Science.gov

Sample records for magnetic flux noise

  1. Magnetic flux noise in copper oxide superconductors

    SciTech Connect

    Ferrari, M.J.

    1991-11-01

    Magnetic flux noise and flux creep in thin films and single crystals of YBa{sub 2}Cu{sub 3}O{sub 7-x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}, Tl{sub 2}Ca{sub 2}Ba{sub 2}Cu{sub 3}O{sub x}, and TlCa{sub 2}Ba{sub 2}Cu{sub 3}O{sub x} are measured with a superconducting quantum interference device (SQUID). The noise power spectrum generally scales as 1/f (f is frequency) from 1 Hz to 1 kHz, increases with temperature, and decreases in higher-quality films. It is proportional to the magnetic field B in which the sample is cooled, at least in the range 0.1 mT < B < 3 mT. A model of thermally activated vortex motion is developed which explains the dependence of the noise on frequency, temperature, current, and applied magnetic field. The pinning potential is idealized as an ensemble of double wells, each with a different activation energy separating the two states. From the noise measurements, this model yields the distribution of pinning energies in the samples, the vortex hopping distance, the number density of mobile vortices, and the restoring force on a vortex at a typical pinning site. The distribution of pinning energies in YBa{sub 2}Cu{sub 3}O{sub 7-x} shows a broad peak below 0.1 eV. The small ambient magnetic field, and the detection of noise even in the absence of a driving force, insure that the measured pinning energies are characteristic of isolated vortices near thermal equilibrium. The observed vortex density in fields much less than 0.1 mT is too large to be explained by the ambient field, suggesting a mechanism intrinsic to the sample which produces trapped vortices.

  2. Magnetic flux noise in dc SQUIDs: temperature and geometry dependence.

    PubMed

    Anton, S M; Birenbaum, J S; O'Kelley, S R; Bolkhovsky, V; Braje, D A; Fitch, G; Neeley, M; Hilton, G C; Cho, H-M; Irwin, K D; Wellstood, F C; Oliver, W D; Shnirman, A; Clarke, John

    2013-04-01

    The spectral density S(?)(f) = A(2)/(f/1 Hz)(?) of magnetic flux noise in ten dc superconducting quantum interference devices (SQUIDs) with systematically varied geometries shows that ? increases as the temperature is lowered; in so doing, each spectrum pivots about a nearly constant frequency. The mean-square flux noise, inferred by integrating the power spectra, grows rapidly with temperature and at a given temperature is approximately independent of the outer dimension of a given SQUID. These results are incompatible with a model based on the random reversal of independent, surface spins. PMID:25167026

  3. Candidate Source of Flux Noise in SQUIDs: Adsorbed Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Shi, Chuntai; Hu, Jun; Han, Sungho; Yu, Clare C.; Wu, R. Q.

    2015-08-01

    A major obstacle to using superconducting quantum interference devices (SQUIDs) as qubits is flux noise. We propose that the heretofore mysterious spins producing flux noise could be O2 molecules adsorbed on the surface. Using density functional theory calculations, we find that an O2 molecule adsorbed on an ?-alumina surface has a magnetic moment of ˜1.8 ?B . The spin is oriented perpendicular to the axis of the O-O bond, the barrier to spin rotations is about 10 mK. Monte Carlo simulations of ferromagnetically coupled, anisotropic X Y spins on a square lattice find 1 /f magnetization noise, consistent with flux noise in Al SQUIDs.

  4. Solar Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Filippov, Boris; Martsenyuk, Olesya; Srivastava, Abhishek K.; Uddin, Wahab

    2015-03-01

    In the early 1990s, it was found that the strongest disturbances of the space-weather were associated with huge ejections of plasma from the solar corona, which took the form of magnetic clouds when moved from the Sun. It is the collisions of the magnetic clouds with the Earth's magnetosphere that lead to strong, sometimes catastrophic changes in space-weather. The onset of a coronal mass ejection (CME) is sudden and no reliable forerunners of CMEs have been found till date. The CME prediction methodologies are less developed compared to the methods developed for the prediction of solar flares. The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they lose their stability and erupt with high speed. Their transition to the unstable phase depends on the parameters of the flux rope (i.e., total electric current, twist, mass loading, etc.), as well as on the properties of the ambient coronal magnetic field. One of the major governing factors is the vertical gradient of the coronal magnetic field, which is estimated as decay index ( n). Cold dense prominence material can be collected in the lower parts of the helical flux tubes. Filaments are, therefore, good tracers of the flux ropes in the corona, which become visible long before the beginning of the eruption. The perspectives of the filament eruptions and following CMEs can be estimated by a comparison of observed filament heights with calculated decay index distributions. The present paper reviews the formation of magnetic flux ropes, their stable and unstable phases, eruption conditions, and also discusses their physical implications in the solar corona.

  5. Flux Compression Magnetic Nozzle

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    In pulsed fusion propulsion schemes in which the fusion energy creates a radially expanding plasma, a magnetic nozzle is required to redirect the radially diverging flow of the expanding fusion plasma into a rearward axial flow, thereby producing a forward axial impulse to the vehicle. In a highly electrically conducting plasma, the presence of a magnetic field B in the plasma creates a pressure B(exp 2)/2(mu) in the plasma, the magnetic pressure. A gradient in the magnetic pressure can be used to decelerate the plasma traveling in the direction of increasing magnetic field, or to accelerate a plasma from rest in the direction of decreasing magnetic pressure. In principle, ignoring dissipative processes, it is possible to design magnetic configurations to produce an 'elastic' deflection of a plasma beam. In particular, it is conceivable that, by an appropriate arrangement of a set of coils, a good approximation to a parabolic 'magnetic mirror' may be formed, such that a beam of charged particles emanating from the focal point of the parabolic mirror would be reflected by the mirror to travel axially away from the mirror. The degree to which this may be accomplished depends on the degree of control one has over the flux surface of the magnetic field, which changes as a result of its interaction with a moving plasma.

  6. Noise correlations in a flux qubit with tunable tunnel coupling

    E-print Network

    Yoshihara, Fumiki

    We have measured flux-noise correlations in a tunable superconducting flux qubit. The device consists of two loops that independently control the qubit’s energy splitting and tunnel coupling. Low-frequency flux noise in ...

  7. Magnetic noise from Kondo charge traps (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Dias da Silva, Luis G.; de Sousa, Rogério

    2015-09-01

    Magnetic noise impacts a wide variety of solid-state devices, from quantum bits in superconductor and semiconductor-based quantum computer architectures to spintronic devices made of metals and semiconductors. Developing a theory of magnetic noise will have great impact in minimizing fluctuations in these devices. Magnetic noise is commonly detected as flux noise in superconducting quantum interference devices (SQUIDs). At low frequencies, SQUID flux noise spectral density decreases with frequency as 1/f^{?} with ?=0.5-0.8 in a wide variety of devices. However, at higher frequencies (above 1 GHZ) flux noise was found to be Ohmic, i.e. increasing linearly with frequency. This puzzling behavior is not explained by any model of magnetic fluctuations. Here we present a theory for the magnetic noise produced by local charge traps, elucidating the kind of noise that the majority of defects produce in a typical solid-state device. Our numerical renormalization group calculations reveal a deviation from 1/f behavior in the magnetic noise of charge traps in the Kondo regime over a wide range of frequencies. Remarkably, such behavior is not present in the charge noise, which is dominated by single-particle processes, consistent with a mean-field picture. The results show that, when Kondo correlations are present, magnetic noise originating from charge traps has a many-particle character, while charge noise does not. Since Kondo temperatures can be relatively high in charge traps, these findings indicate that electron-electron interactions can lead to a strong contribution to the magnetic noise that has not been captured by current models.

  8. Remedying magnetic hysteresis and 1/f noise for magnetoresistive sensors

    NASA Astrophysics Data System (ADS)

    Hu, Jiafei; Tian, Wugang; Zhao, Jianqiang; Pan, Mengchun; Chen, Dixiang; Tian, Guiyun

    2013-02-01

    Thermal domain hoppings cause magnetic hysteresis and 1/f resistance noise in magnetoresistive sensors, which largely degrades their response linearity and low-frequency detection ability. In this Letter, the method of constant magnetic excitation integrated with vertical motion flux modulation was proposed to remedy magnetic hysteresis and 1/f resistance noise together. As demonstrated in experiments, the response linearity of the prototype sensor is promoted by about 10 times. Its noise level is reduced to near Johnson-Nyquist noise level, and, therefore, the low-frequency detection ability is approximately enhanced with a factor of 100.

  9. Model for l/f Flux Noise in SQUIDs and Qubits

    SciTech Connect

    Koch, Roger H.; DiVincenzo, David P.; Clarke, John

    2007-01-19

    We propose a model for 1/f flux noise in superconducting devices (f is frequency). The noise is generated by the magnetic moments of electrons in defect states which they occupy for a wide distribution of times before escaping. A trapped electron occupies one of the two Kramers-degenerate ground states, between which the transition rate is negligible at low temperature. As a result, the magnetic moment orientation is locked. Simulations of the noise produced by a plausible density of randomly oriented defects yield 1/f noise magnitudes in good agreement with experiments.

  10. MAGNETIC FLUX BALANCE IN THE HELIOSPHERE

    SciTech Connect

    Schwadron, N. A.; Connick, D. E.; Smith, C.

    2010-10-20

    Understanding the evolution of magnetic flux in the heliosphere remains an unresolved issue. The current solar minimum between cycles 23 and 24 is anomalously long, which gives rare insight into the long-term evolution of heliospheric magnetic flux when the coronal mass ejection (CME) rate and the flux emergence rate from CMEs were very low. The precipitous drop of heliospheric magnetic flux to levels lower than have ever been observed directly shows that there may be a persistent loss of open magnetic flux through disconnection, the reconnection between opposite polarity heliospheric magnetic field lines relatively near the Sun (beneath the Alfven point). Here, we develop a model for the levels of magnetic flux in the inner heliosphere balancing new flux injected by CMEs, flux lost through disconnection, and closed flux lost through interchange reconnection near the Sun. This magnetic flux balance is a fundamental property that regulates the plasma and radiation environment of our solar system.

  11. DISCONNECTING OPEN SOLAR MAGNETIC FLUX

    SciTech Connect

    DeForest, C. E.; Howard, T. A.; McComas, D. J.

    2012-01-20

    Disconnection of open magnetic flux by reconnection is required to balance the injection of open flux by coronal mass ejections and other eruptive events. Making use of recent advances in heliospheric background subtraction, we have imaged many abrupt disconnection events. These events produce dense plasma clouds whose distinctive shape can now be traced from the corona across the inner solar system via heliospheric imaging. The morphology of each initial event is characteristic of magnetic reconnection across a current sheet, and the newly disconnected flux takes the form of a 'U-'shaped loop that moves outward, accreting coronal and solar wind material. We analyzed one such event on 2008 December 18 as it formed and accelerated at 20 m s{sup -2} to 320 km s{sup -1}, thereafter expanding self-similarly until it exited our field of view 1.2 AU from the Sun. From acceleration and photometric mass estimates we derive the coronal magnetic field strength to be 8 {mu}T, 6 R{sub Sun} above the photosphere, and the entrained flux to be 1.6 Multiplication-Sign 10{sup 11} Wb (1.6 Multiplication-Sign 10{sup 19} Mx). We model the feature's propagation by balancing inferred magnetic tension force against accretion drag. This model is consistent with the feature's behavior and accepted solar wind parameters. By counting events over a 36 day window, we estimate a global event rate of 1 day{sup -1} and a global solar minimum unsigned flux disconnection rate of 6 Multiplication-Sign 10{sup 13} Wb yr{sup -1} (6 Multiplication-Sign 10{sup 21} Mx yr{sup -1}) by this mechanism. That rate corresponds to {approx} - 0.2 nT yr{sup -1} change in the radial heliospheric field at 1 AU, indicating that the mechanism is important to the heliospheric flux balance.

  12. Force sensor using changes in magnetic flux

    NASA Technical Reports Server (NTRS)

    Pickens, Herman L. (Inventor); Richard, James A. (Inventor)

    2012-01-01

    A force sensor includes a magnetostrictive material and a magnetic field generator positioned in proximity thereto. A magnetic field is induced in and surrounding the magnetostrictive material such that lines of magnetic flux pass through the magnetostrictive material. A sensor positioned in the vicinity of the magnetostrictive material measures changes in one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux.

  13. Measurement of Integrated Low Frequency Flux Noise in Superconducting Flux/Phase Qubits

    SciTech Connect

    Mao Bo; Qiu Wei; Han Siyuan

    2008-11-07

    We measured the integrated low frequency flux noise ({approx}1 m{phi}{sub 0}) of an rf SQUID as a flux qubit by fitting the resonant peaks from photon assistant tunneling (PAT). The energy relaxation time Tl between the ground and first excited states in the same potential well, measured directly in time domain, is 3 ns. From these results we identified low frequency flux noise as the dominant source of decoherence. In addition, we found that the measured values of integrated flux noise in three qubits of various sizes differ more than an order of magnitude.

  14. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 ?Pa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  15. Self-organization in magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Lukin, Vyacheslav S.

    2014-06-01

    This cross-disciplinary special issue on 'Self-organization in magnetic flux ropes' follows in the footsteps of another collection of manuscripts dedicated to the subject of magnetic flux ropes, a volume on 'Physics of magnetic flux ropes' published in the American Geophysical Union's Geophysical Monograph Series in 1990 [1]. Twenty-four years later, this special issue, composed of invited original contributions highlighting ongoing research on the physics of magnetic flux ropes in astrophysical, space and laboratory plasmas, can be considered an update on our state of understanding of this fundamental constituent of any magnetized plasma. Furthermore, by inviting contributions from research groups focused on the study of the origins and properties of magnetic flux ropes in a variety of different environments, we have attempted to underline both the diversity of and the commonalities among magnetic flux ropes throughout the solar system and, indeed, the universe. So, what is a magnetic flux rope? The answer will undoubtedly depend on whom you ask. A flux rope can be as narrow as a few Larmor radii and as wide as the Sun (see, e.g., the contributions by Heli Hietala et al and by Angelous Vourlidas). As described below by Ward Manchester IV et al , they can stretch from the Sun to the Earth in the form of interplanetary coronal mass ejections. Or, as in the Swarthmore Spheromak Experiment described by David Schaffner et al , they can fit into a meter-long laboratory device tended by college students. They can be helical and line-tied (see, e.g., Walter Gekelman et al or J Sears et al ), or toroidal and periodic (see, e.g., John O'Bryan et al or Philippa Browning et al ). They can form in the low plasma beta environment of the solar corona (Tibor Török et al ), the order unity beta plasmas of the solar wind (Stefan Eriksson et al ) and the plasma pressure dominated stellar convection zones (Nicholas Nelson and Mark Miesch). In this special issue, Setthivoine You describes how canonical helicity can determine the result of reconnection and merging of multiple magnetic flux ropes, John Finn et al focus on diagnosing flux rope reconnection using quasi-separatrix layers, and Stefano Markidis et al investigate how a single flux rope can become unstable and begin to fall apart. With these many examples of different magnetized plasma structures, which can all be called magnetic flux ropes, the question still stands: just what is it that makes a volume of magnetized plasma a magnetic flux rope? There may not be a strict definition of a magnetic flux rope that everyone can agree on. Nonetheless, the ingredient common to all magnetic flux ropes is that the magnetic field lines that thread nearby plasma elements at one location along the flux rope must wind around and not diverge away from each other over a sufficiently long distance to look like a piece of an ordinary rope. In a way, it is similar to turbulence—you know it when you see it. The figures and illustrations included in this special issue provide plenty of examples of observed, measured, modeled and imagined magnetic flux ropes for you, the reader, to develop an appreciation of what different members of our research community mean by a magnetic flux rope. If you have never studied magnetic flux ropes, we hope that this special issue inspires you to look into their many mysteries. If magnetic flux ropes are already an integral part of your research, we hope the diversity of perspectives presented herein refresh your interest in the underlying plasma physics of whichever kind of magnetic flux rope you happen to be working with. References [1] Russell C T, Priest E R and Lee L-C 1990 Physics of Magnetic Flux Ropes AGU Geophysical Monograph Series vol 58 (Washington, DC: American Geophysical Union)

  16. Flux emergence in a magnetized convection zone

    NASA Astrophysics Data System (ADS)

    Pinto, Rui; Brun, Allan Sacha

    We study the influence of a dynamo magnetic field on the buoyant rise and emergence of twisted magnetic flux-ropes, and their influence on the global external magnetic field. We ran three-dimensional MHD numerical simulations using the ASH code and analysed the dynamical evolution of such buoyant flux-ropes from the bottom of the convection zone until the post-emergence phases. The actual flux-emergence episode is preceded by a localised increase of radial velocity, density and current density at the top of the convection zone. During the buoyant rise, the flux-rope's magnetic field strength and density scale as B~rho(alpha) , with alpha?sssim 1. The properties of initial phases of the buoyant rise are determined essentially by the flux-rope's properties and the convective flows and are, in consequence, in good agreement with previous studies. However, the effects of the interaction of the background dynamo field become increasingly stronger as the flux-ropes evolve. The threshold for the initial magnetic field amplitude is slightly increased by the presence of the background dynamo field, even if it is on average much weaker than the flux-rope's field. The geometry and relative orientation of the magnetic field in the flux-ropes with respect to that in the background magnetic field influences the resulting rise speeds, zonal flows amplitudes (which develop within the flux-ropes) and surface signatures of magnetic flux emergence. This strongly influences the morphology, duration and amplitude of the surface shearing and Poynting flux associated with magnetic flux-rope emergence, which are key ingredients to the current coronal eruption triggering scenarios. The actual magnetic flux emergence is consistently preceded by strong and localised radial velocity enhancements at the place where the flux rope will emerge. The emerged magnetic flux is in most of the cases studied enough to influence the global surface magnetic field. In some cases, the emergence reinforces the system's global polarity reversal while in some others it inhibits the background dynamo from doing so. The fraction of magnetic flux which remains attached to the flux-rope is slowly spread out in latitude, diffused and assimilated by the background dynamo field.

  17. Magnetic Flux Cancellation and Formation of Prominence

    NASA Astrophysics Data System (ADS)

    Miley, George; Kim, Mun Song; Chon Nam, Sok; Kim, Kyong Chol

    2015-08-01

    Magnetic flux cancellation appears to be closely related to various kinds of solar activities such as flares, microflares/surges/jets, X-ray bright points, erupting mini-filaments, transition region explosive events, filament formation, filament activation and eruption, and coronal mass ejections. It is commonly believed that magnetic reconnections in the low atmosphere are responsible for canceling magnetic features, and magnetic fragments are observed to originate as bipoles. According to the Sweet-Parker type reconnection model, the inflow speed closely corresponds to the converging speed of each pole in a canceling magnetic feature and the rate of flux cancellation must be explained by the observed converging speed. As distinct from the corona, the efficiency of photospheric magnetic reconnection may be due to the small Cowling conductivity, instead of the Spitzer, of weakly ionized and magnetized plasma in the low atmosphere of the sun. Using the VAL-C atmospheric model and Cowling conductivity, we have computed the parameters describing Sweet-Parker type reconnecting current sheets in the plasma of the solar photosphere and chromosphere, and particularly for the phenomena of magnetic flux cancellation and dark filament formation which occurred on July 2, 1994 we have estimated the rate of flux cancellation, the inflow speed(the converging speed) and the upward mass flux to compare with the observation. The results show that when taking account of the Cowling conductivity in the low atmosphere, large flux cancellation rates(>1019Mxhr-1) in solar active regions are better explained than by the Spitzer conductivity-considered reconnection model. Particularly for the flux cancellation event on July 2, 1994, the inflow speed(0.26kms-1)is almost similar to the converging speed(0.22kms-1)and the upward mass flux(3.3X1012gs-1) in the model is sufficient for the large dark filament formation in a time of several hours through magnetic flux cancellation process.

  18. Flux Emergence in a Magnetized Convection Zone

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Brun, A. S.

    2013-07-01

    We study the influence of a dynamo magnetic field on the buoyant rise and emergence of twisted magnetic flux ropes and their influence on the global external magnetic field. We ran three-dimensional MHD numerical simulations using the ASH code (anelastic spherical harmonics) and analyzed the dynamical evolution of such buoyant flux ropes from the bottom of the convection zone until the post-emergence phases. The global nature of this model can only very crudely and inaccurately represent the local dynamics of the buoyant rise of the implanted magnetic structure, but nonetheless allows us to study the influence of global effects, such as self-consistently generated differential rotation and meridional circulation, and of Coriolis forces. Although motivated by the solar context, this model cannot be thought of as a realistic model of the rise of magnetic structures and their emergence in the Sun, where the local dynamics are completely different. The properties of initial phases of the buoyant rise are determined essentially by the flux-rope's properties and the convective flows and consequently are in good agreement with previous studies. However, the effects of the interaction of the background dynamo field become increasingly strong as the flux ropes evolve. During the buoyant rise across the convection zone, the flux-rope's magnetic field strength scales as Bvprop??, with ? <~ 1. An increase of radial velocity, density, and current density is observed to precede flux emergence at all longitudes. The geometry, latitude, and relative orientation of the flux ropes with respect to the background magnetic field influences the resulting rise speeds, zonal flow amplitudes (which develop within the flux ropes), and the corresponding surface signatures. This influences the morphology, duration and amplitude of the surface shearing, and the Poynting flux associated with magnetic flux-rope emergence. The emerged magnetic flux influences the system's global polarity, leading in some cases to a polarity reversal while inhibiting the background dynamo from doing so in others. The emerged magnetic flux is slowly advected poleward while being diffused and assimilated by the background dynamo field.

  19. FLUX EMERGENCE IN A MAGNETIZED CONVECTION ZONE

    SciTech Connect

    Pinto, R. F.; Brun, A. S.

    2013-07-20

    We study the influence of a dynamo magnetic field on the buoyant rise and emergence of twisted magnetic flux ropes and their influence on the global external magnetic field. We ran three-dimensional MHD numerical simulations using the ASH code (anelastic spherical harmonics) and analyzed the dynamical evolution of such buoyant flux ropes from the bottom of the convection zone until the post-emergence phases. The global nature of this model can only very crudely and inaccurately represent the local dynamics of the buoyant rise of the implanted magnetic structure, but nonetheless allows us to study the influence of global effects, such as self-consistently generated differential rotation and meridional circulation, and of Coriolis forces. Although motivated by the solar context, this model cannot be thought of as a realistic model of the rise of magnetic structures and their emergence in the Sun, where the local dynamics are completely different. The properties of initial phases of the buoyant rise are determined essentially by the flux-rope's properties and the convective flows and consequently are in good agreement with previous studies. However, the effects of the interaction of the background dynamo field become increasingly strong as the flux ropes evolve. During the buoyant rise across the convection zone, the flux-rope's magnetic field strength scales as B{proportional_to}{rho}{sup {alpha}}, with {alpha} {approx}< 1. An increase of radial velocity, density, and current density is observed to precede flux emergence at all longitudes. The geometry, latitude, and relative orientation of the flux ropes with respect to the background magnetic field influences the resulting rise speeds, zonal flow amplitudes (which develop within the flux ropes), and the corresponding surface signatures. This influences the morphology, duration and amplitude of the surface shearing, and the Poynting flux associated with magnetic flux-rope emergence. The emerged magnetic flux influences the system's global polarity, leading in some cases to a polarity reversal while inhibiting the background dynamo from doing so in others. The emerged magnetic flux is slowly advected poleward while being diffused and assimilated by the background dynamo field.

  20. Magnetic helicity fluxes in interface and flux transport dynamos

    NASA Astrophysics Data System (ADS)

    Chatterjee, P.; Guerrero, G.; Brandenburg, A.

    2011-01-01

    Context. Dynamos in the Sun and other bodies tend to produce magnetic fields that possess magnetic helicity of opposite sign at large and small scales, respectively. The build-up of magnetic helicity at small scales provides an important saturation mechanism. Aims: In order to understand the nature of the solar dynamo we need to understand the details of the saturation mechanism in spherical geometry. In particular, we aim to understand the effects of magnetic helicity fluxes from turbulence and meridional circulation. Methods: We consider a model with only radial shear confined to a thin layer (tachocline) at the bottom of the convection zone. The kinetic ? owing to helical turbulence is assumed to be localized in a region above the convection zone. The dynamical quenching formalism is used to describe the build-up of mean magnetic helicity in the model, which results in a magnetic ? effect that feeds back on the kinetic ? effect. In some cases we compare these results with those obtained from a model with a simple algebraic ? quenching formula. Results: In agreement with earlier findings, the magnetic ? effect has the opposite sign compared with the kinetic ? effect and leads to a catastrophic decrease of the saturation field strength proportional to the inverse magnetic Reynolds number. At high latitudes this quenching effect can lead to secondary dynamo waves that propagate poleward because of the opposite sign of ?. These secondary dynamo waves are driven by small-scale magnetic helicity instead of the small-scale kinetic helicity. Magnetic helicity fluxes both from turbulent mixing and from meridional circulation alleviate catastrophic quenching. Interestingly, supercritical diffusive helicity fluxes also give rise to secondary dynamo waves and grand minima-like episodes.

  1. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  2. Magnetic refrigeration using flux compression in superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Strayer, D. M.; Jackson, H. W.; Petrac, D.

    1990-01-01

    The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature supercoductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications.

  3. Heat flux viscosity in collisional magnetized plasmas

    SciTech Connect

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  4. Heat flux viscosity in collisional magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-01

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a "heat flux viscosity," is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  5. Solar cycle of magnetic flux spectrum

    NASA Astrophysics Data System (ADS)

    Wang, Jingxiu; Jin, Chunlan

    2015-08-01

    Solar cycle has not only presented fascinating scientific challenges but also left massive footprints on our living environments. To get better understanding on the magnetic cycle, we have made efforts to extend the knowledge by examining the cyclic behavior of Sun’s small-scale magnetic elements with SOHO/MDI and Hinode/SP observations (Jin et al. 2011, Jin and Wang 2012, 2014). The work has been made on the basic of identity of tens Million magnetic elements in the flux range from current detection limit (1.5x1016 Mx) to times of 1019 Mx. We find that from the detective limit to the large end of the magnetic flux spectrum, the variation of magnetic element numbers show no correlation, anti-correlation and correlation with sunspot number, respectively. The magnetic elements with flux less than 2.9x1018 Mx display behavior of some local dynamo that is independent of the sunspot cycle, while the enhanced network magnetic elements with flux larger a few times of 1019 Mx are likely to be the debris of decayed sunspots. Possibilities are considered to explain the anti-correlated magnetic elements in term of the interplay of local and global dynamos. We will report our new efforts and results in exploring the solar cycle in term of Sun’s magnetic flux spectrum by combining the SOHO/MDI, SDO/HMI and Hinode/SP observations. All efforts will help with learning which component of solar magnetism has responsibility for the change of solar total irradiance.

  6. Turbulent dynamos with advective magnetic helicity flux

    NASA Astrophysics Data System (ADS)

    Del Sordo, F.; Guerrero, G.; Brandenburg, A.

    2013-02-01

    Many astrophysical bodies harbour magnetic fields that are thought to be sustained by a dynamo process. However, it has been argued that the production of large-scale magnetic fields by mean-field dynamo action is strongly suppressed at large magnetic Reynolds numbers owing to the conservation of magnetic helicity. This phenomenon is known as catastrophic quenching. Advection of magnetic fields by stellar and galactic winds towards the outer boundaries and away from the dynamo is expected to alleviate such quenching. Here we explore the relative roles played by advective and turbulent-diffusive fluxes of magnetic helicity in the dynamo. In particular, we study how the dynamo is affected by advection. We do this by performing direct numerical simulations of a turbulent dynamo of ?2 type driven by forced turbulence in a Cartesian domain in the presence of a flow away from the equator where helicity changes sign. Our results indicate that in the presence of advection, the dynamo, otherwise stationary, becomes oscillatory. We confirm an earlier result for turbulent-diffusive magnetic helicity fluxes that for small magnetic Reynolds numbers (Rm ? 100...200, based on the wavenumber of the energy-carrying eddies) the magnetic helicity flux scales less strongly with magnetic Reynolds number (Rm-1/2) than the term describing magnetic helicity destruction by resistivity (Rm-1). Our new results now suggest that for larger Rm the former becomes approximately independent of Rm, while the latter falls off more slowly. We show for the first time that both for weak and stronger winds, the magnetic helicity flux term becomes comparable to the resistive term for Rm ? 1000, which is necessary for alleviating catastrophic quenching.

  7. Magnetic topology of emerging flux regions

    NASA Astrophysics Data System (ADS)

    Pariat, Etienne

    Coronal magnetic fields structure and governs the dynamics of the solar atmosphere. These magnetic fields are often complex, composed of multiples domains of magnetic-field-lines connectivity. The topology of the magnetic field allows a synthetic description of these complex magnetic field by highlighting the structural elements that are important for the dynamic and the activity of the corona. Topology identifies the key elements where magnetic reconnection will preferentially occurs, and allows to explain and predict the evolution of the coronal plasma. However the topological elements - such as null points, separatrices, separators - do not appear out of thin air. Along with energy, and helicity, the magnetic topology of an active region is build up as the consequence of flux emergence. Some topological elements, such as bald-patches, are even fully part of the mechanism of flux emergence mechanism and drive the evolution and the structuration of the coronal magnetic field as it crosses the lower layer of the solar atmosphere. In the present talk I will therefore review our current understanding of the formation of active region in terms of magnetic topology. I will speak on how the topological structures which are key to solar activity are formed. Meanwhile I'll also discus the topological properties of emerging active region and how topology influences the very process of flux emergence.

  8. Tuning magnetic nanostructures and flux concentrators for magnetoresistive sensors

    NASA Astrophysics Data System (ADS)

    Yin, Xiaolu; Liu, Yen-Fu; Ewing, Dan; Ruder, Carmen K.; De Rego, Paul J.; Edelstein, A. S.; Liou, Sy-Hwang

    2015-09-01

    The methods for the optimization of the magnetoresistive (MR) sensors are to reduce sources of noises, to increase the signal, and to understand the involved fundamental limitations. The high-performance MR sensors result from important magnetic tunnel junction (MTJ) properties, such as tunneling magnetoresistance ratio (TMR), coercivity (Hc), exchange coupling field (He), domain structures, and noise properties as well as the external magnetic flux concentrators. All these parameters are sensitively controlled by the magnetic nanostructures, which can be tuned by varying junction free layer nanostructures, geometry, and magnetic annealing process etc. In this paper, we discuss some of efforts that an optimized magnetic sensor with a sensitivity as high as 5,146 %/mT. This sensitivity is currently the highest among all MR-type sensors that have been reported. The estimated noise of our magnetoresistive sensor is 47 pT/Hz1/2 at 1 Hz. This magnetoresistance sensor dissipates only 100 ?W of power while operating under an applied voltage of 1 V at room temperature.

  9. Magnetic flux supplement to coronal bright points

    E-print Network

    Mou, Chaozhou; Xia, Lidong; Madjarska, Maria S; Li, Bo; Fu, Hui; Jiao, Fangran; Hou, Zhenyong

    2015-01-01

    Coronal bright points (BPs) are associated with magnetic bipolar features (MBFs) and magnetic cancellation. Here, we investigate how BP-associated MBFs form and how the consequent magnetic cancellation occurs. We analyse longitudinal magnetograms from the Helioseismic and Magnetic Imager to investigate the photospheric magnetic flux evolution of 70 BPs. From images taken in the 193 A passband of the Atmospheric Imaging Assembly (AIA) we dermine that the BPs' lifetimes vary from 2.7 to 58.8 hours. The formation of the BP MBFs is found to involve three processes, namely emergence, convergence and local coalescence of the magnetic fluxes. The formation of a MBF can involve more than one of these processes. Out of the 70 cases, flux emergence is the main process of a MBF buildup of 52 BPs, mainly convergence is seen in 28, and 14 cases are associated with local coalescence. For MBFs formed by bipolar emergence, the time difference between the flux emergence and the BP appearance in the AIA 193 \\AA\\ passband varie...

  10. Magnetic flux reconstruction methods for shaped tokamaks

    SciTech Connect

    Tsui, Chi-Wa

    1993-12-01

    The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p` and FF` functions). The author treats the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green`s function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perception neural network as an interface, and the volume integration of plasma current density using Green`s functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising.

  11. Magnetic Flux Tube Interchange at the Heliopause

    NASA Astrophysics Data System (ADS)

    Florinski, V.

    2015-11-01

    The magnetic field measured by Voyager 1 prior to its heliocliff encounter on 2012.65 showed an unexpectedly complex transition from the primarily azimuthal inner-heliosheath field to the draped interstellar field tilted by some 20° to the nominal azimuthal direction. Most prominent were two regions of enhanced magnetic field strength depleted in energetic charged particles of heliospheric origin. These regions were interpreted as magnetic flux tubes connected to the outer heliosheath that provided a path for the particles to escape. Despite large increases in strength, the field’s direction did not change appreciably at the boundaries of these flux tubes. Rather, the field’s direction changed gradually over several months prior to the heliocliff crossing. It is shown theoretically that the heliopause, as a pressure equilibrium layer, can become unstable to interchange of magnetic fields between the inner and the outer heliosheaths. The curvature of magnetic field lines and the anti-sunward gradient in plasma kinetic pressure provide conditions favorable for an interchange. Magnetic shear between the heliosheath and the interstellar fields reduces the growth rates, but does not fully stabilize the heliopause against perturbations propagating in the latitudinal direction. The instability could create a transition layer permeated by magnetic flux tubes, oriented parallel to each other and alternately connected to the heliosheath or the interstellar regions.

  12. The dynamics of magnetic flux rings

    NASA Technical Reports Server (NTRS)

    Deluca, E. E.; Fisher, G. H.; Patten, B. M.

    1993-01-01

    The evolution of magnetic fields in the presence of turbulent convection is examined using results of numerical simulations of closed magnetic flux tubes embedded in a steady 'ABC' flow field, which approximate some of the important characteristics of a turbulent convecting flow field. Three different evolutionary scenarios were found: expansion to a steady deformed ring; collapse to a compact fat flux ring, separated from the expansion type of behavior by a critical length scale; and, occasionally, evolution toward an advecting, oscillatory state. The work suggests that small-scale flows will not have a strong effect on large-scale, strong fields.

  13. Returning magnetic flux in sunspot penumbrae

    NASA Astrophysics Data System (ADS)

    Ruiz Cobo, B.; Asensio Ramos, A.

    2013-01-01

    Aims: We study the presence of reversed polarity magnetic flux in sunspot penumbra. Methods: We applied a new regularized method to deconvolve spectropolarimetric data observed with the spectropolarimeter SP onboard Hinode. The new regularization is based on a principal component decomposition of the Stokes profiles. The resulting Stokes profiles were inverted to infer the magnetic field vector using SIR. Results: We find, for the first time, reversed polarity fields at the border of many bright penumbral filaments in the whole penumbra.

  14. Photospheric Magnetic Flux Transport - Supergranules Rule

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Rightmire-Upton, Lisa

    2012-01-01

    Observations of the transport of magnetic flux in the Sun's photosphere show that active region magnetic flux is carried far from its origin by a combination of flows. These flows have previously been identified and modeled as separate axisymmetric processes: differential rotation, meridional flow, and supergranule diffusion. Experiments with a surface convective flow model reveal that the true nature of this transport is advection by the non-axisymmetric cellular flows themselves - supergranules. Magnetic elements are transported to the boundaries of the cells and then follow the evolving boundaries. The convective flows in supergranules have peak velocities near 500 m/s. These flows completely overpower the superimposed 20 m/s meridional flow and 100 m/s differential rotation. The magnetic elements remain pinned at the supergranule boundaries. Experiments with and without the superimposed axisymmetric photospheric flows show that the axisymmetric transport of magnetic flux is controlled by the advection of the cellular pattern by underlying flows representative of deeper layers. The magnetic elements follow the differential rotation and meridional flow associated with the convection cells themselves -- supergranules rule!

  15. Optimization of magnetic flux density measurement using multiple RF receiver coils and multi-echo in MREIT

    NASA Astrophysics Data System (ADS)

    Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z. K.; Kim, Hyung Joong; Serša, Igor; In Kwon, Oh; Woo, Eung Je

    2014-09-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via measurements of magnetic flux density signals. The MREIT measures only the z-component of the induced magnetic flux density B = (Bx, By, Bz) by external current injection. The measured noise of Bz complicates recovery of magnetic flux density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate measurement of the spatial gradient of the magnetic flux density gradient (? Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the measured magnetic flux density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic flux density gradient from multiple receiver coils by using a weighted combination and by denoising the measured noisy data. The second step is to optimize the magnetic flux density gradient by using multi-echo magnetic flux densities at each pixel in order to reduce the noise level of ? Bz and the third step is to remove a random noise component from the recovered ? Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise (‘defects’) verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the measured magnetic flux density. The quality of the recovered conductivity maps using denoised ? Bz data showed that the proposed method reduced the conductivity noise level up to 3-4 times at each anomaly region in comparison to the conventional method.

  16. Synthetic magnetic fluxes on the honeycomb lattice

    SciTech Connect

    Gorecka, Agnieszka; Gremaud, Benoit; Miniatura, Christian

    2011-08-15

    We devise experimental schemes that are able to mimic uniform and staggered magnetic fluxes acting on ultracold two-electron atoms, such as ytterbium atoms, propagating in a honeycomb lattice. The atoms are first trapped into two independent state-selective triangular lattices and then further exposed to a suitable configuration of resonant Raman laser beams. These beams induce hops between the two triangular lattices and make atoms move in a honeycomb lattice. Atoms traveling around each unit cell of this honeycomb lattice pick up a nonzero phase. In the uniform case, the artificial magnetic flux sustained by each cell can reach about two flux quanta, thereby realizing a cold-atom analog of the Harper model with its notorious Hofstadter's butterfly structure. Different condensed-matter phenomena such as the relativistic integer and fractional quantum Hall effects, as observed in graphene samples, could be targeted with this scheme.

  17. Synthetic magnetic fluxes on the honeycomb lattice

    E-print Network

    Agnieszka Górecka; Benoît Grémaud; Christian Miniatura

    2011-05-18

    We devise experimental schemes able to mimic uniform and staggered magnetic fluxes acting on ultracold two-electron atoms, such as ytterbium atoms, propagating in a honeycomb lattice. The atoms are first trapped into two independent state-selective triangular lattices and are further exposed to a suitable configuration of resonant Raman laser beams. These beams induce hops between the two triangular lattices and make atoms move in a honeycomb lattice. Atoms traveling around each unit cell of this honeycomb lattice pick up a nonzero phase. In the uniform case, the artificial magnetic flux sustained by each cell can reach about two flux quanta, thereby realizing a cold atom analogue of the Harper model with its notorious Hofstadter's butterfly structure. Different condensed-matter phenomena such as the relativistic integer and fractional quantum Hall effects, as observed in graphene samples, could be targeted with this scheme.

  18. The Invariance of Open Solar Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Smith, E. J.; Zhou, X.

    2005-12-01

    A major finding of Ulysses has been the relative invariance of the open magnetic flux transported into the heliosphere from the Sun by the solar wind. The measure of open flux, r- squared Br, where r is heliocentric distance and Br is the radial field component, was found to be independent of both heliolatitude and phase of the solar cycle, being essentially the same (to within much less than a factor of two) at the recent sunspot minimum and maximum (cycle #23). Although such an invariance is generally not a feature of models of the solar-heliospheric field, it was predicted by L. Fisk and N. Schwadron who proposed that newly created open flux is the result of merging of already open flux with adjacent magnetic loops so that reconnecting field lines result in another open field and another loop with the total number of each unchanged. Thus, studying the open flux in the solar wind is a test of this hypothesis. The preceding study of open flux by Smith and Balogh ended shortly after solar maximum in 2001 when the polar cap magnetic fields had just reversed and were still relatively weak. Since then, the polar cap fields have strengthened and are now about one-half their value during the previous two sunspot cycles (#21, 22). We now present further evidence regarding this important question in Ulysses data acquired over the past 4 years. The radial components at Ulysses and in-ecliptic spacecraft are compared since the latter measurements are potentially a measure of open flux extending back to previous sunspot cycles.

  19. Magnetic flux concentrations in a polytropic atmosphere

    NASA Astrophysics Data System (ADS)

    Losada, I. R.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.

    2014-04-01

    Context. Strongly stratified hydromagnetic turbulence has recently been identified as a candidate for explaining the spontaneous formation of magnetic flux concentrations by the negative effective magnetic pressure instability (NEMPI). Much of this work has been done for isothermal layers, in which the density scale height is constant throughout. Aims: We now want to know whether earlier conclusions regarding the size of magnetic structures and their growth rates carry over to the case of polytropic layers, in which the scale height decreases sharply as one approaches the surface. Methods: To allow for a continuous transition from isothermal to polytropic layers, we employ a generalization of the exponential function known as the q-exponential. This implies that the top of the polytropic layer shifts with changing polytropic index such that the scale height is always the same at some reference height. We used both mean-field simulations (MFS) and direct numerical simulations (DNS) of forced stratified turbulence to determine the resulting flux concentrations in polytropic layers. Cases of both horizontal and vertical applied magnetic fields were considered. Results: Magnetic structures begin to form at a depth where the magnetic field strength is a small fraction of the local equipartition field strength with respect to the turbulent kinetic energy. Unlike the isothermal case where stronger fields can give rise to magnetic flux concentrations at larger depths, in the polytropic case the growth rate of NEMPI decreases for structures deeper down. Moreover, the structures that form higher up have a smaller horizontal scale of about four times their local depth. For vertical fields, magnetic structures of super-equipartition strengths are formed, because such fields survive downward advection that causes NEMPI with horizontal magnetic fields to reach premature nonlinear saturation by what is called the "potato-sack" effect. The horizontal cross-section of such structures found in DNS is approximately circular, which is reproduced with MFS of NEMPI using a vertical magnetic field. Conclusions: Results based on isothermal models can be applied locally to polytropic layers. For vertical fields, magnetic flux concentrations of super-equipartition strengths form, which supports suggestions that sunspot formation might be a shallow phenomenon.

  20. Stochastic flux freezing and magnetic dynamo

    SciTech Connect

    Eyink, Gregory L.

    2011-05-15

    Magnetic flux conservation in turbulent plasmas at high magnetic Reynolds numbers is argued neither to hold in the conventional sense nor to be entirely broken, but instead to be valid in a statistical sense associated to the ''spontaneous stochasticity'' of Lagrangian particle trajectories. The latter phenomenon is due to the explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of Laplacian determinism for classical dynamics. Empirical evidence is presented for spontaneous stochasticity, including numerical results. A Lagrangian path-integral approach is then exploited to establish stochastic flux freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion, that flux conservation must remain stochastic at infinite magnetic Reynolds number. An important application of these results is the kinematic, fluctuation dynamo in nonhelical, incompressible turbulence at magnetic Prandtl number (Pr{sub m}) equal to unity. Numerical results on the Lagrangian dynamo mechanisms by a stochastic particle method demonstrate a strong similarity between the Pr{sub m}=1 and 0 dynamos. Stochasticity of field-line motion is an essential ingredient of both. Finally, some consequences for nonlinear magnetohydrodynamic turbulence, dynamo, and reconnection are briefly considered.

  1. Physiological Noise in Oxygenation-Sensitive Magnetic Resonance Imaging

    E-print Network

    Glover, Gary H.

    Physiological Noise in Oxygenation-Sensitive Magnetic Resonance Imaging Gunnar Kru¨ger* and Gary H image noise: T 2 S 2 0 2 P 2 . [1] Here, T is the thermal noise from the subject and scanner electronics. Glover The physiological noise in the resting brain, which arises from fluctuations in metabolic

  2. Flux-Flow noise in YBCO thin films in the normal region, transition and superconducting state.

    NASA Astrophysics Data System (ADS)

    Giraldo, Paula; Castro, Hector

    2008-03-01

    The dynamic of vortexes inside type II superconductor thin films in the mixed state, that is, under their critical temperature and immersed in a DC magnetic field below its critical value, can be studied by means of the measurement of flux-flow noise, before the transition, during it and in the superconducting state. We measure the fluctuation in the voltage signal in the pseudogap region for an YCaBaCuO thin film, and compare it with the response in the other two regions. The response for overdoped and underdoped samples is compared with the response of optimaldoped samples.

  3. Magnetic Flux Compression Experiments Using Plasma Armatures

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2003-01-01

    Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (R(sub m), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires R(sub m) less than 1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

  4. Square billiard with a magnetic flux

    E-print Network

    R. Narevich; R. E. Prange; Oleg Zaitsev

    2000-03-06

    Eigenstates and energy levels of a square quantum billiard in a magnetic field, or with an Aharonov-Bohm flux line, are found in quasiclassical approximation, that is, for high enough energy. Explicit formulas for the energy levels and wavefunctions are found. A number of interesting states are shown, together with their wavefunctions. Some states are diamagnetic, others paramagnetic, still others both dia- and paramagnetic. Some states are strongly localized. Related systems and possible experiments are briefly mentioned.

  5. Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions

    E-print Network

    Yoshihara, Fumiki

    We infer the high-frequency flux noise spectrum in a superconducting flux qubit by studying the decay of Rabi oscillations under strong driving conditions. The large anharmonicity of the qubit and its strong inductive ...

  6. Slip Running Reconnection in Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W. N.; Van Compernolle, B.; Vincena, S. T.; De Hass, T.

    2012-12-01

    Magnetic flux ropes are due to helical currents and form a dense carpet of arches on the surface of the sun. Occasionally one tears loose as a coronal mass ejection and its rope structure can be detected by satellites close to the earth. Current sheets can tear into filaments and these are nothing other than flux ropes. Ropes are not static, they exert mutual ?c{J}×?c{B} forces causing them to twist about each other and eventually merge. Kink instabilities cause them to violently smash into each other and reconnect at the point of contact. We report on experiments on two adjacent ropes done in the large plasma device (LAPD) at UCLA ( ne ˜ 1012, Te ˜ 6 eV, B0z=330G, Brope}\\cong{10G,trep=1 Hz). The currents and magnetic fields form exotic shapes with no ignorable direction and no magnetic nulls. Volumetric space-time data (70,600 spatial locations) show multiple reconnection sites with time-dependent locations. The concept of a quasi-separatrix layer (QSL), a tool to understand and visualize 3D magnetic field lines reconnection without null points is introduced. Three-dimensional measurements of the QSL derived from magnetic field data are presented. Within the QSL field lines that start close to one another rapidly diverge as they pass through one or more reconnection regions. The motion of magnetic field lines are traced as reconnection proceeds and they are observed to slip through the regions of space where the QSL is largest. As the interaction proceeds we double the current in the ropes. This accompanied by intense heating as observed in uv light and plasma flows measured by Mach probes. The interaction of the ropes is clearly seen by vislaulizng magnetic field data , as well as in images from a fast framing camera. Work supported by the Dept. of Energy and The National Science Foundation, done at the Basic Plasma Science Facility at UCLA.Magnetic Field lines (measured) of three flux ropes and the plasma currents associated with them

  7. SEED BANKS FOR MAGNETIC FLUX COMPRESSION GENERATORS

    SciTech Connect

    Fulkerson, E S

    2008-05-14

    In recent years the Lawrence Livermore National Laboratory (LLNL) has been conducting experiments that require pulsed high currents to be delivered into inductive loads. The loads fall into two categories (1) pulsed high field magnets and (2) the input stage of Magnetic Flux Compression Generators (MFCG). Three capacitor banks of increasing energy storage and controls sophistication have been designed and constructed to drive these loads. One bank was developed for the magnet driving application (20kV {approx} 30kJ maximum stored energy.) Two banks where constructed as MFCG seed banks (12kV {approx} 43kJ and 26kV {approx} 450kJ). This paper will describe the design of each bank including switching, controls, circuit protection and safety.

  8. Permanent-magnet switched-flux machine

    DOEpatents

    Trzynadlowski, Andrzej M.; Qin, Ling

    2010-01-12

    A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  9. Permanent-magnet switched-flux machine

    DOEpatents

    Trzynadlowski, Andrzej M.; Qin, Ling

    2011-06-14

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  10. Permanent-magnet switched-flux machine

    DOEpatents

    Trzynadlowski, Andrzej M.; Qin, Ling

    2012-02-21

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  11. Automatic magnetic flux measurement of micro plastic-magnetic rotors

    NASA Astrophysics Data System (ADS)

    Wang, Qingdong; Lin, Mingxing; Song, Aiwei

    2015-07-01

    Micro plastic-magnetic rotors of various sizes and shapes are widely used in industry, their magnetic flux measurement is one of the most important links in the production process, and therefore some technologies should be adopted to improve the measurement precision and efficiency. In this paper, the automatic measurement principle of micro plastic-magnetic rotors is proposed and the integration time constant and the integrator drift’s suppression and compensation in the measurement circuit are analyzed. Two other factors influencing the measurement precision are also analyzed, including the relative angles between the rotor magnetic poles and the measurement coil, and the starting point of the rotors in the coil where the measurement begins. An instrument is designed to measure the magnetic flux of the rotors. Measurement results show that the measurement error is within??±1%, which meets the basic requirements in industry application, and the measurement efficiency is increased by 10 times, which can cut down labor cost and management cost when compared with manual measurement.

  12. Magnetic flux concentrations from turbulent stratified convection

    E-print Network

    Käpylä, P J; Kleeorin, N; Käpylä, M J; Rogachevskii, I

    2015-01-01

    (abridged) Context: The mechanisms that cause the formation of sunspots are still unclear. Aims: We study the self-organisation of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods: We perform simulations of magnetoconvection in Cartesian domains that are $8.5$-$24$ Mm deep and $34$-$96$ Mm wide. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow. Results: We find that super-equipartition magnetic flux concentrations are formed near the surface with domain depths of $12.5$ and $24$ Mm. The size of the concentrations increases as the box size increases and the largest structures ($20$ Mm horizontally) are obtained in the 24 Mm deep models. The field strength in the concentrations is in the range of $3$-$5$ kG. The concentrations grow approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its ...

  13. NONLINEAR THREE-DIMENSIONAL MAGNETOCONVECTION AROUND MAGNETIC FLUX TUBES

    SciTech Connect

    Botha, G. J. J.; Rucklidge, A. M.; Hurlburt, N. E. E-mail: A.M.Rucklidge@leeds.ac.uk

    2011-04-20

    Magnetic flux in the solar photosphere forms concentrations from small scales, such as flux elements, to large scales, such as sunspots. This paper presents a study of the decay process of large magnetic flux tubes, such as sunspots, on a supergranular scale. Three-dimensional nonlinear resistive magnetohydrodynamic numerical simulations are performed in a cylindrical domain, initialized with axisymmetric solutions that consist of a well-defined central flux tube and an annular convection cell surrounding it. As the nonlinear convection evolves, the annular cell breaks up into many cells in the azimuthal direction, allowing magnetic flux to slip between cells away from the central flux tube (turbulent erosion). This lowers magnetic pressure in the central tube, and convection grows inside the tube, possibly becoming strong enough to push the tube apart. A remnant of the central flux tube persists with nonsymmetric perturbations caused by the convection surrounding it. Secondary flux concentrations form between convection cells away from the central tube. Tube decay is dependent on the convection around the tube. Convection cells forming inside the tube as time-dependent outflows will remove magnetic flux. (This is most pronounced for small tubes.) Flux is added to the tube when flux caught in the surrounding convection is pushed toward it. The tube persists when convection inside the tube is sufficiently suppressed by the remaining magnetic field. All examples of persistent tubes have the same effective magnetic field strength, consistent with the observation that pores and sunspot umbrae all have roughly the same magnetic field strength.

  14. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  15. Noise analysis in fast magnetic resonance electrical impedance tomography (MREIT) based on spoiled multi gradient echo (SPMGE) pulse sequence

    NASA Astrophysics Data System (ADS)

    In Oh, Tong; Jeong, Woo Chul; Kim, Ji Eun; Sajib, Saurav Z. K.; Kim, Hyung Joong; In Kwon, Oh; Woo, Eung Je

    2014-08-01

    Magnetic resonance electrical impedance tomography (MREIT) is a promising non-invasive method to visualize a static cross-sectional conductivity and/or current density image by injecting low frequency currents. MREIT measures one component of the magnetic flux density caused by the injected current using a magnetic resonance (MR) scanner. For practical in vivo implementations of MREIT, especially for soft biological tissues where the MR signal rapidly decays, it is crucial to develop a technique for optimizing the magnetic flux density signal by the injected current while maintaining spatial-resolution and contrast. We design an MREIT pulse sequence by applying a spoiled multi-gradient-echo pulse sequence (SPMGE) to the injected current nonlinear encoding (ICNE), which fully injects the current at the end of the read-out gradient. The applied ICNE-SPMGE pulse sequence maximizes the duration of injected current almost up to a repetition time by measuring multiple magnetic flux density data. We analyze the noise level of measured magnetic flux density with respect to the pulse width of injection current and T_{2}^{*} relaxation time. In due consideration of the ICNE-SPMGE pulse sequence, using a reference information of T_{2}^{*} values in a local region of interest by a short pre-scan data, we predict the noise level of magnetic flux density to be measured for arbitrary repetition time TR. Results from phantom experiment demonstrate that the proposed method can predict the noise level of magnetic flux density for an appropriate TR = 40 ms using a reference scan for TR = 75 ms. The predicted noise level was compared with the noise level of directly measured magnetic flux density data.

  16. Noise-cancelling quadrature magnetic position, speed and direction sensor

    DOEpatents

    Preston, Mark A. (Niskayuna, NY); King, Robert D. (Schenectady, NY)

    1996-01-01

    An array of three magnetic sensors in a single package is employed with a single bias magnet for sensing shaft position, speed and direction of a motor in a high magnetic noise environment. Two of the three magnetic sensors are situated in an anti-phase relationship (i.e., 180.degree. out-of-phase) with respect to the relationship between the other of the two sensors and magnetically salient target, and the third magnetic sensor is situated between the anti-phase sensors. The result is quadrature sensing with noise immunity for accurate relative position, speed and direction measurements.

  17. Magnetic flux concentration and zonal flows in magnetorotational instability turbulence

    SciTech Connect

    Bai, Xue-Ning; Stone, James M.

    2014-11-20

    Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few disk scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.

  18. Magnetic flux array for spontaneous magnetic reconnection experiments A. Kesich, J. Bonde, J. Egedal,a

    E-print Network

    Egedal, Jan

    Magnetic flux array for spontaneous magnetic reconnection experiments A. Kesich, J. Bonde, J; published online 24 June 2008 Experimental investigation of reconnection in magnetized plasmas relies on accurate characterization of the evolving magnetic fields. In experimental configurations where the plasma

  19. Transport of magnetic flux in Saturn’s inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Lai, H. R.; Wei, H. Y.; Jia, Y. D.; Dougherty, M. K.

    2015-11-01

    The dynamics of the Saturnian magnetosphere, which rotates rapidly with an internal plasma source provided by Enceladus, qualitatively resembles those of the jovian magnetosphere powered by Io. The newly added plasma is accelerated to the corotation speed and moves outward together with the magnetic flux. In the near tail region, reconnection cuts the magnetic flux, reconnects it into plasma-depleted inward moving flux tubes and outward moving massive plasmoids. The buoyant empty tubes then convect inward against the outward flow to conserve the total magnetic flux established by the internal dynamo. In both jovian and saturnian magnetospheres, flux tubes with enhanced field strength relative to their surroundings are detected in the equatorial region. Recent observations show that there are flux tubes with reduced field strength off the equator in the saturnian magnetosphere. To understand the formation mechanism of both types of flux tubes, we have surveyed all the available 1-sec magnetic field data from Cassini. The systematic statistical study confirms the different latitudinal distributions of the two types of flux tubes. In addition, enhanced-field flux tubes are closer to the planet while reduced-field flux tubes can be detected at larger distances; both types of flux tubes become indistinguishable from the background magnetic flux inside an L-value of about 4; the local time distribution of both types of flux tubes are similar and they contain about the same amount of magnetic flux. Therefore, the two types of flux tubes are the same phenomena with different manifestations in different plasma environments. When the surrounding plasma density is high (near the equator and closer to the plasma source region), the flux tubes are compressed and have enhanced field strength inside; while in the low-plasma density region (off the equator and further from the plasma source region), the flux tubes expand and have reduced field strength inside.

  20. Relationships of a growing magnetic flux region to flares

    NASA Technical Reports Server (NTRS)

    Martin, S. F.; Bentley, R. D.; Schadee, A.; Antalova, A.; Kucera, A.; Dezso, L.; Gesztelyi, L.; Harvey, K. L.; Jones, H.; Livi, S. H. B.

    1984-01-01

    The evolution of flare sites at the boundaries of major new and growing magnetic flux regions within complexes of active regions has been analyzed using H-alpha images. A spectrum of possible relationships of growing flux regions to flares is described. An 'intimate' interaction between old and new flux and flare sites occurs at the boundaries of their regions. Forced or 'intimidated' interaction involves new flux pushing older, lower flux density fields toward a neighboring old polarity inversion line, followed by the occurrence of a flare. In 'influential' interaction, magnetic lines of force over an old polarity inversion line reconnect to new emerging flux, and a flare occurs when the magnetic field overlying the filament becomes too weak to prevent its eruption. 'Inconsequential' interaction occurs when a new flux region is too small or has the wrong orientation for creating flare conditions. 'Incidental' interaction involves a flare occurring without any significant relationship to new flux regions.

  1. Magnetic Flux Loss and Flux Transport in a Decaying Active Region

    E-print Network

    M. Kubo; B. W. Lites; T. Shimizu; K. Ichimoto

    2008-07-28

    We estimate the temporal change of magnetic flux perpendicular to the solar surface in a decaying active region by using a time series of the spatial distribution of vector magnetic fields in the photosphere. The vector magnetic fields are derived from full spectropolarimetric measurements with the Solar Optical Telescope aboard Hinode. We compare a magnetic flux loss rate to a flux transport rate in a decaying sunspot and its surrounding moat region. The amount of magnetic flux that decreases in the sunspot and moat region is very similar to magnetic flux transported to the outer boundary of the moat region. The flux loss rates [$(dF/dt)_{loss}$] of magnetic elements with positive and negative polarities are balanced each other around the outer boundary of the moat region. These results suggest that most of the magnetic flux in the sunspot is transported to the outer boundary of the moat region as moving magnetic features, and then removed from the photosphere by flux cancellation around the outer boundary of the moat region.

  2. Complexity and diffusion of magnetic flux surfaces in anisotropic turbulence

    SciTech Connect

    Servidio, S.; Matthaeus, W. H.; Wan, M.; Rappazzo, A. F.; Ruffolo, D.; Oughton, S.

    2014-04-10

    The complexity of magnetic flux surfaces is investigated analytically and numerically in static homogeneous magnetic turbulence. Magnetic surfaces are computed to large distances in magnetic fields derived from a reduced magnetohydrodynamic model. The question addressed is whether one can define magnetic surfaces over large distances when turbulence is present. Using a flux surface spectral analysis, we show that magnetic surfaces become complex at small scales, experiencing an exponential thinning that is quantified here. The computation of a flux surface is of either exponential or nondeterministic polynomial complexity, which has the conceptual implication that global identification of magnetic flux surfaces and flux exchange, e.g., in magnetic reconnection, can be intractable in three dimensions. The coarse-grained large-scale magnetic flux experiences diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established explicitly through multiple scale analysis. The Kubo number controls both large and small scale limits. These results have consequences for interpreting processes such as magnetic reconnection and field-line diffusion in astrophysical plasmas.

