooling flow that forms the cold disk. The magnetic field is carried along and is amplified considerably in the process, reaching μG levels for reasonable values of the initial ratio of magnetic to thermal energy density.

  20. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  1. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  2. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  3. Monte Carlo simulation for thermal assisted reversal process of micro-magnetic torus ring with bistable closure domain structure

    NASA Astrophysics Data System (ADS)

    Terashima, Kenichi; Suzuki, Kenji; Yamaguchi, Katsuhiko

    2016-04-01

    Monte Carlo simulations were performed for temperature dependences of closure domain parameter for a magnetic micro-torus ring cluster under magnetic field on limited temperature regions. Simulation results show that magnetic field on tiny limited temperature region can reverse magnetic closure domain structures when the magnetic field is applied at a threshold temperature corresponding to intensity of applied magnetic field. This is one of thermally assisted switching phenomena through a self-organization process. The results show the way to find non-wasteful pairs between intensity of magnetic field and temperature region for reversing closure domain structure by temperature dependence of the fluctuation of closure domain parameter. Monte Carlo method for this simulation is very valuable to optimize the design of thermally assisted switching devices.

  4. DC septum magnets for the damping rings of the SLC SLAC Linear Collider

    SciTech Connect

    Bijleveld, J.; Peterson, J.M.; Jensen, D.

    1986-07-01

    The injection/extraction systems of the 1.21 GeV Stanford Linear Collider (SLC) damping rings uses four pairs of water cooled septum magnets. Each pair consists of a thin-septum, low-field (3 mm, 3 kilogauss) magnet plus a thick-septum, high-field (12 mm, 8 kilogauss) model. In the latest design cooling reliability was improved by using stainless-steel tubing imbedded in the copper. The operating current in each is 2600 amperes, at a density of up to 120 amperes per mmS. Plasma-sprayed alumina is used to provide electrical insulation. The magnet system is compatible with 10 Z torr ultra-high vacuum. The magnet design, fabrication, and measurements are described.

  5. Performance improvement of an extraction Lambertson septum magnet in the SNS accumulator ring

    SciTech Connect

    Wang, Jian-Guang

    2009-04-01

    The SNS ring Extraction Lambertson Septum magnet contains a strong skew quadrupole term, which has been identified as the source of causing a beam profile distortion on the target. We have performed 3D computer simulations to study the magnetic field quality in the magnet. The skew quad term is computed with different methods in simulations and is compared to measurement data. The origin of the large skew quad term is thoroughly investigated. The remedy for minimizing the skew quad term by modifying the magnet is proposed. Particle tracking is performed to verify the beam profile evolution through the existing and modified septum. The magnetic interference to the septum performance from an adjacent quadrupole is also assessed.

  6. Magnetization reversal process and domain wall resistance in a water drop shape ring

    NASA Astrophysics Data System (ADS)

    Chen, D. C.; Chiang, D. P.; Yao, Y. D.

    2006-03-01

    Patterned permalloy (Ni80-Fe20) materials have been fabricated by e-beam lithography in the shape of water drop ring. A tip is intentionally added into ring as geometrical defects to interrupt the continuity of magnetization reversal process, in order to create domain wall. Image from Magnetic force microscopy (MFM) with real- time external field confirmed this domain structure. As a result of magneto- resistance (MR) measurement, the ratio of MR is about 0.137 ˜ 0.233% and 0.23 ˜ 0.71% at sweeping angles of samples and sweeping external field, respectively. The ratio of the change in the electric resistance which is measured by I-V curve is just about the value of domain wall MR ratio which is measured by sweeping angles and external field. In summary, we have successfully demonstrated that the domain wall motion along the direction of perimeter in a ferromagnetic ring at its onion state; and the critical field to form onion state is near 200 Oe and the lowest field which can still drag the domain wall is between 100 and 50 Oe.

  7. The Primordial Origin Model of Magnetic Fields in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro

    2010-10-01

    We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.

  8. Magnetic field synthesis for microwave magnetics

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  9. Clinical applications of magnetic rings in colorectal anastomosis.

    PubMed

    Jansen, A; Brummelkamp, W H; Davies, G A; Klopper, P J; Keeman, J N

    1981-10-01

    Based upon experiments on animals, an anastomotic apparatus, consisting of two magnetic rings of polymer bonded, rare earth cobalt magnets embedded in polyester, was developed. There are three types of polyester device with diameters of 25, 28, and 30 millimeters, respectively. The force between the magnets varied between 2.5 Newtons at 4 centimer separation and 11.8 Newtons at union. For the low colorectal anastomosis, a magnet holder, connecting rod and spherical cap were developed. The aim of the technique is a quick restoration of the underbroken submucosal intestinal cylinder by optimal circular apposition of the submucosal layer. The working mechanism is based upon progressive compression, leading to necrosis of the intermediate mucosal and submucosal layers by increasing the magnetic force while intestinal healing takes place. After seven to 12 days, the magnets cut through the disappear from the anastomotic region by intestinal peristalsis. From the initial series of 21 patients, 11 resections of the sigmoid colon and nine low anterior resections were performed. Dehiscence of the suture line was noted in two instances. One patient required reoperation. The other patient had a small area of dehiscence at the suture line after evacuation of an infected hematoma with a further uncomplicated course. One patient died on the third postoperative day of recurrent myocardial infarction. In the other 18 patients, primary intestinal healing was demonstrated roentgenologically and sigmoidoscopically. PMID:7280943

