Sample records for magnetic hysteresis loss

  1. Hysteresis force loss and damping properties in a practical magnet superconductor maglev test vehicle

    NASA Astrophysics Data System (ADS)

    Yang, Wenjiang; Liu, Yu; Wen, Zheng; Chen, Xiaodong; Duan, Yi

    2008-01-01

    In order to investigate the feasible application of a permanent magnet-high-temperature superconductor (PM-HTS) interaction maglev system to a maglev train or a space vehicle launcher, we have constructed a demonstration maglev test vehicle. The force dissipation and damping of the maglev vehicle against external disturbances are studied in a wide range of amplitudes and frequencies by using a sine vibration testing set-up. The dynamic levitation force shows a typical hysteresis behavior, and the force loss is regarded as the hysteresis loss, which is believed to be due to flux motions in superconductors. In this study, we find that the hysteresis loss has weak frequency dependence at small amplitudes and that the dependence increases as the amplitude grows. To analyze the damping properties of the maglev vehicle at different field cooling (FC) conditions, we also employ a transient vibration testing technique. The maglev vehicle shows a very weak damping behavior, and the damping is almost unaffected by the trapped flux of the HTSs in different FC conditions, which is believed to be attributed to the strong pinning in melt-textured HTSs.

  2. Hysteresis of sextupole and ac loss in Energy Doubler dipole magnets

    SciTech Connect

    Ishibashi, K.

    1982-06-18

    A simple model gave utilized for calculation of magnetization effects on ac loss and sextupole for Energy Doubler dipole magnets. The calculation in the simple model gave an underestimation of ac loss by about 30%. Results of computation on ac harmonics were also described.

  3. A magnetic hysteresis model

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas W.; Henretty, Debra A.

    1995-01-01

    The Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) will be deployed from the Space Shuttle and used as a target for a Shuttle-mounted laser. It will be a cylindrical satellite with several corner cube reflectors on the ends. The center of mass of the cylinder will be near one end, and aerodynamic torques will tend to align the axis of the cylinder with the spacecraft velocity vector. Magnetic hysteresis rods will be used to provide passive despin and oscillation-damping torques on the cylinder. The behavior of the hysteresis rods depends critically on the 'B/H' curves for the combination of materials and rod length-to-diameter ratio ('l-over-d'). These curves are qualitatively described in most Physics textbooks in terms of major and minor 'hysteresis loops'. Mathematical modeling of the functional relationship between B and H is very difficult. In this paper, the physics involved is not addressed, but an algorithm is developed which provides a close approximation to empirically determined data with a few simple equations suitable for use in computer simulations.

  4. Estimation of magnetic loss in an induction motor fed with sinusoidal supply using a finite element software and a new approach to dynamic hysteresis

    Microsoft Academic Search

    T. Chevalier; A. Kedous-Labouc; B. Cornut; C. Cester

    1999-01-01

    A method to estimate precise iron loss in an electrical machine is presented. This method implements a 2D finite element simulation of moving structure including the non-linear magnetic behaviour and a new dynamical hysteresis model of the magnetic circuit. The 2D finite element simulation is used to evaluate the induction evolution with time in any point of the motor structure.

  5. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry).

    PubMed

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-01

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the 'specific absorption rate (SAR)', is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 °C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m(-1) in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature. PMID:25490677

  6. Calculation of hysteresis losses in hard superconductors carrying ac: isolated conductors and edges of thin sheets

    Microsoft Academic Search

    W T Norris

    1970-01-01

    Two methods of calculating hysteresis losses in hard superconductors are described. The London model is assumed in which the critical current density is taken independent of magnetic field. Losses in isolated wires of different cross section are considered but it is found that losses for solid wires vary by at most a factor of 3 for different shaped wires of

  7. Rotational hysteresis of exchange-spring magnets.

    SciTech Connect

    Jiang, J.S.; Bader, S.D.; Kaper, H.; Leaf, G.K.; Shull, R.D.; Shapiro, A.J.; Gornakov, V.S.; Nikitenko, V.I.; Platt, C.L.; Berkowitz, A.E.; David, S.; Fullerton, E.E.

    2002-03-27

    We highlight our experimental studies and micromagnetic simulations of the rotational hysteresis in exchange-spring magnets. Magneto-optical imaging and torque magnetometry measurements for SmCo/Fe exchange-spring films with uniaxial in-plane anisotropy show that the magnetization rotation created in the magnetically soft Fe layer by a rotating magnetic field is hysteretic. The rotational hysteresis is due to the reversal of the chirality of the spin spiral structure. Micromagnetic simulations reveal two reversal modes of the chirality, one at low fields due to an in-plane untwisting of the spiral, and the other, at high fields, due to an out-of-plane fanning of the spiral.

  8. Dynamic Hysteresis in Compacted Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chowdary, Krishna M.

    The frequency and temperature dependent magnetic response of a bulk soft magnetic nanocomposite made by compacting Fe10Co 90 nanoparticles was measured and modeled. Electron microscopy and x-ray diffraction were used to characterize the size, composition, and structure of the nanoparticles and nanocomposite. Polyol synthesis was used to produce 200 nm particles with average grain size 20 nm and large superparamagnetic fraction. The nanoparticles were consolidated to 90% theoretical density by plasma pressure compaction. The compacted nanoparticles retained the 20 nm average grain size and large superparamagnetic fraction. The nanocomposite resistivity was more than three times that of the bulk alloy. Vibrating sample and SQUID-MPMS magnetometers were used for low frequency magnetic measurements of the nanoparticles and nanocomposite. Compaction reduced the coercivity from 175 Oe to 8 Oe and the effective anisotropy from 124 x 10 3 ergs/cc to 7.9 x 103 ergs/cc. These reductions were caused by increased exchange coupling between surface nanograins, consistent with predictions from the Random Anisotropy model. Varying degrees of exchange coupling existed within the nanocomposite, contributing to a distribution of energy barriers. A permeameter was used for frequency dependent magnetic measurements on a toroid cut from the nanocomposite. Complex permeability, coercivity, and power loss were extracted from dynamic minor hysteresis loops measured over a range of temperatures (77 K - 873 K) and frequencies (0.1 kHz - 100 kHz). The real and imaginary parts of the complex permeability spectrum showed asymmetries consistent with a distribution of energy barriers and high damping. When the complex permeability, power loss, and coercivity were scaled relative to the peak frequency of the imaginary permeability, all fell on universal curves. Various microscopic and macroscopic models for the complex permeability were investigated. The complex permeability was successfully fit by modifying the Cole-Davidson model with a scaling factor that extended the model to higher damping. The additional damping was consistent with the damping from eddy current modeling, showing that the nanocomposite's complex permeability could be explained by combining microscopic effects (the distribution of energy barriers represented by the Cole-Davidson model) with macroscopic effects (damping due to eddy currents).

  9. Hysteresis prediction inside magnetic shields and application.

    PubMed

    Mori?, Igor; De Graeve, Charles-Marie; Grosjean, Olivier; Laurent, Philippe

    2014-07-01

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60??T. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission. PMID:25085183

  10. Hysteresis prediction inside magnetic shields and application

    SciTech Connect

    Mori?, Igor [Observatoire de Paris, SYRTE, Avenue Denfert 77, 75014 Paris (France); CNES, Edouard Belin 18, 31400 Toulouse (France); De Graeve, Charles-Marie [SOGETI High Tech, chemin Laporte 3, 31300 Toulouse (France); Grosjean, Olivier [CNES, Edouard Belin 18, 31400 Toulouse (France); Laurent, Philippe [Observatoire de Paris, SYRTE, Avenue Denfert 77, 75014 Paris (France)

    2014-07-15

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60??T. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission.

  11. Hysteresis prediction inside magnetic shields and application

    NASA Astrophysics Data System (ADS)

    Mori?, Igor; De Graeve, Charles-Marie; Grosjean, Olivier; Laurent, Philippe

    2014-07-01

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60 ?T. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission.

  12. Abstract --In electromagnetic applications, hysteresis phenomena in magnetic materials are responsible of

    E-print Network

    Boyer, Edmond

    13. M M Abstract -- In electromagnetic applications, hysteresis phenomena in magnetic materials, electrical engineering is concerned with energy efficiency. In addition, in the case of electromagnetic.. Following the predefined criteria such as induction response and losses computation, some compatible models

  13. Could linear hysteresis contribute to shear wave losses in tissues?

    PubMed

    Parker, Kevin J

    2015-04-01

    For nearly 100 y in the study of cyclical motion in materials, a particular phenomenon called "linear hysteresis" or "ideal hysteretic damping" has been widely observed. More recently in the field of shear wave elastography, the basic mechanisms underlying shear wave losses in soft tissues are in question. Could linear hysteresis play a role? An underlying theoretical question must be answered: Is there a real and causal physical model that is capable of producing linear hysteresis over a band of shear wave frequencies used in diagnostic imaging schemes? One model that can approximately produce classic linear hysteresis behavior, by examining a generalized Maxwell model with a specific power law relaxation spectrum, is described here. This provides a theoretical plausibility for the phenomenon as a candidate for models of tissue behavior. PMID:25701527

  14. Intercrystalline magnetic interaction and hysteresis characteristics of high-coercivity cobalt-based alloy coatings

    Microsoft Academic Search

    V. G. Shadrov; A. E. Dmitrieva; L. V. Nemtsevich

    2011-01-01

    ?M(H) curves and the time dependences of the magnetization and the rotational hysteresis losses are used to analyze the effect\\u000a of intercrystalline magnetic interaction on the magnetization reversal and the hysteresis characteristics of nanostructured\\u000a cobalt-based alloy coatings, which manifest themselves in a change in the relations between the rotation and displacement\\u000a of reversible and irreversible processes and between thermally activated

  15. Magnetically suspended reaction sphere with one-axis hysteresis drive

    E-print Network

    Zhou, Lei., S.M. Massachusetts Institute of Technology

    2014-01-01

    This thesis presents the design, modeling, implementation, and control of a magnetically suspended reaction sphere with one-axis hysteresis drive (1D-MSRS). The goal of this project is two fold: (a) exploring the design ...

  16. Magnetic structure and hysteresis in hard magnetic nanocrystalline film: Computer simulation

    E-print Network

    Laughlin, David E.

    Magnetic structure and hysteresis in hard magnetic nanocrystalline film: Computer simulation simulations are used to study the effect of crystallographic textures on the magnetic properties of uniaxial nanocrystalline films of hard magnetic materials with arbitrary grain shapes and size distributions

  17. Modeling biaxial stress effects on magnetic hysteresis in steel with the field and stress axes noncoaxial

    NASA Astrophysics Data System (ADS)

    Sablik, M. J.; Augustyniak, B.; Chmielewski, M.

    1999-04-01

    A model based on the domain wall pinning magnetomechanical hysteresis model of Sablik and Jiles [M. J. Sablik and D. C. Jiles, IEEE Trans. Magn. 29, 2113 (1993)] was formulated to compute changes in magnetic hysteresis under biaxial stress conditions with the magnetic field and stress axes noncoaxial. The model included the Villari effect and other asymmetric stress effects. The magnetic field was taken at various angles relative to the stress axis. The Barkhausen noise, hysteresis loss, and maximum flux density were computed for fields varying between ±1 kA/m. The results compared favorably to experimental data on several steels—Polish St3 steel, Polish St41 steel, and US commercial grade steel pipe.

  18. Modeling of a Magnetorheological Actuator Including Magnetic Hysteresis

    Microsoft Academic Search

    Jinung An; Dong-Soo Kwon

    2003-01-01

    Magnetorheological (MR) actuators provide controlled torque through control of an applied magnetic field. Therefore knowledge of the relationship between the applied current and output torque is required. This paper presents a new nonlinear modeling of MR actuators considering magnetic hysteresis to determine the torque-current nonlinear relationship. Equations for transmitted torque are derived according to mechanical shear configurations of the MR

  19. Attachment/detachment hysteresis of fiber-based magnetic grabbers.

    PubMed

    Gu, Yu; Kornev, Konstantin G

    2014-04-28

    We developed an experimental protocol to analyze the behaviour of a model fiber-based magnetic grabber. A fiber is vertically suspended and fixed to the substrate by its upper end. A magnetic droplet is attached to the free end of the fiber and when a permanent magnet approaches the droplet, the fiber is forced to bow and finally jumps to the magnet. It appears that one can flex the micro-fibers by very small micro or even nano-Newton forces. Using this setup, we discovered a hysteresis of fiber attachment/detachment: the pathway of the fiber jumping to and off the magnet depends on the distance between the magnet and the clamped end. This phenomenon was successfully explained by the Euler-Benoulli model of an elastic beam. The observed hysteresis of fiber attachment/detachment was attributed to the multiple equilibrium configurations of the fiber tip placed in a dipole-type magnetic field. PMID:24668160

  20. Finite element analysis of hysteresis motor using the vector magnetization-dependent model

    Microsoft Academic Search

    Hong-Kyu Kim; Hyun-Kyo Jung; Sun-Ki Hong

    1998-01-01

    This paper presents a finite element analysis procedure combined with a vector hysteresis model for the accurate analysis of an hysteresis motor. The vector magnetization-dependent model is adopted to calculate the vector magnetization of the hysteresis ring. From the magnitude and direction of the magnetic field intensity, the magnetization of each ring element is calculated by the vector model. By

  1. Optimizing hysteretic power loss of magnetic ferrite nanoparticles

    E-print Network

    Chen, Ritchie

    2013-01-01

    This thesis seeks to correlate hysteretic power loss of tertiary ferrite nanoparticles in alternating magnetic fields to trends predicted by physical models. By employing integration of hysteresis loops simulated from ...

  2. Magnetic hysteresis in granular CuCo alloys

    NASA Astrophysics Data System (ADS)

    Allia, P.; Coisson, M.; Tiberto, P.; Vinai, F.; Knobel, M.

    1999-04-01

    Room-temperature hysteresis loops of granular Cu100-xCox alloys (5?x?15) obtained by planar flow casting in air and submitted to proper annealing treatments have been measured up to a field of 10 kOe by means of a vibrating sample magnetometer. In major loops (|Hvert|=10 kOe), the reduced remanence-to-saturation ratio mr=Mr/Ms and the coercivity Hc measured on all studied materials appear to be related by an almost linear law of the type mr?1/3 (?Hc/kT), ? being the average magnetic moment on Co particles. A similar relation is also observed on minor symmetrical loops (100 Oe?|Hvert|?9 kOe). The observed results are accounted for by a model which considers the hysteresis as originating by magnetic interactions among nearly superparamagnetic Co particles.

  3. Hysteresis and saturation effects with the ALS lattice magnets

    SciTech Connect

    Keller, R.

    1995-04-01

    The primary purpose of the magnetic measurements performed on the ALS storage ring lattice magnets was to ascertain their compliance with the strict tolerances established for this third-generation synchrotron light source. In the course of the data evaluation, an approximation method has been developed that leads to four-parameter representations of all magnet transfer functions. The expressions for the transfer functions were now used to change the standard working point of the ALS storage ring from the upper to the lower hysteresis branches of all lattice magnet families, and later to ramp the ring from the customary 1.5 GeV to the maximum design energy of 1.9 GeV in one uninterrupted process that did not require any intermediate tune correction. This achievement is all the more remarkable as no remnant fields had directly been measured with any of these magnets. A specific remnant field effect that led to anomalous machine behavior-when trying to recuperate the betatron tunes on the lower hysteresis branch at standard energy could be ascribed to the C-shape of the quadrupole yokes.

  4. Hysteresis in Magnetic Shape Memory Composites: Modeling and Simulation

    E-print Network

    Conti, Sergio; Rumpf, Martin

    2015-01-01

    Magnetic shape memory alloys are characterized by the coupling between a structural phase transition and magnetic one. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the transformation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the phase boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimali...

  5. Element-specific magnetic hysteresis measurements, a new application of circularly polarized soft x-rays

    SciTech Connect

    Lin, H.J.; Chen, C.T.; Meigs, G. [AT and T Bell Labs., Murray Hill, NJ (United States); Idzerda, Y.U.; Chaiken, A.; Prinz, G.A. [Naval Research Lab., Washington, DC (United States); Ho, G.H. [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Physics

    1993-09-07

    Element-specific magnetic hysteresis measurements on heteromagnetic materials have been achieved by using circularly polarized soft-x- rays. Dramatically different Fe and Co hysteresis curves of Fe/Cu/Co trilayers were obtained by recording the magnetic circular dichroism (MCD) at their respective L{sub 3} white lines as a function of applied magnetic field. The data resolve the complicated hysteresis curves, observed by conventional magnetometry, and determine the individual magnetic moments for the Fe and Co layers. Fine hysteresis features, imperceptible in the conventional curves, were also observed, demonstrating a new application of circularly polarized soft-x-rays in the investigation of magnetic systems.

  6. Effect of twist process on critical current and hysteresis loss of Nb 3Sn strands

    NASA Astrophysics Data System (ADS)

    Zhang, P. X.; Zhou, L.; Tang, X. D.; Liang, M.; Li, C. G.; Wu, Y.; Yan, G.; Yang, M.; Feng, Y.; Liu, X. H.; Weng, P. D.; Lu, Y. F.

    2007-10-01

    We have prepared Nb 3Sn strands by the internal tin process for superconducting conductor application in the international thermonuclear experimental reactor (ITER). The multifilamentary Nb 3Sn strands have a diameter of 0.82 mm and a unit length longer than 5000 m. We have investigated the effect of twist process on superconducting critical current density and hysteresis loss for Nb 3Sn strands. It has been found that the twist process significantly reduces the hysteresis loss of the strands, while the critical current density and the n-value remain nearly unchanged.

  7. Stress dependence and effect of plastic deformation on magnetic hysteresis and anhysteretic magnetization of FeNi32% films

    Microsoft Academic Search

    P. Finkel; S. Lofland

    2007-01-01

    The magnetic hysteresis and anhysteretic magnetization of FeNi32% films were investigated as a function of isotropic stress. The magnetostriction contribution to dc magnetization under elastic stress and the effect of the plastic strain on the hysteresis loops are discussed. Also, a role of the plastic deformation interrelated with the elastic stress in the magnetization process is established. An experimental system

  8. On the Rayleigh law of magnetization: A new mathematical model of hysteresis loops

    NASA Astrophysics Data System (ADS)

    Ponomarev, Yu. F.

    2007-11-01

    A mathematical model of magnetic hysteresis loops for weak ac magnetic fields, which is applicable for both symmetrical hysteresis loops that are described by the Rayleigh law of magnetization and asymmetrical loops that are not, has been formulated. The asymmetrical hysteresis loops take place when the ferromagnet is affected, along with an ac magnetizing field, by a dc field. The frequency spectrum of a ferromagnet magnetization has been analyzed as a time function. A technique for experimental determination of parameters that enter into this model is proposed, which uses amplitudes and phases of the first three magnetization harmonic components (the first, the second, and the third ones).

  9. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    NASA Astrophysics Data System (ADS)

    Gupta, Surbhi; Tomar, Monika; Gupta, Vinay

    2015-03-01

    The influence of Cerium doping on the structural and magnetic properties of BiFeO3 thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi1-xCexFeO3 (BCFO) thin films with x=0-0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x?0.08. All low wavenumber Raman modes (<300 cm-1) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm-1), shows a minor shift. Sudden evolution of Raman mode at 668 cm-1, manifested as A1-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M-H) hysteresis curves with improved saturation magnetization (Ms) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi0.88Ce0.12FeO3 thin film found to exhibit better magnetic properties with Ms=15.9 emu/g without any impure phase.

  10. Analysis of power magnetic components with nonlinear static hysteresis: finite-element formulation

    Microsoft Academic Search

    Y. Zhai; L. Vu-Quoc

    2005-01-01

    We present a new systematic methodology to efficiently solve coupled electromagnetic problems with nonlinear hysteresis at low frequency (10 kHz), called static hysteresis, by the finite-element method. The methodology integrates a new domain-wall-motion hysteresis model for power magnetic components (POMACs) into a finite-element potential formulation via an implicit-inverse model calculation. It uses a novel two-level iterative algorithm incorporating the efficient

  11. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Hernández-Gómez, P.; Muñoz, J. M.; Valente, M. A.; Torres, C.; de Francisco, C.

    2013-01-01

    Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer's formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  12. Surface aligned magnetic moments and hysteresis of an endohedral single-molecule magnet on a metal.

    PubMed

    Westerström, Rasmus; Uldry, Anne-Christine; Stania, Roland; Dreiser, Jan; Piamonteze, Cinthia; Muntwiler, Matthias; Matsui, Fumihiko; Rusponi, Stefano; Brune, Harald; Yang, Shangfeng; Popov, Alexey; Büchner, Bernd; Delley, Bernard; Greber, Thomas

    2015-02-27

    The interaction between the endohedral unit in the single-molecule magnet Dy_{2}ScN@C_{80} and a rhodium (111) substrate leads to alignment of the Dy 4f orbitals. The resulting orientation of the Dy_{2}ScN plane parallel to the surface is inferred from comparison of the angular anisotropy of x-ray absorption spectra and multiplet calculations in the corresponding ligand field. The x-ray magnetic circular dichroism is also angle dependent and signals strong magnetocrystalline anisotropy. This directly relates geometric and magnetic structure. Element specific magnetization curves from different coverages exhibit hysteresis at a sample temperature of ?4??K. From the measured hysteresis curves, we estimate the zero field remanence lifetime during x-ray exposure of a submonolayer to be about 30 seconds. PMID:25768775

  13. Surface Aligned Magnetic Moments and Hysteresis of an Endohedral Single-Molecule Magnet on a Metal

    NASA Astrophysics Data System (ADS)

    Westerström, Rasmus; Uldry, Anne-Christine; Stania, Roland; Dreiser, Jan; Piamonteze, Cinthia; Muntwiler, Matthias; Matsui, Fumihiko; Rusponi, Stefano; Brune, Harald; Yang, Shangfeng; Popov, Alexey; Büchner, Bernd; Delley, Bernard; Greber, Thomas

    2015-02-01

    The interaction between the endohedral unit in the single-molecule magnet Dy2ScN @C80 and a rhodium (111) substrate leads to alignment of the Dy 4 f orbitals. The resulting orientation of the Dy2ScN plane parallel to the surface is inferred from comparison of the angular anisotropy of x-ray absorption spectra and multiplet calculations in the corresponding ligand field. The x-ray magnetic circular dichroism is also angle dependent and signals strong magnetocrystalline anisotropy. This directly relates geometric and magnetic structure. Element specific magnetization curves from different coverages exhibit hysteresis at a sample temperature of ˜4 K . From the measured hysteresis curves, we estimate the zero field remanence lifetime during x-ray exposure of a submonolayer to be about 30 seconds.

  14. Dipole-dipole interaction and its concentration dependence of magnetic fluid evaluated by alternating current hysteresis measurement

    NASA Astrophysics Data System (ADS)

    Ota, Satoshi; Yamada, Tsutomu; Takemura, Yasushi

    2015-05-01

    Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic tools, such as for treating hyperthermia and in magnetic particle imaging, respectively. Magnetic relaxation is one of the heating mechanisms of MNPs. Brownian and Néel relaxation times are calculated conventional theories; however, the influence of dipole-dipole interactions has not been considered in conventional models. In this study, water-dispersed MNPs of different concentrations and MNPs fixed with an epoxy bond were prepared. dc and ac hysteresis loops for each sample were measured. With respect to both dc and ac hysteresis loops, magnetization decreased with the increase in MNP concentration because of inhibition of magnetic moment rotation due to dipole-dipole interactions. Moreover, intrinsic loss power (ILP) was estimated from the areas of the ac hysteresis loops. The dependence of ILP on the frequency of the magnetic field was evaluated for each MNP concentration. The peak frequency of ILP increased with the decrease in MNP concentration. These peaks were due to Brownian relaxation, as they were not seen with the fixed sample. This indicates that the Brownian relaxation time became shorter with lower MNP concentration, because the weaker dipole-dipole interactions with lower concentrations suggested that the magnetic moments could rotate more freely.

  15. Stabilization of a system with saturating, non-monotone hysteresis and frequency dependent power losses by a PD controller

    NASA Astrophysics Data System (ADS)

    Ekanayake, D. B.; Iyer, R. V.

    2015-02-01

    We prove the closed loop stability of a PD controller for certain systems with saturating, non-monotone hysteresis and frequency dependent power losses. Most controllers use inverse compensators to cancel out actuator hysteresis nonlinearity. We show that we can achieve stability of the closed-loop system without an explicit inverse computation (using least squares minimization or otherwise).

  16. Ac magnetorestriction hysteresis and magnetization direction in grain oriented silicon steels

    SciTech Connect

    Mogi, Hisashi; Matsuo, Yukio; Kumano, Tomoji

    1999-09-01

    A hysteresis curve of ac magnetostriction was measured, magnetizing a grain oriented silicon steel in the direction deviated from rolling direction of a sample. The ac magnetostriction ({lambda} ac) curves were analyzed as harmonics in the interest of noise spectrum of such as a power transformer. The domain structure model in this magnetostriction process was proposed. The hysteresis was large in the magnetization direction inclined at 30 and 90{degree} from the rolling direction.

  17. Calculation of the magnetic field in the active zone of a hysteresis clutch

    NASA Technical Reports Server (NTRS)

    Ermilov, M. A.; Glukhov, O. M.

    1977-01-01

    The initial distribution of magnetic induction in the armature stationary was calculated relative to the polar system of a hysteresis clutch. Using several assumptions, the problem is reduced to calculating the static magnetic field in the ferromagnetic plate with finite and continuous magnetic permeability placed in the air gap between two identical, parallel semiconductors with rack fixed relative to the tooth or slot position.

  18. Hydrostatic pressure effect on magnetic hysteresis parameters of multidomain magnetite: Implication for crustal magnetization

    NASA Astrophysics Data System (ADS)

    Sato, Masahiko; Yamamoto, Yuhji; Nishioka, Takashi; Kodama, Kazuto; Mochizuki, Nobutatsu; Tsunakawa, Hideo

    2014-08-01

    Hydrostatic pressure effects on magnetic parameters for crustal rock have been poorly investigated yet, while it is important for an understanding of source of long-wavelength magnetic anomaly, which is considered to reside in deep crust. In this study we have conducted the in situ magnetic hysteresis measurements on multidomain (MD) magnetite under high pressure up to 1 GPa. With special attention to hydrostatic condition and sample preparation, pressure dependences of its magnetic hysteresis parameters (saturation magnetization, Ms; saturation remanence, Mrs; coercivity, Bc; coercivity of remanence, Bcr) are revealed as follows: (1) Bc monotonically increases with pressure at a rate of +91%/GPa; (2) Ms is constant under high pressure up to 1 GPa; (3) Mrs increases with pressure up to 0.5 GPa by ?30% and reaches to saturation above the pressure; (4) Bcr is nearly constant at low pressure, and it increases above ?0.6 GPa; and (5) the changes in ratios Mrs/Ms and Bcr/Bc correlate with each other, resulting in systematic movement on the Day plot. These findings allow us to estimate change in a relaxation time of magnetic remanence carried by MD magnetite as a function of depth in the continental crust. In the model calculation, we consider no effect of plastic deformation on magnetic properties of magnetite, and the relaxation time is calculated using the theoretical thermal gradient. In consequence, the relaxation time monotonously decreases with depth, and primary remanence is considered to be replaced by a viscous remanent magnetization (VRM) over the Brunhes chron. Therefore, it is suggested that MD magnetite in deep crustal rocks can contribute to the source of the anomaly over the continental crust by VRM and induced magnetization.

  19. Magnetic Loss in Microwave Heating

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Hwang, Jiann-Yang; Andriese, Matthew

    2012-02-01

    A simplified equation for quantifying magnetic loss in materials under microwave irradiation was derived to demonstrate the importance of magnetic loss in microwave heating. The magnetic losses for five ferrites, namely, BaFe12O19, SrFe12O19, CuFe2O4, CuZnFe4O4, and NiZnFe4O4 were calculated at 2.45 GHz using the derived equation. It is found that magnetic loss is up to approximately four times greater than dielectric loss in the microwave heating of ferrites. These results, through the calculations, theoretically demonstrate that magnetic dielectric materials are heated much faster in a magnetic field than in an electric field of the microwave applicator.

  20. Modeling the influence of varying magnetic properties in soft magnetic materials on the hysteresis shape using the flux tube approach

    NASA Astrophysics Data System (ADS)

    Petrun, M.; Steentjes, S.; Hameyer, K.; Dolinar, D.

    2015-05-01

    Magnetic properties can vary significantly inside soft magnetic steel sheets (SMSSs), both due to mechanical stresses and structural changes originating from different manufacturing processes. The integral consideration, i.e. averaging these effects over the SMSS, leads to a strong simplification of the underlying mechanisms. Such simplification is often inadequate when considering the influence of the varying magnetic properties on the hysteresis loop shape and its dynamic behavior. This paper presents a new approach to model irregular hysteresis loops of non-oriented SMSSs using the flux tube approach, where the SMSS is divided into several flux tubes having different magnetic properties. This enables to model non-homogeneous distributions of the magnetic flux and irregular hysteresis loops subject to varying magnetic properties.

  1. Characterization of the electrocaloric effect and hysteresis loss in relaxor ferroelectric thin films under alternating current bias fields

    NASA Astrophysics Data System (ADS)

    Jia, Yanbing; Ju, Y. Sungtaek

    2014-06-01

    We report characterization and analysis of the frequency-dependent temperature responses in thin films exhibiting the electrocaloric (EC) effect under AC bias fields using a high-precision lock-in technique. The temperature response detected by an embedded thin-film resistance thermometer is analyzed using the steady-periodic solutions of a 3D heat conduction model to extract the equivalent volumetric heat sources/sinks, which represent the combined effects of electrocaloric cooling/heating and hysteresis loss. The dependence of the measured heat source strengths on the bias field frequency and amplitude is consistent with our model prediction and independently measured dielectric properties. The volumetric heating rate due to hysteresis loss is estimated to be as much as 15% of the EC heating/cooling rates for solution-cast relaxor ferroelectric polymer films studied here. Our experimental approach enables a systematic study of the electrocaloric performance of thin films and deleterious impact of hysteresis loss.

  2. Investigations of magnetic hysteresis of barium ferrite using the torsion pendulum method

    SciTech Connect

    Richter, H.J.; Hempel, K.A.

    1988-11-15

    The magnetic stiffness is measured by the torsion pendulum method as a function of the applied field. Measurements are performed on random assemblies of chemically coprecipitated barium ferrite powders. The magnetic stiffness for both minor and major loops of the hysteresis cycle is measured and compared with calculated curves based on the model of coherent rotation. The discrepancies between theory and experiment are partly due to the effect of magnetic interaction.

  3. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Heczko, O.; Drahokoupil, J.; Straka, L.

    2015-05-01

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  4. Hybrid models of hysteresis for mixed hysteretic loops in heterogeneous magnetic materials

    NASA Astrophysics Data System (ADS)

    Dimian, M.; Andrei, P.; Grayson, M.

    2014-05-01

    The mixed hysteresis behavior of counter-clockwise and clockwise loops has recently attracted the attention of the magnetics community, due to several experimental findings in inhomogeneous and hetero-structure magnetic systems. Various hybrid models are proposed here to address this behavior based on the superposition of standard hysteresis models and their newly developed clockwise variants. A special attention is also devoted to Bouc-Wen model, a typical clockwise often used by applied mechanics community, and to its relevance for mixed hysteresis. These clockwise and hybrid models have been implemented in an open-access academic software and their performance is illustrated by examples of hysteretic loops, first order reversal curves and diagrams simulated in this framework.

  5. A guided enquiry approach to introduce basic concepts concerning magnetic hysteresis to minimize student misconceptions

    NASA Astrophysics Data System (ADS)

    Wei, Yajun; Zhai, Zhaohui; Gunnarsson, Klas; Svedlindh, Peter

    2014-11-01

    Basic concepts concerning magnetic hysteresis are of vital importance in understanding magnetic materials. However, these concepts are often misinterpreted by many students and even textbooks. We summarize the most common misconceptions and present a new approach to help clarify these misconceptions and enhance students’ understanding of the hysteresis loop. In this approach, students are required to perform an experiment and plot the measured magnetization values and thereby calculated demagnetizing field, internal field, and magnetic induction as functions of the applied field point by point on the same graph. The concepts of the various coercivity, remanence, saturation magnetization, and saturation induction will not be introduced until this stage. By plotting this graph, students are able to interlink all the preceding concepts and intuitively visualize the underlying physical relations between them.

  6. A mechanism of magnetic hysteresis in heterogeneous alloys

    Microsoft Academic Search

    E. C. Stoner; E. P. Wohlfarth

    1991-01-01

    It is suggested that in many ferromagnetic materials there may occur particles distinct in magnetic character from the general matrix, and below the critical size, depending on shape, for which domain boundary formation is energetically possible. For such single-domain particles, change of magnetization can take place only by rotation of the magnetization vector. As the field changes continuously, the resolved

  7. Scaling Behavior of Barkhausen Avalanches along the Hysteresis loop in Nucleation-Mediated Magnetization Reversal Process

    SciTech Connect

    Im, Mi-Young; Fischer, Peter; Kim, D.-H.; Shin, S.-C.

    2008-10-14

    We report the scaling behavior of Barkhausen avalanches for every small field step along the hysteresis loop in CoCrPt alloy film having perpendicular magnetic anisotropy. Individual Barkhausen avalanche is directly observed utilizing a high-resolution soft X-ray microscopy that provides real space images with a spatial resolution of 15 nm. Barkhausen avalanches are found to exhibit power-law scaling behavior at all field steps along the hysteresis loop, despite their different patterns for each field step. Surprisingly, the scaling exponent of the power-law distribution of Barkhausen avalanches is abruptly altered from 1 {+-} 0.04 to 1.47 {+-} 0.03 as the field step is close to the coercive field. The contribution of coupling among adjacent domains to Barkhausen avalanche process affects the sudden change of the scaling behavior observed at the coercivity-field region on the hysteresis loop of CoCrPt alloy film.

  8. Mechanisms of magnetic and temperature hysteresis in ErFeO3 and TmFeO3 single crystals

    NASA Astrophysics Data System (ADS)

    Tsymbal, L. T.; Bazaliy, Ya. B.; Kakazei, G. N.; Vasiliev, S. V.

    2010-10-01

    Magnetic hysteresis is studied in the orthoferrites ErFeO3 and TmFeO3 using the single crystal samples of millimeter dimensions. It is shown that in both materials one observes a temperature transition manifesting itself through the temperature hysteresis of the magnetic moment and a peculiar temperature evolution of the field hysteresis loop shapes near this transition. Experiments rule out the hypothesis that the ordering of the orthoferrite's rare-earth magnetic moments plays an important role in these phenomena. The hysteresis curves can be explained by a few-domain magnetic state of the samples that results from the weak ferromagnetism of the orthoferrites. The phenomenon is generic for weak ferromagnets with temperature dependent magnetization. A large characteristic magnetic length makes the behavior of the relatively big samples analogous to that observed in the nanosize samples of strong ferromagnets.

  9. Energy loss in magnetic switching cores

    SciTech Connect

    Dougal, R.A.

    1988-07-01

    This analytical study had two objectives. The first was to develop a computer code to model, temporally and spatially, the magnetization of amorphous ferrous materials (specifically Metglas) in an inductive circuit element under high surface field conditions while including the interaction of that element with the electrical circuit in a self-consistent manner. The second goal was to partition the energy losses experimentally measured in such a ferrous core according to loss mechanism by making comparisons between the experimental data and the computer simulation. The loss mechanisms considered were eddy current, hysteresis, and other. Experimental data to be compared with the results of the simulation had been previously collected at Los Alamos National Laboratory in the course of a program in which a 1 kHz, three stage magnetic modulator was built. However, inconsistencies in the experimental data became apparent as comparisons were being made between the results of the computer simulation and the LANL data. For this reason, the results in this report have been derived from experimental data supplied by Sandia National Laboratories. A key portion of this work was the development of a computer code to model the magnetization of the ferrous core material. The beginnings of the code had been developed by Howard Rhinehart and Bill Nunnally at Los Alamos, and were written in LASAN, the Los Alamos Systems Analysis language. In the early stages of this project, a great deal of time was spent adapting the LASAN program to run on the VAX computer here at South Carolina. Insufficient documentation proved to be the downfall of these efforts, and later (in retrospect, far to late) we abandoned the idea of running the simulation under LASN, and instead rewrote the simulation in ACSL, a systems simulation code which is supported on our VAX. 18 figs., 1 tab.

  10. Metal phases in ordinary chondrites: Magnetic hysteresis properties and implications for thermal history

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Suavet, C.; Rochette, P.; Weiss, B. P.; Winklhofer, M.; Uehara, M.; Friedrich, Jon M.

    2014-04-01

    Magnetic properties are sensitive proxies to characterize FeNi metal phases in meteorites. We present a data set of magnetic hysteresis properties of 91 ordinary chondrite falls. We show that hysteresis properties are distinctive of individual meteorites while homogeneous among meteorite subsamples. Except for the most primitive chondrites, these properties can be explained by a mixture of multidomain kamacite that dominates the induced magnetism and tetrataenite (both in the cloudy zone as single-domain grains, and as larger multidomain grains in plessite and in the rim of zoned taenite) dominates the remanent magnetism, in agreement with previous microscopic magnetic observations. The bulk metal contents derived from magnetic measurements are in agreement with those estimated previously from chemical analyses. We evidence a decreasing metal content with increasing petrologic type in ordinary chondrites, compatible with oxidation of metal during thermal metamorphism. Types 5 and 6 ordinary chondrites have higher tetrataenite content than type 4 chondrites. This is compatible with lower cooling rates in the 650-450 °C interval for higher petrographic types (consistent with an onion-shell model), but is more likely the result of the oxidation of ordinary chondrites with increasing metamorphism. In equilibrated chondrites, shock-related transient heating events above approximately 500 °C result in the disordering of tetrataenite and associated drastic change in magnetic properties. As a good indicator of the amount of tetrataenite, hysteresis properties are a very sensitive proxy of the thermal history of ordinary chondrites, revealing low cooling rates during thermal metamorphism and high cooling rates (e.g., following shock reheating or excavation after thermal metamorphism). Our data strengthen the view that the poor magnetic recording properties of multidomain kamacite and the secondary origin of tetrataenite make equilibrated ordinary chondrites challenging targets for paleomagnetic study.

  11. Magnetic processes in hysteresis motors equipped with melt-textured YBCO

    Microsoft Academic Search

    T. Habisreuther; T. Strasser; W. Gawalek; P. Gornert; K. V. Ilushin; L. K. Kovalev

    1997-01-01

    Several hysteresis motors have been constructed with an output power up to 500 W at T=77 K. The rotors of these machines consist of melt-textured YBCO. In this work, the authors present detailed investigations on the magnetic processes in these rotors. Spheres were cut from melt-textured YBCO and investigated by rotating in vector-VSM. From these measurements, torque moments on the

  12. Simulations of magnetic hysteresis loops at high temperatures

    SciTech Connect

    Plumer, M. L.; Whitehead, J. P.; Fal, T. J. [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7 (Canada); Ek, J. van [Western Digital Corporation, San Jose, California 94588 (United States); Mercer, J. I. [Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7 (Canada)

    2014-09-28

    The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700?Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680?K. Our results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300?K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.

  13. Mechanical characterization of journal superconducting magnetic bearings: stiffness, hysteresis and force relaxation

    NASA Astrophysics Data System (ADS)

    Cristache, Cristian; Valiente-Blanco, Ignacio; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco Antonio; Pato, Nelson; Perez-Diaz, Jose Luis

    2014-05-01

    Superconducting magnetic bearings (SMBs) can provide stable levitation without direct contact between them and a magnetic source (typically a permanent magnet). In this context, superconducting magnetic levitation provides a new tool for mechanical engineers to design non-contact mechanisms solving the tribological problems associated with contact at very low temperatures. In the last years, different mechanisms have been proposed taking advantage of superconducting magnetic levitation. Flywheels, conveyors or mechanisms for high-precision positioning. In this work the mechanical stiffness of a journal SMBs have been experimentally studied. Both radial and axial stiffness have been considered. The influence of the size and shape of the permanent magnets (PM), the size and shape of the HTS, the polarization and poles configuration of PMs of the journal SMB have been studied experimentally. Additionally, in this work hysteresis behavior and force relaxation are considered because they are essential for mechanical engineer when designing bearings that hold levitating axles.

  14. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters.

  15. Magnetic hysteresis of an artificial square ice studied by in-plane Bragg x-ray resonant magnetic scattering

    NASA Astrophysics Data System (ADS)

    Morgan, J. P.; Kinane, C. J.; Charlton, T. R.; Stein, A.; Sánchez-Hanke, C.; Arena, D. A.; Langridge, S.; Marrows, C. H.

    2012-06-01

    We report X-ray resonant magnetic scattering studies of a Permalloy artificial square ice nanomagnet array, focussing on the field-driven evolution of the sum ? and difference ? signals of left and right handed circularly polarized synchrotron X-rays at different lateral positions in reciprocal space Qx. We used X-rays tuned to the Fe L3 resonance energy, with the scattering plane aligned along a principal symmetry axis of the array. Details of the specular ? hysteresis curve are discussed, following the system magnetization from an initial demagnetized state. The periodic structure gives rise to distinct peaks at in-plane reciprocal Bragg positions, as shown by fitting ?(Qx) to a model based on a simple unit cell structure. Diffraction order-dependent hysteresis in ? is observed, indicative of the reordering of magnetization on the system's two interpenetrating sublattices, which markedly deviates from an ideal Ising picture under strong applied fields.

  16. Nonlinear susceptibility and dynamic hysteresis loops of magnetic nanoparticles with biaxial anisotropy

    NASA Astrophysics Data System (ADS)

    Ouari, Bachir; Titov, Serguey V.; El Mrabti, Halim; Kalmykov, Yuri P.

    2013-02-01

    The nonlinear ac susceptibility and dynamic magnetic hysteresis (DMH) of a single domain ferromagnetic particle with biaxial anisotropy subjected to both external ac and dc fields of arbitrary strength and orientation are treated via Brown's continuous diffusions model [W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963)] of magnetization orientations. The DMH loops and nonlinear ac susceptibility strongly depend on the dc and ac field strengths, the polar angle between the easy axis of the particle, the external field vectors, temperature, and damping. In contrast to uniaxial particles, the nonlinear ac stationary response and DMH strongly depend on the azimuthal direction of the ac field and the biaxiality parameter ?.

  17. Hysteresis of magnetic force-gap in static and dynamic magnetic levitation with a high-{T_c} superconductor

    NASA Astrophysics Data System (ADS)

    Gou, X.-F.; Zhang, Z.-X.

    2008-11-01

    Hysteresis behavior of magnetic force versus gap between a high-Tc superconductor and a magnet, in static and dynamic cases, is studied numerically. Differing from the previous methods, based on macro electromagnetic constitutive relation of superconductors and Maxwell equations, a numerical method with the finite element method (FEM) is established. After numerical code is examined by comparing between numerical and experimental results of the relation of magnetic force-gap, the hysteresis curves of magnetic force-gap including major and minor loops in static case are simulated, and furthermore the dependences of major loop on main parameters including the critical current density and the thickness of superconductor, the residual magnetic field of magnet, and the diameter ratio of superconductor to magnet are studied numerically. In the case of free vibration, by investigating dynamic response of levitated body at different levitation/suspension positions in this magnetic levitation system, we obtain the corresponding results of the variation of magnetic force with gap. All the numerical results of the relation between magnetic force and gap show the strongly nonlinear and highly hysteretic behavior.

  18. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation

    NASA Astrophysics Data System (ADS)

    Vrijsen, N. H.; Jansen, J. W.; Compter, J. C.; Lomonova, E. A.

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.

  19. AC machine and transformer magnetic circuit model for iron loss calculation at converter feeding

    Microsoft Academic Search

    Romuald Luczkowski; R. Muszynski

    2003-01-01

    A new model of magnetic circuit of AC machine is presented. The model is foreseen for iron loss calculation in condition of non-sinusoidal feeding of the machine especially from the voltage source inverter with PWM. There are the separate channels for saturation, hysteresis and eddy currents phenomena in the model. The structure of the model, parameter identification and its application

  20. Magnetic Hysteresis Loop as a Tool for the Evaluation of Spheroidization of Cementites in Pearlitic Steels

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Kamada, Y.

    2015-04-01

    Pearlitic Fe-0.76wt.% C binary alloy was isothermally annealed at 700 °C up to 100 h to study the spheroidization of cementites and its effect on both the mechanical and magnetic properties with the aim to use the magnetic techniques for the evaluation of spheroidization in steels. Micro-Vickers hardness, magnetic hysteresis loop (MHL) measurements, optical and scanning electron microscopy studies were carried out at various lengths of time by interrupting the test. Microhardness and coercivity were decreased with increase in annealing time due to reduction in dislocation pinning and magnetic domain wall pinning for the breaking of cementite lamella and their subsequent transformation to spheroidal form. The microhardness and coercivity showed a very good correlation with the change in microstructure indicating that MHL would be a suitable non-destructive evaluation tool for the evaluation of spheroidized pearlitic steels.

  1. Magnetic hysteresis classification of the lunar surface and the interpretation of permanent remanence in lunar surface samples

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1972-01-01

    A magnetic hysteresis classification of the lunar surface is presented. It was found that there is a distinct correlation between natural remanence (NRM), saturation magnetization, and the hysteresis ratios for the rock samples. The hysteresis classification is able to explain some aspects of time dependent magnetization in the lunar samples and relates the initial susceptibility to NRM, viscous remanence, and to other aspects of magnetization in lunar samples. It is also considered that since up to 60% of the iron in the lunar soil may be super paramagnetic at 400 K, and only 10% at 100 K, the 50% which becomes ferromagnetic over the cycle has the characteristics of thermoremanence and may provide for an enhancement in measurable field on the dark side during a subsatellite magnetometer circuit.

  2. Nanomechanical Detection of Magnetic Hysteresis of a Single-crystal Yttrium Iron Garnet Micromagnetic Disk

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Diao, Zhu; Burgess, Jacob; Compton, Shawn; Fani Sani, Fatemeh; Firdous, Tayyaba; Vick, Douglas; Belov, Miro; Hiebert, Wayne; Freeman, Mark

    2013-03-01

    A micromagnetic disk was milled from a monocrystalline yttrium iron garnet film using a focused ion beam and micromanipulated onto a nanoscale torsional resonator. Nanomechanical torque magnetometry results show a unipolar magnetic hysteresis characteristic of a magnetic vortex state. Landau-Lifshitz-Gilbert-based micromagnetic simulations of the disk show a rich, flux-enclosed, three-dimensional domain structure. On the top and bottom faces of the disk, a skewed vortex state exists with a very small core. The core region extends through the thickness of the disk with a smooth variation in core diameter reaching a maximum along the midplane of the disk. The single crystalline nature of the disk lends to an observed absence of Barkhausen-like steps in the magnetization-versus-field curves, qualitatively different in comparison to the magnetometry results of an individual polycrystalline permalloy microdisk. Prospects for the mechanical detection of spin dynamical modes in these structures will also be discussed.

  3. A Jiles-Atherton and fixed-point combined technique for time periodic magnetic field problems with hysteresis

    SciTech Connect

    Chiampi, M.; Repetto, M. [Politecnico di Torino (Italy). Dipt. di Ingegneria Elettrica Industriale] [Politecnico di Torino (Italy). Dipt. di Ingegneria Elettrica Industriale; Chiarabaglio, D. [Istituto Elettrotecnico Nazionale Galileo Ferraris, Torino (Italy)] [Istituto Elettrotecnico Nazionale Galileo Ferraris, Torino (Italy)

    1995-11-01

    The hysteresis phenomenon can significantly affect the behavior of magnetic cores in electrical machines and devices. This paper presents a finite element solution of periodic steady state magnetic field problems in soft materials with scalar hysteresis. The Jiles-Atherton model is employed for the generation of symmetric B-H loops and it is coupled with the Fixed Point Technique for handling magnetic nonlinearities. The proposed procedure is applied to a hysteretic model problem whose analytical solution is available. The results show that the Fixed Point Technique can efficiently deal with non-single valued material characteristics under periodic operating conditions.

  4. Experimental measurement and calculation of losses in planar radial magnetic bearings

    NASA Technical Reports Server (NTRS)

    Kasarda, M. E. F.; Allaire, P. E.; Hope, R. W.; Humphris, R. R.

    1994-01-01

    The loss mechanisms associated with magnetic bearings have yet to be adequately characterized or modeled analytically and thus pose a problem for the designer of magnetic bearings. This problem is particularly important for aerospace applications where low power consumption of components is critical. Also, losses are expected to be large for high speed operation. The iron losses in magnetic bearings can be divided into eddy current losses and hysteresis losses. While theoretical models for these losses exist for transformer and electric motor applications, they have not been verified for magnetic bearings. This paper presents the results from a low speed experimental test rig and compares them to calculated values from existing theory. Experimental data was taken over a range of 90 to 2,800 rpm for several bias currents and two different pole configurations. With certain assumptions agreement between measured and calculated power losses was within 16 percent for a number of test configurations.

  5. New soft magnetic amorphous cobalt based alloys with high hysteresis loop linearity

    NASA Astrophysics Data System (ADS)

    Nosenko, V. K.; Maslov, V. V.; Kochkubey, A. P.; Kirilchuk, V. V.

    2008-02-01

    The new amorphous Co56÷59(Fe,Ni,Mn)21÷24(Si0.2B0.8)20-based metal alloys (AMA) with high saturation induction (BS>=1T) were developed. Toroidal tape wound magnetic cores made from these AMA after heat-magnetic treatment (HMT) in a reversal field are characterized by high hysteresis loop linearity, minimum effective magnetic permeability and its high field stability in combination with low coercivity Hc (1-3 A/m, 1 kHz). For the most prospecting alloy compositions the value of effective magnetic permeability decreases compared to known alloys up to 550 - 670 units and remains constant in the wide magnetic field range 1100 - 1300 A/m. Maximum remagnetization loop linearity is achieved after optimum HMT in high Ni containing AMAs, which are characterized by the record low squareness ratio values Ks=0.002-0.02 and Hc=1.0 A/m. Magnetic cores made from the new amorphous alloys can be used both in filter chokes of switch-mode power supply units and in matching mini-transformers of telecommunication systems; at that, high efficiency and accuracy of signal transmission including high frequency pulses are ensured under conditions of long-term influence of dc magnetic bias.