  3. Analysis of magnetic noises in two-dimensional magnetic recording readers

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Yuan, Z. M.; Ong, Chun-Lian; Guchang, Han; Ang, Shiming

    2015-05-01

    A model is introduced in this paper to describe the effects of thermal magnetic noises in the read sensor under off-track reading conditions taking into account the influence of the magnetic field generated by the recorded magnetization patterns on the medium. Our numerical studies show that there exist additional noises in the hard biased reader, depending on recorded patterns on the magnetic media. The influence of the recorded magnetic patterns is not only on the variation in reader resistance but also on the high frequency noises caused primarily by the thermal fluctuations. The theoretical analysis is based on the micromagnetic modeling of the state of magnetization in read sensor taking into account of its external magnetic fields due to both the hard bias and the media magnetization patterns. The effect of the thermal agitation of the gyromagnetical precession of magnetizations is evaluated by considering the angular magnetic noise.

  4. Detection of spin torque magnetization dynamics through low frequency noise

    NASA Astrophysics Data System (ADS)

    Cascales, Juan Pedro; Herranz, David; Ebels, Ursula; Katine, Jordan A.; Aliev, Farkhad G.

    2015-08-01

    We present a comparative study of high frequency dynamics and low frequency noise in elliptical magnetic tunnel junctions with lateral dimensions under 100 nm presenting current-switching phenomena. The analysis of the high frequency oscillation modes with respect to the current reveals the onset of a steady-state precession regime for negative bias currents above J = 10 7 A / cm 2 , when the magnetic field is applied along the easy axis of magnetization. By the study of low frequency noise for the same samples, we demonstrate the direct link between changes in the oscillation modes with the applied current and the normalised low frequency (1/f) noise as a function of the bias current. These findings prove that low frequency noise studies could be a simple and powerful technique to investigate spin-torque based magnetization dynamics.

  5. PROTOSTELLAR ACCRETION FLOWS DESTABILIZED BY MAGNETIC FLUX REDISTRIBUTION

    SciTech Connect

    Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun; Zhao Bo

    2012-09-20

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  6. Experiences and results from an automated noise surveillance system of the Fast Flux Test Facility

    SciTech Connect

    Thie, J.A.; Mullens, J.A.; Campbell, L.R.

    1986-01-01

    This paper describes recent accomplishments in the collection and interpretation of noise data from the Fast Flux Test Facility (FFTF). Automated data collection has provided data for a variety of reactor conditions and phenomena from several fuel cycles. This automated method has aided the interpretation of neutron noise from control rod vibrations and structure vibrations.

  7. Flux Transport and the Sun's Global Magnetic Field

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2010-01-01

    The Sun s global magnetic field is produced and evolved through the emergence of magnetic flux in active regions and its transport across the solar surface by the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective flows of granulation, supergranulation, and giant cell convection. Maps of the global magnetic field serve as the inner boundary condition for space weather. The photospheric magnetic field and its evolution determine the coronal and solar wind structures through which CMEs must propagate and in which solar energetic particles are accelerated and propagate. Producing magnetic maps which best represent the actual field configuration at any instant requires knowing the magnetic field over the observed hemisphere as well as knowing the flows that transport flux. From our Earth-based vantage point we only observe the front-side hemisphere and each pole is observable for only six months of the year at best. Models for the surface magnetic flux transport can be used to provide updates to the magnetic field configuration in those unseen regions. In this presentation I will describe successes and failures of surface flux transport and present new observations on the structure, the solar cycle variability, and the evolution of the flows involved in magnetic flux transport. I find that supergranules play the dominant role due to their strong flow velocities and long lifetimes. Flux is transported by differential rotation and meridional flow only to the extent that the supergranules participate in those two flows.

  8. Remanent state noise measurements on magnetic recording media

    NASA Astrophysics Data System (ADS)

    McCann, S. M.; Bissell, P. R.; Onions, T.; Mercer, T.

    1998-03-01

    Media noise has been investigated as a function of both the isothermal remanent magnetisation (IRM) and DC-demagnetisation (DCD) processes on a modified audio transport. Captured noise time series from a given remanent state has been analysed for spectral content using signal processing software. These noise spectra display changes in magnetic microstructure of the tested media with remanent state. Measurements have been made on a range of commercial and laboratory produced tapes. The paper concentrates on examples of commercial samples which have been chosen to indicate various noise characteristics. Conventional media usually show similar features, but changes in remanent state noise has been observed in tapes for new formats and in recent manufacture of conventional formats. This indicates changes in magnetic microstructure associated with new particles and dispersion techniques.

  9. Helicity charging and eruption of magnetic flux from the Sun

    NASA Technical Reports Server (NTRS)

    Rust, David M.; Kumar, A.

    1994-01-01

    The ejection of helical toroidal fields from the solar atmosphere and their detection in interplanetary space are described. The discovery that solar magnetic fields are twisted and that they are segregated by hemisphere according to their chirality has important implications for the escape process. The roles played by erupting prominences, coronal mass ejections (CME's) and active region (AR) loops in expressing the escape of magnetic flux and helicity are discussed. Sporadic flux escape associated with filament eruptions accounts for less than one-tenth the flux loss. Azimuthal flux loss by CME's could account for more, but the major contributor to flux escape may be AR loop expansion. It is shown how the transfer of magnetic helicity from the sun's interior into emerged loops ('helicity charging') could be the effective driver of solar eruptions and of flux loss from the sun.

  10. Forecasting the solar photospheric magnetic field using solar flux transport model and local ensemble Kalman filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Du, Aimin; Feng, Xueshang

    2015-04-01

    Accurate forecasting the solar photospheric magnetic field distribution play an important role in the estimates of the inner boundary conditions of the coronal and solar wind model. Forecasting solar photospheric magnetic field using the solar flux transport (SFT) model can achieve an acceptable match to the actual field. The observations from ground-based or spacecraft instruments can be assimilated to update the modeled flux. The local ensemble Kalman filtering (LEnKF) method is utilized to improve forecasts and characterize their uncertainty by propagating the SFT model with different model parameters forward in time to control the evolution of the solar photospheric magnetic field. Optimal assimilation of measured data into the ensemble produces an improvement in the fit of the forecast to the actual field. Our approach offers a method to improve operational forecasting of the solar photospheric magnetic field. The LEnKF method also allows sensitivity analysis of the SFT model to noise and uncertainty within the physical representation.

  11. Vortex Avalanches and Magnetic Flux Fragmentation in Superconductors

    SciTech Connect

    Aranson, Igor; Gurevich, Alex; Vinokur, Valerii

    2001-08-06

    We report the results of numerical simulations of nonisothermal dendritic flux penetration in type-II superconductors. We propose a generic mechanism of dynamic branching of a propagating hot spot of a flux flow/normal state triggered by a local heat pulse. The branching occurs when the flux hot spot reflects from inhomogeneities or the boundary on which magnetization currents either vanish, or change direction. The hot spot then undergoes a cascade of successive splittings, giving rise to a dissipative dendritic-type flux structure. This dynamic state eventually cools down, turning into a frozen multifilamentary pattern of magnetization currents.

  12. A novel high temperature superconducting magnetic flux pump for MRI magnets

    NASA Astrophysics Data System (ADS)

    Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan

    2010-10-01

    This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.

  13. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Sikora, Marek; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2013-02-20

    We argue that the magnetic flux threading the black hole (BH), rather than BH spin or Eddington ratio, is the dominant factor in launching powerful jets and thus determining the radio loudness of active galactic nuclei (AGNs). Most AGNs are radio quiet because the thin accretion disks that feed them are inefficient in depositing magnetic flux close to the BH. Flux accumulation is more likely to occur during a hot accretion (or thick disk) phase, and we argue that radio-loud quasars and strong emission-line radio galaxies occur only when a massive, cold accretion event follows an episode of hot accretion. Such an event might be triggered by the merger of a giant elliptical galaxy with a disk galaxy. This picture supports the idea that flux accumulation can lead to the formation of a so-called magnetically choked accretion flow. The large observed range in radio loudness reflects not only the magnitude of the flux pressed against the BH, but also the decrease in UV flux from the disk, due to its disruption by the ''magnetosphere'' associated with the accumulated flux. While the strongest jets result from the secular accumulation of flux, moderate jet activity can also be triggered by fluctuations in the magnetic flux deposited by turbulent, hot inner regions of otherwise thin accretion disks, or by the dissipation of turbulent fields in accretion disk coronae. These processes could be responsible for jet production in Seyferts and low-luminosity AGNs, as well as jets associated with X-ray binaries.

  14. Localization of metal-induced gap states at the metal-insulator interface: Origin of flux noise in SQUIDs and superconducting qubits

    SciTech Connect

    Choi, SangKook; Lee, Dung-Hai; Louie, Steven G.; Clarke, John

    2009-10-10

    The origin of magnetic flux noise in Superconducting Quantum Interference Devices with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 20 years. This noise limits the decoherence time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of localized electrons with an areal density of 5 x 10(17)m(-2). We show that, in the presence of potential disorder at the metal-insulator interface, some of the metal-induced gap states become localized and produce local moments. A modest level of disorder yields the observed areal density.

  15. Magnetic flux transport by turbulent reconnection in astrophysical flows

    NASA Astrophysics Data System (ADS)

    de Gouveia Dal Pino, E. M.; Leão, M. R. M.; Santos-Lima, R.; Guerrero, G.; Kowal, G.; Lazarian, A.

    2012-07-01

    The role of magnetohydrodynamics (MHD) turbulence in astrophysical environments is still highly debated. An important question that permeates this debate is the transport of magnetic flux. This is particularly important, for instance, in the context of star formation. When clouds collapse gravitationally to form stars, there must be some magnetic flux transport. Otherwise, the newborn stars would have magnetic fields several orders of magnitude larger than the observed ones. Also, the magnetic flux that is dragged in the late stages of the formation of a star can remove all the rotational support from the accretion disc that grows around the protostar. The efficiency of the mechanism that is often invoked to allow transport of magnetic fields at different stages of star formation, namely ambipolar diffusion, has recently been put in check. We discuss here an alternative mechanism for magnetic flux transport which is based on turbulent fast magnetic reconnection. We review recent results from three-dimensional MHD numerical simulations that indicate that this mechanism is very efficient in decoupling and transporting magnetic flux from the inner denser regions to the outskirts of collapsing clouds at different stages of star formation. We discuss this mechanism also in the context of dynamo processes and speculate that it can play a role both in solar dynamo and in accretion disc dynamo processes.

  16. Dynamical decoupling and noise spectroscopy with a superconducting flux qubit

    E-print Network

    Jonas Bylander; Simon Gustavsson; Fei Yan; Fumiki Yoshihara; Khalil Harrabi; George Fitch; David G. Cory; Yasunobu Nakamura; Jaw-Shen Tsai; William D. Oliver

    2011-01-25

    The characterization and mitigation of decoherence in natural and artificial two-level systems (qubits) is fundamental to quantum information science and its applications. Decoherence of a quantum superposition state arises from the interaction between the constituent system and the uncontrolled degrees of freedom in its environment. Within the standard Bloch-Redfield picture of two-level system dynamics, qubit decoherence is characterized by two rates: a longitudinal relaxation rate Gamma1 due to the exchange of energy with the environment, and a transverse relaxation rate Gamma2 = Gamma1/2 + Gamma_phi which contains the pure dephasing rate Gamma_phi. Irreversible energy relaxation can only be mitigated by reducing the amount of environmental noise, reducing the qubit's internal sensitivity to that noise, or through multi-qubit encoding and error correction protocols (which already presume ultra-low error rates). In contrast, dephasing is in principle reversible and can be refocused dynamically through the application of coherent control pulse methods. In this work we demonstrate how dynamical-decoupling techniques can moderate the dephasing effects of low-frequency noise on a superconducting qubit with energy-relaxation time T1 = 1/Gamma1 = 12 us. Using the CPMG sequence with up to 200 pi-pulses, we demonstrate a 50-fold improvement in the transverse relaxation time T2 over its baseline value. We observe relaxation-limited times T2(CPMG) = 23 us = 2 T1 resulting from CPMG-mediated Gaussian pure-dephasing times in apparent excess of 100 us. We leverage the filtering property of this sequence in conjunction with Rabi and energy relaxation measurements to facilitate the spectroscopy and reconstruction of the environmental noise power spectral density.

  17. Evolution of the magnetic helicity flux during the formation and eruption of flux ropes

    SciTech Connect

    Romano, P.; Zuccarello, F. P.; Guglielmino, S. L.; Zuccarello, F.

    2014-10-20

    We describe the evolution and the magnetic helicity flux for two active regions (ARs) since their appearance on the solar disk: NOAA 11318 and NOAA 11675. Both ARs hosted the formation and destabilization of magnetic flux ropes. In the former AR, the formation of the flux rope culminated in a flare of C2.3 GOES class and a coronal mass ejection (CME) observed by Large Angle and Spectrometric Coronagraph Experiment. In the latter AR, the region hosting the flux rope was involved in several flares, but only a partial eruption with signatures of a minor plasma outflow was observed. We found a different behavior in the accumulation of the magnetic helicity flux in the corona, depending on the magnetic configuration and on the location of the flux ropes in the ARs. Our results suggest that the complexity and strength of the photospheric magnetic field is only a partial indicator of the real likelihood of an AR producing the eruption of a flux rope and a subsequent CME.

  18. Finite Magnetic Flux Tube as a Black & White Dihole

    E-print Network

    Aharon Davidson; Eduard Gedalin

    1994-08-31

    A finite-length magnetic vortex line solution is derived within the context of (4-dim) dilaton gravity. We approach the Bonnor metric at the Einstein-Maxwell limit, and encounter the "flux tube as (Euclidean) Kerr horizon" at the Kaluza-Klein level. Exclusively for string theory, the magnetic flux tube world-sheet exhibits a 2-dim black & white dihole structure. (The figure has been cut off, and is now available upon request from davidson@bguvms.bgu.ac.il)

  19. Kink Wave Propagation in Thin Isothermal Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Lopin, I. P.; Nagorny, I. G.; Nippolainen, E.

    2014-08-01

    We investigated the propagation of kink waves in thin and isothermal expanding flux tubes in cylindrical geometry. By using the method of radial expansion for fluctuating variables we obtained a new kink wave equation. We show that including the radial component of the tube magnetic field leads to cutoff-free propagation of kink waves along thin flux tubes.

  20. Longitudinal variations of the magnetic flux in the heliosphere

    NASA Astrophysics Data System (ADS)

    Dósa, Melinda; Erd?s, Géza

    2015-04-01

    The heliospheric magnetic flux is determined from the radial component of the magnetic field vector measured onboard interplanetary space probes. Earlier Ulysses research has shown remarkable independence of the flux from heliographic latitude. Here we investigate whether any longitudinal variation exist in the 50 year long OMNI magnetic data set. When determining the heliographic longitude of the plasma source, correction was applied for the solar wind travel time. Significant recurrent enhancements of the magnetic flux was observed during the declining phase of the solar cycles. These flux enhancements are associated with co-rotating interaction regions (CIRs), lasting several years. The recurrence period equals the equatorial rotation period of the Sun. The same, long lasting recurring features can be observed in the deviation angle of the solar wind velocity vector from the radial direction. However, the deviation angle is small, in the order of few degrees, which cannot account for the observed flux increases. An increase of the magnetic field is clearly caused by the plasma compression associated to CIRs, however the increase of the radial component is not obvious. It is suggested that the origin of that increase is caused by the compression of the plasma in the direction perpendicular to the Parker field line rather than the radial direction. The longitudinal variation of the magnetic flux during the declining phase of the solar cycle has impact on the modulation of cosmic rays as well as on the frequency and intensity of space weather events.

  1. Flow instabilities of magnetic flux tubes. I. Perpendicular flow

    NASA Astrophysics Data System (ADS)

    Schüssler, M.; Ferriz Mas, A.

    2007-02-01

    Context: The stability properties of filamentary magnetic structures are relevant for the storage and dynamics of magnetic fields in stellar convection zones and possibly also in other astrophysical contexts. Aims: In a series of papers we study the effect of external and internal flows on the stability of magnetic flux tubes. In this paper we consider the effect of a flow perpendicular to a straight, horizontal flux tube embedded in a gravitationally stratified fluid. The flow acts on the flux tube by exerting an aerodynamic drag force and by modifying the pressure stratification in the background medium. Methods: We carry out a Lagrangian linear stability analysis in the framework of the approximation of thin magnetic flux tubes. Results: The external flow can drive monotonic and oscillatory instability (overstability). The stability condition depends on direction and magnitude of the external velocity as well as on its first and second derivatives with respect to depth. The range of the flow-driven instabilities typically extends to modes with much shorter wavelengths than for the buoyancy-driven undulatory Parker instability. Conclusions: .Perpendicular flows with Alfvénic Mach number of order unity can drive monotonic as well as oscillatory instability of thin magnetic flux tubes. Such instability can affect the storage of magnetic flux in stellar interiors.

  2. Triggering of Remote Flares by Magnetic Flux Emergence

    E-print Network

    Fu, Yixing

    2015-01-01

    We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the "interaction energy" between new and pre-existing regions as the difference between (i) the summed magnetic energies of their individual potential fields and (ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of "topological" free magnetic energy in the global coronal field that is independent of any "internal" free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study on the infl...

  3. Magnetic hysteresis and magnetic flux patterns measured by acoustically stimulated electromagnetic response in a steel plate

    NASA Astrophysics Data System (ADS)

    Yamada, Hisato; Watanabe, Kakeru; Ikushima, Kenji

    2015-08-01

    Magnetic hysteresis loops are measured by ultrasonic techniques and used in visualizing the magnetic-flux distribution in a steel plate. The piezomagnetic coefficient determines the amplitude of acoustically stimulated electromagnetic (ASEM) fields, yielding the hysteresis behavior of the intensity of the ASEM response. By utilizing the high correspondence of the ASEM response to the magnetic-flux density, we image the specific spatial patterns of the flux density formed by an artificial defect in a steel plate specimen. Magnetic-flux probing by ultrasonic waves is thus shown to be a viable method of nondestructive material inspection.

  4. Flux-vector model of spin noise in superconducting circuits: Electron versus nuclear spins and role of phase transition

    NASA Astrophysics Data System (ADS)

    LaForest, S.; de Sousa, Rogério

    2015-08-01

    Superconducting quantum interference devices (SQUIDs) and other superconducting circuits are limited by intrinsic flux noise with spectral density 1 /f? with ? <1 whose origin is believed to be due to spin impurities. Here, we present a theory of flux noise that takes into account the vectorial nature of the coupling of spins to superconducting wires. We present explicit numerical calculations of the flux-noise power (spectral density integrated over all frequencies) for electron impurities and lattice nuclear spins under several different assumptions. The noise power is shown to be dominated by surface electron spins near the wire edges, with bulk lattice nuclear spins contributing ˜5 % of the noise power in aluminum and niobium wires. We consider the role of electron spin phase transitions, showing that the spin-spin correlation length (describing, e.g., the average size of ferromagnetic spin clusters) greatly impacts the scaling of flux noise with wire geometry. Remarkably, the flux-noise power is exactly equal to zero when the spins are polarized along the flux-vector direction, forming what we call a poloidal state. Flux noise is nonzero for other spin textures, but gets reduced in the presence of correlated ferromagnetic fluctuations between the top and bottom wire surfaces, where the flux vectors are antiparallel. This demonstrates that engineering spin textures and/or intersurface correlation provides a method to reduce flux noise in superconducting devices.

  5. Frozen flux violation, electron demagnetization and magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Karimabadi, H.; Daughton, W.; Roytershteyn, V.

    2015-10-01

    We argue that the analogue in collisionless plasma of the collisional diffusion region of magnetic reconnection is properly defined in terms of the demagnetization of the plasma electrons that enable "frozen flux" slippage to occur. This condition differs from the violation of the "frozen-in" condition, which only implies that two fluid effects are involved, rather than the necessary slippage of magnetic flux as viewed in the electron frame. Using 2D Particle In Cell (PIC) simulations, this approach properly finds the saddle point region of the flux function. Our demagnetization conditions are the dimensionless guiding center approximation expansion parameters for electrons which we show are observable and determined locally by the ratio of non-ideal electric to magnetic field strengths. Proxies for frozen flux slippage are developed that (a) are measurable on a single spacecraft, (b) are dimensionless with theoretically justified threshold values of significance, and (c) are shown in 2D simulations to recover distinctions theoretically possible with the (unmeasurable) flux function. A new potentially observable dimensionless frozen flux rate, ??, differentiates significant from anecdotal frozen flux slippage. A single spacecraft observable, ?, is shown with PIC simulations to be essentially proportional to the unobservable local Maxwell frozen flux rate. This relationship theoretically establishes electron demagnetization in 3D as the general cause of frozen flux slippage. In simple 2D cases with an isolated central diffusion region surrounded by separatrices, these diagnostics uniquely identify the traditional diffusion region (without confusing it with the two fluid "ion-diffusion" region) and clarify the role of the separatrices where frozen flux violations do occur but are not substantial. In the more complicated guide and asymmetric 2D cases, substantial flux slippage regions extend out along, but inside of, the preferred separatrices, demonstrating that ?? ? 0 violations are present over significant distances (in ion inertial units) from the separator identified by the 2D flux function; these violations are, however, generally weaker than seen at known separators in 2D simulations.

  6. SIGNATURES OF MAGNETIC RECONNECTION AT BOUNDARIES OF INTERPLANETARY SMALL-SCALE MAGNETIC FLUX ROPES

    SciTech Connect

    Tian Hui; Yao Shuo; Zong Qiugang; Qi Yu; He Jiansen

    2010-09-01

    The interaction between interplanetary small-scale magnetic flux ropes and the magnetic field in the ambient solar wind is an important topic in the understanding of the evolution of magnetic structures in the heliosphere. Through a survey of 125 previously reported small flux ropes from 1995 to 2005, we find that 44 of them reveal clear signatures of Alfvenic fluctuations and thus classify them as Alfven wave trains rather than flux ropes. Signatures of magnetic reconnection, generally including a plasma jet of {approx}30 km s{sup -1} within a magnetic field rotational region, are clearly present at boundaries of about 42% of the flux ropes and 14% of the wave trains. The reconnection exhausts are often observed to show a local increase in the proton temperature, density, and plasma beta. About 66% of the reconnection events at flux rope boundaries are associated with a magnetic field shear angle larger than 90{sup 0} and 73% of them reveal a decrease of 20% or more in the magnetic field magnitude, suggesting a dominance of anti-parallel reconnection at flux rope boundaries. The occurrence rate of magnetic reconnection at flux rope boundaries through the years 1995-2005 is also investigated and we find that it is relatively low around the solar maximum and much higher when approaching solar minima. The average magnetic field depression and shear angle for reconnection events at flux rope boundaries also reveal a similar trend from 1995 to 2005. Our results demonstrate for the first time that boundaries of a substantial fraction of small-scale flux ropes have properties similar to those of magnetic clouds, in the sense that both of them exhibit signatures of magnetic reconnection. The observed reconnection signatures could be related either to the formation of small flux ropes or to the interaction between flux ropes and the interplanetary magnetic fields.

  7. 4914 IEEE TRANSACTIONS ON MAGNETICS, VOL 32, NO 5, SEPTEMBER 1996 e Duality that Relates Magnetic Noise to Electric Shot Noise

    E-print Network

    Paperno, Eugene

    4914 IEEE TRANSACTIONS ON MAGNETICS, VOL 32, NO 5, SEPTEMBER 1996 e Duality that Relates Magnetic - Statistical treatment of the succession in time of the Barkhausen-noise pulses shows that magnetic noise current through the component. Hence, it is intriguing to relate in the same manner the magnetic

  8. Sizing of Multiple Cracks Using Magnetic Flux Leakage Measurements

    E-print Network

    Reilly, James P.

    of the cracks. Then, an inversion procedure based on space mapping (SM) is used in order to estimate the crack, magnetic flux leakage (MFL), edge detection, space mapping optimization. 1. Introduction Magnetic, erosion and abrasive wear. In most practical cases, the MFL technique is used to measure cracks having

  9. A low-noise ferrite magnetic shield T. W. Kornack,a

    E-print Network

    Romalis, Mike

    shields do not generate magnetic noise,4 but thermal radiation shields required for their use with room-temperature of magnetic permeability at low frequency and generate magnetization noise with a 1/ f power spectrum.5 for this magnetization noise based on independently measured complex permeabil- ity of the ferrite material. To aid

  10. Sigmoidal equilibria and eruptive instabilities in laboratory magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.

    2013-12-01

    The Magnetic Reconnection Experiment (MRX) has recently been modified to study quasi-statically driven line-tied magnetic flux ropes in the context of storage-and-release eruptions in the corona. Detailed in situ magnetic measurements and supporting MHD simulations permit quantitative analysis of the plasma behavior. We find that the behavior of these flux ropes depends strongly on the properties of the applied potential magnetic field arcade. For example, when the arcade is aligned parallel to the flux rope footpoints, force free currents induced in the expanding rope modify the pressure and tension in the arcade, resulting in a confined, quiescent discharge with a saturated kink instability. When the arcade is obliquely aligned to the footpoints, on the other hand, a highly sigmoidal equilibrium forms that can dynamically erupt (see Fig. 1 and Fig. 2). To our knowledge, these storage-and-release eruptions are the first of their kind to be produced in the laboratory. A new 2D magnetic probe array is used to map out the internal structure of the flux ropes during both the storage and the release phases of the discharge. The kink instability and the torus instability are studied as candidate eruptive mechanisms--the latter by varying the vertical gradient of the potential field arcade. We also investigate magnetic reconnection events that accompany the eruptions. The long-term objective of this work is to use internal magnetic measurements of the flux rope structure to better understand the evolution and eruption of comparable structures in the corona. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the Center for Magnetic Self-Organization (CMSO). Qualitative sketches of flux ropes formed in (1) a parallel potential field arcade; and (2) an oblique potential field arcade. One-dimensional magnetic measurements from (1) a parallel arcade discharge that is confined; and (2) an oblique arcade discharge that erupts.

  11. Magnetic Flux Dynamics in Horizontally Cooled Superconducting Cavities

    E-print Network

    Martinello, M; Grassellino, A; Crawford, A C; Melnychuk, O; Romanenko, A; Sergatkov, D A

    2015-01-01

    Previous studies on magnetic flux expulsion as a function of cooling details have been performed for superconducting niobium cavities with the cavity beam axis placed parallel respect to the helium cooling flow, and findings showed that for sufficient cooling thermogradients all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper we investigate the flux trapping and its impact on radio frequency surface resistance when the resonators are positioned perpendicularly to the helium cooling flow, which is representative of how superconducting radio-frequency (SRF) cavities are cooled in an accelerator. We also extend the studies to different directions of applied magnetic field surrounding the resonator. Results show that in the cavity horizontal configuration there is a different impact of the various field components on the final surface resistance, and that several parameters have to be considered to understand flux dynamics. A newly discovered phenomenon of concent...

  12. Effect of magnetic geometry on ELM heat flux profiles

    NASA Astrophysics Data System (ADS)

    Lasnier, C. J.; Leonard, A. W.; Petrie, T. W.; Watkins, J. G.

    2001-03-01

    In this paper, we explore how precisely the magnetic up/down symmetry must be controlled to insure sharing of edge localized mode (ELM) heat flux between upper and lower divertors in a double-null tokamak. We show for DIII-D, using infrared thermography, that the spatial distribution of Type-I ELM energy is less strongly affected by variations in magnetic geometry than the time-averaged peak heat flux in attached discharges. The degree of control necessary to share ELM heat flux deposition equally between divertors was less stringent than the control needed to balance the time-averaged heat flux. ELM energy is transported more than four times further into the scrape-off layer (SOL) than the time-averaged heat flux.

  13. Effect of Magnetic Geometry on ELM Heat Flux Profiles

    SciTech Connect

    Lasnier, C.J.; Leonard, A.W.; Petrie, T.W.; Watkins, J.G.

    2000-05-15

    In this paper we explore how precisely the magnetic up/down symmetry must be controlled to insure sharing of edge localized mode (ELM) heat flux between upper and lower diverters in a double-null tokamak. We show for DIII-D, using infrared thermography, that the spatial distribution of Type-I ELM energy is less strongly affected by variations in magnetic geometry than is the time-averaged peak heat flux in attached discharges. The degree of control necessary to share ELM heat flux deposition equally between diverters was less stringent than the control needed to balance the time averaged heat flux. ELM energy is transported more than four times further into the scrape-off layer than the time-averaged heat flux.

  14. Disentangling the magnetic force noise contribution in LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    Magnetically-induced forces on the inertial masses on-board LISA Pathfinder are expected to be one of the dominant contributions to the mission noise budget, accounting for up to 40%. The origin of this disturbance is the coupling of the residual magnetization and susceptibility of the test masses with the environmental magnetic field. In order to fully understand this important part of the noise model, a set of coils and magnetometers are integrated as a part of the diagnostics subsystem. During operations a sequence of magnetic excitations will be applied to precisely determine the coupling of the magnetic environment to the test mass displacement using the on-board magnetometers. Since no direct measurement of the magnetic field in the test mass position will be available, an extrapolation of the magnetic measurements to the test mass position will be carried out as a part of the data analysis activities. In this paper we show the first results on the magnetic experiments during an end- to-end LISA Pathfinder simulation, and we describe the methods under development to map the magnetic field on-board.

  15. Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinis, Benjamin

    1989-01-01

    The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.

  16. The Catastrophe of Coronal Magnetic Flux Ropes in CMEs

    NASA Astrophysics Data System (ADS)

    Hu, Y. Q.

    A brief review is given on the progress made in the study of the catastrophe of coronal magnetic flux ropes with implication in coronal mass ejections (CMEs). Relevant studies have been so far limited to 2.5-D cases, with a flux rope levitating in the corona, either parallel to the photosphere in Cartesian geometry or encircling the Sun like a torus in spherical geometry. The equilibrium properties of the system depend on the features of the flux rope and the surrounding background state. Under certain circumstances, the flux rope exhibits a catastrophic behavior, namely, the rope loses equilibrium and erupts upward upon an infinitesimal variation of any control parameter associated with the background state or the flux rope. The magnetic energy of the system right at the catastrophic point may exceed the corresponding open field energy so that after the background field is opened up by the erupting flux rope, a certain amount of magnetic free energy is left for the heating and acceleration of coronal plasma against gravity. The flux rope model has been used to reveal the common features of CMEs and to simulate typical CME events, proving to be a promising mechanism for the initiation of CMEs. Incidentally, the Aly conjecture on the maximum magnetic energy of force-free fields places a serious constraint on 2.5-D flux models. Nevertheless, current sheets must form during a catastrophe on the Alfvén timescale, and magnetic reconnection across the newly formed current sheets may contribute to circumventing such a constraint. In this sense, the catastrophe simply plays a role of driver for the fast magnetic reconnection, and a combination of them is thus responsible for the initiation of CMEs.

  17. RATES OF PHOTOSPHERIC MAGNETIC FLUX CANCELLATION MEASURED WITH HINODE

    SciTech Connect

    Park, Soyoung; Chae, Jongchul; Litvinenko, Yuri E.

    2009-10-10

    Photospheric magnetic flux cancellation on the Sun is generally believed to be caused by magnetic reconnection occurring in the low solar atmosphere. Individual canceling magnetic features are observationally characterized by the rate of flux cancellation. The specific cancellation rate, defined as the rate of flux cancellation divided by the interface length, gives an accurate estimate of the electric field in the reconnecting current sheet. We have determined the specific cancellation rate using the magnetograms taken by the Solar Optical Telescope (SOT) aboard the Hinode satellite. The specific rates determined with SOT turned out to be systematically higher than those based on the data taken by the Michelson Doppler Imager (MDI) aboard the Solar and Heliospheric Observatory. The median value of the specific cancellation rate was found to be 8 x 10{sup 6} G cm s{sup -1}-a value four times that obtained from the MDI data. This big difference is mainly due to a higher angular resolution and better sensitivity of the SOT, resulting in magnetic fluxes up to five times larger than those obtained from the MDI. The higher rates of flux cancellation correspond to either faster inflows or stronger magnetic fields of the reconnection inflow region, which may have important consequences for the physics of photospheric magnetic reconnection.

  18. The Solar Internetwork. I. Contribution to the Network Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Goši?, M.; Bellot Rubio, L. R.; Orozco Suárez, D.; Katsukawa, Y.; del Toro Iniesta, J. C.

    2014-12-01

    The magnetic network (NE) observed on the solar surface harbors a sizable fraction of the total quiet Sun flux. However, its origin and maintenance are not well known. Here we investigate the contribution of internetwork (IN) magnetic fields to the NE flux. IN fields permeate the interior of supergranular cells and show large emergence rates. We use long-duration sequences of magnetograms acquired by Hinode and an automatic feature tracking algorithm to follow the evolution of NE and IN flux elements. We find that 14% of the quiet Sun (QS) flux is in the form of IN fields with little temporal variations. IN elements interact with NE patches and modify the flux budget of the NE either by adding flux (through merging processes) or by removing it (through cancellation events). Mergings appear to be dominant, so the net flux contribution of the IN is positive. The observed rate of flux transfer to the NE is 1.5 × 1024 Mx day-1 over the entire solar surface. Thus, the IN supplies as much flux as is present in the NE in only 9-13 hr. Taking into account that not all the transferred flux is incorporated into the NE, we find that the IN would be able to replace the entire NE flux in approximately 18-24 hr. This renders the IN the most important contributor to the NE, challenging the view that ephemeral regions are the main source of flux in the QS. About 40% of the total IN flux eventually ends up in the NE.

  19. The solar internetwork. I. Contribution to the network magnetic flux

    SciTech Connect

    Goši?, M.; Rubio, L. R. Bellot; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Katsukawa, Y.

    2014-12-10

    The magnetic network (NE) observed on the solar surface harbors a sizable fraction of the total quiet Sun flux. However, its origin and maintenance are not well known. Here we investigate the contribution of internetwork (IN) magnetic fields to the NE flux. IN fields permeate the interior of supergranular cells and show large emergence rates. We use long-duration sequences of magnetograms acquired by Hinode and an automatic feature tracking algorithm to follow the evolution of NE and IN flux elements. We find that 14% of the quiet Sun (QS) flux is in the form of IN fields with little temporal variations. IN elements interact with NE patches and modify the flux budget of the NE either by adding flux (through merging processes) or by removing it (through cancellation events). Mergings appear to be dominant, so the net flux contribution of the IN is positive. The observed rate of flux transfer to the NE is 1.5 × 10{sup 24} Mx day{sup –1} over the entire solar surface. Thus, the IN supplies as much flux as is present in the NE in only 9-13 hr. Taking into account that not all the transferred flux is incorporated into the NE, we find that the IN would be able to replace the entire NE flux in approximately 18-24 hr. This renders the IN the most important contributor to the NE, challenging the view that ephemeral regions are the main source of flux in the QS. About 40% of the total IN flux eventually ends up in the NE.

  20. Flow instabilities of magnetic flux tubes. IV. Flux storage in the solar overshoot region

    NASA Astrophysics Data System (ADS)

    I??k, E.; Holzwarth, V.

    2009-12-01

    Context: Flow-induced instabilities of magnetic flux tubes are relevant to the storage of magnetic flux in the interiors of stars with outer convection zones. The stability of magnetic fields in stellar interiors is of importance to the generation and transport of solar and stellar magnetic fields. Aims: We consider the effects of material flows on the dynamics of toroidal magnetic flux tubes located close to the base of the solar convection zone, initially within the overshoot region. The problem is to find the physical conditions in which magnetic flux can be stored for periods comparable to the dynamo amplification time, which is of the order of a few years. Methods: We carry out nonlinear numerical simulations to investigate the stability and dynamics of thin flux tubes subject to perpendicular and longitudinal flows. We compare the simulations with the results of simplified analytical approximations. Results: The longitudinal flow instability induced by the aerodynamic drag force is nonlinear in the sense that the growth rate depends on the perturbation amplitude. This result is consistent with the predictions of linear theory. Numerical simulations without friction show that nonlinear Parker instability can be triggered below the linear threshold of the field strength, when the difference in superadiabaticity along the tube is sufficiently large. A localised downflow acting on a toroidal tube in the overshoot region leads to instability depending on the parameters describing the flow, as well as the magnetic field strength. We determined ranges of the flow parameters for which a linearly Parker-stable magnetic flux tube is stored in the middle of the overshoot region for a period comparable to the dynamo amplification time. Conclusions: The longitudinal flow instability driven by frictional interaction of a flux tube with its surroundings is relevant to determining the storage time of magnetic flux in the solar overshoot region. The residence time for magnetic flux tubes with 2 × 1021 Mx in the convective overshoot layer can be comparable to the dynamo amplification time, provided that the average speed and the duration of an external downflow do not exceed about 50 m s -1 and 100 days, respectively, and that the lateral extension of the flow is smaller than about 10°. Appendix C and movies are only available in electronic form at http://www.aanda.org

  1. Spin-dependent shot noise in magnetic graphene superlattice

    NASA Astrophysics Data System (ADS)

    Sattari, Farhad

    2015-10-01

    We study the spin-dependent shot noise properties in magnetic graphene superlattice with Rashba spin-orbit interaction (RSOI). The magnetic field generated by N parallel ferromagnets (FM) deposited on a dielectric layer. We consider two types of magnetic profiles: the FM stripes with magnetization parallel (P) or antiparallel (AP) perpendicular to the graphene. It is found that the shot noise of a spin state can be efficiently controlled by the number of barrier, RSOI strength and magnetic field. In the first case the Fano factor shows a peak with value approximately F = 1/3 for the both spin-up and spin-down electrons at new Dirac-like point. The position of the new Dirac point is robust against the magnetic field and RSOI. In the second case the Fano factor increases by increasing the number of barriers, and plateau of the Fano factor is formed. The results indicate that there is a strong relationship between spin-dependent shot noise and the magnitude of the spin polarization.

  2. Magnetic flux density in the heliosphere through several solar cycles

    SciTech Connect

    Erd?s, G.; Balogh, A.

    2014-01-20

    We studied the magnetic flux density carried by solar wind to various locations in the heliosphere, covering a heliospheric distance range of 0.3-5.4 AU and a heliolatitudinal range from 80° south to 80° north. Distributions of the radial component of the magnetic field, B{sub R} , were determined over long intervals from the Helios, ACE, STEREO, and Ulysses missions, as well as from using the 1 AU OMNI data set. We show that at larger distances from the Sun, the fluctuations of the magnetic field around the average Parker field line distort the distribution of B{sub R} to such an extent that the determination of the unsigned, open solar magnetic flux density from the average (|B{sub R} |) is no longer justified. We analyze in detail two methods for reducing the effect of fluctuations. The two methods are tested using magnetic field and plasma velocity measurements in the OMNI database and in the Ulysses observations, normalized to 1 AU. It is shown that without such corrections for the fluctuations, the magnetic flux density measured by Ulysses around the aphelion phase of the orbit is significantly overestimated. However, the matching between the in-ecliptic magnetic flux density at 1 AU (OMNI data) and the off-ecliptic, more distant, normalized flux density by Ulysses is remarkably good if corrections are made for the fluctuations using either method. The main finding of the analysis is that the magnetic flux density in the heliosphere is fairly uniform, with no significant variations having been observed either in heliocentric distance or heliographic latitude.

  3. Colored-noise magnetization dynamics: from weakly to strongly correlated noise

    E-print Network

    Julien Tranchida; Pascal Thibaudeau; Stam Nicolis

    2015-11-06

    Statistical averaging theorems allow us to derive a set of equations for the averaged magnetization dynamics in the presence of colored (non-Markovian) noise. The non-Markovian character of the noise is described by a finite auto-correlation time, tau, that can be identified with the finite response time of the thermal bath to the system of interest. Hitherto, this model was only tested for the case of weakly correlated noise (when tau is equivalent or smaller than the integration timestep). In order to probe its validity for a broader range of auto-correlation times, a non-Markovian integration model, based on the stochastic Landau-Lifshitz-Gilbert equation is presented. Comparisons between the two models are discussed, and these provide evidence that both formalisms remain equivalent, even for strongly correlated noise (i.e. tau much larger than the integration timestep).

  4. Evaluation of surface decarburization depth by magnetic Barkhausen noise technique

    NASA Astrophysics Data System (ADS)

    Stupakov, O.; Perevertov, O.; Tomáš, I.; Skrbek, B.

    2011-06-01

    Industrially unfavorable process of steel surface decarburization was induced by annealing in air. Two methods of after-anneal surface treatment were used: an acid pickling and a sand blasting. The obtained decarburized layers were examined by optical microscope, wave dispersive spectrometer, and surface X-ray diffraction method. Magnetic Barkhausen noise technique was tested for applicability of non-destructive characterization of the decarburized layer depth. A newly introduced parameter, Barkhausen noise coercivity, was proposed for practical use due to its sensitivity to decarburization and stability to measurement conditions. Other magnetic parameters, e.g. number of Barkhausen noise counts, were found to be sensitive to the compressive residual stress caused by the sand blasting.

  5. Superpoissonian shot noise in organic magnetic tunnel junctions

    SciTech Connect

    Cascales, Juan Pedro; Martinez, Isidoro; Aliev, Farkhad G.; Hong, Jhen-Yong; Lin, Minn-Tsong; Szczepa?ski, Tomasz; Dugaev, Vitalii K.; Barna?, Józef

    2014-12-08

    Organic molecules have recently revolutionized ways to create new spintronic devices. Despite intense studies, the statistics of tunneling electrons through organic barriers remains unclear. Here, we investigate conductance and shot noise in magnetic tunnel junctions with 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) barriers a few nm thick. For junctions in the electron tunneling regime, with magnetoresistance ratios between 10% and 40%, we observe superpoissonian shot noise. The Fano factor exceeds in 1.5–2 times the maximum values reported for magnetic tunnel junctions with inorganic barriers, indicating spin dependent bunching in tunneling. We explain our main findings in terms of a model which includes tunneling through a two level (or multilevel) system, originated from interfacial bonds of the PTCDA molecules. Our results suggest that interfaces play an important role in the control of shot noise when electrons tunnel through organic barriers.

  6. The treatment of magnetic buoyancy in flux transport dynamo models

    E-print Network

    Choudhuri, Arnab Rai

    2015-01-01

    One important ingredient of flux transport dynamo models is the rise of the toroidal magnetic field through the convection zone due to magnetic buoyancy to produce bipolar sunspots and then the generation of the poloidal magnetic field from these bipolar sunspots due to the Babcock-Leighton mechanism. Over the years, two methods of treating magnetic buoyancy, a local method and a non-local method have been used widely by different groups in constructing 2D kinematic models of the flux transport dynamo. We review both these methods and conclude that neither of them is fully satisfactory, presumably because magnetic buoyancy is an inherently 3D process. We also point out so far we do not have proper understanding of why sunspot emergence is restricted to rather low latitudes.

  7. Magnetic clouds, helicity conservation, and intrinsic scale flux ropes

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Rust, D. M.

    1995-01-01

    An intrinsic-scale flux-rope model for interplanetary magnetic clouds, incorporating conservation of magnetic helicity, flux and mass is found to adequately explain clouds' average thermodynamic and magnetic properties. In spite their continuous expansion as they balloon into interplanetary space, magnetic clouds maintain high temperatures. This is shown to be due to magnetic energy dissipation. The temperature of an expanding cloud is shown to pass through a maximum above its starting temperature if the initial plasma beta in the cloud is less than 2/3. Excess magnetic pressure inside the cloud is not an important driver of the expansion as it is almost balanced by the tension in the helical field lines. It is conservation of magnetic helicity and flux that requires that clouds expand radially as they move away from the Sun. Comparison with published data shows good agreement between measured cloud properties and theory. Parameters determined from theoretical fits to the data, when extended back to the Sun, are consistent with the origin of interplanetary magnetic clouds in solar filament eruptions. A possible extension of the heating mechanism discussed here to heating of the solar corona is discussed.

  8. Casimir interactions between magnetic flux tubes in a dense lattice

    NASA Astrophysics Data System (ADS)

    Mazur, Dan; Heyl, Jeremy S.

    2015-03-01

    We use the worldline numerics technique to study a cylindrically symmetric model of magnetic flux tubes in a dense lattice and the nonlocal Casimir forces acting between regions of magnetic flux. Within a superconductor the magnetic field is constrained within magnetic flux tubes and if the background magnetic field is on the order the quantum critical field strength, Bk=m/2 e =4.4 ×1013 Gauss, the magnetic field is likely to vary rapidly on the scales where QED effects are important. In this paper, we construct a cylindrically symmetric toy model of a flux tube lattice in which the nonlocal influence of QED on neighboring flux tubes is taken into account. We compute the effective action densities using the worldline numerics technique. The numerics predict a greater effective energy density in the region of the flux tube, but a smaller energy density in the regions between the flux tubes compared to a locally constant-field approximation. We also compute the interaction energy between a flux tube and its neighbors as the lattice spacing is reduced from infinity. Because our flux tubes exhibit compact support, this energy is entirely nonlocal and predicted to be zero in local approximations such as the derivative expansion. This Casimir-Polder energy can take positive or negative values depending on the distance between the flux tubes, and it may cause the flux tubes in neutron stars to form bunches. In addition to the above results we also discuss two important subtleties of determining the statistical uncertainties within the worldline numerics technique. Firstly, the distributions generated by the worldline ensembles are highly non-Gaussian, and so the standard error in the mean is not a good measure of the statistical uncertainty. Secondly, because the same ensemble of worldlines is used to compute the Wilson loops at different values of T and xcm, the uncertainties associated with each computed value of the integrand are strongly correlated. We recommend a form of jackknife analysis which deals with both of these problems.

  9. THE EVOLUTION OF OPEN MAGNETIC FLUX DRIVEN BY PHOTOSPHERIC DYNAMICS

    SciTech Connect

    Linker, Jon A.; Lionello, Roberto; Mikic, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K. E-mail: lionel@predsci.com E-mail: titovv@predsci.com

    2011-04-20

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view, the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and coworkers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet-it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20 R{sub sun} to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions-the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open- and closed-field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a detached coronal hole forms, in apparent violation of the Antiochos conjecture. Further investigation reveals that this detached coronal hole is actually linked to the extended coronal hole by a separatrix footprint on the photosphere of zero width. Therefore, the essential idea of the conjecture is preserved, if we modify it to state that coronal holes in the same polarity region are always linked, either by finite width corridors or separatrix footprints. The implications of these results for interchange reconnection and the sources of the slow solar wind are briefly discussed.

  10. The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Lionello, Roberto; Mikic, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K.

    2010-01-01

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and co-workers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet (HCS) - it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20R solar to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington Rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions - the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open and closed field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a detached coronal hole forms, in apparent violation of the Antiochos conjecture. Further investigation reveals that this detached coronal hole is actually linked to the extended coronal hole by a separatrix footprint on the photosphere of zero width. Therefore, the essential idea of the conjecture is preserved, if we modify it to state that coronal holes in the same polarity region are always linked, either by finite width corridors or separatrix footprints. The implications of these results for interchange reconnection and the sources of the slow solar wind are briefly discussed.

  11. Correlated low-frequency electric and magnetic noise along the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Huff, R. L.; Menietti, J. D.; Burch, J. L.; Winningham, J. D.; Shawhan, S. D.

    1984-01-01

    Dynamics Explorer 1 measurements of intense low-frequency electric and magnetic noise observed at low altitudes over the auroral zone are described. The intensity of both the electric and magnetic fields decreases rapidly with increasing frequency. Most of the energy is at frequencies below the O(+) cyclotron frequency, and some evidence is found for a cutoff or change in spectral slope near that frequency. The magnetic to electric field ratio decreases rapidly with increasing radial distance and also decreases with increasing frequency. The polarization of the electric field in a plane perpendicular to the earth's magnetic field is essentially random. The transverse electric and magnetic fields are closely correlated, with the average Poynting flux directed toward the earth. The total electromagnetic power flow associated with the noise is substantial. Two general models are discussed to interpret these observations, one based on static electric and magnetic fields imbedded in the ionosphere and the other based on Alfven waves propagating along the auroral field lines.

  12. Z N twisted orbifold models with magnetic flux

    NASA Astrophysics Data System (ADS)

    Abe, Tomo-hiro; Fujimoto, Yukihiro; Kobayashi, Tatsuo; Miura, Takashi; Nishiwaki, Kenji; Sakamoto, Makoto

    2014-01-01

    We propose new backgrounds of extra dimensions to lead to four-dimensional chiral models with three generations of matter fermions, that is T 2 /Z N twisted orbifolds with magnetic fluxes. We consider gauge theory on six-dimensional space-time, which contains the T 2 /Z N orbifold with magnetic flux, Scherk-Schwarz phases and Wilson line phases. We classify all the possible Scherk-Schwarz and Wilson line phases on T 2 /Z N orbifolds with magnetic fluxes. The behavior of zero modes is studied. We derive the number of zero modes for each eigenvalue of the Z N twist, showing explicitly examples of wave functions. We also investigate Kaluza-Klein mode functions and mass spectra.

  13. Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope

    SciTech Connect

    Xia, C.; Keppens, R.; Guo, Y.

    2014-01-10

    The magnetic configuration hosting prominences and their surrounding coronal structure is a key research topic in solar physics. Recent theoretical and observational studies strongly suggest that a helical magnetic flux rope is an essential ingredient to fulfill most of the theoretical and observational requirements for hosting prominences. To understand flux rope formation details and obtain magnetic configurations suitable for future prominence formation studies, we here report on three-dimensional isothermal magnetohydrodynamic simulations including finite gas pressure and gravity. Starting from a magnetohydrostatic corona with a linear force-free bipolar magnetic field, we follow its evolution when introducing vortex flows around the main polarities and converging flows toward the polarity inversion line near the bottom of the corona. The converging flows bring the feet of different loops together at the polarity inversion line, where magnetic reconnection and flux cancellation happen. Inflow and outflow signatures of the magnetic reconnection process are identified, and thereby the newly formed helical loops wind around preexisting ones so that a complete flux rope grows and ascends. When a macroscopic flux rope is formed, we switch off the driving flows and find that the system relaxes to a stable state containing a helical magnetic flux rope embedded in an overlying arcade structure. A major part of the formed flux rope is threaded by dipped field lines that can stably support prominence matter, while the total mass of the flux rope is in the order of 4-5× 10{sup 14} g.

  14. Theory and Application of Magnetic Flux Leakage Pipeline Detection.

    PubMed

    Shi, Yan; Zhang, Chao; Li, Rui; Cai, Maolin; Jia, Guanwei

    2015-01-01

    Magnetic flux leakage (MFL) detection is one of the most popular methods of pipeline inspection. It is a nondestructive testing technique which uses magnetic sensitive sensors to detect the magnetic leakage field of defects on both the internal and external surfaces of pipelines. This paper introduces the main principles, measurement and processing of MFL data. As the key point of a quantitative analysis of MFL detection, the identification of the leakage magnetic signal is also discussed. In addition, the advantages and disadvantages of different identification methods are analyzed. Then the paper briefly introduces the expert systems used. At the end of this paper, future developments in pipeline MFL detection are predicted. PMID:26690435

  15. Magnetic Flux Leakage Method: Large-Scale Approximation

    E-print Network

    Pimenova, Anastasiya V; Levesley, Jeremy; Ivantsov, Andrey O; Elkington, Peter; Bacciarelli, Mark

    2015-01-01

    We consider the application of the magnetic flux leakage (MFL) method to the detection of defects in ferromagnetic (steel) tubulars. The problem setup corresponds to the cases where the distance from the casing and the point where the magnetic field is measured is small compared to the curvature radius of the undamaged casing and the scale of inhomogeneity of the magnetic field in the defect-free case. Mathematically this corresponds to the planar ferromagnetic layer in a uniform magnetic field oriented along this layer. Defects in the layer surface result in a strong deformation of the magnetic field, which provides opportunities for the reconstruction of the surface profile from measurements of the magnetic field. We deal with large-scale defects whose depth is small compared to their longitudinal sizes---these being typical of corrosive damage. Within the framework of large-scale approximation, analytical relations between the casing thickness profile and the measured magnetic field can be derived.

  16. On the Dynamics of Emerging Toroidal Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Fisher, G. H.; Deluca, E. E.

    1992-05-01

    We study the dynamic evolution of emerging toroidal magnetic flux rings in the solar convective envelope by carrying out 3D numerical simulations based on the thin flux tube approximation of Spruit. We find: 1)For an axisymmetric flux ring, the aerodynamic drag force experienced by the ring when moving with respect to the ambient fluid transfers no angular momentum to the ring. Therefore in both cases, with or without the drag force, the ring moves nearly parallel to the rotational axis of the sun and emerges at a latitude significantly poleward of sunspot zones, as pointed out by Choudhuri and Gilman. However, for a non-axisymmetric flux ring (i.e. with wave-like undulations along its circumference), the aerodynamic drag force can transfer angular momentum to the flux ring, and therefore reduces the latitude of flux emergence to within the observed sunspot latitudes. 2)As each apex of a flux loop rises due to the magnetic buoyancy force, gas inside the flux tube tends to diverge from the apex. In the meantime, however, the Coriolis force drives a flow within the flux tube opposite to the direction of rotation. Thus the point of maximum divergence in the flow within the tube is shifted from the apex into the leading side (in the direction of rotation) of the emerging loop. The evacuation of plasma from the leading side of the loop results in a much lower internal gas pressure there as compared to that in the following side at the same depth. Therefore, the magnetic field strength is stronger on the leading side. The numerical simulations show that the field strength in the leading side of the loop can be twice as large as that of the following side at the same depth. This result offers a simple explanation for the observed fact that the leading polarity of an active region is more compact, forms sunspots more easily, and has a longer life time than does the following polarity.

  17. Properties of Magnetic Helicity Flux in Turbulent Dynamos

    NASA Astrophysics Data System (ADS)

    Vishniac, Ethan T.; Shapovalov, Dmitry

    2014-01-01

    We study the flux of small-scale magnetic helicity in simulations of driven statistically homogeneous magnetohydrodynamic turbulence in a periodic box with an imposed large-scale shear. The simulations show that in the regime of strong dynamo action the eddy-scale magnetic helicity flux has only two significant terms: advective motion driven by the large-scale velocity field and the Vishniac-Cho (VC) flux which moves helicity across the magnetic field lines. The contribution of all the other terms is negligible. The VC flux is highly correlated with the large-scale electromotive force and is responsible for large-scale dynamo action, while the advective term is not. The VC flux is driven by the anisotropy of the turbulence. We derive analytical expressions for it in terms of the small-scale velocity or magnetic field. These expressions are used to predict the existence and strength of dynamo action for different turbulent anisotropies and tested against the results of the simulations.

  18. Hamiltonian magnetic reconnection with parallel electron heat flux dynamics

    NASA Astrophysics Data System (ADS)

    Grasso, D.; Tassi, E.

    2015-10-01

    > We analyse, both analytically and numerically, a two-dimensional six-field fluid model for collisionless magnetic reconnection, accounting for temperature and heat flux fluctuations along the direction of the magnetic guide field. We show that the model possesses a Hamiltonian structure with a non-canonical Poisson bracket. This bracket is characterized by the presence of six infinite families of Casimirs, associated with Lagrangian invariants. This reveals that the model can be reformulated as a system of advection equations, thus generalizing previous results obtained for Hamiltonian isothermal fluid models for reconnection. Numerical simulations indicate that the presence of heat flux and temperature fluctuations yields slightly larger growth rates and similar saturated island amplitudes, with respect to the isothermal models. For values of the sonic Larmor radius much smaller than the electron skin depth, heat flux fluctuations tend to be suppressed and temperature fluctuations follow density fluctuations. Increasing the sonic Larmor radius results in an increasing fraction of magnetic energy converted into heat flux, at the expense of temperature fluctuations. In particular, heat flux fluctuations tend to become relevant along the magnetic island separatrices. The qualitative structures associated with the electron field variables are also reinterpreted in terms of the rotation of the Lagrangian invariants of the system.

  19. Magnetic and Electric Dipole Constraints on Extra Dimensions and Magnetic Fluxes

    E-print Network

    Aaron J. Roy; Myron Bander

    2008-05-10

    The propagation of charged particles and gauge fields in a compact extra dimension contributes to $g-2$ of the charged particles. In addition, a magnetic flux threading this extra dimension generates an electric dipole moment for these particles. We present constraints on the compactification size and on the possible magnetic flux imposed by the comparison of data and theory of the magnetic moment of the muon and from limits on the electric dipole moments of the muon, neutron and electron.

  20. The origin of noise and magnetic hysteresis in crystalline permalloy ring-core fluxgate sensors

    NASA Astrophysics Data System (ADS)

    Narod, B. B.

    2014-06-01

    6-81.3 Mo permalloy, developed in the 1960s for use in high performance ring-core fluxgate sensors, remains the state-of-the-art for permalloy-cored fluxgate magnetometers. The magnetic properties of 6-81.3, namely magnetocrystalline and magnetoelastic anisotropies and saturation induction are all optimum in the Fe-Ni-Mo system. In such polycrystalline permalloy fluxgate sensors a single phenomenon may cause both fluxgate noise and magnetic hysteresis, explain Barkhausen jumps, remanence and coercivity, and avoid domain denucleation. The phenomenon, domain wall reconnection, is presented as part of a theoretical model. In the unmagnetized state a coarse-grain high-quality permalloy foil ideally forms stripe domains, which present at the free surface as parallel, uniformly spaced domain walls that cross the entire thickness of the foil. Leakage flux "in" and "out" of alternating domains is a requirement of the random orientation, grain-by-grain, of magnetic easy axes' angles with respect to the foil free surface. Its magnetostatic energy together with domain wall energy determines an energy budget to be minimized. Throughout the magnetization cycle the free surface domain pattern remains essentially unchanged, due to the magnetostatic energy cost such a change would elicit. Thus domain walls are "pinned" to free surfaces. Driven to saturation, domain walls first bulge then reconnect via Barkhausen jumps to form a new domain configuration this author has called "channel domains", that are attached to free surfaces. The approach to saturation now continues as reversible channel domain compression. Driving the permalloy deeper into saturation compresses the channel domains to arbitrarily small thickness, but will not cause them to denucleate. Returning from saturation the channel domain structure will survive through zero H, thus explaining remanence. The Barkhausen jumps being irreversible exothermic events are sources of fluxgate noise, powered by the energy available from domain wall reconnection. A simplified domain energy model can then provide a predictive relation between ring core magnetic properties and fluxgate sensor noise power. Four properties are predicted to affect noise power, two of which, are well known: saturation total magnetic flux density and magnetic anisotropy. The two additional properties are easy axes alignment and foil thickness. Flux density and magnetic anisotropy are primary magnetic properties determined by an alloy's chemistry and crystalline lattice properties. Easy axes alignment and foil thickness are secondary, geometrical properties related to an alloy's polycrystalline fabric and manufacture. Improvements to fluxgate noise performance can in principle be achieved by optimizing any of these four properties in such a way as to minimize magnetostatic energy. Fluxgate signal power is proportional to B-H loop curvature (d2B/dH2). The degree to which Barkhausen jumps coincide with loop curvature is a measure of noise that accompanies fluxgate signal. B-H loops with significant curvature beyond the open hysteresis loop may be used to advantage to acquire fluxgate signal with reduced noise.

  1. The origin of noise and magnetic hysteresis in crystalline permalloy ring-core fluxgate sensors

    NASA Astrophysics Data System (ADS)

    Narod, B. B.