  10. Magnetic field structure evolution in rotating magnetic field plasmas

    SciTech Connect

    Petrov, Yuri; Yang Xiaokang; Huang, T.-S.

    2008-07-15

    A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.

  11. Electroplated FeNi ring cores for fluxgates with field induced radial anisotropy

    NASA Astrophysics Data System (ADS)

    Butta, M.; Ripka, P.; Janosek, M.; Pribil, M.

    2015-05-01

    Being able to control the anisotropy of a magnetic core plays an important role in the development of a fluxgate sensor. Our aim is to induce anisotropy orthogonal to the direction of excitation because it generates a stable, low-noise fluxgate, as cited in the literature. In this paper, we present an original method for electroplating a ring core for a fluxgate with built-in radial anisotropy by performing the electroplating in a radial field produced by a novel yoke. The results show that the resulting anisotropy is homogeneously radial and makes the magnetization rotate, avoiding domain wall movement for low excitation fields.

  12. PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

    SciTech Connect

    Yamamoto, Tetsuya T.; Kusano, K.

    2012-06-20

    Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

  13. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  14. MonitoRing - Magnetic induction measurement at your fingertip

    NASA Astrophysics Data System (ADS)

    Teichmann, D.; Foussier, J.; Löschcke, D.; Leonhardt, S.; Walter, M.

    2013-04-01

    The device presented in this paper is a sensor for monitoring pulse by measuring the bioimpedance of the thumb in an unobtrusive way. The sensor is based on magnetic induction measurement, a non-contact technique for measuring impedance changes of objects [1]. The sensor head of the presented system has the form of a ring and is worn on the finger. The developed technique renders the possibility of easy and unnoticed pulse recording during every day activities without the need for, e.g. electrodes, a pulse belt around the chest, or a pulse photoplethysmographic finger or ear clip.

  15. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  16. Fabrication and test of prototype ring magnets for the ALS (Advanced Light Source)

    SciTech Connect

    Tanabe, J.; Avery, R.; Caylor, R.; Green, M.I.; Hoyer, E.; Halbach, K.; Hernandez, S.; Humphries, D.; Kajiyama, Y.; Keller, R.; Low, W.; Marks, S.; Milburn, J.; Yee, D.

    1989-03-01

    Prototype Models for the Advanced Light Source (ALS) Booster Dipole, Quadrupole and Sextupole and the Storage Ring Gradient Magnet, Quadrupole and Sextupole have been constructed. The Booster Magnet Prototypes have been tested. The Storage Ring Magnets are presently undergoing tests and magnetic measurements. This paper reviews the designs and parameters for these magnets, briefly describes features of the magnet designs which respond to the special constraints imposed by the requirements for both accelerator rings, and reviews some of the results of magnet measurements for the prototype. 13 refs., 7 figs., 1 tab.

  17. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  18. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  19. Magnetic fields and scintillator performance

    SciTech Connect

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  20. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  1. Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field

    NASA Astrophysics Data System (ADS)

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2016-01-01

    We report on the nonlinear magnetization dynamics of a HoFeO3 crystal induced by a strong terahertz magnetic field resonantly enhanced with a split ring resonator and measured with magneto-optical Kerr effect microscopy. The terahertz magnetic field induces a large change (˜40%) in the spontaneous magnetization. The frequency of the antiferromagnetic resonance decreases in proportion to the square of the magnetization change. A modified Landau-Lifshitz-Gilbert equation with a phenomenological nonlinear damping term quantitatively reproduced the nonlinear dynamics.

  2. SCALING LAW FOR THE IMPACT OF MAGNET FRINGE FIELDS.

    SciTech Connect

    WEI,J.; PAPAPHILIPPOU,Y.; TALMAN,R.

    2000-06-30

    A general scaling law can be derived for the relative momentum deflection produced on a particle beam by fringe fields, to leading order. The formalism is applied to two concrete examples, for magnets having dipole and quadrupole symmetry. During recent years, the impact of magnet fringe fields is becoming increasingly important for rings of relatively small circumference but large acceptance. A few years ago, following some heuristic arguments, a scaling law was proposed [1], for the relative deflection of particles passing through a magnet fringe-field. In fact, after appropriate expansion of the magnetic fields in Cartesian coordinates, which generalizes the expansions of Steffen [2], one can show that this scaling law is true for any multipole magnet, at leading order in the transverse coefficients [3]. This paper intends to provide the scaling law to estimate the impact of fringe fields in the special cases of magnets with dipole and quadrupole symmetry.