  6. Rotational and alternating energy loss vs. magnetizing frequency in SiFe laminations

    Microsoft Academic Search

    F. Fiorillo; A. M. Rietto

    1990-01-01

    Rotational energy losses Wr have been measured as a function of magnetizing frequency fm and working induction Bm in non-oriented SiFe laminations and compared with losses in alternating fields Wa. Wr and Wa exhibit a same non-linear dependence on fm, while the ratio Wr\\/Wa is a monotonically decreasing function of Bm. A phenomenological approach to the behavior of hysteresis and

  7. Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles.

    PubMed

    Ruta, S; Chantrell, R; Hovorka, O

    2015-01-01

    We present a general study of the frequency and magnetic field dependence of the specific heat power produced during field-driven hysteresis cycles in magnetic nanoparticles with relevance to hyperthermia applications in biomedicine. Employing a kinetic Monte-Carlo method with natural time scales allows us to go beyond the assumptions of small driving field amplitudes and negligible inter-particle interactions, which are fundamental to the applicability of the standard approach based on linear response theory. The method captures the superparamagnetic and fully hysteretic regimes and the transition between them. Our results reveal unexpected dipolar interaction-induced enhancement or suppression of the specific heat power, dependent on the intrinsic statistical properties of particles, which cannot be accounted for by the standard theory. Although the actual heating power is difficult to predict because of the effects of interactions, optimum heating is in the transition region between the superparamagnetic and fully hysteretic regimes. PMID:25766365

  8. Magnetic biasing of a ferroelectric hysteresis loop in a multiferroic orthoferrite.

    PubMed

    Tokunaga, Y; Taguchi, Y; Arima, T; Tokura, Y

    2014-01-24

    In a multiferroic orthoferrite Dy0.7Tb0.3FeO3, which shows electric-field-(E-)driven magnetization (M) reversal due to a tight clamping between polarization (P) and M, a gigantic effect of magnetic-field (H) biasing on P-E hysteresis loops is observed in the case of rapid E sweeping. The magnitude of the bias E field can be controlled by varying the magnitude of H, and its sign can be reversed by changing the sign of H or the relative clamping direction between P and M. The origin of this unconventional biasing effect is ascribed to the difference in the Zeeman energy between the +P and -P states coupled with the M states with opposite sign. PMID:24484164

  9. Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruta, S.; Chantrell, R.; Hovorka, O.

    2015-03-01

    We present a general study of the frequency and magnetic field dependence of the specific heat power produced during field-driven hysteresis cycles in magnetic nanoparticles with relevance to hyperthermia applications in biomedicine. Employing a kinetic Monte-Carlo method with natural time scales allows us to go beyond the assumptions of small driving field amplitudes and negligible inter-particle interactions, which are fundamental to the applicability of the standard approach based on linear response theory. The method captures the superparamagnetic and fully hysteretic regimes and the transition between them. Our results reveal unexpected dipolar interaction-induced enhancement or suppression of the specific heat power, dependent on the intrinsic statistical properties of particles, which cannot be accounted for by the standard theory. Although the actual heating power is difficult to predict because of the effects of interactions, optimum heating is in the transition region between the superparamagnetic and fully hysteretic regimes.

  10. Force of Adhesion Upon Loss of Contact Angle Hysteresis: When a Liquid Behaves Like a Solid

    NASA Astrophysics Data System (ADS)

    Escobar, Juan V.; Castillo, Rolando

    2013-11-01

    The theoretically predicted vanishment of the macroscopic contact angle hysteresis is found experimentally along with a small but finite force of adhesion (FAd?-0.5?N) that, unexpectedly, is independent of the history of the preload. Our results agree with the prediction of a model in which the surface tension of the liquid provides the counterpart of the restoring force of an elastic solid, evidencing that the dewetting of a liquid in the absence of strong pinning points is equivalent to the detachment of an elastic solid.

  11. Effect of the magnetic field applied during cooling on magnetic hysteresis in the low-temperature phase of magnetite: First-order reversal curve (FORC) analysis

    Microsoft Academic Search

    A. V. Smirnov

    2007-01-01

    The strength of a magnetic field applied during cooling through the Verwey transition can control the low-temperature (LT) magnetic hysteresis properties of magnetite. This effect is investigated using the first-order reversal curve (FORC) technique. LT FORC distributions were measured at 20 K from four polycrystalline samples after cooling from 300 K in zero magnetic field or in the presence of

  12. Modeling hysteresis curves of anisotropic SmCoFeCuZr magnets

    NASA Astrophysics Data System (ADS)

    Sampaio da Silva, Fernanda A.; Castro, Nicolau A.; de Campos, Marcos F.

    2013-02-01

    The hysteresis curves at room temperature and at 630 K of an anisotropic magnet were successfully modeled with the Stoner-Wohlfarth Callen-Liu-Cullen (SW-CLC) model. This implies that coherent rotation of domains is the reversal mechanism in this magnet. The chemical composition of the evaluated magnet is Sm(CobalFe0.06Cu0.108Zr0.03)7.2. The anisotropy field HA was estimated with the model, resulting ?0HA=7.1 T at the room temperature, and 2.9 T at 630 K. For this sample, the CLC interaction parameter (1/d) is very low (near zero) and, thus, the nanocrystalline 2:17 grains are well "magnetically decoupled". The texture analysis using Schulz Pole figure data indicated Mr/Ms ratio=0.96, and this means that the magnet is very well aligned. The excellent alignment of the grains is one of the reasons for the high coercivity of this sample (˜4 T at room temperature).

  13. Novel Magnetic Chiral Structures and Unusual Temperature Hysteresis in the Metallic Helimagnet MnP

    NASA Astrophysics Data System (ADS)

    Yamazaki, Teruo; Tabata, Yoshikazu; Waki, Takeshi; Sato, Taku J.; Matsuura, Masato; Ohoyama, Kenji; Yokoyama, Makoto; Nakamura, Hiroyuki

    2014-05-01

    We have reinvestigated the magnetic properties of the classical metallic helimagnet MnP by magnetization and neutron scattering experiments. Our neutron scattering results indicate that the previously reported magnetic structure in the low-temperature (LT) helimagnetic phase (T < 47 K) should be modified to an alternately tilted helimagnetic structure produced by the Dzyaloshinsky–Moriya interaction. In the intermediate temperature (IT) range between the LT helimagnetic phase and the high-temperature (HT) ferromagnetic phase along the c-axis, 47 < T < 252 K, we have found a weak ferromagnetic behavior along the b-axis. Surprisingly, the IT weak ferromagnetic phase has two different states, namely, the large magnetization (LM) and small magnetization (SM) states. The SM state emerges with cooling from the paramagnetic phase above 292 K via the HT ferromagnetic phase and LM state emerges with warming from the LT helimagnetic phase. The weak ferromagnetism along the b-axis and the unusual temperature hysteresis in the IT phase can be understood by assuming a spontaneous formation of the stripe structure consisting of alternately arranged HT ferromagnetic and LT helimagnetic domains.

  14. Properties of ferromagnetic film hysteresis, on the surface of a hard-magnetic antiferromagnet, with a domain structure

    NASA Astrophysics Data System (ADS)

    Kovalev, A. S.; Pankratova, M. L.

    2014-11-01

    This is a theoretical investigation of the exchange bias phenomenon, and the properties of a thin magnetic film's magnetization hysteresis loop, on the rough surface of a hard-magnetic antiferromagnet. An interface model with a periodic structure of atomic steps is presented. These atomic steps are associated with a spatially inhomogeneous distribution of the ferromagnetic film magnetization, akin to a system of domain walls. This structure leads to a complicated external field dependence of magnetization: the hysteresis curve can assume an asymmetrical shape and "fall apart" into two hysteresis loops, divided by a "horizontal plateau," or an area with constant field-independent magnetization. Such field dependence behavior has been recently observed experimentally in different ferro/antiferromagnet systems. The field dependence of magnetization has been obtained analytically using the long-wave approximation for various characteristics of ferromagnetic film (its thickness, values of exchange interaction, and magnetic anisotropy), and the interface (the period of the inhomogeneous structure, and exchange interaction through the interface). The analytical results are confirmed by numerical calculations for the corresponding discrete model with a more complex interface structure.

  15. Hysteresis from antiferromagnet domain-wall processes in exchange-biased systems: Magnetic defects and thermal effects

    Microsoft Academic Search

    Joo-Von Kim; R. L. Stamps

    2005-01-01

    The partial domain-wall theory of exchange bias predicts bias field magnitudes and film thickness dependencies consistent with certain experimental systems. However, the theory does not account for the coercivity enhancement that accompanies the hysteresis loop shift in single domain materials. We show theoretically that the presence of an attractive domain-wall potential in the antiferromagnet, arising from magnetic impurities, for example,

  16. The effect of surface grain reversal on the AC losses of sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Moore, Martina; Roth, Stefan; Gebert, Annett; Schultz, Ludwig; Gutfleisch, Oliver

    2015-02-01

    Sintered Nd-Fe-B magnets are exposed to AC magnetic fields in many applications, e.g. in permanent magnet electric motors. We have measured the AC losses of sintered Nd-Fe-B magnets in a closed circuit arrangement using AC fields with root mean square-values up to 80 mT (peak amplitude 113 mT) over the frequency range 50 to 1000 Hz. Two magnet grades with different dysprosium content were investigated. Around the remanence point the low grade material (1.7 wt% Dy) showed significant hysteresis losses; whereas the losses in the high grade material (8.9 wt% Dy) were dominated by classical eddy currents. Kerr microscopy images revealed that the hysteresis losses measured for the low grade magnet can be mainly ascribed to grains at the sample surface with multiple domains. This was further confirmed when the high grade material was subsequently exposed to DC and AC magnetic fields. Here a larger number of surface grains with multiple domains are also present once the step in the demagnetization curve attributed to the surface grain reversal is reached and a rise in the measured hysteresis losses is evident. If in the low grade material the operating point is slightly offset from the remanence point, such that zero field is not bypassed, its AC losses can also be fairly well described with classical eddy current theory.

  17. Magnetic viscosity, hysteresis reptation, and their relationship with adjacent track interference in advanced perpendicular recording media

    NASA Astrophysics Data System (ADS)

    Srinivasan, Kumar; Roddick, Eric

    2012-08-01

    The role of exchange interactions and thermal relaxation in advanced three-layer exchange-coupled composite perpendicular recording media with graded anisotropy was investigated through studies on magnetic viscosity, magnetic hysteresis reptation, and spin-stand adjacent track interference. For this purpose, thickness series in the NiW seed and the three magnetic layers were made and studied. For each sample, both magnetic viscosity and reptation were evaluated using a magnetometer over a series of initial magnetic states. Magnetic viscosity, which is the change in the magnetization of the sample with time, showed a distinct second-order dependence on a logarithmic time-scale. In general, viscosity appeared to be more strongly influenced by exchange-coupling interactions in the media than the thermal stability. Magnetic reptation, which is the change in the magnetization when the external field was repeatedly cycled between a nonzero field and zero field, i.e., remanence, showed two types of distinct reptation phenomena—field reptation and remanence reptation—depending on whether the magnetic state was evaluated with the external field present or removed, respectively. Both field and remanence reptation showed a second-order logarithmic dependence on the number of cycles. A comparison of viscosity and field reptation revealed a correlation, indicating that the origin of field reptation in perpendicular recording media can be associated with viscosity. Such a correlation could not be established between viscosity and remanence reptation. Spin-stand signal amplitude change of written tracks, due to adjacent track interference, also followed a second-order logarithmic dependence on the number of adjacent writes. When compared appropriately, the signal amplitude change showed an excellent correlation with remanence reptation across all media samples. This suggests that adjacent track interference in magnetic recording can be associated with remanence reptation evaluated using a magnetometer, despite their vast difference in time-scales. Moreover, this correlation was observed irrespective of the thermal stability of the media, which corroborates the hypothesis that in composite media, exchange interaction effects have a more dominant role than thermal relaxation effects in influencing switchability vis-à-vis adjacent track interference. In consequence, remanence reptation can be a useful technique to study the interplay of exchange and thermal effects in magnetic media.

  18. Magnetic hysteresis experiments at high pressures in a diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Gilder, S.; Legoff, M.; Peyronneau, J.; Chervin, J. C.

    2003-04-01

    We have developed a system that measures reversible magnetic susceptibility of micron-sized samples under high pressures (in excess of 30 GPa) in a diamond anvil cell. Our system employs two unequal pick up coils wound in opposition around a diamond resulting in a virtually null magnetic surface. Around these is an inducing coil, mounted in null mutual inductance. A lock-in amplifier measures the output of the sensing coil. The detection system is housed in a beryllium-copper membrane-type diamond cell placed in the confines of an electromagnet. Thus the pressure of the cell is remotely controlled and the ac (reversible) susceptibility (Xrev) is measured as a function of applied field (H), with H varying from minus 1.2 T to +1.2 T. Because the integral of Xrev(H)dH is proportional to the magnetic moment (of the reversible part of the remanence, or Mrev), we can measure the reversible hysteresis parameters of ferromagnetic materials as a function of pressure. Examples of our experimental results will be given based on experiments on magnetite and 99 percent pure iron.

  19. Effects of tantalum addition on hysteresis losses and critical current densities of powder-metallurgy processed Nb{sub 3}Sn superconducting wires

    SciTech Connect

    Matsukura, N.; Fukumoto, Y.; Miyazaki, T. [Kobe Steel Ltd. (Japan)] [and others

    1997-06-01

    Powder-metallurgy processed (PMP) multifilamentary Nb{sub 3}Sn superconducting wires have been fabricated. The critical current densities and hysteresis losses of the wires are measured and the effects of tantalum addition to niobium on them are investigated. Although tantalum addition decreases both the critical current densities and the hysteresis losses, the reduction of the hysteresis loss is more pronounced. As a result, the effective filament diameter is diminished. The critical current density of the PMP Nb{sub 3}Sn wire may depend on the combination of the bridging among Nb{sub 3}Sn filaments and the supernormal interface pinning centers. This wire includes 3721 composite cores which consist of copper and Nb{sub 3}Sn. The non-homogeneous deformation of filaments is reduced by tantalum additions. Both the bridging among Nb{sub 3}Sn filaments and the super-normal interface pinning center energies may be reduced by tantalum additions, and therefore depressing the critical current density. Tantalum additions also depress the sausage-like deformation of composite cores, suggesting that both bridging and coupling among the composite cores is suppressed. Consequently both the hysteresis loss and the effective filament diameter are decreased.

  20. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    SciTech Connect

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zou, Chao; Yang, Jun; Dong, Juan [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China)

    2013-12-16

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz. In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.0078hysteresis loss coefficient is lower for the silicone-MnZn ferrite coated sample (k{sub 2} =1.4058) in comparison with other samples.

  1. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples—A useful setup for magnetic hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Connord, V.; Mehdaoui, B.; Tan, R. P.; Carrey, J.; Respaud, M.

    2014-09-01

    A setup for measuring the high-frequency hysteresis loops of magnetic samples is described. An alternating magnetic field in the range 6-100 kHz with amplitude up to 80 mT is produced by a Litz wire coil. The latter is air-cooled using a forced-air approach so no water flow is required to run the setup. High-frequency hysteresis loops are measured using a system of pick-up coils and numerical integration of signals. Reproducible measurements are obtained in the frequency range of 6-56 kHz. Measurement examples on ferrite cylinders and on iron oxide nanoparticle ferrofluids are shown. Comparison with other measurement methods of the hysteresis loop area (complex susceptibility, quasi-static hysteresis loops, and calorific measurements) is provided and shows the coherency of the results obtained with this setup. This setup is well adapted to the magnetic characterization of colloidal solutions of magnetic nanoparticles for magnetic hyperthermia applications.

  2. Investigation into loss in ferrofluid magnetization

    NASA Astrophysics Data System (ADS)

    Li, J.; Gong, X. M.; Lin, Y. Q.; Liu, X. D.; Chen, L. L.; Li, J. M.; Mao, H.; Li, D. C.

    2014-07-01

    Ferrofluids containing ?-Fe2O3/Ni2O3 nanoparticles (not chemically treated) were synthesized using water and mixed water-glycerol as carrier liquid and the ferrofluid viscosity was modified by varying the glycerol content in the carrier liquid. The apparent magnetization of the ferrofluids decreased with increasing glycerol content. The loss in magnetization is described by the ratio of effective magnetic volume fraction to physical volume fraction of nanoparticles in the ferrofluids as a characteristic parameter. We ascribe the loss to the formation of "dead aggregates" having a ring-like structure of closed magnetic flux rather than to any chemical reaction. Such dead aggregates exist in zero magnetic field and do not contribute to the magnetization in the low or high field regime, so that the effective magnetic volume fraction in the ferrofluids decrease. An increase in carrier liquid viscosity is similar to a weakening of the thermal effect, so the number of dead aggregates increases and the magnetization decreases in inverse proportion to the viscosity. This relationship between the apparent magnetization and ferrofluid carrier liquid viscosity can be termed the "viscomagnetic effect".

  3. A neural network for incorporating the thermal effect on the magnetic hysteresis of the 3F3 material using the Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Nouicer, A.; Nouicer, E.; Feliachi, Mouloud

    2015-01-01

    The present paper deals with the temperature dependent modeling approach for the generation of hysteresis loops of ferromagnetic materials. The physical model is developed to study the effect of temperature on the magnetic hysteresis loop using the Jiles-Atherton (J-A) model. The thermal effects were incorporated through temperature dependent hysteresis parameters of JA model. The temperature-dependent J-A model was validated by measurements made on the ferrite material. The results of proposed model were in good agreement with the measurements.

  4. Comprehensive modelling of dynamic hysteresis loops in the rolling and transverse directions for transformer laminations

    NASA Astrophysics Data System (ADS)

    Baghel, A. P. S.; Gupta, A.; Chwastek, K.; Kulkarni, S. V.

    2015-04-01

    Magnetic properties of grain-oriented materials are affected by hysteresis, anisotropy and dynamic effects. The attempts to describe dynamic hysteresis loops are usually limited to the rolling direction (RD). On the other hand, modelling of magnetic properties for the transverse direction (TD) is important for numerical analysis of core-joints and corner regions in transformers. For this direction, hysteresis loops reveal complex shapes particularly for dynamic magnetization conditions. This paper presents a comprehensive approach for modelling of dynamic hysteresis loops in RD and TD. This work uses the magnetic viscosity-based approach, which is able to describe irregular widening of dynamic loops. The loss separation scheme is also considered for both principal directions. Variations of loss components with frequency for both directions are discussed. The computed dynamic loops in RD and TD are in a close agreement with experimental ones.

  5. Assessment of Retained Austenite in AISI D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters

    NASA Astrophysics Data System (ADS)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-03-01

    Inaccurate heat treatment process could result in excessive amount of retained austenite, which degrades the mechanical properties, like strength, wear resistance, and hardness of cold work tool steel parts. Thus, to control the mechanical properties, quantitative measurement of the retained austenite is a critical step in optimizing the heat-treating parameters. X-ray diffraction method is the most frequently used technique for this purpose. This technique is, however, destructive and time consuming. Furthermore, it is not applicable to 100% quality inspection of industrial parts. In the present paper, the influence of austenitizing temperature on the retained austenite content and hardness of AISI D2 tool steel has been studied. Additionally, nondestructive magnetic hysteresis parameters of the samples including coercivity, magnetic saturation, and maximum differential permeability as well as their magnetic Barkhausen noise features (RMS peak voltage and peak position) have been investigated. The results revealed direct relations between magnetic saturation, differential permeability, and MBN peak amplitude with increasing austenitizing temperature due to the retained austenite formation. Besides, both parameters of coercivity and peak position had an inverse correlation with the retained austenite fraction.

  6. The magnetic hysteresis properties of Ball-milled monodomain titanomagnetite, Fe2.4Ti0.6O4

    NASA Astrophysics Data System (ADS)

    Brown, A. P.; O'Reilly, W.

    Synthetic titanomagnetite, Fe2.4Ti0.6O4 (TM60) was ground in a tungsten carbide ball mill for times up to 80 hours. Initially the material becomes “harder” (coercive force, Hc, and ratio of remanence to saturation, Mr/Ms, rise), which is explicable in terms of reduced particle size and reduced domain wall multiplicity. On further grinding the material becomes “softer”, as expected for monodomain particles with reducing volume. The “optical particle size” of typically 0.4 µm, determined from direct observation by SEM, is, however, ten times bigger than the “magnetic crystal size” inferred from an analysis of the hysteresis loop parameters. The small magnetic crystal size is consistent with the observed X-ray line broadening. The two observations can be reconciled by inspection of Transmission Electron Micrographs which show an internal microstnicture which can be interpreted as the presence of “nanocrystals” within the particle envelope . The production of such nanocrystals by the grinding of particles is described in the materials science literature. It may be that a review of the rock magnetism literature describing the magnetic properties of “crushed grains” will discover features explicable in terms of nanocrystals.

  7. Assessment of Retained Austenite in AISI D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters

    NASA Astrophysics Data System (ADS)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-01-01

    Inaccurate heat treatment process could result in excessive amount of retained austenite, which degrades the mechanical properties, like strength, wear resistance, and hardness of cold work tool steel parts. Thus, to control the mechanical properties, quantitative measurement of the retained austenite is a critical step in optimizing the heat-treating parameters. X-ray diffraction method is the most frequently used technique for this purpose. This technique is, however, destructive and time consuming. Furthermore, it is not applicable to 100% quality inspection of industrial parts. In the present paper, the influence of austenitizing temperature on the retained austenite content and hardness of AISI D2 tool steel has been studied. Additionally, nondestructive magnetic hysteresis parameters of the samples including coercivity, magnetic saturation, and maximum differential permeability as well as their magnetic Barkhausen noise features (RMS peak voltage and peak position) have been investigated. The results revealed direct relations between magnetic saturation, differential permeability, and MBN peak amplitude with increasing austenitizing temperature due to the retained austenite formation. Besides, both parameters of coercivity and peak position had an inverse correlation with the retained austenite fraction.

  8. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy

    Microsoft Academic Search

    Leonardo Sagnotti; Jacopo Taddeucci; Aldo Winkler; Andrea Cavallo

    2009-01-01

    The magnetic properties of tree leaves may be used to delineate the abundance and dispersal of anthropogenic airborne particulate matter (PM) in urban environments. In the city of Rome, Italy, circulating vehicles are the main source of magnetic PM, already characterized as prevalently low-coercivity, magnetite-like particles. To further constrain the nature and origin of such magnetic particles, we carried out

  9. Low-loss energy storage flywheel

    NASA Technical Reports Server (NTRS)

    Evans, H. E.; Studer, P. A.

    1977-01-01

    Magnetically-levitated, ironless-armature spokeless rotor is used. Ironless armature construction eliminates core losses due to hysteresis and eddy currents. Device combines features of homopolar salient poles and stationary ironless electronically commutated armature.

  10. Experimental evaluation of losses in magnetic components for power converters

    Microsoft Academic Search

    Jan Abraham Ferreira; Jacobus D. van Wyk

    1991-01-01

    A very versatile experimental method for measuring losses in magnetic components is presented. This is not subject to the bandwidth constraints associated with the direct wattmeter method. The proposed method features accurate measurement of conduction losses, separation of core and conduction losses, measurement at high frequencies, and scale modeling of magnetic components. The experimental measurements are compared with theoretical predictions

  11. Application of the Preisach and Jiles{endash}Atherton models to the simulation of hysteresis in soft magnetic alloys

    SciTech Connect

    Pasquale, M.; Bertotti, G. [IEN Galileo Ferraris and INFM, Corso Massimo DAzeglio 42, 10125 Torino (Italy)] [IEN Galileo Ferraris and INFM, Corso Massimo DAzeglio 42, 10125 Torino (Italy); Jiles, D.C.; Bi, Y. [Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)] [Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)

    1999-04-01

    This article describes the advances in unification of model descriptions of hysteresis in magnetic materials and demonstrates the equivalence of two widely accepted models, the Preisach (PM) and Jiles{endash}Atherton (JA) models. Recently it was shown that starting from general energy relations, the JA equation for a loop branch can be derived from PM. The unified approach is here applied to the interpretation of magnetization measured in nonoriented Si{endash}Fe steels with variable grain size {l_angle}s{r_angle}, and also in as-cast and annealed Fe amorphous alloys. In the case of NO Fe{endash}Si, the modeling parameter {ital k} defined by the volume density of pinning centers is such that k{approx}A+B/{l_angle}s{r_angle}, where the parameters {ital A} and {ital B} are related to magnetocrystalline anisotropy and grain texture. The value of {ital k} in the amorphous alloys can be used to estimate the microstructural correlation length playing the role of effective grain size in these materials. {copyright} {ital 1999 American Institute of Physics.}

  12. Characterizing local anisotropy of coercive force in motor laminations with the moving magnet hysteresis comparator

    NASA Astrophysics Data System (ADS)

    Garshelis, I. J.; Crevecoeur, G.

    2014-05-01

    Non oriented silicon steels are widely used within rotating electrical machines and are assumed to have no anisotropy. There exists a need to detect the anisotropic magnetic properties and to evaluate the local changes in magnetic material properties due to manufacturing cutting processes. In this paper, the so called moving magnet hyteresis comparator is applied to non destructively detect directional variations in coercive force in a variety of local regions of rotor and stator laminations of two materials commonly used to construct induction motors cores. Maximum to minimum coercive force ratios were assessed, varying from 1.4 to 1.7.

  13. Magnetic hysteresis properties of BaFe sub 12 minus x In sub x O sub 19 ceramic ferrites with c -axis oriented grains

    SciTech Connect

    Dionne, G.F.; Fitzgerald, J.F. (Lincoln Laboratory, Massachusetts Institute of Technology, P.O. Box 73, Lexington, Massachusetts (USA))

    1991-11-15

    To study the effects of reduced magnetic anisotropy on hysteresis loops of hard magnets for possible use in self-biased microwave devices, a new family of magnetically oriented ({ital c}-axis) In-substituted Ba ferrite was prepared by conventional ceramic techniques. Earlier studies of BaFe{sub 12{minus}{ital x}}(In,Sc){sub {ital x}}O{sub 19} series in single-crystal form have shown that magnetization 4{pi}{ital M} and anisotropy field {ital H}{sub {ital k}} decrease sharply with increasing {ital x}. Since hysteresis loops with optimum energy products require uniformly small grains (1 to 3 {mu}m), sintering temperatures were carefully controlled over a range from 1180 to 1075 {degree}C for 2 h, depending on In content. For nominal values of {ital x} ranging from 0 to 1.5, square hysteresis loops with {ital H}{sub {ital c}} values decreasing from 3500 to 150 Oe were recorded with a high-field hysteresisgraph. The effective {ital H}{sub {ital k}} values were measured and compared with single-crystal data to estimate the degree of grain alignment for each composition.

  14. Butterfly hysteresis loop at nonzero bias field in antiferromagnetic molecular rings: cooling by adiabatic magnetization.

    PubMed

    Waldmann, O; Koch, R; Schromm, S; Müller, P; Bernt, I; Saalfrank, R W

    2002-12-01

    At low temperatures, the magnetization of the molecular ferric wheel NaFe6 exhibits a step at a critical field B(c) due to a field-induced level crossing. By means of high-field torque magnetometry we observed a hysteretic behavior at the level crossing with a characteristic butterfly shape which is analyzed in terms of a dissipative two-level model. Several unusual features were found. The nonzero bias field of the level crossing suggests the possibility of cooling by adiabatic magnetization. PMID:12484964

  15. Magnetic blocking from exchange interactions: slow relaxation of the magnetization and hysteresis loop observed in a dysprosium-nitronyl nitroxide chain compound with an antiferromagnetic ground state.

    PubMed

    Han, Tian; Shi, Wei; Niu, Zheng; Na, Bo; Cheng, Peng

    2013-01-14

    The combination of the anisotropic Dy(III) ion and organic radicals as spin carriers results in discrete and one-dimensional lanthanide-radical magnetic materials, namely, [Dy(hfac)(3)(NITThienPh)(2)] (1) and [Dy(2)(hfac)(6)(NITThienPh)(2)](n) (2; hfac =hexafluoroacetylacetonate, NITThienPh = 2-(5-phenyl-2-thienyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide). Linking monomeric 1 with the Dy(III) ion leads to the formation of polymeric 2, and the transformation between them is chemically controllable and reversible. The characterization of both static and dynamic magnetic properties shows that the dominant intrachain exchange interaction is important to observe magnetic bistability in 2 rather than that in 1. Monomeric 1 exhibits paramagnetic behavior, whereas polymeric 2 shows the unusual coexistence of superparamagnetic and two-step field-induced metamagnetic behaviors. The antiferromagnetic ground state of 2 does not prevent the dynamic relaxation of the magnetization with the finite-sized effect in the lanthanide-radical system. Energy barriers to thermally activated relaxation for 2 are 53 and 98?K in the low- and high-temperature regimes, respectively. A hysteresis loop is observed with the coercive field of 99?Oe at 2?K. PMID:23197464

  16. Basic mathematical properties of a vector Preisach operator in magnetic hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Löschner-Greenberg, K.

    2008-11-01

    This paper discusses the basic mathematical properties of the vector Preisach operator recently introduced by Delia Torre, Pinzaglia and Cardelli. This includes an investigation of isotropy with a necessary and a sufficient isotropy condition, derivation of the neutral initial state and a 'demagnetization process'. Further, we examine the saturation behaviour with memory deletion, output alignment and a bound on the output. We show that periodic input results in periodic output and prove loop congruency. Finally, we study lag angles and losses, derive their formulas for isotropic Preisach densities and uniformly rotating input in Script R2 and show Script P to be dissipative on closed loop inputs.

  17. Eddy current losses in permanent magnets of the BLDC machine

    Microsoft Academic Search

    Damijan Miljavec; Bogomir Zidari?

    2007-01-01

    Purpose – This study aims to calculate eddy current losses in permanent magnets of BLDC machine in the generator mode of operation with no-load. Design\\/methodology\\/approach – Stator slot openings and special design of the stator poles cause changes in the magnetic flux density changes in permanent magnets. The stator windings are not connected to an outer source and no currents

  18. Design of experiment for hysteresis loops measurement

    NASA Astrophysics Data System (ADS)

    Tu?ková, Michaela; Harman, Radoslav; Tu?ek, Pavel; Tu?ek, Ji?í

    2014-11-01

    Hysteresis loop measurements are frequently used to assess the magnetic quality of a nanomaterial under an external magnetic field. Based on the values of the hysteresis parameters, it is possible to decide whether the nanomaterial meets requirements of a given application. In this work, we present a new approach to the measurement of the hysteresis loop based on the theory of optimal experimental design. We show that the maximin efficient design leads to a reduction in the measurements costs when compared to the standard equispaced measurement design. Moreover, a significantly higher accuracy in the estimation of hysteresis parameters is reached within a broad range of plausible values. The functionality of the proposed approach is successfully tested considering real experimental data obtained from the hysteresis loop measurements of the ?-Fe2O3 phase. The measurement procedure can be easily adapted to any magnetic nanomaterial for which the values of its hysteresis parameters are to be determined.

  19. Application of the Preisach model to the calculation of magnetization curves and power losses in ferromagnetic materials

    Microsoft Academic Search

    G. Bertotti; V. Basso; M. Pasquale

    1994-01-01

    The ability of Preisach-type scalar models to describe static and dynamic hysteresis properties is discussed. Three aspects are addressed in particular: the description of reversible magnetization processes, the characterization of magnetic interactions, and the calculation of dynamic hysteresis loops. Applications of the standard Preisach model and of the moving Preisach model to the description of Henkel plots in recording media

  20. Magnetic hysteresis and relaxation in Ag-sheathed TlBaCaCuO (1223) and Bi(Pb)SrCaCuO (2223) superconducting tapes

    SciTech Connect

    Kung, P.J.; Maley, M.P.; Coulter, J.Y.; Willis, J.O.; Peterson, D.E. [Los Alamos National Lab., NM (United States); McHenry, M.E. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Metallurgical Engineering and Materials Science; Wahlbeck, P.G. [Wichita State Univ., KS (United States). Dept. of Chemistry

    1992-05-01

    Magnetic hysteresis (7--75 K in magnetic fields up to 5 T) and relaxation characteristics (5--50 K in magnetic fields up to 2 T) have been measured with the field perpendicular to the surface of Ag-sheathed TlBaCaCuO (1223 phase) and Bi(Pb)SrCaCuO (2223 phase) superconducting tapes. A study of the difference in the magnetic hysteresis between precursor powders and as-processed tapes was also carried out. The relaxation data were curve-fit using a rate equation for thermally activated flux motion, U{sub eff}/[kG(T)] = {minus}T[ln(dM/dt) {minus} ln (H{omega}{sub o} a/2{pi}d)] with the temperature dependence of U{sub eff} scaled by the functional form G(T) = 1 {minus} (T/Tx){sup 2}. By comparing the results obtained from magnetic characterization with those from transport current measurement, these observations suggest that (1) Tl-1223 tapes have a weaker field dependence for J{sub c} at T > 35 K than Bi-2223 tapes due to the special crystal structure of the 1223 phase, and (2) weak links limit the transport critical current densities in Tl-1223 tapes to 10{sup 3} A/cm{sup 2} at 5 T and 35 K, for instance.

  1. Magnetic hysteresis and relaxation in Ag-sheathed TlBaCaCuO (1223) and Bi(Pb)SrCaCuO (2223) superconducting tapes

    SciTech Connect

    Kung, P.J.; Maley, M.P.; Coulter, J.Y.; Willis, J.O.; Peterson, D.E. (Los Alamos National Lab., NM (United States)); McHenry, M.E. (Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Metallurgical Engineering and Materials Science); Wahlbeck, P.G. (Wichita State Univ., KS (United States). Dept. of Chemistry)

    1992-01-01

    Magnetic hysteresis (7--75 K in magnetic fields up to 5 T) and relaxation characteristics (5--50 K in magnetic fields up to 2 T) have been measured with the field perpendicular to the surface of Ag-sheathed TlBaCaCuO (1223 phase) and Bi(Pb)SrCaCuO (2223 phase) superconducting tapes. A study of the difference in the magnetic hysteresis between precursor powders and as-processed tapes was also carried out. The relaxation data were curve-fit using a rate equation for thermally activated flux motion, U{sub eff}/(kG(T)) = {minus}T(ln(dM/dt) {minus} ln (H{omega}{sub o} a/2{pi}d)) with the temperature dependence of U{sub eff} scaled by the functional form G(T) = 1 {minus} (T/Tx){sup 2}. By comparing the results obtained from magnetic characterization with those from transport current measurement, these observations suggest that (1) Tl-1223 tapes have a weaker field dependence for J{sub c} at T > 35 K than Bi-2223 tapes due to the special crystal structure of the 1223 phase, and (2) weak links limit the transport critical current densities in Tl-1223 tapes to 10{sup 3} A/cm{sup 2} at 5 T and 35 K, for instance.

  2. The correlations between processing parameters and magnetic properties of an iron–resin soft magnetic composite

    Microsoft Academic Search

    I. Hemmati; H. R. Madaah Hosseini; A. Kianvash

    2006-01-01

    In this study, internal microstrain of an iron–resin composite produced by powder metallurgy has been calculated using the Williamson–Hall method. The effects of microstrain evolution during different processing conditions on magnetic properties such as coercive force and hysteresis loss have been investigated. The results show that there are regular and similar changes of coercivity and hysteresis loss. Both of these

  3. Hysteresis heating based induction bonding of thermoplastic composites

    Microsoft Academic Search

    W. Suwanwatana; S. Yarlagadda; J GILLESPIEJR

    2006-01-01

    The bonding of polymer matrix composites using magnetic particulate susceptor materials for hysteresis induction heating is investigated in this study. Hysteresis heating is tailored through careful design of the microstructure of magnetic particulate polymer films. The bond strength of hysteresis-welded materials is comparable to that of autoclave-welded materials while offering an order of magnitude reduction in cycle time. The relative

  4. Investigation of the power losses in a laminated dipole magnet with superconducting coils

    Microsoft Academic Search

    Alexander Kalimov; Egbert Fischer; Guenter Hess; Gebhard Moritz; Carsten Mühle

    2004-01-01

    Dynamic processes in a window-frame dipole with superconducting windings and a cold, laminated iron yoke have been investigated experimentally at JINR (Dubna, Russia), and theoretically at GSI (Darmstadt, Germany). The main aim of these investigations was a reduction of energy losses in the yoke during ramping. These losses are produced mainly by energy dissipation due to eddy currents and hysteresis

  5. Zero loss magnetic metamaterials using powered active unit cells

    E-print Network

    Cummer, Steven A.

    Zero loss magnetic metamaterials using powered active unit cells Yu Yuan, Bogdan-Ioan Popa, Steven A. Cummer Center for Metamaterials and Integrated Plasmonics and Department of Electrical@ee.duke.edu Abstract: We report the design and experimental measurement of a powered active magnetic metamaterial

  6. Passive magnetic bearing element with minimal power losses

    Microsoft Academic Search

    Post; Richard F

    1998-01-01

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in U.S. Patent No. 5,495,221 entitled \\

  7. Macroscopic magnetic structures with balanced gain and loss

    NASA Astrophysics Data System (ADS)

    Lee, J. M.; Kottos, T.; Shapiro, B.

    2015-03-01

    We investigate magnetic nanostructures with balanced gain and loss and show that such configurations can result in a new type of dynamics for magnetization. Using the simplest possible setup consisting of two coupled ferromagnetic films, one with loss and another one with a balanced amount of gain, we demonstrate the existence of an exceptional point where both the eigenfrequencies and eigenvectors become degenerate. This point corresponds to a particular value of the gain and loss parameter ? =?c . For ? ?c it is complex, signaling unstable dynamics which is, however, stabilized by nonlinearity.

  8. Passive magnetic bearing element with minimal power losses

    Microsoft Academic Search

    Post

    1998-01-01

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in US Patent No. 5,495,221 entitled ``Dynamically Stable Magnetic Suspension\\/Bearing System.`` The improvements relate to increasing the magnitude of the force derivative, while at the same

  9. Passive magnetic bearing element with minimal power losses

    DOEpatents

    Post, Richard F. (Walnut Creek, CA)

    1998-01-01

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in U.S. Patent No. 5,495,221 entitled "Dynamically Stable Magnetic Suspension/Bearing System." The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity.

  10. Passive magnetic bearing element with minimal power losses

    DOEpatents

    Post, R.F.

    1998-12-08

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in US Patent No. 5,495,221 entitled ``Dynamically Stable Magnetic Suspension/Bearing System.`` The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity. 8 figs.

  11. Structural magnetic loss of vertical aligned carbon fibres

    NASA Astrophysics Data System (ADS)

    Hong, Wen; Xiao, Peng; Luo, Heng

    2013-06-01

    The electromagnetic spectroscopy of vertical aligned carbon fibres (VACF) reinforced epoxy resin has been performed in the frequency range from 8.2 to 12.4 GHz. The composite was prepared by conventional epoxy polymerization. The results indicate VACF could possess magnetic loss and the structural magnetic properties could be tailored by adjusting the forest structure. The corresponding mechanism of the structural magnetic properties is proposed by the Faradays' law of induction. The structural magnetism is further confirmed by measuring VACF reinforced Al2O3 composites in 1073 K environment. The measurement agrees well with the trend predicted by the parallel fibres model. These results represent a crucial step towards high temperature microwave absorber design and open a new avenue for realizing magnetic losses in the dielectric material.

  12. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS)

    SciTech Connect

    Professor Isaak Mayergoyz

    2006-08-21

    This research has further advanced the current state of the art in the areas of dynamic aspects of hysteresis and nonlinear large scale magnetization dynamics. The results of this research will find important engineering applications in the areas of magnetic data storage technology and the emerging technology of “spintronics”. Our research efforts have been focused on the following tasks: • Study of fast (pulse) precessional switching of magnetization in magnetic materials. • Analysis of critical fields and critical angles for precessional switching of magnetization. • Development of inverse problem approach to the design of magnetic field pulses for precessional switching of magnetization. • Study of magnetization dynamics induced by spin polarized current injection. • Construction of complete stability diagrams for spin polarized current induced magnetization dynamics. • Development of the averaging technique for the analysis of the slow time scale magnetization dynamics. • Study of thermal effects on magnetization dynamics by using the theory of stochastic processes on graphs.

  13. Mass loss from rapidly rotating magnetic protostars

    NASA Technical Reports Server (NTRS)

    Shu, Frank H.; Lizano, Susana; Ruden, Steven P.; Najita, Joan

    1988-01-01

    It is proposed that bipolar outflows from young stellar objects originate from a protostar rotating at breakup at its equator because it is being spun up by an adjoining accretion disk. Mass outflow at an appreciable fraction of the infall rate from a surrounding molecular cloud core onto the star and disk can be driven centrifugally if the protostar has a sufficiently strong magnetic field. The expansion of the flow toward the rotational poles may provide a collimation mechanism for focusing an ordinary stellar wind into optical jets.

  14. Advances in core loss calculations for magnetic materials

    NASA Technical Reports Server (NTRS)

    Triner, J. E.

    1982-01-01

    A new analytical technique which predicts the basic magnetic properties under various operating conditions encountered in state-of-the-art dc-ac/dc converters is discussed. Using a new flux-controlled core excitation circuit, magnetic core characteristics were developed for constant values of ramp flux (square wave voltage excitation) and frequency. From this empirical data, a mathematical loss characteristics equation is developed to analytically predict the specific core loss of several magnetic materials under various waveform excitation conditions. In addition, these characteristics show the circuit designer for the first time the direct functional relatonships between induction level and specific core loss as a function of the two key dc-dc converter operating parameters of input voltage and duty cycle.

  15. Energy Losses by Anisotropic Viscous Dissipation in Transient Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Craig, I. J. D.; Litvinenko, Yuri E.

    2010-12-01

    Global energy losses associated with transient magnetic reconnection in a viscous resistive plasma are examined. The Braginskii stress tensor is used to model the plasma viscosity for conditions typical of the solar corona. Analytic arguments are used to show that the large-scale advective flows associated with magnetic merging are likely to generate significant viscous losses. It is pointed out that the development of a visco-resistive reconnection scale, predicted for the classical shear viscosity, is not expected in the more realistic case of the Braginskii viscosity. Numerical simulations of planar coalescence merging show that viscous losses should easily dominate resistive losses for physically plausible parameters in flaring regions. Our computations imply that flare-like rates exceeding 1029 erg s-1 can be achieved under plausible coronal conditions.

  16. Magnetically controlled mass loss from extrasolar planets in close orbits

    E-print Network

    Owen, James E

    2014-01-01

    We consider the role magnetic fields play in guiding and controlling mass-loss via evaporative outflows from exoplanets that experience UV irradiation. First we present analytic results that account for planetary and stellar magnetic fields, along with mass-loss from both the star and planet. We then conduct series of numerical simulations for gas giant planets, and vary the planetary field strength, background stellar field strength, UV heating flux, and planet mass. These simulations show that the flow is magnetically controlled for moderate field strengths and even the highest UV fluxes, i.e., planetary surface fields $B_P\\gtrsim 0.3$ gauss and fluxes $F_{UV}\\sim10^{6}$ erg s$^{-1}$. We thus conclude that outflows from all hot Jupiters with moderate surface fields are magnetically controlled. The inclusion of magnetic fields highly suppresses outflow from the night-side of the planet. Only the magnetic field lines near the pole are open and allow outflow to occur. The fraction of open field lines depends s...

  17. Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles.

    PubMed

    Xu, S T; Ma, Y Q; Zheng, G H; Dai, Z X

    2015-04-01

    Well-dispersed uniform cobalt ferrite nanoparticles were synthesized by thermal decomposition of a metal-organic salt in organic solvent with a high boiling point. Some of the nanoparticles were diluted in a SiO2 matrix and then the undiluted and diluted samples were characterized and their magnetic behavior explored. The undiluted and diluted samples exhibited maximum coercivity Hc of 23?817 and 15?056 Oe at 10 K, respectively, which are the highest values reported to date, and the corresponding ratios of remanence (Mr) to saturation (Ms) magnetization (Mr/Ms) were as high as 0.85 and 0.76, respectively. Interestingly, the magnetic properties of the samples changed at 200 K, which was observed in magnetic hysteresis M(H) loops and zero-field cooling curves as well as the temperature dependence of Hc, Mr/Ms, anisotropy, dipolar field, and the magnetic grain size. Below 200 K, both samples have large effective anisotropy, which arises from the surface spins, resulting in large Hc and Mr/Ms. Above 200 K, the effective anisotropy decreases because there is no contribution from surface spins, while the dipolar interaction increases, resulting in small Hc and Mr/Ms. Our results indicate that strong anisotropy and weak dipolar interaction tend to increase Hc and Mr/Ms, and also clarify that the jumps around H = 0 in M(H) loops can be attributed to the reorientation of surface spins. This work exposes the underlying mechanism in nanoscale magnetic systems, which should lead to improved magnetic performance. PMID:25787852

  18. Dielectric loss, conductivity relaxation process and magnetic properties of Mg substituted Ni-Cu ferrites

    NASA Astrophysics Data System (ADS)

    Singh, Navneet; Agarwal, Ashish; Sanghi, Sujata; Khasa, Satish

    2012-08-01

    The dielectric properties, dc and ac electrical resistivities of Mg substituted Ni-Cu ferrites with general formula Ni0.5Cu0.5-xMgxFe2O4 (0.0?x?0.5) have been investigated as a function of frequency, temperature and composition. ac resistivity of all the samples decreases with increase in the frequency exhibiting normal ferrimagnetic behavior. The frequency dependence of dielectric loss tangent showed a maximum in between 10 Hz and 1 kHz in all the ferrites. The conductivity relaxation of the charge carriers was examined using the electrical modulus formulism, and the results indicate the presence of the non-Debye type of relaxation in the prepared ferrites. Similar values of activation energies for dc conduction and for conductivity relaxation reveal that the mechanism of electrical conduction and dielectric polarization is the same in these ferrites. A single 'master curve' for normalized plots of all the modulus isotherms observed for a given composition indicates that the distribution of relaxation time is temperature independent. The saturation magnetization and coercivity as calculated from the hysteresis loop measurement show striking dependence on composition.

  19. Magnetic hysteresis and flux creep of YBa sub 2 Cu sub 3 O sub x grown by the melt-powder-melt-growth (MPMG) process

    SciTech Connect

    Kung, P.J.; McHenry, M.E. (Los Alamos National Lab., NM (United States) Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering); Maley, M.P.; Willis, J.O. (Los Alamos National Lab., NM (United States)); Murakami, M.; Tanaka, S. (International Superconductivity Technology Center, Tokyo (Japan). Superconductivity Research Lab.)

    1992-08-24

    Magnetic hysteresis and flux creep of melt-powder-melt-growth (MPMG) YBa{sub 2}Cu{sub 3}O{sub x} containing nominal 0, 25 and 40 mole% Y{sub 2}BaCuO{sub 5} (21 1) were measured in the temperature range of 5 to 80 K and in magnetic fields up to 5 T. With the introduced fine dispersion of second phase 211 particles, the critical magnetization current density J{sub c} shows a weak field dependence over a wide range of temperature, and the effective pinning energy U{sub eff} is much enhanced. From these results, a functional expression U{sub eff}(J,T) = {minus} U{sub o} G(T) (J {vert bar}J{sub i}){sup n} is obtained, where G(T) = (1 {minus} (T{vert bar}T{sub x}){sup 2}){sup 2} with Tx = 82.5 K near the irreversibility temperature. The observed power-law relationship of U{sub eff}(J, T) clearly demonstrates two of three regimes as predicted by the theory of collective flux creep, namely n = 3/2 and 7/9 for J < J{sub c} and J {much lt} J{sub c}, respectively. In addition, the divergence of U{sub eff} at low current densities also suggests the existence of a vortex-glass state.

  20. Magnetic hysteresis and flux creep of YBa{sub 2}Cu{sub 3}O{sub x} grown by the melt-powder-melt-growth (MPMG) process

    SciTech Connect

    Kung, P.J.; McHenry, M.E. [Los Alamos National Lab., NM (United States)]|[Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering; Maley, M.P.; Willis, J.O. [Los Alamos National Lab., NM (United States); Murakami, M.; Tanaka, S. [International Superconductivity Technology Center, Tokyo (Japan). Superconductivity Research Lab.

    1992-08-24

    Magnetic hysteresis and flux creep of melt-powder-melt-growth (MPMG) YBa{sub 2}Cu{sub 3}O{sub x} containing nominal 0, 25 and 40 mole% Y{sub 2}BaCuO{sub 5} (21 1) were measured in the temperature range of 5 to 80 K and in magnetic fields up to 5 T. With the introduced fine dispersion of second phase 211 particles, the critical magnetization current density J{sub c} shows a weak field dependence over a wide range of temperature, and the effective pinning energy U{sub eff} is much enhanced. From these results, a functional expression U{sub eff}(J,T) = {minus} U{sub o} G(T) (J {vert_bar}J{sub i}){sup n} is obtained, where G(T) = [1 {minus} (T{vert_bar}T{sub x}){sup 2}]{sup 2} with Tx = 82.5 K near the irreversibility temperature. The observed power-law relationship of U{sub eff}(J, T) clearly demonstrates two of three regimes as predicted by the theory of collective flux creep, namely n = 3/2 and 7/9 for J < J{sub c} and J {much_lt} J{sub c}, respectively. In addition, the divergence of U{sub eff} at low current densities also suggests the existence of a vortex-glass state.