    2014-09-01

    Developed in the 1960s for use in high-performance ring-core fluxgate sensors, 6-81.3 Mo permalloy remains the state of the art for permalloy-cored fluxgate magnetometers. The magnetic properties of 6-81.3, namely magnetocrystalline and magnetoelastic anisotropies and saturation induction, are all optimum in the Fe-Ni-Mo system. In such polycrystalline permalloy fluxgate sensors, a single phenomenon may cause both fluxgate noise and magnetic hysteresis; explain Barkhausen jumps, remanence and coercivity; and avoid domain denucleation. This phenomenon, domain wall reconnection, is presented as part of a theoretical model. In the unmagnetized state a coarse-grain high-quality permalloy foil ideally forms stripe domains, which present at the free surface as parallel, uniformly spaced domain walls that cross the entire thickness of the foil. Leakage flux "in" and "out" of alternating domains is a requirement of the random orientation, grain by grain, of magnetic easy axes' angles with respect to the foil free surface. Its magnetostatic energy together with domain wall energy determines an energy budget to be minimized. Throughout the magnetization cycle the free-surface domain pattern remains essentially unchanged, due to the magnetostatic energy cost such a change would elicit. Thus domain walls are "pinned" to free surfaces. Driven to saturation, domain walls first bulge then reconnect via Barkhausen jumps to form a new domain configuration that I have called "channel domains", which are attached to free surfaces. The approach to saturation now continues as reversible channel domain compression. Driving the permalloy deeper into saturation compresses the channel domains to arbitrarily small thickness, but will not cause them to denucleate. Returning from saturation the channel domain structure will survive through zero H, thus explaining remanence. The Barkhausen jumps, being irreversible exothermic events, are sources of fluxgate noise powered by the energy available from domain wall reconnection. A simplified domain energy model can then provide a predictive relation between ring-core magnetic properties and fluxgate sensor noise power. Four properties are predicted to affect noise power, two of which are well known: saturation total magnetic flux density and magnetic anisotropy. The two additional properties are easy axes alignment and foil thickness. Flux density and magnetic anisotropy are primary magnetic properties determined by an alloy's chemistry and crystalline lattice properties. Easy axes alignment and foil thickness are secondary, geometrical properties related to an alloy's polycrystalline fabric and manufacture. Improvements to fluxgate noise performance can in principle be achieved by optimizing any of these four properties in such a way as to minimize magnetostatic energy. Fluxgate signal power is proportional to B - H loop curvature [d2B/dH2]. The degree to which Barkhausen jumps coincide with loop curvature is a measure of noise that accompanies the fluxgate signal. B - H loops with significant curvature beyond the open hysteresis loop may be used to advantage to acquire the fluxgate signal with reduced noise.

  2. Sausage Mode Propagation in a Thick Magnetic Flux Tube

    NASA Astrophysics Data System (ADS)

    Pardi, A.; Ballai, I.; Marcu, A.; Orza, B.

    2014-04-01

    The aim of this paper is to model the propagation of slow magnetohydrodynamic (MHD) sausage waves in a thick expanding magnetic flux tube in the context of the quiescent (VAL-C) solar atmosphere. The propagation of these waves is found to be described by the Klein-Gordon equation. Using the governing MHD equations and the VAL-C atmosphere model we study the variation of the cut-off frequency along and across the magnetic tube guiding the waves. Due to the radial variation of the cut-off frequency the flux tubes act as low frequency filters for the waves.

  3. Explosive instability and erupting flux tubes in a magnetized plasma

    PubMed Central

    Cowley, S. C.; Cowley, B.; Henneberg, S. A.; Wilson, H. R.

    2015-01-01

    The eruption of multiple flux tubes in a magnetized plasma is proposed as a mechanism for explosive release of energy in plasmas. A significant fraction of the linearly stable isolated flux tubes are shown to be metastable in a box model magnetized atmosphere in which ends of the field lines are embedded in conducting walls. The energy released by destabilizing such field lines can be a large proportion of the gravitational energy stored in the system. This energy can be released in a fast dynamical time. PMID:26339193

  4. Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Török, Tibor

    2013-12-01

    We present results from three-dimensional visco-resistive magnetohydrodynamic simulations of the emergence of a convection zone magnetic flux tube into a solar atmosphere containing a pre-existing dipole coronal field, which is orientated to minimize reconnection with the emerging field. We observe that the emergence process is capable of producing a coronal flux rope by the transfer of twist from the convection zone, as found in previous simulations. We find that this flux rope is stable, with no evidence of a fast rise, and that its ultimate height in the corona is determined by the strength of the pre-existing dipole field. We also find that although the electric currents in the initial convection zone flux tube are almost perfectly neutralized, the resultant coronal flux rope carries a significant net current. These results suggest that flux tube emergence is capable of creating non-current-neutralized stable flux ropes in the corona, tethered by overlying potential fields, a magnetic configuration that is believed to be the source of coronal mass ejections.

  5. Advection of magnetic flux by accretion disks around neutron stars

    NASA Astrophysics Data System (ADS)

    Flores-Tulian, S.; Reisenegger, A.

    The aim of our research is to address why millisecond pulsars have relatively weak surface magnetic fields, of about 10^8 G, with a narrow spread. We propose that the accretion of plasma from the companion star fully screens the original neutron star field, but the accretion disk carries additional magnetic flux from the companion star, or itself can generate field by means of dynamo processes. For a strongly magnetized star, the field prevents the disk from approaching the star. The accretion is along the field lines and deposits the matter on the polar cap. Then, the accreted plasma flows, dragging with itself the magnetic field lines, from the pole to the equator (Payne & Melatos 2004). In a following stage, when the star becomes non-magnetic, because the field has been buried, the disk touches the star. We suggest that some effective mechanism of magnetic flux transport such as that proposed by Spruit & Uzdensky 2005 (or Bisnovatyi-Kogan & Lovelace 2007), operates and necessarily leads to a "strongly magnetized disk''. It becomes laminar because the magneto-rotational instability saturates (it is considered to be responsible for turbulence in the disk), and the magnetic difussivity is negligible. Then, the loss of angular momentum allowing the accretion is only caused by the magneto-centrifugal disk-wind (Blandford & Payne 1982). Meanwhile, the wind-driven transport of the magnetic flux by the disk re-magnetizes the star. This process continues until the Lorentz force due to the star's magnetic field forbids any further accretion of matter and magnetic flux, in the Ideal Magneto-Hydro-Dynamics approach. Additional of material can fall onto the star (but at lower rate) if some instability process sets in, allowing the diffusion of mass through the magnetic field lines (e.g the Interchange Instability, Spruit & Taam 1990). All these processes might lead to an asymptotic magnetic field of 10^8 G,as is inferred from observations. We are developing a self-consistent theoretical model to describe the above dynamical processes taking into account the interaction among the star, the strongly magnetized disk, and the disk-wind, justifying our hypothesis.

  6. Identification of different processes in magnetization dynamics of API steels using magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Pérez-Benítez, J. A.; Espina-Hernández, J. H.; Le Man, Tu; Caleyo, F.; Hallen, J. M.

    2015-07-01

    This work presents a method to identify processes in magnetization dynamics using the angular dependence of the magnetic Barkhausen noise. The analysis reveals that three different processes of the magnetization dynamics could be identified using the angular dependence of the magnetic Barkhausen noise energy. The first process is the reversed domain nucleation which is related to the magneto-crystalline energy of the material, and the second and third ones are associated with 180° and 90° domain walls motions, respectively. Additionally, two transition regions were identified and they are located between the regions associated with the aforementioned processes. The causes involving these processes are analyzed and a method for establishing their location in the Barkhausen noise signal with respect to the applied magnetic field intensity is proposed.

  7. FLUXCAP: A flux-coupled ac/dc magnetizing device

    E-print Network

    Gopman, Daniel B; Kent, Andrew D

    2012-01-01

    We report on an instrument for applying ac and dc magnetic fields by capturing the flux from a rotating permanent magnet and projecting it between two adjustable pole pieces. This can be an alternative to standard electromagnets for experiments with small samples or in probe stations in which an applied magnetic field is needed locally, with advantages that include a compact form-factor, very low power requirements and dissipation as well as fast field sweep rates. This flux capture instrument (FLUXCAP) can produce fields from -400 to +400 mT, with field resolution less than 1 mT. It generates static magnetic fields as well as ramped fields, with ramping rates as high as 10 T/s. We demonstrate the use of this apparatus for studying the magnetotransport properties of spin-valve nanopillars, a nanoscale device that exhibits giant magnetoresistance.

  8. A magnetic flux leakage NDE system for CANDU feeder pipes

    NASA Astrophysics Data System (ADS)

    Mak, Thomas Don

    This work examines the application of different magnetic flux leakage (MFL) inspection concepts to the non destructive evaluation (NDE) of residual (elastic) stresses in CANDURTM reactor feeder pipes. The stress sensitivity of three MFL inspection techniques was examined with flat plate samples, with stress-induced magnetic anisotropy (SMA) demonstrating the greatest stress sensitivity. A prototype SMA testing system was developed to apply magnetic NDE to feeders. The system consists of a flux controller that incorporates feedback from a wire coil and a Hall sensor (FCV2), and a magnetic anisotropy prototype (MAP) probe. The combination of FCV2 and the MAP probe was shown to provide SMA measurements on feeder pipe samples and predict stresses from SMA measurements with a mean accuracy of +/-38MPa.

  9. Models for the probability densities of the turbulent plasma flux in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Bergsaker, A. S.; Fredriksen, Å; Pécseli, H. L.; Trulsen, J. K.

    2015-10-01

    Observations of turbulent transport in magnetized plasmas indicate that plasma losses can be due to coherent structures or bursts of plasma rather than a classical random walk or diffusion process. A model for synthetic data based on coherent plasma flux events is proposed, where all basic properties can be obtained analytically in terms of a few control parameters. One basic parameter in the present case is the density of burst events in a long time-record, together with parameters in a model of the individual pulse shapes and the statistical distribution of these parameters. The model and its extensions give the probability density of the plasma flux. An interesting property of the model is a prediction of a near-parabolic relation between skewness and kurtosis of the statistical flux distribution for a wide range of parameters. The model is generalized by allowing for an additive random noise component. When this noise dominates the signal we can find a transition to standard results for Gaussian random noise. Applications of the model are illustrated by data from the toroidal Blaamann plasma.

  10. Magnetic flux-load current interactions in ferrous conductors

    NASA Astrophysics Data System (ADS)

    Cannell, Michael J.; McConnell, Richard A.

    1992-06-01

    A modeling technique has been developed to account for interactions between load current and magnetic flux in an iron conductor. Such a conductor would be used in the active region of a normally conducting homopolar machine. This approach has been experimentally verified and its application to a real machine demonstrated. Additionally, measurements of the resistivity of steel under the combined effects of magnetic field and current have been conducted.

  11. Numerical Simulation of Interacting Magnetic Flux Ropes Dusan Odstrcil

    E-print Network

    California at Berkeley, University of

    /3, initial temperature T0 = 3/5, initial density 0 = 1, and initial background magnetic field B0 = 0.5. We CS 0 = ´T0µ1 2 = 1 and the Alfven velocityCA 0 = B0 0 1 2 = 0.5. Two magnetic flux ropes (clouds), left and right, are considered. The left cloud has the central field strength BL = 3 ¢ B0 and plasma

  12. Low-Noise YBa2Cu3O7 Nano-SQUIDs for Performing Magnetization-Reversal Measurements on Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Schwarz, T.; Wölbing, R.; Reiche, C. F.; Müller, B.; Martínez-Pérez, M. J.; Mühl, T.; Büchner, B.; Kleiner, R.; Koelle, D.

    2015-04-01

    We fabricate YBa2Cu3O7 (YBCO) direct-current nano- superconducting quantum-interference devices (nano-SQUIDs) based on grain-boundary Josephson junctions by focused-ion-beam patterning. Characterization of electric transport and noise properties at 4.2 K in a magnetically shielded environment yields a very small inductance L of a few pH for an optimized device geometry. This, in turn, results in very low values of flux noise <50 n ?0/Hz1 /2 in the thermal white-noise limit, which yields spin sensitivities of a few ?B/Hz1 /2 (?0 is the magnetic flux quantum, and ?B is the Bohr magneton). We observe frequency-dependent excess noise up to 7 MHz, which can be eliminated only partially by bias reversal readout. This behavior indicates the presence of fluctuators of unknown origin, possibly related to defect-induced spins in the SrTiO3 substrate. We demonstrate the potential of using YBCO nano-SQUIDs for the investigation of small spin systems, by placing a 39-nm-diameter Fe nanowire encapsulated in a carbon nanotube on top of a nonoptimized YBCO nano-SQUID and by measuring the magnetization reversal of the Fe nanowire via the change of magnetic flux coupled to the nano-SQUID. The measured flux signals upon magnetization reversal of the Fe nanowire are in very good agreement with estimated values, and the determined switching fields indicate magnetization reversal of the nanowire via curling mode.

  13. Relativistic magnetic monopole flux constraints from RICE

    SciTech Connect

    Hogan, D. P.; Besson, D. Z.; Ralston, J. P.; Kravchenko, I.; Seckel, D.

    2008-10-01

    We report an upper limit on the flux of relativistic monopoles based on the nonobservation of in-ice showers by the Radio Ice Cherenkov Experiment (RICE) at the South Pole. We obtain a 95% C.L. limit of order 10{sup -18} (cm{sup 2} s sr){sup -1} for intermediate-mass monopoles of 10{sup 7}{<=}{gamma}{<=}10{sup 12} at the anticipated energy E{sub tot}=10{sup 16} GeV. This bound is over an order of magnitude stronger than all previously published experimental limits for this range of boost parameters {gamma} and exceeds 2 orders of magnitude improvement over most of the range. We review the physics of radio detection, describe a Monte Carlo simulation including continuous and stochastic energy losses, and compare to previous experimental limits.

  14. Relativistic Magnetic Monopole Flux Constraints from RICE

    E-print Network

    D. P. Hogan; D. Z. Besson; J. P. Ralston; I. Kravchenko; D. Seckel

    2008-11-01

    We report an upper limit on the flux of relativistic monopoles based on the non-observation of in-ice showers by the Radio Ice Cherenkov Experiment (RICE) at the South Pole. We obtain a 95% C.L. limit of order 10^{-18}/(cm^2-s-sr) for intermediate mass monopoles of 10^7

  15. Origin of 1/f noise peaks of YBa{sub 2}Cu{sub 3}O{sub x} films in a magnetic field

    SciTech Connect

    Kang, W.N.; Kim, D.H.; Park, J.H.

    1994-02-01

    The temperature and magnetic field dependence of 1/f noise has been measured in epitaxial YBa{sub 2}Cu{sub 3}O{sub x} films. In a magnetic field, two noise peaks were observed as temperature decreases; one at higher temperature was found to match the thermal fluctuation of the sample resistance and the other near the foot of the transition was found to be magnetic-field dependent. The location of the latter was shifted toward low temperature and the peak height was decreased as a magnetic field increased. In a zero field only one peak from the resistance fluctuation was observed. We show that the field-dependent noises are due to flux motion interacting with the pinning potential. A classical model is used to explain the field-induced noise peaks. We interpret that the temperature dependences of the flux bundle size and the sample resistance are the reasons for the noise peaks, and a rough estimation of the temperature and field dependence of the flux bundle size is presented. Any possible relationship between the noise peaks and the flux-line-lattice phase transition is also discussed.

  16. Storage of Magnetic Flux in the Solar Convective Overshoot Region

    NASA Astrophysics Data System (ADS)

    Isik, E.; Holzwarth, V.; Schüssler, M.

    2008-09-01

    The stability of magnetic fields in the solar interior is of critical importance for dynamo models. Instabilities induced by external flows are relevant for the storage of magnetic field in the stably stratified lower convective overshoot region. We have investigated the effects of finite perturbations and external flows on the stability and dynamics of thin magnetic flux tubes in mechanical equilibrium in the overshoot region. We have used a model convection zone based on the non-local mixing length approximation. Numerical simulations have shown that the friction-induced flux tube instability occurs already for field strengths well below the critical value for the onset of Parker instability, though with significantly longer growth times. Above a certain amplitude of the radial perturbation, nonlinear effects introduced by the external stratification become sufficient to affect the further growth of the instability. We have carried out a systematic parameter study with flux tubes subject to external radial flows. We have obtained ranges for the maximum speed and the duration of the flow, which allow for the storage of magnetic flux tubes with near-equipartition field strengths in the overshoot region, for times comparable with the dynamo amplification time.

  17. Measuring the Magnetic Flux Density in the CMS Steel Yoke

    E-print Network

    V. I. Klyukhin; N. Amapane; A. Ball; B. Curé; A. Gaddi; H. Gerwig; A. Hervé; M. Mulders; R. Loveless

    2012-12-06

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line and integrated off-line to obtain the magnetic flux in the steel yoke close to the muon chambers at full excitations of the solenoid. The 3-D Hall sensors installed on the steel-air interfaces give supplementary information on the components of magnetic field and permit to estimate the remanent field in steel to be added to the magnetic flux density obtained by the voltages integration. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The results of the measurements and calculations are presented, compared and discussed.

  18. Localization by interference: Square billiard with a magnetic flux

    E-print Network

    R. Narevich; R. E. Prange; Oleg Zaitsev

    1999-03-11

    Eigenstates and energy levels of a square quantum billiard in a magnetic field, or with an Aharonov-Bohm flux line, are found in quasiclassical approximation, that is, for high enough energy. Explicit formulas for the energy levels and wavefunctions are found. There are localized states, never before noticed in this well studied problem, whose localization is due to phase interference, even though there is no or negligible classical effect of the magnetic field. These and related states account almost entirely for the magnetic response in certain temperature ranges, and thus have a bearing on the experiments of Levy et al.

  19. Noise reduction from magnetic resonance images using nonseperable transforms

    NASA Astrophysics Data System (ADS)

    Nezhadarya, Ehsan; Shamsollahi, Mohammad Bagher

    2006-03-01

    Multi-scale transforms have got a lot of applications in image processing, in recent years. Wavelet transform is a powerful multiscale transform for denoising noisy signals and images, but the usual two-dimensional separable wavelets are sub-optimal. These separable wavelet transforms can successfully identify zero dimensional singularities in images, but can weakly identify one dimensional singularities such as edges, curves and lines. In this sense, non-separable transforms such as Ridgelet and Curvelet transforms are proposed by Candes and Donoho. The coefficients produced by these non-separable transforms have shown to be sparser than wavelet coefficients. This fact results in better denoising capabilities than wavelet transform. These new non-separable transforms can identify direction in lines and curves, because of special structure of their basis elements. Basically, Magnetic Resonance images are probable to have Rician noise. In some special cases, this kind of noise can be supposed to be white Gaussian noise. In this paper, a new method for denoising MR images is proposed. This method is based on Monoscale Ridgelet transform. It is shown that this two transform can successfully denoise MR images embedded in white Gaussian noise. The results are better in comparison with usual wavelet denoising methods, based on both visual perception and signal-to-noise ratio.

  20. Flux noise resulting from vortex avalanches using a simple kinetic model

    SciTech Connect

    Mohler, G.; Stroud, D.

    1999-10-01

    We have carried out a model calculation of the flux noise produced by vortex avalanches in a type-II superconductor, using a simple kinetic model proposed by Bassler and Paczuski. Over a broad range of frequencies, we find that the flux noise S{sub {Phi}}({omega}) has a power-law dependence on frequency, S{sub {Phi}}({omega}){approximately}{omega}{sup {minus}s}, with s{approximately}1.4 in reasonable agreement with experiment. In addition, for small lattices, the calculated S{sub {Phi}}({omega}) has a high-frequency knee, which is seen in some experiments, and which is due to the finite lattice size. Deviations between calculation and experiment are attributed mostly to uncertainties in the measured critical current densities and pinning strengths of the experimental samples. {copyright} {ital 1999} {ital The American Physical Society}

  1. Materials for efficient high-flux magnetic bearing actuators

    NASA Technical Reports Server (NTRS)

    Williams, M. E.; Trumper, D. L.

    1994-01-01

    Magnetic bearings have demonstrated the capability for achieving positioning accuracies at the nanometer level in precision motion control stages. This makes possible the positioning of a wafer in six degrees of freedom with the precision necessary for photolithography. To control the position of an object at the nanometer level, a model of the magnetic bearing actuator force-current-airgap relationship must be accurately obtained. Additionally, to reduce thermal effects the design of the actuator should be optimized to achieve maximum power efficiency and flux density. Optimization of the actuator is accomplished by proper pole face sizing and utilizing a magnetic core material which can be magnetized to the highest flux density with low magnetic loss properties. This paper describes the construction of a magnetic bearing calibration fixture designed for experimental measurement of the actuator force characteristics. The results of a material study that review the force properties of nickel-steel, silicon-steel, and cobalt-vanadium-iron, as they apply to magnetic bearing applications are also presented.

  2. Fractional quantization of the magnetic flux in cylindrical unconventional superconductors.

    PubMed

    Loder, F; Kampf, A P; Kopp, T

    2013-07-26

    The magnetic flux threading a conventional superconducting ring is typically quantized in units of ?0=hc/2e. The factor of 2 in the denominator of ?0 originates from the existence of two different types of pairing states with minima of the free energy at even and odd multiples of ?0. Here we show that spatially modulated pairing states exist with energy minima at fractional flux values, in particular, at multiples of ?0/2. In such states, condensates with different center-of-mass momenta of the Cooper pairs coexist. The proposed mechanism for fractional flux quantization is discussed in the context of cuprate superconductors, where hc/4e flux periodicities were observed. PMID:23931397

  3. Convective Intensification of Magnetic Flux Tubes in Stellar Photospheres

    NASA Astrophysics Data System (ADS)

    Rajaguru, S. P.; Kurucz, R. L.; Hasan, S. S.

    2002-02-01

    The convective collapse of thin magnetic flux tubes in the photospheres of Sun-like stars is investigated using realistic models of the superadiabatic upper convection zone layers of these stars. The strengths of convectively stable flux tubes are computed as a function of surface gravity and effective temperature. We find that while stars with Teff>=5500 K and logg>=4.0 show flux tubes highly evacuated of gas, and hence strong field strengths due to convective collapse, cooler stars exhibit flux tubes with lower field strengths. Observations reveal the existence of field strengths close to thermal equipartition limits even in cooler stars, implying highly evacuated tubes, for which we suggest possible reasons.

  4. Black hole jets without large-scale net magnetic flux

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Giannios, Dimitrios; Beloborodov, Andrei M.

    2015-01-01

    We propose a scenario for launching relativistic jets from rotating black holes, in which small-scale magnetic flux loops, sustained by disc turbulence, are forced to inflate and open by differential rotation between the black hole and the accretion flow. This mechanism does not require a large-scale net magnetic flux in the accreting plasma. Estimates suggest that the process could operate effectively in many systems, and particularly naturally and efficiently when the accretion flow is retrograde. We present the results of general-relativistic force-free electrodynamic simulations demonstrating the time evolution of the black hole's magnetosphere, the cyclic formation of jets, and the effect of magnetic reconnection. The jets are highly variable on time-scales ˜10-103rg/c, where rg is the black hole's gravitational radius. The reconnecting current sheets observed in the simulations may be responsible for the hard X-ray emission from accreting black holes.

  5. Inference of physical phenomena from FFTF (Fast Flux Test Facility) noise analysis

    SciTech Connect

    Thie, J.A.; Damiano, B.; Campbell, L.R.

    1989-01-01

    The source of features observed in noise spectra collected by an automated data collection system operated by the Oak Ridge National Laboratory at the Fast Flux Test Facility (FFTF) can be identified using a methodology based on careful data observation and intuition. When a large collection of data is available, as in this case, automatic pattern recognition and parameter storage and retrieval using a data base can be used to extract useful information. However, results can be limited to empirical signature comparison monitoring unless an effort is made to determine the noise sources. This paper describes the identification of several FFTF noise data phenomena and suggests how this understanding may lead to new or enhanced monitoring. 13 refs., 4 figs.

  6. Simulations of Turbulent Dynamos Driven by the Magnetic Helicity Flux

    NASA Astrophysics Data System (ADS)

    Shapovalov, Dmitry S.; Vishniac, Ethan T.

    2011-09-01

    We present results of numerical simulations of driven magnetohydrodynamic turbulence in a periodic box with an imposed large-scale sinusoidal shear. We produce strong large-scale magnetic fields through dynamo action. This dynamo action is highly dependent on the spectral properties of the forcing function. In particular, we can produce either dynamo or antidynamo action by choosing particular forcing functions for the small-scale turbulence. Our results show that the large-scale electromotive force is well correlated with the local accumulation of eddy-scale magnetic helicity. Conversely, the electromotive force is very weakly correlated with the large-scale magnetic field strength or its product with kinetic helicity. We argue that in these simulations large-scale dynamo action is driven by an inverse cascade of magnetic helicity, ultimately caused by the tendency of anisotropic turbulence to create a magnetic helicity flux.

  7. Axisymmetric Modes in Magnetic Flux Tubes with Internal and External Magnetic Twist

    NASA Astrophysics Data System (ADS)

    Giagkiozis, I.; Fedun, V.; Erdélyi, R.; Verth, G.

    2015-09-01

    Observations suggest that twisted magnetic flux tubes are ubiquitous in the Sun's atmosphere. The main aim of this work is to advance the study of axisymmetric modes of magnetic flux tubes by modeling both twisted internal and external magnetic fields, when the magnetic twist is weak. In this work, we solve the derived wave equations numerically assuming that the twist outside the tube is inversely proportional to the distance from its boundary. We also study the case of a constant magnetic twist outside the tube and solve these equations analytically. We show that the solution for a constant twist outside the tube is a good approximation for the case where the magnetic twist is proportional to 1/r, namely, the error is in all cases less than 5.4%. The solution is in excellent agreement with solutions to simpler models of twisted magnetic flux tubes, i.e., without external magnetic twist. It is shown that axisymmetric Alfvén waves are naturally coupled with magnetic twist as the azimuthal component of the velocity perturbation is nonzero. We compared our theoretical results with observations and comment on what the Doppler signature of these modes is expected to be. Lastly, we argue that the character of axisymmetric waves in twisted magnetic flux tubes can lead to false positives in identifying observations with axisymmetric Alfvén waves.

  8. MAGNETIC FLUX CONSERVATION IN THE HELIOSHEATH INCLUDING SOLAR CYCLE VARIATIONS OF MAGNETIC FIELD INTENSITY

    E-print Network

    Michael, A. T.

    In the heliosheath (HS), Voyager 2 has observed a flow with constant radial velocity and magnetic flux conservation. Voyager 1, however, has observed a decrease in the flow's radial velocity and an order of magnitude ...

  9. Convective Radial Energy Flux Due To Resonant Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Marcus, Francisco Alberto; Beyer, Peter; Fuhr, Guillaume; Monnier, Arnaud; Benkadda, Sadruddin

    2014-10-01

    With the resonant magnetic perturbations (RMPs) consolidating as an important tool to control the transport barrier relaxation, the mechanism on how they work is still a subject to be clearly understood. In this work we investigate the equilibrium states in the presence of RMPs for a reduced MHD model using 3D electromagnetic fluid numerical code (EMEDGE3D) with a single harmonic RMP (single magnetic island chain) and multiple harmonics RMPs in cylindrical and toroidal geometry. Two different equilibrium states were found in the presence of the RMPs with different characteristics for each of the geometries used. For the cylindrical geometry in the presence of a single RMP, the equilibrium state is characterized by a strong convective radial thermal flux and the generation of a mean poloidal velocity shear. In contrast, for toroidal geometry the thermal flux is dominated by the magnetic flutter. For multiple RMPs, the high amplitude of the convective flux and poloidal rotation are basically the same in cylindrical geometry, but in toroidal geometry the convective thermal flux and the poloidal rotation appear only with the islands overlapping of the linear coupling between neighbouring poloidal wavenumbers m, m - 1 , m + 1 . French agency CNRS and Brazilian agencies CNPq and FAPESP. Projects Numbers: ANR2010-BLAN-940-01, 560491/2010-7 and 201119296-1.

  10. Experimental Design of a Magnetic Flux Compression Experiment

    NASA Astrophysics Data System (ADS)

    Fuelling, Stephan; Awe, Thomas J.; Bauer, Bruno S.; Goodrich, Tasha; Lindemuth, Irvin R.; Makhin, Volodymyr; Siemon, Richard E.; Atchison, Walter L.; Reinovsky, Robert E.; Salazar, Mike A.; Scudder, David W.; Turchi, Peter J.; Degnan, James H.; Ruden, Edward L.

    2007-06-01

    Generation of ultrahigh magnetic fields is an interesting topic of high-energy-density physics, and an essential aspect of Magnetized Target Fusion (MTF). To examine plasma formation from conductors impinged upon by ultrahigh magnetic fields, in a geometry similar to that of the MAGO experiments, an experiment is under design to compress magnetic flux in a toroidal cavity, using the Shiva Star or Atlas generator. An initial toroidal bias magnetic field is provided by a current on a central conductor. The central current is generated by diverting a fraction of the liner current using an innovative inductive current divider, thus avoiding the need for an auxiliary power supply. A 50-mm-radius cylindrical aluminum liner implodes along glide planes with velocity of about 5 km/s. Inward liner motion causes electrical closure of the toroidal chamber, after which flux in the chamber is conserved and compressed, yielding magnetic fields of 2-3 MG. Plasma is generated on the liner and central rod surfaces by Ohmic heating. Diagnostics include B-dot probes, Faraday rotation, radiography, filtered photodiodes, and VUV spectroscopy. Optical access to the chamber is provided through small holes in the walls.

  11. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of ?-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single ?-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  12. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of ?-iron containing nonmagnetic particles

    DOE PAGESBeta

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single ?-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domainsmore »on the magnetization reversal behavior and the magnetic properties.« less

  13. MHD waves on solar magnetic flux tubes - Tutorial review

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1990-01-01

    Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.

  14. Flow instabilities of magnetic flux tubes. II. Longitudinal flow

    NASA Astrophysics Data System (ADS)

    Holzwarth, V.; Schmitt, D.; Schüssler, M.

    2007-07-01

    Context: Flow-induced instabilities are relevant for the storage and dynamics of magnetic fields in stellar convection zones and possibly also in other astrophysical contexts. Aims: We continue the study started in the first paper of this series by considering the stability properties of longitudinal flows along magnetic flux tubes. Methods: A linear stability analysis was carried out to determine criteria for the onset of instability in the framework of the approximation of thin magnetic flux tubes. Results: In the non-dissipative case, we find Kelvin-Helmholtz instability for flow velocities exceeding a critical speed that depends on the Alfvén speed and on the ratio of the internal and external densities. Inclusion of a friction term proportional to the relative transverse velocity leads to a friction-driven instability connected with backward (or negative energy) waves. We discuss the physical nature of this instability. In the case of a stratified external medium, the Kelvin-Helmholtz instability and the friction-driven instability can set in for flow speeds significantly lower than the Alfvén speed. Conclusions: Dissipative effects can excite flow-driven instability below the thresholds for the Kelvin-Helmholtz and the undulatory (Parker-type) instabilities. This may be important for magnetic flux storage in stellar convection zones and for the stability of astrophysical jets.

  15. Magnetic Flux Conservation in the Heliosheath Including Solar Cycle Variations of Magnetic Field Intensity

    NASA Astrophysics Data System (ADS)

    Michael, A. T.; Opher, M.; Provornikova, E.; Richardson, J. D.; Tóth, G.

    2015-04-01

    In the heliosheath (HS), Voyager 2 has observed a flow with constant radial velocity and magnetic flux conservation. Voyager 1, however, has observed a decrease in the flow’s radial velocity and an order of magnitude decrease in magnetic flux. We investigate the role of the 11 yr solar cycle variation of the magnetic field strength on the magnetic flux within the HS using a global 3D magnetohydrodynamic model of the heliosphere. We use time and latitude-dependent solar wind velocity and density inferred from Solar and Heliospheric Observatory/SWAN and interplanetary scintillations data and implemented solar cycle variations of the magnetic field derived from 27 day averages of the field magnitude average of the magnetic field at 1 AU from the OMNI database. With the inclusion of the solar cycle time-dependent magnetic field intensity, the model matches the observed intensity of the magnetic field in the HS along both Voyager 1 and 2. This is a significant improvement from the same model without magnetic field solar cycle variations, which was over a factor of two larger. The model accurately predicts the radial velocity observed by Voyager 2; however, the model predicts a flow speed ?100 km s?1 larger than that derived from LECP measurements at Voyager 1. In the model, magnetic flux is conserved along both Voyager trajectories, contrary to observations. This implies that the solar cycle variations in solar wind magnetic field observed at 1 AU does not cause the order of magnitude decrease in magnetic flux observed in the Voyager 1 data.

  16. Magnetic Flux Compression Concept for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Robertson, Tony; Hawk, Clark W.; Turner, Matt; Koelfgen, Syri

    2000-01-01

    The objective of this research is to investigate system level performance and design issues associated with magnetic flux compression devices for aerospace power generation and propulsion. The proposed concept incorporates the principles of magnetic flux compression for direct conversion of nuclear/chemical detonation energy into electrical power. Specifically a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stator structure formed from a high temperature superconductor (HTSC). The expanding plasma cloud is entirely confined by the compressed magnetic field at the expense of internal kinetic energy. Electrical power is inductively extracted, and the detonation products are collimated and expelled through a magnetic nozzle. The long-term development of this highly integrated generator/propulsion system opens up revolutionary NASA Mission scenarios for future interplanetary and interstellar spacecraft. The unique features of this concept with respect to future space travel opportunities are as follows: ability to implement high energy density chemical detonations or ICF microfusion bursts as the impulsive diamagnetic plasma source; high power density system characteristics constrain the size, weight, and cost of the vehicle architecture; provides inductive storage pulse power with a very short pulse rise time; multimegajoule energy bursts/terawatt power bursts; compact pulse power driver for low-impedance dense plasma devices; utilization of low cost HTSC material and casting technology to increase magnetic flux conservation and inductive energy storage; improvement in chemical/nuclear-to-electric energy conversion efficiency and the ability to generate significant levels of thrust with very high specific impulse; potential for developing a small, lightweight, low cost, self-excited integrated propulsion and power system suitable for space stations, planetary bases, and interplanetary and interstellar space travel; potential for attaining specific impulses approaching 10 (exp 6) seconds, which would enable missions to the outer planets within ten years and missions at interstellar distances within fifty years.

  17. Evidence of Magnetic Helicity in Emerging Flux and Associated Flare

    E-print Network

    Chandra, R; Aulanier, G; Malherbe, J M

    2009-01-01

    The aim of this paper is to look at the magnetic helicity structure of an emerging active region and show that both emergence and flaring signatures are consistent with a same sign for magnetic helicity. We present a multi-wavelength analysis of an M1.6 flare occurring in the active region NOAA 10365 on 27 May, 2003, in which a large new bipole emerges in a decaying active region. The diverging flow pattern and the "tongue" shape of the magnetic field in the photosphere with elongated polarities are highly suggestive of the emergence of a twisted flux tube. The orientation of these tongues indicates the emergence of a flux tube with a right hand twist, i.e. positive magnetic helicity. The flare signatures in the chromosphere are ribbons observed in H-alpha by the MSDP spectrograph in the Meudon solar tower and in 1600 A by TRACE. These ribbons have a `J' shape and are shifted along the inversion line. The pattern of these ribbons suggests that the flare was triggered by magnetic reconnection at coronal height...

  18. MAGNETIC FLUX LEAKAGE INVESTIGATION OF INTERACTING DEFECTS: COMPETITIVE EFFECTS OF STRESS CONCENTRATION AND MAGNETIC SHIELDING

    E-print Network

    Clapham, Lynann

    are sensitive to the level of stress and magnetic flux density existing in the pipe wall. Defects act as stress]. Although the effect of stress on the magnetic properties of the pipe ferromagnetic steel is not clearly generates circumferential (hoop) stress in the pipe wall. Furthermore, much higher stresses are expected

  19. Laser-Driven Magnetic-Flux Compression: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Chang, Po-Yu

    Laser-Driven Flux Compression (LDFC) is a technique used to compress the magnetic field in Inertial Confinement Fusion (ICF) targets driven by a laser. The compressed field in the ICF target is beneficial to the target performance. Embedding a magnetic field in a conventional ICF target reduces the heat loss if the central hot spot becomes magnetized. Higher hot spot temperatures lower the requirements on the implosion velocities, leading to larger shell masses and therefore higher energy gains. For a typical hot spot density of ˜ 10 g/cc, and temperature of ˜ 5 keV, a magnetic field B > 10 MG is required to magnetize the hot spot. Such a strong magnetic field is difficult to be externally generated. Instead of providing the strong magnetic field directly, a seed magnetic field much lower than the required field was provided and compressed by the imploding shell. The field needs to be compressed faster than its diffusion due to the finite resistivity of the fill gas and the shell. This requires the gas in the target being ionized by the shock so that the flux is frozen in the gas region and compressed by the imploding shell. In this thesis, theoretical models, numerical calculations, and basic experiments of flux compression in ICF targets are investigated. A measurable Lawson criterion, developed as a metric to assess the performance of an ICF target, is used to evaluate the benefits of suppressing the heat conductivity. A simple model is used to describe the process of field compression by shock waves during the shell implosion. The magnetohydrodynamics codes, LILAC-MHD and LILAC-MHD-SP, are used to simulate the field compression and the target performance. The Magneto-Inertial-Fusion-Electrical-Discharge-System (MIFEDS), the device providing the seed magnetic field, is described in detail. LDFC experiments using the OMEGA laser at the Laboratory for Laser Energetics are presented. The results include the first demonstration of ˜ 550-fold amplification of a 50 ˜ 60 kG seed field to a ˜ 30 MG compressed field using LDFC, and the first demonstration of 15% and 30 % ion temperature and neutron yield enhancement by compressed magnetic fields.

  20. Depinning of Trapped Magnetic Flux in Bulk Niobium SRF Cavities

    E-print Network

    Aull, S

    2015-01-01

    Trapped magnetic flux is known to be a significant contribution to the residual resistance of superconducting radio frequency (SRF) cavities. The additional losses depend strongly if the vortices are depinned by the RF. The depinning is affected by the purity of the material, and the size of the pinning centers, as well as the cavity operation frequency. One may define a depinning frequency, above which significant depinning occurs. This publication presents a derivation of the depinning frequency from experimental data. We find a depinning frequency of 673 MHz for RRR 110 niobium. On this basis the currently used model is extended to describe the trapped flux sensitivity as function of residual resistance ratio (RRR) and operation frequency while also accounting for the pinning center size and the treatment history of the cavity. Moreover, the model offers an explanation for the significantly higher trapped flux sensitivity reported for nitrogen doped and 120 C baked cavities.

  1. Alternative magnetic flux leakage modalities for pipeline inspection

    SciTech Connect

    Katragadda, G.; Lord, W.; Sun, Y.S.; Udpa, S.; Udpa, L.

    1996-05-01

    Increasing quality consciousness is placing higher demands on the accuracy and reliability of inspection systems used in defect detection and characterization. Nondestructive testing techniques often rely on using multi-transducer approaches to obtain greater defect sensitivity. This paper investigates the possibility of taking advantage of alternative modalities associated with the standard magnetic flux leakage tool to obtain additional defect information, while still using a single excitation source.

  2. Magnetic and Electric Flux Quanta: the Pion Mass

    SciTech Connect

    P Cameron

    2011-12-31

    The angular momentum of the magnetic flux quantum is balanced by that of the associated supercurrent, such that in condensed matter the resultant angular momentum is zero. The notion of a flux quantum in free space is not so simple, needing both magnetic and electric flux quanta to propagate the stable dynamic structure of the photon. Considering these flux quanta at the scale where quantum field theory becomes essential, at the scale defined by the reduced Compton wavelength of the electron, exposes variants of a paradox that apparently has not been addressed in the literature. Leaving the paradox unresolved in this note, reasonable electromagnetic rationales are presented that permit to calculate the masses of the electron, muon, pion, and nucleon with remarkable accuracy. The calculated mass of the electron is correct at the nine significant digit limit of experimental accuracy, the muon at a part in one thousand, the pion at two parts in ten thousand, and the nucleon at seven parts in one hundred thousand. The accuracy of the pion and nucleon mass calculations reinforces the unconventional common notion that the strong force is electromagnetic in origin.

  3. Magnetic flux transport of decaying active regions and enhanced magnetic network. [of solar supergranulation

    NASA Technical Reports Server (NTRS)

    Wang, Haimin; Zirin, Harold; Ai, Guoxiang

    1991-01-01

    Several series of coordinated observations on decaying active regions and enhanced magnetic network regions on the sun were carried out jointly at Big Bear Solar Observatory and at the Huairou Solar Observing Station of the Bejing Astronomical Observatory in China. The magnetic field evolution in several regions was followed closely for three to seven days. The magnetic flux transport from the remnants of decayed active regions was studied, along with the evolution and lifetime of the magnetic network which defines the boundaries of supergranules. The magnetic flux transport in an enhanced network region was studied in detail and found to be negative. Also briefly described are some properties of moving magnetic features around a sunspot. Results of all of the above studies are presented.

  4. Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.

    2010-01-01

    Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.

  5. Flux Rope Acceleration and Enhanced Magnetic Reconnection Rate

    SciTech Connect

    C.Z. Cheng; Y. Ren; G.S. Choe; Y.-J. Moon

    2003-03-25

    A physical mechanism of flares, in particular for the flare rise phase, has emerged from our 2-1/2-dimensional resistive MHD simulations. The dynamical evolution of current-sheet formation and magnetic reconnection and flux-rope acceleration subject to continuous, slow increase of magnetic shear in the arcade are studied by employing a non-uniform anomalous resistivity in the reconnecting current sheet under gravity. The simulation results directly relate the flux rope's accelerated rising motion with an enhanced magnetic reconnection rate and thus an enhanced reconnection electric field in the current sheet during the flare rise phase. The simulation results provide good quantitative agreements with observations of the acceleration of flux rope, which manifests in the form of SXR ejecta or erupting filament or CMEs, in the low corona. Moreover, for the X-class flare events studied in this paper the peak reconnection electric field is about O(10{sup 2} V/m) or larger, enough to accelerate p articles to over 100 keV in a field-aligned distance of 10 km. Nonthermal electrons thus generated can produce hard X-rays, consistent with impulsive HXR emission observed during the flare rise phase.

  6. Potential micrometeoroid and orbital debris protection system using a gradient magnetic field and magnetic flux compression

    NASA Astrophysics Data System (ADS)

    Giffin, A.; Shneider, M. N.; Miles, R. B.

    2010-08-01

    A system for using a magnetic field in conjunction with conventional shielding configurations to protect against micrometeoroid and orbital debris is presented. Analytical, numerical, and experimental studies of a conductor moving through a gradient magnetic field have been performed. The results show that in the high magnetic Reynolds number regime a conducting object will experience large forces that tend to deform it while moving through the gradient field. Additionally a configuration using magnetic flux compression is introduced to act as a magnetic shock absorber. Separately or together, this technology may augment or replace current protection designs for space systems.

  7. Magnetic flux concentrations from dynamo-generated fields

    NASA Astrophysics Data System (ADS)

    Jabbari, S.; Brandenburg, A.; Losada, I. R.; Kleeorin, N.; Rogachevskii, I.

    2014-08-01

    Context. The mean-field theory of magnetized stellar convection gives rise to two distinct instabilities: the large-scale dynamo instability, operating in the bulk of the convection zone and a negative effective magnetic pressure instability (NEMPI) operating in the strongly stratified surface layers. The latter might be important in connection with magnetic spot formation. However, as follows from theoretical analysis, the growth rate of NEMPI is suppressed with increasing rotation rates. On the other hand, recent direct numerical simulations (DNS) have shown a subsequent increase in the growth rate. Aims: We examine quantitatively whether this increase in the growth rate of NEMPI can be explained by an ?2 mean-field dynamo, and whether both NEMPI and the dynamo instability can operate at the same time. Methods: We use both DNS and mean-field simulations (MFS) to solve the underlying equations numerically either with or without an imposed horizontal field. We use the test-field method to compute relevant dynamo coefficients. Results: DNS show that magnetic flux concentrations are still possible up to rotation rates above which the large-scale dynamo effect produces mean magnetic fields. The resulting DNS growth rates are quantitatively reproduced with MFS. As expected for weak or vanishing rotation, the growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong gravity and large turbulent magnetic diffusivity. Conclusions: Magnetic flux concentrations are still possible for rotation rates above which dynamo action takes over. For the solar rotation rate, the corresponding turbulent turnover time is about 5 h, with dynamo action commencing in the layers beneath.

  8. Modeling of 1/f noise due to thermally induced magnetic switches of anti-ferromagnetic grains in magnetic tunneling readers

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Patwari, Mohammed S.; Stokes, Scott W.

    2011-04-01

    Magnetic 1/f noise is one of the major noise sources in state-of-the-art magnetic tunneling read heads for hard disk drive applications. The 1/f noise can be induced by thermally activated magnetic switching of antiferromagnetic (AFM) grains in the reader stack. This noise mechanism is studied here by micro-magnetic modeling. The modeling shows that the 1/f like noise power spectrum can come from the addition of several Lorentzian type noise spectra corresponding to the switching of individual AFM moments that are most likely located near the edges of the AFM layer. Additionally, the modeling shows that magnetic glitches can be generated by the switching of the reference layer edge curling state at the top or bottom edge of the layer, which is induced by the switching of one or more AFM moments in those areas.

  9. Characterization of a low frequency magnetic noise from a two-stage pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Eshraghi, M. J.; Sasada, I.; Kim, J. M.; Lee, Y. H.

    2009-07-01

    Magnetic noise of a two-stage pulse tube cryocooler (PT) was measured by a fundamental mode orthogonal fluxgate magnetometer and by a LTS Double Relaxation Oscillation SQUID (DROS) first-order planar gradiometer. The magnetometer was installed in a dewar made of aluminum at 12 cm distance from a section containing magnetic regenerative materials of the second pulse tube. The magnetic noise spectrum showed a clear peak at 1.8 Hz, which is the fundamental frequency of the He gas pumping rate. The 1.8 Hz magnetic noise registered a peak, during the cooling down process, when the second cold-stage temperature was around 12 K, which is well correlated with the 1.8 Hz variation of the temperature of the second cold stage. Hence, we attributed the main source of this magnetic noise to the temperature variation of the magnetic moments resulting from magnetic regenerative materials, Er 3Ni and HoCu 2, in the presence of background static magnetic fields. We have also pointed out that the superconducting magnetic shield of lead sheets reduced the low frequency magnetic noise generated from the magnetic regenerative materials. With this arrangement, the magnetic noise amplitude measured with the LTS DROS gradiometer, mounted at 7 cm horizontal distance from the magnetic regenerative materials, in the optimum condition, was lower than 500 pT peak-to-peak, whereas the noise level without lead shielding was higher than the dynamic range of DROS instrumentations which was around ±10nT.

  10. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2000-01-01

    The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure fusion micro-bursts with reasonable levels of input energy is an equally challenging scientific problem. It remains to be seen, however, whether an effective ignition driver can be developed which meets the requirements for practical spaceflight application (namely high power density, compactness, low weight, and low cost). In this paper, system level performance and design issues are examined including generator performance, magnetic flux compression processes, magnetic diffusion processes, high temperature superconductor (HTSC) material properties, plasmadynamic processes, detonation plasma expansion processes, magnetohydrodynamic instabilities, magnetic nozzle performance, and thrust production performance. Representative generator performance calculations based on a simplified skin layer formulation are presented as well as the results of exploratory small-scale laboratory experiments on magnetic flux diffusion in HTSC materials. In addition, planned follow-on scientific feasibility experiments are described which utilize high explosive detonations and high energy gas discharges to simulate the plasma conditions associated with thermonuclear micro-detonations.

  11. The Effect of Interference in Additive and Multiplicative White Noises on Information Entropy Production and Entropy Flux

    NASA Astrophysics Data System (ADS)

    Sen, Monoj Kumar; Bag, Bidhan Chandra

    In this paper we study time evolution of configuration space in terms of information entropy flux and entropy production for colored cross-correlated noise-driven open systems. The effect of interference in additive and multiplicative white noises on entropy flux and entropy production is calculated based on the Fokker-Planck description of the stochastic process and information entropy balance equation. The variation of entropy production with the damping constant or strength of multiplicative noise reveals nonmonotonic behavior as a result of the interplay of deterministic and random forces.

  12. Acoustic waves in random ensembles of magnetic fluxes

    SciTech Connect

    Ryutova, M.P.

    1995-10-10

    To analyze the observational data and provide the appropriate diagnostic procedure for photospheric manifestation of solar oscillations it is necessary to take into account strong inhomogeneity of solar atmosphere with respect to distribution of magnetic fields. We study the collective phenomena in the propagation of acoustic waves and unsteady wave-packets through quite regions, sunspots and plages, including time-dependent response of these regions to solar oscillations, the energy transfer mechanisms, frequency shift effects and reradiation of the acoustic waves in higher layers of atmosphere. We show that the dynamics of differently magnetized regions, their dispersion properties, and their response to the propagation of acoustic waves are completely different. We describe the effects caused by the specific distribution and randomness of magnetic flux tubes, which can be observed and which can provide the tools for diagnostic goals.

  13. Plasma PhysicsUnivMaryland 19-21Apr2004 Intrator 3D flux tubes 1 Magnetic reconnection, merging flux ropes,

    E-print Network

    Sitnov, Mikhail I.

    Plasma PhysicsUnivMaryland 19-21Apr2004 Intrator 3D flux tubes 1 Magnetic reconnection, merging data that two or three flux ropes can twist, braid and merge, annihilating flux to form a composite of flux ropes independently of each other. Magnetic reconnection, merging flux ropes and 3D effects in RSX

  14. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    SciTech Connect

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; Heinonen, O. G.; Åkerman, J.; Muduli, P. K.

    2014-09-29

    The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned away from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.

  15. Magnetic Flux Ropes, Reconnection and Chaotic Fields and Flows

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter

    2013-10-01

    Many systems in nature become chaotic when a threshold is crossed. Magnetic Flux Ropes are no exception. Magnetic field lines and plasma flows can become chaotic during reconnection. The ropes which are formed in a magnetized background plasma are kink unstable, twist, writhe and collide as they kink. Three dimensional magnetic fields and flows are measured at thousands of time steps and up to 50,000 spatial locations. The field lines are computed by conditionally averaging the data; when chaos sets-in, many ``shots'' are rejected by the averaging processes. This results in what is most interesting but cannot be seen. Recently, mathematical tools have been developed to identify chaotic dynamics. Permutation entropy can be calculated from measured time series and used to calculate a position on a Jensen-Shannon complexity (C-H) plane. The location of data points on this plane indicates if the magnetic fields are stochastic, or fall into regions of minimal or maximal complexity. Various chaotic dynamical models provide a proxy for the chaotic region in this plane. The behavior of the flux ropes falls in the region of the C-H plane where chaotic systems lie. The entropy and complexity change in space and time, which reflects the type of dynamics associated with the ropes. C-H plane identification process has also been used in the study of temperature filaments and can be applied to spacecraft, solar or fusion data. Other examples will be shown. Many systems in nature become chaotic when a threshold is crossed. Magnetic Flux Ropes are no exception. Magnetic field lines and plasma flows can become chaotic during reconnection. The ropes which are formed in a magnetized background plasma are kink unstable, twist, writhe and collide as they kink. Three dimensional magnetic fields and flows are measured at thousands of time steps and up to 50,000 spatial locations. The field lines are computed by conditionally averaging the data; when chaos sets-in, many ``shots'' are rejected by the averaging processes. This results in what is most interesting but cannot be seen. Recently, mathematical tools have been developed to identify chaotic dynamics. Permutation entropy can be calculated from measured time series and used to calculate a position on a Jensen-Shannon complexity (C-H) plane. The location of data points on this plane indicates if the magnetic fields are stochastic, or fall into regions of minimal or maximal complexity. Various chaotic dynamical models provide a proxy for the chaotic region in this plane. The behavior of the flux ropes falls in the region of the C-H plane where chaotic systems lie. The entropy and complexity change in space and time, which reflects the type of dynamics associated with the ropes. C-H plane identification process has also been used in the study of temperature filaments and can be applied to spacecraft, solar or fusion data. Other examples will be shown. Work performed at the Basic Plasma Science Facility supported by DOE and NSF.

  16. Magnetic flux transport on active cool stars and starspot lifetimes

    E-print Network

    Emre Isik; Manfred Schuessler; Sami K. Solanki

    2006-12-14

    We carry out numerical simulations of the surface evolution of bipolar magnetic regions (BMRs) and magnetic spots on stars, which have radii and surface rotational shears of AB Doradus, the Sun, and the HR 1099 primary. The surface flux transport model is based on the magnetic induction equation for radial fields under the effects of surface differential rotation, meridional flow, and turbulent diffusion due to convective flow patterns. We calculate the flux evolution and the lifetimes of BMRs and unipolar starspots, varying the emergence latitude, surface shear rate, and tilt angle. For BMRs comparable to the largest observed on the Sun, we find that varying the surface flows and the tilt angle modifies the lifetimes over a range of one month. For very large BMRs (area ~10% of the stellar surface) the assumption of a tilt angle increasing with latitude leads to a significant increase of lifetime, as compared to the case without tilt. Such regions can evolve to polar spots that live more than a year. Adopting the observed weak latitudinal shear and the radius of the active subgiant component of HR 1099, we find longer BMR lifetimes as compared to the more strongly sheared AB Dor case. Random emergence of six additional tilted bipoles in an activity belt at 60 degrees latitude enhanced the lifetimes of polar caps up to 7 years. We have also compared the evolution and lifetime of monolithic starspots with those of conglomerates of smaller spots of similar total area. We find similar decay patterns and lifetimes for both configurations.

  17. Laser-driven magnetic flux compression simulation with Nautilus

    NASA Astrophysics Data System (ADS)

    Zhou, C. D.; Loverich, J.; Hakim, A.

    2010-11-01

    The Tech-X fluid and MHD framework, Nautilus, is a finite-volume and finite-element shock-capturing code supporting both structured and unstructured meshes. Nautilus is an easy-to-access, parallel, 3D code available to the ICF community. It is incorporated with features relevant to magneto-inertial confinement fusion (MIF) simulations. Laser-driven magnetic-flux compression is an innovative approach to achieve MIF. A cylindrical target with initial seed magnetic field is compressed by energetic laser beams. The magnetic field that is ``frozen-in'' plasma gets compressed with the target. The resulting high magnetic field reduces electron thermal conductivity and improves alpha particle confinement, thus providing an additional thermal insulation of the fuel forming the hot spot. It reduces the energy and driver symmetry requirements for ignition. Features for MIF simulations, such as anisotropic heat conduction , laser ray tracing and energy deposition, have been demonstrated with Nautilus. We discuss our approach to determine the best algorithms for properly modeling laser-driven shock implosions with magnetic fields in conditions relevant to cylindrical MIF.

  18. Supergranular-scale magnetic flux emergence beneath an unstable filament

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Cid, C.; Guerrero, A.; Saiz, E.; Cerrato, Y.

    2015-11-01

    Aims: Here we report evidence of a large solar filament eruption on 2013, September 29. This smooth eruption, which passed without any previous flare, formed after a two-ribbon flare and a coronal mass ejection towards Earth. The coronal mass ejection generated a moderate geomagnetic storm on 2013, October 2 with very serious localized effects. The whole event passed unnoticed to flare-warning systems. Methods: We have conducted multi-wavelength analyses of the Solar Dynamics Observatory through Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) data. The AIA data on 304, 193, 211, and 94 Å sample the transition region and the corona, respectively, while HMI provides photospheric magnetograms, continuum, and linear polarization data, in addition to the fully inverted data provided by HMI. Results: This flux emergence happened very close to a filament barb that was very active in mass motion, as seen in 304 Å images. The observed flux emergence exhibited hectogauss values. The flux emergence extent appeared just beneath the filament, and the filament rose during the following hours. The emergence acquired a size of 33'' in ~12 h, about ~0.16 km s-1. The rate of signed magnetic flux is around 2 × 1017 Mx min-1 for each polarity. We have also studied the eruption speed, size, and dynamics. The mean velocity of the rising filament during the ~40 min previous to the flare is 115 ± 5 km s-1, and the subsequent acceleration in this period is 0.049 ± 0.001 km s-2. Conclusions: We have observed a supergranular-sized emergence close to a large filament in the boundary of the active region NOAA11850. Filament dynamics and magnetogram results suggest that the magnetic flux emergence takes place in the photospheric level below the filament. Reconnection occurs underneath the filament between the dipped lines that support the filament and the supergranular emergence. The very smooth ascent is probably caused by this emergence and torus instability may play a fundamental role, which is helped by the emergence. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org

  19. System having unmodulated flux locked loop for measuring magnetic fields

    DOEpatents

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Blue Springs, MO)

    2006-08-15

    A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.

  20. Supergranular-scale magnetic flux emergence beneath an unstable filament

    E-print Network

    Palacios, J; Guerrero, A; Saiz, E; Cerrato, Y

    2015-01-01

    Here we report evidence of a large solar filament eruption on 2013, September 29. This smooth eruption, which passed without any previous flare, formed after a two-ribbon flare and a coronal mass ejection towards Earth. The coronal mass ejection generated a moderate geomagnetic storm on 2013, October 2 with very serious localized effects. The whole event passed unnoticed to flare-warning systems. We have conducted multi-wavelength analyses of the Solar Dynamics Observatory through Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) data. The AIA data on 304, 193, 211, and 94 \\AA sample the transition region and the corona, respectively, while HMI provides photospheric magnetograms, continuum, and linear polarization data, in addition to the fully inverted data provided by HMI. [...] We have observed a supergranular-sized emergence close to a large filament in the boundary of the active region NOAA11850. Filament dynamics and magnetogram results suggest that the magnetic flux emergenc...

  1. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    PubMed Central

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced. PMID:23844415

  2. Magnetoresistance and electrical noise in silver chalcogenide silver telluride, zigzag-shaped AMR magnetic sensors, and magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Lai

    Magnetoresistance and voltage noise measurements are report in three magnetoresistive systems: nonstoichiometric silver chalcogenides, zigzag-shaped permalloy elements, and magnetic tunnel junctions. The nonstoichiometric silver chalcogenides are attractive for studying the mechanisms of linear magnetoresistance and for magnetic field sensing applications. Low-frequency noise in bulk, polycrystalline Ag2+ deltaTe is due to resistance fluctuations having a 1/f-like power spectrum. The temperature dependence of the noise magnitude and its spectral slope indicate thermally activated kinetics which we attribute to some form of charge trapping-detrapping process occurring in or near the intergranular regions. Microfabricated zigzag-shaped permalloy elements based on the anisotropic magnetoresistance effect are studied for use as magnetic field sensors. Johnson-Nyquist noise is dominant above about 10kHz. At low frequencies 1/f resistance noise is observed and is found to depend on the applied magnetic field. We attribute the 1/f noise level observed in the saturated state to defect motion. In the unsaturated state, the excess noise is found to track the do resistance susceptibility. For particular values of applied field, large random telegraph signals are observed in the time domain. The variation of the excess noise level with applied do magnetic field can be explained qualitatively using a model based on thermal excitation of the magnetization direction and/or domain wall hopping between pinning sites. Tunneling magnetoresistance involves the spin degree of freedom of charge carriers in magnetic multilayered structures. The frequency-independent background noise at high frequencies is due to Johnson-Nyquist noise and shot noise mechanisms. The low-frequency 1/f noise power in the unsaturated state is strongly field-dependent and is attributed to thermally excited hopping of magnetic domain walls between pinning sites. In the saturated state, the 1/f noise is connected with defects in the tunnel barrier. We attribute this noise to electron trapping processes having thermally activated kinetics and a broad distribution of activation energies. Below ˜25K the noise power is temperature independent suggesting that the kinetics may be dominated by tunneling. Our results show that the thermal stability of both the magnetic layers and the quality of the tunnel barrier are important factors in reducing the low-frequency noise in magnetic tunnel junctions.

  3. Numerical Modeling of a Magnetic Flux Compression Experiment

    NASA Astrophysics Data System (ADS)

    Makhin, Volodymyr; Bauer, Bruno S.; Awe, Thomas J.; Fuelling, Stephan; Goodrich, Tasha; Lindemuth, Irvin R.; Siemon, Richard E.; Garanin, Sergei F.