  3. Study of in situ magnetization reversal processes for nanoscale Co rings using off-axis electron holography

    NASA Astrophysics Data System (ADS)

    Hu, H.; Wang, H.; McCartney, M. R.; Smith, David J.

    2005-03-01

    We report a study of the magnetic switching behavior of nanoscale Co rings using off-axis electron holography. Arrays of 10nm thick polycrystalline Co rings with 400nm outer diameter (OD) and different inner diameter (ID) were fabricated by electron-beam lithography. The switching behavior of the rings was studied for different OD/ID ratios, and two kinds of reversal mechanism were identified. For OD/ID of 400nm/250nm and 400nm/50nm, the reversal started from the so-called onion (bidomain) state, proceeding to a stable vortex state, and finally to the reversed onion state. For intermediate OD/ID of 400nm/150nm, the reversal was instead accomplished via rotation of head-to-head domain walls around the rings to the reversed onion state without formation of a vortex state. The OD/ID ratio of the rings thus played the most important role in determining the switching process. Irrespective of the reversal mechanism, the coercive field of the rings and the range of the field needed to reverse their magnetization, both increased as the inner ring diameter was increased (i.e., narrower ring). The significance of different contributions to the total energy in causing these differences in switching behavior is briefly discussed.

  4. Evolution of ring-field systems in microlithography

    NASA Astrophysics Data System (ADS)

    Williamson, David M.

    1998-09-01

    Offner's ring-field all-reflecting triplet was the first successful projection system used in microlithography. It evolved over several generations, increasing NA and field size, reducing the feature sizes printed from three down to one micron. Because of its relative simplicity, large field size and broad spectral bandwidth it became the dominant optical design used in microlithography until the early 1980's, when the demise of optical lithography was predicted. Rumours of the death of optics turned out to be exaggerated; what happened instead was a metamorphosis to more complex optical designs. A reduction ring-field system was developed, but the inevitable loss of concentricity led to a dramatic increase in complexity. Higher NA reduction projection optics have therefore been full-field, either all-refracting or catadioptric using a beamsplitter and a single mirror. At the present time, the terminal illness of optical lithography is once again being prognosed, but now at 0.1 micro feature sizes early in the next millenium. If optics has a future beyond that, it lies at wavelengths below the practical transmission cut-off of all refracting materials. Scanning all-reflecting ring-field systems are therefore poised for a resurgence, based on their well-established advantage of rotational symmetry and consequent small aberration variations over a small, annular field. This paper explores some such designs that potentially could take optical lithography down to the region of 0.025 micron features.

  5. Bioluminescence under static magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Ueno, S.

    1998-06-01

    In the present study, the effect of magnetic fields on the emission of light by a living system was studied. The fireflies Hotaria parvula and Luciola cruciata were used as the bioluminescence systems. The firefly light organ was fixed at the edge of an optical fiber. The emitted light was introduced into a single-channel photon-counting system using an optical fiber. We measured both the spectrum of a constant light emission and, the time course of bioluminescence pulses. Two horizontal-type superconducting magnets, which produced 8 and 14 T magnetic fields at their center, were used as the magnetic-field generators. We also carried out an in vitro study of bioluminescence. The enzymatic activity of luciferase was measured under a 14 T magnetic field. We measured emission spectra of bioluminescence over the interval 500-600 nm at 25 °C in a stable emission state. It was observed that the peak wavelength around 550 nm shifted to 560 nm under a 14 T magnetic field. However, the effects of magnetic fields were not significant. Also, we measured the time course of emissions at 550 nm in a transient emission state. The rate in the light intensity under a 14 T magnetic field increased compared to the control. There is a possibility that the change in the emission intensities under a magnetic field is related to a change in the biochemical systems of the firefly, such as the enzymatic process of luciferase and the excited singlet state with subsequent light emission.

  6. Fast and reliable kicker magnets for the SLC damping rings

    SciTech Connect

    Mattison, T.S.; Cassel, R.L.; Donaldson, A.R.; Gross, G.

    1995-06-01

    The design, construction, and operation of a kicker magnet with superior electromagnetic performance and greatly improved radiation tolerance is described. A short flux return of high mu ferrite improves the field strength and linearity with current, and novel metallic field-confining structures minimize the inductance. An 8-cell structure with capacitance integrated into each cell makes the magnet a nearly perfect transmission line. The capacitor dielectric is 1 cm thick alumina-loaded epoxy, processed to eliminate air voids, and cast in a multiple step procedure developed to circumvent epoxy shrinkage. The magnet operates with pulses of up to 40 kV and 3.2 kA at 120 Hz, with magnet transit times of less than 35 nsec and field rise and fall times of less than 60 nsec.