  1. > FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) Characterization and prediction of magnetic losses in Soft Magnetic

    E-print Network

    Boyer, Edmond

    -CLICK HERE) magnetic losses in Soft Magnetic Composites under-94230 Cachan, France A general approach to magnetic losses in Soft Magnetic Composites (SMC--Soft Magnetic Composites, Statistical Theory of Losses, Classical losses, Excess losses, Distorted induction I

  2. Chiro-ferrites for low-loss magnetic photonic crystals

    Microsoft Academic Search

    S. Yarga; K. Sertel; J. L. Volakis

    2005-01-01

    Summary form only given. Magnetic photonic crystals (MPCs) display exotic propagation characteristics in the form of a frozen mode (Figotin, A. and Vitebskiy, I., Phys. Rev. E, vol.63, 066609, p.1-17; Phys. Rev. B, vol.67, 165210, p.1-20). At microwave frequencies, ferrites are associated with losses which are further exacerbated due to resonant wave behavior (frozen mode) within the crystal. To minimize

  3. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization.

    PubMed

    Chen, Ritchie; Christiansen, Michael G; Anikeeva, Polina

    2013-10-22

    This article develops a set of design guidelines for maximizing heat dissipation characteristics of magnetic ferrite MFe2O4 (M = Mn, Fe, Co) nanoparticles in alternating magnetic fields. Using magnetic and structural nanoparticle characterization, we identify key synthetic parameters in the thermal decomposition of organometallic precursors that yield optimized magnetic nanoparticles over a wide range of sizes and compositions. The developed synthetic procedures allow for gram-scale production of magnetic nanoparticles stable in physiological buffer for several months. Our magnetic nanoparticles display some of the highest heat dissipation rates, which are in qualitative agreement with the trends predicted by a dynamic hysteresis model of coherent magnetization reversal in single domain magnetic particles. By combining physical simulations with robust scalable synthesis and materials characterization techniques, this work provides a pathway to a model-driven design of magnetic nanoparticles tailored to a variety of biomedical applications ranging from cancer hyperthermia to remote control of gene expression. PMID:24016039

  4. E&SS model based simulation of core loss and heat build-up in electrical steel

    Microsoft Academic Search

    H. Shimoji; M. Enokizono

    2010-01-01

    Based on the core loss analysis that used the finite element method and E&SS model, this paper had conducted a two-dimensional heat transfer analysis with hysteresis loss as its heat source and clarified the heat distribution within the test piece. Core loss is reported to vary according to magnetic anisotropy and magnetic flux conditions. By using the finite element method

  5. Early pregnancy loss and exposure to 50-Hz magnetic fields

    SciTech Connect

    Juutilainen, J.; Matilainen, P.; Saarikoski, S.; Laeaerae Esuo; Suonio, S. (Univ. of Kuopio (Finland))

    1993-01-01

    The possibility of an association of early pregnancy loss (EPL) with residential exposure to ELF magnetic fields was investigated in a case-control study. Eighty-nine cases and 102 controls were obtained from the data of an earlier study aimed at investigating the occurrence of EPL in a group of women attempting to get pregnant. Magnetic-field exposure was characterized by measurements in residences. Strong magnetic fields were measured more often in case than in control residences. In an analysis based on fields measured at the front door, a cutoff score of 0.5 A/m (0.63 microT) resulted in an odds ratio of 5.1 (95% confidence interval 1.0-25). The results should be interpreted cautiously due to the small number of highly exposed subjects and other limitations of the data.

  6. Indices of Multidomain Magnetic Behavior in Basic Igneous Rocks: Alternating-Field Demagnetization, Hysteresis, and Oxide Petrology

    Microsoft Academic Search

    D. J. Dunlop; J. A. Hanes; K. L. Buchan

    1973-01-01

    Lowtie and Fuller [1971] have recently proposed a simple test of the domain state of grains carrying natural remanent magnetization (NRM) in igneous rocks. The test is based on their observation that the 'hardness,' or resistance to alternating-field (AF) demagnetization, of weak-field thermoremanent magnetization .

  7. Commutation-caused eddy-current losses in permanent-magnet brushless DC motors

    Microsoft Academic Search

    Fang Deng

    1997-01-01

    An analytical approach based on a two-dimensional electromagnetic field analysis in polar coordinates is developed to predict the commutation losses in a permanent magnet brushless dc (PMBD) motor. These losses are essentially the eddy-current losses induced in the PMBD motor's rotor magnets and core and are caused by the rotor sweeping of the stationary stator magnetic field before each current

  8. Collisional trap losses of cold magnetically trapped Br atoms

    NASA Astrophysics Data System (ADS)

    Lam, J.; Rennick, C. J.; Softley, T. P.

    2014-12-01

    Near-threshold photodissociation of Br2 from a supersonic beam produces slow bromine atoms that are trapped in the magnetic-field minimum formed between two opposing permanent magnets. Here we quantify the dominant trap-loss rate due to collisions with two sources of residual gas: the background limited by the vacuum chamber base pressure and the carrier gas during the supersonic gas pulse. The loss rate due to collisions with residual Ar in the background follows pseudo-first-order kinetics and the bimolecular rate coefficient for collisional loss from the trap is determined by measurement of this rate as a function of the background Ar pressure. This rate coefficient is smaller than the total elastic collision rate coefficient, as it only samples those collisions that lead to trap loss, and is determined to be =(1.12 ±0.09 ) ×10-9cm3s-1 . The calculated differential cross section can be used with this value to estimate a trap depth of 293 ±24 mK . Carrier-gas collisions occur only during the tail of the supersonic beam pulse. Using the differential cross section verified by the background-gas collision measurements provides an estimate of the peak molecular-beam density of (3.0 ±0.3 ) ×1013cm-3 , in good agreement with the prediction of a simple supersonic expansion model. Finally, we estimate the trap-loss rate due to Majorana transitions to be negligible, owing to the relatively large trapped-atom phase-space volume.

  9. The extrinsic hysteresis behavior of dilute binary ferrofluids.

    PubMed

    Lin, Lihua; Li, Jian; Lin, Yueqiang; Liu, Xiaodong; Chen, Longlong; Li, Junming; Li, Decai

    2014-10-01

    We report on the magnetization behavior of dilute binary ferrofluids based on ?-Fe(2)O(3)/Ni(2)O(3) composite nanoparticles (A particles), with diameter about 11 nm, and ferrihydrite (Fe(5)O(7)(OH) ?4H2O) nanoparticles (B particles), with diameter about 6 nm. The results show that for the binary ferrofluids with A-particle volume fraction ?(A) = 0.2% and B-particle volume fractions ?(B) = 0.1% and ?(B) = 0.6%, the magnetization curves exhibit quasi-magnetic hysteresis behavior. The demagnetizing curves coincide with the magnetizing curves at high fields. However, for single ?-Fe(2)O(3)/Ni(2)O(3) ferrofluids with ?(A) = 0.2% and binary ferrofluids with ?(A) = 0.2% and ?(B) = 1.0%, the magnetization curves do not behave in this way. Additionally, at high field (750 kA/m), the binary ferrofluid with ?(B) = 1.0% has the smallest magnetization. From the model-of-chain theory, the extrinsic hysteresis behavior of these samples is attributed to the field-induced effects of pre-existing A particle chains, which involve both Brownian rotation of the chains'moments and a Néel rotation of the particles' moments in the chains. The loss of magnetization for the ferrofluids with ?(B) = 1.0% is attributed to pre-existing ring-like A-particle aggregates. These magnetization behaviors of the dilute binary ferrofluids not only depend on features of the strongly magnetic A-particle system, but also modifications of the weaker magnetic B-particle system. PMID:25365919

  10. Unusual magnetic hysteresis and the weakened transition behavior induced by Sn substitution in Mn{sub 3}SbN

    SciTech Connect

    Sun, Ying, E-mail: sunying@buaa.edu.cn [Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191 (China); International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Guo, Yanfeng; Li, Jun; Wang, Xia [Superconducting Properties Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Tsujimoto, Yoshihiro [Materials Processing Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Wang, Cong [Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191 (China); Feng, Hai L.; Sathish, Clastin I.; Yamaura, Kazunari, E-mail: yamaura.kazunari@nims.go.jp [Superconducting Properties Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Matsushita, Yoshitaka [Analysis Station, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan)

    2014-01-28

    Substitution of Sb with Sn was achieved in ferrimagnetic antiperovskite Mn{sub 3}SbN. The experimental results indicate that with an increase in Sn concentration, the magnetization continuously decreases and the crystal structure of Mn{sub 3}Sb{sub 1-x}Sn{sub x}N changes from tetragonal to cubic phase at around x of 0.8. In the doping series, step-like anomaly in the isothermal magnetization was found and this behavior was highlighted at x?=?0.4. The anomaly could be attributed to the magnetic frustration, resulting from competition between the multiple spin configurations in the antiperovskite lattice. Meantime, H{sub c} of 18 kOe was observed at x?=?0.3, which is probably the highest among those of manganese antiperovskite materials reported so far. With increasing Sn content, the abrupt change of resistivity and the sharp peak of heat capacity in Mn{sub 3}SbN were gradually weakened. The crystal structure refinements indicate the weakened change at the magnetic transition is close related to the change of c/a ratio variation from tetragonal to cubic with Sn content. The results derived from this study indicate that the behavior of Mn{sub 3}Sb{sub 1-x}Sn{sub x}N could potentially enhance its scientific and technical applications, such as spin torque transfer and hard magnets.

  11. Unusual magnetic hysteresis and the weakened transition behavior induced by Sn substitution in Mn3SbN

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Guo, Yanfeng; Tsujimoto, Yoshihiro; Wang, Cong; Li, Jun; Wang, Xia; Feng, Hai L.; Sathish, Clastin I.; Matsushita, Yoshitaka; Yamaura, Kazunari

    2014-01-01

    Substitution of Sb with Sn was achieved in ferrimagnetic antiperovskite Mn3SbN. The experimental results indicate that with an increase in Sn concentration, the magnetization continuously decreases and the crystal structure of Mn3Sb1-xSnxN changes from tetragonal to cubic phase at around x of 0.8. In the doping series, step-like anomaly in the isothermal magnetization was found and this behavior was highlighted at x = 0.4. The anomaly could be attributed to the magnetic frustration, resulting from competition between the multiple spin configurations in the antiperovskite lattice. Meantime, Hc of 18 kOe was observed at x = 0.3, which is probably the highest among those of manganese antiperovskite materials reported so far. With increasing Sn content, the abrupt change of resistivity and the sharp peak of heat capacity in Mn3SbN were gradually weakened. The crystal structure refinements indicate the weakened change at the magnetic transition is close related to the change of c/a ratio variation from tetragonal to cubic with Sn content. The results derived from this study indicate that the behavior of Mn3Sb1-xSnxN could potentially enhance its scientific and technical applications, such as spin torque transfer and hard magnets.

  12. Low Thermal Loss Cryogenic Transfer Line with Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Shu, Quan-Sheng; Cheng, Guangfeng; Yu, Kun; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.

    2004-06-01

    An energy efficient, cost effective cryogenic distribution system (up to several miles) is crucial for spaceport and in-space cryogenic systems. The conduction heat loss from the supports that connect the cold inner lines to the warm support structure is ultimately the most serious heat leak after thermal radiation has been minimized. The use of magnetic levitation by permanent magnets and high temperature superconductors provides support without mechanical contact and thus, the conduction part of the heat leak can be reduced to zero. A stop structure is carefully designed to hold the center tube when the system is warm. The novel design will provide the potential of extending many missions by saving cryogens, or reducing the overall launch mass.

  13. Mathematical models of hysteresis

    Microsoft Academic Search

    I. Mayergoyz

    1986-01-01

    A new approach to Preisach's hysteresis model, which emphasizes its phenomenological nature and mathematical generality, is briefly described. Then the theorem which gives the necessary and sufficient conditions for the representation of actual hysteresis nonlinearities by Preisach's model is proven. The significance of this theorem is that it establishes the limits of applicability of this model.

  14. Evaluation of magnetic forces in an induction machine with dual stator winding taking into account hysteresis model

    Microsoft Academic Search

    Dounia Sedira; Mohamed Rachid Mékidèche; Afef Kedous-Lebouc; Siham Laissaoui

    2011-01-01

    Purpose – Designers of electrical machines need a clear understanding of the mechanism of noise generation, in order to be able to reduce the noises which are produced under the influence of forces due to the magnetic field. The purpose of this paper is to develop a new approach to give a best estimation of these forces. Design\\/methodology\\/approach – A

  15. Rare-earth-gallium-iron glasses. II. Anomalous magnetic hysteresis in alloys based on Pr, Nd, and Sm

    NASA Astrophysics Data System (ADS)

    Cornelison, S. G.; Zhao, J. G.; Sellmyer, D. J.

    1984-09-01

    Giant magnetic coercivity is reported in several metallic glasses of the form (R80G20)100-xFex where R represents Pr, Nd, or Sm, G represents Ga or Au, and 15<=x<=30. An unusual temperature variation of the coercive field is observed showing peaks at intermediate temperatures (~=90 K). In contrast to similar glasses based on heavy rare-earth metals, these glasses exhibit significant chemical short-range order and even phase separation as is shown by the Mössbauer effect and other measurements. The results are consistent with a recent theory which predicts that large coercivity can result from the presence of site-to-site variations in magnetic properties.

  16. Magnetic properties and loss separation in iron powder soft magnetic composite materials

    Microsoft Academic Search

    Marc de Wulf; Ljubomir Anestiev; Luc Dupré; Ludo Froyen; Jan Melkebeek

    2002-01-01

    New developments in powder metallurgical composites make soft magnetic composite (SMC) material interesting for application in electrical machines, when combined with new machine design rules and new production techniques. In order to establish these design rules, one must pay attention to electromagnetic loss characteristics of SMC material. In this work, five different series of iron based SMCs are produced and

  17. Magnetic Field Shielding by Vacuum Chambers of Magnetic Material for Beam Loss Reduction

    NASA Astrophysics Data System (ADS)

    Kamiya, Junichiro; Ogiwara, Norio; Hayashi, Naoki; Hotchi, Hideaki; Yoshimoto, Masahiro; Kinsho, Michikazu

    One of the reasons of a beam loss in a high power accelerator is leakage magnetic field from a magnet at a close beam line, which distorts the beam orbit and makes the beam hit the wall of the beam pipe. The most effective way to shield such leakage field is to cover the beam by the magnetic materials at the nearest space. This means that beam pipes and bellows be made of the magnetic materials. We plan to apply this method to the vacuum chambers of the beam extraction section of the J-PARC 3 GeV synchrotron, where the effect of the leakage magnetic field to the beam orbit is evident. However, there is few proven evidence of the vacuum chambers made of magnetic materials. Therefore we clarify the problems in producing beam pipes and bellows, which satisfy the magnetic and vacuum performance. In this article, we deliver the over view of the magnetic shielding project and our approaches to the problems in producing the vacuum chambers of magnetic materials.

  18. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  19. AC Losses in the MICE Channel Magnets -- Is This a Curse or aBlessing?

    SciTech Connect

    Green, M.A.; Wu, H.; Wang, L.; Kai, L.L.; Jia, L.X.; Yang, S.Q.

    2008-01-31

    This report discusses the AC losses in the MICE channelmagnets during magnet charging and discharging. This report talks aboutthe three types of AC losses in the MICE magnets; the hysteretic AC lossin the superconductor, the coupling AC loss in the superconductor and theeddy current AC loss in the magnet mandrel and support structure. AClosses increase the heat load at 4 K. The added heat load increases thetemperature of the second stage of the cooler. In addition, AC losscontributes to the temperature rise between the second stage cold headand the high field point of the magnet, which is usually close to themagnet hot spot. These are the curses of AC loss in the MICE magnet thatcan limit the rate at which the magnet can be charge or discharged. Ifone is willing to allow some of the helium that is around the magnet toboil away during a magnet charge or discharge, AC losses can become ablessing. The boil off helium from the AC losses can be used to cool theupper end of the HTS leads and the surrounding shield. The AC losses arepresented for all three types of MICE magnets. The AC loss temperaturedrops within the coupling magnet are presented as an example of how boththe curse and blessing of the AC losses can be combined.

  20. Experimental Validation of Control Designs for Low-Loss Active Magnetic Bearings

    E-print Network

    Tsiotras, Panagiotis

    by a low-loss active magnetic bearing (AMB). The electromagnets of the AMB are constrained by a generalized constraint ZB zero-bias LB low-bias PMSM permanent magnet synchronous motor IPACS Integrated PowerExperimental Validation of Control Designs for Low-Loss Active Magnetic Bearings Brian C. Wilson

  1. Iron loss analysis of interior permanent-magnet synchronous motors-variation of main loss factors due to driving condition

    Microsoft Academic Search

    Katsumi Yamazaki; Yoshiaki Seto

    2006-01-01

    In this paper, the authors investigate the iron loss of interior permanent magnet motors driven by pulsewidth modulation (PWM) inverters from both results of the experiments and the finite-element analysis. In the analysis, the iron loss of the motor is decomposed into several components due to their origins, for instance, the fundamental field, carrier of the PWM inverter, slot ripples,

  2. Plant thermal hysteresis proteins.

    PubMed

    Urrutia, M E; Duman, J G; Knight, C A

    1992-05-22

    Proteins which produce a thermal hysteresis (i.e. lower the freezing point of water below the melting point) are common antifreezes in cold adapted poikilothermic animals, especially fishes from ice-laden seas and terrestrial arthropods. However, these proteins have not been previously identified in plants. 16 species of plants collected from northern Indiana in autumn and winter had low levels of thermal hysteresis activity, but activity was absent in summer. This suggests that thermal hysteresis proteins may be a fairly common winter adaptation in angiosperms. Winter stem fluid from the bittersweet nightshade, Solanum dulcamara L., also showed the recrystallization inhibition activity characteristic of the animal thermal hysteresis proteins (THPs), suggesting a possible function for the THPs in this freeze tolerant species. Other potential functions are discussed. Antibodies to an insect THP cross reacted on immunoelectroblots with proteins in S. dulcamara stem fluid, indicating common epitopes in the insect and plant THPs. PMID:1599942

  3. Hysteresis in column systems

    NASA Astrophysics Data System (ADS)

    Ivanyi, P.; Ivanyi, A.

    2015-02-01

    In this paper one column of a telescopic construction of a bell tower is investigated. The hinges at the support of the column and at the connecting joint between the upper and lower columns are modelled with rotational springs. The characteristics of the springs are assumed to be non-linear and the hysteresis property of them is represented with the Preisach hysteresis model. The mass of the columns and the bell with the fly are concentrated to the top of the column. The tolling process is simulated with a cycling load. The elements of the column are considered completely rigid. The time iteration of the non-linear equations of the motion is evaluated by the Crank-Nicolson schema and the implemented non-linear hysteresis is handled by the fix-point technique. The numerical simulation of the dynamic system is carried out under different combination of soft, medium and hard hysteresis properties of hinges.

  4. Wide Temperature Core Loss Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1999-01-01

    100 kHz core loss properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. For example, the 100 kHz specific core loss ranged from 50 - 70 mW/cubic cm for the 3 materials, when measured at 0.1 T and 50 C. This very low high frequency core loss, together with near zero saturation magnetostriction and insensitivity to rough handling, makes these amorphous ribbons strong candidates for power magnetics applications in wide temperature aerospace environments.

  5. Evaluation of the ferromagnetic AC magnetizing process in industrial diagnostics

    NASA Astrophysics Data System (ADS)

    Hruška, K.

    1984-02-01

    The method discussed in this paper allows description of the complex shape of the hysteresis loop and of the factors characterizing the magnetization process in ferromagnetic materials. The non-harmonic course of the hysteresis loop is expressed by Chebyshev polynomials. With the help of these polynominals the area of the hysteresis loop and consequently the losses are expressed when magnetizing the material. The application of this method represents an increased accuracy of magnetic measurements and can be of help in gaining important information about metallurgical properties of materials.

  6. Analysis and experiment of eddy current loss in Homopolar magnetic bearings with laminated rotor cores

    NASA Astrophysics Data System (ADS)

    Jinji, Sun; Dong, Chen

    2013-08-01

    This paper analyses the eddy current loss in Homopolar magnetic bearings with laminated rotor cores produced by the high speed rotation in order to reduce the power loss for the aerospace applications. The analytical model of rotational power loss is proposed in Homopolar magnetic bearings with laminated rotor cores considering the magnetic circuit difference between Homopolar and Heteropolar magnetic bearings. Therefore, the eddy current power loss can be calculated accurately using the analytical model by magnetic field solutions according to the distribution of magnetic fields around the pole surface and boundary conditions at the surface of the rotor cores. The measurement method of rotational power loss in Homopolar magnetic bearing is proposed, and the results of the theoretical analysis are verified by experiments in the prototype MSCMG. The experimental results show the correctness of calculation results.

  7. Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Zhang, Yide (Inventor); Wang, Shihe (Inventor); Xiao, Danny (Inventor)

    2004-01-01

    A series of bulk-size magnetic/insulating nanostructured composite soft magnetic materials with significantly reduced core loss and its manufacturing technology. This insulator coated magnetic nanostructured composite is comprises a magnetic constituent, which contains one or more magnetic components, and an insulating constituent. The magnetic constituent is nanometer scale particles (1-100 nm) coated by a thin-layered insulating phase (continuous phase). While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase (or coupled nanoparticles) provide the desired soft magnetic properties, the insulating material provides the much demanded high resistivity which significantly reduces the eddy current loss. The resulting material is a high performance magnetic nanostructured composite with reduced core loss.

  8. Analysis of a hysteresis motor with overexcitation

    SciTech Connect

    Kataoka, T.; Ishikawa, T.; Takahasi, T.

    1982-11-01

    The performance of a hysteresis motor can be improved greatly if it is overexcited for a short period when running at synchronous speed. The change in the magnetic state of the rotor hysteresis material, when the stator voltage is raised and then reduced to the original value, is described in detail. Based on this, a method for the calculation of the motor performance after overexcitation is proposed, and the effect of overexcitation on the motor performance is clarified by using this method. Good agreement is found between the calculated and the measured results.

  9. Measurement of AC loss and magnetic field during ramps in the LHC model dipoles

    Microsoft Academic Search

    Z. Ang; I. Bejar; L. Bottura; D. Richter; M. Sheahan; L. Walckiers; R. Wolf

    1999-01-01

    We describe the systems for AC loss and magnetic field measurements developed for the LHC superconducting magnets. AC loss measurements are performed using an electric method, while field measurements are performed using either fixed pick-ups or rotating coils. We present results obtained on 1-m long model dipoles, and compare the results of the different methods in terms of average interstrand

  10. Analytical prediction of eddy-current loss in modular tubular permanent-magnet machines

    Microsoft Academic Search

    Yacine Amara; Jiabin Wang; David Howe

    2005-01-01

    The paper describes an analytical technique for predicting the eddy-current loss in the moving armature of a tubular permanent magnet machine. This loss component is usually neglected in conventional tubular permanent magnet machines since high-order time harmonics in the stator current waveform and space harmonics in the winding magnetomotive force (MMF) distribution are generally considered to be insignificant. However, a

  11. Dynamic hysteresis modelling

    NASA Astrophysics Data System (ADS)

    Zirka, S. E.; Moroz, Y. I.; Marketos, P.; Moses, A. J.

    2004-01-01

    A viscous-type dynamic hysteresis model (DHM) is developed. The DHM is compatible with static underlying model of any type and nature (Preisach or non-Preisach). The distinguishing features of the DHM are its arbitrary frequency dependence and the ability to control the shape of the dynamic hysteresis loop. The numerical method for the incorporation of the DHM in magnetodynamic computations is illustrated by a good agreement of modelled dynamic loops with measured loops of non-oriented and grain-oriented electrical steels.

  12. A Possible Solution to Reduce Magnetic Losses in Transformer Cores Working at Liquid Nitrogen Temperature

    NASA Astrophysics Data System (ADS)

    Pronto, A. Gonçalves; Neves, M. Ventim; Rodrigues, A. Leão

    The efficiency of power transformers should be always taken in account when design and operation conditions parameters are chosen. In high temperature superconducting transformers (HTS transformers), normally cooled by liquid nitrogen at 77 K, cores are usually kept at room temperature in order to minimize total magnetic losses, losing the possibility to use the cooling liquid to minimize electric risks and to cool the core, and increasing the complexity of the cryostats that, in these cases, must only embrace the superconducting windings. This work try to evaluate the magnetic core losses increasing at 77 K, for different magnetic materials, and the possibility of reducing these losses under some specific manipulation of magnetic materials. For this purpose, several low temperature measurements are presented to characterize the magnetic behavior of four electrical steels usually used in transformer cores. The chosen magnetic materials are three crystalline materials, two grain-oriented and one non oriented steel, and an amorphous elaectrical steel. The most significant results show that grain oriented steels have lower losses increasing at cryogenic temperature, comparing with the other two magnetic materials, and that above a certain value of magnetic induction, B, total magnetic losses at 77 K became smaller than room temperature losses. Results interpretation is presented and some suggestions are made concerning production of magnetic materials for applications at 77 K.

  13. Comprehensive Study on the Impact of Dielectric and Magnetic Loss on Performance of a Novel

    E-print Network

    Tentzeris, Manos

    Flexible Magnetic Composite Material Li Yang1 , Lara Martin2 , Daniela Staiculescu1 , C. P. Wong1, FL, 33322, U.S.A. liyang@ece.gatech.edu Abstract--This paper introduces a novel flexible magnetic composite material for RFID and wearable RF antennas. The critical issue of dielectric and magnetic losses

  14. Loss analysis of the thermodynamic cycle of magnetic heat pumps

    Microsoft Academic Search

    F. C. Chen; R. W. Murphy; V. C. Mei; G. L. Chen; J. W. Lue; M. S. Lubell

    1991-01-01

    The needs for developing non-ozone-depleting, no-greenhouse-effect heat pump systems and for exploring the potential of new high-temperature superconducting materials have prompted a renewed interest in the study of magnetic heat pumps. The new materials can provide the high magnetic field that an effective superconducting magnetic heat pump requires, and magnetic heat pumps do not use freon for a working fluid.

  15. Macroscopic theory for capillary-pressure hysteresis.

    PubMed

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-01

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials. PMID:25646688

  16. The simulation of low core loss high speed permanent magnet motor based on soft-magnetic ferrite

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Fang, Xue; Guo, Yingjie; Wang, Xiuhe

    2006-11-01

    High core loss is the most outstanding problem in high speed permanent magnet motors. To solve this problem, water cooling or oil cooling is usually adopted, which increase the complexity and cost. Considering the characters of high permeability, high resistivity, low loss and low cost for soft magnetic ferrite, this paper proposes a novel high speed PM motor based on soft magnetic ferrite. Soft magnetic ferrite ring is used as stator core, rare earth PM ring serves as the rotor poles, and the slotless configuration with long effective air gap is adopted. The size matching design between the stator magnetic ring and the PM magnetic ring can make themselves work in their best operating points respectively, lower core loss and higher power density will be ensured in the motor. The results of magnetic field analysis, core loss analysis and the prototype test prove that the core loss can be greatly reduced, which verifies that the high speed PM BLDC motor based on soft magnetic ferrite is feasible.

  17. Coupled Analysis Technique Involving Magnetic-Field-Control/Circuit Simulation and Loss Estimation for Permanent Magnet Synchronous Machine

    NASA Astrophysics Data System (ADS)

    Narita, Katsuyuki; Yamada, Takashi; Sakashita, Yoshiyuki; Akatsu, Kan

    The high-flux permanent magnet and flux-barrier structure of permanent magnet synchronous machine (PMSM) has strong magnetic saturation and harmonics components. When control algorithms for such machines are examined by performing control simulation, the use of the conventional motor model based on the voltage equation can cause problems. To avoid these problems, we introduce the technique of coupled analysis of the magnetic-field-control/circuit simulation. Further, iron losses generated in PMSM can be estimated by the coupled analysis system. The iron losses at various driving conditions are calculated by the coupled analysis system and are compared with measured losses. The comparison results show that the coupled analysis system is suitable for accurately estimating the iron losses of PMSM.

  18. Effects of striations on magnetization loss of transposed coated conductors

    Microsoft Academic Search

    J. K. Lee; M. J. Park; S. W. Lee; W. S. Kim; H. Lee; S. H. Park; Y. I. Hwang; S. B. Byun; K. Choi

    2008-01-01

    Even though a coated conductor is more superior in some performances than a BSCCO PIT wire, its AC loss is still high. One of the solutions to decrease the AC loss of the coated conductor is to make striations on it and to twist it. But we cannot use the twisted single coated conductor for a winding of an AC

  19. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Bruhn, B.; Testrich, H. [Institut fuer Physik, E.-M.-Arndt Universitaet Greifswald, Felix-Hausdorff-Str. 6, 17487 Greifswald (Germany); Wilke, C. [Leibniz-Institut fuer Plasmaforschung und Technologie, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  20. Static magnetization and microwave loss in shock-modified ferrites

    SciTech Connect

    Venturini, E.L.; Graham, R.A.; Morosin, B.

    1987-01-01

    High-pressure shock loading of cubic nickel ferrite and hexagonal barium ferrite powders results in substantial residual strain, producing changes in the magnetic anisotropy through magnetostrictive coupling. Both the static magnetization and the absorption of microwaves are strongly altered in nickel ferrite, with somewhat smaller changes in barium ferrite.

  1. Orientational hysteresis in swarms of active particles in external field

    E-print Network

    Romensky, Maksym

    2015-01-01

    Structure and ordering in swarms of active particles have much in common with condensed matter systems like magnets or liquid crystals. A number of important characteristics of such materials can be obtained via dynamic tests such as hysteresis. In this work, we show that dynamic hysteresis can be observed also in swarms of active particles and possesses similar properties to the counterparts in magnetic materials. To study the swarm dynamics, we use computer simulation of the active Brownian particle model with dissipative interactions. The swarm is confined to a narrow linear channel and one-dimensional polar order parameter is measured. In an oscillating external field, the order parameter demonstrates dynamic hysteresis with the shape of the loop and its area varying with the amplitude and frequency of the applied field, swarm density and the noise intensity. We measure the scaling exponents for the hysteresis loop area, which can be associated with the controllability of the swarm. Although the exponents...

  2. Magnetic and electric contributions to the energy loss in a dynamical QCD medium

    E-print Network

    Magdalena Djordjevic

    2011-05-21

    The computation of radiative energy loss in a finite size QCD medium with dynamical constituents is a key ingredient for obtaining reliable predictions for jet quenching in ultra-relativistic heavy ion collisions. It was previously shown that energy loss in dynamical QCD medium is significantly higher compared to static QCD medium. To understand this difference, we here analyze magnetic and electric contributions to energy loss in dynamical QCD medium. We find that the significantly higher energy loss in the dynamical case is entirely due to appearance of magnetic contribution in the dynamical medium. While for asymptotically high energies, the energy loss in static and dynamical medium approach the same value, we find that the physical origin of the energy loss in these two cases is different.

  3. Calculations of alpha particle loss for reversed magnetic shear in the Tokamak Fusion Test Reactor

    SciTech Connect

    Redi, M.H.; White, R.B.; Batha, S.H.; Levinton, F.M.; McCune, D.C. [Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08540 (United States)] [Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08540 (United States)

    1997-11-01

    Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. {bold 21}, 1324 (1992)] predict 40{percent} total alpha losses and 20{percent} ripple diffusion losses. This is about double the loss rate of a comparable non-reversed magnetic shear plasma. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. {copyright} {ital 1997 American Institute of Physics.}

  4. Hysteresis and coercivity of hematite

    NASA Astrophysics Data System (ADS)

    Ã-zdemir, Ã.-zden; Dunlop, David J.

    2014-04-01

    room-temperature hysteresis, 14 submicron hematites (0.12-0.45 µm) had large coercive forces Hc (150-350 mT), while 22 natural 1-5.5 mm hematite crystals had Hc = 0.8-23 mT (basal-plane measurements). Single-domain (SD) and multidomain (MD) hematites owe their high Hc mainly to magnetoelastic anisotropy, caused in fine particles by internal strains and in large crystals by defects like dislocations, with a smaller contribution by triaxial magnetocrystalline anisotropy. A strong correlation between Hc and the defect moment Md measured below hematite's Morin transition also favors magnetoelastic control. Saturation remanence/saturation magnetization ratios Mrs/Ms and coercivity ratios Hcr/Hc (Hcr is remanent coercive force) are distinctive: Mrs/Ms = 0.5-0.9, Hcr/Hc = 1.02-1.17 for MD hematites; Mrs/Ms = 0.5-0.7, Hcr/Hc = 1.45-1.62 for SD hematites. In high-temperature (20-690°C) hysteresis, Hc(T) ~ Ms(T) to a power 1.8-2.4 above 385°C. Magnetoelastic wall pinning by crystal defects is thus more likely than control by domain nucleation which depends on magnetocrystalline anisotropy. Our results compare well with existing Hc vs. crystal size d data. A suggested peak in Hc around 15 µm and a proposed slope change around 100 µm are both questionable. Using only near-saturation data, Hc varies continuously as d-0.61 from ?0.1 µm to 2 mm. The SD threshold size d0 may be >15 µm but there is no strong evidence that d0 ?100 µm. Direct domain observations are needed to settle the question. Augmented data sets for Hc and Mrs vs. d show that SD hematite is increasingly affected by thermal fluctuations below ?0.3 µm and generally confirm a superparamagnetic threshold size ds of 0.025-0.03 µm.

  5. AC Magnetization Losses in Copper-Stabilized YBCO Coated Conductors Subjected to Repeated Mechanical Stresses

    Microsoft Academic Search

    T. Uno; T. Ojima; S. Mitsui; T. Takao; O. Tsukamoto

    2011-01-01

    Influence of repeated mechanical stresses on AC losses (transport current and magnetization losses) in YBCO CCs with copper stabilization layers is experimentally investigated. Repeated uni-axial tensile stress-strain was applied to the CC in the longitudinal direction and AC losses were measured electri- cally at 77 K. Experimental results show that the influence of the repeated mechanical stress\\/strain on the transport

  6. Iron yoke eddy current induced losses with application to the ALS septum magnets

    SciTech Connect

    Schlueter, R.D.

    1991-08-16

    The theoretical development of relations governing the eddy current induced losses in iron electromagnet yokes is reviewed. A baseline laminated electromagnet design is analyzed and a parametric study illustrates the sensitivity of core losses to perturbations of various geometrical, material, and excitation parameters. Core losses and field gradients for the ALS septum magnets are calculated. Design modifications capable of eliminating transverse and longitudinal field gradients are discussed.

  7. Radiative parton energy loss in expanding quark-gluon plasma with magnetic monopoles

    E-print Network

    B. G. Zakharov

    2014-12-19

    We study radiative parton energy loss in an expanding quark-gluon plasma with magnetic monopoles. We find that for realistic number density of thermal monopoles obtained in lattice simulations parton rescatterings on monopoles can considerably enhance energy loss for plasma produced in $AA$ collisions at RHIC and LHC energies. However, contrary to previous expectations, monopoles do not lead to the surface dominance of energy loss.

  8. Rotational power loss of magnetic steel sheets in a circular rotational magnetic field in CCW/CW directions

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitaka; Shimoji, Hiroyasu; Todaka, Takashi; Enokizono, Masato

    This paper presents rotational power loss properties of magnetic steel sheets under high flux density conditions using two-dimensional vector magnetic properties measurement. Recently it was reported by some research groups that the magnetic power loss measured in a counter clockwise (CCW) rotating field differed from that in a clockwise (CW) rotating field. This phenomenon was only observed in case of higher magnetic flux density excitation condition. We call this the CCW/CW problem. To clarify the reasons why the disagreement exists in the CCW/CW direction, we have examined angle errors of H- and B-coils by using geometrical, optical and magnetic methods. Then we compensated the measured vector components including different signals due to the angle errors. In the components of irremovable small angle error, we have also used the measured field strength waveforms in CCW/CW conditions. We have applied the compensation method to measurement of a grain-oriented electrical steel sheet.

  9. Magnetically controlled mass-loss from extrasolar planets in close orbits

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Adams, Fred C.

    2014-11-01

    We consider the role magnetic fields play in guiding and controlling mass-loss via evaporative outflows from exoplanets that experience UV irradiation. First, we present analytic results that account for planetary and stellar magnetic fields, along with mass-loss from both the star and planet. We then conduct series of numerical simulations for gas giant planets, and vary the planetary field strength, background stellar field strength, UV heating flux, and planet mass. These simulations show that the flow is magnetically controlled for moderate field strengths and even the highest UV fluxes, i.e. planetary surface fields BP ? 0.3 G and fluxes FUV ˜ 106 erg s-1. We thus conclude that outflows from all hot Jupiters with moderate surface fields are magnetically controlled. The inclusion of magnetic fields highly suppresses outflow from the night side of the planet. Only the magnetic field lines near the pole are open and allow outflow to occur. The fraction of open field lines depends sensitively on the strength (and geometry) of the background magnetic field from the star, along with the UV heating rate. The net effect of the magnetic field is to suppress the mass-loss rate by (approximately) an order of magnitude. Finally, some open field lines do not allow the flow to pass smoothly through the sonic point; flow along these streamlines does not reach a steady state, resulting in time-variable mass-loss.

  10. Magnetization losses in superconducting YBCO conductor-on-round-core (CORC) cables

    NASA Astrophysics Data System (ADS)

    Majoros, M.; Sumption, M. D.; Collings, E. W.; van der Laan, D. C.

    2014-12-01

    Described are the results of magnetization loss measurements made at 77 K on several YBCO conductor-on-round-core (CORC) cables in ac magnetic fields of up to 80 mT in amplitude and frequencies of 50 to 200 Hz, applied perpendicular to the cable axis. The cables contained up to 40 tapes that were wound in as many as 13 layers. Measurements on the cables with different configurations were made as functions of applied ac field amplitude and frequency to determine the effects of their layout on ac loss. In large scale devices such as e.g. Superconducting Magnetic Energy Storage (SMES) magnets, the observed ac losses represent less than 0.1% of their stored energy.

  11. MODELING OF EDDY CURRENT LOSS AND TEMPERATURE OF THE MAGNETS

    E-print Network

    Mi, Chunting "Chris"

    drives, either PM synchronous motors (PMSM) or PM brushless DC motors (BLDC), due to their many (PM) motors in a hybrid electric vehicle (HEV) and plug-in HEV is usually not taken into consideration in traditional motor design and analysis. However, due to the high conductivity of the rare-earth magnet, neody

  12. Calorimetric method of ac loss measurement in a rotating magnetic field.

    PubMed

    Ghoshal, P K; Coombs, T A; Campbell, A M

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines. PMID:20687748

  13. Calorimetric method of ac loss measurement in a rotating magnetic field

    SciTech Connect

    Ghoshal, P. K. [Oxford Instruments NanoScience, Abingdon, Oxfordshire OX13 5QX (United Kingdom); Coombs, T. A.; Campbell, A. M. [Department of Engineering, Electrical Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  14. Loss measurement and analysis for the prototype generator with HTS stator and permanent magnet rotor

    NASA Astrophysics Data System (ADS)

    Song, Peng; Qu, Timing; Yu, Xiaoyu; Li, Longnian; Gu, Chen; Li, Xiaohang; Wang, Dewen; Hu, Boping; Chen, Duxing; Han, Zhenghe

    2013-11-01

    A prototype HTS synchronous generator with a permanent magnet rotor and HTS armature windings was developed. The rated armature frequency is 10 Hz. The cryogenic Dewar is tightly surrounded outside the iron core. Both HTS coils and the iron core were cooled by using conduction cooling method. During the process of no-load running, the no-load loss power data were obtained through the torque measurement. The temperature evolution characteristics of the stator was measured by PT-100 temperature sensors. These results show that the no-load loss power at around 77 K are much larger than that at room temperature. The possible reason for the no-load loss increment is discussed. The ac loss power of one individual HTS coil used in this generator was also tested. Compared with the iron loss power, the ac loss power is rather small and could be neglected.

  15. Angular Momentum and Mass Loss From Magnetized Solar-Like Winds

    NASA Astrophysics Data System (ADS)

    Pinsonneault, Marc H.; Matt, S.; MacGregor, K. B.

    2013-01-01

    We investigate angular momentum and mass loss from magnetized solar-like winds in cool stars. We present a physically motivated formulation and investigate two key phenomena: the F star transition from effective to ineffective spin down and the mass dependence of the spin down timescale in lower mass stars. We demonstrate that both phenomena are naturally explained within our framework. Tests of angular momentum loss models from upcoming Kepler data are discussed.

  16. A low-loss permanent-magnet brushless DC motor utilizing tape wound amorphous iron

    Microsoft Academic Search

    Chris C. Jensen; Francesco Profumo; Thomas A. Lipo

    1992-01-01

    An axial field permanent-magnet brushless DC motor that utilizes tape wound amorphous iron and an air gap winding is proposed. Simplified waveforms and performance equations for this type of machine are presented. The machine equations and waveforms are verified with a proof-of-concept machine. No-load iron losses are compared with manufacturer's data, and full-load iron losses are also presented. Output torque

  17. A low loss permanent magnet brushless DC motor utilizing tape wound amorphous iron

    Microsoft Academic Search

    CHRIS C. JENSEN; FRANCO PROFUMO; T.A. Lipo

    1990-01-01

    An axial-field permanent magnet brushless DC motor which utilizes tape-wound amorphous iron is proposed. Simplified waveforms and performance equations for this type of machine are presented. The machine equations and waveforms are verified with a proof-of-concept machine. No-load iron losses are compared with manufacturers' data, and full-load iron losses are also presented. Output torques for rectangular and trapezoidal current waveforms

  18. Low-Loss Magnetic Metamaterial Based on Analog of Electromagnetically Induced Transparency

    Microsoft Academic Search

    F.-Y. Meng; F. Zhang; K. Zhang; Q. Wu; J.-Y. Kim; J.-J. Choi; B. Lee; J.-C. Lee

    2011-01-01

    In this paper, a low-loss magnetic metamaterial configuration consisting of coupled radiative and dark resonators is proposed based on analog of electromagnetically induced transparency. Full-wave numerical simulations are carried out to validate the metamaterial. Absorptions curves, transmission spectrums, surface current distributions, and effective constitutive parameters for the metamaterial are presented. These results, showing a low-loss transparency window and strong dispersion

  19. Energy loss of ions by electric-field fluctuations in a magnetized plasma.

    PubMed

    Nersisyan, Hrachya B; Deutsch, Claude

    2011-06-01

    The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle. PMID:21797500

  20. Estimation of the Iron Loss in Deep-Sea Permanent Magnet Motors considering Seawater Compressive Stress

    PubMed Central

    Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress. PMID:25177717

  1. The frequency-dependent Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Malczyk, Robert; Izydorczyk, Jacek

    2015-04-01

    An extension of the Jiles-Atherton (J-A) magnetic hysteresis model is proposed in the paper. The physical J-A model has been substituted with the specially chosen mathematical Chua model. The proposed model produces identical results to those of the original J-A model for the static magnetic hysteresis loop. The new model permits the inclusion of a wide variety of additional effects observed for ferromagnetic materials without invalidating the well-known and broadly used J-A model parameters. Thus, it is possible to effectively model phenomena, whose detailed physical model would require complex mathematical calculations.

  2. Magnetic field structure influence on primary electron cusp losses for micro-scale discharges

    SciTech Connect

    Dankongkakul, Ben; Araki, Samuel J.; Wirz, Richard E. [University of California, Los Angeles, California 90024 (United States)] [University of California, Los Angeles, California 90024 (United States)

    2014-04-15

    An experimental effort was used to examine the primary electron loss behavior for micro-scale (?3?cm diameter) discharges. The experiment uses an electron flood gun source and an axially aligned arrangement of ring-cusps to guide the electrons to a downstream point cusp. Measurements of the electron current collected at the point cusp show an unexpectedly complex loss pattern with azimuthally periodic structures. Additionally, in contrast to conventional theory for cusp losses, the overall radii of the measured collection areas are over an order of magnitude larger than the electron gyroradius. Comparing these results to Monte Carlo particle tracking simulations and a simplified analytical analysis shows that azimuthal asymmetries of the magnetic field far upstream of the collection surface can substantially affect the electron loss structure and overall loss area.

  3. Calculations of alpha particle loss for reversed magnetic shear in the Tokamak Fusion Test Reactor

    SciTech Connect

    Redi, M.H.; White, R.B.; Batha, S.H.; Levinton, F.M.; McCune, D.C.

    1997-03-01

    Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma predict both total alpha losses and ripple diffusion losses to be greater than those from a comparable non-reversed magnetic shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. A simple ripple loss model, benchmarked against the guiding center code, is found to work satisfactorily in transport analysis modelling of reversed and monotonic shear scenarios. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. The 40% alpha particle loss predictions for TFTR suggest that reduction of toroidal field ripple will be a critical issue in the design of a reversed shear fusion reactor.

  4. Mach, methodology, hysteresis and economics

    NASA Astrophysics Data System (ADS)

    Cross, R.

    2008-11-01

    This methodological note examines the epistemological foundations of hysteresis with particular reference to applications to economic systems. The economy principles of Ernst Mach are advocated and used in this assessment.

  5. A high resolution flying magnetic disc recording system with zero reproduce spacing loss

    Microsoft Academic Search

    B. Gooch; R. Niedermeyer; R. Wood; R. Pisharody

    1991-01-01

    A novel method has been developed for reducing the reproduce spacing loss and thereby potentially allowing increased linear densities on a disc media while maintaining a reasonable flying height. A laminated magnetic recording media is composed of a high coercivity layer in which the data signals are stored, and a thin, low coercivity, high permeability overlayer called a keeper layer.

  6. Enhanced loss of magnetic-mirror-trapped fast electrons by a shear Alfvén wave

    SciTech Connect

    Wang, Y.; Gekelman, W.; Pribyl, P. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Papadopoulos, K. [Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742 (United States)] [Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742 (United States)

    2014-05-15

    Laboratory observations of enhanced loss of magnetic mirror trapped fast electrons irradiated by a shear Alfvén Wave (SAW) are reported. The experiment is performed in the quiescent after-glow plasma in the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62(12), 2875–2883 (1991)]. A trapped energetic electron population (>100?keV) is generated in a magnetic mirror section (mirror ratio???2, length?=?3.5?m) by an X-mode high power microwave pulse, and forms a hot electron ring due to the grad-B and curvature drift. SAWs of arbitrary polarization are launched externally by a Rotating Magnetic Field source (?B/B{sub 0}???0.1%, ?{sub ?}???9?m). Irradiated by a right-handed circularly polarized SAW, the loss of electrons, in both the radial and the axial direction of the mirror field, is significantly enhanced and is modulated at f{sub Alfvén}. The periodical loss continues even after the termination of the SAW. Experimental observations suggest that a spatial distortion of the ring is formed in the SAW field and creates a collective mode of the hot electron population that degrades its confinement and leads to electron loss from the magnetic mirror. The results could have implications on techniques of radiation belt remediation.

  7. Angular Momentum Loss by Magnetic Braking and Gravitational Radiation in Relativistic Binary Stars

    E-print Network

    K. Yakut; B. Kalomeni; C. A. Tout

    2008-11-04

    Angular momentum loss (AML) mechanisms and dynamical evolution owing to magnetic braking and gravitational radiation in relativistic binary stars (RBS) are studied with use of physical parameters collected from the literature. We have calculated and compared AML time scales for the RBS with non-degenerate components and double degenerate (DD) systems.

  8. Investigation of stray particle loss in deflection magnet region of neutral beam line

    SciTech Connect

    Kim, J.; Menon, M.M.

    1980-01-01

    Separation of residual charged particles from neutral particles is typically made by a deflection magnet in a neutral beam injection line for heating fusion plasmas. Ionization of energetic neutrals and neutralization of energetic ions in the deflection magnet region due to collisions with the background gas molecules result in a finite amount of particles that are only partially deflected, which we call a ''stray particles loss.'' Quantitative determination of the stray particle loss has been made from calorimetric data of beam power deposited along a beam line employing a 40-kV 60-A hydrogen ion source. The stray particle loss is typically 3--5% of the accelerator power and roughly proportional to the background gas pressure. A simple calculation is shown to be in fair agreement with the measurements.

  9. Investigation of stray particle loss in deflection magnet region of neutral beam line

    NASA Astrophysics Data System (ADS)

    Kim, J.; Menon, M. M.

    1980-01-01

    Separation of residual charged particles from neutral particles is typically made by a deflection magnet in a neutral beam injection line for heating fusion plasmas. Ionization of energetic neutrals and neutralization of energetic ions in the deflection magnet region due to collisions with the background gas molecules result in a finite amount of particles that are only partially deflected, which we call a ''stray particles loss.'' Quantitative determination of the stray particle loss has been made from calorimetric data of beam power deposited along a beam line employing a 40-kV 60-A hydrogen ion source. The stray particle loss is typically 3-5% of the accelerator power and roughly proportional to the background gas pressure. A simple calculation is shown to be in fair agreement with the measurements.

  10. Magnetic field tuning of polaron losses in Fe doped BaTiO3 single crystals.

    PubMed

    Theerthan, R Anand; Artemenko, Alla; Maglione, Mario

    2012-10-10

    Artificial tuning of dielectric parameters can result from interface conductivity in polycrystalline materials. In ferroelectric single crystals, it has already been shown that ferroelectric domain walls can be the source of such artificial coupling. We show here that low-temperature dielectric losses can be tuned by a dc magnetic field. Since such losses were previously ascribed to polaron relaxation we suggest this results from the interaction of hopping polarons with the magnetic field. The fact that this loss alteration has no counterpart in the real part of the dielectric permittivity confirms that no interface is involved in this purely dynamical effect. The contribution of mobile charges hopping among Fe-related centers was confirmed by ESR spectroscopy, showing a maximum intensity at ca T ~ 40 K. PMID:22951582

  11. Hysteresis from antiferromagnet domain-wall processes in exchange biased systems

    Microsoft Academic Search

    Joo-Von Kim; R. L. Stamps

    2005-01-01

    The presence of magnetic impurities in the antiferromagnet can account for some ferromagnetic hysteresis behavior observed in exchange bias systems. We show theoretically that such impurities can modify domain-wall formation in the antiferromagnet, which under certain conditions can give rise to coercivity enhancement and asymmetric hysteresis. The linear dynamics of the ferromagnet\\/antiferromagnet structure in the presence of impurities is also

  12. Hysteresis, Avalanches, and Noise Matthew C. Kuntz, Olga Perkovi'c, Karin A. Dahmen,

    E-print Network

    Sethna, James P.