    2007-06-01

    A possible plasma target for Magnetized Target Fusion (MTF) is a stable diffuse z-pinch in a toroidal cavity, like that in MAGO experiments. To examine key phenomena of such MTF systems, a magnetic flux compression experiment with this geometry is under design. The experiment is modeled with 3 codes: a slug model, the 1D Lagrangian RAVEN code, and the 1D or 2D Eulerian Magneto-Hydro-Radiative-Dynamics-Research (MHRDR) MHD simulation. Even without injection of plasma, high- Z wall plasma is generated by eddy-current Ohmic heating from MG fields. A significant fraction of the available liner kinetic energy goes into Ohmic heating and compression of liner and central-core material. Despite these losses, efficiency of liner compression, expressed as compressed magnetic energy relative to liner kinetic energy, can be close to 50%. With initial fluctuations (1%) imposed on the liner and central conductor density, 2D modeling manifests liner intrusions, caused by the m = 0 Rayleigh-Taylor instability during liner deceleration, and central conductor distortions, caused by the m = 0 curvature-driven MHD instability. At many locations, these modes reduce the gap between the liner and the central core by about a factor of two, to of order 1 mm, at the time of peak magnetic field.

  4. INTERPLANETARY MAGNETIC FLUX DEPLETION DURING PROTRACTED SOLAR MINIMA

    SciTech Connect

    Connick, David E.; Smith, Charles W.; Schwadron, Nathan A. E-mail: Charles.Smith@unh.edu

    2011-01-20

    We examine near-Earth solar wind observations as assembled within the Omni data set over the past 15 years that constitute the latest solar cycle. We show that the interplanetary magnetic field continues to be depleted at low latitudes throughout the protracted solar minimum reaching levels below previously predicted minima. We obtain a rate of flux removal resulting in magnetic field reduction by 0.5 nT yr{sup -1} at 1 AU when averaged over the years 2005-2009 that reduces to 0.3 nT yr{sup -1} for 2007-2009. We show that the flux removal operates on field lines that follow the nominal Parker spiral orientation predicted for open field lines and are largely unassociated with recent ejecta. We argue that the field line reduction can only be accomplished by ongoing reconnection of nominally open field lines or very old closed field lines and we contend that these two interpretations are observationally equivalent and indistinguishable.

  5. Magnetically coupled quantum-flux-latch with wide operation margins

    NASA Astrophysics Data System (ADS)

    Tsuji, Naoki; Takeuchi, Naoki; Narama, Tatsuya; Ortlepp, Thomas; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-11-01

    We have been developing adiabatic quantum-flux-parametron (AQFP) circuits as an ultra-low-power superconductor logic for energy-efficient computing. In a previous study, we proposed and demonstrated a quantum-flux-latch (QFL), which is a compact and compatible latch for AQFP logic. The QFL is composed of an AQFP buffer gate and a storage loop, which are directly connected to each other. However, the operation margins were not sufficiently wide due to a trade-off between the operation margins of the storage loop and that of the buffer gate. In this present study, we propose a magnetically coupled QFL (MC-QFL), where the storage loop and the buffer gate are physically separated and magnetically coupled to each other to eliminate the trade-off in the operation margins. The simulation results showed that the critical parameter margin of the MC-QFL is twice as large as that of the previously designed QFL. For comparison, we fabricated and demonstrated both the previously designed QFL and the newly designed MC-QFL. The measurement results showed that the MC-QFL has wider operation margins compared with the previously designed QFL.

  6. MAGNETIC FLUX CONSERVATION IN THE HELIOSHEATH INCLUDING SOLAR CYCLE VARIATIONS OF MAGNETIC FIELD INTENSITY

    E-print Network

    Richardson, John

    INTENSITY A. T. Michael1 , M. Opher1 , E. Provornikova2 , J. D. Richardson3 , and G. Tóth4 1 Astronomy" (Krimigis et al. 2011), while the average V2 speed did not change but remained around 145 km s-1 (Richardson, at V1 the magnetic flux decreased by over an order of magnitude through the HS (Richardson et al. 2013

  7. Investigation of the influence of magnetostriction and magnetic forces on transformer core noise and vibration

    NASA Astrophysics Data System (ADS)

    Phophongviwat, Teeraphon

    Transformer noise is of increasing environmental concern so continued efforts are being made by electrical steel and transformer producers to satisfy users by reducing the noise. Magnetostriction and magnetic forces are the main causes of transformer core noise and vibration. Understanding of the relationship from the core material to core structure and core vibration to core noise can help the design of low noise transformer cores. The most appropriate parameter for investigating the relationship between noise and vibration is sound pressure (in the unit of Pascals) in the frequency domain because it is not A-weighted. In this study, the side surfaces of transformer cores were found to emit higher noise than front and top surfaces at low magnetic induction. When the magnetic induction was increased, the effect of magnetic force increased and caused the front surfaces to emit higher noise. For three phase three limb transformer cores, the front surface of the middle limb generated higher noise than the outer limbs due to the effect of T-joint. However this does not translate higher noise level because of the phase difference of the vibration between the limbs. Due to this A-weighted sound power level of three phase, three limb transformer cores were shown to be lower than single phase transformer cores, although at the same cross sectional area and core window size the three phase cores has larger size.. A model, developed to separate the effects of magnetostriction and magnetic forces on transformer core vibration, showed that at low induction, magnetostriction is more significant than magnetic forces. The magnetic forces become more significant than magnetostriction when the induction is increased. Magnetostriction primarily depends on material and stress but magnetic forces principally depend on core building. Louder noise can be generated from a core built with low magnetostriction material than higher magnetostriction if the building tolerances are worse. The effect of magnetic forces on transformer core vibration can be reduced by using a bonding technique..

  8. Inertia Wheel on Low-Noise Active Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Carabelli, S.; Genta, G.; Silvagni, M.; Tonoli, A.

    2002-01-01

    Magnetic bearings are particularly suited for space applications for a number of reasons: - they are ideally suited for vacuum applications; - the lack of lubrication and wear enhances the reliability and guaranties a long maintenance-free operation - the low drag torque decreases power consumption and reduces the torque exerted on the stator of the machine. - the possibility of insulating actively the spacecraft from the excitation due to unbalance of the rotating system In the case of reaction wheels, a well designed magnetic suspension allows high speed operation with a very low power consumption and vibration level. Conversely, microgravity (and possibly vacuum) operation is an advantage for magnetic bearings. The absence of static forces allows to operate with low current levels, thus reducing electrical noise and allowing to reach even lower vibration levels than in Earth applications of magnetic bearings. Active magnetic bearings (AMB) allow to adapt the working characteristics of the system to the operating needs: it is possible to use the actuators to lock the system during launch (absence of grabbers) and to stiffen the suspension when the spacecraft is accelerated (impulsive phases), while working in conditions optimised for microgravity when this is needed. Magnetic suspension systems designed for microgravity environment cannot be correctly tested on the ground. Testing in ground conditions results in the need of grossly overdesigning the levitation device; furthermore, in some cases ground testing is completely impossible, if not by introducing devices which compensate for the Earth gravitational field. If the compensation for the gravitational force is supplied by the same actuators used for microgravity operation, the actuators and the power amplifiers must be overdesigned and in some cases the suspension can be altogether impossible. They work in conditions which are much different from nominal ones and, above all, it is impossible to reach the precision in force measuring or vibration isolation which are required. Note that the stiffness of a magnetic suspension usually increases when it must compensate for a large static force and the increase of stiffness changes drastically the vibration isolation characteristics. It is also possible to support the rotor using a separate controlled electromagnet, but the latter will introduce disturbances which make impossible to evaluate the performances of the magnetic levitation system. Moreover, the sensitivity of the device to the operating conditions makes testing in conditions so different from the actual ones of very little significance. This is particularly true when accurate force measuring or vibration isolation is required or when low power consumption is one of the design specifications. Finally, if an external electromagnetic device is used for compensating for weight, its presence changes the stiffness of the system, to the point of altering drastically its stability characteristics. Parabolic flight is not a solution for this problem: the duration of low gravity conditions during parabolic flights is too short to perform significant experiments on magnetic suspension systems, particularly if the natural frequency of the suspension is very low as is typical of devices aimed at the isolation from low frequency vibrations. The environment in which parabolic flight testing is performed is also too rough for accurate testing. The availability of the space station changes deeply this situation: magnetic levitation systems built for space application can be tested in conditions which are very close to the operating ones. Although the space station environment is not vibrationally so clean as it would be necessary for some application, it is nevertheless far better than any simulated environment on the ground. The present paper deals with the design and construction of an engineering model of an inertia wheel on AMB. The aim of the project is to test the performance of the inertia wheel, particularly for what the disturbances caused by the rotor on the suppor

  9. An investigation into the torque density capabilities of flux-focusing magnetic gearboxes

    NASA Astrophysics Data System (ADS)

    Uppalapati, Krishna Kiran

    Wind and many rotary based ocean energy conversion devices rely on a mechanical gearbox to increase their speed so as to match the requirements of the electromagnetic generator. However, mechanical gearboxes have a number of disadvantages such as the need for gear lubrication, no overload protection and the creation of acoustic noise. Frequently direct-drive generators are employed to overcome these issues, wherein the gearbox is removed and the shaft of the turbine is directly connected to the synchronous generator, either with an electrically excited or permanent magnet rotor. If the input speed to the generator is very low the torque must be very high in order to generate the necessary power. However, as the electrical loading of a synchronous generator is thermally limited, the size of the generator will become excessively large at high power levels. An alternative to these technologies is to consider replacing the mechanical gearbox with a magnetic gear. A magnetic gear can create speed change without any physical contact. It has inherent overload protection, and its non-contact operation offers the potential for high reliability. Despite significant progress, existing magnetic gear designs do not achieve torque densities that are competitive with mechanical gearboxes. This research has focused on designing a coaxial magnetic gear that can operate at a volumetric torque density that is comparable to a mechanical gearbox. A flux-focusing rotor topology also called spoke-type rotor magnet arrangement was adopted to improve the air-gap magnetic flux density which in turn improves the torque transferred between the rotors. Finite element analysis was utilized to conduct a parameter sweep analysis of the different geometric parameters of the magnetic gear. A sub-scale magnetic gear with a diameter of 110 mm and a scaled-up magnetic gear with a diameter of 228 mm was designed, constructed and experimentally evaluated. The torque and torque density of sub-scale design was measured to be 115 Nm and 151.2 Nm/L respectively and that of the scaled-up model was measured to be 731 Nm and 239 Nm/L respectively. An iterative magnetomechanical analysis technique was developed to study the deflection of the magnetic gear steel rotor bars due to the magnetic forces coming from the inner and outer rotor permanent magnets. The accuracy of the technique was validated by using an experimental test-stand. It was shown that the deflection is an important issue to consider especially if the air-gaps are small. A 2-D analytical based model was derived for the flux-focusing coaxial magnetic gear by using the separation of variables method to solve the Laplace and Poisson equation in each region. After applying the applicable Dirchlet and Neumann boundary conditions a set of 16 equations with 16 unknown Fourier coefficients was obtained. The 16 unknowns were solved numerically by putting the equations in a matrix form. It was shown that the analytical based model immensely reduced the torque and field computational time when compared to using finite element analysis. However, the analytical model does not take into consideration the non-linear properties of the steel. The benefits of using the analytical model was demonstrated by conducting a radial scaling and gear-ratio analysis.

  10. Analysis of local projected current density from one component of magnetic flux density in MREIT

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Joong; Sajib, Saurav Z. K.; Jeong, Woo Chul; Nyoun Kim, Myoung; In Kwon, Oh; Woo, Eung Je

    2013-07-01

    Magnetic resonance electrical impedance tomography is a new modality capable of imaging the static electrical conductivity of an object by measuring Bz data, a component of the magnetic flux density B = (Bx, By, Bz), perturbed by an external injection current. In an imaging area, the current density J induced by the external injection current can be uniquely decomposed into a recoverable component JP and an invisible component from the measured Bz data. In the case of in vivo animal and human imaging experiments, the imaging area frequently includes local defective regions with a low signal-to-noise ratio. As a result, the measured Bz data in the defective regions include serious noise due to rapid T2 decay, a small amount of internal current density and weak MR signals. In this paper, we propose an algorithm to reconstruct a recoverable current density \\mathbf {J}^R_{ {D}} from the measured Bz data in a local region {D} avoiding the defective regions. We estimate the L2-norm of the difference between the induced internal current density J and the locally recovered \\mathbf {J}^R_{ {D}} from the measured Bz data in the local region {D}. The difference only depends on the z-components of J and J0 and the values of Bx and By on the boundary \\partial {D}, where J0 is the background current density by the injected current. Numerical simulations and phantom experiments demonstrate that the proposed method directly reconstructs a local current density avoiding noise effects in defective regions.

  11. Evidence for globally coherent variability in solar magnetic flux emergence

    NASA Technical Reports Server (NTRS)

    Golub, L.; Vaiana, G. S.

    1980-01-01

    We examine the large-scale spatial and temporal variations in the emergence of X-ray bright points on the sun, in order to study the global properties of magnetic flux emergence. Major variations in the rate of flux emergence are observed at all solar latitudes, on a time scale of 3-5 months. The most economical explanation of the observations is that the full sun participated in a single large eruptive event during the available 8 month observing period from Skylab in 1973. The peak of this global event corresponds in time to the eruption of a major complex of activity. Moreover, it appears that the only portion of the solar surface which deviates from the above pattern of behavior is the low latitude region in the vicinity of the AR complex; this area shows a temporary depletion immediately following the AR outburst. The high-latitude regions in both hemispheres show the same variation and appear to lead the low-latitude emergence by approximately 1 month.

  12. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  13. Enhancement of magnetic flux distribution in a DC superconducting electric motor

    NASA Astrophysics Data System (ADS)

    Hamid, N. A.; Ewe, L. S.; Chin, K. M.

    2013-06-01

    Most motor designs require an air gap between the rotor and stator to enable the armature to rotate freely. The interaction of magnetic flux from rotor and stator within the air gap will provide the thrust for rotational motion. Thus, the understanding of magnetic flux in the vicinity of the air gap is very important to mathematically calculate the magnetic flux generated in the area. In this work, a finite element analysis was employed to study the behavior of the magnetic flux in view of designing a synchronous DC superconducting electric motor. The analysis provides an ideal magnetic flux distribution within the components of the motor. From the flux plot analysis, it indicates that flux losses are mainly in the forms of leakage and fringe effect. The analysis also shows that the flux density is high at the area around the air gap and the rotor. The high flux density will provide a high force area that enables the rotor to rotate. In contrast, the other parts of the motor body do not show high flux density indicating low distribution of flux. Consequently, a bench top model of a DC superconducting motor was developed where by motor with a 2-pole type winding was chosen. Each field coil was designed with a racetrack-shaped double pancake wound using DI-BSCCO Bi-2223 superconducting tapes. The performance and energy efficiency of the superconducting motor was superior when compared to the conventional motor with similar capacity.

  14. Magnetohydrostatic equilibrium. II. Three-dimensional multiple open magnetic flux tubes in the stratified solar atmosphere

    SciTech Connect

    Gent, F. A.; Erdélyi, R.; Fedun, V.

    2014-07-01

    A system of multiple open magnetic flux tubes spanning the solar photosphere and lower corona is modeled analytically, within a realistic stratified atmosphere subject to solar gravity. This extends results for a single magnetic flux tube in magnetohydrostatic equilibrium, described in Gent et al. Self-similar magnetic flux tubes are combined to form magnetic structures, which are consistent with high-resolution observations. The observational evidence supports the existence of strands of open flux tubes and loops persisting in a relatively steady state. Self-similar magnetic flux tubes, for which an analytic solution to the plasma density and pressure distribution is possible, are combined. We calculate the appropriate balancing forces, applying to the equations of momentum and energy conservation to preserve equilibrium. Multiplex flux tube configurations are observed to remain relatively stable for up to a day or more, and it is our aim to apply our model as the background condition for numerical studies of energy transport mechanisms from the solar surface to the corona. We apply magnetic field strength, plasma density, pressure, and temperature distributions consistent with observational and theoretical estimates for the lower solar atmosphere. Although each flux tube is identical in construction apart from the location of the radial axis, combinations can be applied to generate a non-axisymmetric magnetic field with multiple non-uniform flux tubes. This is a considerable step forward in modeling the realistic magnetized three-dimensional equilibria of the solar atmosphere.

  15. THE EVOLUTION OF THE SUN'S OPEN MAGNETIC FLUX I. A Single Bipole

    E-print Network

    Priest, Eric

    that cosmogenic isotopes show highly consistent variations with paleo-climatic indicators of the Earth's global. The effects of magnetic flux transport on the radial field at the surface of the Sun are modeled numerically occurs. The results suggest that, in order to reproduce a realistic model of the Sun's open magnetic flux

  16. THE EVOLUTION OF THE SUN'S OPEN MAGNETIC FLUX I. A Single Bipole

    E-print Network

    Priest, Eric

    that cosmogenic isotopes show highly consistent variations with paleo­climatic indicators of the Earth's global. The effects of magnetic flux transport on the radial field at the surface of the Sun are modeled numerically occurs. The results suggest that, in order to reproduce a realistic model of the Sun's open magnetic flux

  17. Twenty-three cycles of changing open solar magnetic flux M. Lockwood1

    E-print Network

    Lockwood, Mike

    peak in the long-term variation of the open solar flux. This peak is close to the solar minimum between drifts in open solar flux reported by Lockwood et al. [1999a, 1999b]. INDEX TERMS: 7524 Solar PhysicsTwenty-three cycles of changing open solar magnetic flux M. Lockwood1 Rutherford Appleton

  18. Instabilities of magnetic flux tubes in a stellar convection zone I. Equatorial flux rings in differentially rotating stars

    NASA Astrophysics Data System (ADS)

    Ferriz-Mas, A.; Schüssler, M.

    The stability properties of magnetic flux tubes in stellar convection zones including overshoot regions is of considerable interest in connection with the problems of magnetic flux storage and hydromagnetic dynamo action in the Sun and other cool stars. We have developed a general formalism based on the approximation of thin flux tubes which provides a basis for a linear stability analysis of arbitrary flux tube equilibria. As a first application, the stability of axisymmetric, toroidal flux tubes (flux rings) located in the equatorial plane of a star under the influence of differential rotation and stratification has been considered. Arbitrary angular velocity differences between the interior of the flux ring and its environment are permitted. It is found that the linear evolution of radial and azimuthal perturbations (i.e., within the equatorial plane) is decoupled from that of latitudinal perturbations (perpendicular to the plane). The latitudinal instability ('poleward slip') is found to be suppressed if the matter within the flux tube rotates faster than its environment by a sufficient amount. For perturbations within the equatorial plane, both stratification (sub-order superadiabatic) of the external gas and rotation are crucial. Angular momentum conservation tends to suppress axisymmetric modes. This effect is enhanced by a faster rotation of the gas within the flux tube. Non-axisymmetric modes are more unstable since the constraint of angular momentum conservation is broken. For these modes, a slower internal rotation rate has a stabilizing effect. Within a certain range of magnetic field strengths, a second region of stability exists within the region of unstable configurations, which can extend into the superadiabatically stratified (convectively unstable) region. The character of the different modes is discussed in conjunction with the topology of the stability diagram.

  19. Composite multi-qubit gates dynamically corrected against charge noise and magnetic field noise for singlet-triplet qubits

    NASA Astrophysics Data System (ADS)

    Kestner, Jason; Barnes, Edwin; Wang, Xin; Bishop, Lev; Das Sarma, Sankar

    2013-03-01

    We use previously described single-qubit SUPCODE pulses on both intra-qubit and inter-qubit exchange couplings, integrated with existing strategies such as BB1, to theoretically construct a CNOT gate that is robust against both charge noise and magnetic field gradient fluctuations. We show how this allows scalable, high-fidelity implementation of arbitrary multi-qubit operations using singlet-triplet spin qubits in the presence of experimentally realistic noise. This work is supported by LPS-NSA-CMTC, IARPA-MQCO and CNAM.

  20. Magnetic Environment and Magnetic Field Standards at NPL for the Calibration of Low Noise Magnetometers and Gradiometers for Cleanliness Studies

    NASA Astrophysics Data System (ADS)

    Hall, M. J.; Harmon, S. A. C.; Turner, S.

    2012-05-01

    The magnetic field standards, facilities and capabilities available at NPL for the calibration of magnetometers and gradiometers and the measurement of the magnetic moment and relative magnetic permeability of materials will be presented. This work is performed in the NPL low magnetic field facility. The details of this facility will be explained, how the noise floor is being reduced and how the facility enables magnetic cleanliness measurement will be presented. This will include the discussion of a gradient field coil for the calibration of gradiometers. Methods to check that the materials used in space projects are not unduly magnetic will be discussed.

  1. Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K

    NASA Astrophysics Data System (ADS)

    Chesca, Boris; John, Daniel; Mellor, Christopher J.

    2015-10-01

    A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ?V, linearly scales with N whereas the white flux noise S?1/2 decreases as 1/N1/2. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa2Cu3O7. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for S?1/2 between (0.25 and 0.44) ??0/Hz1/2 for temperatures in the range (77-83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ?V and transimpedance in the range of (10-17) mV and (0.3-2.5) k?, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.

  2. Three-dimensional Simulation of Magnetic Flux Dynamics and Temperature Rise in HTSC Bulk during Pulsed Field Magnetization

    NASA Astrophysics Data System (ADS)

    Fujishiro, H.; Naito, T.; Oyama, M.

    We have performed a three-dimensional (3D) numerical simulation of the dynamical motion of the magnetic flux and the heat propagation in the superconducting bulk after applying a pulsed magnetic field. An inhomogeneous Jc distribution was supposed in the bulk; the Jc in the growth sector boundary (GSB) is four times higher than that in the growth sector region (GSR). For lower applied pulsed field, magnetic flux was penetrated and trapped in the GSR, and for higher applied pulsed field, the magnetic flux was trapped more preferentially in the GSB. These results of the simulation reproduce the experimental ones and are valuable for the understanding the flux dynamics in the bulk during pulsed field magnetization.

  3. Measurements and Phenomenological Modeling of Magnetic FluxBuildup in Spheromak Plasmas

    SciTech Connect

    Romero-Talamas, C A; Hooper, E B; Jayakumar, R; McLean, H S; Wood, R D; Moller, J M

    2007-12-14

    Internal magnetic field measurements and high-speed imaging at the Sustained Spheromak Physics Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, R. H. Bulmer, Nucl. Fusion 39, 863 (1999)] are used to study spheromak formation and field buildup. The measurements are analyzed in the context of a phenomenological model of magnetic helicity based on the topological constraint of minimum helicity in the open flux before reconnecting and linking closed flux. Two stages are analyzed: (1) the initial spheromak formation, i. e. when all flux surfaces are initially open and reconnect to form open and closed flux surfaces, and (2) the stepwise increase of closed flux when operating the gun on a new mode that can apply a train of high-current pulses to the plasma. In the first stage, large kinks in the open flux surfaces are observed in the high-speed images taken shortly after plasma breakdown, and coincide with large magnetic asymmetries recorded in a fixed insertable magnetic probe that spans the flux conserver radius. Closed flux (in the toroidal average sense) appears shortly after this. This stage is also investigated using resistive magnetohydrodynamic simulations. In the second stage, a time lag in response between open and closed flux surfaces after each current pulse is interpreted as the time for the open flux to build helicity, before transferring it through reconnection to the closed flux. Large asymmetries are seen during these events, which then relax to a slowly decaying spheromak before the next pulse.

  4. How Well Can a Footpoint Tracking Method Estimate the Magnetic Helicity Influx during Flux Emergence?

    NASA Astrophysics Data System (ADS)

    Choe, Gwangson; Kim, Sunjung; Kim, Kap-Sung; No, Jincheol

    2015-08-01

    As shown by Démoulin and Berger (2003), the magnetic helicity flux through the solar surface into the solar atmosphere can be exactly calculated if we can trace the motion of footpoints with infinite temporal and spatial resolutions. When there is a magnetic flux transport across the solar surface, the horizontal velocity of footpoints becomes infinite at the polarity inversion line, although the surface integral yielding the helicity flux does not diverge. In practical application, a finite temporal and spatial resolution causes an underestimate of the magnetic helicity flux when a magnetic flux emerges from below the surface, because there is an observational blackout area near a polarity inversion line whether it is pre-existing or newly formed. In this paper, we consider emergence of simple magnetic flux ropes and calculate the supremum of the magnitude of the helicity influx that can be estimated from footpoint tracking. The results depend on the ratio of the resolvable length scale and the flux rope diameter. For a Gold-Hoyle flux rope, in which all field lines are uniformly twisted, the observationally estimated helicity influx would be about 90% of the real influx when the flux rope diameter is one hundred times the spatial resolution (for a large flux rope), and about 45% when it is ten times (for a small flux rope). For Lundquist flux ropes, the errors incurred by observational estimation are smaller than the case of the Gold-Hoyle flux rope, but could be as large as 30% of the real influx. Our calculation suggests that the error in the helicity influx estimate is at least half of the real influx or even larger when small scale magnetic structures (less than 10,000 km) emerge into the solar atmosphere.

  5. Magnetic Flux Concentrations in Stratified Turbulent Plasma Due to Negative Effective Magnetic Pressure Instability

    NASA Astrophysics Data System (ADS)

    Jabbari, S.; Brandenburg, A.

    2014-12-01

    Recent studies have suggested a new mechanism that can be used to explain the formation of magnetic spots or bipolar regions in highly stratified turbulent plasmas. According to this model, a large-scale magnetic field suppresses the turbulent pressure, which leads to a negative contribution of turbulence to the effective magnetic pressure. Direct numerical simulations (DNS) have confirmed that the negative contribution is large enough so that the effective magnetic pressure becomes negative and leads to a large-scale instability, which we refer to as negative effective magnetic pressure Instability (NEMPI). NEMPI was used to explain the formation of active regions and sunspots on the solar surface. One step toward improving this model was to combine dynamo in- stability with NEMPI. The dynamo is known to be responsible for the solar large-scale magnetic field and to play a role in solar activity. In this context, we studied stratified turbulent plasmas in spherical geometry, where the background field was generated by alpha squared dynamo. For NEMPI to be excited, the initial magnetic field should be in a proper range, so we used quenching function for alpha. Using the Pencil Code and mean field simulations (MFS), we showed that in the presence of dynamo-generated magnetic fields, we deal with a coupled system, where both instabilities, dynamo and NEMPI, work together and lead to the formation of magnetic structures (Jabbari et al. 2013). We also studied a similar system in plane geometry in the presence of rotation and confirmed that for slow rotation NEMPI works, but as the Coriolis number increases, the rotation suppresses NEMPI. By increasing the Coriolis number even further, the combination of fast rotation and high stratification excites a dynamo, which leads again to a coupled system of dynamo and NEMPI (Jabbari et al. 2014). Another important finding concerning NEMPI is the case where the instability is excited by a vertical magnetic field (Brandenburg et al. 2013). When the field is vertical, the resulting magnetic flux concentrations lead to the magnetic spots and can be of equipartition field strength. DNS, MFS, and implicit large eddy simulations (ILES) confirm that in a proper parameter regime, vertical imposed fields lead to the formation of circular magnetic spots (Brandenburg et al. 2014).

  6. OBSERVATIONAL EVIDENCE OF A MAGNETIC FLUX ROPE ERUPTION

    E-print Network

    disappeared in white-light and magnetograms with- in 60 minutes. This evidence supports the erupting flux rope for flux rope to be accelerated (Tandberg-Hanssen 1974; Gilbert et al. 2000). Low & Zhang (2002) gave

  7. Flux penetration into superconducting Nb3Sn in oblique magnetic fields Diana G. Gheorghe, Mariela Menghini, and Rinke J. Wijngaarden

    E-print Network

    Wijngaarden, Rinke J.

    Flux penetration into superconducting Nb3Sn in oblique magnetic fields Diana G. Gheorghe, Mariela; published 14 June 2006 Penetration of magnetic flux into a rectangular platelet of superconducting Nb3Sn

  8. EFFECT OF FINITE LARMOR RADIUS ON COSMIC-RAY PENETRATION INTO AN INTERPLANETARY MAGNETIC FLUX ROPE

    SciTech Connect

    Kubo, Yuki; Shimazu, Hironori

    2010-09-01

    We discuss a mechanism for cosmic-ray penetration into an interplanetary magnetic flux rope, particularly the effect of the finite Larmor radius and magnetic field irregularities. First, we derive analytical solutions for cosmic-ray behavior inside a magnetic flux rope, on the basis of the Newton-Lorentz equation of a particle, to investigate how cosmic rays penetrate magnetic flux ropes under an assumption of there being no scattering by small-scale magnetic field irregularities. The results show that the behavior of a particle is determined by only one parameter f{sub 0}, that is, the ratio of the Larmor radius at the flux rope axis to the flux rope radius. The analytical solutions show that cosmic rays cannot penetrate into the inner region of a flux rope by only gyration and gradient-curvature drift in the case of small f{sub 0}. Next, we perform a numerical simulation of a cosmic-ray penetration into an interplanetary magnetic flux rope by adding small-scale magnetic field irregularities. The results show that cosmic rays can penetrate into a magnetic flux rope even in the case of small f{sub 0} because of the effect of small-scale magnetic field irregularities. This simulation also shows that a cosmic-ray density distribution is greatly different from that deduced from a guiding center approximation because of the effect of the finite Larmor radius and magnetic field irregularities for the case of a moderate to large Larmor radius compared to the flux rope radius.

  9. The magnetic, basal, and radiative-equilibrium components in Mount Wilson Ca II H + K fluxes

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Dobson, Andrea K.; Radick, Richard R.

    1989-01-01

    Mount Wilson Ca II H + K flux measurements of cool dwarf stars are analyzed and compared with stellar Mg II h + k fluxes, variability amplitudes, rotation rates, and solar data. It is concluded that the Mount Wilson Ca II H + K fluxes comprise three principal parts: (1) a photospheric contribution in the line wings, (2) a basal chromospheric component that appears to be unrelated to stellar magnetic activity and is, therefore, possibly nonmagnetic in origin, and (3) a chromospheric component which is associated with magnetically active regions and the (quiet and active) network. The basal chromosphere appears to cover the entire surface of magnetically inactive stars. The basal Ca II H + K flux density for solar-type stars equals the average emission observed in the centers of solar supergranulation cells, where the magnetic flux density is small.

  10. The magnetic, basal, and radiative-equilibrium components in Mount Wilson Ca II H + K fluxes

    SciTech Connect

    Schrijver, C.J.; Dobson, A.K.; Radick, R.R.; Joint Institute for Laboratory Astrophysics, Boulder, CO )

    1989-06-01

    Mount Wilson Ca II H + K flux measurements of cool dwarf stars are analyzed and compared with stellar Mg II h + k fluxes, variability amplitudes, rotation rates, and solar data. It is concluded that the Mount Wilson Ca II H + K fluxes comprise three principal parts: (1) a photospheric contribution in the line wings, (2) a basal chromospheric component that appears to be unrelated to stellar magnetic activity and is, therefore, possibly nonmagnetic in origin, and (3) a chromospheric component which is associated with magnetically active regions and the (quiet and active) network. The basal chromosphere appears to cover the entire surface of magnetically inactive stars. The basal Ca II H + K flux density for solar-type stars equals the average emission observed in the centers of solar supergranulation cells, where the magnetic flux density is small. 27 refs.

  11. Time dependence of entropy flux and entropy production for a dynamical system driven by noises with coloured cross-correlation

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Xian; Xu, Wei; Cai, Li

    2007-01-01

    This paper shows the Fokker-Planck equation of a dynamical system driven by coloured cross-correlated white noises in the absence and presence of a small external force. Based on the Fokker-Planck equation and the definition of Shannon's information entropy, the time dependence of entropy flux and entropy production can be calculated. The present results can be used to explain the extremal behaviour of time dependence of entropy flux and entropy production in view of the dissipative parameter ? of the system, coloured cross-correlation time ? and coloured cross-correlation strength ?.

  12. Structures of interplanetary magnetic flux ropes and comparison with their solar sources

    SciTech Connect

    Hu, Qiang; Dasgupta, B.; Khare, A.; Webb, G. M. E-mail: qiu@physics.montana.edu

    2014-09-20

    Whether a magnetic flux rope is pre-existing or formed in situ in the Sun's atmosphere, there is little doubt that magnetic reconnection is essential to release the flux rope during its ejection. During this process, the question remains: how does magnetic reconnection change the flux-rope structure? In this work, we continue with the original study of Qiu et al. by using a larger sample of flare-coronal mass ejection (CME)-interplanetary CME (ICME) events to compare properties of ICME/magnetic cloud (MC) flux ropes measured at 1 AU and properties of associated solar progenitors including flares, filaments, and CMEs. In particular, the magnetic field-line twist distribution within interplanetary magnetic flux ropes is systematically derived and examined. Our analysis shows that, similar to what was found before, for most of these events, the amount of twisted flux per AU in MCs is comparable with the total reconnection flux on the Sun, and the sign of the MC helicity is consistent with the sign of the helicity of the solar source region judged from the geometry of post-flare loops. Remarkably, we find that about half of the 18 magnetic flux ropes, most of them associated with erupting filaments, have a nearly uniform and relatively low twist distribution from the axis to the edge, and the majority of the other flux ropes exhibit very high twist near the axis, up to ? 5 turns per AU, which decreases toward the edge. The flux ropes are therefore not linearly force-free. We also conduct detailed case studies showing the contrast of two events with distinct twist distribution in MCs as well as different flare and dimming characteristics in solar source regions, and discuss how reconnection geometry reflected in flare morphology may be related to the structure of the flux rope formed on the Sun.

  13. Numerical dynamos with outer boundary heat flux inferred from probabilistic tomography—consequences for latitudinal distribution of magnetic flux

    NASA Astrophysics Data System (ADS)

    Amit, Hagay; Deschamps, Frédéric; Choblet, Gaël

    2015-11-01

    Mantle control on the geodynamo is often simulated using numerical dynamos with imposed outer boundary heat flux inferred from lower mantle tomography, assuming that seismic and thermal anomalies in the lowermost mantle are highly correlated. However, non-thermal effects might perturb this idealized linear seismic-thermal mapping. Here we use a probabilistic tomography model to isolate the thermal part of the seismic anomaly in order to impose a more realistic core-mantle boundary heat flux pattern on the outer boundary of numerical dynamo simulations. We demonstrate that on time average these dynamo models have more low-latitude convective and magnetic activity than corresponding models with conventional tomographic heat flux. In addition, the low-latitude magnetic flux and kinetic energy contributions are more time-dependent in the dynamo models with a probabilistic tomography heat flux, and thus may recover the observed latitudinal distribution of geomagnetic flux on the core-mantle boundary, which we propose as a morphological criterion for Earth-like dynamo models.

  14. Mechanism of a high-Tc superconducting flux pump: Using alternating magnetic field to trigger flux flow

    NASA Astrophysics Data System (ADS)

    Geng, Jianzhao; Coombs, T. A.

    2015-10-01

    High-Tc Superconducting (HTS) magnets operating in persistent current mode suffer a current decay due to flux creep of superconductor and joint resistance. Flux pumps are able to inject direct current into superconducting circuit to compensate the current decay, without the thermal loss caused by current leads. In this work, we proposed a flux pumping mechanism for HTS coils, with an experimental verification and an analytical model. The basic principle we have used is that flux flow can be triggered when the superconductor carrying a direct current is subjected to a perpendicular AC magnetic field. Low frequency alternating current is induced in a loop of YBCO tape using an AC field. A portion of the tape which we refer to as the "bridge" shorts a superconducting coil. A high frequency AC field is applied perpendicular to the bridge tape when alternating current in the tape reaches one polarity. This triggers a net flux flow and results in a current increase in the coil. The proposed flux pump has clear physics and is easily controllable, which may make it promising in practical use.

  15. THE INSTITUTE FOR SOLID STATE PHYSICS 2014 Newly installed electro-magnetic flux compression (EMFC) system. The new EMFC

    E-print Network

    Katsumoto, Shingo

    60 THE INSTITUTE FOR SOLID STATE PHYSICS 2014 600T 20kV2MJ Newly installed electro-magnetic flux-destructive way, and up to 730 Tesla by destructive (the single turn coil and the electro- magnetic flux quantum limit condi- tions. Development for 1000 T-generation by means of the electro-magnetic flux

  16. PLASTIC VERSUS ELASTIC DEFORMATION EFFECTS ON MAGNETIC BARKHAUSEN NOISE IN STEEL

    E-print Network

    Clapham, Lynann

    PLASTIC VERSUS ELASTIC DEFORMATION EFFECTS ON MAGNETIC BARKHAUSEN NOISE IN STEEL C.-G. STEFANITA, D) AbstractÐA study was performed to dierentiate the eects of elastic and plastic deformation on magnetic samples subjected to varying degrees of uniaxial elastic and plastic deformation up to H40% strain

  17. Controlling the magnetic susceptibility in an artificial elliptical quantum ring by magnetic flux and external Rashba effect

    SciTech Connect

    Omidi, Mahboubeh Faizabadi, Edris

    2015-03-21

    Magnetic susceptibility is investigated in a man-made elliptical quantum ring in the presence of Rashba spin-orbit interactions and the magnetic flux. It is shown that magnetic susceptibility as a function of magnetic flux changes between negative and positive signs periodically. The periodicity of the Aharonov-Bohm oscillations depends on the geometry of the region where magnetic field is applied, the eccentricity, and number of sites in each chain ring (the elliptical ring is composed of chain rings). The magnetic susceptibility sign can be reversed by tuning the Rashba spin-orbit strength as well. Both the magnetic susceptibility strength and sign can be controlled via external spin-orbit interactions, which can be exploited in spintronics and nanoelectronics.

  18. Magnetic Flux Transport and the Long-term Evolution of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-12-01

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.

  19. Magnetic flux conversion and relaxation toward a minimum-energy state in S-1 spheromak plasmas

    SciTech Connect

    Janos, A.

    1985-09-01

    S-1 Spheromak currents and magnetic fluxes have been measured with Rogowski coils and flux loops external to the plasma. Toroidal plasma currents up to 350 kA and spheromak configuration lifetimes over 1.0 msec have been achieved at moderate power levels. The plasma formation in the S-1 Spheromak device is based on an inductive transfer of poloidal and toroidal magnetic flux from a toroidal ''flux core'' to the plasma. Formation is programmed to guide the configuration into a force-free, minimum-energy Taylor state. Properly detailed programming of the formation process is found not to be essential since plasmas adjust themselves during formation to a final equilibrium near the Taylor state. After formation, if the plasma evolves away from the stable state, then distinct relaxation oscillation events occur which restore the configuration to that stable state. The relaxation process involves reconnection of magnetic field lines, and conversion of poloidal to toroidal magnetic flux (and vice versa) has been observed and documented. The scaling of toroidal plasma current and toroidal magnetic flux in the plasma with externally applied currents is consistent with the establishment of a Taylor state after formation. In addition, the magnetic helicity is proportional to that injected from the flux core, independent of how that helicity is generated.

  20. Conceptual design for a periodic permanent magnetic ring magnetic flux compression generator

    NASA Astrophysics Data System (ADS)

    Dong, Z.; Wang, G.; Wang, Y.; Zhou, H.

    2004-03-01

    In a lot of single-shot applications and experiments at remote locations where helical magnetic flux compression generator (HMFCG) provides the most practicable power, it is impracticable or inconvenient to use a capacitor bank to be the initial energy source. Homogenous permanent magnet has been used to be the initial energy source to drive HMFCG, but the energy density stored in a single permanent magnet is very low. The possibility of using periodic permanent magnetic ring structure(PPMR) to be initial energy source of an MFCG was analyzed theoretically and numerically. It was concluded that 1kJ initial energy can be provided to an HMFCG by the PPMR which weights less than 30kg and the outside radius less than 30 cm. In this paper, an axially detonated PPMR HMFCG structure is put forward and studied numerically, and its current amplification expression is reduced. Meanwhile some numerical examples for such an HMFCG are also provided. It is concluded that an experimental investigation of such an HMFCG design is worthwhile.

  1. A possible interplay between electron beams and magnetic fluxes in the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Feng

    2015-06-01

    Most studies on the magnetic Aharonov-Bohm (A-B) effect focus on the action exerted by the magnetic flux on the electron beam, but neglect the back-action exerted by the electron beam on the magnetic flux. This paper focuses on the latter, which is the electromotive force ? U across the solenoid induced by the time-dependent magnetic field of the electron beam. Based on the back-action analysis, we observe that the magnetic A-B effect arises owing to the interaction energy between the magnetic field of the electron beam and the magnetic field of the solenoid. We also demonstrate that the interpretation attributing the magnetic A-B effect to the vector potential violates the uncertainty principle.

  2. Noise in the processing and application of magnetic gradients Leon Foks, Kristofer Davis, and Yaoguo Li, Center for Gravity, Electrical, and Magnetics, Colorado School of Mines,

    E-print Network

    Noise in the processing and application of magnetic gradients Leon Foks, Kristofer Davis, and Yaoguo Li, Center for Gravity, Electrical, and Magnetics, Colorado School of Mines, Golden, Colorado SUMMARY The increased use of magnetic gradients brings about the need for reliable noise characterization

  3. Classification and performance of denoising algorithms for low signal-to-noise ratio magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Wilfred L.; Atkins, M. Stella; Sarty, Gordon E.

    2000-06-01

    The generation of magnitude magnetic resonance images comprises a sequence of data encodings or transformations, from detection of an analog electrical signal to a digital phase/frequency k-space to a complex image space via an inverse Fourier transform and finally to a magnitude image space via a magnitude transformation and rescaling. Noise present in the original signal is transformed at each step of this sequence. Denoising MR images from low field strength scanners is important because such images exhibit low signal to noise ratio. Algorithms that perform denoising of magnetic resonance images may be usefully classified according to the data domain on which they operate (i.e. at which step of the sequence of transformations they are applied) and the underlying statistical distribution of the noise they assume. This latter dimension is important because the noise distribution for low SNR images may be decidedly non-Gaussian. Examples of denoising algorithms include 2D wavelet thresholding (operates on the wavelet transform of the magnitude image; assumes Gaussian noise), Nowak's 2D wavelet filter (operates on the squared wavelet transform of the magnitude image; assumes Rician noise), Alexander et. al.'s complex 2D filters (operates on the wavelet transform of the complex image space; assumes Gaussian noise), wavelet packet denoising (wavelet packet transformation of magnitude image; assumes Rician noise) and anisotropic diffusion filtering (operates directly on magnitude image; no assumptions on noise distribution). Effective denoising of MR images must take into account both the availability of the underlying data, and the distribution of the noise to be removed. We classify a number of recently published denoising algorithms and compare their performance on images from a 0.35T permanent magnet MR scanner.

  4. Wavefunction Properties of a Single and a System of Magnetic Flux Tube(s) Oscillations

    E-print Network

    Esmaeili, Shahriar; Dadashi, Neda; Safari, Hossein

    2015-01-01

    In this study, the properties of wavefunctions of the MHD oscillations for a single and a system of straight flux tubes are investigated. Magnetic flux tubes with a straight magnetic field and longitudinally density stratification under coronal conditions were considered. With repect to the density inhomogeneity in the radial direction of the flux tube, a smoothed step function at the lateral surface is employed. A single three-dimensional wave equation for longitudinal component of the perturbed magnetic field is solved using the finite element method (FEM). Wavefunctions of the MHD oscillations are categorized into kink, sausage, and torsional modes. Concerning the amplitude location of the waves which are arisen from the flux tube, those waves identified as body, surface, and leaky waves and appeared in both a single and a system of flux tubes cases. Exact recognition of the wavefunctions can be used in coronal seismology and also helps to future the high resolution instruments that would be designed for s...

  5. Asymmetric planar gradiometer for rejection of uniform ambient magnetic noise

    DOEpatents

    Dantsker, Eugene (Torrance, CA); Clarke, John (Berkeley, CA)

    2000-01-01

    An asymmetric planar gradiometer for use in making biomagnetic measurements. The gradiometer is formed from a magnetometer which is inductively-coupled to the smaller of two connected loops patterned in a superconducting film which form a flux transformer. The magnetometer is based on a SQUID formed from a high T.sub.c superconducting material. The flux transformer and magnetometer may be formed on separate substrates, allowing the baseline to be increased relative to presently available devices.

  6. Avalanche dynamics of magnetic flux in a two-dimensional discrete superconductor

    SciTech Connect

    Ginzburg, S. L.; Nakin, A. V.; Savitskaya, N. E.

    2006-11-15

    The critical state of a two-dimensional discrete superconductor in an external magnetic field is studied. This state is found to be self-organized in the generalized sense, i.e., is a set of metastable states that transform to each other by means of avalanches. An avalanche is characterized by the penetration of a magnetic flux to the system. The sizes of the occurring avalanches, i.e., changes in the magnetic flux, exhibit the power-law distribution. It is also shown that the size of the avalanche occurring in the critical state and the external magnetic field causing its change are statistically independent quantities.

  7. BaBar technical design report: Chapter 9, Magnet coil and flux return

    SciTech Connect

    O`Connor, T.; The BaBar Collaboration

    1995-03-01

    The BaBar magnet is a thin, 1.5 T superconducting solenoid with a hexagonal flux return. This chapter discusses the physics requirements and performance goals for the magnet, describes key interfaces, and summarizes the projected magnet performance. It also presents the design of the superconducting solenoid, including magnetic design, cold mass design, quench protection and stability, cold mass cooling, cryostat design, and coil assembly and transportation. The cryogenic supply system and instrumentation are described briefly, and the flux return is described.

  8. On ThreeDimensional Magnetic Skeleton Elements due to Discrete Flux Sources

    E-print Network

    Longcope, Dana

    On Three­Dimensional Magnetic Skeleton Elements due to Discrete Flux Sources C. Beveridge and D. By calculating the skeleton of a field, it is possible to build up a sophisticated representation of the key

  9. Development of an isolated flyback converter employing boundary-mode operation and magnetic flux sensing feedback

    E-print Network

    Kenia, Mayur V. (Mayur Vasant), 1981-

    2004-01-01

    This thesis focuses on the marriage of magnetic-flux-sensing feedback and boundary-mode operation in a flyback converter to create a simple, small, low-cost, isolated, and tightly regulated power supply. Although each ...

  10. Modeling magnetic fields measured by surface probes embedded in a cylindrical flux conserver.

    PubMed

    Golingo, R P

    2007-03-01

    Calculating magnetic fields at the surface of a flux conserver, perfect conductor, for displaced plasma currents is useful for understanding modes of a Z-pinch. The magnetic fields measured at the flux conserver are a sum of the magnetic fields from the plasma current and the eddy currents which form in the walls to keep the flux constant. While the magnetic field at the wall from the plasma current alone is easily calculated using the Biot-Savart law, finding the eddy currents in the flux conserver which satisfy the boundary conditions can be a tedious process. A simple method of calculating the surface magnetic field for a given Z-pinch displacement off-axis is derived for a cylindrical flux conserver. This relationship does not require the explicit calculation of the eddy currents, saving time when analyzing surface magnetic probe measurements. Analytic expressions can be used to describe the surface magnetic field which increase the understanding of the magnetic probe measurements. PMID:17411182

  11. Cluster electric current density measurements within a magnetic flux rope in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.

    2003-01-01

    On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic flux rope in the tail. The flux rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the flux rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the flux rope moved over the spacecraft is in close agreement with the Cluster plasma measurements. The magnetic field profiles measured at each spacecraft were first modeled separately using the Lepping-Burlaga force-free flux rope model. The results indicated that the center of the flux rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the flux rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field measurements provide a second means to determine the electric current density without any assumption regarding flux rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the flux rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting flux rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.

  12. Computer model simulation of null-flux magnetic suspension and guidance

    SciTech Connect

    He, Jianliang; Rote, D.M.

    1992-01-01

    This paper discusses the magnetic force computations in a null-flux suspension system using dynamic circuit theory. A computer simulation model that can be used to compute magnetic forces and predict the system performance is developed on the basis of dynamic circuit theory. Numerical examples are presented to demonstrate the application of the model. The performance of the null-flux suspension system is simulated and discussed. 8 refs.

  13. Computer model simulation of null-flux magnetic suspension and guidance

    SciTech Connect

    He, Jianliang; Rote, D.M.

    1992-06-01

    This paper discusses the magnetic force computations in a null-flux suspension system using dynamic circuit theory. A computer simulation model that can be used to compute magnetic forces and predict the system performance is developed on the basis of dynamic circuit theory. Numerical examples are presented to demonstrate the application of the model. The performance of the null-flux suspension system is simulated and discussed. 8 refs.

  14. On the resonance scattering of sound by slender magnetic flux tubes

    SciTech Connect

    Bogdan, T.J. )

    1989-10-01

    The impact of excited tube modes (resonances) on the acoustic scattering properties of slender flux tubes, which is relevant to the interaction of the solar five-minute oscillations with the thin intense magnetic flux tubes that dot the solar surface, is theoretically discussed. Quantitative examples are given which take into account the influence of the finite size of the flux tube on the resonance locations and widths. The practical implications of the theory for observations are considered. 31 refs.

  15. Line-of-sight magnetic flux imbalances caused by electric currents

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Rabin, Douglas

    1995-01-01

    Several physical and observational effects contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0-15%, depending on the character of the current-carying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other- probably larger- effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.

  16. An introduction to the propellant-driven magnetic flux compression generator

    SciTech Connect

    Williams, P.E.

    1995-12-01

    An introduction to the concept of a propellant-driven magnetic flux compression generator is presented, together with the theory of its operation. The principles of operation of the propellant flux compression generator combine generator principles, derived from lumped parameter circuit theory, and interior ballistic principles.

  17. Equivalent magnetic noise in multi- push-pull configuration magnetoelectric composites: model and experiment.

    PubMed

    Wang, Yaojin; Hasanyan, Davresh; Li, Menghui; Gao, Junqi; Li, Jiefang; Viehland, Dwight

    2013-06-01

    A theoretical model for the multi-push-pull configuration of magnetoelectric (ME) laminated composites comprising magnetostrictive and piezoelectric layers with interdigitated electrodes encapsulated in polyimide film is presented. Analytical solutions for the ME voltage coefficient ?E, ME charge coefficient ?Q, noise charge density and equivalent magnetic noise were derived. Parametric studies are presented to evaluate the influence of material properties and polyimide film geometries. The results show that the value of ?E was determined by the parameters of the magnetostrictive and piezoelectric phases, and that the values of ?Q and noise charge density were determined not only by the component parameters, but also by the volume fraction of the piezoelectric phase and polyimide film geometry. The equivalent magnetic noise had no dependence on the polyimide film geometry, but rather was determined by the component parameters and the volume fraction of the piezoelectric phase. Theoretical and experimental results are compared and shown to have good agreement with each other. PMID:25004486

  18. Effects of creep damage, shot peening, and case hardening on magnetic Barkhausen noise analysis

    SciTech Connect

    Sipahi, L.B. Iowa State Univ., Ames, IA . Inst. for Physical Research and Technology)

    1994-11-01

    The micromagnetic emissions, commonly known as Barkhausen noise, are very sensitive to variations in the microstructure and sub-surface stress states of magnetic materials. Steel pipelines at power plants often have creep damage due to microstructural changes in their service life. Early detection of this damage will prevent costly failures. There is also an increasing demand to characterize the sub-surface stress states in structural materials such as high strength materials used in landing gear components in the aerospace industry. Shot peening is used to improve the fatigue strength of these components by the introduction of residual compressive stresses to the surface. Because the magnitude of Barkhausen noise varies with the magnitude of compressive stress, these noise measurements can be used for in-situ evaluation of the effectiveness of the shot peening process. Furthermore, surface modification such as case hardened magnetic samples can be easily observed using micromagnetic Barkhausen noise (MBE) to determine further modification needs.

  19. A moving hum filter to suppress rotor noise in high-resolution airborne magnetic data

    USGS Publications Warehouse

    Xia, J.; Doll, W.E.; Miller, R.D.; Gamey, T.J.; Emond, A.M.

    2005-01-01

    A unique filtering approach is developed to eliminate helicopter rotor noise. It is designed to suppress harmonic noise from a rotor that varies slightly in amplitude, phase, and frequency and that contaminates aero-magnetic data. The filter provides a powerful harmonic noise-suppression tool for data acquired with modern large-dynamic-range recording systems. This three-step approach - polynomial fitting, bandpass filtering, and rotor-noise synthesis - significantly reduces rotor noise without altering the spectra of signals of interest. Two steps before hum filtering - polynomial fitting and bandpass filtering - are critical to accurately model the weak rotor noise. During rotor-noise synthesis, amplitude, phase, and frequency are determined. Data are processed segment by segment so that there is no limit on the length of data. The segment length changes dynamically along a line based on modeling results. Modeling the rotor noise is stable and efficient. Real-world data examples demonstrate that this method can suppress rotor noise by more than 95% when implemented in an aeromagnetic data-processing flow. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  20. Observation of an evolving magnetic flux rope before and during a solar eruption.

    PubMed

    Zhang, Jie; Cheng, Xin; Ding, Ming-de

    2012-01-01

    Explosive energy release is a common phenomenon occurring in magnetized plasma systems ranging from laboratories, Earth's magnetosphere, the solar corona and astrophysical environments. Its physical explanation is usually attributed to magnetic reconnection in a thin current sheet. Here we report the important role of magnetic flux rope structure, a volumetric current channel, in producing explosive events. The flux rope is observed as a hot channel before and during a solar eruption from the Atmospheric Imaging Assembly telescope on board the Solar Dynamic Observatory. It initially appears as a twisted and writhed sigmoidal structure with a temperature as high as 10 MK, and then transforms toward a semi-circular shape during a slow-rise phase, which is followed by fast acceleration and onset of a flare. The observations suggest that the instability of the magnetic flux rope triggers the eruption, thus making a major addition to the traditional magnetic-reconnection paradigm. PMID:22434190

  1. Direct control of air gap flux in permanent magnet machines

    DOEpatents

    Hsu, John S. (Oak Ridge, TN)

    2000-01-01

    A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

  2. The application of wavelet shrinkage denoising to magnetic Barkhausen noise measurements

    SciTech Connect

    Thomas, James

    2014-02-18

    The application of Magnetic Barkhausen Noise (MBN) as a non-destructive method of defect detection has proliferated throughout the manufacturing community. Instrument technology and measurement methodology have matured commensurately as applications have moved from the R and D labs to the fully automated manufacturing environment. These new applications present a new set of challenges including a bevy of error sources. A significant obstacle in many industrial applications is a decrease in signal to noise ratio due to (i) environmental EMI and (II) compromises in sensor design for the purposes of automation. The stochastic nature of MBN presents a challenge to any method of noise reduction. An application of wavelet shrinkage denoising is proposed as a method of decreasing extraneous noise in MBN measurements. The method is tested and yields marked improvement on measurements subject to EMI, grounding noise, and even measurements in ideal conditions.

  3. Laboratory study of arched magnetic flux ropes formed within a solar-relevant potential field configuration

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Lawrence, E. E.

    2012-10-01

    Solar eruptive events such as coronal mass ejections (CMEs) are thought to be driven by a sudden release of magnetic energy stored in the solar corona. In many cases, the pre-eruptive configuration is a non-potential magnetic structure that can be modeled as a line-tied magnetic flux rope. In spite of ever-improving observations, directly studying these coronal flux ropes remains a significant challenge. As an alternative, we have designed a laboratory experiment to produce low-? arched magnetic flux ropes similar to those found in the corona. These line-tied flux ropes are formed as a magnetized arc discharge between two electrodes and they evolve quasi-statically over hundreds of Alfv'en times. Recently, we have constructed a new set of magnetic field coils to produce an active-region-like potential field configuration. Initial results from plasmas formed in this configuration are presented, including fast camera images and internal magnetic measurements. These discharges are expected to access a regime where a slowly evolving flux rope can suddenly undergo a dynamic eruption due to a loss-of-equilibriumfootnotetextForbes & Isenberg, ApJ 373, 294 (1991) or the torus instability.footnotetextKliem & T"or"ok, PRL 96, 255002 (2006)

  4. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-01

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ?e?e?1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ?e?e as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  5. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-15

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (?{sub e}?{sub e}?1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ?{sub e}?{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  6. Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes

    SciTech Connect

    Djidjou, T. K.; Basel, Tek; Rogachev, A.; Chen, Ying; Shinar, J.

    2015-03-21

    We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2?-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.25–0.4. We found that time constant of the g-r term decreases and the magnitude of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps.

  7. Modeling Barkhausen Noise in magnetic glasses with dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Dubey, Awadhesh K.; Hentschel, H. George E.; Jaiswal, Prabhat K.; Mondal, Chandana; Procaccia, Itamar; Gupta, Bhaskar Sen

    2015-10-01

    Long-ranged dipole-dipole interactions in magnetic glasses give rise to magnetic domains having labyrinthine patterns on the scale of about 1 micron. Barkhausen Noise then results from the movement of domain boundaries which is modeled by the motion of elastic membranes with random pinning. Here we propose that on the nanoscale new sources of Barkhausen Noise can arise. We propose an atomistic model of magnetic glasses in which we measure the Barkhausen Noise which results from the creation of new domains and the movement of domain boundaries on the nanoscale. The statistics of the Barkhausen Noise found in our simulations is in striking disagreement with the expectations in the literature. In fact we find exponential statistics without any power law, stressing the fact that Barkhausen Noise can belong to very different universality classes. In the present model the essence of the phenomenon is the fact that the spin response Green's function is decaying too rapidly for having sufficiently large magnetic jumps. A theory is offered in excellent agreement with the measured data without any free parameter.

  8. Electron heat flux dropouts in the solar wind - Evidence for interplanetary magnetic field reconnection?

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Gosling, J. T.; Phillips, J. L.; Bame, S. J.; Luhmann, J. G.; Smith, E. J.

    1989-01-01

    An examination of ISEE-3 data from 1978 reveal 25 electron heat flux dropout events ranging in duration from 20 min to over 11 hours. The heat flux dropouts are found to occur in association with high plasma densities, low plasma velocities, low ion and electron temperatures, and low magnetic field magnitudes. It is suggested that the heat flux dropout intervals may indicate that the spacecraft is sampling plasma regimes which are magnetically disconnected from the sun and instead are connected to the outer heliosphere at both ends.

  9. Composite pulses robust against charge noise and magnetic field noise for universal control of a singlet-triplet qubit

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Barnes, Edwin; Kestner, Jason P.; Bishop, Lev S.; Das Sarma, Sankar

    2013-03-01

    We generalize our SUPCODE pulse sequences for singlet-triplet qubits to correct errors from imperfect control. This yields gates that are simultaneously corrected for both charge noise and magnetic field gradient fluctuations, addressing the two dominant T2* processes. By using this more efficient version of SUPCODE, we are able to introduce this capability while also substantially reducing the overall pulse time compared to the previous sequence. We show that our sequence remains realistic under experimental constraints such as finite bandwidth. This work is supported by LPS-NSA-CMTC, IARPA-MQCO and CNAM.

  10. Radiative Heating and the Buoyant Rise of Magnetic Flux Tubes in the Solar interior

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Fisher, G. H.