  7. Magnetic field structure of Mercury

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.

    2012-04-01

    Recently planet Mercury - an unexplored territory in our solar system - has been of much interest to the scientific community due to recent flybys of the spacecraft MESSENGER that discovered its intrinsic stationary and large-scale dipole like magnetic field structure with an intensity of ˜300nT confirming Mariner 10 observations. In the present study, with the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is modeled as a solution of magnetic diffusion equation. In this study, Mercury's internal structure mainly consists of a stable stratified fluid core and the convective mantle. For simplicity, magnetic diffusivity in both parts of the structure is considered to be uniform and constant with a value represented by a suitable averages. It is further assumed that vigorous convection in the mantle disposes of the electric currents leading to a very high diffusivity in that region. Thus, in order to satisfy observed atmospheric magnetic field structure, Mercury's most likely magnetic field structure consists of a solution of MHD diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. With imposition of appropriate boundary conditions at the core-mantle boundary for the first two diffusion eigen modes, in order to satisfy the observed field structure, present study puts the constraint on Mercury's core radius to be ˜2000km. From the estimated magnetic diffusivity and the core radius, it is also possible to estimate the two diffusion eigen modes with their diffusion time scales of ˜8.6 and 3.7 billion years respectively suggesting that the planet inherits its present-day magnetic field structure from the solar Nebula. It is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during

  8. Magnetic Field Generation in Stars

    NASA Astrophysics Data System (ADS)

    Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

    2015-10-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.

  9. A RING OF POLARIZED LIGHT: EVIDENCE FOR TWISTED CORONAL MAGNETISM IN CAVITIES

    SciTech Connect

    Dove, J. B.; Gibson, S. E.; Rachmeler, L. A.; Tomczyk, S.; Judge, P.

    2011-04-10

    Coronal prominence cavities may be manifestations of twisted or sheared magnetic fields capable of storing the energy required to drive solar eruptions. The Coronal Multi-Channel Polarimeter (CoMP), recently installed at Mauna Loa Solar Observatory, can measure polarimetric signatures of current-carrying magnetohydrodynamic (MHD) systems. For the first time, this instrument offers the capability of daily full-Sun observations of the forbidden lines of Fe XIII with high enough spatial resolution and throughput to measure polarimetric signatures of current-carrying MHD systems. By forward-calculating CoMP observables from analytic MHD models of spheromak-type magnetic flux ropes, we show that a predicted observable for such flux ropes oriented along the line of sight is a bright ring of linear polarization surrounding a region where the linear polarization strength is relatively depleted. We present CoMP observations of a coronal cavity possessing such a polarization ring.

  10. Magnetic confinement in a ring-cusp ion thruster discharge plasma

    SciTech Connect

    Sengupta, Anita

    2009-05-01

    An experimental investigation, in conjunction with a volume averaged analytical model, has been developed to improve the confinement and production of the discharge plasma for plasma thrusters and ion sources. The research conducted explores the discharge performance of a ring-cusp ion source based on the magnetic field configuration, geometry, and power level. Analytical formulations for electron and ion confinement are developed to predict the ionization efficiency for a given discharge chamber design. Explicit determination of discharge loss and volume averaged plasma parameters are obtained via a series of experimental measurements on a ring-cusp NASA Solar Technology Application Readiness (NSTAR) ion thruster to assess the validity of the analytical model. Measurements of the discharge loss with multiple magnetic field configurations compare well with plasma parameter predictions for propellant utilizations between 80% and 95%. The results indicate that increasing the magnetic strength of the first closed magnetic contour line reduces Maxwellian electron diffusion and electrostatically confines the ion population and subsequent loss to the anode wall. The results also indicate that increasing the strength and minimizing the area of the magnetic cusps improves primary electron confinement, increasing the probability of an ionization collision prior to loss at the cusp.

  11. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  12. Effects of Magnetic Fields on Bar Substructures in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae

    2015-03-01

    To study the effects of magnetic fields on the properties of bar substructures, we run two-dimensional, ideal MHD simulations of barred galaxies under the influence of a non-axisymmetric bar potential. In the bar regions, magnetic fields reduce density compression in the dust-lane shocks, while removing angular momentum further from the gas at the shocks. This evidently results in a smaller and more distributed ring, and a larger mass inflows rate to the galaxy center in models with stronger magnetic fields. In the outer regions, an MHD dynamo due to the combined action of the bar potential and background shear operates, amplifying magnetic fields near the corotation resonance. In the absence of spiral arms, the amplified fields naturally shape into trailing magnetic arms with strong fields and low density. The reader is refereed to Kim & Stone (2012) for a detailed presentation of the simulation outcomes.