    Hysteresis, Avalanches, and Noise Matthew C. Kuntz, Olga Perkovi'c, Karin A. Dahmen, Bruce W simulations. In our studies of hysteresis and avalanches in a sim­ ple model of magnetism (the random be triggered when one of its neighbors flips (by participating in an avalanche), or a spin can be triggered

  13. Magnetization AC losses in MgB2 wires made by IMD process

    NASA Astrophysics Data System (ADS)

    Ková?, J.; Šouc, J.; Ková?, P.; Hušek, I.

    2015-01-01

    Magnetization AC losses of MgB2 superconductors with one and four filaments made by an internal magnesium diffusion (IMD) into boron process were measured and analyzed. For AC loss measurement a system based on a calibration-free method was used. Short samples of MgB2 wires were exposed to an external magnetic field with amplitudes up to 0.07 T, frequencies up to 1200 Hz, and a temperature range between 15 K and 40 K. A strong effect of eddy current losses was found in single-core wire containing pure copper sheath, which was proved by the same wire measurement after Cu etching. The impact of coupling current losses in non-twisted four-filament wire and the decoupling effect after twisting were observed. Coupling current losses in a low-frequency region were effectively reduced in agreement with theoretical assumption. The degradation of transport currents due to torsion stress by twisting was taken into account and the normalized AC losses of MgB2 wires made by IMD and powder-in-tube processes were compared. It appears that the IMD process is more perspective for AC applications due to much higher current densities and smaller degradation of current-carrying capability by twisting.

  14. Magnetism variations and susceptibility hysteresis at the metal-insulator phase transition temperature of VO2 in a composite film containing vanadium and tungsten oxides

    NASA Astrophysics Data System (ADS)

    Akande, Amos A.; Rammutla, Koena E.; Moyo, Thomas; Osman, Nadir S. E.; Nkosi, Steven S.; Jafta, Charl J.; Mwakikunga, Bonex W.

    2015-02-01

    We report on the magnetic property of 0.67-WO3+0.33-VOx mixture film deposit on the corning glass substrate using the chemical sol-gel and atmospheric pressure chemical vapor deposition (APCVD) methods. The XRD and Raman spectroscopy confirm species of both materials, and the morphological studies with FIB-SEM and TEM reveal segregation of W and V atoms. XPS reveals that V4+ from VO2 forms only 11% of the film; V3+ in the form of V2O3 form 1% of the film, 21% is V5+ from V2O5 and 67% is given to W6+ from WO3. The analysis of the ESR data shows some sharp changes in the magnetism near the metal-to-insulator (MIT), which could be theoretically interpreted as the ordering or alignment of electron spins from net moment nature to parallel alignment of magnetic moment. The derivatives of magnetic susceptibility established the thermally induced magnetic property: two distinct transitions of 339 K for heating data and 338 K for cooling data for 151.2 mT field were obtained. Similar results were also obtained for 308.7 mT field, 336 K for heating data and 335 K for cooling data. VSM results confirm a paramagnetic phase with a small amount of magnetically ordered phase.

  15. Hysteresis heating based induction bonding of composite materials

    Microsoft Academic Search

    Witchuda Suwanwatana

    2004-01-01

    The viability of using magnetic particulate susceptor materials for induction heating during bonding of polymer matrix composites is well established in this work. The unique ability to offer localized heating, geometric flexibility, and self-controlled temperature is the major advantage of this technique. Hysteresis heating is tailored through careful design of the microstructure of nickel particulate polymer films (Ni\\/PSU). An excellent

  16. MODELING OF STOCHASTIC MAGNETIC FLUX LOSS FROM THE EDGE OF A POOIDALLY DIVERTED TOKAMAK

    SciTech Connect

    EVANS, TE,; MOYER, RA; MONAT, P

    2002-06-01

    OAK A271 MODELING OF STOCHASTIC MAGNETIC FLUX LOSS FROM THE EDGE OF A POOIDALLY DIVERTED TOKAMAK. A field line integration code is used to study the loss of edge poloidal magnetic flux due to stochastic magnetic fields produced by an error field correction coil (C-coil) in DIII-D for various plasma shapes, coil currents and edge magnetic shear profiles. The authors find that the boundary of a diverted tokamak is more sensitive to stochastic flux loss than a nondiverted tokamak. The C-coil has been used to produce a stochastic layer in an ohmic diverted discharge with characteristics similar to those seen in stochastic boundary experiments in circular limiter ohmic plasmas, including: (1) an overall increase in recycling, (2) a broadening of the recycling profile at the divertor, and (3) a flattening of the boundary profiles over the extent of the stochastic layer predicted by the field line integration code. Profile flattening consistent with field line integration results is also seen in some high performance discharges with edge transport barriers. The prediction of a significant edge stochastic layer even in discharges with high performance and edge radial transport barriers indicates that either the self-consistent plasma response heals the stochastic layer or that edge stochastic layers are compatible with edge radial transport barriers.

  17. Magnetism and ferromagnetic loss in Ni-W textured substrates for coated conductors

    NASA Astrophysics Data System (ADS)

    Ijaduola+, A. O.; Thompson; Goyal, A.; Thieme, C. L. H.; Marken, K.

    2004-03-01

    We studied magnetic properties of biaxially textured Ni_1-xWx materials with x = 0, 3, 5, 6, and 9 at% W. They are important as substrates for ``RABiTS'' coated conductors containing high temperature superconductors. The quasi-static dc and ac hysteretic loss W was determined to estimate the ferromagnetic (FM) contribution to the overall ac loss in applications. Alloys were prepared by vacuum casting or powder metallurgy, and the hysteretic loss tended to be lower in materials that were recrystallized at higher temperatures. Progressive deformation (0.4 % bending strain) to simulate winding operations increased the FM loss, as did sample cutting operations making localized damage. In ac studies, the effects of ac frequency and DC bias field on the FM loss were determined. For fully coated tapes (with no effective ``grooving''), estimates of ac loss show that the FM part can be modest compared with the superconductive loss, for peak ac currents I0 ˜(0.6-0.8)I_c, where Ic = critical current. Work at UTK was supported by AFOSR Grant F49620-02-1-0182. ORNL is managed by UT-Battelle, LLC for the USDOE.

  18. Disc formation in turbulent cloud cores: is magnetic flux loss necessary to stop the magnetic braking catastrophe or not?

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; de Gouveia Dal Pino, E. M.; Lazarian, A.

    2013-03-01

    Recent numerical analysis of Keplerian disc formation in turbulent, magnetized cloud cores by Santos-Lima et al. demonstrated that reconnection diffusion is an efficient process to remove the magnetic flux excess during the buildup of a rotationally supported disc. This process is induced by fast reconnection of the magnetic fields in a turbulent flow. In a similar numerical study, Seifried et al. concluded that reconnection diffusion or any other non-ideal magnetohydrodynamic effects would not be necessary and turbulence shear alone would provide a natural way to build up a rotating disc without requiring magnetic flux loss. Their conclusion was based on the fact that the mean mass-to-flux ratio (?) evaluated over a spherical region with a radius much larger than the disc is nearly constant in their models. In this paper, we compare the two sets of simulations and show that this averaging over large scales can mask significant real increases of ? in the inner regions where the disc is built up. We demonstrate that turbulence-induced reconnection diffusion of the magnetic field happens in the initial stages of the disc formation in the turbulent envelope material that is accreting. Our analysis is suggestive that reconnection diffusion is present in both sets of simulations and provides a simple solution for the `magnetic braking catastrophe' which is discussed in the literature in relation to the formation of protostellar accretion discs.

  19. Onset of rapid mass loss in cool giant stars - Magnetic field effects

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1982-01-01

    The possibility that closed magnetic field loops exist in steady state in stellar atmospheres in the HR diagram is examined. A model derived by Pneuman (1968) for helmet streamers in the solar corona is applied using a semi-empirical technique, to find that long-lived closed loops exist only below a certain boundary in the HR diagram. The region below this boundary is occupied by stars which are known to have hot coronae and slow mass loss. It is suggested that rapid mass loss sets in when closed field loops can no longer exist in steady state in the atmosphere.

  20. On the Treatment of Electric and Magnetic Loss in the Linear Bicharacteristic Scheme for Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2000-01-01

    The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been extended to treat lossy dielectric and magnetic materials. This paper examines different methodologies for treatment of the electric loss term in the Linear Bicharacteristic Scheme for computational electromagnetics. Several different treatments of the electric loss term using the LBS are explored and compared on one-dimensional model problems involving reflection from lossy dielectric materials on both uniform and nonuniform grids. Results using these LBS implementations are also compared with the FDTD method for convenience.

  1. Magnetic shielding in ultrahigh vacuum systems: Using a computer code to design a shield for an electron energy loss spectrometer

    Microsoft Academic Search

    S. Dobscha; W. Siekhaus

    1986-01-01

    Using a computer code, a magnetic shield has been designed for an electron energy loss spectrometer. Two methods are used to approximate the effect of pumpout holes on the internal magnetic field. These approximations show that the ambient magnetic field can be attenuated by a factor of approximately 1000 in the sample region of the spectrometer. Actual tests of the

  2. Theory of molecular hysteresis switch

    NASA Astrophysics Data System (ADS)

    Kozhushner, Mortko; Oleynik, Ivan

    2006-03-01

    Molecular hysteresis switching has been recently observed in a series of experiments that measured the I-V spectrum of bipyridyl-dinitro oligophenylene-ethylene dithiol (BPDN) based molecular devices [1]. The experimental observations clearly show the presence of Coulomb blockade in single organic molecules that is responsible for the voltage-induced switching. We present the theory of the hysteresis switch which explains the non-linear hysteresis I-V characteristics based on the mechanisms of Coulomb blockade and the existence of two different molecular conformations of neutral and charged states of the molecule. [1] A.S. Blum, J.G. Kushmerick, D.P. Long, C.H. Patterson, J.C. Yang, J.C. Henderson, Y.X. Yao, J.M. Tour, R. Shashidhar, and B.R. Ratna, ``Molecularly inherent voltage-controlled conductance switching'' , Nature Materials 4, 167 (2005).

  3. Transient analysis of spectrally asymmetric magnetic photonic crystals with ferromagnetic losses

    Microsoft Academic Search

    K.-Y. Jung; B. Donderici; F. L. Teixeira

    2006-01-01

    We analyze transient electromagnetic pulse propagation in spectrally asymmetric magnetic photonic crystals (MPCs) with ferromagnetic losses. MPCs are dispersion-engineered materials consisting of a periodic arrangement of misaligned anisotropic dielectric and ferromagnetic layers that exhibit a stationary inflection point in the (asymmetric) dispersion diagram and unidirectional frozen modes. The analysis is performed via a late-time stable finite-difference time-domain method (FDTD) implemented

  4. Barkhausen discontinuities and hysteresis of ferromagnetics: New stochastic approach

    SciTech Connect

    Vengrinovich, Valeriy, E-mail: veng@iaph.bas-net.by [Institute of Applied Physics of the Belarus Academy of Sciences 220072, Akademicheskaya street 16, Minsk (Belarus)

    2014-02-18

    The magnetization of ferromagnetic material is considered as periodically inhomogeneous Markov process. The theory assumes both statistically independent and correlated Barkhausen discontinuities. The model, based on the chain evolution-type process theory, assumes that the domain structure of a ferromagnet passes successively the steps of: linear growing, exponential acceleration and domains annihilation to zero density at magnetic saturation. The solution of stochastic differential Kolmogorov equation enables the hysteresis loop calculus.

  5. Domain-wall motion in random potential and hysteresis modeling

    SciTech Connect

    Pasquale, M.; Basso, V.; Bertotti, G. [IEN Galileo Ferraris and INFM C. so M. DAzeglio42, 10125Torino (Italy)] [IEN Galileo Ferraris and INFM C. so M. DAzeglio42, 10125Torino (Italy); Jiles, D.C.; Bi, Y. [Ames Laboratory, Iowa State University, 50011Ames, Iowa (United States)] [Ames Laboratory, Iowa State University, 50011Ames, Iowa (United States)

    1998-06-01

    Two different approaches to hysteresis modeling are compared using a common ground based on energy relations, defined in terms of dissipated and stored energy. Using the Preisach model and assuming that magnetization is mainly due to domain-wall motion, one can derive the expression of magnetization along a major loop typical of the Jiles{endash}Atherton model and then extend its validity to cases where mean-field effects and reversible contributions are present. {copyright} {ital 1998 American Institute of Physics.}

  6. Hysteresis modeling in ballistic carbon nanotube field-effect transistors

    PubMed Central

    Liu, Yian; Moura, Mateus S; Costa, Ademir J; de Almeida, Luiz Alberto L; Paranjape, Makarand; Fontana, Marcio

    2014-01-01

    Theoretical models are adapted to describe the hysteresis effects seen in the electrical characteristics of carbon nanotube field-effect transistors. The ballistic transport model describes the contributions of conduction energy sub-bands over carbon nanotube field-effect transistor drain current as a function of drain-source and gate-source voltages as well as other physical parameters of the device. The limiting-loop proximity model, originally developed to understand magnetic hysteresis, is also utilized in this work. The curves obtained from our developed model corroborate well with the experimentally derived hysteretic behavior of the transistors. Modeling the hysteresis behavior will enable designers to reliably use these effects in both analog and memory applications. PMID:25187698

  7. Hysteresis Modeling in Magnetostrictive Materials Via Preisach Operators

    NASA Technical Reports Server (NTRS)

    Smith, R. C.

    1997-01-01

    A phenomenological characterization of hysteresis in magnetostrictive materials is presented. Such hysteresis is due to both the driving magnetic fields and stress relations within the material and is significant throughout, most of the drive range of magnetostrictive transducers. An accurate characterization of the hysteresis and material nonlinearities is necessary, to fully utilize the actuator/sensor capabilities of the magnetostrictive materials. Such a characterization is made here in the context of generalized Preisach operators. This yields a framework amenable to proving the well-posedness of structural models that incorporate the magnetostrictive transducers. It also provides a natural setting in which to develop practical approximation techniques. An example illustrating this framework in the context of a Timoshenko beam model is presented.

  8. Magnetoimpedance hysteresis in amorphous microwires induced by core-shell interaction

    NASA Astrophysics Data System (ADS)

    Ipatov, M.; Zhukova, V.; Gonzalez, J.; Zhukov, A.

    2014-09-01

    We report on magneto-impedance (MI) hysteresis at MHz and GHz frequencies in amorphous microwires subject to a sufficiently high applied axial magnetic field HE. We show that this hysteresis originates from the magnetic hysteresis of the inner core which biases the outer shell causing a shift of the MI curve along the HE axis. Combined experiments (longitudinal and off-diagonal MI Z(HE), hysteresis loops M(HE) by vibrating sample magnetometer, and induction method) reveal the details of the magnetization reversal process in these microwires: Partial field dependencies Z(HE) and M(HE) are shown to be practically anhysteretic but shifted to the left or to the right about the origin by a residual magnetic field of the inner core HC. This shift can vary in the range from -35 to +35 A/m, depending on the magnetic history of the sample. We demonstrate that the hysteresis can be suppressed by application of a high enough axial magnetic field that saturates the magnetization of the inner core. A potential application of this hysteresis for memory devices is also proposed.

  9. Heating efficiency in magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Deatsch, Alison E.; Evans, Benjamin A.

    2014-03-01

    Magnetic nanoparticles for hyperthermic treatment of cancers have gained significant attention in recent years. In magnetic hyperthermia, three independent mechanisms result in thermal energy upon stimulation: Néel relaxation, Brownian relaxation, and hysteresis loss. The relative contribution of each is strongly dependent on size, shape, crystalline anisotropy, and degree of aggregation or agglomeration of the nanoparticles. We review the effects of each of these physical mechanisms in light of recent experimental studies and suggest routes for progress in the field.

  10. Enhancement of AC-losses of magnetic nanoparticles for heating applications

    NASA Astrophysics Data System (ADS)

    Hergt, R.; Hiergeist, R.; Zeisberger, M.; Glöckl, G.; Weitschies, W.; Ramirez, L. P.; Hilger, I.; Kaiser, W. A.

    2004-09-01

    Aqueous ferrofluids of maghemite nanoparticles coated with carboxydextran were investigated with respect to their specific loss power (SLP) in dependence on frequency and field amplitude of magnetic AC-fields. In order to elucidate the effect of the size distribution on SLP fluid fractions with different mean particle core size were prepared by a magnetic separation procedure from the original ferrofluid. Structural characterisation by means of TEM and XRD as well as reconstruction of core size distributions from magnetisation curves reveals that the narrow size distributions of the fractions cover a range of mean core sizes from about 8 up to 20 nm. Spectra of the complex susceptibility were measured for a frequency range of 20 Hz to 1 MHz. From the imaginary part of the susceptibility the specific loss power is calculated in dependence on frequency. The results are compared with calorimetrical measurements performed in dependence on field amplitude up to 11 kA/m at 410 kHz. A very high specific loss power in the order of 400 W per gram maghemite was found at 410 kHz and 11 kA/m for the fluid fraction having the largest mean core diameter. A deviation from linear response behaviour is found for this sample showing a power law field dependence of the specific loss power SLP˜H 2.5. In addition to liquid suspensions measurements were performed with particles immobilised in mannitol or gel in order to elucidate the role of Brownian relaxation. The experimentally found dependence of SLP on the mean particle core diameter may be understood in the frame of the Debye dispersion model. Results are discussed with respect to applications of ferrofluids in RF-magnetic hyperthermia.

  11. Structural studies, magnetic properties and loss separation in iron–phenolicsilane soft magnetic composites

    Microsoft Academic Search

    A. H. Taghvaei; H. Shokrollahi; K. Janghorban

    2010-01-01

    In this work, six different series of iron based soft magnetic composites are produced and studied: (1) passive iron powder; (2) passive iron powder-0.7% resin with coupling agent; (3) passive iron powder-0.7% resin without coupling agent; (4) passive iron powder-1.5% resin with coupling agent; (5) passive iron powder-1.5% resin without coupling agent; (6) pure iron-1.5% resin. The specimens were shaped

  12. On the energy losses of hot worked Nd-Fe-B magnets and ferrites in a small alternating magnetic field perpendicular to a bias field

    SciTech Connect

    Staa, F. von; Hempel, K.A.; Artz, H. [Aachen Univ. of Technology (Germany). Institut fuer Werkstoffe der Elektrotechnik] [Aachen Univ. of Technology (Germany). Institut fuer Werkstoffe der Elektrotechnik

    1995-11-01

    Torsion pendulum magnetometer measurements on ferrites and on neodymium-iron-boron permanent magnets are presented. The damping of the oscillation of the pendulum leads to information on the magnetic energy losses of the magnets in a small alternating magnetic field applied perpendicular to a bias field. The origin of the energy absorption is explained by the magnetization reversal of single-domain particles. It is shown experimentally that the energy absorption mechanism requires the ferromagnetic order of the sample, and that the magnetic field strength of maximal energy absorption coincides with the effective anisotropy field strength.

  13. Advanced theory of driven birdcage resonator with losses for biomedical magnetic resonance imaging and spectroscopy.

    PubMed

    Novikov, Alexander

    2011-02-01

    A complete time-dependent physics theory of symmetric unperturbed driven hybrid birdcage resonator was developed for general application. In particular, the theory can be applied for radiofrequency (RF) coil engineering, computer simulations of coil-sample interaction, etc. Explicit time dependence is evaluated for different forms of driving voltage. The major steps of the solution development are shown and appropriate explanations are given. Green's functions and spectral density formula were developed for any form of periodic driving voltage. The concept of distributed power losses based on transmission line theory is developed for evaluation of local losses of a coil. Three major types of power losses are estimated as equivalent series resistances in the circuit of the birdcage resonator. Values of generated resistances in legs and end-rings are estimated. An application of the theory is shown for many practical cases. Experimental curve of B(1) field polarization dependence is measured for eight-sections birdcage coil. It was shown that the steady-state driven resonance frequencies do not depend on damping factor unlike the free oscillation (transient) frequencies. An equivalent active resistance is generated due to interaction of RF electromagnetic field with a sample. Resistance of the conductor (enhanced by skin effect), Eddy currents and dielectric losses are the major types of losses which contribute to the values of generated resistances. A biomedical sample for magnetic resonance imaging and spectroscopy is the source of the both Eddy current and dielectric losses of a coil. As demonstrated by the theory, Eddy current loss is the major effect of coil shielding. PMID:20869184

  14. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    NASA Astrophysics Data System (ADS)

    Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem

    2014-02-01

    The Gd5Ge2Si2 alloy and the off-stoichiometric Ni50Mn35In15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd5Ge2Si2 and Ni50Mn35In15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis.

  15. A simple model of hysteresis behavior using spreadsheet analysis

    NASA Astrophysics Data System (ADS)

    Ehrmann, A.; Blachowicz, T.

    2015-01-01

    Hysteresis loops occur in many scientific and technical problems, especially as field dependent magnetization of ferromagnetic materials, but also as stress-strain-curves of materials measured by tensile tests including thermal effects, liquid-solid phase transitions, in cell biology or economics. While several mathematical models exist which aim to calculate hysteresis energies and other parameters, here we offer a simple model for a general hysteretic system, showing different hysteresis loops depending on the defined parameters. The calculation which is based on basic spreadsheet analysis plus an easy macro code can be used by students to understand how these systems work and how the parameters influence the reactions of the system on an external field. Importantly, in the step-by-step mode, each change of the system state, compared to the last step, becomes visible. The simple program can be developed further by several changes and additions, enabling the building of a tool which is capable of answering real physical questions in the broad field of magnetism as well as in other scientific areas, in which similar hysteresis loops occur.

  16. Transient analysis of spectrally asymmetric magnetic photonic crystals with ferromagnetic losses

    NASA Astrophysics Data System (ADS)

    Jung, K.-Y.; Donderici, B.; Teixeira, F. L.

    2006-10-01

    We analyze transient electromagnetic pulse propagation in spectrally asymmetric magnetic photonic crystals (MPCs) with ferromagnetic losses. MPCs are dispersion-engineered materials consisting of a periodic arrangement of misaligned anisotropic dielectric and ferromagnetic layers that exhibit a stationary inflection point in the (asymmetric) dispersion diagram and unidirectional frozen modes. The analysis is performed via a late-time stable finite-difference time-domain method (FDTD) implemented with perfectly matched layer (PML) absorbing boundary conditions, and extended to handle (simultaneously) dispersive and anisotropic media. The proposed PML-FDTD algorithm is based on a D - H and B - E combined field approach that naturally decouples the FDTD update into two steps, one involving the (anisotropic and dispersive) constitutive material tensors and the other involving Maxwell’s equations in a complex coordinate space (to incorporate the PML). For ferromagnetic layers, a fully dispersive modeling of the permeability tensor is implemented to include magnetic losses in a consistent fashion. The numerical results illustrate some striking properties of MPCs, such as wave slowdown (frozen modes), amplitude increase (pulse compression), and unidirectional characteristics. The numerical model is also used to investigate the sensitivity of the MPC response against excitation (frequency and bandwidth), material (ferromagnetic losses), and geometric (layer misalignment and thickness) parameter variations.

  17. A Design Approach to Reduce Rotor Losses in High-Speed Permanent Magnet Machine for Turbo-Compressor

    Microsoft Academic Search

    Han-Wook Cho; Seok-Myeong Jang; Sang-Kyu Choi

    2006-01-01

    In this paper, a design approach to reduce rotor losses in high-speed permanent magnet machines for turbo-compressor is discussed. In particular, the influence of materials chosen for the retaining sleeve is highlighted. The two topologies of high-speed permanent magnet machines with Inconel718 and Carbon-Fiber\\/Epoxy sleeves are employed for comparison of computed rotor losses by two-dimensional finite-element method and analytical field

  18. On the effects of magnetic perturbations on fast ion losses studied at TEXTOR

    NASA Astrophysics Data System (ADS)

    Rack, M.; Liang, Y.; Denner, P.; Pearson, J.; Yang, Y.; Zeng, L.

    2014-12-01

    One criterion for the ignition of a fusion plasma is sufficient fast ion confinement. A key aspect in that context is the maintainability of good fast ion confinement in the presence of non-axisymmetric fields, such as those found in stellarators and during the application of resonant magnetic perturbations (RMPs) in tokamaks. This paper focuses on the influence of RMPs on the fast ion losses, studied at the Tokamak experiment for technology-oriented research (TEXTOR), a medium-sized device. TEXTOR is equipped with a flexible perturbation coil system, the dynamic ergodic divertor, allowing for the application of static or rotating perturbation fields. A rotating directional probe is used for the radially resolved fast ion loss measurements. The results achieved are presented and discussed for the poloidal/toroidal perturbation modes m/n = 3/1 and 6/2, with static and rotating fields.

  19. Reduction of core loss in non-oriented (NO) electrical steel by electroless-plated magnetic coating

    Microsoft Academic Search

    Pornthep Chivavibul; Manabu Enoki; Shigeru Konda; Yasushi Inada; Tamotsu Tomizawa; Akira Toda

    2011-01-01

    An important issue in development of electrical steels for core-laminated products is to reduce core loss to improve energy conversion efficiency. This is usually obtained by tailoring the composition, microstructure, and texture of electrical steels themselves. A new technique to reduce core loss in electrical steel has been investigated. This technique involves electroless plating of magnetic thin coating onto the

  20. Transient loss of plasma from a theta pinch having an initially reversed magnetic field

    SciTech Connect

    Heidrich, J. E.

    1981-01-01

    The results of an experimental study of the transient loss of plasma from a 25-cm-long theta pinch initially containing a reversed trapped magnetic field are presented. The plasma, amenable to MHD analyses, was a doubly ionized helium plasma characterized by an ion density N/sub i/ = 2 x 10/sup 16/ cm/sup -3/ and an ion temperature T/sub i/ = 15 eV at midcoil and by N/sub i/ = 0.5 x 10/sup 16/ cm/sup -3/ and T/sub i/ = 6 eV at a position 2.5 cm beyond the end of the theta coil.

  1. Particle Events as a Possible Source of Large Ozone Loss during Magnetic Polarity Transitions

    NASA Technical Reports Server (NTRS)

    vonKoenig, M.; Burrows, J. P.; Chipperfield, M. P.; Jackman, C. H.; Kallenrode, M.-B.; Kuenzi, K. F.; Quack, M.

    2002-01-01

    The energy deposition in the mesosphere and stratosphere during large extraterrestrial charged particle precipitation events has been known for some time to contribute to ozone losses due to the formation of potential ozone destroying species like NO(sub x), and HO(sub x). These impacts have been measured and can be reproduced with chemistry models fairly well. In the recent past, however, even the impact of the largest solar proton events on the total amount of ozone has been small compared to the dynamical variability of ozone, and to the anthropogenic induced impacts like the Antarctic 'ozone hole'. This is due to the shielding effect of the magnetic field. However, there is evidence that the earth's magnetic field may approach a reversal. This could lead to a decrease of magnetic field strength to less than 25% of its usual value over a period of several centuries . We show that with realistic estimates of very large solar proton events, scenarios similar to the Antarctic ozone hole of the 1990s may occur during a magnetic polarity transition.

  2. Efficient Computational Model of Hysteresis

    NASA Technical Reports Server (NTRS)

    Shields, Joel

    2005-01-01

    A recently developed mathematical model of the output (displacement) versus the input (applied voltage) of a piezoelectric transducer accounts for hysteresis. For the sake of computational speed, the model is kept simple by neglecting the dynamic behavior of the transducer. Hence, the model applies to static and quasistatic displacements only. A piezoelectric transducer of the type to which the model applies is used as an actuator in a computer-based control system to effect fine position adjustments. Because the response time of the rest of such a system is usually much greater than that of a piezoelectric transducer, the model remains an acceptably close approximation for the purpose of control computations, even though the dynamics are neglected. The model (see Figure 1) represents an electrically parallel, mechanically series combination of backlash elements, each having a unique deadband width and output gain. The zeroth element in the parallel combination has zero deadband width and, hence, represents a linear component of the input/output relationship. The other elements, which have nonzero deadband widths, are used to model the nonlinear components of the hysteresis loop. The deadband widths and output gains of the elements are computed from experimental displacement-versus-voltage data. The hysteresis curve calculated by use of this model is piecewise linear beyond deadband limits.

  3. Hysteresis in Audiovisual Synchrony Perception

    PubMed Central

    van Wassenhove, Virginie

    2015-01-01

    The effect of stimulation history on the perception of a current event can yield two opposite effects, namely: adaptation or hysteresis. The perception of the current event thus goes in the opposite or in the same direction as prior stimulation, respectively. In audiovisual (AV) synchrony perception, adaptation effects have primarily been reported. Here, we tested if perceptual hysteresis could also be observed over adaptation in AV timing perception by varying different experimental conditions. Participants were asked to judge the synchrony of the last (test) stimulus of an AV sequence with either constant or gradually changing AV intervals (constant and dynamic condition, respectively). The onset timing of the test stimulus could be cued or not (prospective vs. retrospective condition, respectively). We observed hysteretic effects for AV synchrony judgments in the retrospective condition that were independent of the constant or dynamic nature of the adapted stimuli; these effects disappeared in the prospective condition. The present findings suggest that knowing when to estimate a stimulus property has a crucial impact on perceptual simultaneity judgments. Our results extend beyond AV timing perception, and have strong implications regarding the comparative study of hysteresis and adaptation phenomena. PMID:25774653

  4. Research on the Dynamic Hysteresis Loop Model of the Residence Times Difference (RTD)-Fluxgate

    PubMed Central

    Wang, Yanzhang; Wu, Shujun; Zhou, Zhijian; Cheng, Defu; Pang, Na; Wan, Yunxia

    2013-01-01

    Based on the core hysteresis features, the RTD-fluxgate core, while working, is repeatedly saturated with excitation field. When the fluxgate simulates, the accurate characteristic model of the core may provide a precise simulation result. As the shape of the ideal hysteresis loop model is fixed, it cannot accurately reflect the actual dynamic changing rules of the hysteresis loop. In order to improve the fluxgate simulation accuracy, a dynamic hysteresis loop model containing the parameters which have actual physical meanings is proposed based on the changing rule of the permeability parameter when the fluxgate is working. Compared with the ideal hysteresis loop model, this model has considered the dynamic features of the hysteresis loop, which makes the simulation results closer to the actual output. In addition, other hysteresis loops of different magnetic materials can be explained utilizing the described model for an example of amorphous magnetic material in this manuscript. The model has been validated by the output response comparison between experiment results and fitting results using the model. PMID:24002230

  5. Research on the dynamic hysteresis loop model of the residence times difference (RTD)-fluxgate.

    PubMed

    Wang, Yanzhang; Wu, Shujun; Zhou, Zhijian; Cheng, Defu; Pang, Na; Wan, Yunxia

    2013-01-01

    Based on the core hysteresis features, the RTD-fluxgate core, while working, is repeatedly saturated with excitation field. When the fluxgate simulates, the accurate characteristic model of the core may provide a precise simulation result. As the shape of the ideal hysteresis loop model is fixed, it cannot accurately reflect the actual dynamic changing rules of the hysteresis loop. In order to improve the fluxgate simulation accuracy, a dynamic hysteresis loop model containing the parameters which have actual physical meanings is proposed based on the changing rule of the permeability parameter when the fluxgate is working. Compared with the ideal hysteresis loop model, this model has considered the dynamic features of the hysteresis loop, which makes the simulation results closer to the actual output. In addition, other hysteresis loops of different magnetic materials can be explained utilizing the described model for an example of amorphous magnetic material in this manuscript. The model has been validated by the output response comparison between experiment results and fitting results using the model. PMID:24002230

  6. Impact of RMP magnetic field simulation models on fast ion losses

    NASA Astrophysics Data System (ADS)

    Pfefferlé, David; Misev, Cyril; Cooper, Wilfred A.; Graves, Jonathan P.

    2015-01-01

    Two opposing approaches to include resonant magnetic perturbations (RMPs) in fast ion simulations are compared, one where the vacuum field caused by the RMP current coils is added to the axisymmetric MHD equilibrium, the other where the MHD equilibrium includes the plasma response within the 3D deformation of its flux-surfaces. The first model admits large regions of stochastic field-lines that penetrate the plasma without alteration. The second assumes nested flux-surfaces with a single magnetic axis, which excludes stochastic field-lines, and embeds the RMPs within a 3D saturated ideal MHD state. The two descriptions of RMPs have been implemented in the VENUS-LEVIS guiding-centre orbit code. Simulations of fast ion populations resulting from MAST neutral beam injection have been applied to MAST n = 3 RMP coil configuration. At low beam energies, particle losses are dominated by parallel transport due to the stochasticity of the field-lines (vacuum-RMP model), whereas at higher energies, losses are accredited to the 3D structure of the perturbed plasma and the resulting drifts (equilibrium-RMP model).

  7. High hysteresis in a homogeneous metallic glass

    NASA Astrophysics Data System (ADS)

    Branagan, D. J.; Meacham, B. E.; McCallum, R. W.; Dennis, K. W.; Kramer, M. J.

    2003-05-01

    In this article, we demonstrate high hysteresis in a well characterized homogeneous Tb-Al glass which contained no crystallites or crystalline embryos as verified using conventional and synchrotron diffraction, neutron diffraction, and direct observation in the transmission electron microscope. At low temperature (2 K), the metallic glass structure exhibited intrinsic coercivities approaching 23 kOe and high isotropic energy products of 12.4 MGOe. After crystallization into a three-phase nanoscale structure, the hard magnetic properties were found to be far inferior to that obtainable in the glass structure. From the well defined intrinsic magnetic properties (Msat,Tc), it is clear that the glass contains one or more types of well defined associations (i.e., clusters) and that these associations lead to ferromagnetic coupling/ordering. From the large random magnetic anisotropy, it is probable that the domain size is much larger than the structural cluster size. The measured single-phase loop shapes and the development of high coercivity in the glass state can be explained by an "exchange bias" mechanism resulting in a near perfect distribution of "fragile" pinning centers.

  8. Influence of geometry and wave shape on magnetic amorphous material

    Microsoft Academic Search

    A. J. Moses; J. Leicht; D. Fox

    2005-01-01

    The magnetic performance of 0.03mm thick Co-based and 0.026mm thick Fe-based amorphous ribbon in toroidal and strip form was measured under sine and pulse width modulation (PWM) waveform conditions. The measured loss, at 100Hz fundamental frequency and a peak flux density of 91% of the saturation of each material, was separated into classical eddy current, hysteresis and anomalous loss components

  9. Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system

    SciTech Connect

    Kocakaplan, Yusuf [Graduate School of Natural and Applied Sciences, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2014-09-07

    The hysteresis and compensation behaviors of the spin-3/2 cylindrical Ising nanotube system are studied within the framework of the effective-field theory with correlations. The effects of the Hamiltonian parameters are investigated on the magnetic and thermodynamic quantities, such as the total magnetization, hysteresis curves, and compensation behaviors of the system. Depending on the Hamiltonian parameters, some characteristic hysteresis behaviors are found, such as the existence of double and triple hysteresis loops. According to Néel classification nomenclature, the system displays Q-, R-, P-, N-, M-, and S- types of compensation behaviors for the appropriate values of the system parameters. We also compare our results with some recently published theoretical and experimental works and find a qualitatively good agreement.

  10. Effect of Cobalt Substitution on the Magnetic Properties of Ni-Cu Ferrite

    NASA Astrophysics Data System (ADS)

    Goev, G.; Masheva, V.; Ilkov, L.; Nihtianova, D.; Katerska, B.

    2010-01-01

    Single-phase polycrystalline Ni0.85-xCu0.15CoxFe2O4 (x = 0, 0.02, 0.04 and 0.06) were synthesized by a standard ceramic technology. The mean particle sizes, obtained by SEM, vary between 2 and 8 ?m. The main magnetic parameters such as saturation magnetization, remanence and coercivity were obtained from the entire hysteresis loops plotted in AC (2 kHz) magnetic field at room temperature. Hysteresis losses were evaluated from the same curves by using the Fourier decomposition. The initial permeabilities were obtained from the minor hysteresis loops, plotted in low enough magnetic fields. The remanence decreases almost linear with increasing Co-concentration. Both saturation magnetization and initial permeability have maxima at x = 0.02, but the coercivity and hysteresis losses have minima at the same Co-concentration. All the magnetic parameters, obtained at x = 0.02 are better than those of the starting composition with x = 0. The influence of the Co-substitution on the magnetic parameters is discussed.

  11. Magnetic Resonance Measurement of Turbulent Kinetic Energy for the Estimation of Irreversible Pressure Loss in Aortic Stenosis

    PubMed Central

    Dyverfeldt, Petter; Hope, Michael D.; Tseng, Elaine E.; Saloner, David

    2013-01-01

    OBJECTIVES The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. BACKGROUND Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. METHODS The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. RESULTS The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance–measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R2 = 0.91). CONCLUSIONS Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss in aortic stenosis. PMID:23328563

  12. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials

    NASA Astrophysics Data System (ADS)

    Wildeboer, R. R.; Southern, P.; Pankhurst, Q. A.

    2014-12-01

    In the clinical application of magnetic hyperthermia, the heat generated by magnetic nanoparticles in an alternating magnetic field is used as a cancer treatment. The heating ability of the particles is quantified by the specific absorption rate (SAR), an extrinsic parameter based on the clinical response characteristic of power delivered per unit mass, and by the intrinsic loss parameter (ILP), an intrinsic parameter based on the heating capacity of the material. Even though both the SAR and ILP are widely used as comparative design parameters, they are almost always measured in non-adiabatic systems that make accurate measurements difficult. We present here the results of a systematic review of measurement methods for both SAR and ILP, leading to recommendations for a standardised, simple and reliable method for measurements using non-adiabatic systems. In a representative survey of 50 retrieved datasets taken from published papers, the derived SAR or ILP was found to be more than 5% overestimated in 24% of cases and more than 5% underestimated in 52% of cases.

  13. Asymmetric-hysteresis compensation in piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Aguirre, Gorka; Janssens, Thierry; Van Brussel, Hendrik; Al-Bender, Farid

    2012-07-01

    The advantages of using piezoelectric actuators in ultra-precision applications are often impaired by nonlinear effects, in particular hysteresis, which may lead to positioning uncertainties of up to 15% of the actuator's stroke. Model-based compensation strategies are often prescribed in order to overcome this limitation and achieve better dynamical accuracy. This comes, however, at the expense of increasing identification and implementation complexity, especially when hysteresis is of the asymmetric type, such as prevalent in hard piezoceramic materials. This paper proposes a new compensation strategy based upon (i) treating hysteresis as being separate from other dynamical effects and (ii) formulating a new, simplified model to deal with asymmetric hysteresis, based on applying a linear operator to the conventional hysteresis models. After developing the theoretical background of the compensation strategy, the accuracy improvement due to the new hysteresis-compensation method is demonstrated experimentally.

  14. Contact angle hysteresis on fluoropolymer surfaces.

    PubMed

    Tavana, H; Jehnichen, D; Grundke, K; Hair, M L; Neumann, A W

    2007-10-31

    Contact angle hysteresis of liquids with different molecular and geometrical properties on high quality films of four fluoropolymers was studied. A number of different causes are identified for hysteresis. With n-alkanes as probe liquids, contact angle hysteresis is found to be strongly related to the configuration of polymer chains. The largest hysteresis is obtained with amorphous polymers whereas the smallest hysteresis occurs for polymers with ordered molecular chains. This is explained in terms of sorption of liquid by the solid and penetration of liquid into the polymer film. Correlation of contact angle hysteresis with the size of n-alkane molecules supports this conclusion. On the films of two amorphous fluoropolymers with different molecular configurations, contact angle hysteresis of one and the same liquid with "bulky" molecules is shown to be quite different. On the surfaces of Teflon AF 1600, with stiff molecular chains, the receding angles of the probe liquids are independent of contact time between solid and liquid and similar hysteresis is obtained for all the liquids. Retention of liquid molecules on the solid surface is proposed as the most likely cause of hysteresis in these systems. On the other hand, with EGC-1700 films that consist of flexible chains, the receding angles are strongly time-dependent and the hysteresis is large. Contact angle hysteresis increases even further when liquids with strong dipolar intermolecular forces are used. In this case, major reorganization of EGC-1700 chains due to contact with the test liquids is suggested as the cause. The effect of rate of motion of the three-phase line on the advancing and receding contact angles, and therefore contact angle hysteresis, is investigated. For low viscous liquids, contact angles are independent of the drop front velocity up to approximately 10 mm/min. This agrees with the results of an earlier study that showed that the rate-dependence of the contact angles is an issue only for liquids with high viscosity. PMID:17537391

  15. Joining of parts via magnetic heating of metal aluminum powders

    DOEpatents

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  16. Size dependent thermal hysteresis in spin crossover nanoparticles reflected within a Monte Carlo based Ising-like model

    NASA Astrophysics Data System (ADS)

    Atitoaie, Alexandru; Tanasa, Radu; Enachescu, Cristian

    2012-04-01

    Spin crossover compounds are photo-magnetic bistable molecular magnets with two states in thermodynamic competition: the diamagnetic low-spin state and paramagnetic high-spin state. The thermal transition between the two states is often accompanied by a wide hysteresis, premise for possible application of these materials as recording media. In this paper we study the influence of the system's size on the thermal hysteresis loops using Monte Carlo simulations based on an Arrhenius dynamics applied for an Ising like model with long- and short-range interactions. We show that using appropriate boundary conditions it is possible to reproduce both the drop of hysteresis width with decreasing particle size, the hysteresis shift towards lower temperatures and the incomplete transition, as in the available experimental data. The case of larger systems composed by several sublattices is equally treated reproducing the shrinkage of the hysteresis loop's width experimentally observed.

  17. Mössbauer spectroscopy, magnetic characteristics, and reflection loss analysis of nickel-strontium substituted cobalt ferrite nanoparticles

    SciTech Connect

    Ghasemi, Ali, E-mail: ali13912001@yahoo.com [Materials Engineering Department, Malek Ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of); Paesano, Andrea; Cerqueira Machado, Carla Fabiana [Departamento de Física, Centro de Ciências Exatas, Universidade Estadual de Maringá, Maringá (Brazil); Shirsath, Sagar E. [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (India); Spin Device Technology Center, Faculty of Engineering, Shinshu University, Nagano (Japan); Liu, Xiaoxi; Morisako, Akimitsu [Spin Device Technology Center, Faculty of Engineering, Shinshu University, Nagano (Japan)

    2014-05-07

    In current research work, Co{sub 1-x}Ni{sub x/2}Sr{sub x/2}Fe{sub 2}O{sub 4} (x?=?0–1 in a step of 0.2) ferrite nanoparticles were synthesized by a sol-gel method. According to the evolution in the subspectral areas obtained from Mössbauer spectroscopy, it was found that the relaxing iron belongs mostly to the site B, since the Mössbauer fraction of site A does not vary appreciably. With an increase in Ni-Sr substitution contents in cobalt ferrite, the coercivity and saturation of magnetization decrease. Variation of reflection loss versus frequency in microwave X-band demonstrates that the reflection peak shifts to lower frequency by adding substituted cations and the synthesized nanoparticles can be considered for application in electromagnetic wave absorber technology.

  18. Pinning Loss Power Density in Superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, Teruo

    2015-03-01

    The pinning loss power density is theoretically derived based on the resistive energy dissipation when the flux lines are driven by the Lorentz force in a superconductor. The obtained loss power density does not depend on the viscosity or flow resistivity, but is proportional to the pinning force density only, and it possesses the nature of hysteresis loss, as commonly measured in experiments. These features are predicted by the critical state model, which was recently proved theoretically. The obtained pinning force density is consistent with the prediction of the coherent potential approximation theory, a kind of statistical summation theory, for flux pinning. Thus, the irreversible properties associated with the flux pinning can be comprehensively described by these flux pinning theories. The irreversible flux pinning in the superconductor is compared with similar irreversible phenomena such as the motion of magnetic domain walls in ferromagnetic materials and the friction in mechanical systems. The possibility is also discussed for a general theoretical description of these irreversible phenomena in which the hysteresis loss occurs.

  19. Magnetic properties and magnetocaloric effects in HoPd intermetallic

    NASA Astrophysics Data System (ADS)

    Zhao-Jun, Mo; Jun, Shen; Xin-Qiang, Gao; Yao, Liu; Jian-Feng, Wu; Bao-Gen, Shen; Ji-Rong, Sun

    2015-03-01

    A large reversible magnetocaloric effect accompanied by a second order magnetic phase transition from PM to FM is observed in the HoPd compound. Under the magnetic field change of and the refrigerant capacity RC for the compound are evaluated to be 20 J/(kg · K) and 342 J/kg, respectively. In particular, large (11.3 J/(kg · K)) and RC (142 J/kg) are achieved under a low magnetic field change of 0–2 T with no thermal hysteresis and magnetic hysteresis loss. The large reversible magnetocaloric effect (both the large -?SM and the high RC) indicates that HoPd is a promising material for magnetic refrigeration at low temperature. Project supported by the National Natural Science Foundation of China (Grant Nos. 51322605, 11104337, 51271192, and 11274357) and the Knowledge Innovation Project of the Chinese Academy of Sciences.

  20. Temperature dependence of AC losses in a BSCCO/Ag tape exposed to AC magnetic fields applied in different orientations

    NASA Astrophysics Data System (ADS)

    Wolfbrandt, A.; Magnusson, N.; Hörnfeldt, S.

    2002-08-01

    When high-temperature superconducting tapes are used in electrotechnical applications, they have an optimal working point in temperature. In the winding of e.g. a transformer the conductor carrying an AC current is exposed to an AC magnetic field oriented differently in separate parts of the winding. To determine the optimal working temperature it is essential to study the temperature dependence of the AC losses under these conditions. In this study, we present experimental results of the losses in a multi-filamentary silver-sheathed Bi-2223 high-temperature superconducting tape carrying an AC transport current in an AC magnetic field applied in different orientations perpendicular to the current path. The losses were measured calorimetrically in the temperature interval 40-85 K. The experimental results are compared to semi-empirical models of the AC losses.

  1. Magnetization loop modelling for superconducting/ferromagnetic tube of an ac magnetic cloak

    NASA Astrophysics Data System (ADS)

    Gömöry, F.; Solovyov, M.; Šouc, J.

    2015-04-01

    From the combination of superconducting (SC) and ferromagnetic (FM) materials, one can prepare composites with unusual magnetic properties, e.g. for the cloaking of a dc or low-frequency ac magnetic field by a shell from a SC/FM composite. In the design and optimisation of such SC/FM structures, numerical modelling is essential. Non-linear magnetic permeability, as well as the hysteresis of both kinds of materials, are to be incorporated in the calculations aimed at achieving reliable estimates. We present a technique that allows the prediction of the ac magnetization loops of SC/FM composites. The critical state model-based approach is used to describe the properties of the superconducting material. The ferromagnetic part is characterized by its (non-hysteretic) nonlinear permeability. With these ingredients, the distributions of the magnetic field are calculated in subsequent instants of the ac cycle and are used to evaluate the preliminary data for the magnetization loop, which is still missing the hysteresis of the FM part. Afterward, the latter component is added to the magnetization loop by an approximation deduced from the known dependence of the hysteresis loss in the FM material on the ac magnetic field. In spite of its approximate nature, this approach demonstrated very good predictability in experimental tests.

  2. Tunable negligible-loss energy transfer between dipolar-coupled magnetic disks by stimulated vortex gyration

    NASA Astrophysics Data System (ADS)

    Jung, Hyunsung; Lee, Ki-Suk; Jeong, Dae-Eun; Choi, Youn-Seok; Yu, Young-Sang; Han, Dong-Soo; Vogel, Andreas; Bocklage, Lars; Meier, Guido; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2011-08-01

    A wide variety of coupled harmonic oscillators exist in nature. Coupling between different oscillators allows for the possibility of mutual energy transfer between them and the information-signal propagation. Low-energy input signals and their transport with negligible energy loss are the key technological factors in the design of information-signal processing devices. Here, utilizing the concept of coupled oscillators, we experimentally demonstrated a robust new mechanism for energy transfer between spatially separated dipolar-coupled magnetic disks - stimulated vortex gyration. Direct experimental evidence was obtained by a state-of-the-art experimental time-resolved soft X-ray microscopy probe. The rate of energy transfer from one disk to the other was deduced from the two normal modes' frequency splitting caused by dipolar interaction. This mechanism provides the advantages of tunable energy transfer rates, low-power input signals and negligible energy loss in the case of negligible intrinsic damping. Coupled vortex-state disks might be implemented in applications for information-signal processing.