    1996-06-01

    We study the effect of radiative heating on the evolution of thin magnetic flux tubes in the solar interior and on the eruption of magnetic flux loops to the surface. Magnetic flux tubes experience radiative heating because (1) the mean temperature gradient in the lower convection zone and the overshoot region deviates substantially from that of radiative equilibrium, and hence there is a non-zero divergence of radiative heat flux; and (2) the magnetic pressure of the flux tube causes a small change of the thermodynamic properties within the tube relative to the surrounding field-free fluid, resulting in an additional divergence of radiative heat flux. Our calculations show that the former constitutes the dominant source of radiative heating experienced by the flux tube. In the overshoot region, the radiative heating is found to cause a quasi-static rising of the toroidal flux tubes with an upward drift velocity ˜ 10-3|?| cm s-1, where ? ? ?e - ?ad < 0 describes the subadiabaticity in the overshoot layer. The upward drift velocity does not depend sensitively on the field strength of the flux tubes. Thus in order to store toroidal flux tubes in the overshoot region for a period comparable to the length of the solar cycle, the magnitude of the subadiabaticity ?(< 0) in the overshoot region must be as large as ˜ 3 × 10-4. We discuss the possibilities for increasing the magnitude of ? and for reducing the rate of radiative heating of the flux tubes in the overshoot region. Using numerical simulations we study the formation of ‘?’-shaped emerging loops from toroidal flux tubes in the overshoot region as a result of radiative heating. The initial toroidal tube is assumed to be non-uniform in its thermodynamic properties along the tube and lies at varying depths beneath the base of the convection zone. The tube is initially in a state of neutral buoyancy with the internal density of the tube plasma equal to the local external density. We find from our numerical simulations that such a toroidal tube rises quasi-statically due to radiative heating. The top portion of the nonuniform tube first enters the convection zone and may be brought to an unstable configuration which eventually leads to the eruption of an anchored flux loop to the surface. Assuming reasonable initial parameters, our numerical calculations yield fairly short rise times (2 4 months) for the development of the emerging flux loops. This suggests that radiative heating is an effective way of causing the eruption of magnetic flux loops, leading to the formation of active regions at the surface.

  11. Voltage Controller for Flux Weakening Operation of Interior Permanent Magnet Synchronous Motor

    E-print Network

    Noé, Reinhold

    Terms--Interior permanent magnet synchronous motors (IPMSM), traction motors, electric vehicles, voltageVoltage Controller for Flux Weakening Operation of Interior Permanent Magnet Synchronous Motor-bench measurements based on an electric traction motor typically employed in sub-compact electric vehicles. Index

  12. A Magnetic Flux Leakage and Magnetostrictive Guided Wave Hybrid Transducer for Detecting Bridge Cables

    PubMed Central

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables. PMID:22368483

  13. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer for detecting bridge cables.

    PubMed

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables. PMID:22368483

  14. MAGNETAR GIANT FLARES-FLUX ROPE ERUPTIONS IN MULTIPOLAR MAGNETOSPHERIC MAGNETIC FIELDS

    SciTech Connect

    Yu Cong

    2012-09-20

    We address a primary question regarding the physical mechanism that triggers the energy release and initiates the onset of eruptions in the magnetar magnetosphere. Self-consistent stationary, axisymmetric models of the magnetosphere are constructed based on force-free magnetic field configurations that contain a helically twisted force-free flux rope. Depending on the surface magnetic field polarity, there exist two kinds of magnetic field configurations, inverse and normal. For these two kinds of configurations, variations of the flux rope equilibrium height in response to gradual surface physical processes, such as flux injections and crust motions, are carefully examined. We find that equilibrium curves contain two branches: one represents a stable equilibrium branch, and the other an unstable equilibrium branch. As a result, the evolution of the system shows a catastrophic behavior: when the magnetar surface magnetic field evolves slowly, the height of the flux rope would gradually reach a critical value beyond which stable equilibriums can no longer be maintained. Subsequently, the flux rope would lose equilibrium and the gradual quasi-static evolution of the magnetosphere will be replaced by a fast dynamical evolution. In addition to flux injections, the relative motion of active regions would give rise to the catastrophic behavior and lead to magnetic eruptions as well. We propose that a gradual process could lead to a sudden release of magnetosphere energy on a very short dynamical timescale, without being initiated by a sudden fracture in the crust of the magnetar. Some implications of our model are also discussed.

  15. Evaluation of magnetic flux distribution from magnetic domains in [Co/Pd] nanowires by magnetic domain scope method using contact-scanning of tunneling magnetoresistive sensor

    NASA Astrophysics Data System (ADS)

    Okuda, Mitsunobu; Miyamoto, Yasuyoshi; Miyashita, Eiichi; Hayashi, Naoto

    2014-05-01

    Current-driven magnetic domain wall motions in magnetic nanowires have attracted great interests for physical studies and engineering applications. The magnetic force microscope (MFM) is widely used for indirect verification of domain locations in nanowires, where relative magnetic force between the local domains and the MFM probe is used for detection. However, there is an occasional problem that the magnetic moments of MFM probe influenced and/or rotated the magnetic states in the low-moment nanowires. To solve this issue, the "magnetic domain scope for wide area with nano-order resolution (nano-MDS)" method has been proposed recently that could detect the magnetic flux distribution from the specimen directly by scanning of tunneling magnetoresistive field sensor. In this study, magnetic domain structure in nanowires was investigated by both MFM and nano-MDS, and the leakage magnetic flux density from the nanowires was measured quantitatively by nano-MDS. Specimen nanowires consisted from [Co (0.3)/Pd (1.2)]21/Ru(3) films (units in nm) with perpendicular magnetic anisotropy were fabricated onto Si substrates by dual ion beam sputtering and e-beam lithography. The length and the width of the fabricated nanowires are 20 ?m and 150 nm. We have succeeded to obtain not only the remanent domain images with the detection of up and down magnetizations as similar as those by MFM but also magnetic flux density distribution from nanowires directly by nano-MDS. The obtained value of maximum leakage magnetic flux by nano-MDS is in good agreement with that of coercivity by magneto-optical Kerr effect microscopy. By changing the protective diamond-like-carbon film thickness on tunneling magnetoresistive sensor, the three-dimensional spatial distribution of leakage magnetic flux could be evaluated.

  16. Evaluation of magnetic flux distribution from magnetic domains in [Co/Pd] nanowires by magnetic domain scope method using contact-scanning of tunneling magnetoresistive sensor

    SciTech Connect

    Okuda, Mitsunobu Miyamoto, Yasuyoshi; Miyashita, Eiichi; Hayashi, Naoto

    2014-05-07

    Current-driven magnetic domain wall motions in magnetic nanowires have attracted great interests for physical studies and engineering applications. The magnetic force microscope (MFM) is widely used for indirect verification of domain locations in nanowires, where relative magnetic force between the local domains and the MFM probe is used for detection. However, there is an occasional problem that the magnetic moments of MFM probe influenced and/or rotated the magnetic states in the low-moment nanowires. To solve this issue, the “magnetic domain scope for wide area with nano-order resolution (nano-MDS)” method has been proposed recently that could detect the magnetic flux distribution from the specimen directly by scanning of tunneling magnetoresistive field sensor. In this study, magnetic domain structure in nanowires was investigated by both MFM and nano-MDS, and the leakage magnetic flux density from the nanowires was measured quantitatively by nano-MDS. Specimen nanowires consisted from [Co (0.3)/Pd (1.2)]{sub 21}/Ru(3) films (units in nm) with perpendicular magnetic anisotropy were fabricated onto Si substrates by dual ion beam sputtering and e-beam lithography. The length and the width of the fabricated nanowires are 20??m and 150?nm. We have succeeded to obtain not only the remanent domain images with the detection of up and down magnetizations as similar as those by MFM but also magnetic flux density distribution from nanowires directly by nano-MDS. The obtained value of maximum leakage magnetic flux by nano-MDS is in good agreement with that of coercivity by magneto-optical Kerr effect microscopy. By changing the protective diamond-like-carbon film thickness on tunneling magnetoresistive sensor, the three-dimensional spatial distribution of leakage magnetic flux could be evaluated.

  17. Magnetic flux relaxation in YBa2Cu3)(7-x) thin film: Thermal or athermal

    NASA Technical Reports Server (NTRS)

    Vitta, Satish; Stan, M. A.; Warner, J. D.; Alterovitz, S. A.

    1991-01-01

    The magnetic flux relaxation behavior of YBa2Cu3O(7-x) thin film on LaAlO3 for H is parallel to c was studied in the range 4.2 - 40 K and 0.2 - 1.0 T. Both the normalized flux relaxation rate S and the net flux pinning energy U increase continuously from 1.3 x 10(exp -2) to 3.0 x 10(exp -2) and from 70 to 240 meV respectively, as the temperature T increases from 10 to 40 K. This behavior is consistent with the thermally activated flux motion model. At low temperatures, however, S is found to decrease much more slowly as compared with kT, in contradiction to the thermal activation model. This behavior is discussed in terms of the athermal quantum tunneling of flux lines. The magnetic field dependence of U, however, is not completely understood.

  18. Mean-field and direct numerical simulations of magnetic flux concentrations from vertical field

    NASA Astrophysics Data System (ADS)

    Brandenburg, A.; Gressel, O.; Jabbari, S.; Kleeorin, N.; Rogachevskii, I.

    2014-02-01

    Context. Strongly stratified hydromagnetic turbulence has previously been found to produce magnetic flux concentrations if the domain is large enough compared with the size of turbulent eddies. Mean-field simulations (MFS) using parameterizations of the Reynolds and Maxwell stresses show a large-scale negative effective magnetic pressure instability and have been able to reproduce many aspects of direct numerical simulations (DNS) regarding growth rate, shape of the resulting magnetic structures, and their height as a function of magnetic field strength. Unlike the case of an imposed horizontal field, for a vertical one, magnetic flux concentrations of equipartition strength with the turbulence can be reached, resulting in magnetic spots that are reminiscent of sunspots. Aims: We determine under what conditions magnetic flux concentrations with vertical field occur and what their internal structure is. Methods: We use a combination of MFS, DNS, and implicit large-eddy simulations (ILES) to characterize the resulting magnetic flux concentrations in forced isothermal turbulence with an imposed vertical magnetic field. Results: Using DNS, we confirm earlier results that in the kinematic stage of the large-scale instability the horizontal wavelength of structures is about 10 times the density scale height. At later times, even larger structures are being produced in a fashion similar to inverse spectral transfer in helically driven turbulence. Using ILES, we find that magnetic flux concentrations occur for Mach numbers between 0.1 and 0.7. They occur also for weaker stratification and larger turbulent eddies if the domain is wide enough. Using MFS, the size and aspect ratio of magnetic structures are determined as functions of two input parameters characterizing the parameterization of the effective magnetic pressure. DNS, ILES, and MFS show magnetic flux tubes with mean-field energies comparable to the turbulent kinetic energy. These tubes can reach a length of about eight density scale heights. Despite being ?1% equipartition strength, it is important that their lower part is included within the computational domain to achieve the full strength of the instability. Conclusions: The resulting vertical magnetic flux tubes are being confined by downflows along the tubes and corresponding inflow from the sides, which keep the field concentrated. Application to sunspots remains a viable possibility.

  19. DOI 10.1007/s11207-012-9939-2 Implications of Non-cylindrical Flux Ropes for Magnetic

    E-print Network

    Meyer-Vernet, Nicole

    a magnetic cloud, the error in using cylindrical reconstruction methods is relatively small (10 ). How- everSolar Phys DOI 10.1007/s11207-012-9939-2 Implications of Non-cylindrical Flux Ropes for Magnetic the flux rope is locally cylindrical, e.g., minimum variance analysis (MVA) and force- free flux rope (FFFR

  20. CONDITIONS FOR TRANSVERSE WAVES PROPAGATION ALONG THIN MAGNETIC FLUX TUBES ON THE SUN

    SciTech Connect

    Lopin, Igor; Nagorny, Ivan

    2013-09-10

    The propagation of kink waves in the thin gravity stratified flux tubes with a generalized magnetic field distribution model is considered in cylindrical geometry. The new kink wave equations for both wave variables are obtained. It is shown that the inclusion of the radial component of an unperturbed tube magnetic field sufficiently transforms the conditions for the propagation of transverse waves. It is demonstrated that, for the models of isothermal and polytropic atmosphere in the tube and its environment, the propagation of kink waves along thin magnetic flux tubes is cutoff-free.

  1. Dynamics of local isolated magnetic flux tubes in a fast-rotating stellar atmosphere

    SciTech Connect

    Chou, W.; Tajima, C.T.; Matsumoto, R. |; Shibata, K.

    1998-01-01

    Dynamics of magnetic flux tubes in the fast rotating stellar atmosphere is studied. We focus on the effects and signatures of the instability of the flux tube emergence influenced by the Coriolis force. We present the result from a linear stability analysis and discuss its possible signatures in the course of the evolution of G-type and M-type stars. We present a three dimensional magnetohydrodynamical simulation of local isolated magnetic flux tubes under a magnetic buoyancy instability in co-rotating Cartesian coordinates. We find that the combination of the buoyancy instability and the Coriolis effect gives rise to a mechanism, to twist the emerging magnetic flux tube into a helical structure. The tilt angle, east-west asymmetry and magnetic helicity of the Twisted flux tubes in the simulations are studied in detail. The linear and nonlinear analyses provide hints as to what kind of pattern of large spots in young M-type main-sequence stars might be observed. We find that young and old G-type stars may have different distributions of spots while M-type stars may always have low latitudes spots. The size of stellar spots may decrease when a star becomes older, due to the decreasing of magnetic field. A qualitative comparison with solar observations is also presented.

  2. Formation processes of flux ropes downstream from Martian crustal magnetic fields inferred from Grad-Shafranov reconstruction

    NASA Astrophysics Data System (ADS)

    Hara, Takuya; Seki, Kanako; Hasegawa, Hiroshi; Brain, David A.; Matsunaga, Kazunari; Saito, Miho H.; Shiota, Daikou

    2014-09-01

    We applied the Grad-Shafranov reconstruction (GSR) technique to Martian magnetic flux ropes observed downstream from strong crustal magnetic fields in the southern hemisphere. The GSR technique can provide a two-dimensional axial magnetic field map as well as the axial orientation of flux ropes from single-spacecraft data under assumptions that the structure is magnetohydrostatic and time independent. The reconstructed structures, including their orientation, allowed us to evaluate possible formation processes for the flux ropes. We reconstructed 297 magnetic flux ropes observed by Mars Global Surveyor between April 1999 and November 2006. Based on characteristics of their geometrical axial orientation and transverse magnetic field topology, we found that they can be mainly distinguished according to whether draped interplanetary magnetic fields overlaying the crustal magnetic fields are involved or not. Approximately two thirds of the flux ropes can be formed by magnetic reconnection between neighboring crustal magnetic fields attached to the surface. The remaining events seem to require magnetic reconnection between crustal and overlaid draped magnetic fields. The latter scenario should allow planetary ions to be transferred from closed magnetic flux tube to flux tubes connected to interplanetary space, allowing atmospheric ions to escape from Mars. We quantitatively evaluate lower limits on potential ion escape rates from Mars owing to magnetic flux ropes.

  3. Twist accumulation and topology structure of a solar magnetic flux rope

    SciTech Connect

    Guo, Y.; Ding, M. D.; Cheng, X.; Zhao, J.; Pariat, E.

    2013-12-20

    To study the buildup of a magnetic flux rope before a major flare and coronal mass ejection (CME), we compute the magnetic helicity injection, twist accumulation, and topology structure of the three-dimensional (3D) magnetic field, which is derived by the nonlinear force-free field model. The Extreme-ultraviolet Imaging Telescope on board the Solar and Heliospheric Observatory observed a series of confined flares without any CME before a major flare with a CME at 23:02 UT on 2005 January 15 in active region NOAA 10720. We derive the vector velocity at eight time points from 18:27 UT to 22:20 UT with the differential affine velocity estimator for vector magnetic fields, which were observed by the Digital Vector Magnetograph at Big Bear Solar Observatory. The injected magnetic helicity is computed with the vector magnetic and velocity fields. The helicity injection rate was (– 16.47 ± 3.52) × 10{sup 40} Mx{sup 2} hr{sup –1}. We find that only about 1.8% of the injected magnetic helicity became the internal helicity of the magnetic flux rope, whose twist increasing rate was –0.18 ± 0.08 Turns hr{sup –1}. The quasi-separatrix layers (QSLs) of the 3D magnetic field are computed by evaluating the squashing degree, Q. We find that the flux rope was wrapped by QSLs with large Q values, where the magnetic reconnection induced by the continuously injected magnetic helicity further produced the confined flares. We suggest that the flux rope was built up and heated by the magnetic reconnection in the QSLs.

  4. Magnetic damping forces in figure-eight-shaped null-flux coil suspension systems

    SciTech Connect

    He, Jianliang; Coffey, H.

    1997-08-01

    This paper discusses magnetic damping forces in figure-eight-shaped null-flux coil suspension systems, focusing on the Holloman maglev rocket system. The paper also discusses simulating the damping plate, which is attached to the superconducting magnet by two short-circuited loop coils in the guideway. Closed-form formulas for the magnetic damping coefficient as functions of heave-and-sway displacements are derived by using a dynamic circuit model. These formulas are useful for dynamic stability studies.

  5. Convective radial energy flux due to resonant magnetic perturbations and magnetic curvature at the tokamak plasma edge

    E-print Network

    Marcus, F A; Fuhr, G; Monnier, A; Benkadda, S

    2014-01-01

    With the resonant magnetic perturbations (RMPs) consolidating as an important tool to control the transport barrier relaxation, the mechanism on how they work is still a subject to be clearly understood. In this work we investigate the equilibrium states in the presence of RMPs for a reduced MHD model using 3D electromagnetic fluid numerical code (EMEDGE3D) with a single harmonic RMP (single magnetic island chain) and multiple harmonics RMPs in cylindrical and toroidal geometry. Two different equilibrium states were found in the presence of the RMPs with different characteristics for each of the geometries used. For the cylindrical geometry in the presence of a single RMP, the equilibrium state is characterized by a strong convective radial thermal flux and the generation of a mean poloidal velocity shear. In contrast, for toroidal geometry the thermal flux is dominated by the magnetic flutter. For multiple RMPs, the high amplitude of the convective flux and poloidal rotation are basically the same in cylindr...

  6. Study on formation processes of Martian magnetic flux ropes observed downstream from crustal magnetic fields based on the Grad-Shafranov reconstruction technique

    NASA Astrophysics Data System (ADS)

    Hara, T.; Seki, K.; Hasegawa, H.; Brain, D. A.

    2014-12-01

    Magnetic flux ropes have been observed even in unmagnetized planets' ionosphere, such as Venus and Mars. In the case of Mars, the origin of Martian flux ropes is owing to not only the interplanetary magnetic field and associated draped magnetic fields, but also crustal magnetic fields. Planetary ions are energized through the direct interaction of the solar wind with the upper atmosphere, resulting in ion escape into interplanetary space. Hence magnetic flux ropes can contribute to the ion escape rates, because they may confine large amounts of ionospheric plasma. Here, we investigated formation processes of Martian magnetic flux ropes observed downstream from strong crustal magnetic fields in the southern hemisphere based on the Grad-Shafranov reconstruction (GSR) technique. The GSR technique can provide a two-dimensional axial magnetic field map as well as flux ropes axial orientation from single spacecraft data under assumptions that the structure is magneto-hydrostatic and time-independent. We reconstructed the 297 magnetic flux ropes from Mars Global Surveyor measurements between April 1999 and November 2006. Based on characteristics of their geometrical axial orientation and transverse magnetic field topology, we found that they can be mainly distinguished according to whether draped interplanetary magnetic fields overlaying on the crustal magnetic fields are involved or not. For approximately two-thirds of the events, they can be formed by magnetic reconnection between neighboring crustal magnetic fields attached to the surface. For the remaining events, however, magnetic reconnection between the crustal and overlaid draping magnetic fields seems to be necessary. Since the overlaid draping magnetic field connects to interplanetary space, planetary ions included inside those flux ropes can be easy to escape from Mars. We also quantitatively evaluate lower limits on potential ion escape rates from Mars owing to the magnetic flux ropes based on the GSR results, and discuss the contribution of magnetic flux ropes to the ion escape rate from Mars.

  7. How is open solar magnetic flux lost over the solar cycle? M. J. Owens,1,2

    E-print Network

    Lockwood, Mike

    solar flux in terms of a source and loss term. Open solar flux creation is likely to proceed at a rate or coronal mass ejection rate, when available. The open solar flux loss term is more difficult to relateHow is open solar magnetic flux lost over the solar cycle? M. J. Owens,1,2 N. U. Crooker,3 and M

  8. Adaptive cancellation of geomagnetic background noise for magnetic anomaly detection using coherence

    NASA Astrophysics Data System (ADS)

    Liu, Dunge; Xu, Xin; Huang, Chao; Zhu, Wanhua; Liu, Xiaojun; Yu, Gang; Fang, Guangyou

    2015-01-01

    Magnetic anomaly detection (MAD) is an effective method for the detection of ferromagnetic targets against background magnetic fields. Currently, the performance of MAD systems is mainly limited by the background geomagnetic noise. Several techniques have been developed to detect target signatures, such as the synchronous reference subtraction (SRS) method. In this paper, we propose an adaptive coherent noise suppression (ACNS) method. The proposed method is capable of evaluating and detecting weak anomaly signals buried in background geomagnetic noise. Tests with real-world recorded magnetic signals show that the ACNS method can excellently remove the background geomagnetic noise by about 21?dB or more in high background geomagnetic field environments. Additionally, as a general form of the SRS method, the ACNS method offers appreciable advantages over the existing algorithms. Compared to the SRS method, the ACNS algorithm can eliminate the false target signals and represents a noise suppressing capability improvement of 6.4?dB. The positive outcomes in terms of intelligibility make this method a potential candidate for application in MAD systems.

  9. Characterizing and modeling magnetic flux transport in the sun's photosphere and determining its impact on the sunspot cycle

    NASA Astrophysics Data System (ADS)

    Upton, Lisa A.

    The characterization and modeling of magnetic flux transport within the surface layers of the Sun are vital to explaining the sunspot cycle. The Sun's polar fields at solar cycle minimum are the seeds of the next solar cycle: weak polar fields produce weak cycles. Magnetic flux transport is key to the buildup of the polar fields and the subsequent magnetic reversals that are essential to modulating the sunspot cycle. The primary goals of this dissertation are threefold: 1. Make precise measurements of the Sun's axisymmetric flows (i.e., differential rotation and meridional flow). 2. Create a realistic surface flux transport model that reproduces the magnetic field evolution at the surface by incorporating the observed flows. 3. Investigate the role of flux transport in modulating the polar fields, and thereby the solar activity cycle. This work has been done in collaboration with Dr. David H. Hathaway of NASA Marshall Space Flight Center. In Chapter 1, I provide an introduction to the Sun as a star. I begin with a discussion on stellar structure and evolution. I then discuss the techniques and instruments that have been used to study the Sun. I conclude Chapter 1 with a section on magnetic activity cycles on the Sun and in other stars. Magnetic flux on the Sun is transported by supergranular flows and the axisymmetric flows of differential rotation (DR) and meridional flow (MF). In Chapter 2, I introduce these flows. I then show a derivation of the Surface Flux Transport equation starting from Maxwell's equations and Ohm's Law. I conclude this chapter with an introduction to prior Surface Flux Transport models. In Chapter 3, I discuss a cross-correlation technique that we have used on magnetograms (maps of the magnetic field strengths over the surface of the Sun) to characterize the DR and MF and their variations from 1996 to present. Results show that while variability in DR is negligible, the MF varies in two fundamental ways: over the course of a solar cycle and from one cycle to the next. The MF is faster at solar cycle minimum and slower at maximum. Furthermore, the MF speeds that preceded the Solar Cycle 23/24 minimum were ˜ 20% faster than the MF speeds that preceded the prior minimum. This faster MF may have led to weaker polar field strengths and thus the subsequent extended solar minimum and an unusually weak Cycle 24. To understand the impact flux transport on the evolution of the polar fields, I have conducted experiments using a surface magnetic flux transport model, introduced in Chapter 4, that we have developed. This model advects the magnetic flux emerging in active regions (sunspots) using detailed observations of the near-surface flows that transport the magnetic elements. These flows include the axisymmetric differential rotation and meridional flow and the non-axisymmetric cellular convective flows (supergranules), all of which vary in time in the model as indicated by direct observations. At each time step, magnetic maps of the entire Sun are created. These maps are used to create plots of the Sun's axial dipole moment, a measure of the polar field. Also in Chapter 4, I illustrate how this model is used to create a baseline. In this regime, the model assimilates (i.e. continually adds in data weighted by its noise level) magnetic data from magnetograms at all available latitudes. This ensures that it accurately represents the magnetic fields observed on the surface of the Sun. This baseline is used to illustrate the difference in the timing of the polar field reversals based on four different definitions of polar fields. Advantages and disadvantages of each of these definitions are discussed. In Chapter 5, I discuss how the model is used in a predictive or simulation regime. I have tested the predictability of this model using a baseline map as an initial condition, but with daily sunspot area data used to give the sources of new magnetic flux. I found that the strength of the polar fields at cycle minimum and the polar field reversals at cycle maximum can be reliably predicted up to 3 years in adv

  10. Magnetic Flux Transport and the Long-Term Evolution of Solar Active Regions

    E-print Network

    Ugarte-Urra, Ignacio; Warren, Harry P; Hathaway, David H

    2015-01-01

    With multiple vantage points around the Sun, STEREO and SDO imaging observations provide a unique opportunity to view the solar surface continuously. We use He II 304 A data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport (AFT) model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illust...

  11. Shot noise of charge current in a quantum dot responded by rotating and oscillating magnetic fields

    SciTech Connect

    Zhao, Hong-Kang Zou, Wei-Ke; Chen, Qiao

    2014-09-07

    We have investigated the shot noise and Fano factor of the dynamic spin-polarized quantum dot under the perturbations of a rotating magnetic field (RMF), and an oscillating magnetic field (OMF) by employing the non-equilibrium Green's function approach. The shot noise is enhanced from sub-Poissonian to super-Poissonian due to the application of RMF and OMF, and it is controlled sensitively by the tilt angle ? of RMF. The magnitude of shot noise increases as the photon energy ?? of OMF increases, and its valley eventually is reversed to peaks as the photon energy is large enough. Double-peak structure of Fano factor is exhibited as the frequency of OMF increases to cover a large regime. The Zeeman energy ?{sub 0}B{sub 0} acts as an effective gate bias to exhibit resonant behavior, and novel peak emerges associated with the applied OMF.

  12. Studying the Effect of the Local Thunderstorm Cells on the Background ULF Magnetic Noise Parameter Spectra

    NASA Astrophysics Data System (ADS)

    Ermakova, E. N.; Kotik, D. S.; Ryabov, A. V.; Panyutin, A. A.

    2015-04-01

    We study the effect of the masking factor from the local thunderstorm cells on ULF magnetic field spectra with the inhomogeneous electron-density structures existing in the local ionosphere (ionospheric and lower ionospheric Alfvén resonators). Using an original data-processing technique for recording of horizontal magnetic components at the midlatitude reception point Novaya Zhizn', we have examined the contribution of the sources located at different distances from the reception point to the formation of the background noise spectra. The ULF signal processing technique permitted us to reduce the pulse component of magnetic noise in amplitude above a certain threshold and thus rule out the effect of a local thunderstorm activity. Frequency dependences of the azimuthal angle of the principal axis of the magnetic noise polarization ellipse are also analyzed. It is shown that the presence of the lower ionospheric Alfvén resonator leads to a nonmonotonic dependence of the azimuthal angle on the frequency. It was found that the local thunderstorms within 60 -80 km from the reception point completely mask the manifestation of the lower ionospheric Alfvén resonator in the ULF noise polarization parameters. To spot the local thunderstorm cells, we used the data from the meteorological radar facility MRL-4 in Nizhny Novgorod.

  13. Magnetized ion flux to arbitrary-shaped objects

    E-print Network

    Hutchinson, Ian H.

    The interaction of magnetized plasma ions with a collecting object of arbitrary shape such as a Langmuir probe is analyzed by drift approximation. This solution provides the theoretical basis for interpreting "perpendicular" ...

  14. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  15. Vacuum currents induced by a magnetic flux around a cosmic string with finite core

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Bezerra, V. B.; Saharian, A. A.; Harutyunyan, H. H.

    2015-03-01

    We evaluate the Hadamard function and the vacuum expectation value of the current density for a massive complex scalar field in the generalized geometry of a straight cosmic string with a finite core enclosing an arbitrary distributed magnetic flux along the string axis. For the interior geometry, a general cylindrically symmetric static metric tensor is used with finite support. In the region outside the core, both the Hadamard function and the current density are decomposed into the idealized zero-thickness cosmic string and core-induced contributions. The only nonzero component corresponds to the azimuthal current. The zero-thickness part of the latter is a periodic function of the magnetic flux inside the core, with the period equal to the quantum flux. As a consequence of the direct interaction of the quantum field with the magnetic field inside the penetrable core, the core-induced contribution, in general, is not a periodic function of the flux. In addition, the vacuum current, in general, is not a monotonic function of the distance from the string and may change the sign. For a general model of the core interior, we also evaluate the magnetic fields generated by the vacuum current. As applications of the general results, we have considered an impenetrable core modeled by Robin boundary condition, a core with the Minkowski-like interior and a core with a constant positive curvature space. Various exactly solvable distributions of the magnetic flux are discussed.

  16. Synchronized and noise-robust audio recordings during realtime magnetic resonance imaging scans (L)

    PubMed Central

    Bresch, Erik; Nielsen, Jon; Nayak, Krishna; Narayanan, Shrikanth

    2007-01-01

    This letter describes a data acquisition setup for recording, and processing, running speech from a person in a magnetic resonance imaging (MRI) scanner. The main focus is on ensuring synchronicity between image and audio acquisition, and in obtaining good signal to noise ratio to facilitate further speech analysis and modeling. A field-programmable gate array based hardware design for synchronizing the scanner image acquisition to other external data such as audio is described. The audio setup itself features two fiber optical microphones and a noise-canceling filter. Two noise cancellation methods are described including a novel approach using a pulse sequence specific model of the gradient noise of the MRI scanner. The setup is useful for scientific speech production studies. Sample results of speech and singing data acquired and processed using the proposed method are given. PMID:17069275

  17. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    SciTech Connect

    Lai, J.; Domier, C. W.; Luhmann, N. C.

    2014-03-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ?60?000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60?000 K to measured 4000 K has been obtained.

  18. Tunable magnetic flux sensor using a metallic Rashba ring with half-metal electrodes

    SciTech Connect

    Chen, J.; Jalil, M. B. A.; Tan, S. G.

    2011-04-01

    We propose a magnetic field sensor consisting of a square ring made of metal with a strong Rashba spin-orbital coupling (RSOC) and contacted to half-metal electrodes. Due to the Aharonov-Casher effect, the presence of the RSOC imparts a spin-dependent geometric phase to conduction electrons in the ring. The combination of the magnetic flux emanating from the magnetic sample placed below the ring, and the Aharonov-Casher effect due to RSOC results in spin interference, which modulates the spin transport in the ring nanostructure. By using the tight-binding nonequilibrium Green's function formalism to model the transport across the nanoring detector, we theoretically show that with proper optimization, the Rashba ring can function as a sensitive and tunable magnetic probe to detect magnetic flux.

  19. Performance comparison of three-phase flux reversal permanent magnet motors in BLDC and BLAC operation mode

    NASA Astrophysics Data System (ADS)

    Štumberger, B.; Štumberger, G.; Hadžiselimovi?, M.; Hamler, A.; Gori?an, V.; Jesenik, M.; Trlep, M.

    The paper presents a comparison of torque capability and flux-weakening performance of three-phase flux reversal permanent magnet motors with surface and inset permanent magnets. Finite element analysis is employed to determine the performance of each motor in BLDC and BLAC operation mode. It is shown that the torque capability and flux-weakening performance of surface or inset permanent magnet configuration is strongly dependent on the stator teeth number/rotor pole number combination.

  20. The magnetic topology of the plasmoid flux rope in a MHD simulation of magnetotail reconnection

    SciTech Connect

    Birn, J.; Hesse, M.

    1989-01-01

    On the basis of a three-dimensional MHD simulation we discuss the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration including a net dawn-dusk magnetic field component B/sub yN/. As a consequence of b/sub yN/ /ne/ 0 the plasmid gets a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmid flux rope remain connected with the Earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of ad-hoc plasmid models. 10 refs., 8 figs.

  1. Plasma ? scaling of anisotropic magnetic field fluctuations in the solar wind flux tube

    SciTech Connect

    Sarkar, Aveek; Bhattacharjee, Amitava; Ebrahimi, Fatima E-mail: amitava@princeton.edu

    2014-03-10

    Based on various observations, it has been suggested that at 1 AU, solar wind consists of 'spaghetti'-like magnetic field structures that have the magnetic topology of flux tubes. It is also observed that the plasma fluctuation spectra at 1 AU show a plasma ? dependence. Reconciling these two sets of observations and using the Invariance Principle, Bhattacharjee et al. suggested that the plasma inside every flux tube may become unstable with respect to pressure-driven instabilities and gives rise to fluctuation spectra that depend on the local plasma ?. The present work is the first direct numerical simulation of such a flux tube. We solve the full magnetohydrodynamic equations using the DEBS code and show that if the plasma inside the flux tube is driven unstable by spatial inhomogeneities in the background plasma pressure, the observed nature of the fluctuating power spectra agrees reasonably well with observations, as well as the analytical prediction of Bhattacharjee et al.

  2. Exact scattering matrix of graphs in magnetic field and quantum noise

    SciTech Connect

    Caudrelier, Vincent; Mintchev, Mihail; Ragoucy, Eric

    2014-08-15

    We consider arbitrary quantum wire networks modelled by finite, noncompact, connected quantum graphs in the presence of an external magnetic field. We find a general formula for the total scattering matrix of the network in terms of its local scattering properties and its metric structure. This is applied to a quantum ring with N external edges. Connecting the external edges of the ring to heat reservoirs, we study the quantum transport on the graph in ambient magnetic field. We consider two types of dynamics on the ring: the free Schrödinger and the free massless Dirac equations. For each case, a detailed study of the thermal noise is performed analytically. Interestingly enough, in presence of a magnetic field, the standard linear Johnson-Nyquist law for the low temperature behaviour of the thermal noise becomes nonlinear. The precise regime of validity of this effect is discussed and a typical signature of the underlying dynamics is observed.

  3. Disc formation in turbulent cloud cores: is magnetic flux loss necessary to stop the magnetic braking catastrophe or not?

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; de Gouveia Dal Pino, E. M.; Lazarian, A.

    2013-03-01

    Recent numerical analysis of Keplerian disc formation in turbulent, magnetized cloud cores by Santos-Lima et al. demonstrated that reconnection diffusion is an efficient process to remove the magnetic flux excess during the buildup of a rotationally supported disc. This process is induced by fast reconnection of the magnetic fields in a turbulent flow. In a similar numerical study, Seifried et al. concluded that reconnection diffusion or any other non-ideal magnetohydrodynamic effects would not be necessary and turbulence shear alone would provide a natural way to build up a rotating disc without requiring magnetic flux loss. Their conclusion was based on the fact that the mean mass-to-flux ratio (?) evaluated over a spherical region with a radius much larger than the disc is nearly constant in their models. In this paper, we compare the two sets of simulations and show that this averaging over large scales can mask significant real increases of ? in the inner regions where the disc is built up. We demonstrate that turbulence-induced reconnection diffusion of the magnetic field happens in the initial stages of the disc formation in the turbulent envelope material that is accreting. Our analysis is suggestive that reconnection diffusion is present in both sets of simulations and provides a simple solution for the `magnetic braking catastrophe' which is discussed in the literature in relation to the formation of protostellar accretion discs.

  4. Parallel heat flux and flow acceleration in open field line plasmas with magnetic trapping

    SciTech Connect

    Guo, Zehua; Tang, Xian-Zhu; McDevitt, Chris

    2014-10-15

    The magnetic field strength modulation in a tokamak scrape-off layer (SOL) provides both flux expansion next to the divertor plates and magnetic trapping in a large portion of the SOL. Previously, we have focused on a flux expander with long mean-free-path, motivated by the high temperature and low density edge anticipated for an absorbing boundary enabled by liquid lithium surfaces. Here, the effects of magnetic trapping and a marginal collisionality on parallel heat flux and parallel flow acceleration are examined. The various transport mechanisms are captured by kinetic simulations in a simple but representative mirror-expander geometry. The observed parallel flow acceleration is interpreted and elucidated with a modified Chew-Goldberger-Low model that retains temperature anisotropy and finite collisionality.

  5. Dynamic Coupling of Convective Flows and Magnetic Field during Flux Emergence

    E-print Network

    Fang, Fang; Abbett, William P; van der Holst, Bart

    2011-01-01

    We simulate the buoyant rise of a magnetic flux rope from the solar convection zone into the corona to better understand the energetic coupling of the solar interior to the corona. The magnetohydrodynamic model addresses the physics of radiative cooling, coronal heating and ionization, which allow us to produce a more realistic model of the solar atmosphere. The simulation illustrates the process by which magnetic flux emerges at the photosphere and coalesces to form two large concentrations of opposite polarities. We find that the large-scale convective motion in the convection zone is critical to form and maintain sunspots, while the horizontal converging flows in the near surface layer prevent the concentrated polarities from separating. The foot points of the sunspots in the convection zone exhibit a coherent rotation motion, resulting in the increasing helicity of the coronal field. Here, the local configuration of the convection causes the convergence of opposite polarities of magnetic flux with a shear...

  6. NUMERICAL EXPERIMENTS ON THE TWO-STEP EMERGENCE OF TWISTED MAGNETIC FLUX TUBES IN THE SUN

    SciTech Connect

    Toriumi, S.; Yokoyama, T.

    2011-07-10

    We present the new results of the two-dimensional numerical experiments on the cross-sectional evolution of a twisted magnetic flux tube rising from the deeper solar convection zone (-20,000 km) to the corona through the surface. The initial depth is 10 times deeper than most of the previous calculations focusing on the flux emergence from the uppermost convection zone. We find that the evolution is illustrated by the following two-step process. The initial tube rises due to its buoyancy, subject to aerodynamic drag due to the external flow. Because of the azimuthal component of the magnetic field, the tube maintains its coherency and does not deform to become a vortex roll pair. When the flux tube approaches the photosphere and expands sufficiently, the plasma on the rising tube accumulates to suppress the tube's emergence. Therefore, the flux decelerates and extends horizontally beneath the surface. This new finding owes to our large-scale simulation, which simultaneously calculates the dynamics within the interior as well as above the surface. As the magnetic pressure gradient increases around the surface, magnetic buoyancy instability is triggered locally and, as a result, the flux rises further into the solar corona. We also find that the deceleration occurs at a higher altitude than assumed in our previous experiment using magnetic flux sheets. By conducting parametric studies, we investigate the conditions for the two-step emergence of the rising flux tube: field strength {approx}> 1.5 x 10{sup 4} G and the twist {approx}> 5.0 x 10{sup -4} km{sup -1} at -20,000 km depth.

  7. Influence of specimen velocity on the leakage signal in magnetic flux leakage type nondestructive testing

    E-print Network

    Lintao Zhang; Fawzi Belblidia; Ian Cameron; Johann Sienz; Matthew Boat; Neil Pearson

    2014-12-05

    We investigate the influence of the specimen velocity on the magnetic flux leakage with the aim of selecting the optimum sensor locations. Parametric numerical simulations where the specimen velocity was in the range [0.1-20] m$\\cdot$s$^{-1}$ were carried out. As the specimen velocity is increased, the magnetic field varies from being symmetrical to being asymmetric. For the radial magnetic induction, the peak to peak value moves from the centre of the bridge towards the direction of the specimen movement. For the axial magnetic induction, the specimen velocity influence is dependent on the sensor location and a signal-velocity independent region was discussed.

  8. Influence of specimen velocity on the leakage signal in magnetic flux leakage type nondestructive testing

    E-print Network

    Zhang, Lintao; Cameron, Ian; Sienz, Johann; Boat, Matthew; Pearson, Neil

    2015-01-01

    We investigate the influence of the specimen velocity on the magnetic flux leakage with the aim of selecting the optimum sensor locations. Parametric numerical simulations where the specimen velocity was in the range [0.1-20] m$\\cdot$s$^{-1}$ were carried out. As the specimen velocity is increased, the magnetic field varies from being symmetrical to being asymmetric. For the radial magnetic induction, the peak to peak value moves from the centre of the bridge towards the direction of the specimen movement. For the axial magnetic induction, the specimen velocity influence is dependent on the sensor location and a signal-velocity independent region was discussed.

  9. Magnetic flux jumps in textured Bi2Sr2CaCu2O8 A. Nabialek,1,2

    E-print Network

    Niewczas, Marek

    , which may be observed via magnetostriction measurements.1 Flux jumps phenom- enon have been studied primarily by magnetization measure- ments, screening experiments, and torque magnetometry see Ref. 2

  10. An H? Surge Provoked by Moving Magnetic Features near an Emerging Flux Region

    NASA Astrophysics Data System (ADS)

    Brooks, D. H.; Kurokawa, H.; Berger, T. E.

    2007-02-01

    We present a detailed study of H? surges from cotemporal high-resolution multiwavelength images of NOAA AR 8227 obtained by the 50 cm Swedish Vacuum Solar Telescope (formerly situated on La Palma, Spain) and TRACE. We find that two kinds of collisions between opposite polarity magnetic flux produce the surges. First, one edge of an emerging flux region (EFR) collides with the preexisting magnetic field and causes continual surge activities, which have already been named EFR surges by previous authors. Secondly, moving magnetic features (MMFs), which emerge near the sunspot penumbra, pass through the ambient plasma and eventually collide with the opposite polarity magnetic field of the EFR. During their passage from the sunspot penumbra to the EFR, the MMFs constantly interacted with other magnetic elements and had a close relationship and showed similar flow patterns to Ca II K bright points. These brightenings were located at the leading edges of the MMFs. Cancellation of opposite polarity magnetic flux at the surge footpoint is observed, accompanied by chromospheric and coronal brightenings. We explain the evolutionary and morphological characteristics of the multiwavelength features associated with the H? surges in both cases by the extension of previous 2D schematic models of reconnection in surges. Furthermore, by measuring the expansion velocity and photospheric magnetic field around the surge footpoint, we estimate a dimensionless reconnection rate of 0.04 (ratio of inflow velocity to Alfvén velocity). This is sufficient to produce a significant surge that heats the chromospheric plasma to coronal temperatures.

  11. Interaction between a moving electron and magnetic flux in Aharonov-Bohm effect

    E-print Network

    Wang Rui-Feng

    2013-12-21

    The back-action exerted by the moving electron on the magnetic flux in the A-B effect is analyzed. It is emphasized that a reasonable interpretation on the A-B effect should be consistent with the uncertain principle. If the back-action on the magnetic flux is reduced to zero, the A-B effect should not be observed, even through the vector potential still exists in space. To verify this interpretation, a new experimental scheme is proposed in this paper.

  12. Magnetic field in an elliptic flux rope: a generalization of the Lundquist solution

    NASA Astrophysics Data System (ADS)

    Vandas, M.; Romashets, E. P.

    2002-12-01

    Magnetic fields in interplanetary flux ropes are commonly described by a force-free solution with constant alpha in a circular cylinder found by Lundquist (1950). However, both MHD simulations (Vandas et al., 1995, 2002; Cargill et al., 1996) and detailed analyses of spacecraft measurements (Mulligan & Russell, 2001) indicate that interplanetary flux ropes have not a circular cross section, but they are quite oblate. We present a solution for force-free magnetic field with constant alpha in an elliptic cylinder. This analytical solution can be regarded as a generalization of the Lundquist solution.

  13. Bound oscillations on thin magnetic flux tubes: Convective instability and umbral oscillations

    SciTech Connect

    Hollweg, J.V.; Roberts, B.

    1981-11-01

    The possibility that ''tube waves'' can be trapped on slender solar magnetic flux tubes is investigated. For rigid isothermal flux tubes, we find that the flux tube geometry can by itself lead to waves which are trapped on the part of the tube that expands with height. Some geometries lead to trapped modes with eigenperiods near 180 s, if parameters appropriate to sunspot umbrae are chosen. It is possible that the umbral oscillations are a manifestation of such trapped waves, if sunspot umbrae consist of an assembly of slender flux tubes, as in the spaghetti model of Parker. For flux tubes which have a constant ratio of Alfven speed to sound speed, we find that it is primarily the variation of temperature with height which determines whether trapped waves can exist. Certain temperature profiles lead to disturbances for which ..omega../sup 2/<0, corresponding to convective instability or Rayleigh-Taylor instability.

  14. Comparisons of Earthward Poynting flux and the kinetic energy flux of up-flowing transversely heated ions from the Polar spacecraft on cusp magnetic field lines

    NASA Astrophysics Data System (ADS)

    Tian, S.; Wygant, J. R.; Cattell, C. A.; Scudder, J. D.; Mozer, F.; Russell, C. T.

    2013-12-01

    This paper presents estimates of the Poynting flux flowing along magnetic field lines in the Earth's cusp region over altitudes from 0.8 Re to 7 Re using measurements during several passes from the Polar spacecraft. The Poynting flux is calculated from measurements of electric fields from the University of California, Berkeley double probe electric field instrument, and from magnetic field measurements from the U.C.L.A. fluxgate magnetometer. The estimates of Poynting flux are of special interest because the high altitude mapping of the cusp magnetic flux tubes may connect to newly reconnected field lines and the low altitude mapping of these field lines is the scene of powerful acceleration processes, most notably transverse heating and outflow of ions. The data show that the Poynting flux is predominantly downward over the frequency range from 1 mHz to 1 Hz . This frequency range includes the Poynting flux due to steady state convection and field-aligned current systems, Alfven waves, and kinetic Alfven waves. Measurement of transversely heated ions over the energy ranges from 10 eV to several keV and their associated ion kinetic energy flux are presented from the University of Iowa Hydra instrument and compared to the values of the downward Poynting flux. Generally the downward Poynting flux exceeds the upward kinetic energy flux of the ions.

  15. Occurrence rates of magnetic activities and flux maintenance in quiet regions

    NASA Astrophysics Data System (ADS)

    Iida, Yusuke

    We investigate occurrence rates of magnetic activities, namely merging, splitting, cancellation, and emergence as functions of flux content in quiet regions by means of feature tracking technique. The structure of magnetic field on the solar surface is important not only because it is the but also because it is actual magneto-convection on the stellar surface which we can observe for the most details. Recent satellite observation reveals scaling nature of magnetic patches on the solar surface. Parnell et al. (2009) found a power-law distribution with an index of -1.85 for flux content in each magnetic patch and Thornton & Parnell (2011) found a power-law distribution with an index of -2.7 for flux content of emerging flux. However, it is not still understood what mechanism makes these power-law nature. We try this issue by developing auto-tracking technique and quantization of patch activities. We use two data sets of line-of-sight magnetograms by Solar Optical Telescope (SOT)/ Narrowband Filter Imager (NFI) on board Hinode satellite. One has the high temporal cadence, 1 minute, and the other has the longest observational period, 140 hours. More than 3000 and 40000 patches are tracked in the data sets, respectively. We found that the occurrence of merging and splitting is larger than those of emergence and cancellation by one-order of magnitude, which means that the frequency distribution of flux content is maintained by the surface activities not by flux supply itself. The frequency dependence of cancellation on flux amount is also investigated. We found that a power-law distribution with an index of -2.48 with an error bar of 0.24, which is same as that of emergence in Thornton & Parnell (2011). In the discussion, we want to suggest flux re-cycling in quiet regions, which can explain these characters. begin{enumerate} Frequency distribution of flux content is formed to a power-law distribution by merging and splitting on the solar surface. Transport of patches of surface convection results in steep power-law distribution of flux content of cancellation. The submerged fluxes though cancellations re-appear to the solar surface, which results in small-scale flux emergences on the solar surface.

  16. Evidence in Magnetic Clouds for Systematic Open Flux Transport on the Sun

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Kahler, S. W.; Gosling, J. T.; Lepping, R. P.

    2008-01-01

    Most magnetic clouds encountered by spacecraft at 1 AU display a mix of unidirectional suprathermal electrons signaling open field lines and counterstreaming electrons signaling loops connected to the Sun at both ends. Assuming the open fields were originally loops that underwent interchange reconnection with open fields at the Sun, we determine the sense of connectedness of the open fields found in 72 of 97 magnetic clouds identified by the Wind spacecraft in order to obtain information on the location and sense of the reconnection and resulting flux transport at the Sun. The true polarity of the open fields in each magnetic cloud was determined from the direction of the suprathermal electron flow relative to the magnetic field direction. Results indicate that the polarity of all open fields within a given magnetic cloud is the same 89% of the time, implying that interchange reconnection at the Sun most often occurs in only one leg of a flux rope loop, thus transporting open flux in a single direction, from a coronal hole near that leg to the foot point of the opposite leg. This pattern is consistent with the view that interchange reconnection in coronal mass ejections systematically transports an amount of open flux sufficient to reverse the polarity of the heliospheric field through the course of the solar cycle. Using the same electron data, we also find that the fields encountered in magnetic clouds are only a third as likely to be locally inverted as not. While one might expect inversions to be equally as common as not in flux rope coils, consideration of the geometry of spacecraft trajectories relative to the modeled magnetic cloud axes leads us to conclude that the result is reasonable.

  17. Pinning and magnetic flux diffusion in APC composites with superconducting filaments

    NASA Astrophysics Data System (ADS)

    Dorofeev, G. L.; Drobin, V. M.; Vladimirova, N. M.; Kozlenkova, N. I.; Nikulenkov, E. V.; Salunin, N. I.

    2008-02-01

    Pinning and magnetic flux diffusion in composites with artificial pinning centers (APC) are studied using a magnetic step method. It is revealed experimentally, that a magnetic flux pinning is determined by boundaries of superconducting filaments and matrix in composites with thickness of filaments less of London's penetration depth. The elementary pinning force on n-s boundary for Cu-NbTi, Nb-NbTi,... composites is measured. The value of elementary pinning force is controlled by thickness n-s boundary. And the thickness n-s of boundary can be large in result of solid state diffusion during technological process. The thickness n-s boundary is estimated through the dependence of superconducting filaments effective volume from the magnetic field value. These results for elementary pinning force and thickness n-s of boundary are compared to results of direct measurements of critical currents in these APC superconducting composites.

  18. Investigation of surface magnetic noise by shallow spins in diamond.

    PubMed

    Rosskopf, T; Dussaux, A; Ohashi, K; Loretz, M; Schirhagl, R; Watanabe, H; Shikata, S; Itoh, K M; Degen, C L

    2014-04-11

    We present measurements of spin relaxation times (T1, T1?, T2) on very shallow (?5??nm) nitrogen-vacancy centers in high-purity diamond single crystals. We find a reduction of spin relaxation times up to 30 times compared to bulk values, indicating the presence of ubiquitous magnetic impurities associated with the surface. Our measurements yield a density of 0.01-0.1?B/nm2 and a characteristic correlation time of 0.28(3) ns of surface states, with little variation between samples and chemical surface terminations. A low temperature measurement further confirms that fluctuations are thermally activated. The data support the atomistic picture where impurities are associated with the top carbon layers, and not with terminating surface atoms or adsorbate molecules. The low spin density implies that the presence of a single surface impurity is sufficient to cause spin relaxation of a shallow nitrogen-vacancy center. PMID:24766015

  19. Dynamic analysis of a magnetic bearing system with flux control

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Walsh, Thomas; Virgin, Lawrence

    1994-01-01

    Using measured values of two-dimensional forces in a magnetic actuator, equations of motion for an active magnetic bearing are presented. The presence of geometric coupling between coordinate directions causes the equations of motion to be nonlinear. Two methods are used to examine the unbalance response of the system: simulation by direct integration in time; and determination of approximate steady state solutions by harmonic balance. For relatively large values of the derivative control coefficient, the system behaves in an essentially linear manner, but for lower values of this parameter, or for higher values of the coupling coefficient, the response shows a split of amplitudes in the two principal directions. This bifurcation is sensitive to initial conditions. The harmonic balance solution shows that the separation of amplitudes actually corresponds to a change in stability of multiple coexisting solutions.

  20. Magneto-optical spectroscopy of highly aligned carbon nanotubes: Identifying the role of threading magnetic flux

    E-print Network

    Natelson, Douglas

    , programmable pulse magnet powered by a 1.4 GVA motor-generator. We used resonant E22 excita- tion of 6,5 tubes magnetic flux J. Shaver,1 S. A. Crooker,2 J. A. Fagan,3 E. K. Hobbie,3 N. Ubrig,4 O. Portugall,4 V. Perebeinos,5 Ph. Avouris,5 and J. Kono1,* 1 Department of Electrical and Computer Engineering, Rice

  1. rarefied, less opaque flux tube or sheet. The dark facular lane is the manifestation of the cool deep layers of the magnetic flux concentration.

    E-print Network

    Steiner, Oskar

    rarefied, less opaque flux tube or sheet. The dark facular lane is the manifestation of the cool deep layers of the magnetic flux concentration. 2. Results from a basic model and from numerical equilibrium, Ti = Te, while in deep layers, the tube interior is cooler than the external atmosphere at equal

  2. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography.

    PubMed

    Park, Hyun Soon; Yu, Xiuzhen; Aizawa, Shinji; Tanigaki, Toshiaki; Akashi, Tetsuya; Takahashi, Yoshio; Matsuda, Tsuyoshi; Kanazawa, Naoya; Onose, Yoshinori; Shindo, Daisuke; Tonomura, Akira; Tokura, Yoshinori

    2014-05-01

    Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields. Here, we report the first observation by electron holography of the magnetic flux and the three-dimensional spin configuration of a skyrmion lattice in Fe(0.5)Co(0.5)Si thin samples. The magnetic flux inside and outside a skyrmion was directly visualized and the handedness of the magnetic flux flow was found to be dependent on the direction of the applied magnetic field. The electron phase shifts ? in the helical and skyrmion phases were determined using samples with a stepped thickness t (from 55 nm to 510 nm), revealing a linear relationship (? = 0.00173 t). The phase measurements were used to estimate the three-dimensional structures of both the helical and skyrmion phases, demonstrating that electron holography is a useful tool for studying complex magnetic structures and for three-dimensional, real-space mapping of magnetic fields. PMID:24727689

  3. Predicting the sun's polar magnetic fields with a surface flux transport model

    SciTech Connect

    Upton, Lisa; Hathaway, David H. E-mail: lar0009@uah.edu

    2014-01-01

    The Sun's polar magnetic fields are directly related to solar cycle variability. The strength of the polar fields at the start (minimum) of a cycle determine the subsequent amplitude of that cycle. In addition, the polar field reversals at cycle maximum alter the propagation of galactic cosmic rays throughout the heliosphere in fundamental ways. We describe a surface magnetic flux transport model that advects the magnetic flux emerging in active regions (sunspots) using detailed observations of the near-surface flows that transport the magnetic elements. These flows include the axisymmetric differential rotation and meridional flow and the non-axisymmetric cellular convective flows (supergranules), all of which vary in time in the model as indicated by direct observations. We use this model with data assimilated from full-disk magnetograms to produce full surface maps of the Sun's magnetic field at 15 minute intervals from 1996 May to 2013 July (all of sunspot cycle 23 and the rise to maximum of cycle 24). We tested the predictability of this model using these maps as initial conditions, but with daily sunspot area data used to give the sources of new magnetic flux. We find that the strength of the polar fields at cycle minimum and the polar field reversals at cycle maximum can be reliably predicted up to 3 yr in advance. We include a prediction for the cycle 24 polar field reversal.

  4. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors.

    PubMed

    Egan, R; Philippe, M; Wera, L; Fagnard, J F; Vanderheyden, B; Dennis, A; Shi, Y; Cardwell, D A; Vanderbemden, P

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm(3)) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m(2) (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K). PMID:25725888

  5. Explaining Mercury's Magnetic Field Observables Using Dynamo Models with Stable Layers and Laterally Variable Heat Flux

    NASA Astrophysics Data System (ADS)

    Tian, Z.; Zuber, M. T.; Stanley, S.

    2013-12-01

    Mercury's surface magnetic field is unique among planetary fields for its weak intensity, spin-aligned axisymmetry, and large dipole offset (Anderson et al., 2011). Reproducing these features with dynamo models is challenging and requires additions to the 'standard' dynamo setup. Here we explain the magnetic field observables by a combination of two effects: (1) a stably-stratified layer at the top of the outer core, and (2) a low-degree spherical harmonic (SH) heat flux variation at the core-mantle boundary (CMB). A stably-stratified layer at the top of the outer core was proposed by Stevenson (1980,1982) to explain the weak intensity and axisymmetry of Saturn's magnetic field. Recent studies (Christensen, 2006, Christensen & Wicht, 2008) used a stable layer to produce the low-intensity and axisymmetric features of Mercury's magnetic field, but didn't typically produce a dipole offset similar to the observed value. Stratification in Mercury's upper core region can occur due to a sub-adiabatic heat flux or an enrichment of sulfur there. Mercury's equator-to-north pole crustal thinning trend suggests a low degree SH global crustal thickness pattern, which can result in heat flux variability at the CMB. We use the Kuang & Bloxham (1999) numerical dynamo scheme to model Mercury's magnetic field generation. We use an internal structure model for Mercury that has a stably-stratified layer at the top of the outer core. We also apply degree-1 SH heat flux variations at the CMB. We vary the stable layer thickness, the inner core size and the magnitude of the CMB heat flux variations. We find models that can produce surface magnetic fields with a weak intensity, high axisymmetry and a large offset, similar to the observed features of Mercury.

  6. SLIPPING MAGNETIC RECONNECTION TRIGGERING A SOLAR ERUPTION OF A TRIANGLE-SHAPED FLAG FLUX ROPE

    SciTech Connect

    Li, Ting; Zhang, Jun E-mail: zjun@nao.cas.cn

    2014-08-10

    We report the first simultaneous activities of the slipping motion of flare loops and a slipping eruption of a flux rope in 131 Å and 94 Å channels on 2014 February 2. The east hook-like flare ribbon propagated with a slipping motion at a speed of about 50 km s{sup –1}, which lasted about 40 minutes and extended by more than 100 Mm, but the west flare ribbon moved in the opposite direction with a speed of 30 km s{sup –1}. At the later phase of flare activity, there was a well developed ''bi-fan'' system of flare loops. The east footpoints of the flux rope showed an apparent slipping motion along the hook of the ribbon. Simultaneously, the fine structures of the flux rope rose up rapidly at a speed of 130 km s{sup –1}, much faster than that of the whole flux rope. We infer that the east footpoints of the flux rope are successively heated by a slipping magnetic reconnection during the flare, which results in the apparent slippage of the flux rope. The slipping motion delineates a ''triangle-shaped flag surface'' of the flux rope, implying that the topology of a flux rope is more complex than anticipated.

  7. IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 4, APRIL 2013 1493 Comparison of Complementary and Modular Linear Flux-Switching

    E-print Network

    Mi, Chunting "Chris"

    -switching permanent magnet (LFSPM) motors with both permanent magnets and armature windings on the short pri- mary force and force ripple. Modular LFSPM (MLFSPM) motors can mitigate the problem of unbalanced magnetic mover length. Index Terms--Complementary and modular, flux-switching permanent magnet motor, linear

  8. Theoretical Noise Analysis on a Position-sensitive Metallic Magnetic Calorimeter

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2007-01-01

    We report on the theoretical noise analysis for a position-sensitive Metallic Magnetic Calorimeter (MMC), consisting of MMC read-out at both ends of a large X-ray absorber. Such devices are under consideration as alternatives to other cryogenic technologies for future X-ray astronomy missions. We use a finite-element model (FEM) to numerically calculate the signal and noise response at the detector outputs and investigate the correlations between the noise measured at each MMC coupled by the absorber. We then calculate, using the optimal filter concept, the theoretical energy and position resolution across the detector and discuss the trade-offs involved in optimizing the detector design for energy resolution, position resolution and count rate. The results show, theoretically, the position-sensitive MMC concept offers impressive spectral and spatial resolving capabilities compared to pixel arrays and similar position-sensitive cryogenic technologies using Transition Edge Sensor (TES) read-out.

  9. Convective radial energy flux due to resonant magnetic perturbations and magnetic curvature at the tokamak plasma edge

    SciTech Connect

    Marcus, F. A.; Beyer, P.; Fuhr, G.; Monnier, A.; Benkadda, S.