  13. The magnetic field of Mercury

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1977-01-01

    The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.

  14. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  15. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

    SciTech Connect

    Casadei, Cecilia

    2011-01-01

    The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr8 antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr3+ ion with diamagnetic Cd2+ (Cr7Cd) and with Ni2+ (Cr7Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both 53Cr-NMR and 19F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant 19F - M+ where M+ = Cr3+, Ni2+ in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.

  16. Magnetic field induced dynamical chaos

    SciTech Connect

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-15

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  17. Passive temperature compensation in hybrid magnets with application to the Fermilab stacker and recycler ring dipole design

    SciTech Connect

    Schlueter, R.D.; Marks, S.; Loper, C.; Halbach, K.

    1995-06-01

    Design theory of hybrid (permanent magnet plus iron) accelerator magnets with application to the proposed permanent magnet recycler and stacker rings at the Fermi National Laboratory is presented. Field stability in such devices requires that changes in the strength of the permanent magnet material with temperature be compensated. Field tuning techniques, including those employing variable capacitance between energized pole and magnet yoke and those employing variable energization of magnet pole pieces, are described. Mechanical configurations capable of achieving temperature compensation passively, including use of expanding liquids/gases and bimetallic springs are outlined. Active configurations, relying on a actuator, in addition to temperature compensation, have the additional benefit of enabling magnet tuning about a nominal operating field level.

  18. Numerical analyses of trapped field magnet and stable levitation region of HTSC

    SciTech Connect

    Tsuchimoto, M.; Kojima, T.; Waki, H.; Honma, T.

    1995-05-01

    Stable levitation with a permanent magnet and a bulk high {Tc} superconductor (HTSC) is examined numerically by using the critical state model and the frozen field model. Differences between a permanent magnet and a trapped field magnet are first discussed from property of levitation force. Stable levitation region of the HTSC on a ring magnet and on a solenoid coil are calculated with the numerical methods. Obtained results are discussed from difference of the magnetic field configuration.

  19. RANDOM AND SYSTEMATIC FIELD ERRORS IN THE SNS RING: A STUDY OF THEIR EFFECTS AND COMPENSATION

    SciTech Connect

    GARDNER,C.J.; LEE,Y.Y.; WENG,W.T.

    1998-06-22

    The Accumulator Ring for the proposed Spallation Neutron Source (SNS) [l] is to accept a 1 ms beam pulse from a 1 GeV Proton Linac at a repetition rate of 60 Hz. For each beam pulse, 10{sup 14} protons (some 1,000 turns) are to be accumulated via charge-exchange injection and then promptly extracted to an external target for the production of neutrons by spallation. At this very high intensity, stringent limits (less than two parts in 10,000 per pulse) on beam loss during accumulation must be imposed in order to keep activation of ring components at an acceptable level. To stay within the desired limit, the effects of random and systematic field errors in the ring require careful attention. This paper describes the authors studies of these effects and the magnetic corrector schemes for their compensation.

  20. Magnetic fields in quiescent prominences

    NASA Technical Reports Server (NTRS)

    Van Ballegooijen, A. A.; Martens, P. C. H.

    1990-01-01

    The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.

  1. Comparisons of Simulated and Observed Stormtime Magnetic Intensities and Ion Plasma Parameters in the Ring Current

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Guild, T. B.; Lemon, C.; Roeder, J. L.; Le, G.; Schulz, M.

    2009-12-01

    Recent progress in ring current and plasma sheet modeling has shown the importance of a self-consistent treatment of particle transport and magnetic and electric fields in the inner magnetosphere. Models with and without self-consistency can lead to significantly different magnitudes and spatial distributions of plasma pressure and magnetic intensity during disturbed times. In this study we compare simulated and observed stormtime magnetic intensities (GOES and Polar/MFE) and ion densities (LANL/MPA and Polar/CAMMICE) to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet for conditions corresponding to the 11 August 2000 storm using the self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a constant magnetopause location. Using the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 RE as the plasma boundary location in the RCM-E. The simulated ion densities at different magnetic local times agree fairly well with those from the re-analysis model of LANL/MPA densities of O’Brien and Lemon [Space Weather, 2007]. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous altitude (6.6 RE) and on the Polar satellite. Agreement between the simulated and observed magnetic intensities tends to agree better on the nightside than on the dayside in the inner magnetosphere. In particular, the model cannot account for observed drops in the dayside magnetic intensity during decreases in the solar wind pressure. We will modify the RCM-E to include a time-varying magnetopause location to simulate compressions and expansions associated with variations in the solar wind pressure. We investigate whether this will lead to improved agreement between the simulated and model magnetic intensities.

  2. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  3. Magnetic Fields in Stellar Jets

    NASA Astrophysics Data System (ADS)

    Hartigan, Patrick; Frank, Adam; Varniére, Peggy; Blackman, Eric G.