  3. Tunable negligible-loss energy transfer between dipolar-coupled magnetic disks by stimulated vortex gyration.

    PubMed

    Jung, Hyunsung; Lee, Ki-Suk; Jeong, Dae-Eun; Choi, Youn-Seok; Yu, Young-Sang; Han, Dong-Soo; Vogel, Andreas; Bocklage, Lars; Meier, Guido; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2011-01-01

    A wide variety of coupled harmonic oscillators exist in nature. Coupling between different oscillators allows for the possibility of mutual energy transfer between them and the information-signal propagation. Low-energy input signals and their transport with negligible energy loss are the key technological factors in the design of information-signal processing devices. Here, utilizing the concept of coupled oscillators, we experimentally demonstrated a robust new mechanism for energy transfer between spatially separated dipolar-coupled magnetic disks - stimulated vortex gyration. Direct experimental evidence was obtained by a state-of-the-art experimental time-resolved soft X-ray microscopy probe. The rate of energy transfer from one disk to the other was deduced from the two normal modes' frequency splitting caused by dipolar interaction. This mechanism provides the advantages of tunable energy transfer rates, low-power input signals and negligible energy loss in the case of negligible intrinsic damping. Coupled vortex-state disks might be implemented in applications for information-signal processing. PMID:22355578

  4. Tunable negligible-loss energy transfer between dipolar-coupled magnetic disks by stimulated vortex gyration

    PubMed Central

    Jung, Hyunsung; Lee, Ki-Suk; Jeong, Dae-Eun; Choi, Youn-Seok; Yu, Young-Sang; Han, Dong-Soo; Vogel, Andreas; Bocklage, Lars; Meier, Guido; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2011-01-01

    A wide variety of coupled harmonic oscillators exist in nature. Coupling between different oscillators allows for the possibility of mutual energy transfer between them and the information-signal propagation. Low-energy input signals and their transport with negligible energy loss are the key technological factors in the design of information-signal processing devices. Here, utilizing the concept of coupled oscillators, we experimentally demonstrated a robust new mechanism for energy transfer between spatially separated dipolar-coupled magnetic disks - stimulated vortex gyration. Direct experimental evidence was obtained by a state-of-the-art experimental time-resolved soft X-ray microscopy probe. The rate of energy transfer from one disk to the other was deduced from the two normal modes' frequency splitting caused by dipolar interaction. This mechanism provides the advantages of tunable energy transfer rates, low-power input signals and negligible energy loss in the case of negligible intrinsic damping. Coupled vortex-state disks might be implemented in applications for information-signal processing. PMID:22355578

  5. Reduction of alternating magnetic field losses in high-Tc multifilament Bi(2223)\\/Ag tapes by high resistive barriers

    Microsoft Academic Search

    Kurt Kwasnitza; Stephan Clerc; René Flükiger; Yi-bing Huang

    1999-01-01

    Flat High-Tc multifilament tapes with an Ag matrix have very large coupling current losses in perpendicularly applied 50 Hz magnetic fields. By the application of ceramic isolating BaZrO3- and SrZrO3 barriers around the filaments we could reduce at 77 K the coupling current decay time constant to 1.5 ms, leading to a significant loss reduction at 25 Hz and a

  6. Tuning size and thermal hysteresis in bistable spin crossover nanoparticles.

    PubMed

    Galán-Mascarós, José Ramón; Coronado, Eugenio; Forment-Aliaga, Alicia; Monrabal-Capilla, María; Pinilla-Cienfuegos, Elena; Ceolin, Marcelo

    2010-06-21

    Nanoparticles of iron(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition "moves" towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications. PMID:20503990

  7. Magnetic properties and magnetocaloric effect in the RCu2Si2 and RCu2Ge2 (R = Ho, Er) compounds

    NASA Astrophysics Data System (ADS)

    Mo, Zhao-Jun; Shen, Jun; Yan, Li-Qin; Gao, Xin-Qiang; Wang, Li-Chen; Tang, Cheng-Chun; Wu, Jian-Feng; Sun, Ji-rong; Shen, Bao-Gen

    2014-02-01

    The magnetic properties and magnetocaloric effect (MCE) in RCu2Si2 and RCu2Ge2 (R = Ho, Er) compounds have been investigated. All these compounds possess an antiferromagnetic (AFM)-paramagnetic (PM) transition around their respective Neel temperatures. The RCu2Si2 compounds undergo spin-glassy behavior above Neel temperature. Furthermore, a field-induced metamagnetic transition from AFM to ferromagnetic (FM) states is observed in these compounds. The calculated magnetic entropy changes show that all RCu2Si2 and RCu2Ge2 (R = Ho, Er) compounds, especially, ErCu2Si2 exhibits large MCEs with no thermal hysteresis and magnetic hysteresis loss. The value of -?SMmax reaches 22.8 J/Kg K for magnetic field changes from 0 to 5 T. In particular, for field changes of 1 and 2 T, the giant reversible magnetic entropy changes -?SMmax are 8.3 and 15.8 J/kg K at 2.5 K, which is lower than the boiling point of helium. The low-field giant magnetic entropy change, together with ignorable thermal hysteresis and field hysteresis loss of ErCu2Si2 compound is expected to have effective applications in low temperature magnetic refrigeration.

  8. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-12-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ?e?e effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ?e?e as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  9. Control of hysteresis: theory and experimental results

    Microsoft Academic Search

    Xiaobo Tan; P. S. Krishnaprasad; Wright-Patterson AF

    Hysteresis in smart materials hinders the wider applicability of such materials in actuators. In this paper, a systematic approach for coping with hysteresis is presented. The method is illustrated through the example of controlling a commercially available magnetostrictive actuator. We utilize the low-dimensional model for the magnetostrictive actuator that was developed in earlier work. For low frequency inputs, the model

  10. Hysteresis in a quantized superfluid `atomtronic' circuit

    NASA Astrophysics Data System (ADS)

    Eckel, Stephen; Lee, Jeffrey G.; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W.; Lobb, Christopher J.; Phillips, William D.; Edwards, Mark; Campbell, Gretchen K.

    2014-02-01

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits--it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).

  11. Hysteresis and anisotropy in ultrathin Fe/Si(001) films

    NASA Astrophysics Data System (ADS)

    Ye, Jun; He, Wei; Wu, Qiong; Hu, Bo; Tang, Jin; Zhang, Xiang-Qun; Chen, Zi-Yu; Cheng, Zhao-Hua

    2014-09-01

    It is challenging to investigate the magnetic anisotropy of Fe/Si(001) film in the case a limited magnetic field strength, when both coherent rotation and domain wall displacement coexist in the magnetization reversal process. Owing to the domain wall displacement, the magnetization reversal switching field is far lower than the magnetic anisotropy field, and, consequently, only the magnetization reversal process near easy axis can be treated as coherent rotation. Here, we record the slope of the magnetic torque curve of an iron film grown on a Si(001) substrate measured near the easy axis by anisotropic magnetoresistance (AMR) to separate the coherent rotation of magnetization reversal process from domain wall displacement. Furthermore, the magnitudes of various magnetic anisotropy constants were derived from the magnetic torque curves. Our work suggests that the AMR at low fields can clearly separate the detailed contributions of various magnetic anisotropies when domain wall displacement existed in Fe(001) ultrathin film. We also report on the hysteresis behavior of such films as measured by magneto-optic Kerr effect.

  12. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfven Eigenmodes in the Large Helical Device

    SciTech Connect

    Ogawa, K. [Nagoya University, Japan; Isobe, M. [National Institute for Fusion Science, Toki, Japan; Watanabe, F. [Kyoto University, Japan; Spong, Donald A [ORNL; Shimizu, A. [National Institute for Fusion Science, Toki, Japan; Osakabe, M. [National Institute for Fusion Science, Toki, Japan; Ohdachi, S. [National Institute for Fusion Science, Toki, Japan; Sakakibara, S. [National Institute for Fusion Science, Toki, Japan

    2012-01-01

    Beam-ion losses induced by fast-ion-driven toroidal Alfven eigenmodes (TAE) were measured with a scintillator-based lost fast-ion probe (SLIP) in the large helical device (LHD). The SLIP gave simultaneously the energy E and the pitch angle chi = arccos(v(parallel to)/v) distribution of the lost fast ions. The loss fluxes were investigated for three typical magnetic configurations of R{sub ax{_}vac} = 3.60 m, 3.75 m, and 3.90 m, where R{sub ax{_}vac} is the magnetic axis position of the vacuum field. Dominant losses induced by TAEs in these three configurations were observed in the E/chi regions of 50 similar to 190 keV/40 degrees, 40 similar to 170 keV/25 degrees, and 30 similar to 190 keV/30 degrees, respectively. Lost-ion fluxes induced by TAEs depend clearly on the amplitude of TAE magnetic fluctuations, R{sub ax{_}vac} and the toroidal field strength B{sub t}. The increment of the loss fluxes has the dependence of (b{sub TAE}/B{sub t}){sup s}. The power s increases from s = 1 to 3 with the increase of the magnetic axis position in finite beta plasmas.

  13. Magnetic losses and mechanical properties of Fe-4 to 7.8 wt% Si rapidly quenched alloys

    SciTech Connect

    Fiorillo, F.; Ferrara, E.; Ferrando, L.; Appino, C. [Ist. Elettrotecnico Nazionale Galileo Ferraris, Torino (Italy)] [Ist. Elettrotecnico Nazionale Galileo Ferraris, Torino (Italy); Lebourg, C.; Degauque, J. [CNRS INSA, Toulouse (France). Lab. de Physique des Solides] [CNRS INSA, Toulouse (France). Lab. de Physique des Solides; Baricco, M. [IFM dell`Univ., Torino (Italy). Dipt. di Chimica] [IFM dell`Univ., Torino (Italy). Dipt. di Chimica

    1997-09-01

    Magnetic and mechanical properties have been investigated in Fe-4 to 7.8 wt% Si rapidly quenched and annealed ribbons. The roles played by composition and microstructure on the magnetic energy losses and the tensile stress-strain behavior have been put in evidence, by carrying out the related experiments as a function of grain size. The energy losses attain a minimum value at the 6.7% Si composition at all frequencies in the investigated range d.c.-10 kHz. The vanishing of a demonstrably important magnetostriction-related coercivity contribution, which can be singled out in these stress-free samples, is recognized as the leading cause of loss minimization. The composition and grain size dependent stress-strain curves are found to obey a Hall-Petch law for the yield stress. While the elastic limit increases with the Si content, a decrease of the strain at fracture is correspondingly observed.

  14. Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions

    NASA Astrophysics Data System (ADS)

    Stearrett, Ryan; Wang, W. G.; Kou, Xiaoming; Feng, J. F.; Coey, J. M. D.; Xiao, J. Q.; Nowak, E. R.

    2012-07-01

    The strength of the exchange bias field is found to influence the low-frequency magnetoresistive noise associated with the magnetic reference layer in sputtered-deposited and electron-beam-evaporated CoFeB/MgO/CoFeB tunnel junctions. The noise is due to magnetic losses arising in the reference layer. The losses are parameterized by a phase lag ? which exhibits a nontrivial dependence on the externally applied field. The general trend found among all devices is that the losses are largest in the antiparallel state. The effect of exchange bias on the reference layer's noise is investigated at a field corresponding to maximum resistance susceptibility, Href. Higher values for the phase lag at Href, ?ref, are found in devices having a large exchange bias field. We also observed that Href and ?ref are larger in devices having thicker seed layers. This characteristic is also evident in double-barrier magnetic tunnel junctions. Prolonged thermal annealing is found to decrease ?ref, reduce Href, and alter the field profile of the resistance susceptibility of the reference layer to resemble that of a more magnetically soft behavior. In addition to its impact on the magnetoresistive noise, the incorporation of exchange bias layers into the materials stack also affects the tunneling magnetoresistance ratio with higher values found at smaller exchange bias fields. We attribute the magnitude of the magnetic losses, and hence the magnetoresistive noise, from the reference layer to disorder in its magnetic microstructure. Our results indicate that the nature and degree of disorder are correlated to the strength of the exchange bias coupling. The origin of this correlation may be due to a competition between different microstructures among various layers, one that leads to coherent tunneling (large tunneling magnetoresistance) in MgO-based tunneling devices and the other which promotes strong exchange bias coupling. A decrease in the exchange bias either through degradation from thermal treatments or by varying the thickness of the underlying seed layer will lead to less magnetic disorder in the system. We show that the magnetoresistive noise can be used to probe magnetic disorder in exchange-biased devices through the determination of the magnetic losses.

  15. Corneal hysteresis and its relevance to glaucoma

    PubMed Central

    Deol, Madhvi; Taylor, David A.; Radcliffe, Nathan M.

    2015-01-01

    Purpose of review Glaucoma is a leading cause of irreversible blindness worldwide. It is estimated that roughly 60.5 million people had glaucoma in 2010 and that this number is increasing. Many patients continue to lose vision despite apparent disease control according to traditional risk factors. The purpose of this review is to discuss the recent findings with regard to corneal hysteresis, a variable that is thought to be associated with the risk and progression of glaucoma. Recent findings Low corneal hysteresis is associated with optic nerve and visual field damage in glaucoma and the risk of structural and functional glaucoma progression. In addition, hysteresis may enhance intraocular pressure (IOP) interpretation: low corneal hysteresis is associated with a larger magnitude of IOP reduction following various glaucoma therapies. Corneal hysteresis is dynamic and may increase in eyes after IOP-lowering interventions are implemented. Summary It is widely accepted that central corneal thickness is a predictive factor for the risk of glaucoma progression. Recent evidence shows that corneal hysteresis also provides valuable information for several aspects of glaucoma management. In fact, corneal hysteresis may be more strongly associated with glaucoma presence, risk of progression, and effectiveness of glaucoma treatments than central corneal thickness. PMID:25611166

  16. Hysteresis of thin film IPRTs in the range 100 °C to 600 °C

    NASA Astrophysics Data System (ADS)

    Zvizdi?, D.; Šestan, D.

    2013-09-01

    As opposed to SPRTs, the IPRTs succumb to hysteresis when submitted to change of temperature. This uncertainty component, although acknowledged as omnipresent at many other types of sensors (pressure, electrical, magnetic, humidity, etc.) has often been disregarded in their calibration certificates' uncertainty budgets in the past, its determination being costly, time-consuming and not appreciated by customers and manufacturers. In general, hysteresis is a phenomenon that results in a difference in an item's behavior when approached from a different path. Thermal hysteresis results in a difference in resistance at a given temperature based on the thermal history to which the PRTs were exposed. The most prominent factor that contributes to the hysteresis error in an IPRT is a strain within the sensing element caused by the thermal expansion and contraction. The strains that cause hysteresis error are closely related to the strains that cause repeatability error. Therefore, it is typical that PRTs that exhibit small hysteresis also exhibit small repeatability error, and PRTs that exhibit large hysteresis have poor repeatability. Aim of this paper is to provide hysteresis characterization of a batch of IPRTs using the same type of thin-film sensor, encapsulated by same procedure and same company and to estimate to what extent the thermal hysteresis obtained by testing one single thermometer (or few thermometers) can serve as representative of other thermometers of the same type and manufacturer. This investigation should also indicate the range of hysteresis departure between IPRTs of the same type. Hysteresis was determined by cycling IPRTs temperature from 100 °C through intermediate points up to 600 °C and subsequently back to 100 °C. Within that range several typical sub-ranges are investigated: 100 °C to 400 °C, 100 °C to 500 °C, 100 °C to 600 °C, 300 °C to 500 °C and 300 °C to 600 °C . The hysteresis was determined at various temperatures by comparison calibration with SPRT. The results of investigation are presented in a graphical form for all IPRTs, ranges and calibration points.

  17. X-ray absorption spectra and X-ray magnetic circular dichroism studies at Fe and Co L 2,3 edges of mixed cobalt–zinc ferrite nanoparticles: cationic repartition, magnetic structure and hysteresis cycles

    Microsoft Academic Search

    J. F Hochepied; Ph Sainctavit; M. P Pileni

    2001-01-01

    X-ray absorption spectra (XAS) and X-ray magnetic circular dichroism (XMCD) spectra at Co and Fe L2,3 edges are performed on mixed cobalt–zinc ferrite nanoparticles Co0.73yZn0.73(1?y)Fe2.18?0.09 O4 (with y=0.4, 2.8 and 3.7nm average diameter; the symbol ? represents a vacancy). Simulation of the spectra thanks to ligand field multiplet theory allows an evaluation of the cationic repartition. Co2+ occupies preferentially octahedral

  18. Apparatus for calorimetric measurements of losses in MgB2 superconductors exposed to alternating currents and external magnetic fields

    NASA Astrophysics Data System (ADS)

    Taxt, H.; Magnusson, N.; Runde, M.

    2013-02-01

    Inexpensive superconducting wires with low AC losses would open up for a large superconductor market in AC electrical power applications. One candidate for this market is the MgB2 conductor. In the development of an AC optimized superconductor, high-quality measurements of the AC losses under application-like conditions must be available. This article describes an apparatus built for this purpose. The measurement method is calorimetric. The temperature increase of the superconductor sample is measured and compared to the temperature increase due to a heater with known heat input. The system is designed for measurements of losses due to magnetic fields combined with transport currents. Results from tests verifying the capabilities of the system are given, as well as from initial AC loss measurements on a tape-shaped MgB2 superconductor.

  19. Permanent magnet applications

    Microsoft Academic Search

    J. M. D. Coey

    2002-01-01

    Rare-earth permanent magnets are ideally suited to generate magnetic fields comparable to their spontaneous polarization JS. Near-square hysteresis loops and large values of the coercivity and anisotropy fields greatly simplify magnet design, as each magnet block is effectively transparent to the magnetic fields produced elsewhere in the magnet assembly. The fields generated by compact and efficient magnet structures requiring no

  20. Electric and magnetic losses modeled by a stable hybrid with explicit-implicit time-stepping for Maxwell's equations

    SciTech Connect

    Halleroed, Tomas [Department of Signals and Systems, Chalmers University of Technology, S-412 96 Goeteborg (Sweden)], E-mail: tomas.hallerod@chalmers.se; Rylander, Thomas [Department of Signals and Systems, Chalmers University of Technology, S-412 96 Goeteborg (Sweden)], E-mail: rylander@chalmers.se

    2008-04-20

    A stable hybridization of the finite-element method (FEM) and the finite-difference time-domain (FDTD) scheme for Maxwell's equations with electric and magnetic losses is presented for two-dimensional problems. The hybrid method combines the flexibility of the FEM with the efficiency of the FDTD scheme and it is based directly on Ampere's and Faraday's law. The electric and magnetic losses can be treated implicitly by the FEM on an unstructured mesh, which allows for local mesh refinement in order to resolve rapid variations in the material parameters and/or the electromagnetic field. It is also feasible to handle larger homogeneous regions with losses by the explicit FDTD scheme connected to an implicitly time-stepped and lossy FEM region. The hybrid method shows second-order convergence for smooth scatterers. The bistatic radar cross section (RCS) for a circular metal cylinder with a lossy coating converges to the analytical solution and an accuracy of 2% is achieved for about 20 points per wavelength. The monostatic RCS for an airfoil that features sharp corners yields a lower order of convergence and it is found to agree well with what can be expected for singular fields at the sharp corners. A careful convergence study with resolutions from 20 to 140 points per wavelength provides accurate extrapolated results for this non-trivial test case, which makes it possible to use as a reference problem for scattering codes that model both electric and magnetic losses.

  1. Analysis of hunting in Synchronous Hysteresis Motor

    E-print Network

    Truong, Cang Kim, 1979-

    2004-01-01

    The Synchronous Hysteresis Motor has an inherent instability when it is used to drive a gyroscope wheel. The motor ideally should spin at a constant angular velocity, but it instead sporadically oscillates about synchronous ...

  2. Transport, hysteresis and avalanches in artificial spin ice systems

    SciTech Connect

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, A [BABES-BOLYAI UNIV.

    2010-01-01

    We examine the hopping dynamics of an artificial spin ice system constructed from colloids on a kagome optical trap array where each trap has two possible states. By applying an external drive from an electric field which is analogous to a biasing applied magnetic field for real spin systems, we can create polarized states that obey the spin-ice rules of two spins in and one spin out at each vertex. We demonstrate that when we sweep the external drive and measure the fraction of the system that has been polarized, we can generate a hysteresis loop analogous to the hysteretic magnetization versus external magnetic field curves for real spin systems. The disorder in our system can be readily controlled by changing the barrier that must be overcome before a colloid can hop from one side of a trap to the other. For systems with no disorder, the effective spins all flip simultaneously as the biasing field is changed, while for strong disorder the hysteresis curves show a series of discontinuous jumps or avalanches similar to Barkhausen noise.

  3. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  4. Structural hysteresis model of transmitting mechanical systems

    NASA Astrophysics Data System (ADS)

    Ruderman, M.; Bertram, T.

    2015-02-01

    We present a structural hysteresis model which describes the dynamic behavior of transmitting mechanical systems with a hysteretic spring and damped bedstop element, both connected in series. From the application point view this approach can be used for predicting the transmitted mechanical force based only on the known kinematic excitation. Using the case study of an elastic gear transmission we show and identify a hysteresis response which multivariate behavior depends on an internal state of the bedstop motion.

  5. Measurement of dynamic magnetization induced by a pulsed field: Proposal for a new rock magnetism method

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2015-02-01

    This study proposes a new method for measuring transient magnetization of natural samples induced by a pulsed field with duration of 11 ms using a pulse magnetizer. An experimental system was constructed, consisting of a pair of differential sensing coils connected with a high-speed digital oscilloscope for data acquisition. The data were transferred to a computer to obtain an initial magnetization curve and a descending branch of a hysteresis loop in a rapidly changing positive field. This system was tested with synthetic samples (permalloy ribbon, aluminum plate, and nickel powder) as well as two volcanic rock samples. Results from the synthetic samples showed considerable differences from those measured by a quasi-static method using a vibrating sample magnetometer (VSM). These differences were principally due to the time-dependent magnetic properties or to electromagnetic effects, such as magnetic viscosity, eddy current loss, or magnetic relaxation. Results from the natural samples showed that the transient magnetization–field curves were largely comparable to the corresponding portions of the hysteresis loops. However, the relative magnetization (scaled to the saturation magnetization) at the end of a pulse was greater than that measured by a VSM. This discrepancy, together with the occurrence of rapid exponential decay after a pulse, indicates magnetic relaxations that could be interpreted in terms of domain wall displacement. These results suggest that with further developments, the proposed technique can become a useful tool for characterizing magnetic particles contained in a variety of natural materials.

  6. Efficient hysteresis loop simulations of nanoparticle assemblies beyond the uniaxial anisotropy

    NASA Astrophysics Data System (ADS)

    Tamion, Alexandre; Bonet, Edgar; Tournus, Florent; Raufast, Cécile; Hillion, Arnaud; Gaier, Oksana; Dupuis, Véronique

    2012-04-01

    We propose a modified Stoner-Wohlfarth model combined with the geometrical approach of the coherent rotation of magnetization for simulating the hysteresis loops of an assembly of magnetic nanoparticles. The temperature and the size distribution are taken into account. This combined model enables the computation of hysteresis loops at low temperatures for assemblies of particles having an arbitrary type of anisotropy. The applicability of this model for fitting experimental data is discussed and results are compared to the zero-field-cooled and field-cooled fits. As an application, the hysteresis loops measured on Co clusters embedded in carbon and germanium matrices are fitted revealing unambiguously the presence of a biaxial anisotropy.

  7. Delayed development of sensorineural hearing loss after neonatal hyperbilirubinemia: a case report with brain magnetic resonance imaging.

    PubMed

    Worley, G; Erwin, C W; Goldstein, R F; Provenzale, J M; Ware, R E

    1996-03-01

    Sensorineural hearing loss has long been known to be a clinical consequence of kernicterus. Brainstem auditory evoked potentials (BAEPs) that occur in hyperbilirubinemic infants, can be reversed in the neonatal period by exchange transfusion. The case was reported in an infant with neonatal hyperbilirubinemia from hemolysis due to glucose-6-phosphate dehydrogenase (G6PD) deficiency and napthalene exposure. BAEPs showed that the baby had normal hearing at 30 decibels at 13 days of age, after exchange transfusions, but had developed profound bilateral sensorineural hearing loss by 7 months of age. The brain magnetic resonance imaging (MRI) findings at 7 months are also presented. PMID:8631524

  8. High temperature oxidation and its induced coercivity loss of a 2:17 type SmCo-based magnet

    NASA Astrophysics Data System (ADS)

    Wang, X.; Peng, X.; Zhao, H.; Guo, Zh.; Li, W.; Wang, F.

    2015-03-01

    Oxidation has been explained as one possibility for unacceptable and irreversible coercivity loss of 2:17 type SmCo-based magnets at high temperatures over 550 °C, but the question for how oxidation affects coercivity in the magnet has not been fundamentally answered. In this work, oxidation and its induced degradation of the magnetic phases of a Sm(CobalFe0.22Cu0.08Zr0.02)7.5 magnet in air at 600 °C have been investigated by using transmission electron microscopy and correlated with the demagnetization curves measured. It shows that the coercivity loss, which is significantly increased with oxidation time, is small and independent of time in the magnet unaffected by oxidation. The reason lies in that the 2:17 cell and 1:5 cell boundary, although they have been completely disintegrated in the oxidized part by external oxidation of Co, Fe, and Cu and internal oxidation of Sm, remains in the unoxidized part except that 1:5 boundary close to the oxidized part is decreased in thickness and Cu content.

  9. MEASURED AND CALCULATED LOSSES IN A MODEL DIPOLE FOR GSI'S HEAVY ION SYNCHROTRON.

    SciTech Connect

    WANDERER,P.; ANERELLA,M.; GANETIS,G.; GHOSH,A.K.; JOSHI,P.; MARONE,A.; MURATORE,J.; ET AL.

    2003-06-15

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 300T{center_dot}m and 10OT{center_dot}m. Fast ramp times are needed. These can cause problems of ac loss and field distortion in the magnets. For the high energy ring, a lm model dipole magnet has been built, based on the RHIC dipole design. This magnet was tested under boiling liquid helium in a vertical dewar. The quench current showed very little dependence on ramp rate. The ac losses, measured by an electrical method, were fitted to straight line plots of loss/cycle versus ramp rate, thereby separating the eddy current and hysteresis components. These results were compared with calculated values, using parameters which had previously been measured on short samples of cable. Reasonably good agreement between theory and experiment was found, although the measured hysteresis loss is higher than expected in ramps to the highest field levels.

  10. Maximizing Hysteretic Losses in Magnetic Ferrite Nanoparticles via Model-Driven Synthesis and Materials Optimization

    E-print Network

    Chen, Ritchie

    This article develops a set of design guidelines for maximizing heat dissipation characteristics of magnetic ferrite MFe[subscript 2]O[subscript 4] (M = Mn, Fe, Co) nanoparticles in alternating magnetic fields. Using ...

  11. A Test of HTS Power Cable in a Sweeping Magnetic Field

    SciTech Connect

    Piekarz, H.; Hays, S.; Blowers, J.; Shiltsev, V.; /Fermilab

    2011-11-29

    Short sample HTS power cable composed of multiple 344C-2G strands and designed to energize a fast-cycling dipole magnet was exposed to a sweeping magnetic field in the (2-20) T/s ramping rate. The B-field orientation toward the HTS strands wide surface was varied from 0{sup 0} to 10{sup 0}, in steps of 1{sup 0}. The test arrangement allowed measurement of the combined hysteresis and eddy current power losses. For the validity of these measurements, the power losses of a short sample cable composed of multiple LTS wire strands were also performed to compare with the known data. The test arrangement of the power cable is described, and the test results are compared with the projections for the eddy and hysteresis power losses using the fine details of the test cable structures.

  12. Magnetic properties and magnetocaloric effect in the RCu{sub 2}Si{sub 2} and RCu{sub 2}Ge{sub 2} (R?=?Ho, Er) compounds

    SciTech Connect

    Mo, Zhao-Jun [School of Material Science and Engineering, Hebei University of Technology, Tianjin (China); Key laboratory of cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China); Shen, Jun, E-mail: jshen@mail.ipc.ac.cn, E-mail: tangcc@hebut.edu.cn; Wu, Jian-Feng [Key laboratory of cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China); Yan, Li-Qin; Wang, Li-Chen; Sun, Ji-rong; Shen, Bao-Gen [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter, Physics and Institute of Physics, Chinese Academy of Sciences, Beijing (China); Gao, Xin-Qiang; Tang, Cheng-Chun, E-mail: jshen@mail.ipc.ac.cn, E-mail: tangcc@hebut.edu.cn [School of Material Science and Engineering, Hebei University of Technology, Tianjin (China)

    2014-02-21

    The magnetic properties and magnetocaloric effect (MCE) in RCu{sub 2}Si{sub 2} and RCu{sub 2}Ge{sub 2} (R?=?Ho, Er) compounds have been investigated. All these compounds possess an antiferromagnetic (AFM)-paramagnetic (PM) transition around their respective Neel temperatures. The RCu{sub 2}Si{sub 2} compounds undergo spin-glassy behavior above Neel temperature. Furthermore, a field-induced metamagnetic transition from AFM to ferromagnetic (FM) states is observed in these compounds. The calculated magnetic entropy changes show that all RCu{sub 2}Si{sub 2} and RCu{sub 2}Ge{sub 2} (R?=?Ho, Er) compounds, especially, ErCu{sub 2}Si{sub 2} exhibits large MCEs with no thermal hysteresis and magnetic hysteresis loss. The value of ??S{sub M}{sup max} reaches 22.8?J/Kg K for magnetic field changes from 0 to 5?T. In particular, for field changes of 1 and 2?T, the giant reversible magnetic entropy changes ??S{sub M}{sup max} are 8.3 and 15.8?J/kg K at 2.5?K, which is lower than the boiling point of helium. The low-field giant magnetic entropy change, together with ignorable thermal hysteresis and field hysteresis loss of ErCu{sub 2}Si{sub 2} compound is expected to have effective applications in low temperature magnetic refrigeration.

  13. Magnetic properties of iron-based soft magnetic composites with MgO coating obtained by sol–gel method

    Microsoft Academic Search

    A. H. Taghvaei; A. Ebrahimi; M. Ghaffari; K. Janghorban

    2010-01-01

    Soft magnetic composites with a thin MgO insulating layer were produced by a sol–gel method. Energy dispersive X-ray spectroscopy, X-ray analysis, Fourier transform infrared spectroscopy, density measurement and compositional maps confirmed that thin layers of MgO covered the iron powders. Coercivity measurement showed that the stress relaxation and reduction of hysteresis loss efficiently occurred at 600°C. At this temperature, the

  14. Computational analysis of current-loss mechanisms in a post-hole convolute driven by magnetically insulated transmission lines

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Madrid, E. A.; Welch, D. R.; Clark, R. E.; Mostrom, C. B.; Stygar, W. A.; Cuneo, M. E.

    2015-03-01

    Numerical simulations of a vacuum post-hole convolute driven by magnetically insulated vacuum transmission lines (MITLs) are used to study current losses due to charged particle emission from the MITL-convolute-system electrodes. This work builds on the results of a previous study [E. A. Madrid et al. Phys. Rev. ST Accel. Beams 16, 120401 (2013), 10.1103/PhysRevSTAB.16.120401] and adds realistic power pulses, Ohmic heating of anode surfaces, and a model for the formation and evolution of cathode plasmas. The simulations suggest that modestly larger anode-cathode gaps in the MITLs upstream of the convolute result in significantly less current loss. In addition, longer pulse durations lead to somewhat greater current loss due to cathode-plasma expansion. These results can be applied to the design of future MITL-convolute systems for high-current pulsed-power systems.

  15. Hysteresis and creep in powdersHysteresis and creep in powders and grainsand grains

    E-print Network

    Harting, Jens

    Hysteresis and creep in powdersHysteresis and creep in powders and grainsand grains Ciprian David. Model usedDiscrete element methods. Model used Micromechanical investigation of granular soilsMicromechanical investigation of granular soils under cyclic loadingunder cyclic loading ConclusionsConclusions #12;Motivation

  16. X-ray diffraction investigation of a spin crossover hysteresis loop. P Guionneau1,

    E-print Network

    Boyer, Edmond

    @icmcb-bordeaux.cnrs.fr The nature and the mechanism of the magnetic hysteresis for the thermal spin crossover exhibited by an iron(II) compound is investigated by mean of variable temperature powder and single crystals X-ray diffraction in the spin crossover features according to the nature of the sample ­ powder or single crystal ­ that should

  17. A combined experimental and finite element analysis method for the estimation of eddy-current loss in NdFeB magnets.

    PubMed

    Fratila, Radu; Benabou, Abdelkader; Tounzi, Abdelmounaïm; Mipo, Jean-Claude

    2014-01-01

    NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model. PMID:24831111

  18. A Combined Experimental and Finite Element Analysis Method for the Estimation of Eddy-Current Loss in NdFeB Magnets

    PubMed Central

    Fratila, Radu; Benabou, Abdelkader; Tounzi, Abdelmounaïm; Mipo, Jean-Claude

    2014-01-01

    NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model. PMID:24831111

  19. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    SciTech Connect

    Ehrmann, Andrea [Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technology, 41065 Mönchengladbach (Germany); Blachowicz, Tomasz [Silesian University of Technology, Institute of Physics, Center for Science and Education, 44-100 Gliwice (Poland)

    2014-08-15

    The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  20. The loss rates of O{sup +} in the inner magnetosphere caused by both magnetic field line curvature scattering and charge exchange reactions

    SciTech Connect

    Ji, Y., E-mail: yji@spaceweather.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049 (China); Shen, C. [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)] [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-15

    With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O{sup +} (>300?keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O{sup +} to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O{sup +} are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.

  1. Disorder-driven first-order phase transformations: A model for hysteresis

    SciTech Connect

    Dahmen, K.; Kartha, S.; Krumhansl, J.A.; Roberts, B.W.; Sethna, J.P.; Shore, J.D. (Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501 (United States))

    1994-05-15

    Hysteresis loops in some magnetic systems are composed of small avalanches (manifesting themselves as Barkhausen pulses). Hysteresis loops in other first-order phase transitions (including some magnetic systems) often occur via one large avalanche. The transition between these two limiting cases is studied, by varying the disorder in the zero-temperature random-field Ising model. Sweeping the external field through zero at weak disorder, we get one large avalanche with small precursors and aftershocks. At strong disorder, we get a distribution of small avalanches (small Barkhausen effect). At the critical value of disorder where a macroscopic jump in the magnetization first occurs, universal power-law behavior of the magnetization and of the distribution of (Barkhausen) avalanches is found. This transition is studied by mean-field theory, perturbative expansions, and numerical simulation in three dimensions.

  2. Small hysteresis loops investigations on high T sub c oxide superconductors

    SciTech Connect

    Sosnowski, J. (Polish Academy of Science, Electrical Inst., 04-703 Warszawa, Pozaryskiego 28 (PL)); Raabe, J.; Bobryk, E. (Warsaw Univ. of Technology, Dept. of Chemistry, 00-664 Warszawa, ul. Noakowskiego 3 (PL)); Gilewski, A.; Warchulska, J. (International Lab. for High Magnetic Fields and Temperature, 53-529 Wroclaw, Prochnika 95 (PL))

    1991-08-10

    In this paper results of investigations on small hysteresis loops of yttrium-based high temperature ceramical compounds are presented. A proposed theoretical model describing the magnetic induction profile in a sample has been used for numerical approximation of the experimental data. The results of this fitting procedure then allow one to obtain detailed information on the pinning force's magnetic field dependence as well as the critical current of ceramical compounds.

  3. Magnetic and Reflection Loss Characteristics of Substituted Barium Ferrite\\/Functionalized Multiwalled Carbon Nanotube

    Microsoft Academic Search

    Ali Ghasemi; Sirus Javadpour; Xiaoxi Liu; Akimitsu Morisako

    2011-01-01

    Magnetic multiwalled carbon nanotube (MWCNTs) nanocomposites have been created by the assembly of Mg-Ni-Ti substituted barium ferrite nanoparticles onto surface of MWCNTs. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to demonstrate the successful attachment of ferrite nanoparticles to MWCNTs. Vibrating sample magnetometer (VSM) confirms the relatively strong dependence of saturation of magnetization and coercivity with the volume

  4. Flexible pivot mount eliminates friction and hysteresis

    NASA Technical Reports Server (NTRS)

    Highman, C. O.

    1970-01-01

    Flexible steel pivot mount, suspended by flat vertical beryllium copper springs, is capable of rotation, free of hysteresis and starting friction. Mount requires no lubrication, is made in varying sizes, and is driven with either dc torque motor or mechanical linkage.

  5. Circuit increases capability of hysteresis synchronous motor

    NASA Technical Reports Server (NTRS)

    Markowitz, I. N.

    1967-01-01

    Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.

  6. Managing Hysteresis: Three Cornerstones to Fiscal Stability

    ERIC Educational Resources Information Center

    Weeks, Richard

    2012-01-01

    The effects of the Great Recession of 2007-2009 continue to challenge school business officials (SBOs) and other education leaders as they strive to prepare students for the global workforce. Economists have borrowed a word from chemistry to describe this state of affairs: hysteresis--the lingering effects of the past on the present. Today's SBOs…

  7. Polymethyl methacrylate (PMMA)-bismuth ferrite (BFO) nanocomposite: low loss and high dielectric constant materials with perceptible magnetic properties.

    PubMed

    Tamboli, Mohaseen S; Palei, Prakash K; Patil, Santosh S; Kulkarni, Milind V; Maldar, Noormahmad N; Kale, Bharat B

    2014-09-21

    Herein, poly(methyl methacrylate)-bismuth ferrite (PMMA-BFO) nanocomposites were successfully prepared by an in situ polymerization method for the first time. Initially, the as prepared bismuth ferrite (BFO) nanoparticles were dispersed in the monomer, (methyl methacrylate) by sonication. Benzoyl peroxide was used to initiate the polymerization reaction in ethyl acetate medium. The nanocomposite films were subjected to X-ray diffraction analysis (XRD), (1)H NMR, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), infrared spectroscopy (IR), dielectric and magnetic characterizations. The dielectric measurement of the nanocomposites was investigated at a frequency range of 10 Hz to 1 MHz. It was found that the nanocomposites not only showed a significantly increased value of the dielectric constant with an increase in the loading percentage of BFO as compared to pure PMMA, but also exhibited low dielectric loss values over a wide range of frequencies. The values of the dielectric constant and dielectric loss of the PMMA-BFO5 (5% BFO loading) sample at 1 kHz frequency was found be ~14 and 0.037. The variation of the ferromagnetic response of the nanocomposite was consistent with the varying volume percentage of the nanoparticles. The remnant magnetization (Mr) and saturation magnetization (Ms) values of the composites were found to be enhanced by increasing the loading percentage of BFO. The value of Ms for PMMA-BFO5 was found to be ~6 emu g(-1). The prima facie observations suggest that the nanocomposite is a potential candidate for application in high dielectric constant capacitors. Significantly, based on its magnetic properties the composite will also be useful for use in hard disk components. PMID:25050918

  8. The near-edge structure in energy-loss spectroscopy: many-electron and magnetic effects in transition metal nitrides and carbides

    E-print Network

    Paxton, Anthony T.

    The near-edge structure in energy-loss spectroscopy: many-electron and magnetic effects matrix element itself. We find remarkably close agreement between these two approaches. Finally, we show an anomaly in the near-edge structure in CrN to be due to magnetic structure. In particular, we find

  9. A 3-D finite-element computation of eddy currents and losses in laminated iron cores allowing for electric and magnetic anisotropy

    SciTech Connect

    Silva, V.C.; Meunier, G.; Foggia, A. [URA CNRS 355, Saint-Martin-d`Heres (France). Lab. d`Electrotechnique de Grenoble] [URA CNRS 355, Saint-Martin-d`Heres (France). Lab. d`Electrotechnique de Grenoble

    1995-05-01

    A 3-D scheme based on the Finite Element Method, which takes electric and magnetic anisotropy into consideration, has been developed for computing eddy-current losses caused by stray magnetic fields in laminated iron cores of large transformers and generators. The model is applied to some laminated iron-core samples and compared with equivalent solid-iron cases.

  10. Plasma power measurement and hysteresis in the E-H transition of a rf inductively coupled plasma system

    SciTech Connect

    Daltrini, A. M.; Moshkalev, S. A. [Universidade Estadual de Campinas, Unicamp, Center for Semiconductor Components, P.O. Box 6061, Campinas SP 13083-870 (Brazil); Morgan, T. J. [Department of Physics, Wesleyan University, Middletown, Connecticut 06457 (United States); Piejak, R. B.; Graham, W. G. [Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast BT 7 1NN, Northern Ireland (United Kingdom)

    2008-02-11

    An experimental investigation of the argon plasma behavior near the E-H transition in an inductively coupled Gaseous Electronics Conference reference cell is reported. Electron density and temperature, ion density, argon metastable density, and optical emission measurements have been made as function of input power and gas pressure. When plotted versus plasma power, applied power corrected for coil and hardware losses, no hysteresis is observed in the measured plasma parameter dependence at the E-H mode transition. This suggests that hysteresis in the E-H mode transition is due to ignoring inherent power loss, primarily in the matching system.

  11. Analytical core loss calculations for magnetic materials used in high frequency high power converter applications. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Triner, J. E.

    1979-01-01

    The basic magnetic properties under various operating conditions encountered in the state-of-the-art DC-AC/DC converters are examined. Using a novel core excitation circuit, the basic B-H and loss characteristics of various core materials may be observed as a function of circuit configuration, frequency of operation, input voltage, and pulse-width modulation conditions. From this empirical data, a mathematical loss characteristics equation is developed to analytically predict the specific core loss of several magnetic materials under various waveform excitation conditions.

  12. Quantum Hydrodynamic Simulation of Hysteresis in the Resonant Tunneling Diode

    Microsoft Academic Search

    Zhangxin Chen; Bernardo Cockburn; Carl L. Gardner; Joseph W. Jerome

    1995-01-01

    Hysteresis in the current-voltage curve of a resonant tunneling diode is simulated and analyzed in the quantum hydrodynamic (QHD) model for semiconductor devices. The simulations are the first to show hysteresis in the QHD equations and to confirm that bistability is an intrinsic property of the resonant tunneling diode. Hysteresis appears in many settings in fluid dynamics. The simulations presented

  13. Hysteresis properties of ordinary chondrites and implications for their thermal history

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Suavet, C. R.; Rochette, P.; Weiss, B. P.; Winklhofer, M.; Uehara, M.; Friedrich, J. M.

    2013-12-01

    We present a large dataset of magnetic hysteresis properties of ordinary chondrite falls. We show that hysteresis properties are distinctive of individual meteorites while homogeneous among meteorite subsamples. Except for the most primitive chondrites, these properties can be explained by a mixture of multidomain kamacite and tetrataenite (both in the cloudy zone and as larger grains in plessite and in the rim of zoned taenite). Kamacite dominates the induced magnetism whereas tetrataenite dominates the remanent magnetism, in agreement with previous microscopic magnetic observations. Type 5 and 6 chondrites have higher tetrataenite content than type 4 chondrites, suggesting they have lower cooling rates at least in the 650-450 °C interval, consistent with an onion-shell model. In equilibrated chondrites, shock-related transient heating events above ~500 °C result in the disordering of tetrataenite and associated drastic change in magnetic properties. As a good indicator of the amount of tetrataenite, hysteresis properties are a very sensitive proxy of the thermal history of ordinary chondrites, revealing low cooling rates during thermal metamorphism, and high cooling rates following shock reheating or excavation after thermal metamorphism.

  14. Magnetic NDE techniques for detecting mechanical changes in materials

    NASA Astrophysics Data System (ADS)

    Devine, M. K.; Jiles, D. C.; Kaminski, D. A.; Chandler, D.

    A portable magnetic inspection system is used to measure the magnetic properties of ferromagnetic materials. Creep damage and surface effects are investigated. The materials employed were service-aged Cr-Mo steels from pipelines in a hydroelectric power plant. It was found that creep damage does not significantly affect hysteresis parameters. The coercivity, remanence, and hysteresis loss were found to decrease in creep-damaged specimens. The decrease in the parameters is argued to be due to the segregation of impurities in the heat-affected zone, the accumulation of creep cavities, dislocation movement, and subsequent annihilation. The total change in the coercivity from 0 to 160 MPa was the same for all specimens, regardless of scale coating or surface curvature. The maximum differential permeability increased with applied stress for all the specimens up to about 150 MPa, where it appeared that the Villari reversal effect caused the maximum differential permeability to decrease with further stress.

  15. Implementation of the Generalized Complementary Flux Constraint for Low-Loss Active Magnetic

    E-print Network

    Tsiotras, Panagiotis

    catapults, high speed milling machines, magnetically levitated trains, etc.1­5 In such applications, control the chemical batteries which are typically employed on spacecraft, such as long- life, large depth, FWBs may be designeda to compete with chemical batteries in terms of specific energy and typically

  16. Loss of bone calcium in exposure to 50 Hz magnetic fields.

    PubMed

    Hanafy, Enas; Elhafez, Salam; Aly, Fadel; Elazhary, Mohamed

    2008-01-01

    This study investigates the effect of whole body exposure to magnetic fields on the calcium level of blood and bone in a trial to avoid the liability of osteoporosis, fractures, and delayed union of fractures after exposure to magnetic fields present everywhere in the environment. The procedures of the study included analysis for calcium level in both bone and blood. The procedures were performed on 50 Guinea pigs equally divided into 5 groups. Groups A, B, C, and D were exposed to 50 Hz, 0.2 mT magnetic field for 30 d. Group E animals were the control. Group A was sacrificed immediately after exposure; Group B was left away from the field for 15 d for spontaneous repair; Group C received the drug Centrum dissolved in drinking water for 15 d after exposure to the magnetic field; and Group D received centrum in drinking water during the period of exposure (30 d). After sacrificing all animals, the calcium level in both bone and blood was evaluated. Values of blood analysis revealed significant increase in the blood calcium level in exposed animals compared with the control group (P < 0.002) with excess in Group A. This indicated that the calcium left the bone to the blood. Values of the bone analysis revealed significant decrease in bone calcium concentration level in Group A compared with the control group and improvement in the bone condition in Groups C and D, indicating the role of trace element after the exposure period as a compensatory agent of magnetic field damage and its role during the exposure period as a radio-protecting agent. PMID:19037789

  17. The role of multi-walled carbon nanotubes on the magnetic and reflection loss characteristics of substituted strontium ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghasemi, Ali

    2013-03-01

    Substituted strontium ferrite SrFe12-x(Ni0.5Mn0.5Zr)x/2O19/multi-walled carbon nanotubes (MWCNTs) composites were prepared by a sol-gel method. X-ray diffraction patterns confirm the formation of single phase ferrite nanoparticle and nanocomposites of ferrite/carbon nanotubes. Fourier transform infrared spectroscopy demonstrates the existence of functional groups on the surface of carbon nanotubes. Superconducting quantum interference device measurements showed that the values of specific saturation magnetization increases, while coercivity decreases with an increase in substitution content. Zero field cooled magnetization and field cooled magnetization curves display that with an increase in substitution content, the blocking temperature increases. Field emission scanning electron microscopy micrographs demonstrate that ferrite nanoparticles were attached on external surfaces of the carbon nanotubes. The investigation of the microwave absorption indicates that with an addition of carbon nanotubes, the real and imaginary parts of permittivity and reflection loss enhanced. It is found that with increasing the thickness of absorbers, the resonance frequencies shift to lower regime.

  18. Synthesis of Bio-Compatible SPION–based Aqueous Ferrofluids and Evaluation of RadioFrequency Power Loss for Magnetic Hyperthermia

    PubMed Central

    2010-01-01

    Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies. PMID:21076702

  19. Rheological Hysteresis in Soft Glassy Materials

    NASA Astrophysics Data System (ADS)

    Divoux, Thibaut; Grenard, Vincent; Manneville, Sébastien

    2013-01-01

    The nonlinear rheology of a soft glassy material is captured by its constitutive relation, shear stress versus shear rate, which is most generally obtained by sweeping up or down the shear rate over a finite temporal window. For a huge amount of complex fluids, the up and down sweeps do not superimpose and define a rheological hysteresis loop. By means of extensive rheometry coupled to time-resolved velocimetry, we unravel the local scenario involved in rheological hysteresis for various types of well-studied soft materials. We introduce two observables that quantify the hysteresis in macroscopic rheology and local velocimetry, respectively, as a function of the sweep rate ?t-1. Strikingly, both observables present a robust maximum with ?t, which defines a single material-dependent time scale that grows continuously from vanishingly small values in simple yield stress fluids to large values for strongly time-dependent materials. In line with recent theoretical arguments, these experimental results hint at a universal time scale-based framework for soft glassy materials, where inhomogeneous flows characterized by shear bands and/or pluglike flow play a central role.

  20. Application of superconducting coils to the NASA prototype magnetic balance

    NASA Technical Reports Server (NTRS)

    Haldeman, C. W.; Kraemer, R. A.; Phey, S. W.; Alishahi, M. M.; Covert, E. E.

    1981-01-01

    Application of superconducting coils to a general purpose magnetic balance was studied. The most suitable currently available superconducting cable for coils appears to be a bundle of many fine wires which are transposed and are mechanically confined. Sample coils were tested at central fields up to .5 Tesla, slewing rates up to 53 Tesla/ sec and frequencies up to 30 Hz. The ac losses were measured from helium boil-off and were approximately 20% higher than those calculated. Losses were dominated by hysteresis and a model for loss calculation which appears suitable for design purposes is presented along with computer listings. Combinations of two coils were also tested and interaction losses are reported. Two feasible geometries are also presented for prototype magnetic balance using superconductors.

  1. Changes in Wetting Hysteresis During Bioremediation: Changes in fluid flow behavior monitored with low-frequency seismic attenuation

    NASA Astrophysics Data System (ADS)

    Wempe, W.; Spetzler, H.; Kittleson, C.; Pursley, J.

    2003-12-01

    We observed significant reduction in wetting hysteresis with time while a diesel-contaminated quartz crystal was dipped in and out of an oil-reducing bacteria solution. This wetting hysteresis is significantly greater than the wetting hysteresis when the diesel-contaminated quartz crystal is dipped in and out of (1) water, (2) diesel and (3) the bacterial food solution that does not contain bacteria. The reduction in wetting hysteresis of the bacteria solution on the quartz surface results from a reduction in the advancing contact angle formed at the air-liquid-quartz contact with time; the receding contact angle remains the same with time. Our results suggest that the bacteria solution moves across the quartz surface with less resistance after bioremediation has begun. These results imply that bioremediation may influence fluid flow behavior with time. For many fluid-solid systems there is a difference between the contact angle while a contact line advances and recedes across a solid surface; this difference is known as wetting hysteresis. Changes in wetting hysteresis can occur from changes in surface tension or the surface topography. Low contact angle values indicate that the liquid spreads or wets well, while high values indicate poor wetting or non-wetting. Contact angles are estimated in the lab by measuring the weight of the meniscus formed at the air-liquid-quartz interface and by knowing the fluid surface tension. In the lab, we have been able to use low-frequency seismic attenuation data to detect changes in the wetting characteristics of glass plates and of Berea sandstone. The accepted seismic attenuation mechanism is related to the loss of seismic energy due to the hysteresis of meniscus movement (wetting hysteresis) when a pore containing two fluids is stressed at very low frequencies (< 10 Hz). When fluid-fluid-solid systems that exhibit wettability hysteresis are stressed at low frequencies, we observe seismic attenuation, whereas in a system that does not exhibit wettability hysteresis we do not. From our wettability hysteresis results, we conclude that we may be able to monitor bioremediation progress using seismic attenuation data. We are measuring low-frequency seismic attenuation in the lab while flowing bacteria solution through Berea sandstone and we are testing this application in the field.