    2014-08-15

    With the resonant magnetic perturbations (RMPs) consolidating as an important tool to control the transport barrier relaxation, the mechanism on how they work is still a subject to be clearly understood. In this work, we investigate the equilibrium states in the presence of RMPs for a reduced MHD model using 3D electromagnetic fluid numerical code with a single harmonic RMP (single magnetic island chain) and multiple harmonics RMPs in cylindrical and toroidal geometry. Two different equilibrium states were found in the presence of the RMPs with different characteristics for each of the geometries used. For the cylindrical geometry in the presence of a single RMP, the equilibrium state is characterized by a strong convective radial thermal flux and the generation of a mean poloidal velocity shear. In contrast, for toroidal geometry, the thermal flux is dominated by the magnetic flutter. For multiple RMPs, the high amplitude of the convective flux and poloidal rotation are basically the same in cylindrical geometry, but in toroidal geometry the convective thermal flux and the poloidal rotation appear only with the islands overlapping of the linear coupling between neighbouring poloidal wavenumbers m, m – 1, and m?+?1.

  10. Convective radial energy flux due to resonant magnetic perturbations and magnetic curvature at the tokamak plasma edge

    NASA Astrophysics Data System (ADS)

    Marcus, F. A.; Beyer, P.; Fuhr, G.; Monnier, A.; Benkadda, S.

    2014-08-01

    With the resonant magnetic perturbations (RMPs) consolidating as an important tool to control the transport barrier relaxation, the mechanism on how they work is still a subject to be clearly understood. In this work, we investigate the equilibrium states in the presence of RMPs for a reduced MHD model using 3D electromagnetic fluid numerical code with a single harmonic RMP (single magnetic island chain) and multiple harmonics RMPs in cylindrical and toroidal geometry. Two different equilibrium states were found in the presence of the RMPs with different characteristics for each of the geometries used. For the cylindrical geometry in the presence of a single RMP, the equilibrium state is characterized by a strong convective radial thermal flux and the generation of a mean poloidal velocity shear. In contrast, for toroidal geometry, the thermal flux is dominated by the magnetic flutter. For multiple RMPs, the high amplitude of the convective flux and poloidal rotation are basically the same in cylindrical geometry, but in toroidal geometry the convective thermal flux and the poloidal rotation appear only with the islands overlapping of the linear coupling between neighbouring poloidal wavenumbers m, m - 1, and m + 1.

  11. A Flux Tube Tectonics Model for Solar Coronal Heating Driven by the Magnetic Carpet.

    E-print Network

    Priest, Eric

    A Flux Tube Tectonics Model for Solar Coronal Heating Driven by the Magnetic Carpet. Eric R. Priest heating. The dissipation of energy along sharp boundaries we call, by analogy with geophysi- cal plate tectonics, the tectonics model of coronal heating. Similar to the case on Earth, the relative motions

  12. A FLUX-TUBE TECTONICS MODEL FOR SOLAR CORONAL HEATING DRIVEN BY THE MAGNETIC CARPET

    E-print Network

    Priest, Eric

    . The dissipation of energy along sharp boundaries we call, by analogy with geophysical plate tectonicsA FLUX-TUBE TECTONICS MODEL FOR SOLAR CORONAL HEATING DRIVEN BY THE MAGNETIC CARPET Eric R. Priest, the tectonics model of coronal heating. Simi- lar to the case on Earth, the relative motions of the photospheric

  13. Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass

    E-print Network

    Lockwood, Mike

    Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses; published 12 November 2009. [1] We use the third perihelion pass by the Ulysses spacecraft to illustrate. Analysis of the third perihelion Ulysses pass, J. Geophys. Res., 114, A11103, doi:10.1029/2009JA014449. 1

  14. A method for embedding circular force-free flux ropes in potential magnetic fields

    SciTech Connect

    Titov, V. S.; Török, T.; Mikic, Z.; Linker, J. A.

    2014-08-01

    We propose a method for constructing approximate force-free equilibria in pre-eruptive configurations in which a thin force-free flux rope is embedded into a locally bipolar-type potential magnetic field. The flux rope is assumed to have a circular-arc axis, a circular cross-section, and electric current that is either concentrated in a thin layer at the boundary of the rope or smoothly distributed across it with a maximum of the current density at the center. The entire solution is described in terms of the magnetic vector potential in order to facilitate the implementation of the method in numerical magnetohydrodynamic (MHD) codes that evolve the vector potential rather than the magnetic field itself. The parameters of the flux rope can be chosen so that its subsequent MHD relaxation under photospheric line-tied boundary conditions leads to nearly exact numerical equilibria. To show the capabilities of our method, we apply it to several cases with different ambient magnetic fields and internal flux-rope structures. These examples demonstrate that the proposed method is a useful tool for initializing data-driven simulations of solar eruptions.

  15. Sunspot Decay as Turbulent Erosion of a Magnetic Flux K. Petrovay

    E-print Network

    Petrovay, Kristóf

    Sunspot Decay as Turbulent Erosion of a Magnetic Flux Tube K. Petrovay Instituto de Astrof'isica de Photoheliographic Results data show that the decay rate of sunspots is significantly slower in late phases turbulent erosion model for sunspot decay. 1. Introduction In the apparently haphazard world

  16. DYNAMIC COUPLING OF CONVECTIVE FLOWS AND MAGNETIC FIELD DURING FLUX EMERGENCE

    SciTech Connect

    Fang Fang; Manchester IV, Ward; Van der Holst, Bart; Abbett, William P.

    2012-01-20

    We simulate the buoyant rise of a magnetic flux rope from the solar convection zone into the corona to better understand the energetic coupling of the solar interior to the corona. The magnetohydrodynamic model addresses the physics of radiative cooling, coronal heating, and ionization, which allow us to produce a more realistic model of the solar atmosphere. The simulation illustrates the process by which magnetic flux emerges at the photosphere and coalesces to form two large concentrations of opposite polarities. We find that the large-scale convective motion in the convection zone is critical to form and maintain sunspots, while the horizontal converging flows in the near-surface layer prevent the concentrated polarities from separating. The footpoints of the sunspots in the convection zone exhibit a coherent rotation motion, resulting in the increasing helicity of the coronal field. Here, the local configuration of the convection causes the convergence of opposite polarities of magnetic flux with a shearing flow along the polarity inversion line. During the rising of the flux rope, the magnetic energy is first injected through the photosphere by the emergence, followed by energy transport by horizontal flows, after which the energy is subducted back to the convection zone by the submerging flows.

  17. Factors Affecting Magnetic Flux Leakage Inspection of Tailor-Welded Blanks A Montgomery1

    E-print Network

    Clapham, Lynann

    units. This number is expected to rise to 90 million units by 2005 [2]. The quality of the weld in a TWBFactors Affecting Magnetic Flux Leakage Inspection of Tailor-Welded Blanks A Montgomery1 , P Wild2, e-mail - pwild@uvic.ca. MFL Inspection of Tailor-Welded Blanks Abstract The development

  18. DYNAMIC INTERACTION OF CONVECTION WITH MAGNETIC FLUX SHEETS: FIRST RESULTS OF A NEW MHD CODE

    E-print Network

    Steiner, Oskar

    with radiative, non­stationary convection in the solar atmosphere have been obtained with a 2­D version MHD waves and therefore possibly contribute to heating the upper solar atmosphere. Key words: solarDYNAMIC INTERACTION OF CONVECTION WITH MAGNETIC FLUX SHEETS: FIRST RESULTS OF A NEW MHD CODE O

  19. Temperature evolution of a magnetic flux rope in a failed solar eruption

    SciTech Connect

    Song, H. Q.; Chen, Y.; Li, B.; Zhang, J.; Cheng, X.; Liu, R.; Wang, Y. M.

    2014-03-20

    In this paper, we report for the first time the detailed temperature evolution process of the magnetic flux rope in a failed solar eruption. Occurring on 2013 January 05, the flux rope was impulsively accelerated to a speed of ?400 km s{sup –1} in the first minute, then decelerated and came to a complete stop in two minutes. The failed eruption resulted in a large-size high-lying (?100 Mm above the surface), high-temperature 'fire ball' sitting in the corona for more than two hours. The time evolution of the thermal structure of the flux rope was revealed through the differential emission measure analysis technique, which produced temperature maps using observations of the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. The average temperature of the flux rope steadily increased from ?5 MK to ?10 MK during the first nine minutes of the evolution, which was much longer than the rise time (about three minutes) of the associated soft X-ray flare. We suggest that the flux rope is heated by the energy release of the continuing magnetic reconnection, different from the heating of the low-lying flare loops, which is mainly produced by the chromospheric plasma evaporation. The loop arcade overlying the flux rope was pushed up by ?10 Mm during the attempted eruption. The pattern of the velocity variation of the loop arcade strongly suggests that the failure of the eruption was caused by the strapping effect of the overlying loop arcade.

  20. Comparison of simulated and observed trapped and precipitating electron fluxes during a magnetic storm

    NASA Astrophysics Data System (ADS)

    Chen, Margaret W.; Lemon, Colby L.; Orlova, Ksenia; Shprits, Yuri; Hecht, James; Walterscheid, R. L.

    2015-10-01

    The ability to accurately model precipitating electron distributions is crucial for understanding magnetosphere-ionosphere-thermosphere coupling processes. We use the magnetically and electrically self-consistent Rice Convection Model-Equilibrium (RCM-E) of the inner magnetosphere to assess how well different electron loss models can account for observed electron fluxes during the large 10 August 2000 magnetic storm. The strong pitch angle scattering rate produces excessive loss on the morning and dayside at geosynchronous orbit (GEO) compared to what is observed by a Los Alamos National Laboratory satellite. RCM-E simulations with parameterized scattering due to whistler chorus outside the plasmasphere and hiss inside the plasmasphere are able to account simultaneously for trapped electron fluxes at 1.2 keV to ~100 keV observed at GEO and for precipitating electron fluxes and electron characteristic energies in the ionosphere at 833 km measured by the NOAA 15 satellite.

  1. Magnetic Flux Expulsion in the Powerful Superbubble Explosions and the Alpha-Omega Dynamo

    E-print Network

    R. R. Rafikov; R. M. Kulsrud

    2000-04-06

    The possibility of the magnetic flux expulsion from the Galaxy in the superbubble (SB) explosions, important for the Alpha-Omega dynamo, is considered. Special emphasis is put on the investigation of the downsliding of the matter from the top of the shell formed by the SB explosion which is able to influence the kinematics of the shell. It is shown that either Galactic gravity or the development of the Rayleigh-Taylor instabilities in the shell limit the SB expansion, thus, making impossible magnetic flux expulsion. The effect of the cosmic rays in the shell on the sliding is considered and it is shown that it is negligible compared to Galactic gravity. Thus, the question of possible mechanism of flux expulsion in the Alpha-Omega dynamo remains open.

  2. White noise response of turbine blades subjected to heat flux and thermal gradient

    SciTech Connect

    Karadag, V.; Aba, E.; Morguel, O.K.

    1997-07-01

    Design and production of the complex mechanical structures rarely result in an optimal solution. A typical example for this is a turbine blade design. Fatigue failures of the turbine blades is one of the most vexing problems of turbo-machine manufacturers, ever since the steam turbine became the main stay for power generating equipment and the gas turbines are increasingly used in air transport. Turbine blade failures due to fatigue are predominantly vibration related. The dynamic loads on the blading can arise from many different sources such as the high rotational speed, the high operating temperatures, the asymmetric aerofil tapered form of the turbine blade etc. Therefore, vibratory analysis is one of the most important stage in the designing of the turbine blades. In this study, the random response of the turbine blade to white noise excitation has been consistently calculated, including the internal damping mechanisms of the blade. Beside the damping effects, the rotational speed and the linear thermal gradient along the turbine blade are incorporated into the analysis. Pressure difference between the two surfaces of the turbine blades are modelled as white noise excitation along all over the turbine blade. The system dynamic equation of motion are derived and solved by using the combined Finite Element-Modal Analysis Method.

  3. QUIET SUN MAGNETIC HELICITY TRANSPORT: I. MUTUAL HELICITY FLUX B. T. Welsch 1 and D. W. Longcope 2

    E-print Network

    Welsch, Brian

    1 QUIET SUN MAGNETIC HELICITY TRANSPORT: I. MUTUAL HELICITY FLUX B. T. Welsch 1 and D. W. Longcope do the same for quiet­sun magnetic fields. We derive a theoretical expression for the total helicity/MDI magnetograms, we determine the ob­ served rate of mutual helicity flux in the quiet sun and compare

  4. Analytical Study of Optimal Layout of Permanent Magnets in IPMSM for Generating Sinusoidal Flux-Density Distribution in Air Gap

    NASA Astrophysics Data System (ADS)

    Kondo, Minoru

    This paper analytically demonstrates the optimal layout of permanent magnets for generating a sinusoidal flux density distribution in the air gap of the interior permanent-magnet synchronous machines with multiple flux barriers. In addition, practical design methods for realizing the optimal layout are proposed, and the designs are verified by conducting finite element analysis.

  5. Magnetic fields and large-scale structure in a hot universe. II. Magnetic flux tubes and filamentary structure

    E-print Network

    E. Florido; E. Battaner

    1997-10-17

    In paper I, we obtained an equation for the evolution of density inhomogeneities in a radiation dominated universe when they are affected by magnetic fields. In this second paper we apply this equation to the case in which the subjacent magnetic configuration is a flux tube. For scales of the order of 1 Mpc or less the differential equation is elliptical. To solve it, we have used the numerical method based on "Simultaneous Over Relaxation", SOR, with Chebyshev acceleration and we have treated the problem as a boundary value problem, which restricts the prediction ability of the integration. For large-scale flux tubes, much larger than 1 Mpc, the equation can be analytically integrated and no assumption about the final shape or magnitude of the inhomogeneity is required. In both cases we obtain an evolution which does not differ very much from linear in time. The inhomogeneity in the density becomes filamentary. Large scale structures ($\\ge$ 10 Mpc) are probably unaffected by damping, non-linear and amplification mechanisms after Equality, so that this model provides a tool to interpret the present observed large scale structure. Filaments are very frequently found in the large-scale structure in the Universe. It is suggested here that they could arise from primordial magnetic flux tubes, thus providing an alternative hypothesis for its interpretation; in particular we consider the case of the Coma-A1367 supercluster, where the magnetic field is known to be high.

  6. MAGNETIC FLUX DENSITY MEASURED IN FAST AND SLOW SOLAR WIND STREAMS

    SciTech Connect

    Erdos, G.; Balogh, A.

    2012-07-10

    The radial component of the heliospheric magnetic field vector is used to estimate the open magnetic flux density of the Sun. This parameter has been calculated using observations from the Ulysses mission that covered heliolatitudes from 80 Degree-Sign S to 80 Degree-Sign N, from 1990 to 2009 and distances from 1 to 5.4 AU, the Advanced Composition Explorer mission at 1 AU from 1997 to 2010, the OMNI interplanetary database from 1971, and the Helios 1 and 2 missions that covered the distance range from 0.3 to 1 AU. The flux density was found to be much affected by fluctuations in the magnetic field which make its calculated value dependent on heliospheric location, type of solar wind (fast or slow), and the level of solar activity. However, fluctuations are distributed symmetrically perpendicular to the average Parker direction. Therefore, distributions of the field vector in the two-dimensional plane defined by the radial and azimuthal directions in heliospheric coordinates provide a way to reduce the effects of the fluctuations on the measurement of the flux density. This leads to a better defined flux density parameter; the distributions modified by removing the effects of fluctuations then allow a clearer assessment of the dependence of the flux density on heliospheric location, solar wind type, and solar activity. This assessment indicates that the flux density normalized to 1 AU is independent of location and solar wind type (fast or slow). However, there is a residual dependence on solar activity which can be studied using the modified flux density measurements.

  7. Magnetic flux leakage-based steel cable NDE and damage visualization on a cable climbing robot

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Won; Lee, Changgil; Park, Seunghee; Lee, Jong Jae

    2012-04-01

    The steel cables in long span bridges such as cable-stayed bridges and suspension bridges are critical members which suspend the load of main girders and bridge floor slabs. Damage of cable members can occur in the form of crosssectional loss caused by fatigue, wear, and fracture, which can lead to structural failure due to concentrated stress in the cable. Therefore, nondestructive examination of steel cables is necessary so that the cross-sectional loss can be detected. Thus, an automated cable monitoring system using a suitable NDE technique and a cable climbing robot is proposed. In this study, an MFL (Magnetic Flux Leakage- based inspection system was applied to monitor the condition of cables. This inspection system measures magnetic flux to detect the local faults (LF) of steel cable. To verify the feasibility of the proposed damage detection technique, an 8-channel MFL sensor head prototype was designed and fabricated. A steel cable bunch specimen with several types of damage was fabricated and scanned by the MFL sensor head to measure the magnetic flux density of the specimen. To interpret the condition of the steel cable, magnetic flux signals were used to determine the locations of the flaws and the level of damage. Measured signals from the damaged specimen were compared with thresholds set for objective decision making. In addition, the measured magnetic flux signal was visualized into a 3D MFL map for convenient cable monitoring. Finally, the results were compared with information on actual inflicted damages to confirm the accuracy and effectiveness of the proposed cable monitoring method.

  8. The time-delayed solar cycle luminosity modulation by sub-surface magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Yoshimura, Hirokazu

    1994-04-01

    In order to explore the mechanism of the solar cycle luminosity change observed by the Active Cavity Radiometer Irradiance Monitor (ACRIM) I experiment on board of the spacecraft Solar Maximum Mission, we examined running mean time profiles of the daily ACRIM data from the declining phase of solar cycle 21 to the rising phase of solar cycle 22. By comparing them with those of the daily sunspot number, integrated surface magnetic field flux, integrated He I 10830 A line equivalent width data, and two kinds of data sets of the daily integrated Ca II K line index as indices of the surface magnetic activities, we found that the running mean time profiles of the six independent data sets have several peaks and valleys in common in one solar cycle with time intervals on the order of a few hundreds of days, and that the peaks and valleys of the ACRIM data profiles followed the peaks and valleys of all the other five indices of the surface activities by 40 to 60 days. This time delay phenomenon suggests that the luminosity modulation was not directly caused by dark and bright features of the surface magnetic activities that the other five indices represent, and that the missing sunspot radiative flux which was blocked by sub-surface magnetic flux tubes of sunspots and sunspot groups should be re-radiated 40 to 60 days after the surface emergence of the magnetic flux tubes. The concept of the time delay resolves the enigma of the missing sunspot radiative flux and the enigma of the ACRIM experiment that the luminosity dropped when a sunspot or a sunspot group appeared on the surface while the yearly mean of the luminosity decreased and increased along with the decrease and increase of the yearly sunspot number of the 11-year solar cycle. A model of the mechanism to understand these phenomena is presented and its application to the other stars is suggested.

  9. Numerical computation for a new way to reduce vibration and noise due to magnetostriction and magnetic forces of transformer cores

    NASA Astrophysics Data System (ADS)

    Zhu, Lihua; Yang, Qingxin; Yan, Rongge; Li, Yongjian; Zhang, Xian; Yan, Weili; Zhu, Jianguo

    2013-05-01

    Magnetostriction (MS) caused by the global magnetization of limbs and yokes and magnetic forces are the undisputed causes of the vibration and noise in power transformer cores. This paper presents a novel way to reduce the vibration and noise, in which nanocrystalline soft magnetic composite (NSMC) material with high permeability is used to fill the step-lap joint gaps of the power transformer magnetic cores. In order to numerically predict the effectiveness of the proposed method, a 3-D magneto-mechanical strong coupled model including MS and magnetic anisotropy of steel sheet was founded. Then, the numerical model was applied to analyze the step-lap joint region of the corner of magnetic cores. The analysis results illustrated that the deformation and noise of core with NSMC are lower than with the traditional epoxy damping material. Moreover, the validity of the proposed new way was verified by the simplified step-lap joint cores, which were achieved based on Epstein Frames.

  10. Evaluation of first wall heat fluxes due to magnetic perturbations for a range of ITER scenarios

    NASA Astrophysics Data System (ADS)

    Cahyna, P.; Kripner, L.; Loarte, A.; Huijsmans, G.; Peterka, M.; Panek, R.

    2015-08-01

    The proposed use of magnetic perturbations for edge-localized mode (ELM) control in ITER poses a number of integration issues, among them the localized heat fluxes (footprints) on the plasma-facing components (PFCs). They may provide the benefit of spreading the heat flux, thus reducing its peak value, but they may cause a localized erosion of the PFCs. We present calculations of heat fluxes for a range of ITER plasma parameters. The efficiency of our method enables us to perform calculations for a range of assumptions on the SOL width and to optimize the coil configuration to yield the largest power flux spreading. The optimal coil configuration is not sensitive on SOL parameters and is also close to the one which is considered optimal for ELM control. The proximity of footprints may cause significant power loads on the upper wall.

  11. Direct observation of closed magnetic flux trapped in the high-latitude magnetosphere.

    PubMed

    Fear, R C; Milan, S E; Maggiolo, R; Fazakerley, A N; Dandouras, I; Mende, S B

    2014-12-19

    The structure of Earth's magnetosphere is poorly understood when the interplanetary magnetic field is northward. Under this condition, uncharacteristically energetic plasma is observed in the magnetotail lobes, which is not expected in the textbook model of the magnetosphere. Using satellite observations, we show that these lobe plasma signatures occur on high-latitude magnetic field lines that have been closed by the fundamental plasma process of magnetic reconnection. Previously, it has been suggested that closed flux can become trapped in the lobe and that this plasma-trapping process could explain another poorly understood phenomenon: the presence of auroras at extremely high latitudes, called transpolar arcs. Observations of the aurora at the same time as the lobe plasma signatures reveal the presence of a transpolar arc. The excellent correspondence between the transpolar arc and the trapped closed flux at high altitudes provides very strong evidence of the trapping mechanism as the cause of transpolar arcs. PMID:25525244

  12. A new use of high resolution magnetograms. [solar activity and magnetic flux

    NASA Technical Reports Server (NTRS)

    Baum, P. J.; Bratenahl, A.

    1978-01-01

    Ground-based solar magnetograms are frequently in error by as much as twenty percent and contribute to the poor correlation between magnetic changes and solar flares. High resolution measurement of the magnetic field component, which is normal to the photosphere and measured at photospheric height, can be used to construct a magnetic flux partition function F. Therefore, dF/dt is an EMF which drives atmospheric currents in reconnecting solar active regions. With a high quality magnetograph, the solar probe can be used to obtain good estimates of F and dF/dt and thereby the energy stored as induced solar atmospheric currents during quiescent interflare periods. Should a flare occur during a favorable observing period, the present method of analysis should show characteristic signatures in F, DF/dt, and especially, in the stored flux computed from dF/dt.

  13. Depinning of flux lines and AC losses in magnet-superconductor levitation system

    SciTech Connect

    Terentiev, A. N.; Hull, J. R.; De Long, L. E.

    1999-11-29

    The AC loss characteristics of a magnet-superconductor system were studied with the magnet fixed to the free end of an oscillating cantilever located near a stationary melt-textured YBCO pellet. Below a threshold AC field amplitude {approx}2Oe, the dissipation of the oscillator is amplitude-independent, characteristic of a linear, non-hysteretic regime. Above threshold,dissipation increases with amplitude, reflecting the depinning and hysteretic motion of flux lines. The threshold AC field is an order of magnitude higher than that measured for the same YBCO material via AC susceptometry in a uniform DC magnetic field, A partial lock-in of flux lines between YBCO ab planes is proposed as the mechanism for the substantial increase of the depinning threshold.

  14. Anomalous electron trapping by magnetic flux tubes and electric current vortices

    E-print Network

    F. Bentosela; P. Exner; V. A. Zagrebnov

    1998-11-26

    We consider an electron with an anomalous magnetic moment, g>2, confined to a plane and interacting with a nonhomogeneous magnetic field B, and investigate the corresponding Pauli Hamiltonian. We prove a lower bound on the number of bound states for the case when B is of a compact support and the related flux is $N+\\epsilon, \\epsilon\\in(0,1]$. In particular, there are at least N+1 bound states if B does not change sign. We also consider the situation where the magnetic field is due to a localized rotationally symmetric electric current vortex in the plane. In this case the flux is zero; there is a pair of bound states for a weak coupling, and higher orbital-momentum "spin-down" states appearing as the current strength increases.

  15. The quasi-periodic behavior of recurrent jets caused by emerging magnetic flux

    NASA Astrophysics Data System (ADS)

    Li, H. D.; Jiang, Y. C.; Yang, J. Y.; Bi, Y.; Liang, H. F.

    2015-10-01

    A series of recurring jets occurred at the edge of an active region NOAA 11459 on 2012 April 20, and they were observed simultaneously at EUV and soft X-ray wavelengths. They also were sometimes associated with a hard X-ray source at the base region. The jets might have resulted from magnetic reconnection between the newly emerging flux and the preexisting magnetic field that corresponded to the footpoint region of large-scale coronal loops. We obtained two periods of 171 Å intensity variations at the jet footpoint region, which were about 5 and 13 min. At the jet base, the short and long periodic brightenings might have originated from magneto-acoustic waves and magnetic reconnection. It is plausible that the p-modes might possibly trigger magnetic reconnection, and that reconnection might release stored magnetic energy to produce the jets.

  16. Development of a low-cost double rotor axial flux motor with soft magnetic composite and ferrite permanent magnet materials

    NASA Astrophysics Data System (ADS)

    Liu, Chengcheng; Zhu, Jianguo; Wang, Youhua; Guo, Youguang; Lei, Gang; Liu, Xiaojing

    2015-05-01

    This paper proposes a low-cost double rotor axial flux motor (DRAFM) with low cost soft magnetic composite (SMC) core and ferrite permanent magnets (PMs). The topology and operating principle of DRAFM and design considerations for best use of magnetic materials are presented. A 905 W 4800 rpm DRAFM is designed for replacing the high cost NdFeB permanent magnet synchronous motor (PMSM) in a refrigerator compressor. By using the finite element method, the electromagnetic parameters and performance of the DRAFM operated under the field oriented control scheme are calculated. Through the analysis, it is shown that that the SMC and ferrite PM materials can be good candidates for low-cost electric motor applications.

  17. Magnetic Topology, Flux Emergence/Reconnection and Velocities from a Magnetic Charge Topology Model for Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Barnes, G.; Longcope, D. W.; Leka, K. D.

    2004-05-01

    Magnetic Charge Topology (MCT) models represent the field in the solar corona as being due to collection of point magnetic charges located at or below the photosphere. These models have the advantage of providing a simple quantitative description of the field topology. We apply MCT to time series of magnetograms from the U. Hawai`i/Mees Solar Observatory Imaging Vector Magnetograph (IVM). We first describe the evolution of the magnetic topology of the region, by calculating such quantities as the magnetic flux connecting each pair of point sources, and the number and locations of magnetic separators, which are likely to be the location of reconnection in the solar corona. Using the changes in the magnitudes of the point sources, and in the connectivity matrix, we estimate the rate at which flux is emerging and submerging through the photosphere, and the rate at which reconnection is happening in the corona. By tracking the changes in the locations of the sources, we are also able to estimate the horizontal velocities. This work was performed under Air Force Office of Scientific Research contracts F49620-03-C-0019 and F49620-02-C-0191.

  18. Thermal noise of mechanical oscillators in steady states with a heat flux.

    PubMed

    Conti, Livia; Lazzaro, Claudia; Karapetyan, Gagik; Bonaldi, Michele; Pegoraro, Matteo; Thakur, Ram-Krishna; De Gregorio, Paolo; Rondoni, Lamberto

    2014-09-01

    We present an experimental investigation of the statistical properties of the position fluctuations of low-loss oscillators in nonequilibrium steady states. The oscillators are coupled to a heat bath, and a nonequilibrium steady state is produced by flowing a constant heat flux, setting a temperature difference across the oscillators. We investigated the distribution of the measurements of the square of the oscillator position and searched for signs of changes with respect to the equilibrium case. We found that, after normalization by the mean value, the second, third, and fourth standardized statistical moments are not modified by the underlying thermodynamic state. This differs from the behavior of the absolute, i.e., not normalized, second moment, which is strongly affected by temperature gradients and heat fluxes. We illustrate this with a numerical experiment in which we study via molecular dynamics the fluctuations of the length of a one-dimensional chain of identical particles interacting via anharmonic interparticle potentials, with the extremes thermostated at different temperatures: we use the variance of the length in correspondence to its first elastic mode of resonance to define an effective temperature which we observe to depart from the thermodynamic one in the nonequilibrium states. We investigate the effect of changing the interparticle potential and show that the qualitative behavior of the nonequilibrium excess is unchanged. Our numerical results are consistent with the chain length being Gaussian distributed in the nonequilibrium states. Our experimental investigation reveals that the position variance is the only, and crucially easily accessible, observable for distinguishing equilibrium from nonequilibrium steady states. The consequences of this fact for the design of interferometric gravitational wave detectors are discussed. PMID:25314407

  19. A Flux Rope Network and Particle Acceleration in Three-dimensional Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Kagan, Daniel; Milosavljevi?, Miloš; Spitkovsky, Anatoly

    2013-09-01

    We investigate magnetic reconnection and particle acceleration in relativistic pair plasmas with three-dimensional particle-in-cell simulations of a kinetic-scale current sheet in a periodic geometry. We include a guide field that introduces an inclination between the reconnecting field lines and explore outside-of-the-current sheet magnetizations that are significantly below those considered by other authors carrying out similar calculations. Thus, our simulations probe the transitional regime in which the magnetic and plasma pressures are of the same order of magnitude. The tearing instability is the dominant mode in the current sheet for all guide field strengths, while the linear kink mode is less important even without the guide field, except in the lower magnetization case. Oblique modes seem to be suppressed entirely. In its nonlinear evolution, the reconnection layer develops a network of interconnected and interacting magnetic flux ropes. As smaller flux ropes merge into larger ones, the reconnection layer evolves toward a three-dimensional, disordered state in which the resulting flux rope segments contain magnetic substructure on plasma skin depth scales. Embedded in the flux ropes, we detect spatially and temporally intermittent sites of dissipation reflected in peaks in the parallel electric field. Magnetic dissipation and particle acceleration persist until the end of the simulations, with simulations with higher magnetization and lower guide field strength exhibiting greater and faster energy conversion and particle energization. At the end of our largest simulation, the particle energy spectrum attains a tail extending to high Lorentz factors that is best modeled with a combination of two additional thermal components. We confirm that the primary energization mechanism is acceleration by the electric field in the X-line region. The highest-energy positrons (electrons) are moderately beamed with median angles ~30°-40° relative to (the opposite of) the direction of the initial current density, but we speculate that reconnection in more highly magnetized plasmas would give rise to stronger beaming. Finally, we discuss the implications of our results for macroscopic reconnection sites, and which of our results may be expected to hold in systems with higher magnetizations.

  20. A FLUX ROPE NETWORK AND PARTICLE ACCELERATION IN THREE-DIMENSIONAL RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Kagan, Daniel; Milosavljevic, Milos; Spitkovsky, Anatoly

    2013-09-01

    We investigate magnetic reconnection and particle acceleration in relativistic pair plasmas with three-dimensional particle-in-cell simulations of a kinetic-scale current sheet in a periodic geometry. We include a guide field that introduces an inclination between the reconnecting field lines and explore outside-of-the-current sheet magnetizations that are significantly below those considered by other authors carrying out similar calculations. Thus, our simulations probe the transitional regime in which the magnetic and plasma pressures are of the same order of magnitude. The tearing instability is the dominant mode in the current sheet for all guide field strengths, while the linear kink mode is less important even without the guide field, except in the lower magnetization case. Oblique modes seem to be suppressed entirely. In its nonlinear evolution, the reconnection layer develops a network of interconnected and interacting magnetic flux ropes. As smaller flux ropes merge into larger ones, the reconnection layer evolves toward a three-dimensional, disordered state in which the resulting flux rope segments contain magnetic substructure on plasma skin depth scales. Embedded in the flux ropes, we detect spatially and temporally intermittent sites of dissipation reflected in peaks in the parallel electric field. Magnetic dissipation and particle acceleration persist until the end of the simulations, with simulations with higher magnetization and lower guide field strength exhibiting greater and faster energy conversion and particle energization. At the end of our largest simulation, the particle energy spectrum attains a tail extending to high Lorentz factors that is best modeled with a combination of two additional thermal components. We confirm that the primary energization mechanism is acceleration by the electric field in the X-line region. The highest-energy positrons (electrons) are moderately beamed with median angles {approx}30 Degree-Sign -40 Degree-Sign relative to (the opposite of) the direction of the initial current density, but we speculate that reconnection in more highly magnetized plasmas would give rise to stronger beaming. Finally, we discuss the implications of our results for macroscopic reconnection sites, and which of our results may be expected to hold in systems with higher magnetizations.

  1. Two Types of Magnetic Flux Cancellation in the Solar Eruption of 2007 May 20

    NASA Technical Reports Server (NTRS)

    Sterlin, Alphonse C.; Moore, Ronald L.; Mason, Helen

    2010-01-01

    We study a solar eruption of 2007 May 20, in an effort to understand the cause of the eruption's onset. The event produced a GOES class B6.7 flare peaking at 05:56 UT, while ejecting a surge/filament and producing a coronal mass ejection (CME). We examine several data sets, including H-alpha images from the Solar Optical Telescope (SOT) on Hinode, EUV images from TRACE, and line-of-sight magnetograms from SOHO/MDI. Flux cancelation occurs among two different sets of flux elements inside of the erupting active region: First, for several days prior to eruption, opposite-polarity sunspot groups inside the region move toward each other, leading to the cancelation of approximately 10^{21} Mx of flux over three days. Second, within hours prior to the eruption, positive-polarity moving magnetic features (MMFs) flowing out of the positive-flux spots at approximately 1 kilometer per second repeatedly cancel with field inside a patch of negative-polarity flux located north of the sunspots. The filament erupts as a surge whose base is rooted in the location where the MMF cancelation occurs, while during the eruption that filament flows out along the polarity inversion line between the converging spot groups. We conclude that a plausible scenario is that the converging spot fields brought the magnetic region to the brink of instability, and the MMF cancelation pushed the system "over the edge." triggering the eruption.

  2. Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets

    SciTech Connect

    Huang, Lei; Yu, Cong E-mail: cyu@ynao.ac.cn

    2014-11-20

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.

  3. FULLY RESOLVED QUIET-SUN MAGNETIC FLUX TUBE OBSERVED WITH THE SUNRISE/IMAX INSTRUMENT

    SciTech Connect

    Lagg, A.; Solanki, S. K.; Riethmueller, T. L.; Schuessler, M.; Hirzberger, J.; Feller, A.; Borrero, J. M.; Barthol, P.; Gandorfer, A.; MartInez Pillet, V.; Bonet, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Knoelker, M.; Title, A. M.

    2010-11-10

    Until today, the small size of magnetic elements in quiet-Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope SUNRISE with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube.

  4. Fully Resolved Quiet-Sun Magnetic flux Tube Observed with the SUNRISE/IMAX Instrument

    NASA Astrophysics Data System (ADS)

    Lagg, A.; Solanki, S. K.; Riethmüller, T. L.; Martínez Pillet, V.; Schüssler, M.; Hirzberger, J.; Feller, A.; Borrero, J. M.; Schmidt, W.; del Toro Iniesta, J. C.; Bonet, J. A.; Barthol, P.; Berkefeld, T.; Domingo, V.; Gandorfer, A.; Knölker, M.; Title, A. M.

    2010-11-01

    Until today, the small size of magnetic elements in quiet-Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope SUNRISE with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube.

  5. Dual-spacecraft reconstruction of a three-dimensional magnetic flux rope at the Earth's magnetopause

    DOE PAGESBeta

    Hasegawa, H.; Sonnerup, B. U. Ö.; Eriksson, S.; Nakamura, T. K. M.; Kawano, H.

    2015-02-03

    We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011), for reconstructing three-dimensional (3-D), magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE), which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E) of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that amore »magnetic flux rope with a diameter of ~ 3000 km was embedded in the magnetopause. The FTE flux rope had a significant 3-D structure, because the 3-D field reconstructed from the data from TH-C and TH-D (separated by ~ 390 km) better predicts magnetic field variations actually measured along the TH-E path than does the 2-D Grad–Shafranov reconstruction using the data from TH-C (which was closer to TH-E than TH-D and was at ~ 1250 km from TH-E). Such a 3-D nature suggests that the field lines reconnected at the two X-lines on both sides of the flux rope are entangled in a complicated way through their interaction with each other. The generation process of the observed 3-D flux rope is discussed on the basis of the reconstruction results and the pitch-angle distribution of electrons observed in and around the FTE.« less

  6. Dual-spacecraft reconstruction of a three-dimensional magnetic flux rope at the Earth's magnetopause

    SciTech Connect

    Hasegawa, H.; Sonnerup, B. U. Ö.; Eriksson, S.; Nakamura, T. K. M.; Kawano, H.

    2015-02-03

    We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011), for reconstructing three-dimensional (3-D), magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE), which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E) of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that a magnetic flux rope with a diameter of ~ 3000 km was embedded in the magnetopause. The FTE flux rope had a significant 3-D structure, because the 3-D field reconstructed from the data from TH-C and TH-D (separated by ~ 390 km) better predicts magnetic field variations actually measured along the TH-E path than does the 2-D Grad–Shafranov reconstruction using the data from TH-C (which was closer to TH-E than TH-D and was at ~ 1250 km from TH-E). Such a 3-D nature suggests that the field lines reconnected at the two X-lines on both sides of the flux rope are entangled in a complicated way through their interaction with each other. The generation process of the observed 3-D flux rope is discussed on the basis of the reconstruction results and the pitch-angle distribution of electrons observed in and around the FTE.

  7. Confined partial filament eruption and its reformation within a stable magnetic flux rope

    SciTech Connect

    Joshi, Navin Chandra; Kayshap, Pradeep; Uddin, Wahab; Srivastava, Abhishek K.; Dwivedi, B. N.; Filippov, Boris; Chandra, Ramesh; Choudhary, Debi Prasad E-mail: njoshi98@gmail.com

    2014-05-20

    We present observations of a confined partial eruption of a filament on 2012 August 4, which restores its initial shape within ?2 hr after eruption. From the Global Oscillation Network Group H? observations, we find that the filament plasma turns into dynamic motion at around 11:20 UT from the middle part of the filament toward the northwest direction with an average speed of ?105 km s{sup –1}. A little brightening underneath the filament possibly shows the signature of low-altitude reconnection below the filament eruptive part. In Solar Dynamics Observatory/Atmospheric Imaging Assembly 171 Å images, we observe an activation of right-handed helically twisted magnetic flux rope that contains the filament material and confines it during its dynamical motion. The motion of cool filament plasma stops after traveling a distance of ?215 Mm toward the northwest from the point of eruption. The plasma moves partly toward the right foot point of the flux rope, while most of the plasma returns after 12:20 UT toward the left foot point with an average speed of ?60 km s{sup –1} to reform the filament within the same stable magnetic structure. On the basis of the filament internal fine structure and its position relative to the photospheric magnetic fields, we find filament chirality to be sinistral, while the activated enveloping flux rope shows a clear right-handed twist. Thus, this dynamic event is an apparent example of one-to-one correspondence between the filament chirality (sinistral) and the enveloping flux rope helicity (positive). From the coronal magnetic field decay index, n, calculation near the flux rope axis, it is evident that the whole filament axis lies within the domain of stability (i.e., n < 1), which provides the filament stability despite strong disturbances at its eastern foot point.

  8. Magnetic Fields in Massive Stars. II. The Buoyant Rise of Magnetic Flux Tubes Through the Radiative Interior

    E-print Network

    K. B. MacGregor; J. P. Cassinelli

    2002-12-10

    We present results from an investigation of the dynamical behavior of buoyant magnetic flux rings in the radiative interior of a uniformly rotating early-type star. Our physical model describes a thin, axisymmetric, toroidal flux tube that is released from the outer boundary of the convective core, and is acted upon by buoyant, centrifugal, Coriolis, magnetic tension, and aerodynamic drag forces. We find that rings emitted in the equatorial plane can attain a stationary equilibrium state that is stable with respect to small displacements in radius, but is unstable when perturbed in the meridional direction. Rings emitted at other latitudes travel toward the surface along trajectories that largely parallel the rotation axis of the star. Over much of the ascent, the instantaneous rise speed is determined by the rate of heating by the absorption of radiation that diffuses into the tube from the external medium. Since the time scale for this heating varies like the square of the tube cross-sectional radius, for the same field strength, thin rings rise more rapidly than do thick rings. For a reasonable range of assumed ring sizes and field strengths, our results suggest that buoyancy is a viable mechanism for bringing magnetic flux from the core to the surface, being capable of accomplishing this transport in a time that is generally much less than the stellar main sequence lifetime.

  9. Catastrophe versus instability for the eruption of a toroidal solar magnetic flux rope

    SciTech Connect

    Kliem, B.; Lin, J.; Forbes, T. G.; Priest, E. R.; Török, T.

    2014-07-01

    The onset of a solar eruption is formulated here as either a magnetic catastrophe or as an instability. Both start with the same equation of force balance governing the underlying equilibria. Using a toroidal flux rope in an external bipolar or quadrupolar field as a model for the current-carrying flux, we demonstrate the occurrence of a fold catastrophe by loss of equilibrium for several representative evolutionary sequences in the stable domain of parameter space. We verify that this catastrophe and the torus instability occur at the same point; they are thus equivalent descriptions for the onset condition of solar eruptions.

  10. Catastrophe versus Instability for the Eruption of a Toroidal Solar Magnetic Flux Rope

    NASA Astrophysics Data System (ADS)

    Kliem, B.; Lin, J.; Forbes, T. G.; Priest, E. R.; Török, T.

    2014-07-01

    The onset of a solar eruption is formulated here as either a magnetic catastrophe or as an instability. Both start with the same equation of force balance governing the underlying equilibria. Using a toroidal flux rope in an external bipolar or quadrupolar field as a model for the current-carrying flux, we demonstrate the occurrence of a fold catastrophe by loss of equilibrium for several representative evolutionary sequences in the stable domain of parameter space. We verify that this catastrophe and the torus instability occur at the same point; they are thus equivalent descriptions for the onset condition of solar eruptions.

  11. Prediction of quantization of magnetic flux in double-layer exciton superfluids

    NASA Astrophysics Data System (ADS)

    Rademaker, Louk; Zaanen, Jan; Hilgenkamp, Hans

    2011-01-01

    Currently, there is no way to detect unambiguously the possible phase coherence of an exciton condensate in an electron-hole double layer. Here, we show that, despite the fact that excitons are charge neutral, the double-layer exciton superfluid exhibits a diamagnetic response. In devices with specific circular geometry, the magnetic-flux threading between the layers must be quantized in units of (h)/(e)?m, where ?m is the diamagnetic susceptibility of the device. We discuss possible experimental realizations of the predicted unconventional flux quantization.

  12. Fast Solar Wind from Slowly Expanding Magnetic Flux Tubes (P54)

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Dwivedi, B. N.

    2006-11-01

    aks.astro.itbhu@gmail.com We present an empirical model of the fast solar wind, emanating from radially oriented slowly expanding magnetic flux tubes. We consider a single-fluid, steady state model in which the flow is driven by thermal and non-thermal pressure gradients. We apply a non-Alfvénic energy correction at the coronal base and find that specific relations correlate solar wind speed and non-thermal energy flux with the aerial expansion factor. The results are compared with the previously reported ones.

  13. MODELING OF STOCHASTIC MAGNETIC FLUX LOSS FROM THE EDGE OF A POOIDALLY DIVERTED TOKAMAK

    SciTech Connect

    EVANS, TE,; MOYER, RA; MONAT, P

    2002-06-01

    OAK A271 MODELING OF STOCHASTIC MAGNETIC FLUX LOSS FROM THE EDGE OF A POOIDALLY DIVERTED TOKAMAK. A field line integration code is used to study the loss of edge poloidal magnetic flux due to stochastic magnetic fields produced by an error field correction coil (C-coil) in DIII-D for various plasma shapes, coil currents and edge magnetic shear profiles. The authors find that the boundary of a diverted tokamak is more sensitive to stochastic flux loss than a nondiverted tokamak. The C-coil has been used to produce a stochastic layer in an ohmic diverted discharge with characteristics similar to those seen in stochastic boundary experiments in circular limiter ohmic plasmas, including: (1) an overall increase in recycling, (2) a broadening of the recycling profile at the divertor, and (3) a flattening of the boundary profiles over the extent of the stochastic layer predicted by the field line integration code. Profile flattening consistent with field line integration results is also seen in some high performance discharges with edge transport barriers. The prediction of a significant edge stochastic layer even in discharges with high performance and edge radial transport barriers indicates that either the self-consistent plasma response heals the stochastic layer or that edge stochastic layers are compatible with edge radial transport barriers.

  14. Non-contact main cable NDE technique for suspension bridge using magnetic flux-based B-H loop measurements

    NASA Astrophysics Data System (ADS)

    Park, Seunghee; Kim, Ju-Won; Moon, Dae-Joong

    2015-04-01

    In this study, a noncontact main cable NDE method has been developed. This cable NDE method utilizes the direct current (DC) magnetization and a searching coil-based total flux measurement. A total flux sensor head prototype was fabricated that consists of an electro-magnet yoke and a searching coil sensor. To obtain a B-H loop, a magnetic field was generated by applying a cycle of low frequency direct current to the electro-magnet yoke. During the magnetization, a search coil sensor measures the electromotive force from magnetized cable. During the magnetization process, a search coil sensor was measured the magnetic flux density. Total flux was calculated by integrating the measured magnetic flux using a fluxmeter. A B-H loop is obtained by using relationship between a cycle of input DC voltage and measured total flux. The B-H loop can reflect the property of the ferromagnetic materials. Therefore, the cross-sectional loss of cable can be detected using variation of features from the B-H curve. To verify the feasibility of the proposed steel cable NDE method, a series of experimental studies using a main-cable mock-up specimen has been performed in this study.

  15. Magnetar giant flares in multipolar magnetic fields. I. Fully and partially open eruptions of flux ropes

    SciTech Connect

    Huang, Lei; Yu, Cong E-mail: cyu@ynao.ac.cn

    2014-04-01

    We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefully establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.

  16. Barkhausen noise in the random field Ising magnet Nd2Fe14B

    NASA Astrophysics Data System (ADS)

    Xu, J.; Silevitch, D. M.; Dahmen, K. A.; Rosenbaum, T. F.

    2015-07-01

    With sintered needles aligned and a magnetic field applied transverse to its easy axis, the rare-earth ferromagnet Nd2Fe14B becomes a room-temperature realization of the random field Ising model. The transverse field tunes the pinning potential of the magnetic domains in a continuous fashion. We study the magnetic domain reversal and avalanche dynamics between liquid helium and room temperatures at a series of transverse fields using a Barkhausen noise technique. The avalanche size and energy distributions follow power-law behavior with a cutoff dependent on the pinning strength dialed in by the transverse field, consistent with theoretical predictions for Barkhausen avalanches in disordered materials. A scaling analysis reveals two regimes of behavior: one at low temperature and high transverse field, where the dynamics are governed by the randomness, and the second at high temperature and low transverse field, where thermal fluctuations dominate the dynamics.

  17. Reducing the Effects of Background Noise during Auditory Functional Magnetic Resonance Imaging of Speech Processing: Qualitative and Quantitative Comparisons between Two Image Acquisition Schemes and Noise Cancellation

    ERIC Educational Resources Information Center

    Blackman, Graham A.; Hall, Deborah A.

    2011-01-01

    Purpose: The intense sound generated during functional magnetic resonance imaging (fMRI) complicates studies of speech and hearing. This experiment evaluated the benefits of using active noise cancellation (ANC), which attenuates the level of the scanner sound at the participant's ear by up to 35 dB around the peak at 600 Hz. Method: Speech and…

  18. Spatially Resolved Observation of Static Magnetic Flux States in YBa2Cu3O7-dgr Grain Boundary Josephson Junctions.

    PubMed

    Fischer, G M; Mayer, B; Gross, R; Nissel, T; Husemann, K D; Huebener, R P; Freltoft, T; Shen, Y; Vase, P

    1994-02-25

    With low-temperature scanning electron microscopy, the magnetic flux states in high critical temperature Josephson junctions have been imaged. The experiments were performed with YBa(2)Cu(3)O(7-delta) thin-film grain boundary Josephson junctions fabricated on [001] tilt SrTiO(3) bicrystals. For applied magnetic fields parallel to the grain boundary plane, which correspond to local maxima of the magnetic field dependence of the critical current, the images clearly show the corresponding magnetic flux states in the grain boundary junction. The spatial modulation of the Josephson current density by the external magnetic field is imaged directly with a spatial resolution of about 1 micrometer. PMID:17831622

  19. Abstract-A novel imaging method for electrical impedance tomography is implemented. In this method, the magnetic flux

    E-print Network

    Eyüboðlu, Murat

    - electrical impedance tomography, magnetic resonance imaging. I. INTRODUCTION Electrical impedance tomography flux density due to injected currents can be measured using magnetic resonance imaging (MRI) techniques conductivity images [11]. Both of these techniques can be named as magnetic resonance-electrical impedance

  20. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Gotchev, O. V.; Knauer, J. P.; Chang, P. Y.; Jang, N. W.; Shoup, M. J.; Meyerhofer, D. D.; Betti, R.

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 ?) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity—a way of reaching higher gains than is possible with conventional ICF.

  1. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    PubMed

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF. PMID:19405657

  2. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas

    SciTech Connect

    Gotchev, O. V.; Knauer, J. P.; Shoup, M. J. III; Chang, P. Y.; Jang, N. W.; Meyerhofer, D. D.; Betti, R.

    2009-04-15

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 {Omega}) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity--a way of reaching higher gains than is possible with conventional ICF.

  3. The role of the ejecta magnetic flux on the two-step Forbush decreases

    NASA Astrophysics Data System (ADS)

    Masías Meza, Jimmy; Dasso, Sergio

    A Forbush Decrease (FD) is a depression in the Galactic Cosmic Ray (GCR) background intensity, and are usually associated to the passage of an Interplanetary Coronal Mass Ejection (ICME). Magnetic Clouds (MCs) are a subset of ICMEs that are well studied, and are known to cause the deepest FDs. Usually, FDs present two steps in the depression profile, one associated to the shock arrival, and a steeper one restricted to the duration of the ejecta passage. There is a wide variety of processes responsible for the GCR depressions. For instance: the enhanced solar wind (SW) convection, reduced diffusion coefficients, enhanced adiabatic cooling, increase of the coherent magnetic field, etc. Our aim is to make a selection of FD events filtering those associated to well studied magnetic structures, such as Magnetic Clouds (MCs), in order to minimize the mixing processes involved in the ICME-GCR interactions in the resulting sample, and to study statistical properties. We determine the parameters of each FD profile and look for correlations with the associated MC parameters. We propose a method to decompose the FD profile into shock and ejecta components, and investigate correlations with the associated amplitudes of the ejecta components. We introduce the parameter, ``magnetic flux per unit length F/L'', and investigate its importance in the context of a simple ``diffusive barrier'' model. According to the correlations found, the two-step events are better represented by the ``diffusive barrier'' model, and the flux F/L is the parameter that better correlates with these events.

  4. Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine

    DOEpatents

    Qu, Ronghai; Lipo, Thomas A.

    2005-08-02

    The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.

  5. Dynamic and Stagnating Plasma Flow Leading to Magnetic-Flux-Tube Collimation S. You, G. S. Yun, and P. M. Bellan

    E-print Network

    Bellan, Paul M.

    Dynamic and Stagnating Plasma Flow Leading to Magnetic-Flux-Tube Collimation S. You, G. S. Yun February 2005; published 22 July 2005) Highly collimated, plasma-filled magnetic-flux tubes are frequently magnetohydrodynamic pumping process explains why such collimated, plasma-filled magnetic-flux tubes are ubiquitous

  6. Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D Complex-Valued Superconductor Simulation Data.

    PubMed

    Guo, Hanqi; Phillips, Carolyn L; Peterka, Tom; Karpeyev, Dmitry; Glatz, Andreas

    2016-01-01

    We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics and macroscale superconductor behavior in greater detail than previously possible. PMID:26529730

  7. Synthetic magnetic fluxes and topological order in one-dimensional spin systems

    NASA Astrophysics Data System (ADS)

    Graß, Tobias; Muschik, Christine; Celi, Alessio; Chhajlany, Ravindra W.; Lewenstein, Maciej

    2015-06-01

    Engineering topological quantum order has become a major field of physics. Many advances have been made by synthesizing gauge fields in cold atomic systems. Here we carry over these developments to other platforms which are extremely well suited for quantum engineering, namely, trapped ions and nano-trapped atoms. Since these systems are typically one-dimensional, the action of artificial magnetic fields has so far received little attention. However, exploiting the long-range nature of interactions, loops with nonvanishing magnetic fluxes become possible even in one-dimensional settings. This gives rise to intriguing phenomena, such as fractal energy spectra, flat bands with localized edge states, and topological many-body states. We elaborate on a simple scheme for generating the required artificial fluxes by periodically driving an XY spin chain. Concrete estimates demonstrating the experimental feasibility for trapped ions and atoms in wave guides are given.

  8. Chains with loops - synthetic magnetic fluxes and topological order in one-dimensional spin systems

    E-print Network

    Tobias Grass; Christine Muschik; Alessio Celi; Ravindra Chhajlany; Maciej Lewenstein

    2015-06-04

    Engineering topological quantum order has become a major field of physics. Many advances have been made by synthesizing gauge fields in cold atomic systems. Here, we carry over these developments to other platforms which are extremely well suited for quantum engineering, namely trapped ions and nano-trapped atoms. Since these systems are typically one-dimensional, the action of artificial magnetic fields has so far received little attention. However, exploiting the long-range nature of interactions, loops with non-vanishing magnetic fluxes become possible even in one-dimensional settings. This gives rise to intriguing phenomena, such as fractal energy spectra, flat bands with localized edge states, and topological many-body states. We elaborate on a simple scheme for generating the required artificial fluxes by periodically driving an XY spin chain. Concrete estimates demonstrating the experimental feasibility for trapped ions and atoms in waveguides are given.

  9. Noise-Sustained Convective Instability in a Magnetized Taylor-Couette Flow

    E-print Network

    Liu, Wei

    2008-01-01

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  10. Noise-sustained convective instability in a magnetized Taylor-Couette flow

    SciTech Connect

    Liu, Wei

    2008-01-01

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  11. Noise-Sustained Convective Instability in a Magnetized Taylor-Couette Flow

    E-print Network

    Wei Liu

    2008-10-13

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  12. Noise-Sustained Convective Instability in a Magnetized Taylor-Couette Flow

    SciTech Connect

    W. Liu

    2009-02-20

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  13. The magnetic flux excess effect as a consequence of non-Parker radial evolution of interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga

    2015-04-01

    The “magnetic flux excess” effect is exceeding of magnetic flux Fs=4?|Br|r2 measured by distant spacecraft over the values obtained through measurements at the Earth’s orbit (Owens et al., JGR, 2008). Theoretically, its conservation should take place at any heliocentric distance r further than 10 solar radii, which means that the difference between the flux measured at 1 AU and Fs observed in another point in the heliosphere should be zero. However, the difference is negative closer to the Sun and increasingly positive at larger heliocentric distances. Possible explanations of this effect are continuously discussed, but the consensus is yet not reached.It is shown that a possible source of this effect is the solar wind expansion not accordingly with the Parker solution at least at low heliolatitudes. The difference between the experimentally found (r-5/3) and commonly used (r-2) radial dependence of the radial component of the IMF Br may lead to mistakes in the IMF point-to-point recalculations (Khabarova & Obridko, ApJ, 2012; Khabarova, Astronomy Reports, 2013). Using the observed Br (r) dependence, it is easy to find the variation of difference between the magnetic flux Fs(r) at certain heliocentric distance r and Fs_1AU at 1 AU, which can be calculated as Fs(r)-Fs_1AU =4?·(B1AU /[1AU]-5/3) (r2-5/3 -[1AU]2-5/3) (Khabarova, Astronomy Reports, 2013).The possible influence of presence of the heliospheric current sheet near the ecliptic plane on the picture of magnetic field lines and consequent deviation from the Parker's model is discussed.- Khabarova Olga, and Obridko Vladimir, Puzzles of the Interplanetary Magnetic Field in the Inner Heliosphere, 2012, Astrophysical Journal, 761, 2, 82, doi:10.1088/0004-637X/761/2/82, http://arxiv.org/pdf/1204.6672v2.pdf- Olga V. Khabarova, The interplanetary magnetic field: radial and latitudinal dependences. Astronomy Reports, 2013, Vol. 57, No. 11, pp. 844-859, http://arxiv.org/ftp/arxiv/papers/1305/1305.1204.pdf

  14. Basic properties of magnetic flux tubes and restrictions on theories of solar activity

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1976-01-01

    It is shown that the mean longitudinal field in a magnetic flux tube is reduced, rather than enhanced, by twisting the tube to form a rope. It is shown that there is no magnetohydrostatic equilibrium when one twisted rope is wound around another. Instead there is rapid line cutting (neutral point annihilation). It is shown that the twisting increases, and the field strength decreases, along a flux tube extending upward through a stratified atmosphere. These facts are at variance with Piddington's (1975) recent suggestion that solar activity is to be understood as the result of flux tubes which are enormously concentrated by twisting, which consist of several twisted ropes wound around each other, and which came untwisted where they emerge through the photosphere.

  15. Vacuum polarization for compactified QED{sub 4+1} in a magnetic flux background

    SciTech Connect

    Ccapa Ttira, C.; Fosco, C. D.; Malbouisson, A. P. C.; Roditi, I.

    2010-03-15

    We evaluate one-loop effects for QED{sub 4+1} compactified to R{sup 4}xS{sup 1} in a nontrivial vacuum for the gauge field such that a nonvanishing magnetic flux is encircled along the extra dimension. We obtain the vacuum polarization tensor and evaluate the exact parity-breaking term, presenting the results from the point of view of the effective (3+1)-dimensional theory.

  16. Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Kliman, G. B.

    1982-01-01

    An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.

  17. Self-similar solutions for trapping and diffusion of magnetic flux during formation of field-reversed configuration

    SciTech Connect

    Bud'ko, A.B.; Karlson, E.T.; Liberman, M.A. )

    1993-02-01

    Self-similar solutions are given that represent an analytical theory of implosion and extension stages of a [Theta] pinch before the magnetic field lines reconnection in course of formation of field-reversed configuration. Effects of Ohmic dissipation, thermal conductivity, and plasma turbulence are included. The self-similar solutions, obtained in an explicit analytical form, demonstrate that magnetic flux is trapped during the implosion and expansion stages for a classical plasma, and that losses of magnetic flux are possible for a turbulent plasma during the expansion stage. The rate of flux trapping and diffusion is expressed in terms of experimental parameters.

  18. The Transport of Plasma and Magnetic Flux in Giant Planet Magnetospheres

    NASA Astrophysics Data System (ADS)

    Russell, C. T.

    2013-05-01

    Both Jupiter and Saturn have moons that add significant quantities of neutrals and/or dust beyond geosynchronous orbit. This material becomes charged and interacts with the planetary plasma that is "orbiting" the planets at near corotational speeds, driven by the planetary ionospheres. Since this speed is greater than the keplerian orbital speed at these distances, the net force on the newly added charged mass is outward. The charged material is held in place by the magnetic field which stretches to the amount needed to balance centripetal and centrifugal forces. The currents involved in this process close in the ionosphere which is an imperfect conductor and the feet of the field lines hence slip poleward and the material near the equator moves outward. This motion allows the magnetosphere to divest itself of the added mass by transferring it to the magnetotail. The magnetotail in turn can rid itself of the newly added mass by the process of reconnection, interior to the region of added mass, freeing an island of magnetized plasma which then moves down the magnetotail no longer connected to the magnetosphere. This maintains a quasi-stationary conservation of mass in the magnetosphere with roughly constant mass and "periodic" disturbances. However, there is one other steady state the magnetosphere needs to maintain. It needs to replace the mass loaded flux tubes with emptied flux tubes. Thus the "emptied" flux tubes in the tail must move inward against the outgoing mass-loaded flux tubes. That they are buoyant is a help in this regard but it appears also to be helpful if the returning flux separates into thin flux tubes, just like air bubbles rising in a container with a leak in the bottom. In this way the magnetospheres of Jupiter and Saturn maintain their dynamic, steady-state convection patterns.