    2007-06-01

    Although several lines of evidence suggest that jets from young stars are driven magnetically from accretion disks, existing observations of field strengths in the bow shocks of these flows imply that magnetic fields play only a minor role in the dynamics at these locations. To investigate this apparent discrepancy we performed numerical simulations of expanding magnetized jets with stochastically variable input velocities with the AstroBEAR MHD code. Because the magnetic field B is proportional to the density n within compression and rarefaction regions, the magnetic signal speed drops in rarefactions and increases in the compressed areas of velocity-variable flows. In contrast, B~n0.5 for a steady state conical flow with a toroidal field, so the Alfvén speed in that case is constant along the entire jet. The simulations show that the combined effects of shocks, rarefactions, and divergent flow cause magnetic fields to scale with density as an intermediate power 1>p>0.5. Because p>0.5, the Alfvén speed in rarefactions decreases on average as the jet propagates away from the star. Hence, a typical Alfvén velocity in the jet close to the star is significantly larger than it is in the rarefactions ahead of bow shocks at larger distances. We find that the observed values of weak fields at large distances are consistent with strong fields required to drive the observed mass loss close to the star. Typical velocity perturbations, which form shocks at large distances, will produce only magnetic waves close to the star. For a typical stellar jet the crossover point inside which velocity perturbations of 30-40 km s-1 no longer produce shocks is ~300 AU from the source.

  4. Hysteresis in rotation magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanyi, Amalia

    2000-01-01

    The different properties of the vector Jiles-Atherton hysteresis operator is proved under forced H- and B-field supply. Feeding the magnetic material with alternating and circular polarised rotational excitation, the different properties of the model under the input field intensity and the flux density are investigated and the results are proved in figures.

  5. Fast Magnetic Domain-Wall Motion in a Ring-Shaped Nanowire Driven by a Voltage.

    PubMed

    Hu, Jia-Mian; Yang, Tiannan; Momeni, Kasra; Cheng, Xiaoxing; Chen, Lei; Lei, Shiming; Zhang, Shujun; Trolier-McKinstry, Susan; Gopalan, Venkatraman; Carman, Gregory P; Nan, Ce-Wen; Chen, Long-Qing

    2016-04-13

    Magnetic domain-wall motion driven by a voltage dissipates much less heat than by a current, but none of the existing reports have achieved speeds exceeding 100 m/s. Here phase-field and finite-element simulations were combined to study the dynamics of strain-mediated voltage-driven magnetic domain-wall motion in curved nanowires. Using a ring-shaped, rough-edged magnetic nanowire on top of a piezoelectric disk, we demonstrate a fast voltage-driven magnetic domain-wall motion with average velocity up to 550 m/s, which is comparable to current-driven wall velocity. An analytical theory is derived to describe the strain dependence of average magnetic domain-wall velocity. Moreover, one 180° domain-wall cycle around the ring dissipates an ultrasmall amount of heat, as small as 0.2 fJ, approximately 3 orders of magnitude smaller than those in current-driven cases. These findings suggest a new route toward developing high-speed, low-power-dissipation domain-wall spintronics. PMID:27002341

  6. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

    2004-10-03

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

  7. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  8. Exact transfer functions for the PEP storage ring magnets and some general characteristics and techniques

    SciTech Connect

    Spencer, J.E.

    1982-05-01

    The exact, ion-optical transfer functions for the dipoles, quadrupoles and sextupoles of the PEP standard PODC cell are calculated for any single particle with initial coordinates (r, p, s). Modifications resulting from radiative energy loss are also calculated and discussed. These functions allow one to characterize individual magnets or classes of magnets by their aberrations and thereby simplify their study and correction. In contrast to high-energy spectrometers where aberrations are often analyzed away, those in storage rings drive series of high order resonances, even for perfect magnets (2), that can produce stop bands and other effects which can seriously limit performance. Thus, one would like to eliminate them altogether or failing this to develop local and global correction schemes. Even then, one should expect higher order effects to influence injection, extraction or single-pass systems either because of orbit distortions or overly large phase spece distortions such as may occur in low-beta insertions or any final-focus optics. The term exact means that the results here are based on solving the relativistic Lorentz force equation with accurate representations of measured magnetostatic fields. Such fields satisfy Maxwell's equations and are the actual fields seen by a particle as it propagates around a real storage ring. This is discussed in detail and illustrated with examples that show that this is possible, practical and may even be useful.