  2. Bipolar and unipolar tests of 1. 5m model SSC collider dipole magnets at Fermilab

    SciTech Connect

    Lamm, M.J.; Ozelis, J.P.; Coulter, K.J.; Delchamps, S.; Jaffery, T.S.; Kinney, W.; Koska, W.; Strait, J.; Wake, M. (Fermi National Accelerator Lab., Batavia, IL (USA)); Fortunato, D.; Johnson, D.E. (Superconducting Super Collider Lab., Dallas, TX (USA))

    1991-05-01

    Tests have been performed at Fermilab on 1.5 m magnetic length model SSC collider dipoles using both bipolar and unipolar ramp cycles. Hysteresis energy loss due to superconductor and iron magnetization and eddy currents is measured and compared as a function of various ramp parameters. Additionally, magnetic field measurements have been performed for both unipolar and bipolar ramp cycles. Measurements such as these will be used to estimate the heat load during collider injection for the SSC High Energy Booster dipoles. 9 refs., 4 figs.

  3. A stability-based mechanism for hysteresis in the walk–trot transition in quadruped locomotion

    PubMed Central

    Aoi, Shinya; Katayama, Daiki; Fujiki, Soichiro; Tomita, Nozomi; Funato, Tetsuro; Yamashita, Tsuyoshi; Senda, Kei; Tsuchiya, Kazuo

    2013-01-01

    Quadrupeds vary their gaits in accordance with their locomotion speed. Such gait transitions exhibit hysteresis. However, the underlying mechanism for this hysteresis remains largely unclear. It has been suggested that gaits correspond to attractors in their dynamics and that gait transitions are non-equilibrium phase transitions that are accompanied by a loss in stability. In the present study, we used a robotic platform to investigate the dynamic stability of gaits and to clarify the hysteresis mechanism in the walk–trot transition of quadrupeds. Specifically, we used a quadruped robot as the body mechanical model and an oscillator network for the nervous system model to emulate dynamic locomotion of a quadruped. Experiments using this robot revealed that dynamic interactions among the robot mechanical system, the oscillator network, and the environment generate walk and trot gaits depending on the locomotion speed. In addition, a walk–trot transition that exhibited hysteresis was observed when the locomotion speed was changed. We evaluated the gait changes of the robot by measuring the locomotion of dogs. Furthermore, we investigated the stability structure during the gait transition of the robot by constructing a potential function from the return map of the relative phase of the legs and clarified the physical characteristics inherent to the gait transition in terms of the dynamics. PMID:23389894

  4. Effect of the phosphate component of electrical insulating coating on the magnetic losses in grain-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Karenina, L. S.; Korzunin, G. S.; Puzhevich, R. B.

    2011-01-01

    It is shown that one of the main methods improving quality of a grain-oriented electrical sheet steel (GOES) is the deposition of an electrical insulating coating (EIC) on its surface, which produces elastic tensile stresses in the metal. The EIC represents a composite consisting of a glass film and a phosphate coating deposited on it. Investigations performed in this direction are reviewed. A complex of the industrial experiments has been carried out, which were directed to studying the effect of both the insulating coating as a whole and, separately, its phosphate component (PC) on the level of magnetic losses. The values of elastic tensile stresses produced in the metal by the EIC and PC are presented. This work has been performed under the conditions of the OOO VIZ-stal' (Verkneisetsk Factory).

  5. Analytical modeling of eddy-current losses caused by pulse-width-modulation switching in permanent-magnet brushless direct-current motors

    SciTech Connect

    Deng, F. [General Motors Corp., Flint, MI (United States). Delphi-Energy and Engine Management Systems] [General Motors Corp., Flint, MI (United States). Delphi-Energy and Engine Management Systems; Nehl, T.W. [General Motors Corp., Warren, MI (United States). Research and Development Center] [General Motors Corp., Warren, MI (United States). Research and Development Center

    1998-09-01

    Because of their high efficiency and power density the PM brushless dc motor is a strong candidate for electric and hybrid vehicle propulsion systems. An analytical approach is developed to predict the inverter high frequency pulse width modulation (PWM) switching caused eddy-current losses in a permanent magnet brushless dc motor. The model uses polar coordinates to take curvature effects into account, and is also capable of including the space harmonic effect of the stator magnetic field and the stator lamination effect on the losses. The model was applied to an existing motor design and was verified with the finite element method. Good agreement was achieved between the two approaches. Hence, the model is expected to be very helpful in predicting PWM switching losses in permanent magnet machine design.

  6. Model for the effect of tensile and compressive stress on ferromagnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Sablik, M. J.; Kwun, H.; Burkhardt, G. L.; Jiles, D. C.

    1987-04-01

    A model is presented for the stress-dependent effective field, which when used in conjunction with the Jiles-Atherton theory, qualitatively accounts for (1) the change in slope and shape of the hysteresis curves with uniaxial stress and (2) the convexity of the curves depicting remanent and peak magnetization as a function of stress. Also, the model can produce the Villari reversal if parameters are selected appropriately.

  7. Modeling mixed clockwise and counter-clockwise hysteresis in multi-layer materials by using a generalized Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Andrei, Petru; Mehta, Mohit; Dimian, Mihai

    2014-02-01

    A generalized Jiles-Atherton model is proposed to describe mixed clockwise and counter-clockwise hysteresis loops. While it is physically inconsistent for homogeneous magnetic materials, this mixed type of hysteresis is exhibited by several multi-layer and superlattice materials with antiferromagnetic coupling. The modeling approach is based on a newly developed clockwise hysteretic model using the Jiles-Atherton framework and its linear superposition to the classical counter-clockwise version. The resulting technique is implemented in open-access academic software for hysteresis and simulation samples are presented in the paper.

  8. Hysteresis Loop for a No-loaded, Delta-connected Transformer Model Deduced from Measurements

    NASA Astrophysics Data System (ADS)

    Corrodi, Yves; Kamei, Kenji; Kohyama, Haruhiko; Ito, Hiroki

    At a transformer's steady-state condition, whereby a transformer and its load are constantly supplied by a sinusoidal source, the current-flux pair within the transformer core and its windings will cycle along a hysteresis loop. This nonlinear current-flux characteristic becomes important while at transformer gets reenergized. A remaining residual flux and the fact that a transformer is typically used up to its saturation level can lead to high-amplitude magnetizing inrush currents and associated voltage disturbances. These disturbances can be reduced by controlled transformer switching. In order to pre-evaluate the effect of a specific controlled transformer energization, pre-simulations can be applied. In that case the hysteresis loop and its saturation characteristic will become the most important model parameter. If the corresponding manufacturer specifications are not available a standard hysteresis loops can be used, but might come up with an inaccurate simulation result. Therefore, this paper analyses the measured 3-phase currents from two delta-connected power transformers by “Fourier Series” in order to deduce a single-phase hysteresis loop, which can be implemented into a typical 3-phase transformer model. Additionally, the saturation behavior of a power-transformer will be estimated and a comparison of ATP/EMTP simulations will conclude this paper.

  9. Structural, Magnetic, and Reflection Loss Characteristics of Ni/Co/Sn-Substituted Strontium Ferrite/Functionalized MWCNT Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mousavinia, Mohammad; Ghasemi, Ali; Paimozd, Ebrahim

    2014-07-01

    Ni/Co/Sn-substituted strontium ferrite [SrFe12- x (Ni0.5Co0.5Sn) x/2O19]/multiwalled carbon nanotube (MWCNT) nanocomposites were produced by assembling ferrite particles on the external surfaces of MWCNTs. Various techniques including x-ray diffraction (XRD) analysis, transmission electron microscopy, field-emission scanning electron microscopy (FE-SEM), and Fourier-transform infrared (FTIR) spectroscopy were used to demonstrate the successful attachment of ferrite particles onto the external surfaces of the MWCNTs. XRD analysis and FTIR spectroscopy confirmed the presence of strontium ferrite and carbon nanotube phases in ferrite and nanocomposite samples, respectively. FE-SEM micrographs indicated the formation of ferrite particles on the outer surfaces of MWCNTs in nanocomposite samples. Furthermore, vibrating-sample magnetometer (VSM) and reflection loss (RL) measurements were performed to assess the magnetic and microwave characteristics of the synthesized samples. VSM loops confirmed a relatively strong dependence of the saturation magnetization and coercivity on the volume percentage of MWCNTs. With the introduction of MWCNTs or an increase in the substitution, the saturation magnetization and coercivity were decreased. The RL properties of the nanocomposites were investigated in the 8 GHz to 12 GHz frequency range. The sample with 80 wt.% nanocomposite content showed a maximum RL of -35 dB at 8.3 GHz with a 4 GHz absorption bandwidth over the extended frequency range of 8 GHz to 12 GHz for absorber thickness of 1.8 mm. The RL evaluations indicated that these nanocomposites have high potential for application as wide-band electromagnetic wave absorbers at GHz frequencies.

  10. Hysteresis, avalanches, and disorder-induced critical scaling: A renormalization-group approach Karin Dahmen* and James P. Sethna

    E-print Network

    Sethna, James P.

    Hysteresis, avalanches, and disorder-induced critical scaling: A renormalization-group approach is added, one finds a transition where the jump in the magnetization corresponding to an infinite avalanche avalanches , and universal behavior. We expand the critical exponents about mean-field theory in 6 dimensions

  11. Scalar and vector hysteresis simulations using HysterSoft

    NASA Astrophysics Data System (ADS)

    Dimian, M.; Andrei, P.

    2015-02-01

    Hysteresis modeling has become an important research area with many applications in science and engineering. In this article we present a unified and robust simulation framework designed to perform scalar and vector hysteresis modeling. The framework is based on HysterSoft© which is a simulation platform that can be interfaced with other libraries and simulation programs to model various aspects of hysteresis. We describe the main features of our simulation framework by focusing on scalar and vector hysteresis modeling, direct and inverse modeling, dynamic hysteresis modeling, first-order reversal-curves analysis, identification of the scalar and vector Preisach distribution function using an experimental first- order reversal-curves, noise passage analysis through hysteretic systems, and thermal relaxation in scalar and vector hysteresis. The simulation modules, the user-defined features, and various parameter identification techniques are also presented.

  12. Application of linear magnetic loss model of ferrite to induction cavity simulation

    SciTech Connect

    DeFord, J.F.; Kamin, G.

    1990-09-05

    A linear, frequency independent model of the rf properties of unbiased, soft ferrite has been implemented in finite-difference, time-domain, electromagnetic simulation code AMOS for the purposes of studying linac induction cavities. The simple model consists of adding a magnetic conductivity term ({sigma}{sub m}H) to Faraday's Law. The value of {sigma}{sub m} that is appropriate for a given ferrite at a particular frequency is obtained via an rf reflection experiment on a very thin ferrite toroid in a shorted coaxial line. It was found that in the frequency range 100 to 1000 MHz, the required value of {sigma}{sub m} varies only slightly (<10%), and so we approximated it as a frequency independent parameter in AMOS. A description of the experimental setup and the technique used to extract the complex {mu} from the measurements is described. The model has been used to study the impedances of the DARHT induction cavity, and comparisons between these experimental measurements and AMOS calculations is presented. Implementation of a frequency dependent version of this model in AMOS is being pursued, and a discussion of this effort is given.

  13. Temperature Dependence of Magnetic Descriptors of Magnetic Adaptive Testing

    Microsoft Academic Search

    Gabor Vertesy; Tetsuya Uchimoto; Ivan Tomas; Toshiyuki Takagi

    2010-01-01

    The method of Magnetic Adaptive Testing (MAT) was applied for investigation of ductile cast iron samples having matrix and graphite structure. This method is typical by its low required magnetization of samples, because it is based on the measurement of minor magnetic hysteresis loops and calculates magnetic descriptors for characterization of the sample. Results of the non-destructive magnetic tests were

  14. Stage-Discharge Hysteresis and Bedforms (Invited)

    NASA Astrophysics Data System (ADS)

    Nelson, J. M.; Giri, S.; Shimizu, Y.; Nabi, M.; McDonald, R.

    2013-12-01

    One of the most commonly-cited (and earliest recorded) examples of hysteresis in geomorphology and hydraulics is that arising in river stage-discharge rating curves, where different stages occur on the rising and falling limbs of a hydrograph for the same discharge. This is typically attributed to bedform dynamics, particularly in the case where bedforms disappear during increasing flows due to high Froude numbers and/or suspended load and are subsequently reformed on the falling limb of the hydrograph. In that case, the effective form drag of the bedforms is significantly different for the same discharge, as the bedforms have very different shapes on the rising and falling limb. Although the effect is most noticeable in the case where bedforms 'wash out', it is important to realize that the same effects give rise to weaker forms of hysteresis even when bedforms are uniformly present but evolve in response to changing flows. In this presentation, examples of both strong and weak hysteresis are shown using results from two- and three-dimensional mobile bed models which directly resolve the pressure distribution on the bed (and hence the form drag on bed features). Computations are compared to laboratory measurements of bedform behavior to support the use of such computations for predicting bedform behavior in rapidly varying flows. To connect this to more practical computations for larger-scale rivers, we describe a straightforward method for combining bedform dynamics calculations with much coarser planform river models in order to include the effect of bedform shape changes on effective bed roughness. Results from this method are shown for the Kootenai River in Northern Idaho. These results support the use of this hybrid technique when models capable of resolving bedform mechanics are impractical.

  15. Mechanical hysteresis due to microplasticity in alumina with microcracks

    Microsoft Academic Search

    Y. Nishino; H. Ogawa; S. Asano

    1992-01-01

    Stress-strain hysteresis in alumina with microcracks has been investigated by a loading–unloading test in the microstrain range around 10 While there remains a permanent strain after the initial loading, steady-state cyclic loading results in a single closed hysteresis loop with a symmetrical shape. Such a stabilized hysteresis loop is responsible for internal friction and can be attributed to the microplasticity

  16. Magnetic configuration effects on TAE-induced losses and a comparison with the orbit-following model in the Large Helical Device

    SciTech Connect

    Ogawa, K. [Nagoya University, Japan; Isobe, M. [National Institute for Fusion Science, Toki, Japan; Toi, K. [National Institute for Fusion Science, Toki, Japan; Spong, Donald A [ORNL; Osakabe, M. [National Institute for Fusion Science, Toki, Japan

    2012-01-01

    Fast-ion losses from Large Helical Device (LHD) plasmas due to toroidal Alfven eigenmodes (TAEs) were measured by a scintillator-based lost fast-ion probe (SLIP) to understand the loss processes. TAE-induced losses measured by the SLIP appeared in energy E ranges of around 50-180 keV with pitch angles. between 35 degrees-45 degrees, and increased with the increase in TAE amplitudes. Position shifts of the magnetic axis due to a finite plasma pressure led not only to an increase in TAE-induced losses but also to a stronger scaling of fast-ion losses on TAE amplitudes. Characteristics of the observed fast-ion losses were compared with a numerical simulation based on orbit-following models in which the TAE fluctuations are taken into account. The calculation indicated that the number of lost fast ions reaching the SLIP increased with the increase in the TAE amplitude at the TAE gap. Moreover, the calculated dependence of fast-ion loss fluxes on the fluctuation amplitude became stronger in the case of large magnetic axis shifts, compared with the case of smaller shifts, as was observed in the experiments. The simulation results agreed qualitatively with the experimental observations in the LHD.

  17. Thermal hysteresis and friction of phase boundary motion in ferromagnetic Ni52Mn23Ga25 single crystals

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Hong; Chen, Jing-Lang; Liu, Zhu-Hong; Wu, Guang-Heng; Zhan, Wen-Shan

    2002-01-01

    We calculated the energy consumed for phase boundary motion in a Ni52Mn23Ga25 single-crystalline sample during martensitic transformation using a boundary friction phenomenological theory. It was found that the energy consumed for phase boundary motion is 13.14 J/mol, only a small part of the latent heat of martensitic transformation. Furthermore, the results of transformation loops measured by ac magnetic susceptibility proved that the thermal hysteresis of martensitic transformation is in direct proportion to the volume fraction of martensite. It was also indicated that the thermal hysteresis of martensitic transformation originates from the friction of phase boundary motion.

  18. A New Type Hysteresis Loop in SiN/GdFeCoSi/SiN Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Zhao, Yanling; Wang, Shiqi; Shono, Keiji; Yu, Xiangyou; Lu, Mu; Zhai, Hongru

    A new type of inverted hysteresis loop was observed in an amorphous SiN/GdFeCoSi/SiN film, in which a magnetic GdFeCoSi layer with a thickness of 40 nm was sandwiched by SiN capping and buffer layers 5 nm thick. An inverted hysteresis loop with negative remanence appeared, when an applied field was perpendicular to the film plane, with remanance ratio of 0.4 and HC=120 Oe. An FMR experiment study showed that two magnetic phases existed in the system. A major magnetic phase had an easy-plane anisotropy and the other minor magnetic phase had an easy-normal anisotropy. By assuming an antiferromagnetic exchange coupling between them, the inverted loops can be explained.

  19. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    PubMed Central

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-01-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ?mAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ?mAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ?mAFM. In the athermal training effect, the state of the ?mAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ?mAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices. PMID:25777540

  20. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-03-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ?mAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ?mAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ?mAFM. In the athermal training effect, the state of the ?mAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ?mAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices.

  1. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers.

    PubMed

    Zhou, X; Ma, L; Shi, Z; Fan, W J; Evans, R F L; Zheng, Jian-Guo; Chantrell, R W; Mangin, S; Zhang, H W; Zhou, S M

    2015-01-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ?mAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ?mAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ?mAFM. In the athermal training effect, the state of the ?mAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ?mAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices. PMID:25777540

  2. Magnetic phase transitions and entropy change in layered NdMn1.7Cr0.3Si2

    NASA Astrophysics Data System (ADS)

    Md Din, M. F.; Wang, J. L.; Campbell, S. J.; Studer, A. J.; Avdeev, M.; Kennedy, S. J.; Gu, Q. F.; Zeng, R.; Dou, S. X.

    2014-01-01

    A giant magnetocaloric effect has been observed around the Curie temperature, TC ˜ 42 K, in NdMn1.7Cr0.3Si2 with no discernible thermal and magnetic hysteresis losses. Below 400 K, three magnetic phase transitions take place around 380 K, 320 K and 42 K. Detailed high resolution synchrotron and neutron powder diffraction (10-400 K) confirmed the magnetic transitions and phases as follows: TNintra ˜ 380 K denotes the transition from paramagnetism to intralayer antiferromagnetism (AFl), TNinter ˜ 320 K represents the transition from the AFl structure to the canted antiferromagnetic spin structure (AFmc), while TC ˜ 42 K denotes the first order magnetic transition from AFmc to canted ferromagnetism (Fmc + F(Nd)) due to ordering of the Mn and Nd sub-lattices. The maximum values of the magnetic entropy change and the adiabatic temperature change, around TC for a field change of 5 T are evaluated to be -?SMmax ˜ 15.9 J kg-1 K-1 and ?Tadmax ˜ 5 K, respectively. The first order magnetic transition associated with the low levels of hysteresis losses (thermal <˜0.8 K; magnetic field <˜0.1 T) in NdMn1.7Cr0.3Si2 offers potential as a candidate for magnetic refrigerator applications in the temperature region below 45 K.

  3. Unemployment hysteresis and the NAIRU: a ratchet model

    Microsoft Academic Search

    David J. Smyth; Joshy Z. Easaw

    2001-01-01

    In the 1970s and 1980s the USA and European economies experienced unemployment rates that persistently drifted upwards. The present paper captures this phenomenon by a simple extension of the hysteresis approach to the natural rate hypothesis of unemployment using a ratchet model. The impact of peak unemployment levels on unemployment hysteresis is incorporated using a traditional ratchet model. The model

  4. Low-Voltage CMOS Comparators With Programmable Hysteresis

    E-print Network

    Furth, Paul

    ............................................................28 3.2.2 High-swing cascode current source.....................................29 3.2.3 OperationLow-Voltage CMOS Comparators With Programmable Hysteresis BY VISHNU B. KULKARNI Master of Science of comparators with programmable hysteresis. Optimizations are done in order to obtain minimum DC offsets

  5. A Domain Wall Model for Hysteresis in Piezoelectric Materials

    E-print Network

    A Domain Wall Model for Hysteresis in Piezoelectric Materials Ralph C. Smith Center for Research constitutive relations in piezoelec­ tric materials at moderate to high drive levels. Hysteresis and nonlinearities are due to the domain structure inherent to the materials and both aspects must be addressed

  6. Discharge mode transition and hysteresis in inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Kim, Dong-Hwan; Chung, Chin-Wook

    2013-06-01

    Experimental verification of the discharge mode transition and the hysteresis by considering matching circuit is investigated in inductively coupled plasma using measurements of the plasma density and the power absorption to the plasma. At an argon gas pressure of 100 mTorr where the hysteresis loop of the plasma density had been observed in some previous experiments, there is no hysteresis loop against either the input power or the absorbed power delivered via an automatic impedance matching network. At a higher gas pressure of 350 mTorr, however, the hysteresis loop is clearly seen as functions of both the absorbed power and the input power. This result suggests that the observed hysteresis is due to not only the matching effect but also the nonlinearity of the plasma during capacitive (E) to inductive (H) and H to E heating mode transitions.

  7. Positive hysteresis of Ce-doped GAGG scintillator

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Koshimizu, Masanori; Watanabe, Kenichi; Sato, Hiroki; Yagi, Hideki; Yanagitani, Takagimi

    2014-10-01

    Positive hysteresis and radiation tolerance to high-dose radiation exposure were investigated for Ce 1% and 3% doped Gd3(Al, Ga)5O12 (Ce:GAGG) crystal scintillator on comparison with other garnet scintillators such Ce:YAG, Ce:LuAG, Pr:LuAG, and ceramic Ce:GAGG. When they were irradiated by several Gy 60Co ?-rays, Ce 1% doped GAGG crystal exhibited ?20% light yield enhancement (positive hysteresis). This is the first time to observe positive hysteresis in Ce doped GAGG. On the other hand, other garnet materials did not show the positive hysteresis and their light yields were stable after 800 Gy irradiation except Pr:LuAG. The light yield of Pr:LuAG decreased largely. When irradiated Ce:GAGG which showed positive hysteresis was evaluated in Synchrotron facility (UVSOR), new excitation band was created around 60 nm.

  8. Thermal hysteresis behaviors of thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Iwasaki, Hideo

    2014-12-01

    Thermoelectric behaviors for the thermal cycles between room and high temperatures are investigated in (Bi,Sb)2Te3 and Bi2S3. Because the reliability and reproducibility of the data against repeated heating are required, the Harman method is adopted to evaluate the figure of merit, ZT, in which only electrical contacts are needed. The electrical contacts are made by the spot welding method using a simple and low-power machine made in our laboratory to avoid damage to the samples. Thermoelectric properties are changed by repeating thermal cycles, though their rate of change is not always very high and is material dependent. The carrier number dominantly contributes to the thermal hysteresis of the thermoelectric properties upon the repetition of the thermal cycles, which actually affects the sample as an annealing effect. It is pointed out that changes in thermoelectric properties upon the repetition of the thermal cycles should be examined beforehand in practical applications.

  9. A Hysteresis Model for Piezoceramic Materials

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.; Ounaies, Zoubeida

    1999-01-01

    This paper addresses the modeling of nonlinear constitutive relations and hysteresis inherent to piezoceramic materials at moderate to high drive levels. Such models are, necessary to realize the, full potential of the materials in high performance control applications, and a necessary prerequisite is the development of techniques which permit control implementation. The approach employed here is based on the qualification of reversible and irreversible domain wall motion in response to applied electric fields. A comparison with experimental data illustrates that because the resulting ODE model is physics-based, it can be employed for both characterization and prediction of polarization levels throughout the range of actuator operation. Finally, the ODE formulation is amenable to inversion which facilitates the development of an inverse compensator for linear control design.

  10. Contact Angle Hysteresis on Superhydrophobic Stripes

    E-print Network

    Alexander L. Dubov; Ahmed Mourran; Martin Möller; Olga I. Vinogradova

    2014-07-21

    We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, $\\phi_S$. It is shown that the receding regime is determined by a longitudinal sliding motion the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e. is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with $\\phi_S$, in contrast to predictions of the Cassie equation. To interpret this we develop a simple theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the elastic energy of strong defects at the borders of stripes, which scales as $\\phi_S^2 \\ln \\phi_S$. The advancing contact angle was found to be anisotropic, except as in a dilute regime, and its value is determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on $\\phi_S$, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at $\\phi_S\\simeq 0.5$. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be proportional to $\\phi_S^2$. Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when $\\phi_S\\leq 0.2$.

  11. Hysteresis in Pressure-Driven DNA Denaturation

    PubMed Central

    Hernández-Lemus, Enrique; Nicasio-Collazo, Luz Adriana; Castañeda-Priego, Ramón

    2012-01-01

    In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like) charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue. PMID:22496765

  12. On the origin of giant magnetocaloric effect and thermal hysteresis in multifunctional ?-FeRh thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Tiejun; Cher, M. K.; Shen, L.; Hu, J. F.; Yuan, Z. M.

    2013-12-01

    We report temperature and field dependent lattice structure, magnetic properties and magnetocaloric effect in epitaxial Fe50Rh50 thin films with (001) texture. Temperature-dependent XRD measurements reveal an irreversible first-order phase transition with 0.66% lattice change upon heating/cooling. First-principle calculation shows a state change of Rh from non-magnetic (0 ?B) for antiferromagnetic phase to magnetic (0.93 ?B) state for ferromagnetic phase. A jump of magnetization at temperature of 305 K and field more than 5 T indicates a field-assisted magnetic state change of Ru that contributes to the jump. Giant positive magnetic entropy change was confirmed by isothermal magnetization measurements and an in-situ temperature rise of 15 K. The magnetic state change of Rh between antiferromagnetic and ferromagnetic states is the main origin of giant magnetic entropy change and large thermal hysteresis observed.

  13. Hysteresis Affects Approximate Number Discrimination in Young Children

    PubMed Central

    Odic, Darko; Hock, Howard; Halberda, Justin

    2015-01-01

    Perceptual decisions are often affected not only by the evidence gathered during a trial but also by the history of preceding trials. This effect—termed perceptual hysteresis—provides evidence for how perceptual information is represented and how it is used. The present research focuses on how the difficulty of preceding trials affects subsequent ones—we find that how well 5-year-old children perform in a 2-alternative forced-choice numerical discrimination task depends on whether they have had a prior history of easier discriminations or a prior history of harder discriminations. Furthermore, this effect is modulated by the feedback children receive. In 3 experiments, we demonstrate that these effects are not related to practice or loss of interest due to negative feedback, or simply to trial difficulty or discriminability. Instead, children appear to have state-dependent confidence states such that prolonged experience making low-confidence decisions degrades performance, whereas prolonged experience making high-confidence decisions improves it. These results are discussed in the context of dynamical psychophysics, representations of confidence, and work on children’s and adults’ number perception abilities. PMID:23163765

  14. How small is pedogenic magnetite? Size estimates for loessic soils based on remanence and hysteresis measurements.

    NASA Astrophysics Data System (ADS)

    Geiss, C. E.; Machac, T.

    2005-12-01

    Pedogenic magnetite (or maghemite) is generally believed to be fine-grained, consisting mainly of superparamagnetic (SP) and single-domain (SD) particles. These grain size estimates are based on increased values of ARM/IRM or frequency dependent susceptibility (?FD) in the magnetically enhanced horizons. However, these changes in grain size dependent parameters are generally quite small, compared to the often large increase in concentration dependent parameters, such as low field susceptibility, saturation magnetization (J_S), or various remanence parameters (RM). In addition, a recent study by Dunlop (2002b) suggested that hysteresis properties of several Chinese soils (modern and buried) do not suggest a fining of the magnetic component in the magnetically enhanced soil horizons. We used the model of Dunlop (2002a)to analyze hysteresis data from twenty modern soil profiles from the Midwestern United States. In contrast to the data analyzed by Dunlop (2002b), our data can be modeled equally well with binary mixtures of SD-MD and SD-SP particles. To complement the ambiguous hysteresis data we generated a simple mixing model to constrain the size distribution of pedogenic magnetite. Our model assumes remanence acquisition efficiencies f = RM / J_S for coarse (MD - PSD) and fine (SD-SP) magnetite for ARM and IRM. It then uses ARM/IRM ratios to estimate the relative abundances of coarse and fine magnetite. The validity of our grain size distribution estimates can be checked by comparing measured J_S values to J_S calculated from our model output and measured values of IRM (or ARM). A comparison of our ARM/IRM modeling and hysteresis data shows that the magnetic properties of magnetically enhanced soil horizons can be explained with the addition of a fine grained magnetite component. This component, however, has a wide grain size distribution which includes SP, SD and likely PSD particles. Dunlop, D. J. (2002a). Theory and application of the Day plot (Mrs/M_s versus Hcr/H_c) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research 107, 10.1029/2001JB000486. Dunlop, D. J. (2002b). Theory and application of the Day plot (Mrs/M_s versus Hcr/H_c) 2. Application to data for rocks, sediments and soils. Journal of Geophysical Research 107, 10.1029/2001JB000487.

  15. Significance of conservative asparagine residues in the thermal hysteresis activity of carrot antifreeze protein.

    PubMed Central

    Zhang, Dang-Quan; Liu, Bing; Feng, Dong-Ru; He, Yan-Ming; Wang, Shu-Qi; Wang, Hong-Bin; Wang, Jin-Fa

    2004-01-01

    The approximately 24-amino-acid leucine-rich tandem repeat motif (PXXXXXLXXLXXLXLSXNXLXGXI) of carrot antifreeze protein comprises most of the processed protein and should contribute at least partly to the ice-binding site. Structural predictions using publicly available online sources indicated that the theoretical three-dimensional model of this plant protein includes a 10-loop beta-helix containing the approximately 24-amino-acid tandem repeat. This theoretical model indicated that conservative asparagine residues create putative ice-binding sites with surface complementarity to the 1010 prism plane of ice. We used site-specific mutagenesis to test the importance of these residues, and observed a distinct loss of thermal hysteresis activity when conservative asparagines were replaced with valine or glutamine, whereas a large increase in thermal hysteresis was observed when phenylalanine or threonine residues were replaced with asparagine, putatively resulting in the formation of an ice-binding site. These results confirmed that the ice-binding site of carrot antifreeze protein consists of conservative asparagine residues in each beta-loop. We also found that its thermal hysteresis activity is directly correlated with the length of its asparagine-rich binding site, and hence with the size of its ice-binding face. PMID:14531728

  16. Understanding the Hysteresis Loop Conundrum in Pharmacokinetic / Pharmacodynamic Relationships

    PubMed Central

    Louizos, Christopher; Yáñez, Jaime A.; Forrest, Laird; Davies, Neal M.

    2015-01-01

    Hysteresis loops are phenomena that sometimes are encountered in the analysis of pharmacokinetic and pharmacodynamic relationships spanning from pre-clinical to clinical studies. When hysteresis occurs it provides insight into the complexity of drug action and disposition that can be encountered. Hysteresis loops suggest that the relationship between drug concentration and the effect being measured is not a simple direct relationship, but may have an inherent time delay and disequilibrium, which may be the result of metabolites, the consequence of changes in pharmacodynamics or the use of a non-specific assay or may involve an indirect relationship. Counter-clockwise hysteresis has been generally defined as the process in which effect can increase with time for a given drug concentration, while in the case of clockwise hysteresis the measured effect decreases with time for a given drug concentration. Hysteresis loops can occur as a consequence of a number of different pharmacokinetic and pharmacodynamic mechanisms including tolerance, distributional delay, feedback regulation, input and output rate changes, agonistic or antagonistic active metabolites, uptake into active site, slow receptor kinetics, delayed or modified activity, time-dependent protein binding and the use of racemic drugs among other factors. In this review, each of these various causes of hysteresis loops are discussed, with incorporation of relevant examples of drugs demonstrating these relationships for illustrative purposes. Furthermore, the effect that pharmaceutical formulation has on the occurrence and potential change in direction of the hysteresis loop, and the major pharmacokinetic / pharmacodynamic modeling approaches utilized to collapse and model hysteresis are detailed. PMID:24735761

  17. Experimental investigation of AC loss in a conduction-cooled layer-wound (RE)BCO magnet for continuous Adiabatic Demagnetization Refrigerator (ADR)

    NASA Astrophysics Data System (ADS)

    Park, Jiho; Kim, Seokho; Park, Inmyong; Jeong, Sangkwon

    2014-09-01

    This paper discusses the fabrication of a (RE)BCO solenoid magnet and its experimental results from the aspect of AC loss and thermal characteristics. A (RE)BCO coated conductor with polyimide tape insulation was utilized for a coil and wound by a standard layer-wound method. The (RE)BCO solenoid magnet consists of a stainless steel bore and a pair of OFHC copper supporting plates assembled at both ends. The coil winding has a novel thermal drain structure that can withstand high AC thermal loads generated externally and internally. The OFHC copper strips were installed between the interlayers in the perpendicular direction to the (RE)BCO conductor winding to mitigate both thermal resistance in the axial direction of the (RE)BCO coil and eddy current loss by an external magnetic field. Apiezon® N grease with hexane solution was applied on the entire (RE)BCO coil winding to minimize thermal contact resistance between the conductor and the OFHC copper strips. The (RE)BCO coil carried 150 A at 14.7 K and generated 3.5 T at the center of the coil. A sinusoidal current waveform (operating frequency from 0.1 Hz to 1.0 Hz) was applied with peaks of 25 A, 50 A, and 70 A (the corresponding magnetic field of 0.54 T, 1.08 T, and 1.54 T) and the corresponding AC losses were measured by both calorimetric and electrical methods. The AC losses measured by both methods were in good agreement. The experimental results were compared with theoretical and numerical solutions.

  18. MAGNETIC HYSTERESIS AND DOMAIN STRUCTURE By R. S. TEBBLE,

    E-print Network

    Boyer, Edmond

    of polycrystalline materials. LE JOURNAL DE PHYSIQUE ET LE RADIUM TOME 20, FÃ?VRIER 1959, This paper represents in a poly- crystalline material, unless one is to postulate such a close coherence in crystal orientation

  19. HYSTERESIS OF BACKFLOW IMPRINTED IN COLLIMATED JETS

    SciTech Connect

    Mizuta, Akira [Center for Frontier Science, Chiba University Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Kino, Motoki [National Astronomical Observatory of Japan, Mitaka 181-8588 (Japan); Nagakura, Hiroki [Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2010-01-20

    We report two different types of backflow from jets by performing two-dimensional special relativistic hydrodynamical simulations. One is anti-parallel and quasi-straight to the main jet (quasi-straight backflow), and the other is a bent path of the backflow (bent backflow). We find that the former appears when the head advance speed is comparable to or higher than the local sound speed at the hotspot, while the latter appears when the head advance speed is slower than the sound speed at the hotspot. Bent backflow collides with the unshocked jet and laterally squeezes the jet. At the same time, a pair of new oblique shocks is formed at the tip of the jet and new bent fast backflows are generated via these oblique shocks. The hysteresis of backflow collisions is thus imprinted in the jet as a node and anti-node structure. This process also promotes broadening of the jet cross-sectional area and also causes a decrease in the head advance velocity. This hydrodynamic process may be tested by observations of compact young jets.

  20. Hysteresis and nonlinear elasticity in rocks

    SciTech Connect

    McCall, K.R.; Guyer, R.A.

    1993-12-01

    The purpose of this paper is to describe a theory of the propagation of elastic waves in hysteretic nonlinear elastic materials, e.g., rock. In the next section, we introduce the Priesach-Mayergoyz (P-M) model [6,7] of hysteretic systems and adapt it to describe the hysteretic mesoscopic elastic units (HMEU) determining the elastic properties of a rock. We combine the P-M model with effective medium theory (EMT) [8] to find the elastic response of a rock that has experienced a specified pressure history. Next, we consider elastic wave propagation in a hysteretic nonlinear elastic system governed by a history dependent equation of state. We consider one-dimensional propagation of compressional waves. The equation of motion for the longitudinal displacement field contains the same hysteretic nonlinear interactions that characterize the equation of state. We solve the equation of motion using the Green function technique developed by McCall [9]. This solution lets us identify the qualitative features in harmonic generation that are signatures of nonlinearity and hysteresis.

  1. Hysteresis in the Central African Rainforest

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan Alexander; Elias Bednar, Johannes; Gautam, Sishir; Petritsch, Richard; Schier, Franziska; Stanzl, Patrick

    2014-05-01

    Past climate change caused severe disturbances of the Central African rainforest belt, with forest fragmentation and re-expansion due to drier and wetter climate conditions. Besides climate, human induced forest degradation affected biodiversity, structure and carbon storage of Congo basin rainforests. Information on climatically stable, mature rainforest, unaffected by human induced disturbances, provides means of assessing the impact of forest degradation and may serve as benchmarks of carbon carrying capacity over regions with similar site and climate conditions. BioGeoChemical (BGC) ecosystem models explicitly consider the impacts of site and climate conditions and may assess benchmark levels over regions devoid of undisturbed conditions. We will present a BGC-model validation for the Western Congolian Lowland Rainforest (WCLRF) using field data from a recently confirmed forest refuge, show model - data comparisons for disturbed und undisturbed forests under different site and climate conditions as well as for sites with repeated assessment of biodiversity and standing biomass during recovery from intensive exploitation. We will present climatic thresholds for WCLRF stability, analyse the relationship between resilience, standing C-stocks and change in climate and finally provide evidence of hysteresis.

  2. Hysteresis and transition in swirling nonpremixed flames

    SciTech Connect

    Tummers, M.J.; Huebner, A.W.; van Veen, E.H.; Hanjalic, K. [Delft University of Technology, Faculty of Applied Sciences, P.O. Box 5046, 2600 GA Delft (Netherlands); van der Meer, T.H. [University of Twente, Faculty of Engineering Technology, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2009-02-15

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change from an attached swirling flame (unidirectional or with a weak bluff-body recirculation), to a lifted flame with a strong toroidal vortex occupying the bulk of the flame. Despite dramatic differences in their structures, mixing intensities and combustion performance, both flame types can be realised at identical flow rates, equivalence ratio and swirl intensity. We report here on comprehensive investigations of the two flame regimes at the same conditions in a well-controlled experiment in which the swirl was generated by the rotating outer pipe of the annular burner air passage. Fluid velocity measured with PIV (particle image velocimetry), the qualitative detection of reaction zones from OH PLIF (planar laser-induced fluorescence) and the temperature measured by CARS (coherent anti-Stokes Raman spectroscopy) revealed major differences in vortical structures, turbulence, mixing and reaction intensities in the two flames. We discuss the transition mechanism and arguments for the improved mixing, compact size and a broader stability range of the blue flame in comparison to the long yellow flame. (author)

  3. Contact angle hysteresis: a review of fundamentals and applications

    E-print Network

    ’t Mannetje, D. J. C. M.

    Contact angle hysteresis is an important physical phenomenon. It is omnipresent in nature and also plays a crucial role in various industrial processes. Despite its relevance, there is a lack of consensus on how to incorporate ...

  4. A high-speed hysteresis motor spindle for machining applications

    E-print Network

    Bayless, Jacob D. (Jacob Daniel)

    2014-01-01

    An analysis of suitable drive technologies for use in a new high-speed machining spindle was performed to determine critical research areas. The focus is on a hysteresis motor topology using a solid, inherently-balanced ...

  5. On the question of hysteresis in Hall magnetohydrodynamic reconnection

    SciTech Connect

    Sullivan, Brian P.; Bhattacharjee, A.; Huang Yimin [Center for Integrated Computation and Analysis of Reconnection and Turbulence, University of New Hampshire, Space Science Center, Durham, New Hampshire 03824 (United States)

    2010-11-15

    Controversy has been raised regarding the cause of hysteresis, or bistability, of solutions to the equations that govern the geometry of the reconnection region in Hall magnetohydrodynamic (MHD) systems. This brief communication presents a comparison of the frameworks within which this controversy has arisen and illustrates that the Hall MHD hysteresis originally discovered numerically by Cassak et al. [Phys. Rev. Lett. 95, 235002 (2005)] is a different phenomenon from that recently reported by Zocco et al. [Phys. Plasmas 16, 110703 (2009)] on the basis of analysis and simulations in electron MHD with finite electron inertia. We demonstrate that the analytic prediction of hysteresis in EMHD does not describe or explain the hysteresis originally reported in Hall MHD, which is shown to persist even in the absence of electron inertia.

  6. Essays on crime, hysteresis, poverty and conditional cash transfers 

    E-print Network

    Loureiro, Andre Oliveira Ferreira

    2013-07-03

    This thesis encompasses three essays around criminal behaviour with the first one analysing the impact of programmes aimed at poverty reduction, the second one developing a theoretical model of hysteresis in crime, and ...

  7. Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis

    E-print Network

    Smyth, Katherine M.

    We study the wetting energetics and wetting hysteresis of sessile and impacting water droplets on superhydrophobic surfaces as a function of surface texture and surface energy. For sessile drops, we find three wetting ...

  8. Cavitation level-acoustic intensity hysteresis: experimental and numerical characterization

    E-print Network

    Boyer, Edmond

    Cavitation level-acoustic intensity hysteresis: experimental and numerical characterization P cours Albert Thomas 69424 Lyon cedex 03 pauline.labelle@inserm.fr Proceedings of the Acoustics 2012 importance. When applying successive ultrasonic shots for increasing acoustic intensities, the inertial

  9. Thermal Hysteresis in a Spin-Crossover Fe(III) Quinolylsalicylaldimine Complex, Fe(III)(5-Br-qsal)2Ni(dmit)2·solv: Solvent Effects.

    PubMed

    Vieira, Bruno J C; Dias, João C; Santos, Isabel C; Pereira, Laura C J; da Gama, Vasco; Waerenborgh, João C

    2015-02-16

    The Fe(III) complexes Fe(5-Br-qsal)2Ni(dmit)2·solv with solv = CH2Cl2 (1) and (CH3)2CO (2) were synthesized, and their structural and magnetic properties were studied. While magnetization and Mössbauer spectroscopy data of 1 showed a gradual spin transition, compound 2 evidenced an abrupt transition with a thermal hysteresis of 13 K close to room temperature (T1/2 ? ?273 K and T1/2 ? ?286 K). A similar packing arrangement of segregated layers of cations and anions was found for 1 and 2. In both low-spin, LS, structures there are a large number of short intra- and interchain contacts. This number is lower in the high-spin, HS, phases, particularly in the case of 1. The significant loss of strong ?-? interactions in the cationic chains and short contacts in the anionic chains in the HS structure of 1 leads to alternating strong and weak bonds between cations along the cationic chains and the formation of unconnected dimers along the anionic chains. This is consistent with a significant weakening of the extended interactions in 1. On the other hand, in the HS phase of 2 the 3D dimensionality of the short contacts observed in the LS phases is preserved. The effect of distinct solvent molecules on the intermolecular spacings explains the different spin crossover behaviors of the title compounds. PMID:25634799

  10. Approximation properties of a PWL circuit model of hysteresis

    NASA Astrophysics Data System (ADS)

    Cincotti, Silvano

    2000-01-01

    In this paper, some identification methods for a piece wise linear (PWL) circuit model of hysteresis phenomenon are presented and compared. The model provides a close prediction of static hysteresis and exhibits realistic dynamic features. The parameter identification problem can be solved by means of a suitable procedures based on representation theorem, on optimisation methods and on neural networks. Basic features are addressed and discussed.

  11. Experimental Highlight of Hysteresis Phenomenon in Rolling Contact

    NASA Astrophysics Data System (ADS)

    Alaci, S.; Cerlinc?, D. A.; Ciornei, F. C.; Filote, C.; Frunz?, G.

    2015-02-01

    In literature, the hysteresis phenomenon in rolling contacts is studied considering both rolling friction and sliding friction. Removal of sliding friction in experimental tests from a concentrated contact is a serious challenge. The paper proposes a method and presents a device ensuring pure rolling between two identical discs, normally loaded. Using photoelastic material for the two rolling discs, by means of photoelastic method, the hysteresis phenomenon due to rolling friction is qualitatively confirmed.

  12. Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment

    SciTech Connect

    Trassinelli, M., E-mail: martino.trassinelli@insp.jussieu.fr; Marangolo, M.; Eddrief, M.; Etgens, V. H.; Gafton, V.; Hidki, S.; Lacaze, E.; Lamour, E.; Prigent, C.; Rozet, J.-P.; Steydli, S.; Zheng, Y.; Vernhet, D. [CNRS, UMR 7588, Institut des NanoSciences de Paris (INSP), F-75005 Paris (France); Sorbonne Universités, UPMC Univ. Paris 06, UMR 7588, INSP, F-75005 Paris (France)

    2014-02-24

    We present the investigation on the modifications of structural and magnetic properties of MnAs thin film epitaxially grown on GaAs induced by slow highly charged ions bombardment under well-controlled conditions. The ion-induced defects facilitate the nucleation of one phase with respect to the other in the first-order magneto-structural MnAs transition, with a consequent suppression of thermal hysteresis without any significant perturbation on the other structural and magnetic properties. In particular, the irradiated film keeps the giant magnetocaloric effect at room temperature opening new perspective on magnetic refrigeration technology for everyday use.

  13. An undulation theory for condensation in open end slit pores: critical hysteresis temperature & critical hysteresis pore size.

    PubMed

    Fan, Chunyan; Zeng, Yonghong; Do, D D; Nicholson, D

    2014-06-28

    A new theory of condensation in an open end slit pore, based on the concept of temperature dependent undulation, at the interface separating the adsorbed phase and the gas-like region, is presented. The theory, describes, for the first time, the microscopic origin of the critical hysteresis temperature and the critical hysteresis pore size, properties which are not accessible to any classical theories. PMID:24826906

  14. Improved multiferroic properties and a novel magnetic behavior of Bi 0.8La 0.2Fe 1- xCo xO 3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Qian, F. Z.; Jiang, J. S.; Jiang, D. M.; Wang, C. M.; Zhang, W. G.

    2010-10-01

    Bi 0.8La 0.2Fe 1- xCo xO 3 nanoparticles of single phase (BLFCO x, x=0, 0.005, 0.01, 0.02) were prepared by a sol-gel method using polyvinyl alcohol as a surfactant. Co substitution at Fe site improved further dielectric properties of Bi 0.8La 0.2FeO 3 nanoparticles in the frequency range below 25 MHz at room temperature. Magnetization at 10 kOe, coercivities, and remanence of BLFCO x nanoparticles increased with increasing Co content. It is interesting that the hysteresis loop of all the BLFCO x nanoparticles presented a wasp-waisted shape. The property can open an important way to design new multiferroic applications of low hysteresis loss in low magnetic fields.

  15. Voltage-probe-position dependence and magnetic-flux contribution to the measured voltage in ac transport measurements: which measuring circuit determines the real losses?

    SciTech Connect

    Pe, T.; McDonald, J.; Clem, J.R.

    1995-12-31

    The voltage V{sub ab} measured between two voltage taps a and b during magnetic flux transport in a type-II superconductor carrying current I is the sum of two contributions, the line integral from a to b of the electric field along an arbitrary path C{sub s} through the superconductor and a term proportional to the time rate of change of magnetic flux through the area bounded by the path C{sub s} and the measuring circuit leads. When the current I(t) is oscillating with time t, the apparent ac loss (the time average of the product IV{sub ab}) depends upon the measuring circuit used. Only when the measuring-circuit leads are brought out far from the surface does the apparent power dissipation approach the real (or true) ac loss associated with the length of sample probed. Calculations showing comparisons between the apparent and real ac losses in a flat strip of rectangular cross section will be presented, showing the behavior as a function of the measuring-circuit dimensions. Corresponding calculations also are presented for a sample of elliptical cross section.

  16. PPPL-3239 -Preprint: March 1997, UC-420, 427 Calculations of alpha particle loss for reversed magnetic shear

    E-print Network

    ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped-monotonic q(r) achieved by deliberate modification of plasma startup conditions. Each point in a toroidal

  17. PPPL3239 Preprint: March 1997, UC420, 427 Calculations of alpha particle loss for reversed magnetic shear

    E-print Network

    ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped­monotonic q(r) achieved by deliberate modification of plasma startup conditions. Each point in a toroidal

  18. Hysteresis of Magnetite, Hematite and Pyrrhotite Crystals at High and Low Temperatures

    NASA Astrophysics Data System (ADS)

    Dunlop, D. J.

    2008-12-01

    Alternating gradient force magnetometers and sensitive vibrating-sample magnetometers operating above, at, and below room temperature have enabled rapid reliable measurements of hysteresis and remanence curves. The hysteresis parameters Ms, Mrs, Hc, plus the remanence coercivity Hcr, are routinely determined, at room temperature at least, and reported in the form of a Day plot as an indication of domain state and inferred grain size. Yet our knowledge of the hysteresis and remanence properties of individual crystals or sized crystal aggregates of magnetite, titanomagnetite, hematite, pyrrhotite and other important magnetic minerals has scarcely advanced beyond what was known at the end of the 1980's. Applications have indeed outstripped fundamental studies. This presentation will focus on new hysteresis measurements for well-sized magnetites of a variety of origins; magnetite inclusions in plagioclase, pyroxene, amphiboles and biotite; hematite; and pyrrhotite. Measurements were made at 20oC intervals from 25oC to the Curie point for all magnetites and hematites and at 10oC intervals for pyrrhotite. For one set of sized magnetites (0.6, 3, 6, 9, 14 and 110 micrometers), hysteresis and back-field remanence curves were also measured below room temperature (every 10 K from 10 K to 70 K, every 5 K from 80 K to 140 K, and every 10 K from 150 K to 300 K). These data give a wealth of information about the individual mineral crystals and trends linking crystals of common origin but different sizes. From Ms(T) we obtain precise Curie points and transition temperatures. Mrs(T)/Ms(T) tracks sometimes subtle changes in domain structure with changing temperature. Hc(T) gives an indication of the mechanism(s) of anisotropy, important for understanding TRM acquisition in crystals above single-domain size. Mrs(T) and Hc(T) often show substantial irreversible changes in the first heating- cooling cycle, particularly but not exclusively for synthetic crystals, stabilizing in subsequent cycles. Finally, Mrs(T)/Ms(T) vs. Hcr(T)/Hc(T) data trace curves on a Day plot showing unmistakable differences in domain structure between monoclinic and cubic magnetite, as well as more subtle changes away from the Verwey transition.