  19. Evaluation of plane bending fatigue damage in metallic plates using the thin-film flux-gate magnetic sensor

    NASA Astrophysics Data System (ADS)

    Oka, M.; Yakushiji, T.; Tsuchida, Y.; Enokizono, M.

    2002-05-01

    To estimate the amount of fatigue damage in metallic plates such as steel and stainless steel, we have investigated the relationship between the amount of plane bending fatigue damage and residual magnetization. The magnetic flux density in the Z component (Bz) at 1 mm above a specimen caused by residual magnetization is measured by using a thin-film flux-gate magnetic sensor. From the results of our experiment, the magnetic flux density has clear dependence on the increase of bending stress and the number of stress cycles in austenitic stainless steel. The distribution of Bz on steel plates is changed by the amount of plane bending fatigue damage. But, the relationship between the change of Bz and the number of stress cycles is not clear in the case of steel plates. In this paper, the relationship between the amount of plane bending fatigue damage and residual magnetization in metallic plates is discussed.

  20. The Revised Electromagnetic Fields Directive and Worker Exposure in Environments With High Magnetic Flux Densities

    PubMed Central

    Stam, Rianne

    2014-01-01

    Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers’ exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker’s body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices. PMID:24557933

  1. Temperature evolution of magnetic flux rope in a failed solar eruption

    E-print Network

    Song, Hongqiang; Cheng, Xin; Chen, Yao; Liu, Rui; Wang, Yuming; Li, Bo

    2014-01-01

    In this presentation, we report for the first time the detailed temperature evolution process of the magnetic flux rope in a failed solar eruption. Occurred on January 05, 2013, the flux rope was impulsively accelerated to a speed of ~ 400 km/s in the first minute, then decelerated and came to a complete stop in two minutes. The failed eruption resulted in a large-size high-lying (~ 100 Mm above the surface) high-temperature "fire ball" sitting in the corona for more than two hours. The time evolution of the thermal structure of the flux rope was revealed through the differential emission measure analysis technique, which produced temperature maps using observations of the Atmospheric Imaging Assembly on board Solar Dynamic Observatory. The average temperature of the flux rope steadily increased from ~ 5 MK to ~ 10 MK during the first nine minutes of the evolution, which was much longer than the rise time (about three minutes) of the associated soft X-ray flare. We suggest that the flux rope be heated by the ...

  2. Magnetic properties of high-T(sub c) superconductors: Rigid levitation, flux pinning, thermal depinning, and fluctuation

    NASA Technical Reports Server (NTRS)

    Brandt, E. H.

    1990-01-01

    The levitation of high-T(sub c) superconductors is quite conspicuous: Above magnets of low symmetry a disk of these ceramics floats motionless, without vibration or rotation; it has a continuous range of stable positions and orientations as if it were stuck in sand. Some specimens may even be suspended above or below the same magnet. This fascinating stability, inherent to no other type of levitation, is caused by the pinning of magnetic flux lines by inhomogeneities inside these extreme type-2 superconductors. The talk deals with pinning of magnetic flux in these materials, with flux flow, flux creep, thermally activated depinning, and the thermal fluctuation of the vortex positions in the flux line lattice (often called flux lattice melting). Also discussed are the fluctuations of the (nearly periodic) magnetic field inside these superconductors which are caused by random pinning sites and by the finite temperature. These fluctuations broaden the van-Hove singularities observed in the density of the magnetic field by nuclear magnetic resonance and by muon spin rotation.

  3. Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

    SciTech Connect

    Shen, Weimin.

    1992-08-01

    Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f<50 kHz) current density fluctuations are consistent with the global resistive tearing instabilities predicted by 3-D MHD simulations. At frequencies above 50 kHz, the magnetic fluctuations were detected to be localized with a radial correlation length of about 1--2 cm. These modes are locally resonant modes since the measured dominant mode number spectra match the local safety factor q. The net charged particle flux induced by magnetic fluctuations was obtained by measuring the correlation term <{tilde j}{sub {parallel}} {tilde B}{sub r}>. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence.

  4. A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui

    2012-04-01

    The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.

  5. On the interchange instability of solar magnetic flux tubes. II. The influence of energy transport effects

    NASA Astrophysics Data System (ADS)

    Bunte, M.; Hasan, S.; Kalkofen, W.

    1993-06-01

    We examine the interchange instability of thin photo spheric magnetic flux tube models which satisfy both force and energy balance with their surroundings. The stability of the tubes is independent of the efficiency of internal convective energy transport and shows only a weak dependence on the plasma beta. The structures are susceptible to the instability in a layer 200 - 300 km deep immediately below optical depth unity in the quiet photosphere. The presence of an internal atmosphere reduces the magnetic field strength in comparison with that of an evacuated tube. While this has a stabilizing effect on the tube surface, temperature differences between interior and exterior are usually destabilizing. We find that the two effects approximately cancel each other for tubes with radii R ? 200 km for which the stability properties are very similar to those of completely evacuated structures. For larger tubes, the temperature contrast with respect to the surroundings begins to dominate and destabilizes the tubes. Thus, despite the inclusion of energy transport effects on the tube structure, the stability problem of small tubes (with magnetic fluxes ? < 1019-1020 Mx) remains. Consequences for photospheric magnetic fields are discussed.

  6. EFFECT OF POLARIMETRIC NOISE ON THE ESTIMATION OF TWIST AND MAGNETIC ENERGY OF FORCE-FREE FIELDS

    SciTech Connect

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay; Joshi, Jayant E-mail: pvk@prl.res.in E-mail: jayant@prl.res.in

    2009-07-20

    The force-free parameter {alpha}, also known as helicity parameter or twist parameter, bears the same sign as the magnetic helicity under some restrictive conditions. The single global value of {alpha} for a whole active region gives the degree of twist per unit axial length. We investigate the effect of polarimetric noise on the calculation of global {alpha} value and magnetic energy of an analytical bipole. The analytical bipole has been generated using the force-free field approximation with a known value of constant {alpha} and magnetic energy. The magnetic parameters obtained from the analytical bipole are used to generate Stokes profiles from the Unno-Rachkovsky solutions for polarized radiative transfer equations. Then we add random noise of the order of 10{sup -3} of the continuum intensity (I {sub c}) in these profiles to simulate the real profiles obtained by modern spectropolarimeters such as Hinode (SOT/SP), SVM (USO), ASP, DLSP, POLIS, and SOLIS etc. These noisy profiles are then inverted using a Milne-Eddington inversion code to retrieve the magnetic parameters. Hundred realizations of this process of adding random noise and polarimetric inversion is repeated to study the distribution of error in global {alpha} and magnetic energy values. The results show that (1) the sign of {alpha} is not influenced by polarimetric noise and very accurate values of global twist can be calculated, and (2) accurate estimation of magnetic energy with uncertainty as low as 0.5% is possible under the force-free condition.

  7. Measurement of irradiation effects in a RPV steel by ball indentation technique and magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Kim, In-Sup; Park, Duck-Gun; Byun, Thak-Sang; Hong, Jun-Hwa

    1999-12-01

    Effects of neutron dose on the mechanical and magnetic properties of a SA508-3 nuclear pressure vessel steel were investigated by using ball indentation test technique and magnetic Barkhausen noise (BN) measurements. The samples were irradiated in a research reactor up to 1018n/cm2 (E>1 MeV) at 70 °C. The yield strength and flow curve were evaluated from the indentation load-depth curves. The change of mechanical properties showed characteristic trend with respect to neutron dose, namely near plateau, rapid increase and slow increase. On the other hand, the BN varied in a reverse manner, a slow decrease up to a neutron dose of 1016n/cm2, followed by a rapid decrease up to a dose of 1018n/cm2.

  8. Power spectra of velocities and magnetic fields on the solar surface and their dependence on the unsigned magnetic flux density

    E-print Network

    Katsukawa, Y

    2012-01-01

    We have performed power spectral analysis of surface temperatures, velocities, and magnetic fields, using spectro-polarimetric data taken with the Hinode Solar Optical Telescope. When we make power spectra in a field-of-view covering the super-granular scale, kinetic and thermal power spectra have a prominent peak at the granular scale while the magnetic power spectra have a broadly distributed power over various spatial scales with weak peaks at both the granular and supergranular scales. To study the power spectra separately in internetwork and network regions, power spectra are derived in small sub-regions extracted from the field-of-view. We examine slopes of the power spectra using power-law indices, and compare them with the unsigned magnetic flux density averaged in the sub-regions. The thermal and kinetic spectra are steeper than the magnetic ones at the sub-granular scale in the internetwork regions, and the power-law indices differ by about 2. The power-law indices of the magnetic power spectra are ...

  9. 50 IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 1, JANUARY 2004 Analytical Method for Predicting the Air-Gap Flux of

    E-print Network

    Mi, Chunting "Chris"

    50 IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 1, JANUARY 2004 Analytical Method for Predicting the Air-Gap Flux of Interior-Type Permanent-Magnet Machines Chunting Mi, Senior Member, IEEE, Mariano method to calcu- late the air-gap magnetic flux of interior-type permanent-magnet (IPM) machines taking

  10. RECONCILING MODELS OF LUMINOUS BLAZARS WITH MAGNETIC FLUXES DETERMINED BY RADIO CORE-SHIFT MEASUREMENTS

    SciTech Connect

    Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek

    2014-11-20

    Estimates of magnetic field strength in relativistic jets of active galactic nuclei, obtained by measuring the frequency-dependent radio core location, imply that the total magnetic fluxes in those jets are consistent with the predictions of the magnetically arrested disk (MAD) scenario of jet formation. On the other hand, the magnetic field strength determines the luminosity of the synchrotron radiation, which forms the low-energy bump of the observed blazar spectral energy distribution (SED). The SEDs of the most powerful blazars are strongly dominated by the high-energy bump, which is most likely due to the external radiation Compton mechanism. This high Compton dominance may be difficult to reconcile with the MAD scenario, unless (1) the geometry of external radiation sources (broad-line region, hot-dust torus) is quasi-spherical rather than flat, or (2) most gamma-ray radiation is produced in jet regions of low magnetization, e.g., in magnetic reconnection layers or in fast jet spines.

  11. The effect of interplanetary magnetic field orientation on the solar wind flux impacting Mercury's surface

    NASA Astrophysics Data System (ADS)

    Varela, J.; Pantellini, F.; Moncuquet, M.

    2015-12-01

    The aim of this paper is to study the plasma flows on the Mercury surface for different interplanetary magnetic field orientations on the day side of the planet. We use a single fluid MHD model in spherical coordinates to simulate the interaction of the solar wind with the Hermean magnetosphere for six solar wind realistic configurations with different magnetic field orientations: Mercury-Sun, Sun-Mercury, aligned with the magnetic axis of Mercury (Northward and Southward) and with the orbital plane perpendicular to the previous cases. In the Mercury-Sun (Sun-Mercury) simulation the Hermean magnetic field is weakened in the South-East (North-East) of the magnetosphere leading to an enhancement of the flows on the South (North) hemisphere. For a Northward (Southward) orientation there is an enhancement (weakening) of the Hermean magnetic field in the nose of the bow shock so the fluxes are reduced and drifted to the poles (enhanced and drifted to the equator). If the solar wind magnetic field is in the orbital plane the magnetosphere is tilted to the West (East) and weakened at the nose of the shock, so the flows are enhanced and drifted to the East (West) in the Northern hemisphere and to the West (East) in the Southern hemisphere.

  12. Angular momentum, g-value, and magnetic flux of gyration states

    SciTech Connect

    Arunasalam, V.

    1991-10-01

    Two of the world's leading (Nobel laureate) physicists disagree on the definition of the orbital angular momentum L of the Landau gyration states of a spinless charged particle in a uniform external magnetic field B = B i{sub Z}. According to Richard P. Feynman (and also Frank Wilczek) L = (rx{mu}v) = rx(p - qA/c), while Felix Bloch (and also Kerson Huang) defines it as L = rxp. We show here that Bloch's definition is the correct one since it satisfies the necessary and sufficient condition LxL = i{Dirac h} L, while Feynman's definition does not. However, as a consequence of the quantized Aharonov-Bohm magnetic flux, this canonical orbital angular momentum (surprisingly enough) takes half-odd-integral values with a zero-point gyration states of L{sub Z} = {Dirac h}/2. Further, since the diamagnetic and the paramagnetic contributions to the magnetic moment are interdependent, the g-value of these gyration states is two and not one, again a surprising result for a spinless case. The differences between the gauge invariance in classical and quantum mechanics, Onsager's suggestion that the flux quantization might be an intrinsic property of the electromagnetic field-charged particle interaction, the possibility that the experimentally measured fundamental unit of the flux quantum need not necessarily imply the existence of electron pairing'' of the Bardeen-Cooper-Schrieffer superconductivity theory, and the relationship to the Dirac's angular momentum quantization condition for the magnetic monopole-charged particle composites (i.e. Schwinger's dyons), are also briefly examined from a pedestrian viewpoint.

  13. Motion and Magnetic Flux Changes of Coronal Bright Points Relative to Supergranular Cell Boundaries

    NASA Astrophysics Data System (ADS)

    Yousefzadeh, M.; Safari, H.; Attie, R.; Alipour, N.

    2015-11-01

    To calculate the magnetic flux and the horizontal movement of coronal bright points (CBPs) in relation to supergranular cell boundaries, the time series of the SDO/HMI visible-light continuum images and SDO/AIA EUV images for 13 February 2011 have been studied. The supergranular lanes were detected in HMI continuum images using the automatic supergranular cell recognition method. The automatic identification and tracking method was applied for detecting the CBPs in AIA 193 Å images. By applying the ball-tracking method on HMI continuum images, the underlying flow fields were determined. By using the velocity fields and the automatic supergranular cell recognition method, the lanes and boundaries were detected. The locations of CBPs were projected on the photospheric co-spatial and co-temporal images. We found that about 90 % of the locations of CBPs correspond to the lane of the supergranular cell boundaries (network CBPs or NCBPs) of which about 40 % of them appeared at junctions. The remaining 10 % appeared within the supergranular regions (internetwork CBPs or INCBPs). The horizontal velocities for NCBPs and INCBPs were about 1.6±0.1 km s^{-1} and 1.7±0.1 km s^{-1}, respectively. Using the magnetic field extrapolation, we were able to detect the bipoles underlying CBPs, and we studied their magnetic evolution. The orientation of CBPs observed in the 171, 193, and 211 Å images and the orientation of their magnetic bipoles are positively correlated. For out of 50 INCBPs, 54 % showed cancellation, 32 % emergence, and 12 % complex flux changes. Out of 90 NCBPs, 60 % presented cancellation, 20 % showed emergence, and 20 % showed complex flux changes.

  14. Indirect sensing for rotor flux position of permanent magnet AC motors operating over a wide speed range

    SciTech Connect

    Moreira, J.C.

    1996-11-01

    This paper describes an indirect sensing, or sensorless, method for rotor flux position for brushless permanent magnet (BPM) motors operating over a wide speed range, while keeping maximum torque per ampere and/or maximum efficiency capabilities. The method described is particularly applicable to trapezoidal back emf type of BPM motors. The typical trapezoidal waveform of the motor internal voltages (or back emf) contains a fundamental and higher order frequency harmonics. In particular, the third harmonic component is extracted from the stator phase voltages while the fundamental and other polyphase components are eliminated via a simple summation of the three phase voltages. The resulting third harmonic signal keeps a constant phase relationship with the rotor flux for any motor speed and load condition, and is practically free of noise that can be introduced by the inverter switching, making this a robust sensing method. In contrast with indirect sensing methods based on detection of the back-emf signal that require heavy filtering, the third harmonic signal needs only a small amount of filtering to eliminate the switching frequency and its side bands. As a result, the method described here is not sensitive to filtering delays, allowing the motor to achieve a good performance over a wide speed range. Motor starting is also superior with this method since the third harmonic signal can be detected and processed at lower speeds than for the conventional method of back-emf sensing. Moreover, an alternative way to acquire the third harmonic signal without the need to access the stator neutral terminal is discussed. This is particularly interesting with the motor neutral connection is not available or expensive to have access. The third harmonic indirect sensing scheme is implemented in the laboratory and compared to a conventional back-emf sensing method.

  15. Tidal Disruption and Magnetic Flux Capture: Powering a Jet from a Quiescent Black Hole

    E-print Network

    Kelley, Luke Zoltan; Narayan, Ramesh

    2014-01-01

    The transient Swift J1644+57 is believed to have been produced by an unlucky star wandering too close to a supermassive black hole (BH) leading to a tidal disruption event. This unusual flare displayed highly super-Eddington X-ray emission which likely originated in a relativistic, collimated jet. This presents challenges to modern accretion and jet theory as upper limits of prior BH activity, which we obtain from the radio afterglow of this event, imply that both the pre-disruption BH and stellar magnetic fluxes fall many orders of magnitude short of what is required to power the observed X-ray luminosity. We argue that a pre-existing, "fossil" accretion disc can contain a sufficient reservoir of magnetic flux and that the stellar debris stream is capable of dragging this flux into the BH. To demonstrate this, we perform local, 3D magnetohydrodynamic simulations of the disc--stream interaction and demonstrate that the interface between the two is unstable to mixing. This mixing entrains a sufficient amount o...

  16. The dynamic evolution of active-region-scale magnetic flux tubes in the turbulent solar convective envelope

    NASA Astrophysics Data System (ADS)

    Weber, Maria Ann

    2014-12-01

    The Sun exhibits cyclic properties of its large-scale magnetic field on the order of sigma22 years, with a ˜11 year frequency of sunspot occurrence. These sunspots, or active regions, are the centers of magnetically driven phenomena such as flares and coronal mass ejections. Volatile solar magnetic events directed toward the Earth pose a threat to human activities and our increasingly technological society. As such, the origin and nature of solar magnetic flux emergence is a topic of global concern. Sunspots are observable manifestations of solar magnetic fields, thus providing a photospheric link to the deep-seated dynamo mechanism. However, the manner by which bundles of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the solar surface is not well understood. To provide a connection between dynamo-generated magnetic fields and sunspots, I have performed simulations of magnetic flux emergence through the bulk of a turbulent, solar convective envelope by employing a thin flux tube model subject to interaction with flows taken from a hydrodynamic convection simulation computed through the Anelastic Spherical Harmonic (ASH) code. The convective velocity field interacts with the flux tube through the drag force it experiences as it traverses through the convecting medium. Through performing these simulations, much insight has been gained about the influence of turbulent solar-like convection on the flux emergence process and resulting active region properties. I find that the dynamic evolution of flux tubes change from convection dominated to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from 15 kG to 100 kG. Additionally, active-region-scale flux tubes of 40 kG and greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles, rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and helical motions present in convective upflows help tilt the apex of rising flux tubes toward the equator in accordance with Joys Law. Utilizing these simulations, I find that rotationally aligned, columnar convective structures called giant cells present near the equatorial regions of the ASH simulation organizes flux emergence into a large-scale longitudinal pattern similar to the active longitude trend on the Sun and other solar-like stars. The effect of radiative diffusion across the radiation zone-convection zone interface on the buoyant rise of magnetic flux tubes is also studied. Incorporating this effect into the flux tube model, flux tubes with magnetic field strengths of 60 kG or less no longer anchor in the stably stratified overshoot region. These flux tubes still have average emergence properties that agree with observations of solar active regions, although tilt angles have a larger scatter about the mean value. Finally, I will discuss possible future research problems that can be investigated through the thin flux tube approach, such as convection-induced twisting of the flux tube magnetic field lines and flux emergence properties on a young Sun rotating at 5 times the current solar rate.

  17. An investigation into high temperature superconducting flux pump technology with the circular type magnetic flux pump devices and YBaCuO films

    E-print Network

    Wang, Wei

    2014-06-10

    ), which is closest to the condition of an HTS coil (single layer instead of multi-layer). However, in the experiment there was no clear change of magnetic flux inside the superconducting loop after application of the travelling wave. This might...

  18. Signature of Coherent Transport in Epitaxial Spinel-based Magnetic Tunnel Junctions Probed by Shot Noise Measurement

    E-print Network

    Tanaka, Takahiro; Chida, Kensaku; Nishihara, Yoshitaka; Chiba, Daichi; Kobayashi, Kensuke; Ono, Teruo; Sukegawa, Hiroaki; Kasai, Shinya; Mitani, Seiji

    2012-01-01

    We measured the shot noise in fully epitaxial Fe/MgAl2OX/Fe-based magnetic tunneling junctions (MTJs). While the Fano factor to characterize the shot noise is very close to unity in the antiparallel configuration, it is reduced to 0.98 in the parallel configuration. This observation shows the sub-Poissonian process of electron tunneling in the parallel configuration, indicating the coherent tunneling through the spinel-based tunneling barrier of the MTJ.

  19. Signature of Coherent Transport in Epitaxial Spinel-based Magnetic Tunnel Junctions Probed by Shot Noise Measurement

    E-print Network

    Takahiro Tanaka; Tomonori Arakawa; Kensaku Chida; Yoshitaka Nishihara; Daichi Chiba; Kensuke Kobayashi; Teruo Ono; Hiroaki Sukegawa; Shinya Kasai; Seiji Mitani

    2012-05-31

    We measured the shot noise in fully epitaxial Fe/MgAl2OX/Fe-based magnetic tunneling junctions (MTJs). While the Fano factor to characterize the shot noise is very close to unity in the antiparallel configuration, it is reduced to 0.98 in the parallel configuration. This observation shows the sub-Poissonian process of electron tunneling in the parallel configuration, indicating the coherent tunneling through the spinel-based tunneling barrier of the MTJ.

  20. NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF A CORONAL MAGNETIC FLUX ROPE SUPPORTING A LARGE-SCALE SOLAR FILAMENT FROM A PHOTOSPHERIC VECTOR MAGNETOGRAM

    SciTech Connect

    Jiang, Chaowei; Wu, S. T.; Hu, Qiang; Feng, Xueshang E-mail: wus@uah.edu E-mail: fengx@spaceweather.ac.cn

    2014-05-10

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ? 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  1. Magnetic Flux Concentrations in Stratified Turbulent Plasma Due to Negative Effective Magnetic Pressure Instability

    NASA Astrophysics Data System (ADS)

    Jabbari, Sarah

    2015-08-01

    We study a system of a highly stratified turbulent plasma. In such a system, when the magnetic Reynolds number is large enough and there is a background field of suitable strength, a new effect will play role in con- centrating magnetic fields such that it leads to the formation of magnetic spots and bipolar regions. This effect is due to the fact that the turbu- lent pressure is suppressed by the large-scale magnetic field, which adds a negative term to the total mean-field (effective) pressure. This leads to an instability, which is known as the negative effective magnetic pressure instability (NEMPI). Direct numerical simulations (DNS) of isothermally forced turbulence have shown that NEMPI leads to the formation of spots in the presence of an imposed field. Our main aim now is to use NEMPI to explain the formation of active regions and sunspots. To achieve this goal, we need to move progressively to more realistic models. Here we extend our model by allowing the magnetic field to be generated by a dy- namo. A dynamo plays an important role in solar activity. Therefore, it is of interest to investigate NEMPI in the presence of dynamo-generated magnetic fields. Mean-field simulations (MFS) of such systems in spheri- cal geometry have shown how these two instabilities work in concert. In fact NEMPI will be activated as long as the strength of the magnetic field generated by the dynamo is in a proper range (for more detail see Jab- bari et al. 2013). In our new study, we use DNS to investigate a similar system. The turbulence is forced in the entire spherical shell, but the forc- ing is made helical in the lower 30% of the shell, similar to the model of Mitra et al. (2014). We perform simulations using the Pencil Code for different density contrasts and other input parameters. We applied ver- tical field boundary conditions in the r direction. The results show that, when the stratification is high enough, intense bipolar regions form and as time passes, they expand, merge and create giant structures. At the same time, the new structures appear at different latitudes. By extending in ? direction, the size of the bipolar regions decreases. When the helical zone is thinner, the structures appear at a later time.

  2. Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station.

    PubMed

    Aguilar, M; Aisa, D; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D'Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türko?lu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-09-19

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ?30??GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons. PMID:25279617

  3. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    E-print Network

    Aguilar, M; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D’Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türko?lu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-01-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ?30??GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  4. On the interchange instability of solar magnetic flux tubes. I - The influence of magnetic tension and internal gas pressure

    NASA Astrophysics Data System (ADS)

    Buente, M.; Steiner, O.; Pizzo, V. J.

    1993-02-01

    Small magnetic flux tubes at the solar surface are known to be interchange-unstable. Previous studies of this instability have focused on evacuated tubes in the thin tube approximation, thereby neglecting magnetic tension forces and internal atmospheres. We have extended the analysis to study the influence of these two missing components. An internal atmosphere can either have a stabilizing or destabilizing effect, depending upon the details of the prescribed gas pressure stratification. Magnetic tension forces in general stabilize the tubes by reducing the curvature of the boundary. For evacuated numerical models we find that the instability can be suppressed by a critical whirl flow of 2.2 km/s surrounding the tubes. This is considerably lower than previously found for evacuated thin tube structures. For tubes in temperature equilibrium with their surroundings this critical whirl velocity is even lower, while temperature differences at equal geometric height increase its value. The sharp interface between the magnetic field and the whirl flow is due to the Kelvin-Helmholtz instability (KHI). However, the boundary layer of finite width at the tube surface might suppress the KHI, and hence make the whirl flow mechanism feasible, if the tube is highly evacuated at the relevant height of the atmosphere.

  5. Evolution of a magnetic flux tube in two-dimensional penetrative convection

    NASA Technical Reports Server (NTRS)

    Jennings, R. L.; Brandenburg, A.; Nordlund, A.; Stein, R. F.

    1992-01-01

    Highly supercritical compressible convection is simulated in a two-dimensional domain in which the upper half is unstable to convection while the lower half is stably stratified. This configuration is an idealization of the layers near the base of the solar convection zone. Once the turbulent flow is well developed, a toroidal magnetic field B sub tor is introduced to the stable layer. The field's evolution is governed by an advection-diffusion-type equation, and the Lorentz force does not significantly affect the flow. After many turnover times the field is stratified such that the absolute value of B sub tor/rho is approximately constant in the convective layer, where rho is density, while in the stable layer this ratio decreases linearly with depth. Consequently most of the magnetic flux is stored in the overshoot layer. The inclusion of rotation leads to travelling waves which transport magnetic flux latitudinally in a manner reminiscent of the migrations seen during the solar cycle.

  6. Stellar magnetic field measurements Zeeman-Doppler imaging and magnetic-flux

    E-print Network

    cool stars and solar-like stars Instrumentation The most successful spectrographs field measurements of the Herbig Ae stars HD 101412 (left panel) and HD 150193 (right panel) (FORS 2). Left panel: Phase diagram and residuals for the longitudinal magnetic field measurements of the Cephei

  7. Cosmic strings with twisted magnetic flux lines and wound-strings in extra dimensions

    E-print Network

    Matthew Lake; Jun'ichi Yokoyama

    2015-09-29

    We consider a generalization of the Nielsen-Olesen ansatz, in an abelian-Higgs model with externally coupled charge, which describes strings with twisted magnetic flux lines in the vortex core. The solution does not possess cylindrical symmetry, which leads to the existence of components of conserved momentum, both around the core-axis and along the length of the string. In addition, we consider a model of F-strings with rotating, geodesic windings in the compact space of the Klebanov-Strassler geometry and determine matching conditions which ensure energy and momentum conservation when loops chop off from the long-string network. We find that the expressions for the constants of motion, which determine the macroscopic string dynamics, can be made to coincide with those for the twisted flux line string, suggesting that extra-dimensional effects for F-strings may be mimicked by field- theoretic structure in topological defects.

  8. Cosmic strings with twisted magnetic flux lines and wound-strings in extra dimensions

    SciTech Connect

    Lake, Matthew; Yokoyama, Jun'ichi E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    2012-09-01

    We consider a generalization of the Nielsen-Olesen ansatz, in the abelian-Higgs model, which describes strings with twisted magnetic flux lines in the vortex core. The solution does not possess cylindrical symmetry, which leads to the existence of components of conserved momentum, both around the core-axis and along the length of the string. In addition, we consider a model of F-strings with rotating, geodesic windings in the compact space of the Klebanov-Strassler geometry and determine matching conditions which ensure energy and momentum conservation when loops chop off from the long-string network. We find that the expressions for the constants of motion, which determine the macroscopic string dynamics, can be made to coincide with those for the twisted flux line string, suggesting that extra-dimensional effects for F-strings may be mimicked by field-theoretic structure in topological defects.

  9. Numerical simulation of filling a magnetic flux tube with a cold plasma: Anomalous plasma effects

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Leung, W. C.

    1995-01-01

    Large-scale models of plasmaspheric refilling have revealed that during the early stage of the refilling counterstreaming ion beams are a common feature. However, the instability of such ion beams and its effect on refilling remain unexplored. In order to learn the basic effects of ion beam instabilities on refilling, we have performed numerical simulations of the refilling of an artificial magnetic flux tube. (The shape and size of the tube are assumed so that the essential features of the refilling problem are kept in the simulation and at the same time the small scale processes driven by the ion beams are sufficiently resolved.) We have also studied the effect of commonly found equatorially trapped warm and/or hot plasma on the filling of a flux tube with a cold plasma. Three types of simulation runs have been performed.

  10. Secular Changes in Solar Magnetic Flux Amplification Factor and Prediction of Space Weather

    E-print Network

    Girish, T E

    2010-01-01

    We could infer a secular decreasing trend in the poloidal to toroidal solar magnetic flux amplification factor ( Af) using geomagnetic observations ( classic and IHV corrected aa indices) during the sunspot cycles 9-23. A similar decreasing trend is also observed for the solar equatorial rotation (W) which imply possibly a decrease in the efficiency of the solar dynamo during the above period. We could show correlated changes of Af and extreme space weather activity variations near earth since the middle of the 19th century. Indirect solar observations ( solar proton fluence estimates) suggests that the distinct enhancements in extreme space weather activity , Af and W found during sunspot cycles 10 to 15 is probably largest of that kind during the past 400 years. We find that the sunspot activity can reach an upper limit (Rcurrent sunspot cycle 24 turns out to be weak then very severe space weather conditions is most probable to occur during this cycle. Key words: Flux ...

  11. Magnetic flux lines in type-II superconductors and the 'hairy ball' theorem.

    PubMed

    Laver, Mark; Forgan, Edward M

    2010-01-01

    Many prominent phenomena originate from geometrical effects rather than from local physics. For example, the 'hairy ball' (HB) theorem asserts that a hairy sphere cannot be combed without introducing at least one singularity, and is fulfilled by the atmospheric circulation with the existence of stratospheric polar vortices and the fact that there is always at least one place on Earth where the horizontal wind is still. In this study, we examine the consequences of the HB theorem for the lattice of flux lines that form when a magnetic field is applied to a type-II superconducting crystal. We find that discontinuities must exist in lattice shape as a function of field direction relative to the crystal. Extraordinary, 'unconventional' flux line lattice shapes that spontaneously break the underlying crystal symmetry are thus remarkably likely across all type-II superconductors, both conventional and unconventional. PMID:20975698

  12. Secular Changes in Solar Magnetic Flux Amplification Factor and Prediction of Space Weather

    E-print Network

    T. E. Girish; G. Gopkumar

    2010-11-21

    We could infer a secular decreasing trend in the poloidal to toroidal solar magnetic flux amplification factor ( Af) using geomagnetic observations ( classic and IHV corrected aa indices) during the sunspot cycles 9-23. A similar decreasing trend is also observed for the solar equatorial rotation (W) which imply possibly a decrease in the efficiency of the solar dynamo during the above period. We could show correlated changes of Af and extreme space weather activity variations near earth since the middle of the 19th century. Indirect solar observations ( solar proton fluence estimates) suggests that the distinct enhancements in extreme space weather activity , Af and W found during sunspot cycles 10 to 15 is probably largest of that kind during the past 400 years. We find that the sunspot activity can reach an upper limit (Rweather conditions is most probable to occur during this cycle. Key words: Flux amplification,solar dynamo, space weather, predictions,cycle 24

  13. Propagation and Dispersion of Sausage Wave Trains in Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Oliver, R.; Ruderman, M. S.; Terradas, J.

    2015-06-01

    A localized perturbation of a magnetic flux tube produces wave trains that disperse as they propagate along the tube, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. We find that the propagating wave train undergoes stronger attenuation for longer axisymmetric (or shorter transverse) perturbations, while the internal to external density ratio has a smaller effect on the attenuation. Moreover, for parameter values typical of coronal loops axisymmetric (transverse) wave trains travel at a speed 0.75-1 (1.2) times the Alfvén speed of the magnetic tube. In both cases, the wave train passage at a fixed position of the magnetic tube gives rise to oscillations with periods of the order of seconds, with axisymmetric disturbances causing more oscillations than transverse ones. To test the detectability of propagating transverse or axisymmetric wave packets in magnetic tubes of the solar atmosphere (e.g., coronal loops, spicules, or prominence threads) a forward modeling of the perturbations must be carried out.

  14. Helioseismic Holography and a Study of the Process of Magnetic Flux Disappearance in Canceling Bipoles

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles; Harvey, Karen L.; Braun, D.; Jones, H. P.; Penn, M.; Hassler, D.

    2001-01-01

    Project 1: We have developed and applied a technique of helioseismic holography along the lines of originally set out in our proposal. The result of the application of this diagnostic technique to solar activity and the quiet Sun has produced a number of important discoveries: (1) acoustic moats surrounding sunspots; (2) acoustic glories surround large active regions; (3) acoustic condensations beneath active regions; and (4) temporally-resolve acoustic images of a solar flare. These results have been published in a series of papers in the Astrophysical Journal. We think that helioseismic holography is now established as the most powerful and discriminating diagnostic in local helioseismology. Project 2: We conducted a collaborative observational program to define the physical character and magnetic geometry of canceling magnetic bipoles aimed at determining if the cancellation process is the result of submergence of magnetic fields. This assessment is based on ground-based observations combining photospheric and chromospheric magnetograms from NSO/KP, BBSO, and SOHO-MDI, and EUV and X-ray images from SOHO EIT/CDS, Yohkoh/SXT, and TRACE. Our study involves the analysis of data taken during three observing campaigns to define the height structure of canceling bipoles inferred from magnetic field and intensity images, and how this varies with time. We find that some canceling bipoles can be explained by the submerge of their magnetic flux. A paper on the results of this analysis will be presented at an upcoming scientific meeting and be written up for publication.

  15. The Sun’s magnetic field characterized by the evolution of its minimum magnetic flux with effects from the core

    NASA Astrophysics Data System (ADS)

    Dreschhoff, Gisela A. M.

    Based on the successful reconstruction of the global solar magnetic field by a number of investigators it seems clear that the field strength (used here as B( nT)) has increased significantly during the last ˜300 years. However, it has been demonstrated that a weak field strength has unexpected consequences for the near Earth environment relative to the high probability of the detection of large fluence proton events. For this reason emphasis has been placed on evaluating the minimum values ( Bmin) of the total magnetic flux, which upon visual examination seems to resemble variations between sequential states of equilibrium of the quiet Sun termed group one to six, which extend over several Schwabe cycles. Whereas in general the magnetic field strength B( nT) increases with decreasing cycle length, an inverse relationship can be demonstrated for the field strength with decreasing cycle length if the magnetic flux Bmax is expressed as a fraction of Bmin and can be used as a diagnostic tool. In fact, two separate trends can be identified: (1) a two-step function between two consecutive groups, and (2) three non-consecutive groups showing the common characteristic of following the termination of an extended period of low solar activity. Furthermore, it can be shown that the approach of Bmax and Bmin to each other in their temporal evolution is in an oscillating fashion. The data such developed also indicate that there may be an optimum condition for the 300-year magnetic field variations centered on an intermediate period of the well-known approximate 11-years. A highly speculative attempt is made to show that this optimum condition based on the modulation of magnetic energy may have significant contributions from the self-sustained fusion processes in the energy generating region at the center of the Sun. Based on phenomenological observations it is further speculated that varying energy generated in the core is fed into the system on time scales indicative of pressure waves, global resonant acoustic oscillations, which by superposition of amplitudes will result in varying periodicities ranging from e.g. minutes to years.

  16. KELVIN-HELMHOLTZ INSTABILITY IN CORONAL MAGNETIC FLUX TUBES DUE TO AZIMUTHAL SHEAR FLOWS

    SciTech Connect

    Soler, R.; Terradas, J.; Oliver, R.; Ballester, J. L.; Goossens, M.

    2010-04-01

    Transverse oscillations of coronal loops are often observed and have been theoretically interpreted as kink magnetohydrodynamic (MHD) modes. Numerical simulations by Terradas et al. suggest that shear flows generated at the loop boundary during kink oscillations could give rise to a Kelvin-Helmholtz instability (KHI). Here, we investigate the linear stage of the KHI in a cylindrical magnetic flux tube in the presence of azimuthal shear motions. We consider the basic, linearized MHD equations in the beta = 0 approximation and apply them to a straight and homogeneous cylindrical flux tube model embedded in a coronal environment. Azimuthal shear flows with a sharp jump of the velocity at the cylinder boundary are included in the model. We obtain an analytical expression for the dispersion relation of the unstable MHD modes supported by the configuration, and compute analytical approximations of the critical velocity shear and the KHI growth rate in the thin tube limit. A parametric study of the KHI growth rates is performed by numerically solving the full dispersion relation. We find that fluting-like modes can develop a KHI in timescales comparable to the period of kink oscillations of the flux tube. The KHI growth rates increase with the value of the azimuthal wavenumber and decrease with the longitudinal wavenumber. However, the presence of a small azimuthal component of the magnetic field can suppress the KHI. Azimuthal motions related to kink oscillations of untwisted coronal loops may trigger a KHI, but this phenomenon has not been observed to date. We propose that the azimuthal component of the magnetic field is responsible for suppressing the KHI in a stable coronal loop. The required twist is small enough to prevent the development of the pinch instability.

  17. Shear and vortex motions in a forming sunspot . Twist relaxation in magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Kneer, F.; Schlichenmaier, R.

    2012-02-01

    Aims: We measure proper motions of fine structures in a forming sunspot to infer information about the dynamics of flux emergence at the sub-photospheric level. Methods: The active region NOAA 11024 was observed with the Vacuum Tower Telescope at Observatorio del Teide/Tenerife over several days in July 2009. Here, we concentrate on a two-hour sequence taken on July 4, when the leading spot was at an early stage of its evolution. Speckle reconstructions from Ca ii K images and polarimetric data in Fe i ?6173 allow us to study proper motions of umbral fine structures. Results: We detect three prominent features: (1) A light bridge, divided by a dark lane along its axis, shows proper motions in opposing directions on its sides, with velocities of ~100-500 m s-1. The flows are seen in both the Ca ii K and the broadband time sequences. (2) Umbral dots in one umbral region outline a vortex with speeds of up to 550 m s-1. The direction of the motion of the umbral dots is different from that in the light bridge. (3) At one rim of the umbra, the fine structure of the magnetic field moves horizontally with typical velocities of 250-300 m s-1, prior to the formation of the penumbra. Conclusions: We report on shear and vortex motions in a forming sunspot and interpret them as tracers of twist relaxation in magnetic flux ropes. We suggest that the forming sunspot contains detached magnetic flux ropes that emerge at the surface with different amounts of twist. As they merge to form a sunspot, they untwist giving rise to the observed shear and vortex motions.

  18. MAGNETIC FLUX CANCELLATION OBSERVED IN THE SUNSPOT VASYL B. YURCHYSHYN1,2 and HAIMIN WANG2

    E-print Network

    Big Bear Solar Observatory, Big Bear City, CA 92314, U.S.A. (e-mail: vayur@bbso.njit.edu) 2Crimean magnetic flux cancellation. The data are Big Bear Solar Observatory and SOHO/MDI observations of active the cancellation rate and inflow velocity in a current sheet to the magnetic field strength and it has only been

  19. DETECTION OF MECHANICAL DAMAGE USING THE MAGNETIC FLUX LEAKAGE TECHNIQUE L. Clapham, V. Babbar, and James Byrne.

    E-print Network

    Clapham, Lynann

    for further corrosion or cracking and potentially leading to a delayed failure. Intelligent magnetic flux, and James Byrne. Queen's University, Kingston, Ontario, Canada. Abstract: Since magnetism is strongly stress make signal interpretation problematic: 1) the MFL signal is a superposition of geometrical and stress

  20. Correlated time derivatives of current, electric field intensity, and magnetic flux density for triggered lightning at 15 m

    E-print Network

    Florida, University of

    Correlated time derivatives of current, electric field intensity, and magnetic flux density current and its time derivative correlated with the corresponding electric field intensity and magnetic derivative is reached. The electric field derivative decays more slowly than the current derivative after

  1. A study on the radiation damage and recovery of neutron irradiated vessel steel using magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Park, Duck-Gun; Jeong, Hee-Tae; Hong, Jun-Hwa

    1999-04-01

    The radiation damage and thermal recovery characteristic of neutron irradiated SA508-3 reactor pressure vessel steel specimens have been investigated. Two recovery stages were identified from the results of hardness measurements during isochronal annealing and the mechanism responsible for the two stages was explained by using the results of Barkhausen noise measurement on the basis of the interaction between radiation induced defects and the magnetic domain wall. The coercivity was not changed by neutron irradiation, whereas the maximum magnetic induction increased. Barkhausen noise parameters associated with the domain wall motion were decreased by neutron irradiation and recovered with subsequent heat treatments.

  2. Shipboard magnetic field "noise" reveals shallow heavy mineral sediment concentrations in Chesapeake Bay

    USGS Publications Warehouse

    Shah, Anjana K.; Vogt, Peter R.; Rosenbaum, Joseph G.; Newell, Wayne; Cronin, Thomas M.; Willard, Debra A.; Hagen, Rick A.; Brozena, John; Hofstra, Albert

    2012-01-01

    Shipboard magnetic field data collected over Chesapeake Bay exhibit low-amplitude, short-wavelength anomalies that most likely indicate shallow concentrations of heavy mineral sediments. Piston core layers and black sand beach samples exhibit enhanced magnetic susceptibilities and carry remanent magnetization, with mineralogical analyses indicating ilmenite and trace magnetite and/or maghemite and hematite. The anomalies are subtle and would be filtered as noise using traditional approaches, but can instead be highlighted using spectral methods, thus providing nearly continuous coverage along survey tracks. The distribution of the anomalies provides constraints on relevant sorting mechanisms. Comparisons to sonar data and previous grab samples show that two of three areas surveyed exhibit short-wavelength anomalies that are clustered over sand-covered areas, suggesting initial sorting through settling mechanisms. This is supported by a correlation between core magnetic susceptibility and grain size. Near the Choptank River, where sediment resuspension is wave-dominated, anomalies show a sharp decrease with seafloor depth that cannot be explained by signal attenuation alone. In Pocomoke Sound, where both tidal currents and wave-action impact sediment resuspension, anomalies show a more gradual decrease with depth. Near the mouth of the bay, where there is a higher influx of sediments from the continental shelf, short-wavelength anomalies are isolated and do not appear to represent heavy mineral sand concentrations. These combined observations suggest the importance of further sorting by erosional processes in certain parts of the bay. Additionally, comparisons of these data to cores sampling pre-Holocene sediments suggest that the sorting of heavy minerals in higher energy, shallow water environments provides a mechanism for correlations between core magnetic susceptibility and sea-level changes.

  3. The deformation of flux tubes in the solar wind with applications to the structure of magnetic clouds and CMEs

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.; Chen, James; Spicer, D. S.; Zalesak, S. T.

    1994-01-01

    Two dimensional magnetohydrodynamic simulations of the distortion of a magnetic flux tube, accelerated through ambient solar wind plasma, are presented. Vortices form on the trailing edge of the flux tube, and couple strongly to its interior. If the flux tube azimuthal field is weak, it deforms into an elongated banana-like shape after a few Alfven transit times. A significant azimuthal field component inhibits this distortion. In the case of magnetic clouds in the solar wind, it is suggested that the shape observed at 1 AU was determined by distortion of the cloud in the inner heliosphere. Distortion of the cloud beyond 1 AU takes many days. It is estimated that effective drag coefficients slightly greater than unity are appropriate for modeling flux tube propagation. Synthetic magnetic field profiles as would be seen by a spacecraft traversing the cloud are presented.

  4. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Song, H. Q.; Chen, Y.; Zhang, J.; Cheng, X.

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (?10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  5. Eruption of the magnetic flux rope in a fast decayed active region

    NASA Astrophysics Data System (ADS)

    Yang, Shangbin

    2012-07-01

    An isolated and fast decayed active region was observed when passing through solar disk. There is only one CME related with it that give us a good opportunity to investigate the whole process of the CME. Filament in this active region rises up rapidly and then hesitates and disintegrates into flare loops. The rising filament from EIT images separates into two parts just before eruption. It is interesting that this filament rises up with positive kink which is opposite to the negative helicity according to the inverse S-shaped X-ray sigmoid and accumulated magnetic helicity. A new filament reforms several hours later after CME and the axis of this new one rotates clockwise about 22° comparing with that of the former one. We also observed a bright transient J-shaped X-ray sigmoid immediately appears after filament eruption. It quickly develops into a soft X-ray cusp and rises up firstly then drops down. We propose that field lines underneath bald-patch sparatrix surface (BPSS) where for the formation of a magnetic tangential discontinuity are locally rooted to the photosphere near the bald-patch (BP) inversion line. Field lines above the surface are detached from the photosphere to form this CME and partially open the field which make the filament loses equilibrium to rise quickly and then be drawn back by the tension force of magnetic field after eruption to form a new filament. Two magnetic cancelation regions have been observed clearly just before filament eruption that reflect the existence of BPs. On the other hand, the values of total magnetic helicity to the corona taken by emergence and differential rotation normalized by the square total magnetic flux implies the possibility of upper bound on the total magnetic helicity that a force-free field can contain.

  6. Observations on Characterization of Defects in Coiled Tubing From Magnetic-Flux-Leakage Data

    SciTech Connect

    Timothy R. McJunkin; Karen S. Miller; Charles R. Tolle

    2006-04-01

    This paper presents observations on the sizing of automatically detected artificial flaws in coiled tubing samples using magnetic-flux-leakage data. Sixty-six artificial flaws of various shapes and types, ranging from 0.30 mm deep pits to slots with length of 9.5 mm, in 44.45 mm outer diameter pipe were analyzed. The detection algorithm and the information automatically extracted from the data are described. Observations on the capabilities and limitations for determining the size and shape of the flaws are discussed.

  7. Low-noise pulsed pre-polarization magnet system for ultra-low field NMR

    SciTech Connect

    Sims, James R; Schilling, Josef B; Swenson, Charles A; Gardner, David L; Matlashov, Andrei N; Ammerman, Curti N

    2009-01-01

    A liquid cooled, pulsed electromagnet of solenoid configuration suitable for duty in an ultra-low field nuclear magnetic resonance system has been designed, fabricated and successfully operated. The magnet design minimizes Johnson noise, minimizes the hydrogen signal and incorporates minimal metal and no ferromagnetic materials. In addition, an acoustically quiet cooling system permitting 50% duty cycle operation was achieved by designing for single-phase, laminar flow, forced convection cooling. Winding, conductor splicing and epoxy impregnation techniques were successfully developed to produce a coil winding body with integral cooling passageways and adequate structural integrity. Issues of material compatibility, housing, coolant flow system and heat rejection system design will be discussed. Additionally, this pulsed electromagnet design has been extended to produce a boiling liquid cooled version in a paired solenoid configuration suitable for duty in an ultra-low field nuclear magnetic resonance system. This pair of liquid nitrogen cooled coils is currently being tested and commissioned. Issues of material compatibility, thermal insulation, thermal contraction, housing and coolant flow design are discussed.

  8. Simple Magnetic Flux Balance as an Indicator of Neon VIII Doppler Velocity Partitioning in an Equatorial Coronal Hole

    E-print Network

    Scott W. McIntosh; Alisdair R. Davey; Scott W. McIntosh

    2006-05-22

    We present a novel investigation into the relationship between simple estimates of magnetic flux balance and the Ne VIII Doppler velocity partitioning of a large equatorial coronal hole observed by the Solar Ultraviolet Measurements of Emitted Radiation spectrometer (SUMER) on the Solar and Heliospheric Observatory (SOHO) in November 1999. We demonstrate that a considerable fraction of the large scale Doppler velocity pattern in the coronal hole can be qualitatively described by simple measures of the local magnetic field conditions, i.e., the relative unbalance of magnetic polarities and the radial distance required to balance local flux concentrations with those of opposite polarity.

  9. Role of Ion Kinetic Physics in the Interaction of Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Stanier, A.; Daughton, W.; Chacón, L.; Karimabadi, H.; Ng, J.; Huang, Y.-M.; Hakim, A.; Bhattacharjee, A.

    2015-10-01

    To explain many natural magnetized plasma phenomena, it is crucial to understand how rates of collisionless magnetic reconnection scale in large magnetohydrodynamic (MHD) scale systems. Simulations of isolated current sheets conclude such rates are independent of system size and can be reproduced by the Hall-MHD model, but neglect sheet formation and coupling to MHD scales. Here, it is shown for the problem of flux-rope merging, which includes this formation and coupling, that the Hall-MHD model fails to reproduce the kinetic results. The minimum sufficient model must retain ion kinetic effects, which set the ion diffusion region geometry and give time-averaged rates that reduce significantly with system size, leading to different global evolution in large systems.

  10. Role of Ion Kinetic Physics in the Interaction of Magnetic Flux Ropes.

    PubMed

    Stanier, A; Daughton, W; Chacón, L; Karimabadi, H; Ng, J; Huang, Y-M; Hakim, A; Bhattacharjee, A

    2015-10-23

    To explain many natural magnetized plasma phenomena, it is crucial to understand how rates of collisionless magnetic reconnection scale in large magnetohydrodynamic (MHD) scale systems. Simulations of isolated current sheets conclude such rates are independent of system size and can be reproduced by the Hall-MHD model, but neglect sheet formation and coupling to MHD scales. Here, it is shown for the problem of flux-rope merging, which includes this formation and coupling, that the Hall-MHD model fails to reproduce the kinetic results. The minimum sufficient model must retain ion kinetic effects, which set the ion diffusion region geometry and give time-averaged rates that reduce significantly with system size, leading to different global evolution in large systems. PMID:26551121

  11. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  12. Joint application of a statistical optimization process and Empirical Mode Decomposition to Magnetic Resonance Sounding Noise Cancelation

    NASA Astrophysics Data System (ADS)

    Ghanati, Reza; Fallahsafari, Mahdi; Hafizi, Mohammad Kazem

    2014-12-01

    The signal quality of Magnetic Resonance Sounding (MRS) measurements is a crucial criterion. The accuracy of the estimation of the signal parameters (i.e. E0 and T2*) strongly depends on amplitude and conditions of ambient electromagnetic interferences at the site of investigation. In this paper, in order to enhance the performance in the noisy environments, a two-step noise cancelation approach based on the Empirical Mode Decomposition (EMD) and a statistical method is proposed. In the first stage, the noisy signal is adaptively decomposed into intrinsic oscillatory components called intrinsic mode functions (IMFs) by means of the EMD algorithm. Afterwards based on an automatic procedure the noisy IMFs are detected, and then the partly de-noised signal is reconstructed through the no-noise IMFs. In the second stage, the signal obtained from the initial section enters an optimization process to cancel the remnant noise, and consequently, estimate the signal parameters. The strategy is tested on a synthetic MRS signal contaminated with Gaussian noise, spiky events and harmonic noise, and on real data. By applying successively the proposed steps, we can remove the noise from the signal to a high extent and the performance indexes, particularly signal to noise ratio, will increase significantly.

  13. Magnetic structures of an emerging flux region in the solar photosphere and chromosphere

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Lagg, A.; Solanki, S. K.

    2010-09-01

    Aims: We investigate the vector magnetic field and Doppler velocity in the photosphere and upper chromosphere of a young emerging flux region of the sun close to disk center. Methods: Spectropolarimetric scans of a young active region made using the second generation Tenerife Infrared Polarimeter (TIP II) on the German Vacuum Tower Telescope (VTT) are analyzed. The scanned area contained multiple sunspots and an emerging flux region. An inversion based on the Milne-Eddington approximation was performed on the full Stokes vector of the chromospheric He I 10 830 Å and the photospheric Si I 10 827.1 Å lines. This provided the magnetic vector and line-of-sight velocity at each spatial point in both atmospheric layers. Results: A clear difference is seen between the complex magnetic structure of the emerging flux region (EFR) in the photosphere and the much simpler structure in the upper chromosphere. The upper chromospheric structure is consistent with a set of emerging loops following elongated dark structures seen in the He I 10 830 Å triplet, similar to arch filament systems (AFS), while in the photosphere we infer the presence of U-loops within the emergence zone. Nonetheless, in general the upper chromospheric field has a similar linear relationship between inclination angle and field strength as the photospheric field: the field is weak (?300 G) and horizontal in the emergence zone, but strong (up to 850 G) and more vertical near its edges. The field strength decreases from the photosphere to the upper chromosphere by approximately 0.1-0.2 G km-1 (or even less) within the emergence zone and by 0.3-0.6 G km-1 in sunspots located at its edge. We reconstructed the magnetic field in 3D based on the chromospheric vector field under the assumption that the He I 10 830 Å triplet forms along the magnetic field loops. The reconstructed loops are quite flat with supersonic downflows at both footpoints. Arguments and evidence for an enhanced formation height of He I 10 830 Å in arch-filaments seen in this line are provided, which support the validity of the reconstructed loops. Conclusions: The main chromospheric properties of EFRs previously deduced for a single region NOAA 9451 are shown to be valid for another region as well, suggesting that the main original results may have a wider application. The main exception is that only the first region displayed a current sheet in the chromosphere. We propose a scenario in which the relatively complex photospheric structure evolves into the simpler chromospheric one.

  14. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    SciTech Connect

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Sun, X. D.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-10

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s{sup –1}. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  15. Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Ding, M. D.; Zhang, J.; Sun, X. D.; Guo, Y.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s-1. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  16. Cooling by Heat Conduction Inside Magnetic Flux Loops and the Moderate Cluster Cooling Flow Model

    E-print Network

    Noam Soker

    2003-11-02

    I study non-radiative cooling of X-ray emitting gas via heat conduction along magnetic field lines inside magnetic flux loops in cooling flow clusters of galaxies. I find that such heat conduction can reduce the fraction of energy radiated in the X-ray band by a factor of 1.5-2. This non-radiative cooling joins two other proposed non-radiative cooling processes, which can be more efficient. These are mixing of cold and hot gas, and heat conduction initiated by magnetic fields reconnection between hot and cold gas. These processes when incorporated into the moderate cooling flow model lead to a general cooling flow model with the following ingredients. (1) Cooling flow does occur, but with a mass cooling rate about 10 times lower than in old versions of the cooling flow model. Namely, heating occurs such that the effective age of the cooling flow is much below the cluster age, but the heating can't prevent cooling altogether. (2) The cooling flow region is in a non-steady state evolution. (3) Non-radiative cooling of X-ray emitting gas can bring the model to a much better agreement with observations. (4) The general behavior of the cooling flow gas, and in particular the role played by magnetic fields, make the intracluster medium in cooling flow clusters similar in some aspects to the active solar corona.

  17. Microstructural dependence of Barkhausen noise and magnetic relaxation in the weld HAZ of an RPV steel

    NASA Astrophysics Data System (ADS)

    Park, Duck-Gun; Kim, Cheol Gi; Hong, Jun-Hwa

    2000-06-01

    Magnetic Barkhausen noise and permeability spectra have been measured to characterize different microstructure regions such as coarse-grain region, fine-grain region, intercritical structure (composed of tempered martensite and bainite) within the heat-affected zone (HAZ) of SA508-3 steel weldments using simulated HAZ microstructure sample. The intercritical region and coarse-grained region can be distinguished from the BNE and relaxation frequency. The BNE was decreased in the martensite regions and increased in the bainite regions by the post-weld heat treatment (PWHT). The change of relaxation frequency also showed similar trends, but the rate of change was less than that of BNE. The behavior of BNE and permeability spectra on the corresponding microstructure can be explained in terms of carbide morphology and residual stress related with domain wall motion.

  18. Freezing and thawing of artificial ice by thermal switching of geometric frustration in magnetic flux lattices.

    PubMed

    Trastoy, J; Malnou, M; Ulysse, C; Bernard, R; Bergeal, N; Faini, G; Lesueur, J; Briatico, J; Villegas, Javier E

    2014-09-01

    The problem of an ensemble of repulsive particles on a potential-energy landscape is common to many physical systems and has been studied in multiple artificial playgrounds. However, the latter usually involve fixed energy landscapes, thereby impeding in situ investigations of the particles' collective response to controlled changes in the landscape geometry. Here, we experimentally realize a system in which the geometry of the potential-energy landscape can be switched using temperature as the control knob. This realization is based on a high-temperature superconductor in which we engineer a nanoscale spatial modulation of the superconducting condensate. Depending on the temperature, the flux quanta induced by an applied magnetic field see either a geometrically frustrated energy landscape that favours an ice-like flux ordering, or an unfrustrated landscape that yields a periodic flux distribution. This effect is reflected in a dramatic change in the superconductor's magneto-transport. The thermal switching of the energy landscape geometry opens new opportunities for the study of ordering and reorganization in repulsive particle manifolds. PMID:25129072

  19. Characteristics of the spatial structure of Martian magnetic flux ropes recovered by the Grad-Shafranov reconstruction technique

    NASA Astrophysics Data System (ADS)

    Hara, T.; Seki, K.; Hasegawa, H.; Brain, D. A.; Matsunaga, K.; Saito, M. H.

    2013-12-01

    Mars is a unique planet because it locally possesses strong crustal magnetic fields mainly located in the southern hemisphere [e.g., Acuna et al., 1999]. The Martian electromagnetic environment can thus become highly complicated and variable, since the interplanetary magnetic field embedded in the solar wind interacts with the Martian crustal magnetic fields. Whereas it is known that the Martian upper atmosphere is escaping to interplanetary space due to the interaction with the solar wind [e.g., Lundin et al., 1989; Barabash et al., 2007], the contribution of crustal magnetic fields to atmospheric escape from Mars has not yet been well understood. Flux ropes are characteristic magnetic field structures seen throughout the solar system, e.g., at the Sun, in the interplanetary space, and at the terrestrial magnetosphere. Flux ropes are also observed at planets such as at Venus and Mars [e.g., Russell and Elphic, 1979; Vignes et al., 2004], which do not possess a global intrinsic magnetic field. Brain et al. [2010] found a large-scale isolated magnetic flux rope filled with Martian atmospheric plasma located downstream from the crustal magnetic fields with respect to the solar wind flow based on the Mars Global Surveyor (MGS) measurements. They suggested that the magnetic flux rope could be intermittently detached from Mars, and remove significant amounts of atmosphere away from Mars. They proposed that this process might occur frequently and account for as much as 10% of the total present-day ion escape from Mars. However, this estimation of the ion escape rate is somewhat ambiguous, because it is difficult to infer the spatial structure of them from the single spacecraft data. We here investigated characteristics of the Martian magnetic flux ropes based on the Grad-Shafranov (GS) reconstruction technique using the MGS magnetic field data. This technique is capable of recovering the two-dimensional spatial structure of the magnetic flux ropes from single spacecraft data [e.g., Hu and Sunnerup, 2002]. The resultant structure allows us to provide a reliable observational restriction on the spatial scales of magnetic flux ropes. We applied the GS reconstruction technique to 135 obvious magnetic flux rope events observed by MGS. As a result, their spatial structures were successfully recovered for 70 events. The reconstruction results indicated that magnetic flux rope axes are mostly oriented horizontally with respect to the Martian surface. We demonstrated that the events, which have solar zenith angle larger than 75 deg and duration longer than 240 sec, are mostly in the region where the upstream crustal magnetic field strength is larger than the other events. Using the shape and size of the flux ropes obtained from the GS reconstruction technique, we are able to calculate lower limits on their volume and the potential ion escape rates. The volumes can vary by factors of 2--3 orders of magnitude. Ion escape rates via the flux ropes based on the GS reconstruction technique turn out to attain to the order of 10^22 -- 10^23 ion/sec. This result could be comparable to the global ion escape rate obtained from the ion mass analyzer onboard the Mars Express orbiter at solar minimum [e.g., Barabash et al., 2007].