  9. Intermolecular shielding from molecular magnetic susceptibility. A new view of intermolecular ring current effects.

    PubMed

    Facelli, Julio C

    2006-03-01

    This paper presents calculations of the NICS (nuclear independent chemical shieldings) in a rectangular grid surrounding the molecules of benzene, naphthalene and coronene. Using the relationship between calculated NICS and the induced magnetic field, the calculated NICS are used to predict intermolecular effects due to molecular magnetic susceptibility or ring current effects. As expected from approximate ring current models, these intermolecular shielding effects are concentrated along the direction perpendicular to the molecular plane and they approach asymptotically to a dipolar functional dependence, i.e. (1-3 cos(2)theta)/r(3)). The deviations from the dipolar functional form require that the calculations of these intermolecular effects be done using a suitable interpolation scheme of the NICS calculated on the grid. The analysis of the NICS tensor components shows that these intermolecular shielding effects should be primarily expected on shielding components of the neighboring molecules nuclei, which are perpendicular to the molecular plane of the aromatic compound generating the induced field. The analysis of the calculated NICS along the series benzene, naphthalene and coronene shows that these intermolecular effects increase monotonically with the number of aromatic rings. PMID:16477673

  10. Magnetic field fluctuations during substorms

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1971-01-01

    Before a magnetospheric substorm and during its early phases the magnetic field magnitude in the geomagnetic tail increases and field lines in the nighttime hemisphere assume a more tail-like configuration. Before the substorm onset a minimum amount of magnetic flux is observed to cross the neutral sheet which means that the neutral sheet currents attain their most earthward locations and their greatest current densities. This configuration apparently results from an increased transport of magnetic flux to the tail caused by a southward interplanetary magnetic field. The field begins relaxing toward a more dipolar configuration at the time of a substorm onset with the recovery probably occurring first between 6 and 10 R sub E. This recovery must be associated with magnetospheric convection which restores magnetic flux to the dayside hemisphere. Field aligned currents appear to be required to connect magnetospheric currents to the auroral electrojets, implying that a net current flows in a limited range of longitudes. Space measurements supporting current systems are limited. More evidence exists for the occurrence of double current sheets which do not involve net current at a given longitude.

  11. Variable-field permanent magnet quadrupole for the SSC

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-10-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90{degrees} rotation of the outer ring of iron and magnet material.

  12. Optimization of the permanent magnet optical klystron for the SUPER-ACO storage ring free electron laser

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Bazin, C.; Billardon, M.

    1989-06-01

    A permanent magnet optical klystron has been optimized for free electron laser experiments and optical harmonic generation on the new storage ring SUPER-ACO at Orsay. The conditions of the optimization and the different steps of the field characterization measurements of this insertion device are discussed. Its effects on the stored beam and the undulator radiation measurements are described.

  13. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  14. FAST TRACK COMMUNICATION: Electrical observation of asymmetric magnetization configurations in the vortex state of NiFe and Co rings

    NASA Astrophysics Data System (ADS)

    Nam, Chunghee; Mascaro, M. D.; Ng, B. G.; Ross, C. A.

    2009-11-01

    Anisotropic magnetoresistance (AMR) measurements have been used to probe the detailed reversal mechanism of 3 µm diameter, 15 nm thick NiFe and Co rings. In the vortex state, small changes in the resistance are associated with distortion or buckling in the section of the ring magnetized antiparallel to the applied field, and the resistance changes can be similar in magnitude to the domain-wall resistance. Micromagnetic simulations showed that a distorted-vortex state forms just before the vortex-onion transition, and a reversible change between the distorted-vortex state and a fully symmetric vortex state is expected during minor loop magnetic cycling. The distorted-vortex state enables the vortex chirality in a single magnetic ring to be detected using AMR measurements.

  15. Observations of Mercury's magnetic field

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  16. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  17. Mars Crustal Magnetic Field Remnants

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.

    This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.

    The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.

    These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.

  18. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  19. The magnetic field of the Milky Way

    NASA Astrophysics Data System (ADS)

    Reid, Mark J.

    Models of the magnetic field configuration of the Milky Way are reviewed. Current analyses of rotation measure data suggest that the Milky Way possesses a bisymmetric-like spiral magnetic field, that field reversals among spiral arms exist, and that the magnetic spiral may not closely match the mass spiral structure. Zeeman measurements of OH masers may provide alternative magnetic field information.

  20. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  1. The Giotto magnetic-field investigation

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Acuna, M. H.; Burlaga, L. F.; Franke, B.; Gramkow, B.; Mariani, F.; Musmann, G.; Ness, N. F.; Schmidt, H. U.; Terenzi, T.

    1986-01-01

    The objectives of the Giotto magnetometer experiment are the investigation of the interaction between Comet Halley and the solar wind 0.9 AU from the Sun, to within 500 km of the cometary nucleus, and the study of the interplanetary magnetic field. The instrumentation consists of a triaxial and a separate biaxial system of fluxgate sensors of the ring-core type, the associated analog electronics and a digital processor. The measuring ranges of + or 1 16 up to + or - 65536 nT are digitized by a 12-bit analog-to-digital converter. Memory modes allow the bridging of gaps in telemetry coverage of up to 10 days. Because of the dust hazard near closest approach, a magnetometer boom could not be included in the spacecraft design. The magnetic contamination problem was attacked by the use of two magnetometers and by a magnetic-cleanliness program. In-flight results show that the instrument is working flawlessly, though magnetic-contamination problems remain.