  19. The heating effect of iron-cobalt magnetic nanofluids in an alternating magnetic field: application in magnetic hyperthermia treatment

    PubMed Central

    2013-01-01

    In this research, FeCo alloy magnetic nanofluids were prepared by reducing iron(III) chloride hexahydrate and cobalt(II) sulfate heptahydrate with sodium borohydride in a water/CTAB/hexanol reverse micelle system for application in magnetic hyperthermia treatment. X-ray diffraction, electron microscopy, selected area electron diffraction, and energy-dispersive analysis indicate the formation of bcc-structured iron-cobalt alloy. Magnetic property assessment of nanoparticles reveals that some samples are single-domain superparamagnetic, while others are single- or multi-domain ferromagnetic. The stability of the magnetic fluids was achieved by using a CTAB/1-butanol surfactant bilayer. Results of Gouy magnetic susceptibility balance experiments indicate good stability of FeCo nanoparticles even after dilution. The inductive properties of corresponding magnetic fluids including temperature rise and specific absorption rate were determined. Results show that with increasing of the nanoparticle size in the single-domain size regime, the generated heat increases, indicating the significant effect of the hysteresis loss. Finally, the central parameter controlling the specific absorption rate of nanoparticles was introduced, the experimental results were compared with those of the Stoner-Wohlfarth model and linear response theory, and the best sample for magnetic hyperthermia treatment was specified. PMID:24359163

  20. The heating effect of iron-cobalt magnetic nanofluids in an alternating magnetic field: application in magnetic hyperthermia treatment

    NASA Astrophysics Data System (ADS)

    Shokuhfar, Ali; Seyyed Afghahi, Seyyed Salman

    2013-12-01

    In this research, FeCo alloy magnetic nanofluids were prepared by reducing iron(III) chloride hexahydrate and cobalt(II) sulfate heptahydrate with sodium borohydride in a water/CTAB/hexanol reverse micelle system for application in magnetic hyperthermia treatment. X-ray diffraction, electron microscopy, selected area electron diffraction, and energy-dispersive analysis indicate the formation of bcc-structured iron-cobalt alloy. Magnetic property assessment of nanoparticles reveals that some samples are single-domain superparamagnetic, while others are single- or multi-domain ferromagnetic. The stability of the magnetic fluids was achieved by using a CTAB/1-butanol surfactant bilayer. Results of Gouy magnetic susceptibility balance experiments indicate good stability of FeCo nanoparticles even after dilution. The inductive properties of corresponding magnetic fluids including temperature rise and specific absorption rate were determined. Results show that with increasing of the nanoparticle size in the single-domain size regime, the generated heat increases, indicating the significant effect of the hysteresis loss. Finally, the central parameter controlling the specific absorption rate of nanoparticles was introduced, the experimental results were compared with those of the Stoner-Wohlfarth model and linear response theory, and the best sample for magnetic hyperthermia treatment was specified.

  1. The magnetostriction and its ratio to hysteresis for Tb-Dy-Ho-Fe alloys

    NASA Astrophysics Data System (ADS)

    Wang, Bowen; Lv, Yan; Li, Guolu; Huang, Wenmei; Sun, Ying; Cui, Baozhi

    2014-05-01

    The x(Tb0.15Ho0.85Fe2) + (1 - x)(Tb0.3Dy0.7Fe2) alloys were prepared in an arc furnace under high purity argon. The as-cast samples wrapped in Mo foil were sealed in a silica tube filled with high purity argon. The static measurement of magnetostriction (?//, ??) was made by standard strain gauge, and the magnetization M was measured by a vibrating sample magnetometer. It is found that the magnetostriction ?// of x(Tb0.15Ho0.85Fe2) + (1 - x)(Tb0.3Dy0.7Fe2) alloys decreases with increasing x and it does from 880 × 10-6 for x = 0 to 210 × 10-6 for x = 0.9 at the magnetic field of 640 kA/m. The ratio (?///Wh) of magnetostriction to hysteresis exhibits a peak when x = 0.1, and it means that the Tb0.285Dy0.63Ho0.085Fe2 (x = 0.1) alloy possesses both large magnetostriction and small magnetostrictive hysteresis.

  2. PREFACE: International Workshop on Multi-Rate Processes and Hysteresis

    NASA Astrophysics Data System (ADS)

    Mortell, Michael P.; O'Malley, Robert E.; Pokrovskii, Alexei; Rachinskii, Dmitrii; Sobolev, Vladimir A.

    2008-07-01

    We are interested in singular perturbation problems and hysteresis as common strongly nonlinear phenomena that occur in many industrial, physical and economic systems. The wording `strongly nonlinear' means that linearization will not encapsulate the observed phenomena. Often these two types of phenomena are manifested for different stages of the same or similar processes. A number of fundamental hysteresis models can be considered as limit cases of time relaxation processes, or admit an approximation by a differential equation which is singular with respect to a particular parameter. However, the amount of interaction between practitioners of theories of systems with time relaxation and systems with hysteresis (and between the `relaxation' and `hysteresis' research communities) is still low, and cross-fertilization is small. In recent years Ireland has become a home for a series of prestigious International Workshops in Singular Perturbations and Hysteresis: International Workshop on Multi-rate Processes and Hysteresis (University College Cork, Ireland, 3-8 April 2006). Proceedings are published in Journal of Physics: Conference Series, volume 55. See further information at http://euclid.ucc.ie/murphys2008.htm International Workshop on Hysteresis and Multi-scale Asymptotics (University College Cork, Ireland, 17-21 March 2004). Proceedings are published in Journal of Physics: Conference Series, volume 22. See further information at http://euclid.ucc.ie/murphys2006.htm International Workshop on Relaxation Oscillations and Hysteresis (University College Cork, Ireland, 1-6 April 2002). The related collection of invited lectures, was published as a volume Singular Perturbations and Hysteresis, SIAM, Philadelphia, 2005. See further information at http://euclid.ucc.ie/hamsa2004.htm International Workshop on Geometrical Methods of Nonlinear Analysis and Semiconductor Laser Dynamics (University College Cork, Ireland, 5-5 April 2001). A collection of invited papers has been published as a special issue of Proceedings of the Russian Academy of Natural Sciences: Nonlinear dynamics of laser and reacting systems, and is available online at http://www.ins.ucc.ie/roh2002.htm. See further information at http://www.ins.ucc.ie/roh2002.htm Among the aims of these workshops were to bring together leading experts in singular perturbations and hysteresis phenomena in applied problems; to discuss important problems in areas such as reacting systems, semiconductor lasers, shock phenomena in economic modelling, fluid mechanics, etc with an emphasis on hysteresis and singular perturbations; to learn and to share modern techniques in areas of common interest. The `International Workshop on Multi-Rate Processes and Hysteresis' (University College Cork, Ireland, April 3-8, 2006) brought together more than 70 scientists (including more than 10 students), actively researching in the areas of dynamical systems with hysteresis and singular perturbations, to analyze those phenomena that occur in many industrial, physical and economic systems. The countries represented at the Workshop included Czech Republic, England, France, Germany, Hungary, Ireland, Israel, Italy, Poland, Romania, Russia, Scotland, South Africa, Switzerland and USA. All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The Workshop has been sponsored by Science Foundation Ireland (SFI), KE Consulting group, Drexel University, Philadelphia, USA, University College Cork (UCC), Boole Centre for Research in Informatics, UCC, Cork, School of Mathematical Sciences, UCC, Cork, Irish Mathematical Society, Tyndall National Institute, Cork, University of Limerick, Cork Institute of Technology, and Heineken. The supportive affiliation of the European Geophysics Society, International Association of Hydrological Sciences, and Laboratoire Poncelet is grateful

  3. Efficiency of O-C diagrams as diagnostic tools for long-term period variations. I. Wind-driven mass loss and magnetic braking

    NASA Astrophysics Data System (ADS)

    Nanouris, N.; Kalimeris, A.; Antonopoulou, E.; Rovithis-Livaniou, H.

    2011-11-01

    Context. The credibility of an O-C diagram analysis is investigated when long-term processes are examined in binary systems. The morphology of period and O-C diagrams is thoroughly explored when mass loss and magnetic braking, induced by stellar winds, drive the orbital evolution of late-type detached binaries. Conditions are specified that determine which process dominates. Aims: Our objective is to determine the minimum time intervals that observations are expected to span for a physical mechanism to be detectable by means of an O-C diagram analysis. Computations for various values that account for the noise level and the orbital period are performed to find out to which degree these affect the inferred intervals. Methods: Generalized dot{J-dot{P}} relations that govern the orbital evolution of a binary system are set and solved analytically to determine in a closed form the period and the function expected to represent the respective O-C variations. Semi-empirical relations adapting mass loss and magnetic braking processes for single cool stars are adopted and properly modified to be consistent with the latest observational constraints. A standard Newton-Raphson numerical procedure is then employed to estimate the minimum temporal range over which a specific mechanism is rendered measurable. Results: Mass loss rates comparable to or greater than -10-9 M? yr-1 are measurable for typical noise levels of the O-C diagrams when the data span more than a century. Magnetic braking was proved to be very sensitive on the orbital period and on the braking law adopted for inference. It is expected to be detectable in current O-C diagrams of very short-period binaries only, for others it needs at least two centuries of observations to confirm its effects safely. Conclusions: Both wind driven mass loss and magnetic braking processes are able to drive the orbital evolution of short-period detached binaries (Porb1d) in amounts traced on human timescales. There are also special conditions under which their strength is equalized, locking the orbital period invariable in time. Several short-period RS CVn-type binaries are fine candidates where this regime is expected to prevail.

  4. The Radial Loss of Ions Trapped in the Thermal Barrier Potential and the Design of Divertor Magnetic Field in GAMMA10

    SciTech Connect

    Katanuma, I. [Plasma Research Center, University of Tsukuba (Japan); Ito, T. [Plasma Research Center, University of Tsukuba (Japan); Saimaru, H. [Plasma Research Center, University of Tsukuba (Japan); Sasagawa, Y. [Plasma Research Center, University of Tsukuba (Japan); Pastukhov, V.P. [I.V.Kuruchatov Atomic Energy Institute (Russian Federation); Ishii, K. [Plasma Research Center, University of Tsukuba (Japan); Tatematsu, Y. [Plasma Research Center, University of Tsukuba (Japan); Saito, T. [Plasma Research Center, University of Tsukuba (Japan); Islam, Md.K. [Plasma Research Center, University of Tsukuba (Japan); Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

    2005-01-15

    The ion radial loss exists in the presence of a non-axisymmetric electrostatic potential in the end-mirror cells of GAMMA10, which leads to a formation of the thermal barrier potential. The non-axisymmetric electrostatic potential can also exist in the central cell. A design for divertor magnetic field of GAMMA10 is performed, the purpose of which is first to reduce an ion radial transport in the central cell by making electrostatic potential circular and second to assure the macroscopic plasma stability of GAMMA10 without help of non-axisymmetric anchor cells which enhances a neoclassical radial transport.

  5. The effects of partial insulation winding on the charge-discharge rate and magnetic field loss phenomena of GdBCO coated conductor coils

    NASA Astrophysics Data System (ADS)

    Choi, Y. H.; Kim, K. L.; Kwon, O. J.; Kang, D. H.; Kang, J. S.; Ko, T. K.; Lee, H. G.

    2012-10-01

    GdBCO single-pancake coils wound with Kapton insulation every 3, 6, 9 turns, and without insulation, were characterized by charge-discharge and over-current tests. The magnetic field saturation at higher currents than the critical current was affected by the portion of the insulated turns that restricted the surplus current flow away from the azimuthal current path. The charge-discharge delay decreased with the increase of the portion of the insulated turns, which suggested that partial insulation winding may be effective for use in HTS power applications. Magnetic field loss of the coils with reduced insulation at excessive high currents was mainly affected by the decrease in ampere-turns due to the electrically shorted-circuits between the non-insulated turns, which resulted in the over-current flow bypass through the turn-to-turn contacts.

  6. Stress induced magnetic anisotropy and giant magnetoimpedance in Fe-rich glass-coated magnetic microwires

    NASA Astrophysics Data System (ADS)

    Zhukova, V.; Larin, V. S.; Zhukov, A.

    2003-07-01

    The effect of conventional (CA) and stress annealing (SA) on magnetic properties of Fe74B13Si11C2 glass-coated microwires has been studied. CA treatment does not significantly change the character of the hysteresis loop. Under certain annealing conditions (annealing temperature, Tann>300 °C, applied stress, ?>700 MPa) rectangular hysteresis loop transforms into the inclined with magnetic anisotropy field above 1000 A/m. Such phenomenology has been related to the induction of transverse magnetic anisotropy by SA treatment. Under tensile stress the SA annealed microwire recovers rectangular hysteresis loop. Samples subjected to stress annealing show noticeable magnetoimpedance and stress impedance effects in spite of their large magnetostriction.

  7. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    NASA Astrophysics Data System (ADS)

    Tsoupas, N.; Huang, H.; MacKay, W. W.; Meot, F.; Roser, T.; Trbojevic, D.

    2013-04-01

    The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS) which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to accommodate the four helices. In addition, the four partial helix solution is an optimum solution because it eliminates all the spin resonances for any synchrotron which operates in the same energy range as the AGS.

  8. Energy Loss of Solar p Modes due to the Excitation of Magnetic Sausage Tube Waves: Importance of Coupling the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-07-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, ?, and absorption coefficient, ?. The variation of ? and ? as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ?3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = -z 0).

  9. Magnetic nanoparticles for applications in oscillating magnetic field

    SciTech Connect

    Peeraphatdit, Chorthip

    2010-12-15

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific loss power of PNIPAM-coated Fe{sub 3}O{sub 4} was peculiarly high, and the heat loss mechanism of this material remains to be elucidated. Since thermocatalysis is a long-term goal of this project, we also investigated the effects of the oscillating magnetic field system for the synthesis of 7-hydroxycoumarin-3-carboxylic acid. Application of an oscillating magnetic field in the presence of magnetic particles with high thermal response was found to effectively increase the reaction rate of the uncatalyzed synthesis of the coumarin derivative compared to the room temperature control.

  10. Magnetization Losses in Multiply Connected YBa2Cu3O6+x Coated Conductors. G. A. Levin and P. N. Barnes Propulsion Directorate, Air Force Research Laboratory, 1950 Fifth St. Bldg. 450, Wright Patterson Air Force Base OH 45433

    Microsoft Academic Search

    Naoyuki Amemiya; Satoshi Kasai; Keiji Yoda; Zhenan Jiang; A. Polyanskii

    We report the results of a magnetization losses study in experimental multifilament, multiply connected coated superconductors exposed to time-varying magnetic field. In these samples, the superconducting layer is divided into parallel stripes segregated by non-superconducting grooves. In order to facilitate the current sharing between the stripes and thus increase the reliability of the striated conductors, a sparse network of superconducting

  11. Magnetic interaction between multiple seeded YBCO bulks and the permanent magnet guideway

    NASA Astrophysics Data System (ADS)

    Song, H. H.; De Haas, O.; Ren, Z. Y.; Wang, X. R.; Zheng, J.; Wang, X. Z.; Wang, S. Y.; Wang, J. S.; Zhao, Y.

    2004-08-01

    Magnetic interaction between multiple seeded melt growth (MSMG) bulk YBCO and the permanent magnet guideway (PMG) has been investigated. There are two modes: parallel and perpendicular between the length directions of the PMG and MSMG bulks. We employ one piece of MSMG bulk and a stacked array consisting of three separated bulks in our experiments. They have similar dimensions and their maximum levitation forces are almost the same except for a slight difference in parallel mode. It is found that the MSMG bulk may be regarded as single larger grain bulk in the perpendicular mode due to inter-grain critical currents and it has much larger levitation force than the stacked bulk array. On the other hand guidance force of the MSMG bulk is larger than the stacked array in both parallel and perpendicular modes. In addition, its hysteresis loss becomes less in perpendicular mode. These indicate that MSMG bulk YBCO is preferable to optimize the present superconductor-PMG levitation system.

  12. Lodestone: Nature's own permanent magnet

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1976-01-01

    Magnetic hysteresis and microstructural details are presented which explain why the class of magnetic iron ores defined as proto-lodestones, can behave as permanent magnets, i.e. lodestones. Certain of these proto-lodestones which are not permanent magnets can be made into permanent magnets by charging in a field greater than 1000 oersted. This fact, other experimental observations, and field evidence from antiquity and the middle ages, which seems to indicate that lodestones are found as localized patches within massive ore bodies, suggests that lightning might be responsible for the charging of lodestones. The large remanent magnetization, high values of coercive force, and good time stability for the remanent magnetization are all characteristics of proto-lodestone iron ores which behave magnetically as fine scale ( 10 micrometer) intergrowths when subjected to magnetic hysteresis analysis. The magnetic results are easily understood by analysis of the complex proto lodestone microstructural patterns observable at the micrometer scale and less.

  13. Single molecule magnets from magnetic building blocks

    NASA Astrophysics Data System (ADS)

    Kroener, W.; Paretzki, A.; Cervetti, C.; Hohloch, S.; Rauschenbach, S.; Kern, K.; Dressel, M.; Bogani, L.; M&üLler, P.

    2013-03-01

    We provide a basic set of magnetic building blocks that can be rationally assembled, similar to magnetic LEGO bricks, in order to create a huge variety of magnetic behavior. Using rare-earth centers and multipyridine ligands, fine-tuning of intra and intermolecular exchange interaction is demonstrated. We have investigated a series of molecules with monomeric, dimeric and trimeric lanthanide centers using SQUID susceptometry and Hall bar magnetometry. A home-made micro-Hall-probe magnetometer was used to measure magnetic hysteresis loops at mK temperatures and fields up to 17 T. All compounds show hysteresis below blocking temperatures of 3 to 4 K. The correlation of the assembly of the building blocks with the magnetic properties will be discussed.

  14. Hysteresis and nonequilibrium work theorem for DNA unzipping

    NASA Astrophysics Data System (ADS)

    Kapri, Rajeev

    2012-10-01

    We study by using Monte Carlo simulations the hysteresis in unzipping and rezipping of a double stranded DNA (dsDNA) by pulling its strands in opposite directions in the fixed force ensemble. The force is increased at a constant rate from an initial value g0 to some maximum value gm that lies above the phase boundary and then decreased back again to g0. We observed hysteresis during a complete cycle of unzipping and rezipping. We obtained probability distributions of work performed over a cycle of unzipping and rezipping for various pulling rates. The mean of the distribution is found to be close (the difference being within 10%, except for very fast pulling) to the area of the hysteresis loop. We extract the equilibrium force versus separation isotherm by using the work theorem on repeated nonequilibrium force measurements. Our method is capable of reproducing the equilibrium and the nonequilibrium force-separation isotherms for the spontaneous rezipping of dsDNA.

  15. Saturation overshoot and hysteresis for twophase flow in porous media

    NASA Astrophysics Data System (ADS)

    Hilfer, R.; Steinle, R.

    2014-10-01

    Saturation overshoot and hysteresis for two phase flow in porous media are briefly reviewed. Old and new challenges are discussed. It is widely accepted that the traditional Richards model for twophase flow in porous media does not support non-monotone travelling wave solutions for the saturation profile. As a concequence various extensions and generalizations have been recently discussed. The review highlights different limits within the traditional theory. It emphasizes the relevance of hysteresis in the Buckley-Leverett limit with jump-type hysteresis in the relative permeabilities. Reviewing the situation it emerges that the traditional theory may have been abandoned prematurely because of its inability to predict saturation overshoot in the Richards limit.

  16. Completely inverted hysteresis loops: Inhomogeneity effects or experimental artifacts

    SciTech Connect

    Song, C., E-mail: songcheng@mail.tsinghua.edu.cn; Cui, B.; Pan, F., E-mail: panf@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Yu, H. Y. [Center for Testing and Analyzing of Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-11-14

    Completely inverted hysteresis loops (IHL) are obtained by the superconducting quantum interference device with large cooling fields (>10 kOe) in (La,Sr)MnO{sub 3} films with self-assembled LaSrMnO{sub 4}, an antiferromagnetic interface. Although the behaviours of measured loops show many features characteristic to the IHL, its origin, however, is not due to the exchange coupling between (La,Sr)MnO{sub 3}/LaSrMnO{sub 4}, an often accepted view on IHL. Instead, we demonstrate that the negative remanence arises from the hysteresis of superconducting coils, which drops abruptly when lower cooling fields are utilized. Hence the completely inverted hysteresis loops are experimental artifacts rather than previously proposed inhomogeneity effects in complicated materials.

  17. ac losses in circular disks of thin YBa2Cu3O7 films in perpendicular magnetic fields

    E-print Network

    Johansen, Tom Henning

    of these conductors for electrical utility devices is being planned. One of the main concerns in the applications of these conductors to utility devices is the level of ac losses from the conductors in operating condi- tions. These conditions are far from the possible operating condi- tions for utility devices using these conductors, e

  18. Steady-state modeling of current loss in a post-hole convolute driven by high power magnetically insulated transmission lines

    NASA Astrophysics Data System (ADS)

    Madrid, E. A.; Rose, D. V.; Welch, D. R.; Clark, R. E.; Mostrom, C. B.; Stygar, W. A.; Cuneo, M. E.; Gomez, M. R.; Hughes, T. P.; Pointon, T. D.; Seidel, D. B.

    2013-12-01

    Quasiequilibrium power flow in two radial magnetically insulated transmission lines (MITLs) coupled to a vacuum post-hole convolute is studied at 50TW-200TW using three-dimensional particle-in-cell simulations. The key physical dimensions in the model are based on the ZR accelerator [D. H. McDaniel, et al., Proceedings of 5th International Conference on Dense Z-Pinches, edited by J. Davis (AIP, New York, 2002), p. 23]. The voltages assumed for this study result in electron emission from all cathode surfaces. Electrons emitted from the MITL cathodes upstream of the convolute cause a portion of the MITL current to be carried by an electron sheath. Under the simplifying assumptions made by the simulations, it is found that the transition from the two MITLs to the convolute results in the loss of most of the sheath current to anode structures. The loss is quantified as a function of radius and correlated with Poynting vector stream lines which would be followed by individual electrons. For a fixed MITL-convolute geometry, the current loss, defined to be the difference between the total (i.e. anode) current in the system upstream of the convolute and the current delivered to the load, increases with both operating voltage and load impedance. It is also found that in the absence of ion emission, the convolute is efficient when the load impedance is much less than the impedance of the two parallel MITLs. The effects of space-charge-limited (SCL) ion emission from anode surfaces are considered for several specific cases. Ion emission from anode surfaces in the convolute is found to increase the current loss by a factor of 2-3. When SCL ion emission is allowed from anode surfaces in the MITLs upstream of the convolute, substantially higher current losses are obtained. Note that the results reported here are valid given the spatial resolution used for the simulations.

  19. Dielectric Hysteresis Loop in Alicyclic and Aromatic Polyamides

    NASA Astrophysics Data System (ADS)

    Murata, Yukinobu; Tsunashima, Kenji; Koizumi, Naokazu

    1994-03-01

    The relationship between electric displacement D and electric field E was studied for alicyclic polyamides of 1,3-bis(aminomethyl)cyclohexane and adipic, pimelic and sebacic acids, an aromatic polyamide prepared from hexamethylenediamine (HMD) and isophthalic acid and a copolyamide of HMD with isophthalic and terephthalic acids. Quenched samples of these polyamides were poorly crystalline or amorphous and exhibited a D-E hysteresis loop with the remanent polarization of 26 to 38 mC·m-2. The remanent polarizations disappeared at the glass transition temperature of each sample. The origin of the D-E hysteresis loop is attributable to amide groups in amorphous regions.

  20. No loss of cartilage volume over three years in patients with knee osteoarthritis as assessed by magnetic resonance imaging

    Microsoft Academic Search

    S. J. Gandy; P. A. Dieppe; M. C. Keen; R. A. Maciewicz; I. Watt; J. C. Waterton

    2002-01-01

    Objective Magnetic resonance imaging (MRI) has the potential to provide accurate quantification of structural changes in joint disease, with sensitivity to change, as it can provide direct visualization of the cartilage and bone. In this study, we investigated whether knee cartilage volume, as assessed by MRI, is sensitive to change over time in patients with osteoarthritis (OA).Design Sixteen patient volunteers

  1. Dislocation movement and hysteresis in Maraging blades

    NASA Astrophysics Data System (ADS)

    Di Cintio, Arianna; Marchesoni, Fabio; Ascione, Maria; Bhawal, Abhik; De Salvo, Riccardo

    2009-10-01

    All seismic isolation systems developed for gravitational-wave interferometric detectors, such as LIGO, Virgo and TAMA, make use of Maraging steel blades. The dissipation properties of these blades have been studied at low frequencies, by using a geometric anti-spring (GAS) filter, which allowed the exploration of resonant frequencies below 100 mHz. At this frequency an anomalous transfer function was observed in the GAS filter: this is one of several motivations for this work. The many unexpected effects observed and measured are explainable by the collective movement of dislocations inside the material described with the statistic of self-organised criticality. At low frequencies, below 200 mHz, the dissipation mechanism can subtract elasticity from the system even leading to sudden collapse. While Young's modulus is weaker, excess dissipation is observed. At higher frequencies the applied stress is probably too fast to allow the full growth of dislocation avalanches, and less losses are observed, thus explaining the higher Q-factor in this frequency range. The domino effect that leads to the release of entangled dislocations allows the understanding of the random walk of the Virgo and TAMA inverted pendula, the anomalous GAS filter transfer function as well as the loss of predictability of the ring-down decay in the LIGO seismic attenuation system inverted pendula.

  2. Reduction and elimination of external-field AC loss in MgB 2/Fe wire by in situ magnetic shielding

    NASA Astrophysics Data System (ADS)

    Sumption, M. D.; Collings, E. W.; Lee, E.; Wang, X. L.; Soltanian, S.; Dou, S. X.

    2002-10-01

    Vibrating sample magnetization (VSM) measurements have been made on Fe-clad monocore and multifilamentary MgB 2 wire fabricated by the powder-in-Fe-tube technique. The measurements were made with a field sweep amplitude of 17 kOe over a temperature range of 4-40 K. Although the benefits of magnetic shielding to both high- Tc and low- Tc superconductors (SC) have been listed, and in the former case demonstrated, its applicability to the intermediate- Tc material MgB 2 is new. Since Fe or low-alloy steels seem necessary primary cladding (sheath) materials for powder-in-tube MgB 2 both from mechanical- and chemical-compatibility standpoints, the resulting strands automatically become ideal candidates upon which to explore and exploit the principles of magnetic shielding. The effectiveness of the shield depends on its thickness, relative permeability (and hence strength of the applied field) and shape-dependent demagnetization. In the round monocore wire the SC core was completely shielded against an external field of ±2 kOe; at higher fields a fixed ?H was observed (partial shielding). Finally, in considering AC loss in the partially shielded regime, allowance must be made for the fact that the signal picked up by the VSM is itself also partially shielded, i.e. reduced in magnitude during its “return passage” through the sheath. FEM calculations of this latter effect are presented.

  3. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    NASA Astrophysics Data System (ADS)

    Smolkova, Ilona S.; Kazantseva, Natalia E.; Babayan, Vladimir; Smolka, Petr; Parmar, Harshida; Vilcakova, Jarmila; Schneeweiss, Oldrich; Pizurova, Nadezda

    2015-01-01

    Magnetic iron oxide nanoparticles were obtained by a coprecipitation method in a controlled growth process leading to the formation of uniform highly crystalline nanoparticles with average size of 13 nm, which corresponds to the superparamagnetic state. Nanoparticles obtained are a mixture of single-phase nanoparticles of magnetite and maghemite as well as nanoparticles of non-stoichiometric magnetite. The subsequent annealing of nanoparticles at 300 °C in air during 6 h leads to the full transformation to maghemite. It results in reduced value of the saturation magnetization (from 56 emu g-1 to 48 emu g-1) but does not affect the heating ability of nanoparticles. A 2-7 wt% dispersion of as-prepared and annealed nanoparticles in glycerol provides high heating rate in alternating magnetic fields allowed for application in magnetic hyperthermia; however the value of specific loss power does not exceed 30 W g-1. This feature of heat output is explained by the combined effect of magnetic interparticle interactions and the properties of the carrier medium. Nanoparticles coalesce during the synthesis and form aggregates showing ferromagnetic-like behavior with magnetization hysteresis, distinct sextets on Mössbauer spectrum, blocking temperature well about room temperature, which accounts for the higher energy barrier for magnetization reversal. At the same time, low specific heat capacity of glycerol intensifies heat transfer in the magnetic dispersion. However, high viscosity of glycerol limits the specific loss power value, since predominantly the Neel relaxation accounts for the absorption of AC magnetic field energy.

  4. Wetting hysteresis and droplet roll off behavior on superhydrophobic surfaces by Katherine Marie Smyth.

    E-print Network

    Smyth, Katherine Marie

    2010-01-01

    Various states of hydrophobic wetting and hysteresis are observed when water droplets are deposited on micro-post surfaces of different post densities. Hysteresis is commonly defined as the difference between the advancing ...

  5. Causes and implications of colloid and microorganism retention hysteresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were designed to better understand the causes and implications of colloid and microorganism retention hysteresis with transients in solution ionic strength (IS). Saturated packed column experiments were conducted using two sizes of carboxyl modified latex (CML) microspheres (0.1 and 1.1...

  6. Small hysteresis and high energy storage power of antiferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Jinfei; Yang, Tongqing; Chen, Shengchen; Yao, Xi

    2014-09-01

    In this paper, modified Pb(Zr,Ti)O3(PZT) antiferroelectric (AFE) ceramics system was investigated by traditional solid state method. It was observed that the effect of different contents of Zr/Sn, Zr/Ti on modified PZT antiferroelectrics. With increasing Zr/Sn content, the EAFE (electric field of AFE phase to ferroelectric (FE) phase) value was enlarged. The phase switch field was reduced from FE to AFE (EFA). The hysteresis loops were changed from "slanted" to "square"-types. With increasing Zr/Ti concentrate, the EAFE value, and also the EFA was enlarged, while the hysteresis switch ?E was reduced. The hysteresis loops was from "square" to "slanted"-types. The samples with square hysteresis loops are suitable for energy storage capacitor applications, the composition of ceramics was Pb0.97La0.02(Zr0.90Sn0.05Ti0.05)O3, which have the largest energy storage density 4.426J/cm3 at 227 kV/cm, and ?E was 80 kV/cm, energy efficient ? was about 0.612.

  7. Idealized Hysteresis Modeling of Electrorheological and Magnetorheological Dampers

    Microsoft Academic Search

    Norman M. Wereley; Li Pang; Gopalakrishna M. Kamath

    1998-01-01

    The hysteresis behavior of a linear stroke magnetorheological damper is characterized for sinusoidal displacement excitation at 2.0 Hz (nominal). Four different modeling perspectives are discussed for purposes of system identification procedures, including: (1) equivalent viscous damping, (2) nonlinear Bingham plastic model, (3) nonlinear biviscous model, and (4) nonlinear hysteretic biviscous model. By progressively adding model parameters with which to better

  8. Similarity Hypothesis for Capillary Hysteresis in Porous Materials

    Microsoft Academic Search

    J. R. Philip

    1964-01-01

    A quantitative description of the capillary hysteresis properties of a porous ma- terial is developed through bivariate distribution density function f(a, ), where a andare wetting and drying potentials. This is formally equivalent to the independent domain theory of Poulovassilis. The similarity hypothesis ' (implying, loosely, that the distribution of geometrical relationships between wetting and drying meniscus curvatures is independent

  9. Hysteresis during lithium insertion in hydrogen-containing carbons

    Microsoft Academic Search

    Tao Zheng; J. R. Dahn; W. R. McKinnon

    1996-01-01

    The authors studied lithium insertion in hydrogen-containing carbons heated at temperatures near 700 C. High capacities with large hysteresis (lithium insertion into these carbons at nearly 0 V and removal at nearly 1 V) were shown to be proportional to the hydrogen content of the samples. It is believed that the lithium atoms may bind on hydrogen-terminated edges of hexagonal

  10. Dynamic contact angles and hysteresis under electrowetting-on-dielectric.

    PubMed

    Nelson, Wyatt C; Sen, Prosenjit; Kim, Chang-Jin C J

    2011-08-16

    By designing and implementing a new experimental method, we have measured the dynamic advancing and receding contact angles and the resulting hysteresis of droplets under electrowetting-on-dielectric (EWOD). Measurements were obtained over wide ranges of applied EWOD voltages, or electrowetting numbers (0 ? Ew ? 0.9), and droplet sliding speeds, or capillary numbers (1.4 × 10(-5) ? Ca ? 6.9 × 10(-3)). If Ew or Ca is low, dynamic contact angle hysteresis is not affected much by the EWOD voltage or the sliding speed; that is, the hysteresis increases by less than 50% with a 2 order-of-magnitude increase in sliding speed when Ca < 10(-3). If both Ew and Ca are high, however, the hysteresis increases with either the EWOD voltage or the sliding speed. Stick-slip oscillations were observed at Ew > 0.4. Data are interpreted with simplified hydrodynamic (Cox-Voinov) and molecular-kinetic theory (MKT) models; the Cox-Voinov model captures the trend of the data, but it yields unreasonable fitting parameters. MKT fitting parameters associated with the advancing contact line are reasonable, but a lack of symmetry indicates that a more intricate model is required. PMID:21751778

  11. A Domain Wall Model for Hysteresis in Ferroelastic Materials

    E-print Network

    with experimental stress-strain data. Keywords: Ferroelastic hysteresis; shape memory alloy; domain wall theory; ferroelastic domain; superelasticity; Landau theory of phase transitions;anyhysteretic strain; domain wall the model in two steps. First, we use the Landau theory of phase transitions to characterize the effective

  12. A Domain Wall Model for Hysteresis in Ferroelastic Materials

    E-print Network

    with experimental stress­strain data. Keywords: Ferroelastic hysteresis; shape memory alloy; domain wall theory; ferroelastic domain; superelasticity; Landau theory of phase transitions;anyhysteretic strain; domain wall the model in two steps. First, we use the Landau theory of phase transitions to characterize the e

  13. Hysteresis compensation of piezoelectric actuators: the modified Rayleigh model.

    PubMed

    Park, Jongkyu; Moon, Wonkyu

    2010-03-01

    In this study, we develop a novel modified Rayleigh model for hysteresis compensation in piezoelectric actuators. Piezoelectric actuators suffer from hysteresis, in large drive fields of more than 100 V, which can result in serious displacement errors. The typical phenomenological approach is to use the Rayleigh model; however, this model gives more than 10% difference with experiments at the large electric fields of more than 1kV/mm. Furthermore, there are no studies that apply the Rayleigh model to the compensation of precision actuators, such as stack actuators; it has only been applied in the study of the physical properties of piezoelectric materials. Therefore, we propose a modified Rayleigh model, in which each coefficient is defined differently according to whether the field is increasing or decreasing to account for asymmetry at the high fields. By applying a computer-based control from an inverse form of this modified Rayleigh model, we show that we can compensate for hysteresis to reduce the position error to less than five percent. This model has the merits of reducing complicated fitting procedures and of saving computation time compared to the Preisach model. Specifically, this model cannot only predict the hysteresis curves in all local fields using only one fitting procedure, but also make it possible to control the displacement of various piezo-based actuators without expensive sensors, based on the charge-based model. PMID:19939427

  14. Rainflow Counting and Energy Dissipation for Hysteresis Models in Elastoplasticity

    E-print Network

    Krejcí, Pavel

    Rainflow Counting and Energy Dissipation for Hysteresis Models in Elastoplasticity Martin Brokate Republic Abstract The rainflow counting method is widely used in the context of fatigue analy- sis for some remarks, we exclusively deal with the uniaxial case. Running title. Rainflow Counting and Energy

  15. Hysteresis and reluctance electric machines with bulk HTS rotor elements

    Microsoft Academic Search

    L. K. Kovalev; K. V. Ilushin; S. M.-A. Koneev; K. L. Kovalev; V. T. Penkin; V. N. Poltavets; W. Gawalek; T. Habisreuther; B. Oswald; K.-J. Best

    1999-01-01

    Two new types of HTS electric machines are considered. The first type is hysteresis motors and generators with cylindrical and disk rotors containing bulk HTS elements. The second type is reluctance motors with compound HTS-ferromagnetic rotors. The compound HTS-ferromagnetic rotors, consisting of joined alternating bulk HTS (YBCO) and ferromagnetic (iron) plates, provide a new active material for electromechanical purposes. Such

  16. Hysteresis electrical motors with bulk melt-textured YBCO

    Microsoft Academic Search

    L. K. Kovalev; K. V. Ilushin; V. T. Penkin; K. L. Kovalev; V. S. Semenikhin; V. N. Poltavets; A. E. Larionoff; W. Gawalek; T. Habisreuther; T. Strasser; A. K. Shikov; E. G. Kazakov; V. V. Alexandrov

    1998-01-01

    New types of electrical motors based on bulk high temperature superconductors (HTS) are presented. Theoretical and experimental research of these motors is described. Results for a series of 100, 300, 500 and 1000 W HTS motors with cylindrical and disk rotors are presented. It is shown that, at liquid nitrogen temperatures, the specific mass-dimension parameter of hysteresis HTS machines is

  17. Friction and Adhesion Hysteresis between Surfactant Monolayers in Water

    E-print Network

    Klein, Jacob

    Friction and Adhesion Hysteresis between Surfactant Monolayers in Water Wuge H. Briscoe Physical with a double-chained quaternary ammonium surfactant in intimate adhesive contact in water. This enables us to propose a mechanism for surfactant boundary lubrication in water that is rather different from the classic

  18. A novel SVM-based hysteresis current controller

    Microsoft Academic Search

    Bong-Hwan Kwon; Tae-Woo Kim; Jang-Hyoun Youm

    1998-01-01

    In this paper, a novel space vector modulation (SVM)-based hysteresis current controller (HCC) for squirrel cage induction motors is proposed. This technique utilizes all advantages of the HCC and SVM technique. The controller determines a set of space vectors from a region detector and applies a space vector selected according to the main HCC. A set of space vectors including

  19. Adsorption/desorption hysteresis in the adsorption isotherms for Kr and Xe on exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Kosugi, T.; Usui, Y.; Arakawa, I.

    1993-05-01

    The adsorption/desorption hysteresis which appears in the adsorption isotherm for Kr physisorbed on exfoliated graphite has a very characteristic feature. A sharp transition at the termination of the hysteresis in the desorption branch of the isotherm suggests a first-order phase transition. The temperature dependence of the hysteresis for Kr and Xe on exfoliated graphite was investigated. The origin of the hysteresis of Kr is thought to be capillary condensation accompanied by a liquid-solid phase transition.

  20. Hysteresis in the dynamic perception of scenes and objects.

    PubMed

    Poltoratski, Sonia; Tong, Frank

    2014-10-01

    Scenes and objects are effortlessly processed and integrated by the human visual system. Given the distinct neural and behavioral substrates of scene and object processing, it is likely that individuals sometimes preferentially rely on one process or the other when viewing canonical "scene" or "object" stimuli. This would allow the visual system to maximize the specific benefits of these 2 types of processing. It is less obvious which of these modes of perception would be invoked during naturalistic visual transition between a focused view of a single object and an expansive view of an entire scene, particularly at intermediate views that may not be assigned readily to either stimulus category. In the current study, we asked observers to report their online perception of such dynamic image sequences, which zoomed and panned between a canonical view of a single object and an entire scene. We found a large and consistent effect of prior perception, or hysteresis, on the classification of the sequence: observers classified the sequence as an object for several seconds longer if the trial started at the object view and zoomed out, whereas scenes were perceived for longer on trials beginning with a scene view. This hysteresis effect resisted several manipulations of the movie stimulus and of the task performed, but hinged on the perceptual history built by unidirectional progression through the image sequence. Multiple experiments confirmed that this hysteresis effect was not purely decisional and was more prominent for transitions between corresponding objects and scenes than between other high-level stimulus classes. This finding suggests that the competitive mechanisms underlying hysteresis may be especially prominent in the perception of objects and scenes. We propose that hysteresis aids in disambiguating perception during naturalistic visual transitions, which may facilitate a dynamic balance between scene and object processing to enhance processing efficiency. PMID:25150947

  1. Effect of Ag substitution on the structural and magnetic properties of Sm0.55Sr0.45MnO3 (x = 0, 0.15) system

    NASA Astrophysics Data System (ADS)

    Bhat, Masroor A.; Choithrani, Renu; Gaur, N. K.; Kurchania, Rajnish

    2014-04-01

    We report the structural and magnetic properties of Ag substituted Sm0.55Sr0.45MnO3 (x = 0, 0.15) synthesized via solid state reaction method. The XRD patterns using Full Prof Rietveld analysis shows that the samples have single phase nature without any detectable impurity. SEM results shows that the grain size increases upto sharper instant. The magnetic studies reveals Neil temperature (TN) and Curie Temperature (Tc) get decreased with the lowering of temperature. The hysteresis loss which is dominant in pure sample disappears in Ag doped one. This shows that Ag helps in achieving the homogeneity thereby decreasing the disorder.

  2. Partial and full inverse compensation for hysteresis in smart material systems

    Microsoft Academic Search

    Ralph C. Smith; C. Bouron; Rick Zrostlik

    2000-01-01

    Smart material transducers employing piezoceramic or magnetostrictive drive components typically exhibit constitutive nonlinearities and hysteresis at moderate to high drive levels. In this paper, we discuss two techniques to compensate for hysteresis in high performance transducers. The first is based on a complete transducer model, and the resulting compensator accommodates both the constitutive nonlinearities and hysteresis inherent to the smart

  3. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model

    Microsoft Academic Search

    G. Song; Jinqiang Zhao; Xiaoqin Zhou; J. Alexis De Abreu-García

    2005-01-01

    This paper presents the classical Preisach hysteresis modeling and tracking control of a curved pre-stressed piezoceramic patch actuator system with severe hysteresis. The actuator is also flexible with very small inherent damping. It has potential applications in active antennas. A series of tests are conducted to study the hysteresis properties of the piezoceramic actuator system. The numerical expressions of the

  4. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis

    Microsoft Academic Search

    Chun-Yi Su; Qingqing Wang; Xinkai Chen; Subhash Rakheja

    2005-01-01

    Control of nonlinear systems preceded by unknown hysteresis nonlinearities is a challenging task and has received increasing attention in recent years due to growing industrial demands involving varied applications. In the literature, many mathematical models have been proposed to describe the hysteresis nonlinearities. The challenge addressed here is how to fuse those hysteresis models with available robust control techniques to

  5. Field-enhanced magnetic moment in ellipsoidal nano-hematite

    NASA Astrophysics Data System (ADS)

    Malik, Vikash; Sen, Somaditya; Gelting, David R.; Gajdardziska-Josifovska, Marija; Schmidt, Marius; Guptasarma, Prasenjit

    2014-04-01

    Bulk hematite is a canted antiferromagnet at room temperature and displays weak magnetic coercivity above the Morin transition temperature T M ˜ 262 K. Below T M, hematite displays traditional antiferromagnetic behavior, with no net magnetic moment or magnetic hysteresis. Here, we report that ellipsoidal nanocrystals of hematite (ENH) display a significant field-enhanced magnetic moment (FEMM) upon being poled by a magnetic field. This poled moment displays a giant coercive field of nearly 6000 Oe at low temperature. Atomic resolution transmission electron microscopy indicates that the nanocrystals are single crystalline, and that the surfaces are bulk-terminated. The apical terminations include the <001> sets of planes, which are implicated in possible formation of FM-arrangements near the surface. We tentatively suggest that FEMM in ENH could also arise from uncompensated surface spins or a shell of ordered spins oriented and pinned near the surface by a magnetic field. The gradual loss of magnetic moment with increasing temperature could arise as a result of competition between surface pinning energy, and kT. The large coercive field points toward possible applications for ENH in digital magnetic recording.

  6. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

    PubMed

    Céspedes, Eva; Byrne, James M; Farrow, Neil; Moise, Sandhya; Coker, Victoria S; Bencsik, Martin; Lloyd, Jonathan R; Telling, Neil D

    2014-11-01

    Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy. PMID:25232657

  7. Magnetism

    NSDL National Science Digital Library

    University Corporation for Atmospheric Research Windows to the Universe team

    2007-12-12

    This webpage is part of the University Corporation for Atmospheric Research (UCAR) Windows to the Universe program. It describes the nature and configuration of magnetic fields, which are the result of moving electric charges, including how they cause magnetic objects to orient themselves along the direction of the magnetic force points, which are illustrated as lines. Magnetic field lines by convention point outwards at the north magnetic pole and inward at the south magnetic pole. The site features text, scientific illustrations and an animation. Text and vocabulary are selectable for the beginning, intermediate, or advanced reader.

  8. Monitoring cartilage loss in the hands and wrists in rheumatoid arthritis with magnetic resonance imaging in a multi-center clinical trial: IMPRESS (NCT00425932)

    PubMed Central

    2013-01-01

    Introduction Magnetic resonance imaging (MRI) is increasingly being used in clinical trials of rheumatoid arthritis (RA) because of its superiority over x-ray radiography (XR) in detecting and monitoring change in bone erosion, osteitis and synovitis. However, in contrast to XR, the MRI scoring method that was used in most clinical trials did not include cartilage loss. This limitation has been an obstacle to accepting MRI as a potential alternative to XR in clinical trials. Cross-sectional studies have shown MRI to be sensitive for cartilage loss in the hands and wrist; although, longitudinal sensitivity to change has not yet been confirmed. In this study we examined the ability of MRI to monitor change in cartilage loss in patients with RA in a multi-site clinical trial setting. Methods Thirty-one active RA patients from a clinical trial (IMPRESS) who were randomized equally into treatment with either rituximab + methotrexate or placebo + methotrexate had MRI of the dominant hand/wrist at baseline, 12 weeks and 24 weeks at 3 clinical sites in the US. Twenty-seven of these patients also had XR of both hands/wrists and both feet at baseline and 24 weeks. One radiologist scored all XR images using the van der Heijde-modified Sharp method blinded to visit order. The same radiologist scored MR images for cartilage loss using a previously validated 9-point scale, and bone erosion using the Outcome Measures in Rheumatology Clinical Trials (OMERACT) RA MRI Score (RAMRIS) blinded to visit order and XR scores. Data from the two treatment arms were pooled for this analysis. Results Mean MRI cartilage score increased at 12 and 24 weeks, and reached statistical significance at 24 weeks. XR total Sharp score, XR erosion score and XR joint-space narrowing (JSN) score all increased at 24 weeks, but only XR total Sharp score increased significantly. Conclusions To our knowledge, this is the first publication of a study demonstrating MRI's ability to monitor cartilage loss in a multi-site clinical trial. Combined with MRI's established performance in monitoring bone erosions in RA, these findings suggest that MRI may offer a superior alternative to XR in multi-site clinical trials of RA. PMID:23514433

  9. Magnetic fluid pressure sensor

    NASA Astrophysics Data System (ADS)

    Bacri, J.-C.; Lenglet, J.; Perzynski, R.; Servais, J.

    1993-04-01

    A new, powerful and sensitive pressure sensor has been developed to detect deformations of a magnetic fluid (MF) membrane. The output voltage is a linear function of the differential pressure experienced by the MF membrane, which acts as a safety valve beyond some breaking conditions. Increasing or decreasing the pressure leads to reproducible measurements with no hysteresis.

  10. Photoluminescent Mn4 single-molecule magnet.

    PubMed

    Beedle, Christopher C; Stephenson, Casey J; Heroux, Katie J; Wernsdorfer, Wolfgang; Hendrickson, David N

    2008-12-01

    The synthesis of [Mn(4)(anca)(4)(Hmdea)(2)(mdea)(2)].2CHCl(3) (1) is reported along with room temperature fluorescence, UV-vis, and NMR spectra. Direct current magnetization versus field data reveal a S = 8 ground state. Quantized steps in temperature- and field-dependent magnetization versus field hysteresis loops confirm single-molecule magnet behavior. PMID:18947226

  11. Method of thermal strain hysteresis reduction in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Dries, Gregory A. (Inventor); Tompkins, Stephen S. (Inventor)

    1987-01-01

    A method is disclosed for treating graphite reinforced metal matrix composites so as to eliminate thermal strain hysteresis and impart dimensional stability through a large thermal cycle. The method is applied to the composite post fabrication and is effective on metal matrix materials using graphite fibers manufactured by both the hot roll bonding and diffusion bonding techniques. The method consists of first heat treating the material in a solution anneal oven followed by a water quench and then subjecting the material to a cryogenic treatment in a cryogenic oven. This heat treatment and cryogenic stress reflief is effective in imparting a dimensional stability and reduced thermal strain hysteresis in the material over a -250.degree. F. to +250.degree. F. thermal cycle.

  12. Hysteresis and Kinetic Effects During Liquid-Solid Transitions

    SciTech Connect

    Streitz, F H; Chau, R

    2009-02-17

    We address the fundamental issue of phase transition kinetics in dynamically compressed materials. Focusing on solid bismuth (Bi) as a prototype material, we used a variety of time-resolved experiments including electrical conductivity and velocimetry to study the phase transition kinetics of the solid-solid phase transitions. Simple single shock experiments performed on several low-lying high pressure phases of Bi, revealed surprisingly complex behavior and slow dynamics. Strong hysteresis effects were observed in the transition behavior in experiments where the compressed Bi was allowed to release back across a phase line. These experiments represent the first reported simultaneous use of resistivity and velocimetry in a shock compression experiment, and the first observation of hysteresis effects occurring during dynamic compression and release.