  20. Stopping frequency of type III solar radio bursts in expanding magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2015-05-01

    Aims: Understanding the properties of type III radio bursts in the solar corona and interplanetary space is one of the best ways to remotely deduce the characteristics of solar accelerated electron beams and the solar wind plasma. One feature of all type III bursts is the lowest frequency they reach (or stopping frequency). This feature reflects the distance from the Sun that an electron beam can drive the observable plasma emission mechanism. The stopping frequency has never been systematically studied before from a theoretical perspective. Methods: Using numerical kinetic simulations, we explore the different parameters that dictate how far an electron beam can travel before it stops inducing a significant level of Langmuir waves, responsible for plasma radio emission. We use the quasilinear approach to model the resonant interaction between electrons and Langmuir waves self-consistently in inhomogeneous plasma, and take into consideration the expansion of the guiding magnetic flux tube and the turbulent density of the interplanetary medium. Results: We find that the rate of radial expansion has a significant effect on the distance an electron beam travels before enhanced levels of Langmuir waves, hence radio waves, cease. Radial expansion of the guiding magnetic flux tube rarefies the electron stream to the extent that the density of non-thermal electrons is too low to drive Langmuir wave production. The initial conditions of the electron beam have a significant effect, where decreasing the beam density or increasing the spectral index of injected electrons would cause higher type III stopping frequencies. We also demonstrate how the intensity of large-scale density fluctuations increases the highest frequency to which Langmuir waves can be driven by the beam and how the magnetic field geometry can be the cause of type III bursts that are only observed at high coronal frequencies.

  1. Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field

    SciTech Connect

    Anders, Andre; Yushkov, George Yu.

    2001-10-02

    Because plasma production at vacuum cathode spots is approximately proportional to the arc current, arc current modulation can be used to generate ion current modulation that can be detected far from the spot using a negatively biased ion collector. The drift time to the ion detector can used to determine kinetic ion energies. A very wide range of cathode materials have been used. It has been found that the kinetic ion energy is higher at the beginning of each discharge and approximately constant after 150 {micro}s. The kinetic energy is correlated with the arc voltage and the cohesive energy of the cathode material. The ion erosion rate has in inverse relation to the cohesive energy, enhancing the effect that the power input per plasma particle correlates with the cohesive energy of the cathode material. The influence of three magnetic field configurations on the kinetic energy has been investigated. Generally, a magnetic field increases the plasma impedance, arc burning voltage, and kinetic ion energy. However, if the plasma is produced in a region of low field strength and streaming into a region of higher field strength, the velocity may decrease due to the mirror effect. A magnetic field can increase the plasma temperature but may reduce the density gradients by preventing free expansion into vacuum. Therefore, depending on the configuration, a magnetic field may increase or decrease the kinetic energy of ions. Additionally, the angular distribution of the ion flux and ion kinetic energy has been investigated in the absence of an external magnetic field. The result can be fitted by a superposition of an isotropic and a cosine distribution.

  2. Implementing and diagnosing magnetic flux compression on the Z pulsed power accelerator

    SciTech Connect

    McBride, Ryan D.; Bliss, David E.; Gomez, Matthew R.; Hansen, Stephanie B.; Martin, Matthew R.; Jennings, Christopher Ashley; Slutz, Stephen A.; Rovang, Dean C.; Knapp, Patrick F.; Schmit, Paul F.; Awe, Thomas James; Hess, M. H.; Lemke, Raymond W.; Dolan, D. H.; Lamppa, Derek C.; Jobe, Marc Ronald Lee; Fang, Lu; Hahn, Kelly D.; Chandler, Gordon A.; Cooper, Gary Wayne; Ruiz, Carlos L.; Maurer, A. J.; Robertson, Grafton Kincannon; Cuneo, Michael E.; Sinars, Daniel; Tomlinson, Kurt; Smith, Gary; Paguio, Reny; Intrator, Tom; Weber, Thomas; Greenly, John

    2015-11-01

    We report on the progress made to date for a Laboratory Directed Research and Development (LDRD) project aimed at diagnosing magnetic flux compression on the Z pulsed-power accelerator (0-20 MA in 100 ns). Each experiment consisted of an initially solid Be or Al liner (cylindrical tube), which was imploded using the Z accelerator's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-T axial seed field, B z ( 0 ) , supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by B z ( t ) = B z ( 0 ) x [ R ( 0 ) / R ( t )] 2 , where R is the liner's inner surface radius. With perfect flux conservation, B z ( t ) and dB z / dt values exceeding 10 4 T and 10 12 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields. We report on our latest efforts to do so using three primary techniques: (1) micro B-dot probes to measure the fringe fields associated with flux compression, (2) streaked visible Zeeman absorption spectroscopy, and (3) fiber-based Faraday rotation. We also mention two new techniques that make use of the neutron diagnostics suite on Z. These techniques were not developed under this LDRD, but they could influence how we prioritize our efforts to diagnose magnetic flux compression on Z in the future. The first technique is based on the yield ratio of secondary DT to primary DD reactions. The second technique makes use of the secondary DT neutron time-of-flight energy spectra. Both of these techniques have been used successfully to infer the degree of magnetization at stagnation in fully integrated Magnetized Liner Inertial Fusion (MagLIF) experiments on Z [P. F. Schmit et al. , Phys. Rev. Lett. 113 , 155004 (2014); P. F. Knapp et al. , Phys. Plasmas, 22 , 056312 (2015)]. Finally, we present some recent developments for designing and fabricating novel micro B-dot probes to measure B z ( t ) inside of an imploding liner. In one approach, the micro B-dot loops were fabricated on a printed circuit board (PCB). The PCB was then soldered to off-the-shelf 0.020- inch-diameter semi-rigid coaxial cables, which were terminated with standard SMA connectors. These probes were recently tested using the COBRA pulsed power generator (0-1 MA in 100 ns) at Cornell University. In another approach, we are planning to use new multi-material 3D printing capabilities to fabricate novel micro B-dot packages. In the near future, we plan to 3D print these probes and then test them on the COBRA generator. With successful operation demonstrated at 1-MA, we will then make plans to use these probes on a 20-MA Z experiment.

  3. Magnetic Barkhausen Noise and Neutron Diffraction Techniques for the Study of Intergranular Residual Strains in Mild Steel

    SciTech Connect

    Hutanu, Roxana; Clapham, Lynann; Rogge, Ronald

    2004-02-26

    Intergranular residual stresses (IS) are microscopic residual stresses which have been found to accumulate along the <100> direction in steels. The <100> direction is also the magnetic easy axis direction in steel. This work involved Magnetic Barkhausen Noise (MBN) studies on steel samples, deformed uniaxially to increasing levels of strain. The MBN results indicated that a bulk magnetic easy axis was produced by the deformation process, and neutron diffraction experiments showed that this easy axis was correlated with the tensile strain in grains oriented in the <100> direction.

  4. Magnetic Flux Leakage and Principal Component Analysis for metal loss approximation in a pipeline

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Mujica, L. E.; Quintero, M.; Florez, J.; Quintero, S.

    2015-07-01

    Safety and reliability of hydrocarbon transportation pipelines represent a critical aspect for the Oil an Gas industry. Pipeline failures caused by corrosion, external agents, among others, can develop leaks or even rupture, which can negatively impact on population, natural environment, infrastructure and economy. It is imperative to have accurate inspection tools traveling through the pipeline to diagnose the integrity. In this way, over the last few years, different techniques under the concept of structural health monitoring (SHM) have continuously been in development. This work is based on a hybrid methodology that combines the Magnetic Flux Leakage (MFL) and Principal Components Analysis (PCA) approaches. The MFL technique induces a magnetic field in the pipeline's walls. The data are recorded by sensors measuring leakage magnetic field in segments with loss of metal, such as cracking, corrosion, among others. The data provide information of a pipeline with 15 years of operation approximately, which transports gas, has a diameter of 20 inches and a total length of 110 km (with several changes in the topography). On the other hand, PCA is a well-known technique that compresses the information and extracts the most relevant information facilitating the detection of damage in several structures. At this point, the goal of this work is to detect and localize critical loss of metal of a pipeline that are currently working.

  5. What Supergranule Flow Models Tell Us About the Sun's Surface Shear Layer and Magnetic Flux Transport

    NASA Technical Reports Server (NTRS)

    Hathaway, David

    2011-01-01

    Models of the photospheric flows due to supergranulation are generated using an evolving spectrum of vector spherical harmonics up to spherical harmonic wavenumber l1500. Doppler velocity data generated from these models are compared to direct Doppler observations from SOHO/MDI and SDO/HMI. The models are adjusted to match the observed spatial power spectrum as well as the wavenumber dependence of the cell lifetimes, differential rotation velocities, meridional flow velocities, and relative strength of radial vs. horizontal flows. The equatorial rotation rate as a function of wavelength matches the rotation rate as a function of depth as determined by global helioseismology. This leads to the conclusions that the cellular structures are anchored at depths equal to their widths, that the surface shear layer extends to at least 70 degrees latitude, and that the poleward meridional flow decreases in amplitude and reverses direction at the base of the surface shear layer (approx.35 Mm below the surface). Using the modeled flows to passively transport magnetic flux indicates that the observed differential rotation and meridional flow of the magnetic elements are directly related to the differential rotation and meridional flow of the convective pattern itself. The magnetic elements are transported by the evolving boundaries of the supergranule pattern (where the convective flows converge) and are unaffected by the weaker flows associated with the differential rotation or meridional flow of the photospheric plasma.

  6. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: Examination of noise conduction through the ear canal, head, and bodya)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.

    2007-01-01

    Approaches were examined for reducing acoustic noise levels heard by subjects during functional magnetic resonance imaging (fMRI), a technique for localizing brain activation in humans. Specifically, it was examined whether a device for isolating the head and ear canal from sound (a “helmet”) could add to the isolation provided by conventional hearing protection devices (i.e., earmuffs and earplugs). Both subjective attenuation (the difference in hearing threshold with versus without isolation devices in place) and objective attenuation (difference in ear-canal sound pressure) were measured. In the frequency range of the most intense fMRI noise (1–1.4 kHz), a helmet, earmuffs, and earplugs used together attenuated perceived sound by 55–63 dB, whereas the attenuation provided by the conventional devices alone was substantially less: 30–37 dB for earmuffs, 25–28 dB for earplugs, and 39–41 dB for earmuffs and earplugs used together. The data enabled the clarification of the relative importance of ear canal, head, and body conduction routes to the cochlea under different conditions: At low frequencies (?500 Hz), the ear canal was the dominant route of sound conduction to the cochlea for all of the device combinations considered. At higher frequencies (>500 Hz), the ear canal was the dominant route when either earmuffs or earplugs were worn. However, the dominant route of sound conduction was through the head when both earmuffs and earplugs were worn, through both ear canal and body when a helmet and earmuffs were worn, and through the body when a helmet, earmuffs, and earplugs were worn. It is estimated that a helmet, earmuffs, and earplugs together will reduce the most intense fMRI noise levels experienced by a subject to 60–65 dB SPL. Even greater reductions in noise should be achievable by isolating the body from the surrounding noise field. PMID:11206150

  7. Magnetic field modeling for Mercury using dynamo models with a stable layer and laterally variable heat flux

    NASA Astrophysics Data System (ADS)

    Tian, ZhenLiang; Zuber, Maria T.; Stanley, Sabine

    2015-11-01

    Mercury's surface magnetic field is unique among planetary magnetic fields for its weak intensity, spin-aligned axisymmetry, and large dipole offset. An Earth-like dynamo setup applied to Mercury does not reproduce these features. Here we explain the magnetic field observations by a combination of two effects: (1) a stably stratified layer at the top of the outer core, and (2) a degree-1 north-south asymmetric spherical harmonic heat flux variation at the core-mantle boundary (CMB). We vary the stable layer thickness and size of the inner core, and find models that can produce surface magnetic fields possessing the observed features of Mercury.

  8. EVOLUTION OF A MAGNETIC FLUX ROPE AND ITS OVERLYING ARCADE BASED ON NONLINEAR FORCE-FREE FIELD EXTRAPOLATIONS

    SciTech Connect

    Jing, Ju; Liu, Chang; Lee, Jeongwoo; Wang, Shuo; Xu, Yan; Wang, Haimin; Wiegelmann, Thomas

    2014-03-20

    Dynamic phenomena indicative of slipping reconnection and magnetic implosion were found in a time series of nonlinear force-free field (NLFFF) extrapolations for the active region 11515, which underwent significant changes in the photospheric fields and produced five C-class flares and one M-class flare over five hours on 2012 July 2. NLFFF extrapolation was performed for the uninterrupted 5 hour period from the 12 minute cadence vector magnetograms of the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory. According to the time-dependent NLFFF model, there was an elongated, highly sheared magnetic flux rope structure that aligns well with an H? filament. This long filament splits sideways into two shorter segments, which further separate from each other over time at a speed of 1-4 km s{sup –1}, much faster than that of the footpoint motion of the magnetic field. During the separation, the magnetic arcade arching over the initial flux rope significantly decreases in height from ?4.5 Mm to less than 0.5 Mm. We discuss the reality of this modeled magnetic restructuring by relating it to the observations of the magnetic cancellation, flares, a filament eruption, a penumbra formation, and magnetic flows around the magnetic polarity inversion line.

  9. TURBULENCE IN THE OUTER REGIONS OF PROTOPLANETARY DISKS. I. WEAK ACCRETION WITH NO VERTICAL MAGNETIC FLUX

    SciTech Connect

    Simon, Jacob B.; Armitage, Philip J.; Beckwith, Kris; Bai, Xue-Ning; Stone, James M.

    2013-02-10

    We use local numerical simulations to investigate the strength and nature of magnetohydrodynamic (MHD) turbulence in the outer regions of protoplanetary disks, where ambipolar diffusion is the dominant non-ideal MHD effect. The simulations include vertical stratification and assume zero net vertical magnetic flux. We employ a super time-stepping technique to ameliorate the Courant restriction on the diffusive time step. We find that in idealized stratified simulations, with a spatially constant ambipolar Elsasser number Am, turbulence driven by the magnetorotational instability (MRI) behaves in a similar manner as in prior unstratified calculations. Turbulence dies away for Am {<=} 1, and becomes progressively more vigorous as ambipolar diffusion is decreased. Near-ideal MHD behavior is recovered for Am {>=} 10{sup 3}. In the intermediate regime (10 {<=} Am {<=} 10{sup 3}) ambipolar diffusion leads to substantial increases in both the period of the MRI dynamo cycle and the characteristic scales of magnetic field structures. To quantify the impact of ambipolar physics on disk accretion, we run simulations at 30 AU and 100 AU that include a vertical Am profile based upon far-ultraviolet (FUV) ionized disk models. These models develop a vertically layered structure analogous to the Ohmic dead zone that is present at smaller radii. We find that, although the levels of surface turbulence can be strong (and consistent with constraints on turbulent line widths at these radii), the inferred accretion rates are at least an order of magnitude smaller than those observed in T Tauri stars. This discrepancy is very likely due to the assumption of zero vertical magnetic field in our simulations and suggests that vertical magnetic fields are essential for MRI-driven accretion in the outer regions of protoplanetary disks.

  10. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-12-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ?e?e effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ?e?e as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  11. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    SciTech Connect

    Velikovich, A. L. Giuliani, J. L.; Zalesak, S. T.

    2014-12-15

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ?{sub e}?{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ?{sub e}?{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  12. Magnetic Flux Compression Using Detonation Plasma Armatures and Superconductor Stators: Integrated Propulsion and Power Applications

    NASA Technical Reports Server (NTRS)

    Litchford, Ron; Robertson, Tony; Hawk, Clark; Turner, Matt; Koelfgen, Syri

    1999-01-01

    This presentation discusses the use of magnetic flux compression for space flight applications as a propulsion and other power applications. The qualities of this technology that make it suitable for spaceflight propulsion and power, are that it has high power density, it can give multimegawatt energy bursts, and terawatt power bursts, it can produce the pulse power for low impedance dense plasma devices (e.g., pulse fusion drivers), and it can produce direct thrust. The issues of a metal vs plasma armature are discussed, and the requirements for high energy output, and fast pulse rise time requires a high speed armature. The plasma armature enables repetitive firing capabilities. The issues concerning the high temperature superconductor stator are also discussed. The concept of the radial mode pulse power generator is described. The proposed research strategy combines the use of computational modeling (i.e., magnetohydrodynamic computations, and finite element modeling) and laboratory experiments to create a demonstration device.

  13. Investigation of a New Flux-Modulated Permanent Magnet Brushless Motor for EVs

    PubMed Central

    Gu, Lingling; Luo, Yong; Han, Xuedong

    2014-01-01

    This paper presents a flux-modulated direct drive (FMDD) motor. The key is to integrate the magnetic gear with the PM motor while removing the gear inner-rotor. Hence, the proposed FMDD motor can achieve the low-speed high-torque output and high-speed compact design requirements as well as high-torque density with a simple structure. The output power equation is analytically derived. By using finite element analysis (FEA), the static characteristics of the proposed motor are obtained. Based on these characteristics, the system mathematical model can be established. Hence, the evaluation of system performances is conducted by computer simulation using the Matlab/Simulink. A prototype is designed and built for experimentation. Experimental results are given to verify the theoretical analysis and simulation. PMID:24883405

  14. Design of an axial flux PM motor using magnetic and thermal equivalent network

    NASA Astrophysics Data System (ADS)

    Mignot, Romain-Bernard; Glises, Raynal; Espanet, Christophe; Saint Ellier, Emeline; Dubas, Frédéric; Chamagne, Didier

    2013-09-01

    This paper deals with the development of a new generation of electric motors (7.5-15 kW) for automotive powertrains. The target is a full electric direct drive vehicle, for the particular application to heavy quadricycles. An original axial flux PM structure is proposed due to the simplicity of its manufacturing. However it leads to a 3D structure, difficult to study. The paper deals with analytical models that can be used to achieve the analysis and the sizing of the motor. The electromagnetic behavior is modeled using a simple magnetic equivalent network and the thermal behavior is analyzed with a thermal network. Finally, the analytical results are compared to those experimentally obtained and it proves the interest of the proposed structure: the construction is simple and the performances are satisfying.

  15. Investigation of a new flux-modulated permanent magnet brushless motor for EVs.

    PubMed

    Fan, Ying; Gu, Lingling; Luo, Yong; Han, Xuedong; Cheng, Ming

    2014-01-01

    This paper presents a flux-modulated direct drive (FMDD) motor. The key is to integrate the magnetic gear with the PM motor while removing the gear inner-rotor. Hence, the proposed FMDD motor can achieve the low-speed high-torque output and high-speed compact design requirements as well as high-torque density with a simple structure. The output power equation is analytically derived. By using finite element analysis (FEA), the static characteristics of the proposed motor are obtained. Based on these characteristics, the system mathematical model can be established. Hence, the evaluation of system performances is conducted by computer simulation using the Matlab/Simulink. A prototype is designed and built for experimentation. Experimental results are given to verify the theoretical analysis and simulation. PMID:24883405

  16. Observations of Several Unusual Plasma Compositional Signatures within Small Interplanetary Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Feng, H. Q.; Wang, J. M.

    2015-08-01

    Interplanetary coronal mass ejections (ICMEs) often show unusual plasma compositional signatures (high He/P ratio, high {{{O}}}7+/{{{O}}}6+ ratio, and high Fe charge states), and their enhanced charge states of oxygen and iron are caused by flare-related heating in the corona. We investigated the abnormal plasma composition of small interplanetary magnetic flux ropes (IMFRs) in terms of He/P ratio, {{{O}}}7+/{{{O}}}6+ ratio, and mean Fe charge state. We discover that 18 of the 24 small IMFRs showed high He/P ratios. In addition, 12 and 8 of the 24 events showed high Fe charge states and {{{O}}}7+/{{{O}}}6+ ratios, respectively. This observation implies that these small IMFRs and ICMEs may be caused by the same coronal eruptions.

  17. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  18. Lorentz approach to static magnetic field effects on bound-ion dynamics and binding kinetics: thermal noise considerations.

    PubMed

    Muehsam, D J; Pilla, A A

    1996-01-01

    The present study characterizes an ion-binding site, a molecular cleft in a signalling molecule such as calmodulin or troponin C, as a damped linear isotropic oscillator potential for small displacements about the origin. Quantitative assessments of the effects of thermal noise and exogenous static magnetic fields are made through a statistical mechanical treatment of the Lorentz-Langevin equation for an ion bound in a molecular cleft. Thermal noise causes a bound ion to be ejected from the site after a bound lifetime dependent upon the thermal noise spectral density. It is shown that the Lorentz-Langevin model requires values of the viscous damping parameter many orders of magnitude below those for bulk water in order to characterize the binding site and to obtain realistic lifetimes for a bound ion. The model predicts that milliTesla-range magnetic fields are required for static field effects on dissociation kinetics. The Lorentz equation also yields a classic coherent solution describing precession of the bound-ion oscillator orientation at the Larmor frequency. The bound-ion dynamics described by this coherent solution are sensitive to microTesla-range static magnetic fields in the presence of thermal noise. Numerical integration of the contribution of thermal noise forces to these dynamics is in good agreement with the results of statistical mechanical analysis, also producing realistic bound lifetimes for only very low viscous damping values. The mechanisms by which modulation of precessional motion might enable a signalling molecule such as calmodulin to detect an exogenous magnetic field are presently unclear. PMID:9139637

  19. Morphology and magnetic flux distribution in superparamagnetic, single-crystalline Fe{sub 3}O{sub 4} nanoparticle rings

    SciTech Connect

    Takeno, Yumu; Murakami, Yasukazu E-mail: kannanmk@uw.edu; Shindo, Daisuke; Sato, Takeshi; Tanigaki, Toshiaki; Park, Hyun Soon; Ferguson, R. Matthew; Krishnan, Kannan M. E-mail: kannanmk@uw.edu

    2014-11-03

    This study reports on the correlation between crystal orientation and magnetic flux distribution of Fe{sub 3}O{sub 4} nanoparticles in the form of self-assembled rings. High-resolution transmission electron microscopy demonstrated that the nanoparticles were single-crystalline, highly monodispersed, (25?nm average diameter), and showed no appreciable lattice imperfections such as twins or stacking faults. Electron holography studies of these superparamagnetic nanoparticle rings indicated significant fluctuations in the magnetic flux lines, consistent with variations in the magnetocrystalline anisotropy of the nanoparticles. The observations provide useful information for a deeper understanding of the micromagnetics of ultrasmall nanoparticles, where the magnetic dipolar interaction competes with the magnetic anisotropy.

  20. Magnetic Reconnection in Plasma under Inertial Confinement Fusion Conditions Driven by Heat Flux Effects in Ohm's Law

    NASA Astrophysics Data System (ADS)

    Joglekar, A. S.; Thomas, A. G. R.; Fox, W.; Bhattacharjee, A.

    2014-03-01

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high ? plasma. However, the Hall parameter ?c?ei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  1. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law

    E-print Network

    Joglekar, A S; Fox, W; Bhattacharjee, A

    2015-01-01

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields.We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfv\\`enic flows. We find that this mechanism is only relevant in a high $\\beta$ plasma. However, the Hall parameter $\\omega_c \\tau_{ei}$ can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  2. Simulation of plasma current ramp-up with reduced magnetic flux consumption in JT-60SA

    NASA Astrophysics Data System (ADS)

    Wakatsuki, T.; Suzuki, T.; Hayashi, N.; Shiraishi, J.; Ide, S.; Takase, Y.

    2015-06-01

    Current ramp-up with reduced central solenoid (CS) flux consumption in JT-60SA has been investigated using an integrated modeling code suite (TOPICS) with a turbulent model (CDBM). The plasma current can be ramped-up from 0.6 MA to 2.1 MA with no additional CS flux consumption if the plasma current is overdriven by neutral-beam-driven and bootstrap current. A time duration required for the current ramp-up without CS flux consumption becomes as long as 150 s in the scenario we have examined. In order to achieve a current overdrive condition from 0.6 MA, the current drive by a lower energy neutral beam (85 keV) is effective. A higher energy neutral beam (500 keV) cannot be used in this early phase with a low central electron density (~2 × 1019 m-3) due to large shine through loss, while it can be effectively used in the later phase. Therefore, the main current driver should be switched from the lower energy neutral beam to the higher energy neutral beam during the current ramp-up phase. As a result of an intensive auxiliary heating, plasma beta (the ratio of the plasma pressure to the magnetic pressure) becomes high. Ideal MHD instabilities of such high beta plasmas have been investigated using a linear ideal MHD stability analysis code (MARG2D). External kink modes which might affect the core plasma can be stabilized during the current ramp-up if there is a perfectly conducting wall at the location of the stabilizing plate and the vacuum vessel of JT-60SA and the plasma has a broader pressure profile with the H-mode pedestal and the internal transport barrier.

  3. On the area expansion of magnetic flux tubes in solar active regions

    SciTech Connect

    Dudík, Jaroslav; Dzif?áková, Elena; Cirtain, Jonathan W. E-mail: elena@asu.cas.cz

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  4. Sunspots and the physics of magnetic flux tubes. III - Aerodynamic lift

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1979-01-01

    The aerodynamic lift exerted on a magnetic flux tube by the asymmetric flow around the two sides of the tube is calculated as part of an investigation of the physics of solar flux tubes. The general hydrodynamic forces on a rigid circular cylinder in a nonuniform flow of an ideal fluid are derived from the first derivatives of the velocity field. Aerodynamic lift in a radial nonuniform flow is found to act in the direction of the flow, toward the region of increased flow velocity, while in a shear flow, lift is perpendicular to the free stream and directed toward increasing flow velocity. For a general, three dimensional, large-scale stationary incompressible equilibrium flow, an expression is also derived relating the lift per unit length to the dynamical pressure, cylinder radius and the gradient of the free-stream velocity. Evidence from an asymmetric airfoil in a uniform flow indicates that lift is enhanced in a real fluid in the presence of turbulence.

  5. The H? surges and EUV jets from magnetic flux emergences and cancellations

    NASA Astrophysics Data System (ADS)

    Jiang, Y. C.; Chen, H. D.; Li, K. J.; Shen, Y. D.; Yang, L. H.

    2007-07-01

    We analyzed multi-wavelength observations of three surges with a recurrent period of about 70 min in H?, EUV, and soft X-ray, which occurred in the quiet-sun region on 2000 November 3. These homologous surges were associated with small flares at the same base, but their exact footpoints were spatially separated from the flare. Each surge consisted of a cool H? component and a hot, EUV or soft X-ray component, which showed different evolutions not only in space but also in time. The EUV jets had slightly converging shapes, underwent more complicate development, showed clearly twisting structures, and appeared to open to space. The H? surges, however, were smaller and only traced the edges of the jets. They always occurred later than the jets but had dark EUV counterparts appearing in the bright jets. These surge activities were closely associated with two emerging bipoles and their driven flux cancellations at the base region, and were consistent with the magnetic reconnection surge model. The possible cause of the delay between the surges and jets, of the dark structures in the jets are discussed, along with the possible role of flux cancellations in generation of these surges.

  6. HELIOSEISMIC INVESTIGATION OF EMERGING MAGNETIC FLUX IN THE SOLAR CONVECTION ZONE

    SciTech Connect

    Ilonidis, Stathis; Zhao, Junwei; Hartlep, Thomas

    2013-11-10

    Helioseismology is capable of detecting signatures of emerging sunspot regions in the solar interior before they appear at the surface. Here we present measurements that show the rising motion of the acoustic travel-time perturbation signatures in the deep convection zone, and study the possible physical origin of these signatures using observational and numerical simulation data. Our results show that the detected signatures first appear at deeper layers and then rise, with velocities of up to 1 km s{sup –1}, to shallower regions. We find evidences that these signatures may not be caused by subsurface flows or wave-speed perturbations, but are associated with acoustic power variations and frequency shifts of the cross-covariance function measured in the emerging-flux region. We also confirm with the use of numerical simulation data that phase travel-time shifts can be associated with frequency shifts related to acoustic power variations. The results of this work reveal the rising motion of magnetic flux in the deep convection zone and explain the large amplitude of the detected perturbation signatures.

  7. Low-noise SQUID

    DOEpatents

    Dantsker, Eugene (Torrance, CA); Clarke, John (Berkeley, CA)

    2000-01-01

    The present invention comprises a high-transition-temperature superconducting device having low-magnitude low-frequency noise-characteristics in magnetic fields comprising superconducting films wherein the films have a width that is less than or equal to a critical width, w.sub.C, which depends on an ambient magnetic field. For operation in the Earth's magnetic field, the critical width is about 6 micrometers (.mu.m). When made with film widths of about 4 .mu.m an inventive high transition-temperature, superconducting quantum interference device (SQUID) excluded magnetic flux vortices up to a threshold ambient magnetic field of about 100 microTesla (.mu.T). SQUIDs were fabricated having several different film strip patterns. When the film strip width was kept at about 4 .mu.m, the SQUIDs exhibited essentially no increase in low-frequency noise, even when cooled in static magnetic fields of magnitude up to 100 .mu.T. Furthermore, the mutual inductance between the inventive devices and a seven-turn spiral coil was at least 85% of that for inductive coupling to a conventional SQUID.

  8. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms

    NASA Astrophysics Data System (ADS)

    Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.; Haueisen, J.; Neuber, S.; Schnabel, A.; Burghoff, M.

    2015-05-01

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  9. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms

    SciTech Connect

    Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.; Neuber, S.; Schnabel, A.; Burghoff, M.; Haueisen, J.

    2015-05-15

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  10. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    SciTech Connect

    Vemareddy, P.; Zhang, J.

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  11. Onset of the Kelvin-Helmholtz instability in partially ionized magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Martínez-Gómez, D.; Soler, R.; Terradas, J.

    2015-06-01

    Context. Recent observations of solar prominences show the presence of turbulent flows that may be caused by Kelvin-Helmholtz instabilites (KHI). However, the observed flow velocities are below the classical threshold for the onset of KHI in fully ionized plasmas. Aims: We investigate the effect of partial ionization on the onset of KHI in dense and cool cylindrical magnetic flux tubes surrounded by a hotter and lighter environment. Methods: The linearized governing equations of a partially ionized two-fluid plasma were used to describe the behavior of small-amplitude perturbations superimposed on a magnetic tube with longitudinal mass flow. A normal mode analysis was performed to obtain the dispersion relation for linear incompressible waves. We focused on the appearance of unstable solutions and studied the dependence of their growth rates on various physical parameters. We obtained an analytical approximation of the KHI linear growth rate for slow flows and strong ion-neutral coupling. We applied this to solar prominence threads. Results: The presence of a neutral component in a plasma may contribute to the onset of the KHI even for sub-Alfvénic longitudinal shear flows. Collisions between ions and neutrals reduce the growth rates of the unstable perturbations, but cannot completely suppress the instability. Conclusions: Turbulent flows in solar prominences with sub-Alfvénic flow velocities may be interpreted as consequences of KHI in partially ionized plasmas.

  12. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    SciTech Connect

    Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A.; Cohen, S. A.

    2011-01-05

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-? plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (?fc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (?fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  13. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    NASA Astrophysics Data System (ADS)

    Ahmed, D.; Ahmad, A.

    2013-06-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  14. A Coupled 2 × 2D Babcock-Leighton Solar Dynamo Model. I. Surface Magnetic Flux Evolution

    NASA Astrophysics Data System (ADS)

    Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud

    2015-09-01

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.

  15. The dissipation of inhomogeneous magnetic fields and the problem of coronae. I - Dislocation and flattening of flux tubes. II - The dynamics of dislocated flux

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1981-01-01

    Attention is given to the dynamical dissipation arising in a magnetic field extending up through a tenuous atmosphere when an elemental flux tube in the field (1) is displaced from its equilibrium position and/or (2) is inflated by an internal fluid pressure different from the external fluid pressure. It is pointed out that as a consequence the tension in the lines of force of the ambient field flattens the dislocated tube so that the thickness of the tube decreases without limit and that the local field gradients increase rapidly with the passage of time until destroyed by one or more dissipative effects. The magnetic energy of a dislocated flux tube is therefore soon converted into thermal energy no matter how low the molecule resistivity of the fluid. Some formal illustrations of local conditions along a misaligned flux tube are presented, showing the simultaneous onset of diffusion, fluid motion, and hydromagnetic wave propagation. The examples demonstrate that the total effect is complicated and subject only to estimation, rather than formal calculation, at the present time.

  16. Collisionless magnetic reconnection: Flux quanta, field lines, `composite electrons' -- Is the quantum-Hall effect involved in its micro-scale physics?

    E-print Network

    Treumann, R A; Baumjohann, W

    2011-01-01

    Microscopically, collisionless reconnection in thin current sheets is argued to involve `composite electrons' in the ion inertial (Hall current) domain, a tiny fraction of electrons only. These `composite electrons' are confined to lower Landau levels $\\epsilon_L\\ll T_e$ (energy much less than temperature). They demagnetise by absorbing magnetic flux quanta $\\Phi_0=h/e$, decouple from the magnetic field, transport the attached magnetic flux into the non-magnetic centre of the current layer, where they release the flux in the form of micro-scale magnetic vortices, becoming ordinary electrons. The newly born micro-scale magnetic vortices reconnect in their strictly anti-parallel sections when contacting other vortices, ultimately producing the meso-scale reconnection structure. We clarify the notions of magnetic field lines and field line radius, estimate the power released when two oppositely directed flux quanta annihilate, and calculate the number density and Landau-level filling-factor of `composite electro...

  17. Small-scale magnetic flux emergence in a sunspot light bridge

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Bellot Rubio, Luis R.; de la Cruz Rodríguez, Jaime; Socas-Navarro, Héctor; Ortiz, Ada

    2015-12-01

    Context. Light bridges are convective intrusions in sunspots that often show enhanced chromospheric activity. Aims: We seek to determine the nature of flux emergence in a light bridge and the processes related to its evolution in the solar atmosphere. Methods: We analyse a sequence of high-resolution spectropolarimetric observations of a sunspot taken at the Swedish 1-m Solar Telescope. The data consist of spectral scans of the photospheric Fe i line pair at 630 nm and the chromospheric Ca ii 854.2 nm line. Bisectors were used to construct Dopplergrams from the Fe i 630.15 nm measurements. We employed LTE and non-LTE inversions to derive maps of physical parameters in the photosphere and chromosphere, respectively. Results: We observe the onset of blueshifts of about 2 km s-1 near the entrance of a granular light bridge on the limbward side of the spot. The blueshifts lie immediately next to a strongly redshifted patch that appeared six minutes earlier. Both patches can be seen for 25 min until the end of the sequence. The blueshifts coincide with an elongated emerging granule, while the redshifts appear at the end of the granule. In the photosphere, the development of the blueshifts is accompanied by a simultaneous increase in field strength of about 400 G. The field inclination increases by some 25°, becoming nearly horizontal. At the position of the redshifts, the magnetic field is equally horizontal but of opposite polarity. An intense brightening is seen in the Ca ii filtergrams over the blueshifts and redshifts, about 17 min after their detection in the photosphere. The brightening is due to emission in the blue wing of the Ca ii 854.2 nm line, close to its knee. Non-LTE inversions reveal that this kind of asymmetric emission is caused by a temperature enhancement of ~700 K between -5.0 ? log ? ? -3.0 and a blueshift of 3 km s-1 at log ? = -2.3 that decreases to zero at log ? = -6.0 Conclusions: The photospheric blueshifts and redshifts observed in a granular light bridge seem to be caused by the emergence of a small-scale, flat ?-loop with highly inclined footpoints of opposite polarity that brings new magnetic field to the surface. The gas motions detected in the two footpoints are reminiscent of a siphon flow. The rising loop is probably confined to the lower atmosphere by the overlying sunspot magnetic field and the interaction between the two flux systems may be responsible for temperature enhancements in the upper photosphere/lower chromosphere. This is the first time that magnetic flux is observed to emerge in the strongly magnetised environment of sunspots, pushed upwards by the convective flows of a granular light bridge. The movie associated to Fig. 2 is available in electronic form at http://www.aanda.org

  18. UNRESOLVED MIXED POLARITY MAGNETIC FIELDS AT FLUX CANCELLATION SITE IN SOLAR PHOTOSPHERE AT 0.''3 SPATIAL RESOLUTION

    SciTech Connect

    Kubo, Masahito; Low, Boon Chye; Lites, Bruce W

    2014-09-20

    This is a follow-up investigation of a magnetic flux cancellation event at a polarity inversion line (PIL) on the Sun observed with the spectropolarimeter on board Hinode. Anomalous circular polarization (Stokes V) profiles are observed in the photosphere along the PIL at the cancellation sites. Kubo et al. previously reported that the theoretically expected horizontal fields between the canceling opposite-polarity magnetic elements in this event are not detected at granular scales. We show that the observed anomalous Stokes V profiles are reproduced successfully by adding the nearly symmetric Stokes V profiles observed at pixels immediately adjacent to the PIL. This result suggests that these observed anomalous Stokes V profiles are not indications of a flux removal process, but are the result of either a mixture of unresolved, opposite-polarity magnetic elements or the unresolved width of the PIL, at an estimated resolution element of about 0.''3. The hitherto undetected flux removal process accounting for the larger-scale disappearance of magnetic flux during the observing period is likely to also fall below resolution.

  19. Laboratory study of the equilibrium and eruption of line-tied magnetic flux ropes in the solar corona

    NASA Astrophysics Data System (ADS)

    Myers, Clayton Edward

    2015-03-01

    Ideal magnetohydrodynamic (MHD) instabilities such as the kink instability and the torus instability are leading candidates to explain the sudden onset of eruptive events in the solar corona. These instabilities act on line-tied magnetic flux ropes--long-lived arched structures anchored to the solar surface. In spite of substantial observational and numerical research, however, the role of these instabilities in the corona remains a subject of intense debate. For this thesis, we have constructed and operated a new line-tied flux rope experiment that permits for the first time the study of both the kink and torus instabilities in the laboratory. This experiment has the following key features: (1) the arched flux rope is line-tied to two conducting footpoints; (2) the system is magnetically dominated (low-beta) with significant stored energy; (3) the system is driven quasi-statically, producing a long-lived equilibrium; and (4) the flux rope is generated within a potential (vacuum) magnetic field arcade whose decay index---the predicted torus instability control parameter---can be externally controlled. The flux ropes are diagnosed using a two-dimensional in situ magnetic probe array whose cross-section covers a substantial portion of the plasma. The central result of this thesis is that toroidal field forces, which are traditionally neglected in the analysis of coronal flux ropes, are identified for the first time as an essential contributor to both the equilibrium and the stability of line-tied flux ropes. Most importantly, experimental measurements show that a tension force derived from a self-generated paramagnetic toroidal field exerts a restoring force on the line-tied plasma and suppresses eruptive behavior in a significant portion of the parameter space. This suppression extends to regimes that are both kink and torus unstable. We find that, in order to explain the measured tension force, low aspect ratio and line-tying effects must be considered. Finally, flux rope eruptions are observed in these experiments, but only in regimes with sufficiently low external toroidal field where the tension force is reduced. These results constitute a new condition for the prediction of line-tied magnetic flux rope eruptions: that of low external toroidal field.

  20. A novel single-phase flux-switching permanent magnet linear generator used for free-piston Stirling engine

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei

    2014-05-01

    This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.

  1. Magnetic flux oscillations in partially irradiated Bi2Sr2CaCu2O8+? crystals

    NASA Astrophysics Data System (ADS)

    Barness, D.; Sinvani, M.; Shaulov, A.; Trautmann, C.; Tamegai, T.; Yeshurun, Y.

    2009-04-01

    We report on generation of spatiotemporal oscillations of magnetic flux in a Bi2Sr2CaCu2O8+? crystal irradiated in part with 2.2 GeV Au ions. Flux oscillations are spontaneously excited after exposing the sample to a steady magnetic field near the order-disorder vortex phase transition line. The oscillations originate at the border between the irradiated and nonirradiated parts of the sample and propagate into the nonirradiated region toward the sample edge. Previously reported flux oscillations were observed in the vicinity of undefined defects in as grown Bi2Sr2CaCu2O8+? crystals. Observation of spontaneous oscillations in partially irradiated samples present the first attempt to generate such oscillations in a controlled manner.

  2. MESSENGER and Venus Express Observations of the Near-tail of Venus: Magnetic Flux Transport, Current Sheet Structure, and Flux Rope Formation

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Boardsen, S. A.; Sarantos, M.; Acuna, M. H.; Anderson, B. J.; Barabash, S.; Benna, M.; Fraenz, M.; Gloeckler, G.; Gold, R. E.; Ho, G. C.; Korth, H.; Krimigis, S. M.; McNutt, R. L., Jr.; Raines, J. M.; Solomon, S. C.; Zhang, T.-L.; Zurbuchen, T. H.

    2008-01-01

    At 23:08 UT on 5 June 2007 the MESSENGER spacecraft reached its closest approach altitude (338 km) during its second flyby of Venus en route to its 2011 orbit insertion at Mercury. Whereas no measurements were collected during MESSENGER'S first Venus flyby in October 2006, the Magnetometer (MAG) and the Energetic Particle and Plasma Spectrometer (EPPS) operated successfully throughout this second encounter. Venus provides the solar system's best example to date of a solar wind - ionosphere planetary interaction. We present MESSENGER observations of the near-tail of Venus with emphasis on determining the time scales for magnetic flux transport, the structure of the cross-tail current sheet at very low altitudes (approx. 300 to 1000 km), and the nature and origin of a magnetic flux rope observed in the current sheet. The availability of the simultaneous Venus Express upstream measurements provides a unique opportunity to examine the influence of solar wind plasma and interplanetary magnetic field conditions on this planet's solar wind interaction at solar minimum.

  3. SQUID With Integral Flux Concentrator

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Sisk, Robert C.

    1989-01-01

    In improved superconducting quantum interference device (SQUID), change in size and shape of superconducting ring improves coupling to external signal coil and eases coil-positioning tolerances. More rugged and easier to manufacture than conventional SQUID's with comparable electrical characteristics. Thin-film superconducting flux concentrator utilizes Meissner effect to deflect magnetic field of signal coil into central hole of SQUID. Used in magnetometers, ammeters, analog-to-digital converters, and related electronic applications in which high signal-to-noise ratios required.

  4. Effect of reactive gas (oxygen/chlorine/fluorine) etching on the magnetic flux of a high moment write pole material

    SciTech Connect

    Zhang Jinqiu; Liu Feng; Chen Lifan; Miloslavsky, Lena

    2010-05-15

    Effect of reactive gas (oxygen/chlorine/fluorine) etching on NiFe magnetic properties was investigated. Experimental data showed 40% magnetic property degradation for F-containing gas etching, 10% degradation for O-containing gas etching, and 5% degradation for Cl-containing gas etching processes. X-ray diffraction analysis indicated that the crystallographic orientation remained the same upon the reactive gas etching, which is due to the low ion energy in plasma etching process as opposed to ion milling process with high input energy. It is proposed that the reported magnetic property degradation was mainly caused by the nonmagnetic dead layer formation, rather than the changes in the crystallographic orientation. The dead layer was determined by the NiFe thickness dependence of remnant magnetic flux variations between pre-etched and postetched samples. The dead layer remained nearly constant for O-containing gas etching process with increasing plasma processing time. The nonmagnetic dead layer of {approx}40-50 A formed in O-containing etching gas was observed in transmission electron microscopy cross-sectional image and was in very good agreement with the calculated value based on magnetic flux measurements. Combined magnetic and physical characterizations suggest that the dead layer thickness saturates at the initial stage of the plasma etching and magnetic property remained unchanged with increasing etching duration upon formation of the dead layer.

  5. A new measurement method of magnetic flux density using magnetorheological fluid characteristics and a variable resistor circuit

    NASA Astrophysics Data System (ADS)

    Kim, Hwan-Choong; Han, Chulhee; Kim, Pyunghwa; Choi, Seung-Bok

    2015-08-01

    This work proposes a new approach with which to measure the magnetic flux density using the characteristics of magnetorheological fluid (MRF) that is integrated with a variable resistor. For convenience, it is called a magnetorheological fluid variable resistor (MRF-VR) system in this study. The mechanism of the MRF-VR is based on the interaction between ferromagnetic iron particles of the MRF due to an external magnetic field, which causes its electrical resistance to be field dependent. Using this salient principle, the proposed MRF-VR system is constructed with electrodes and MRF, and its performance is demonstrated by evaluating its electrical resistive characteristics such as dimensional influence, response time, hysteresis and frequency response. After evaluating the performance characteristics, a feedback control system with a proportional-integral-derivative (PID) controller is established, and resistance-trajectory control experiments are carried out. Based on this MRF-VR system, a magnetic field-sensing system is constructed using a Wheatstone bridge circuit, and a polynomial model for calculating the magnetic flux density is formulated from the measured voltage. Finally, the accuracy and effectiveness of the proposed sensing system associated with the empirical polynomial model is successfully verified by comparing the calculated values of magnetic flux density with those measured by a commercial tesla meter.

  6. Dendritic flux avalanches and the accompanied thermal strain in type-II superconducting films: effect of magnetic field ramp rate

    NASA Astrophysics Data System (ADS)

    Jing, Ze; Yong, Huadong; Zhou, You-He

    2015-07-01

    Dendritic flux avalanches and the accompanying thermal stress and strain in type-II superconducting thin films under transverse magnetic fields are numerically simulated in this paper. The influence of the magnetic field ramp rate, edge defects, and the temperature of the surrounding coolant are considered. Maxwell's equations and the highly nonlinear E-J power-law characteristics of superconductors, coupled with the heat diffusion equation, are adopted to formulate these phenomena. The fast Fourier transform-based iteration scheme is used to track the evolution of the magnetic flux and the temperature in the superconducting film. The finite element method is used to analyze the thermal stress and strain induced in the superconducting film. It is found that the ramp rate has a significant effect on the flux avalanche process. The avalanches nucleate more easily for a film under a large magnetic field ramp rate than for a film under a small one. In addition, the avalanches always initiate from edge defects or areas that experience larger magnetic fields. The superconducting films experience large thermal strain induced by the large temperature gradient during the avalanche process, which may even lead to the failure of the sample.

  7. Noise reduction of nuclear magnetic resonance (NMR) transversal data using improved wavelet transform and exponentially weighted moving average (EWMA)

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Fan, Yiren; Li, Jiangtao; Wang, Yang; Deng, Shaogui

    2015-02-01

    NMR logging and core NMR signals acts as an effective way of pore structure evaluation and fluid discrimination, but it is greatly contaminated by noise for samples with low magnetic resonance intensity. Transversal relaxation time (T2) spectrum obtained by inversion of decay signals intrigued by Carr-Purcell-Meiboom-Gill (CPMG) sequence may deviate from the truth if the signal-to-noise ratio (SNR) is imperfect. A method of combing the improved wavelet thresholding with the EWMA is proposed for noise reduction of decay data. The wavelet basis function and decomposition level are optimized in consideration of information entropy and white noise estimation firstly. Then a hybrid threshold function is developed to avoid drawbacks of hard and soft threshold functions. To achieve the best thresholding values of different levels, a nonlinear objective function based on SNR and mean square error (MSE) is constructed, transforming the problem to a task of finding optimal solutions. Particle swarm optimization (PSO) is used to ensure the stability and global convergence. EWMA is carried out to eliminate unwanted peaks and sawtooths of the wavelet denoised signal. With validations of numerical simulations and experiments, it is demonstrated that the proposed approach can reduce the noise of T2 decay data perfectly.

  8. Noise reduction of nuclear magnetic resonance (NMR) transversal data using improved wavelet transform and exponentially weighted moving average (EWMA).

    PubMed

    Ge, Xinmin; Fan, Yiren; Li, Jiangtao; Wang, Yang; Deng, Shaogui

    2015-02-01

    NMR logging and core NMR signals acts as an effective way of pore structure evaluation and fluid discrimination, but it is greatly contaminated by noise for samples with low magnetic resonance intensity. Transversal relaxation time (T(2)) spectrum obtained by inversion of decay signals intrigued by Carr-Purcell-Meiboom-Gill (CPMG) sequence may deviate from the truth if the signal-to-noise ratio (SNR) is imperfect. A method of combing the improved wavelet thresholding with the EWMA is proposed for noise reduction of decay data. The wavelet basis function and decomposition level are optimized in consideration of information entropy and white noise estimation firstly. Then a hybrid threshold function is developed to avoid drawbacks of hard and soft threshold functions. To achieve the best thresholding values of different levels, a nonlinear objective function based on SNR and mean square error (MSE) is constructed, transforming the problem to a task of finding optimal solutions. Particle swarm optimization (PSO) is used to ensure the stability and global convergence. EWMA is carried out to eliminate unwanted peaks and sawtooths of the wavelet denoised signal. With validations of numerical simulations and experiments, it is demonstrated that the proposed approach can reduce the noise of T(2) decay data perfectly. PMID:25574595

  9. Low frequency noise in asymmetric double barrier magnetic tunnel junctions with a top thin MgO layer

    NASA Astrophysics Data System (ADS)

    Guo, Hui-Qiang; Tang, Wei-Yue; Liu, Liang; Wei, Jian; Li, Da-Lai; Feng, Jia-Feng; Han, Xiu-Feng

    2015-07-01

    Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions (DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top MgO barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFeB DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter ?mag. With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state (antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process ?mag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles (?) to the easy axis of the free layer, the linear dependence persists while the intercept of the linear fit satisfies a cos(?) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance. Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00106, 2012CB927400, 2010CB934401, and 2014AA032904), the National High Technology Research and Development Program of China (Grant No. 2014AA032904), and the National Natural Science Foundation of China (Grant Nos. 11434014 and 11104252).

  10. Evaluation of the magnetic coupling degree and performance of an axial-axial flux compound-structure permanent-magnet synchronous machine used for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Zhao, Jing; Wu, Qian; Fan, Weiguang; Shen, Lin; Li, Lina; Liu, Ranran

    2008-04-01

    A novel axial-axial flux compound-structure permanent-magnet synchronous machine (CS-PMSM), which is a hybrid electric vehicle (HEV) power train concept, is integrated by two axial flux disk machines. As the two machines share a common rotor [a magnet rotor with permanent magnets (PMs) on both sides], there may be magnetic coupling between them. Three-dimensional (3D) finite-element method (FEM) calculation shows that the two machines have little magnetic coupling if they have the same pole number and consistent magnetization direction of the two layers of PMs on the common rotor. The performance of the CS-PMSM is evaluated on criteria such as power, power per unit volume and mass, torque, and torque ripple. The power and torque equations of this type of machine are deduced and verified with 3D FEM. After the optimization of diameter ratio and pole number, the power and power per unit active volume and mass are high. The torque ripple is much reduced due to the optimization of the pole arc embrace and magnet skewing angle.

  11. Characterization of a double flux-rope magnetic cloud observed by ACE spacecraft on August 19-21, 1998

    NASA Astrophysics Data System (ADS)

    Ojeda González, A.; Mendes, O.; Domingues Oliveira, M.; Moestl, C.; Farrugia, C. J.; Gonzalez, W. D.

    2013-05-01

    Investigations have studied MC cases of double flux rope configuration with apparent asymmetry. Grad-Shafranov reconstruction technique allows deriving the local magnetic structure from data of a single spacecraft. The results obtained show two cylindrical flux ropes next to each other, where a single X point forms between them. In all possible combinations of two bipolar MCs, the magnetic field between them is antiparallel in eight cases SWN-SWN, SWN-SEN, SEN-SWN, SEN-SEN, NWS-NWS, NWS-NES, NES-NWS, NES-NWS. If clouds are under magnetic coupling, reconnection evidences are expected from the interaction between them. In this work, we examine the event that occurred at Aug. 19-21, 1998 using solar wind measurements collected by ACE. In Fig. 1 a) presents the recovered cross-section of the two bipolar MCs (SEN-SWN). The black contour lines show the transverse magnetic field lines (calculated as the contours of the magnetic potential function A(x,y)), and the colors show the axial magnetic field Bz distribution. The yellow arrows along y=0 denote measured transverse magnetic field vectors, direction and magnitude measurements at ACE utilized as initial input into the numerical solver. The green arrows are residual velocities in the deHoffmann-Teller frame at ACE. The spacecraft crosses the X point and observes the exact moment of the magnetic reconnection, from 0.13 to 0.15 AU in x axis. In the opposite corners of the X point, the magnetic fields are antiparallel (see yellow arrows in this region). The residual velocity (green arrow in y=0) in the deHoffmann-Teller frame at ACE is perpendicular to the magnetic field line in the reconnection region. In principle, it is possible to adjust a two-dimension model considering the most common separator reconnection, in which four separate magnetic domains exchange magnetic field lines. In Fig. 1 b), the cross-section through four magnetic domains undergoing separator reconnection is represented. The green array in the top panel shows a speed in the same direction as the prediction in the reconnection model. Also, the magnetic configuration reconstructed confirms the initial hypothesis, i.e., the existence of two bipolar MCs (SEN-SWN) with reconnection between them.; The recovered cross-section of the two MCs. In the X point, the spacecraft path seems to lie on top of the magnetic separatrix.

  12. Flux quanta, magnetic field lines, merging - some sub-microscale relations of interest in space plasma physics

    NASA Astrophysics Data System (ADS)

    Treumann, R. A.; Nakamura, R.; Baumjohann, W.

    2011-06-01

    We clarify the notion of magnetic field lines in plasma by referring to sub-microscale (quantum mechanical) particle dynamics. It is demonstrated that magnetic field lines in a field of strength B carry single magnetic flux quanta ?0=h/e. The radius of a field line in the given magnetic field B is calculated. It is shown that such field lines can merge and annihilate only over the length ℓ∥ of their strictly anti-parallel sections, for which case we estimate the power generated. The length ℓ∥ becomes a function of the inclination angle ? of the two merging magnetic flux tubes (field lines). Merging is possible only in the interval 12??≤?. This provides a sub-microscopic basis for "component reconnection" in classical macro-scale reconnection. We also find that the magnetic diffusion coefficient in plasma appears in quanta D0m=e?0/me=h/me. This lets us conclude that the bulk perpendicular plasma resistivity is limited and cannot be less than ?0⊥=?0e?0/me=?0h/me~10-9 Ohm m. This resistance is an invariant.

  13. A TWISTED FLUX ROPE AS THE MAGNETIC STRUCTURE OF A FILAMENT IN ACTIVE REGION 10953 OBSERVED BY HINODE

    SciTech Connect

    Canou, A.; Amari, T.

    2010-06-01

    The presence of twisted flux ropes (TFRs) in pre-eruptive/flaring magnetic configurations is of main interest for our understanding of the structure and dynamics of the solar corona. On the one hand, their presence is a key ingredient in several theoretical models for the magnetic support of material in filaments, or triggering of coronal mass ejections as well as the emergence of structures from the convection zone into the corona. On the other hand, several observations have shown the presence of twist and shear during eruptive and flaring phases of eruptive phenomena. In this paper, we consider the determination of the magnetic structure of active region (AR) 10953 observed by Hinode and reconstructed using our two nonlinear force-free models. We show that the reconstructed magnetic configurations exhibit a TFR along the southern part of the neutral line. Moreover, the location of the magnetic dips within the TFR agrees within a good level of accuracy with the H{alpha} images taken by SMART and the vertically integrated current density recovers the main structure present in Hinode/XRT images. The free magnetic energy is also found to be large enough to power the two C-class flares of the following days. We finally compare our results with those of Su et al. who proposed an interesting model of the same AR in which a TFR is inserted at the same location using the flux rope insertion method.

  14. MULTIWAVELENGTH OBSERVATIONS OF SMALL-SCALE RECONNECTION EVENTS TRIGGERED BY MAGNETIC FLUX EMERGENCE IN THE SOLAR ATMOSPHERE

    SciTech Connect

    Guglielmino, S. L.; Zuccarello, F.; Bellot Rubio, L. R.; Aulanier, G.; Vargas DomInguez, S.; Kamio, S.

    2010-12-01

    The interaction between emerging magnetic flux and the pre-existing ambient field has become a 'hot' topic for both numerical simulations and high-resolution observations of the solar atmosphere. The appearance of brightenings and surges during episodes of flux emergence is believed to be a signature of magnetic reconnection processes. We present an analysis of a small-scale flux emergence event in NOAA 10971, observed simultaneously with the Swedish 1 m Solar Telescope on La Palma and the Hinode satellite during a joint campaign in 2007 September. Extremely high-resolution G-band, H{alpha}, and Ca II H filtergrams, Fe I and Na I magnetograms, EUV raster scans, and X-ray images show that the emerging region was associated with chromospheric, transition region and coronal brightenings, as well as with chromospheric surges. We suggest that these features were caused by magnetic reconnection at low altitude in the atmosphere. To support this idea, we perform potential and linear force-free field extrapolations using the FROMAGE service. The extrapolations show that the emergence site is cospatial with a three-dimensional null point, from which a spine originates. This magnetic configuration and the overall orientation of the field lines above the emerging flux region are compatible with the structures observed in the different atmospheric layers and remain stable against variations of the force-free field parameter. Our analysis supports the predictions of recent three-dimensional numerical simulations that energetic phenomena may result from the interaction between emerging flux and the pre-existing chromospheric and coronal field.

  15. A charged particle in a homogeneous magnetic field accelerated by a time periodic Aharonov-Bohm flux

    E-print Network

    T. Kalvoda; P. Stovicek

    2011-07-14

    We consider a nonrelativistic quantum charged particle moving on a plane under the influence of a uniform magnetic field and driven by a periodically time-dependent Aharonov-Bohm flux. We observe an acceleration effect in the case when the Aharonov-Bohm flux depends on time as a sinusoidal function whose frequency is in resonance with the cyclotron frequency. In particular, the energy of the particle increases linearly for large times. An explicit formula for the acceleration rate is derived with the aid of the quantum averaging method, and then it is checked against a numerical solution with a very good agreement.

  16. PLANETESIMAL FORMATION IN MAGNETOROTATIONALLY DEAD ZONES: CRITICAL DEPENDENCE ON THE NET VERTICAL MAGNETIC FLUX

    SciTech Connect

    Okuzumi, Satoshi; Hirose, Shigenobu

    2012-07-01

    Turbulence driven by magnetorotational instability (MRI) affects planetesimal formation by inducing diffusion and collisional fragmentation of dust particles. We examine conditions preferred for planetesimal formation in MRI-inactive 'dead zones' using an analytic dead-zone model based on our recent resistive MHD simulations. We argue that successful planetesimal formation requires not only a sufficiently large dead zone (which can be produced by tiny dust grains) but also a sufficiently small net vertical magnetic flux (NVF). Although often ignored, the latter condition is indeed important since the NVF strength determines the saturation level of turbulence in MRI-active layers. We show that direct collisional formation of icy planetesimal across the fragmentation barrier is possible when the NVF strength is lower than 10 mG (for the minimum-mass solar nebula model). Formation of rocky planetesimals via the secular gravitational instability is also possible within a similar range of the NVF strength. Our