  2. Cosmological magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Motta, Leonardo

    In this thesis we review the methods for computation of cosmological correlations in the early universe known as the in-in formalism which are then applied to the problem of magnetogenesis from inflation. For this computation, a power-law single field slow- roll inflation is assumed together with a coupling of the form eφ/nuF μnuFμnu between the inflaton φ and the electrodynamical field strength Fμnu. For certain choice of parameters, the model produces a scale-invariant power spectrum that can be as high as 10-12 G at cosmological scales at present time. Finally, we compute the correlation between the magnetic field energy density and scalar metric fluctuations at tree-level from which the shape of the resulting non-gaussianity is analyzed.We show that the corresponding bispectrum is of order 10-5 times the power spectrum of magnetic fields.

  3. Pioneer 10 and 11 (Jupiter and Saturn) magnetic field experiments

    NASA Technical Reports Server (NTRS)

    Jones, D. E.

    1986-01-01

    Magnet field data obtained by the vector helium magnetometer (VHM) during the encounters of Jupiter (Pioneer 10 and 11) and Saturn (Pioneer 11) was analyzed and interpreted. The puzzling characteristics of the Jovian and Saturnian magnetospheric magnetic fields were studied. An apparent substorm (including thinning of the dayside tail current sheet) was observed at Jupiter, as well as evidence suggesting that at the magnetopause the cusp is at an abnormally low latitude. The characteristics of Saturn's ring current as observed by Pioneer 11 were dramatically different from those suggested by the Voyager observations. Most importantly, very strong perturbations in the azimuthal ring current magnetic field suggest that the plane of the ring was not in the dipole equatorial plane, being tilted 5 to 10 deg. relative to the dipole and undergoing significant changes during the encounter. When these changing currents were corrected for, an improved planetary field determination was obtained. In addition, the ring and azimuthal currents at Saturn displayed significantly different time dependences.

  4. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  5. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  6. Simulations of Stormtime Ion Ring Current Formation with AMIE Electric Field

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Schulz, M.; Lu, G.; Lyons, L. R.

    2002-12-01

    In the past we have traced the bounce-averaged drift motions of particles conserving their first two adiabatic invariants (μ and J) in simplified models of the magnetospheric convection electric field, so as to explain their inward transport to form the ring current. Recently we have begun to trace such guiding-center motions in the more realistic AMIE electric field. The magnetic field model we use for these studies is the Dungey model, which consists of a dipole field plus a uniform southward ``tail'' field (which some interpret as the IMF). Here we map an analytical expansion of the AMIE ionospheric electric potential, expressed as a function of magnetic latitude and magnetic local time, along magnetic field lines (at least for L >= 2) throughout this model magnetosphere and thereby trace the guiding-center drifts of representative singly charged ions for μ values of 1-30 MeV/G (corresponding for J = 0 to energies of 11-330 keV at L = 3). Using these simulation results, we map proton phase space densities according to Liouville's theorem but taking into account losses due to charge exchange. For the purpose of phase space mapping we specify an ``initial" proton ring current distribution by solving the steady-state transport equation that balances quiescent radial diffusion against charge exchange. We use MLT-binned quiet time LANL ion data of Korth et al. [JGR, 104, 25,047-25,061, 1999] as the reference phase space density at geosynchronous altitude. For our stormtime boundary conditions we make use of the Kp-dependent LANL ion data but map them adiabatically (conserving μ while maintaining J = 0) to the boundary of our model magnetosphere. For this study we have performed simulations of the large 19 October 1998 storm and of the extremely large 15 July 2000 ``Bastille Day'' storm. During the 19 October 1998 storm the large AMIE electric field in the evening sector would have led to much faster (access time ~ 20 minutes) inward transport from the plasma sheet

  7. The effects of magnetic field in plume region on the performance of multi-cusped field thruster

    SciTech Connect

    Hu, Peng Liu, Hui Yu, Daren; Gao, Yuanyuan; Mao, Wei

    2015-10-15

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field in the plume region were investigated. Five magnetic field shielding rings were separately mounted near the exit of discharge channel to decrease the strength of magnetic field in the plume region in different levels, while the magnetic field in the upstream was well maintained. The test results show that the electron current increases with the decrease of magnetic field strength in the plume region, which gives rise to higher propellant utilization and lower current utilization. On the other hand, the stronger magnetic field in the plume region improves the performance at low voltages (high current mode) while lower magnetic field improves the performance at high voltages (low current mode). This work can provide some optimal design ideas of the magnetic strength in the plume region to improve the performance of thruster.

  8. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  9. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  10. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.