  13. Efficiency of Hysteresis Rods in Small Spacecraft Attitude Stabilization

    PubMed Central

    Farrahi, Assal; Sanz-Andrés, Ángel

    2013-01-01

    A semiempirical method for predicting the damping efficiency of hysteresis rods on-board small satellites is presented. It is based on the evaluation of dissipating energy variation of different ferromagnetic materials for two different rod shapes: thin film and circular cross-section rods, as a function of their elongation. Based on this formulation, an optimum design considering the size of hysteresis rods, their cross section shape, and layout has been proposed. Finally, the formulation developed was applied to the case of four existing small satellites, whose corresponding in-flight data are published. A good agreement between the estimated rotational speed decay time and the in-flight data has been observed. PMID:24501579

  14. Passive magnetic attitude stabilization of the UNISAT-4 microsatellite

    NASA Astrophysics Data System (ADS)

    Santoni, Fabio; Zelli, Mauro

    2009-09-01

    UNISAT-4 is the fourth educational microsatellite, completely designed and built by students and professors of the research group GAUSS (Gruppo di Astrodinamica dell'Università degli Studi "la Sapienza") at the Scuola di Ingegneria Aerospaziale of University of Rome "La Sapienza". The spacecraft is stabilized using a passive magnetic attitude stabilization system, based on a permanent magnet and an energy dissipation system, which consists of magnetic hysteresis rods. The main features of passive magnetic stabilization are simplicity and reliability. However, sizing the system parameters, predicting the in-orbit performance and obtainable accuracy of passive magnetic stabilization systems is not trivial. The main problem in the system design is accurate modeling of the hysteresis rods magnetization and the evaluation of the rods magnetic parameters, such as apparent permeability, remanence and coercitive force, which are considerably affected by the rods' manufacturing technological process. In this paper the design and ground test of the UNISAT-4 magnetic attitude stabilization system is described. A method to experimentally determine the hysteresis rod parameters is described and an accurate model of the satellite dynamics is obtained, based on the results of the measurements. One of the main design parameters is the number of hysteresis rods necessary to obtain satellite stabilization. Numerical simulations for two hysteresis rods per axis and eight hysteresis rods per axis are discussed, showing that the satellite stabilizes in about 14 days, with a residual oscillation amplitude of less than 10°, if eight rods are used.

  15. Magnetism

    NSDL National Science Digital Library

    This radio broadcast discusses the history of magnetism from the time of its discovery by an apocryphal Greek sheperd until the late 16th century and the work of William Gilbert. There is also discussion of who pioneered the study of magnetism, what theories they constructed from its curious abilities, and how the power of the magnet was brought out of the realm of magic and into the service of science. The broadcast concludes with a discussion of why magnetism is still mysterious and how the modern search for the single magnetic pole, or magnetic monopole, could provide a fundamental unit of magnetism, essential for ultimate explanation. The broadcast is 41 minutes and 45 seconds in length.

  16. Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating.

    PubMed

    Kaman, O; Pollert, E; Veverka, P; Veverka, M; Hadová, E; Knízek, K; Marysko, M; Kaspar, P; Klementová, M; Grünwaldová, V; Vasseur, S; Epherre, R; Mornet, S; Goglio, G; Duguet, E

    2009-07-01

    Nanoparticles of manganese perovskite of the composition La(0.75)Sr(0.25)MnO(3) uniformly coated with silica were prepared by encapsulation of the magnetic cores (mean crystallite size 24 nm) using tetraethoxysilane followed by fractionation. The resulting hybrid particles form a stable suspension in an aqueous environment at physiological pH and possess a narrow hydrodynamic size distribution. Both calorimetric heating experiments and direct measurements of hysteresis loops in the alternating field revealed high specific power losses, further enhanced by the encapsulation procedure in the case of the coated particles. The corresponding results are discussed on the basis of complex characterization of the particles and especially detailed magnetic measurements. Moreover, the Curie temperature (335 K) of the selected magnetic cores resolves the risk of local overheating during hyperthermia treatment. PMID:19531865

  17. First order magneto-structural phase transition and associated multi-functional properties in magnetic solids

    NASA Astrophysics Data System (ADS)

    Barman Roy, Sindhunil

    2013-05-01

    We show that the first order magneto-structural phase transitions observed in various classes of magnetic solids are often accompanied by useful multi-functional properties, namely giant magneto-resistance, magneto-caloric effect and magneto-striction. We highlight various characteristic features associated with a disorder influenced first order phase transition namely supercooling, superheating, phase-coexistence and metastability, in several magnetic materials and discuss how a proper understanding of the transition process can help in fine tuning of the accompanied functional properties. Magneto-elastic coupling is a key element in this first order phase transition, and methods need to be explored for maximizing the contributions from both the lattice and the magnetic degree of freedom while simultaneously minimizing the thermomagnetic hysteresis loss. An analogy is also drawn with the first order phase transition observed in dielectric materials and vortex matter of type-II superconductors.

  18. First order magneto-structural phase transition and associated multi-functional properties in magnetic solids.

    PubMed

    Roy, Sindhunil Barman

    2013-05-01

    We show that the first order magneto-structural phase transitions observed in various classes of magnetic solids are often accompanied by useful multi-functional properties, namely giant magneto-resistance, magneto-caloric effect and magneto-striction. We highlight various characteristic features associated with a disorder influenced first order phase transition namely supercooling, superheating, phase-coexistence and metastability, in several magnetic materials and discuss how a proper understanding of the transition process can help in fine tuning of the accompanied functional properties. Magneto-elastic coupling is a key element in this first order phase transition, and methods need to be explored for maximizing the contributions from both the lattice and the magnetic degree of freedom while simultaneously minimizing the thermomagnetic hysteresis loss. An analogy is also drawn with the first order phase transition observed in dielectric materials and vortex matter of type-II superconductors. PMID:23598463

  19. Degradation and capacitance: voltage hysteresis in CdTe devices

    NASA Astrophysics Data System (ADS)

    Albin, D. S.; Dhere, R. G.; Glynn, S. C.; del Cueto, J. A.; Metzger, W. K.

    2009-08-01

    CdS/CdTe photovoltaic solar cells were made on two different transparent conducting oxide (TCO) structures in order to identify differences in fabrication, performance, and reliability. In one set of cells, chemical vapor deposition (CVD) was used to deposit a bi-layer TCO on Corning 7059 borosilicate glass consisting of a F-doped, conductive tin-oxide (cSnO2) layer capped by an insulating (undoped), buffer (iSnO2) layer. In the other set, a more advanced bi-layer structure consisting of sputtered cadmium stannate (Cd2SnO4; CTO) as the conducting layer and zinc stannate (Zn2SnO4; ZTO) as the buffer layer was used. CTO/ZTO substrates yielded higher performance devices however performance uniformity was worse due to possible strain effects associated with TCO layer fabrication. Cells using the SnO2-based structure were only slightly lower in performance, but exhibited considerably greater performance uniformity. When subjected to accelerated lifetime testing (ALT) at 85 - 100 °C under 1-sun illumination and open-circuit bias, more degradation was observed in CdTe cells deposited on the CTO/ZTO substrates. Considerable C-V hysteresis, defined as the depletion width difference between reverse and forward direction scans, was observed in all Cu-doped CdTe cells. These same effects can also be observed in thin-film modules. Hysteresis was observed to increase with increasing stress and degradation. The mechanism for hysteresis is discussed in terms of both an ionic-drift model and one involving majority carrier emission in the space-charge region (SCR). The increased generation of hysteresis observed in CdTe cells deposited on CTO/ZTO substrates suggests potential decomposition of these latter oxides when subjected to stress testing.

  20. Hysteresis effects of changing the parameters of noncooperative games

    NASA Astrophysics Data System (ADS)

    Wolpert, David H.; Harré, Michael; Olbrich, Eckehard; Bertschinger, Nils; Jost, Jürgen

    2012-03-01

    We adapt the method used by Jaynes to derive the equilibria of statistical physics to instead derive equilibria of bounded rational game theory. We analyze the dependence of these equilibria on the parameters of the underlying game, focusing on hysteresis effects. In particular, we show that by gradually imposing individual-specific tax rates on the players of the game, and then gradually removing those taxes, the players move from a poor equilibrium to one that is better for all of them.

  1. Hysteresis of primary cosmic rays associated with Forbush decreases

    Microsoft Academic Search

    R. S. Rajan

    1976-01-01

    A variation of quasi-steady primary-cosmic-ray intensities during Forbush events is reported which was detected in data obtained by a neutron monitor, the OGO 1 and 3 ion chambers, and daily observations of upper-atmosphere intensities recorded with standardized Geiger-Mueller counters. A regression plot of the intensities of high- and low-rigidity primaries is found to exhibit hysteresis loops during Forbush decreases, indicating

  2. Proton intercalation hysteresis in charging and discharging nickel hydroxide electrodes

    Microsoft Academic Search

    Kathryn Podolske Ta; J. Newman

    1999-01-01

    A reproducible hysteresis in charge-discharge cycling of thin-film (10--40 nm thickness) electroprecipitated nickel hydroxide electrodes was quantified. Thin-film electrodes were prepared both with and without coprecipitated cobalt hydroxide, a common additive to nickel hydroxide electrodes. The ascending and descending branches of the hysteretic loop were determined. Experimental data were gathered using commonly employed techniques to capture electrode behavior on short-

  3. Using stormwater hysteresis to characterize karst spring discharge.

    PubMed

    Toran, Laura; Reisch, Chad E

    2013-01-01

    Discharge from karst springs contains a mixture of conduit and matrix water, but the variations in groundwater mixing are poorly known. Storm events present an opportunity to try to map flow components because water entering during storms is more dilute and provides a tracer as it mixes with pre-event water along the flowpath from the recharge area to discharge at a spring. We used hysteresis plots of Mg/Ca ratios in a spring in the Cumberland Valley of Pennsylvania to map conduit (higher Ca) vs. diffuse (higher Mg) sources of recharge. We observed two types of temporal heterogeneity: within a storm event and from storm to storm. The timing of the variation in Mg/Ca suggested sources of mixing waters. An increase in the Mg/Ca ratio at the beginning of some storms while conductivity declined suggested diffuse recharge through the epikarst. The rapid changes in Mg/Ca ratios for low-intensity events probably occurred as the rainfall waxed and waned and illustrate that a variety of flowpaths are available at this spring because additional flushing of Mg occurred. In contrast, the conductivity hysteresis began with dilute water initially and rotation was similar from storm to storm. Hysteresis plots of the Mg/Ca ratio have the potential of revealing more of the complexity in discharge than conductivity alone. A better understanding of flow components in karst is needed to protect these aquifers as a groundwater resource. PMID:22974348

  4. Proton intercalation hysteresis in charging and discharging nickel hydroxide electrodes

    SciTech Connect

    Ta, K.P.; Newman, J.

    1999-08-01

    A reproducible hysteresis in charge-discharge cycling of thin-film (10--40 nm thickness) electroprecipitated nickel hydroxide electrodes was quantified. Thin-film electrodes were prepared both with and without coprecipitated cobalt hydroxide, a common additive to nickel hydroxide electrodes. The ascending and descending branches of the hysteretic loop were determined. Experimental data were gathered using commonly employed techniques to capture electrode behavior on short- and long-time scales. Cyclic voltammetry and galvanostatic discharge experiments were performed, and a macroscopic model of the nickel hydroxide solid material was constructed and used to interpret the simultaneous mass-transfer, kinetic, and thermodynamic phenomena occurring at the nickel hydroxide intercalation electrode. The persistent hysteresis exhibited by these thin-film electrodes cannot be due only to solid-state mass-transfer limitations. Agreement between calculated and experimental results is achieved with treatment of the hysteresis effect as a permanent, thermodynamic quantity. The numerical model may be applied to most rechargeable cells and is especially suited for systems which exhibit a permanent hysteretic loop or in which side reactions are prevalent. Model results agree with current and potential waveforms gathered from experiments performed with nickel hydroxide thin-film electrodes.

  5. Hysteresis Behaviour and Specific Damping Capacity of Negative Poisson's Ratio Foams Martz, E. O., Lakes, R. S., and Park, J. B. "Hysteresis behaviour and specific damping capacity of

    E-print Network

    Lakes, Roderic

    1 Hysteresis Behaviour and Specific Damping Capacity of Negative Poisson's Ratio Foams Martz, E. O., Lakes, R. S., and Park, J. B. "Hysteresis behaviour and specific damping capacity of negative Poisson's ratio foams", Cellular Polymers, 15, 349-364, (1996). Abstract Open cell polyurethane foams have been

  6. The J-Meter Coercivity Spectrometer - Hysteresis Loop, IRM Acquisition Spectrum and Viscosity Spectrum in 6 Minutes

    NASA Astrophysics Data System (ADS)

    Enkin, R. J.; Nourgaliev, D.; Iassonov, P.

    2009-05-01

    The J-Meter Coercivity Spectrometer uses an innovative robust design for measuring a geological sample's magnetic hysteresis loop, IRM acquisition spectrum and viscosity spectrum in 6 minutes. With this tool, several labs around the world have been able measure large sample collections and develop useful magnetic proxies for a variety of paleoclimate, diagenesis and other studies. The main element of the J-meter is a pulse magnetometer, in which an electromotive force pulse is induced in an array of pick-up coils by the magnetic field of a sample moving at a high speed past the coils. The sample is placed near the rim of a 50 cm diameter plexiglas disk which rotates 18 times a second through the pole pieces of an electromagnet. Both the induced and remanent magnetization are measured during each rotation of the disk. Induced magnetization for hysteresis loops are measure with a set of pick-up coils mounted directly on the pole pieces, similar to the geometry used for a vibrating sample magnetometer. The magnetic remanence is measured with a second array of coils situated away from the electromagnet and surrounded by a three-layer mu-metal shield. The electromagnet field is ramped up to 500 mT, and the down to the opposite polarity (-500 mT). The J meter is called a coercivity spectrometer because it is particularly well suited to measuring the IRM acquisition curve with sufficient sensitivity and resolution to take the derivative which defines the coercivity spectrum. To finish each measurement, the magnetic field is cut to zero and the viscous demagnetization is monitored for 100s, mostly following a log(time) relationship but with perturbations determined by the grain size distribution of the finest grains. A suite of analysis programs have been developed to determine hysteresis parameters and S-ratios, and to characterize coercivity and viscosity spectra. We present a series of applications demonstrating the power of the J-Meter to trace sediment sources, paleoclimate variations and diagenetic alteration associate with bacterial activity.

  7. A unique magnetic behavior and dielectric properties of Bi0.9-xLa0.1CaxFeO3 nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Yang, Chou; Jiang, Ji-Sen; Wang, Chun-Mei; Zhang, Wei-Guo

    2012-01-01

    Ca2+ and La3+ ions co-doped BiFeO3 nanoparticles, Bi0.9-xLa0.1CaxFeO3 (BLCFOx) (x=0, 0.10, 0.13, 0.17 and 0.20), were prepared by a sol-gel method. X-ray diffraction analysis showed that the average grain size of the prepared samples was in the range of 24-19 nm. The lattice structure of the nanoparticles transformed from orthorhombic to cubic with Ca2+ ions substitution increased. Dielectric properties were measured up to high frequency ˜80 MHz. It was found that the co-doping of suitable amount of La3+ and Ca2+ ions was helpful to improve the dielectric properties of the samples. Magnetic properties of the samples were improved and all the co-doped samples presented a wasp-waisted hysteresis loop, which was rarely reported in BFO. Characteristics of wasp-waisted hysteresis loops show low hysteresis loss in low magnetic fields, and are helpful to design some multiferroic devices.

  8. Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Zhang, Xinliang; Tan, Yonghong; Su, Miyong; Xie, Yangqiu

    2010-06-01

    This paper presents a method of the identification for the rate-dependent hysteresis in the piezoelectric actuator (PEA) by use of neural networks. In this method, a special hysteretic operator is constructed from the Prandtl-Ishlinskii (PI) model to extract the changing tendency of the static hysteresis. Then, an expanded input space is constructed by introducing the proposed hysteretic operator to transform the multi-valued mapping of the hysteresis into a one-to-one mapping. Thus, a feedforward neural network is applied to the approximation of the rate-independent hysteresis on the constructed expanded input space. Moreover, in order to describe the rate-dependent performance of the hysteresis, a special hybrid model, which is constructed by a linear auto-regressive exogenous input (ARX) sub-model preceded with the previously obtained neural network based rate-independent hysteresis sub-model, is proposed. For the compensation of the effect of the hysteresis in PEA, the PID feedback controller with a feedforward hysteresis compensator is developed for the tracking control of the PEA. Thus, a corresponding inverse model based on the proposed modeling method is developed for the feedforward hysteresis compensator. Finally, both simulations and experimental results on piezoelectric actuator are presented to verify the effectiveness of the proposed approach for the rate-dependent hysteresis.

  9. Comparative experiments regarding approaches to feedforward hysteresis compensation for piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Gu, Guo-Ying; Zhu, Li-Min

    2014-09-01

    Piezoceramic actuators (PCAs) are desired devices in many micro/nano-positioning applications. The performance of PCA-based applications is severely limited by the presence of hysteresis nonlinearity. To remedy the hysteresis nonlinearity in such systems, feedforward hysteresis compensation is the most common technique. In the literature, many different feedforward hysteresis compensation approaches have been developed, but there are no comparative studies of these approaches. Focusing on the modified Prandtl-Ishlinskii model (MPIM) for asymmetric hysteresis description of piezoceramic actuators, three feedforward hysteresis compensation approaches—inverse hysteresis compensation (IHC), without inverse hysteresis compensation (WIHC), and direct inverse hysteresis compensation (DIHC)—are developed and compared in this paper. Extensive comparative experiments were conducted on a PCA-actuated stage to verify the effectiveness of the three different feedforward control approaches to hysteresis compensation. The experimental results show that the performances among the three approaches are rather similar, and the main differences among them are due to the specific implementation of each approach.

  10. The influence of magnetic aftereffects on the magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mashukov, A.; Mashukova, A.

    2012-04-01

    There were investigated the time dependences of the magnetic anisotropy characteristics of artificial depositions received in the geomagnetic field. The content of magnetite in the nonmagnetic matrix of kaolin did not exceed 1%. The Co content in the grains of magnetite Fe3 O4 was 0.0018%. The viscous magnetization was created in the depositions with grain sizes of Fe3O4 in micrometers (0 ÷ 8), (9 ÷ 16), (17 ÷ 32), (33 ÷ 64), (65 ÷ 100), (101 ÷ 150). The X-ray method of direct pole figures indicates that the intensity of the ordering of the ferromagnetic grains in the depositions depends strongly on the grain size in the above-mentioned ranges, getting reduced from 1.9 to 1.1. Compared with the characteristics received immediately after drying the samples and after holding them for two years in the earth's magnetic field in the direction of In, one could observe increase in all the characteristics of the magnetic anisotropy. The magnitude Hd of the magnetic field having the periodicity change of Hd 2? to ? increases. This indicates the stabilization of the new domain structure. The increase in the uniaxial anisotropy constant (K) is associated with the emergence of the large induced anisotropy due to the diffusion of Co ions. It was found out that the constant K decreases markedly with increasing particle size in the range from 8 mm to 40 microns. Based on the results of the X-ray analysis by using the method direct pole figures, it may be explained by the creation of the axial texture in the depositions with grains having the size less than 40 microns. The intensity of more than 40 microns decreases insignificantly - from 1.3 to 1.1. After creating the viscous magnetization in two years, the constant K has increased by 1.5 - 2 times. The influence of the magnetic after-effects on K in strong magnetic fields denotes the diffusion nature of the viscous magnetization. The losses of the rotational magnetic hysteresis (W) also rise in the presence of the structural defects and internal stresses. The value of the maximum loss (Wm) increases the more the smaller the grain size Fe3O4.The greatest influence of magnetic viscosity is exercised on the depositions having d < 40 microns. It is shown that there is a correlation between the dependence of the temporal variation of Wm and the dependence of the coefficients of the magnetic viscosity on the ferromagnetic grain size. The magnitude of the magnetic field (HW), corresponding to the maximum losses and characterizing the beginning of the transition of the spins from the connection with the crystal lattice to the connection with the external magnetic field, does not change. So, the magnetic field HW can be considered as an indicator of the composition of the ferromagnetic fraction. Depending on the composition of the ferromagnetic, value HW has a wide range of values. For the depositions, containing magnetite grains, the value of HW makes up 1.8 kOe, and for the grains of hematite it is 9 kOe. Thus, the contribution to the effective anisotropy of rocks containing large particles of the ferromagnetic fraction, can not be explained by the energy of crystallographic anisotropy. Diffusion magnetic anisotropy is a widely spread phenomenon in the rocks.

  11. UK-4 flight spacecraft magnetic tests

    NASA Technical Reports Server (NTRS)

    Pruett, W. E.

    1972-01-01

    Magnetic tests conducted on the UK-4 spacecraft are discussed. The objectives of the test are: (1) to determine the permanent, induced, and stray magnetic moments of the spacecraft, (2) to assess its magnetic stability, (3) to determine the dipole moment produced by energizing the magnetorquer coil, (4) to measure the despin torque due to eddy current and magnetic hysteresis, and (5) to deperm, compensate, and make other adjustments necessary to achieve satisfactory magnetic characteristics for the spacecraft.

  12. Structural and magnetic properties of polymer coated iron based nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Srinivasan

    Magnetic nanoparticles have recently attracted much attention for potential biomedical applications such as targeted drug delivery, magnetic resonance imaging contrast agents and hyperthermia treatment of cancerous cells. Future research on biomedical applications also includes use of magnetic nanoparticles for cell and DNA separation. By functionalizing magnetic nanoparticles with cells or DNA selective biomolecules, the particles attach to the target and are removed from the sample upon passing through magnetic field gradients. The field gradients apply a force that attracts the particles given by the equation F = ?(m · B), where m is the magnetization of the MNP, and B is the applied magnetic field. This type of magnetic manipulation is potential for in vivo applications such as targeted drug delivery, magnetic resonance imaging contrast enhancement and hyperthermia treatment of cancer. The magnitude of the field gradients of magnetic nanoparticles are significantly reduced due to the inverse square law dependence of magnetic field strength and subsequently the forces set up are reduced. Although the research in this field has focused primarily on iron oxide nanoparticles, these oxide nanoparticles have a low magnetization that renders them ineffective, at the distances required for in vivo applications, due to the reduced forces felt by the nanoparticles. Successful implementation of such magnetic nanoparticles based system in vivo may require higher magnetization. The aim of this proposal is to synthesize high magnetization Fe-based MNPs functionalized with artificial proteins. The research described in this dissertation focuses on synthesis, size control, structural and magnetic characterization and associated experimental studies to characterize their properties for application in magnetic fluid hyperthermia and magnetic resonance imaging applications. The method used for the synthesis of the Fe-based nanoparticles is the conventional borohydride reduction of the metal salt solution. Since our intention is to synthesize iron based nanoparticles we used iron salts such as FeCl3. A polymer such as polyethylene glycol is coated onto the oxide shell to make it biocompatible. Parameters such as length of the tube, diameter of the Y-tube junction and concentration of the reactants were varied to study the effect on particle size, structure and morphology of the magnetic nanoparticles. X-ray diffraction measurements revealed that the particles typically contain three iron based phases such as a crystalline (alpha-Fe), nanocrystalline/amorphous (a-FeB/n-Fe) and Fe-oxide. By controlling the synthesis parameters such as length of the reaction tube, inner diameter of the Y-tube and concentration of the reagents the volume percentage of the three phases of the nanoparticles, viz. crystalline phase, amorphous phase and Fe-Oxide phases can be controlled effectively. The Fe-Oxide phase could not be determined whether is magnetite and maghemite phase because of the very broad nature of the peak. Transmission electron microscopy was used to study the particle size and the microstructural property of the samples. Samples with particle size in the range of 3 nm to 30 nm were fabricated. The magnetic properties of the nanoparticles studied were measured with a vibrating sample magnetometer with a maximum field of 1 Tesla. The particles magnetic properties such as magnetization and coercivity were typical of a soft ferromagnetic material with a high magnetization (in emu/g) and the coercivity was in range of 50 to 450 Oe. The nanoparticles synthesized were used to study their performance in magnetic fluid hyperthermia and magnetic resonance imaging applications. In the hyperthermia, the power loss due to an alternating magnetic field had a direct correlation with the magnetization and the particle size of the nanoparticle. The power loss in magnetic fluid hyperthermia is an outcome from four loss mechanism, they are Brownian rotational loss, Neel's relaxational loss, hysteresis loss and eddy current loss. The Brownian rotation loss

  13. System-level power loss sensitivity to various control variables in vector-controlled induction motor drives

    Microsoft Academic Search

    Ali M. Bazzi; Veysel T. Buyukdegirmenci; Philip T. Krein

    2012-01-01

    Vector-controlled induction motor drives include several design and control variables that affect power losses. Flux may be weakened to reduce machine losses; switching and conduction losses in the inverter are reduced by adjusting the flux ripple and current hysteresis bands. This paper combines the machine and inverter to investigate the effects of various control variables on the total system power

  14. Spacer layer and temperature driven magnetic properties in multilayer structured FeTaC thin films

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh K.; Mallik, Srijani; Bedanta, Subhankar; Perumal, A.

    2013-11-01

    We report the effects of thickness of spacer layers and temperature on the magnetic properties of multilayer structured [FeTaC(50 nm)/Ta(x nm)]n=3/FeTaC(50 nm)/substrate amorphous thin films. A transcritical loop with a large coercivity (HC) of 25 Oe was observed for x = 0 film, but the loop shape was changed to flat loop along with a rapid decrease in HC (<0.25 Oe) by introducing Ta spacer layers. This is attributed to loss of perpendicular anisotropy causing a transition from stripe domain structure to in-plane orientation of spins. Magnetic hysteresis loops measured at different temperatures exhibited a spacer layers' thickness dependent multistep magnetization reversal processes for temperature below 80 K. Thermo- magnetization curves obtained under zero-field-cooled and field-cooled conditions displayed a bifurcation between them for x = 0 film. However, the bifurcation point was shifted to lower temperatures with increasing x and disappeared eventually for films with x ? 4. High-temperature magnetization data revealed no significant changes in the magnetic properties up to Curie temperature. The observed results are elucidated on the basis of change in magnetic structure with the thickness of the spacer layers, pinhole effects at the interface, and temperature, instigating an effective reduction in perpendicular anisotropy and magnetic disorder, and thereby enhancing magnetic properties in multilayer thin films.

  15. Magnetic properties of a massive hematite deposit and correlative magnetic anomaly

    NASA Astrophysics Data System (ADS)

    McEnroe, S.; Clark, D.; Schimdt, P. W.

    2003-04-01

    Exploration samples from a Mid-Proterozoic massive hematite deposit in South Australia were examined in detail for magnetic properties. This deposit produces a large magnetic anomaly that can only be modeled with a significant remanent component. A gravity anomaly can be modeled using the density contrast between the massive hematite ore and the country gneiss rock. Exploration drill core samples show very high NRMs, up to 372 A/m, associated with high Q values. Based on susceptibilities, high- and low-field thermomagnetic curves, hysteresis loops and IRM acquisition/demagnetization curves, samples can be separated into two groups: 1) hematite-magnetite ores and 2) pure hematite ores. Low temperature demagnetization (cooling to liquid nitrogen temperatures and rewarming in zero field) of hematite-magnetite ores showed an 8 to 50% loss in magnetization. These samples have Mrs/Ms values 0.5 to 0.06 and Hcr/Hc from 3 to 8. AF demagnetization reveals MDFs of 50mT. The pure hematite samples all have Neel temperatures around 670°C. These samples show a 12-50% loss after low temperature demagnetization to below the Morin transition ( 80°C), but above the Verwey transition of magnetite, and only slight additional demagnetization at LN temperatures. Following low temperature demagnetization, AF demagnetization to 100mT produces an increase in intensity at low fields, followed by a small loss in magnetization up to 100mT. Mrs/Ms values range from 0.5 to 0.9, and Hcr/Hc is close to unity. SIRM acquisition shows that samples are between 3 to 15% saturated in the NRM state. The hematite ores are composed of well equilibrated hematite crystals all in the multidomain-size range. However, these samples are not saturated in the present day Earth’s magnetic field and require a field of at least 0.2T to saturate.

  16. Supplementary comparison COOMET.EM-S12: Measurements of magnetic loss power in electrical steel at frequencies of 50 Hz and 60 Hz

    NASA Astrophysics Data System (ADS)

    Didik, Yury I.; Malyagin, Mikhail A.

    2014-01-01

    The decision to carry out a COOMET supplementary comparison in the field of magnetic loss power measurements was taken in October 2010. It is registered in the BIPM key comparison database with the identifier COOMET.EM-S12. The comparison was piloted by UNIIM (Russia) and two other laboratories participated, namely PTB (Germany) and CMI (Czech Republic). The results of the comparison allow one to demonstrate the equivalence of the standards of the three National Metrology Institutes, and thus confirm the corresponding claimed Calibration and Measurement Capabilities (CMCs). It is noted that the deviation of the measurement results obtained with sheet samples exceeds that obtained with samples of toroidal form and of Epstein strips, a point that requires further investigation. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  17. Plane-turns superconducting magnets: Option for fusion

    SciTech Connect

    Keilin, V.E.; Kovalev, I.A.; Kopeikin, N.F.; Kruglov, S.L.; Pavin, D.B. (Kurchatov Institute of Atomic Energy, Moscow (Russian Federation))

    1991-03-01

    A new concept for large size, complex geometry high field superconducting (SC) magnets has been proposed. According to the approach, a coil is comprised of plane helical turns with insulating layers between them. In this paper, the term [open quotes]superconducting plane-turns helical magnet[close quotes] or [open quotes]helicoid[close quotes] is often substituted by [open quotes]plane-turns magnet[close quotes] or [open quotes]plane-turns coil[close quotes] in order to avoid possible interpretation as the well-known fusion magnetic confinement scheme [open quotes]helical devices.[close quotes] The following advantages of these magnets over traditional ones are outlined for fusion applications: High bending stiffness, optimal current distribution, favorable high current design, and the possible utilization of brittle materials such as ceramics (HTc superconductors, insulators of high radiation tolerance). Some limitations resulting from hysteresis losses restrict the range of application by stationary mode magnetic systems. It is shown that these limitations aren't so severe for toroidal coils and that poloidal fields slightly affect operating characteristics, thus the design seems to be attractable for tokamaks. Brief theoretical and experimental foundation as well as some consideration on conceptual plane-turns SC coil for fusion are presented. 6 refs., 10 figs.

  18. A vector control scheme for EV induction motors with a series iron loss model

    Microsoft Academic Search

    Jinhwan Jung; Kwanghee Nam

    1998-01-01

    Electric vehicle (EV) motors are characterized by their low inductance and high current density, so that they run at high speed and produce a high starting torque. Due to the low inductance coil design, the current ripple caused by pulsewidth modulation (PWM) switching makes a significant amount of eddy-current loss and hysteresis loss, especially in high-speed operation. If one simply

  19. RBF neural networks hysteresis modelling for piezoceramic actuator using hybrid model

    NASA Astrophysics Data System (ADS)

    Dang, Xuanju; Tan, Yonghong

    2007-01-01

    An radial basis function (RBF) neural networks rate-dependent hysteresis hybrid model for piezoceramic actuator is proposed. The piezoceramic actuator cannot be described by neural networks like the back propagation (BP) static neural networks because of its multi-valued hysteresis non-linearity. The proposed hybrid hysteresis model consists of hysteresis-like non-linearity in series with a dynamic RBF neural networks used for implementing non-linear transformations of the phase lag and non-linear magnitude. The hysteresis-like non-linearity model, which is composed of the previous output of piezoceramic actuator and input signal, differs from the hysteresis behaviour of piezoceramic actuator in only ways of their phase and magnitude, and it is used to describe the non-smooth behaviour of piezoceramic actuator. The results of both simulation and experiment show that the new modelling approach is very effective and of higher precision under a decayed input signal with the varying frequency.

  20. Synthesis and magnetic properties of ?-Ni(OH)2 and NiO nanosheets

    NASA Astrophysics Data System (ADS)

    Zhao, Jingang; Yang, Mao; Hua, Zhenghe

    2014-12-01

    In this report, we have synthesized hexagonal phase ?-Ni(OH)2 nanosheets through a facile hydrothermal route. NiO nanosheets were obtained by thermal decomposition of the obtained ?-Ni(OH)2 nanosheets at 450 °C for 3 h in air. The obtained samples were characterized by transmission electron microscopy (TEM), revealing that the obtained ?-Ni(OH)2 and NiO nanosheets have the length and width of several decade nanometers. Thermogravimetric (TG) measurement showed that ?-Ni(OH)2 nanosheets started to decompose at about 250 °C with the major weight loss that happened between 270 and 323 °C. The magnetic measurement results showed that ?-Ni(OH)2 nanosheets have ferromagnetic behavior at 5 K and paramagnetic behavior at 300 K. NiO nanosheets exhibited an obvious hysteresis loops both at 5 K and 300 K due to the magnetization relaxation process. At the same time, the origin of magnetic properties of the obtained ?-Ni(OH)2 and NiO nanosheets is discussed in detail. ?-Ni(OH)2 nanosheets were obtained through a facile hydrothermal method. NiO was obtained by annealing ?-Ni(OH)2 at 450 °C for 3 h in air. The morphology of NiO was unchanged through the annealing process. ?-Ni(OH)2 has ferromagnetic behavior at 5 K and paramagnetic behavior at 300 K. NiO exhibits an obvious hysteresis in M-H loops at 5 K and 300 K.

  1. Origin of hysteresis in bed form response to unsteady flows

    NASA Astrophysics Data System (ADS)

    Martin, Raleigh L.; Jerolmack, Douglas J.

    2013-03-01

    Field and laboratory studies indicate that changes in riverbed morphology often lag changes in water discharge. This lagged response produces hysteresis in the relationship between water discharge and bed form geometry. To understand these phenomena, we performed flume experiments to observe the response of a sand bed to step increases and decreases in water discharge. For an abrupt rise in discharge, we observed that bed forms grew rapidly by collision and merger of bed forms migrating with different celerities. Growth rate slowed as bed forms approached equilibrium with the higher discharge regime. After an abrupt discharge drop, bed form decay occurred through formation of smaller secondary bed forms, in equilibrium with the lower discharge, which cannibalized the original, relict features. We present a simple model framework to quantitatively predict time scales of bed form adjustment to flow changes, based on equilibrium bed form heights, lengths, and celerities at low and high flows. For rising discharge, the model assumes that all bed form collisions result in irreversible merger, due to a dispersion of initial celerities. For falling discharge, we derive a diffusion model for the decay of relict high-stage features. Our models predict the form and time scale of experimental bed form adjustments. Additional experiments applying slow and fast triangular flood waves show that bed form hysteresis occurs only when the time scale of flow change is faster than the modeled (and measured) bed form adjustment time. We show that our predicted adjustment time scales can also be used to predict the occurrence of bed form hysteresis in natural floods.

  2. Magnetism

    NSDL National Science Digital Library

    David Stern

    This overview of magnetism provides a brief history prior to 1600 and continues with the work of William Gilbert, Hans Christian Oersted, and Andre-Marie Ampere in describing and exploring the magnetosphere and learning the role that electric current plays in producing magnetism. Magnetic field lines are then discussed, citing the work of Michael Faraday. The work of James Clerk Maxwell and Heinrich Hertz is mentioned in a discussion of the relationship of light waves and radio waves as part of the electromagnetic spectrum.

  3. Experimental methodology to measure damping in microstructures by using the actuation force hysteresis curve

    NASA Astrophysics Data System (ADS)

    De Pasquale, G.; Somá, A.

    2013-05-01

    The study of damping in MEMS (micro electro-mechanical systems) is crucial for dynamic response prediction and functional parameters estimation as switch and release time, resonance and quality factor. Geometrical features (borders, perforations, anchors, etc.) complicate the airflow and impose to validate the results calculated or simulated with models. Fluid damping is the dominant dissipation source, accompanied by structural dissipations, thermo-elastic damping, anchor losses, surface effects and electric losses. In literature, the damping coefficient of MEMS is generally derived from the peaks of the structural frequency response function (FRF) by the half power method. Despite the wide usage of this approach, it is affected by two main drawbacks: highly precise and automated detection instruments are needed, and it is applicable only in resonance conditions. The method presented here is based on the measurement of damping from the hysteresis cycle of the actuation force; it applies in the time domain and works at any frequency and vibration amplitude. The effectiveness of this methodology on MEMS is proved by comparing the damping results with those provided at resonance conditions by the half power method. The samples, designed by the authors, are gold microplates with square holes and elastic springs. The measurements are conducted by the laser vibrometer Polytech MSA500. The comparison shows very good agreement with the damping coefficients calculated with the traditional approach (differences within 2% at resonance).

  4. Ionically-mediated electromechanical hysteresis in transition metal oxides

    SciTech Connect

    Kim, Yunseok [ORNL] [ORNL; Kumar, Amit [ORNL] [ORNL; Jesse, Stephen [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL

    2012-01-01

    Electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO2 and SrTiO3 are observed. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Ginsburg Landau Devonshire (GLD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically-induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order GLD expansion coefficient, rendering material effectively ferroelectric. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.

  5. Effect of contact angle hysteresis on moving liquid film integrity

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Hsu, Y. Y.

    1972-01-01

    A study was made of the formation and breakdown of a water film moving over solid surfaces (teflon, lucite, stainless steel, and copper). The flow rate associated with film formation was found to be higher than the flow rate at which film breakdown occurred. The difference in the flow rates for film formation and film breakdown was attributed to contact angle hysteresis. Analysis and experiment, which are in good agreement, indicated that film formation and film breakdown are functions of the advancing and receding angles, respectively.

  6. Capillary condensation, invasion percolation, hysteresis, and discrete memory

    SciTech Connect

    Guyer, R.A. [Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003 (United States)] [Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003 (United States); McCall, K.R. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States)] [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States)

    1996-07-01

    A model of the capillary condensation process, i.e., of adsorption-desorption isotherms, having only pore-pore interactions is constructed. The model yields (1) hysteretic isotherms, (2) invasion percolation on desorption, and (3) hysteresis with discrete memory for interior chemical potential loops. All of these features are seen in experiment. The model is compared to a model with no pore-pore interactions (the Preisach model) and to a related model of interacting pore systems (the random field Ising model). The capillary condensation model differs from both. {copyright} {ital 1996 The American Physical Society.}

  7. Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy

    SciTech Connect

    Kim, Yunseok [ORNL; Yang, J.-C. [University of California, Berkeley; Chu, Ying Hao [National Chiao Tung University, Hsinchu, Taiwan; Yu, Pu [University of California, Berkeley; Lu, X. [Xidian University, China; Jesse, Stephen [ORNL; Kalinin, Sergei V [ORNL

    2012-01-01

    The dependence of on-field and off-field hysteresis loop shape in Piezoresponse Force Microscopy (PFM) on driving voltage, Vac, is explored. A nontrivial dependence of hysteresis loop parameters on measurement conditions is observed. The strategies to distinguish between paraelectric and ferroelectric states with small coercive bias and separate reversible hysteretic and non-hysteretic behaviors are suggested. Generally, measurement of loop evolution with Vac is a necessary step to establish the veracity of PFM hysteresis measurements.

  8. Magnetic phase transitions and entropy change in layered NdMn{sub 1.7}Cr{sub 0.3}Si{sub 2}

    SciTech Connect

    Md Din, M. F., E-mail: mfmd999@uowmail.edu.au; Dou, S. X. [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522 (Australia); Wang, J. L. [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522 (Australia); Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234 (Australia); Campbell, S. J. [School of Physical, Environmental, and Mathematical Sciences, The University of New South Wales, Canberra, The Australian Defence Force Academy, Australian Capital Territory 2600 (Australia); Studer, A. J.; Avdeev, M.; Kennedy, S. J. [Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234 (Australia); Gu, Q. F. [Australian Synchrotron, 800 Blackburn Rd, Clayton 3168 (Australia); Zeng, R. [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522 (Australia); Solar Energy Technologies, School of Computing, Engineering and Mathematics, University of Western Sydney, Penrith, NSW 2751 (Australia)

    2014-01-27

    A giant magnetocaloric effect has been observed around the Curie temperature, T{sub C}???42?K, in NdMn{sub 1.7}Cr{sub 0.3}Si{sub 2} with no discernible thermal and magnetic hysteresis losses. Below 400?K, three magnetic phase transitions take place around 380?K, 320?K and 42?K. Detailed high resolution synchrotron and neutron powder diffraction (10–400?K) confirmed the magnetic transitions and phases as follows: T{sub N}{sup intra}???380?K denotes the transition from paramagnetism to intralayer antiferromagnetism (AFl), T{sub N}{sup inter}???320?K represents the transition from the AFl structure to the canted antiferromagnetic spin structure (AFmc), while T{sub C}???42?K denotes the first order magnetic transition from AFmc to canted ferromagnetism (Fmc?+?F(Nd)) due to ordering of the Mn and Nd sub-lattices. The maximum values of the magnetic entropy change and the adiabatic temperature change, around T{sub C} for a field change of 5?T are evaluated to be ??S{sub M}{sup max}???15.9?J kg{sup ?1} K{sup ?1} and ?T{sub ad}{sup max}???5?K, respectively. The first order magnetic transition associated with the low levels of hysteresis losses (thermal magnetic field magnetic refrigerator applications in the temperature region below 45?K.

  9. Structural and magnetic properties of Ni1-xZnxFe2O4 (x=0, 0.5 and 1) nanopowders prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Gao, Pengzhao; Hua, Xia; Degirmenci, Volkan; Rooney, David; Khraisheh, Majeda; Pollard, Robert; Bowman, Robert M.; Rebrov, Evgeny V.

    2013-12-01

    A series of nanostructured Ni-Zn ferrites Ni1-xZnxFe2O4 (x=0, 0.5 and 1) with a grain size from 24 to 65 nm have been prepared with a sol-gel method. The effect of composition and sintering temperature on morphology, magnetic properties, Curie temperature, specific heating rate at 295 kHz and hysteresis loss have been studied. The highest coercivity of 50 and 40 Oe, were obtained for NiFe2O4 and Ni0.5Zn0.5Fe2O4 samples with the grain size of 35 and 29 nm, respectively. The coercivity of Ni and Ni-Zn mixed ferrites decreased with temperature. The Bloch exponent was 1.5 for all samples. As the grain size increased, the Curie temperature of NiFe2O4 increased from 849 to 859 K. The highest saturation magnetization of 70 emu/g at 298 K and the highest specific heating rate of 1.6 K/s under radiofrequency heating at 295 kHz were observed over NiFe2O4 calcined at 1073 K. Both the magnitude of the hysteresis loss and the temperature dependence of the loss are influenced by the sintering temperature and composition.

  10. Mass loss

    NASA Technical Reports Server (NTRS)

    Goldberg, Leo

    1987-01-01

    Observational evidence for mass loss from cool stars is reviewed. Spectra line profiles are used for the derivation of mass-loss rates with the aid of the equation of continuity. This equation implies steady mass loss with spherical symmetry. Data from binary stars, Mira variables, and red giants in globular clusters are examined. Silicate emission is discussed as a useful indicator of mass loss in the middle infrared spectra. The use of thermal millimeter-wave radiation, Very Large Array (VLA) measurement of radio emission, and OH/IR masers are discussed as a tool for mass loss measurement. Evidence for nonsteady mass loss is also reviewed.

  11. The effect of diffusion-induced stress on the magnetic properties of c-Ni/a-Ni 50Zr 50 multilayers

    NASA Astrophysics Data System (ADS)

    Conyers, J. S.; Hall, M. J.; Greer, A. L.; Somekh, R. E.

    1996-04-01

    Multilayer specimens of crystalline Ni and amorphous Ni 50Zr 50 are produced by dc planar magnetron sputtering. Magnetic hysteresis loops are measured using a vibrating sample magnetometer. The change in the hysteresis loops on annealing is consistent with a reversal in anisotropy brought about by a diffusion-induced tensile stress in the magnetic Ni layers.

  12. The origin of noise and hysteresis in permalloy ring-core fluxgate sensors

    NASA Astrophysics Data System (ADS)

    Narod, Barry

    2013-04-01

    in permalloy ring-core fluxgate sensors a single phenomenon may cause both fluxgate noise and magnetic hysteresis. It also provides an explanation for Barkhausen noise, remanence and coercivity. It can also resolve the "domain nucleation problem." in the unmagnetized state a high-quality permalloy foil takes a domain structure generally referred to as "stripe domains," which present at the free surface as parallel, uniformly spaced domain walls bounding regions of alternating 'in' and 'out' leakage flux, and domain walls crossing the entire thickness of the foil. The leakage flux is a requirement of the random orientation, grain-by-grain, of magnetic easy axes' angles with respect to the foil free surface, and creates a free space field with a magnetostatic energy cost. This together with domain wall energy determines an energy budget to be minimized. Throughout the magnetization cycle the free surface domain pattern remains essentially unchanged, due to the extreme magnetostatic energy cost such a change would elicit. Thus domain walls are 'pinned' to free surfaces. As the fluxgate core is driven to saturation, domain walls pinned at the free surfaces first bulge then reconnect to form a new domain configuration this author has called "channel domains", which are attached to free surfaces. Energy released during the domain wall reconnection manifests as Barkhausen noise, while the reconnection itself manifests as a Barkhausen jump. The approach to saturation now continues as reversible channel domain compression. Driving the permalloy into deep saturation will compress the channel domains to arbitrarily small thickness, but will not cause them to denucleate. Returning from saturation the channel domain structure will survive through zero drive H, thus explaining remanence. The Barkhausen jumps being irreversible, exothermic events are sources of fluxgate noise. It is also the case that fluxgate signal power is proportional to B-H loop curvature, that is to the second derivative of B. The degree to which Barkhausen jumps coincide with loop curvature is a measure of fluxgate noise that accompanies fluxgate signal. B-H loops with significant curvature beyond the open hysteresis loop may be used to advantage to acquire fluxgate signal with much reduced fluxgate noise.

  13. Hysteresis phenomena in the interaction process of conical shock waves: experimental and numerical investigations

    NASA Astrophysics Data System (ADS)

    Ben-Dor, G.; Vasiliev, E. I.; Elperin, T.; Chpoun, A.

    2001-12-01

    The interaction of two conical shock waves, one converging and straight and the other diverging and curvilinear, in an axisymmetric flow was investigated both experimentally and numerically. A double-loop hysteresis was discovered in the course of the experimental investigation. The double-loop hysteresis consisted of a major one, associated with the interaction between the boundary layer and the wave configuration, and a minor one, associated with the dual-solution phenomenon, which is known to be non-viscous-dependent. The minor hysteresis loop was found to be an internal hysteresis loop of the major one. As expected the numerical Euler calculations failed to detect the viscous-dependent major hysteresis loop but did succeed in obtaining the non-viscous-dependent minor (internal) hysteresis loop. In addition, multiple hysteresis loops, associated with the interaction between the shock wave configuration and the edge of the curvilinear mobile cone were also observed. The non-viscous minor hysteresis loop involved different overall shock wave reflection configurations, and the other hysteresis loops involved the same shock wave reflection configuration but different flow patterns.

  14. Lattice water molecules tuned spin-crossover for an iron(II) complex with thermal hysteresis.

    PubMed

    Luo, Yang-Hui; Yang, Li-Jing; Liu, Qing-Ling; Ling, Yang; Wang, Wei; Sun, Bai-Wang

    2014-11-28

    A new iron(II) complex based on the 4,4'-dimethyl-2,2'-bipyridine ligand [Fe(4,4'-dmbpy)3(ClO4)(SCN)·3H2O (1·3H2O)] has been prepared and characterized. Structural studies and Hirshfeld surface analysis for complex 1·3H2O at three different temperatures (300, 240 and 130 K) are described. The UV-vis absorption spectrum of a water-free sample (1) in methanol solution and magnetic susceptibility measurements for solid-state samples 1·3H2O and 1 revealed that the removal of lattice water molecules from complex 1·3H2O changed the magnetic properties from the low-spin state (1·3H2O) to the complete spin-crossover (1) between 350-220 K with a thermal hysteresis of 7 K, and was accompanied by a colour change from brown to red. PMID:25301143

  15. Hysteresis, avalanches, and disorder-induced critical scaling: A renormalization-group approach

    SciTech Connect

    Dahmen, K.; Sethna, J.P. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501 (United States)] [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501 (United States)

    1996-06-01

    Hysteresis loops are often seen in experiments at first-order phase transformations, when the system goes out of equilibrium. They may have a macroscopic jump (roughly as in the supercooling of liquids) or they may be smoothly varying (as seen in most magnets). We have studied the nonequilibrium zero-temperature random-field Ising-model as a model for hysteretic behavior at first-order phase transformations. As disorder is added, one finds a transition where the jump in the magnetization (corresponding to an infinite avalanche) decreases to zero. At this transition we find a diverging length scale, power-law distributions of noise (avalanches), and universal behavior. We expand the critical exponents about mean-field theory in 6{minus}{epsilon} dimensions. Using a mapping to the pure Ising model, we Borel sum the 6{minus}{epsilon} expansion to {ital O}({epsilon}{sup 5}) for the correlation length exponent. We have developed a method for directly calculating avalanche distribution exponents, which we perform to {ital O}({epsilon}). Our analytical predictions agree with numerical exponents in two, three, four, and five dimensions [Perkovi{acute c} {ital et} {ital al}., Phys. Rev. Lett. {bold 75}, 4528 (1995)]. {copyright} {ital 1996 The American Physical Society.}

  16. Hair Loss

    MedlinePLUS

    ... The infection is easily treated with antifungal medicines. Finally, hair loss may occur as part of an ... to look for other causes of hair loss. Finally, blood tests or a biopsy (taking a small ...

  17. Hearing loss

    MedlinePLUS

    ... or dizzy (more common with Ménière's disease and acoustic neuroma ) Feeling of pressure in the ear (in ... reversed. Sensorineural hearing loss is commonly caused by: Acoustic neuroma Age-related hearing loss Childhood infections, such ...

  18. Dynamics of Phase Transitions by Hysteresis Methods I

    E-print Network

    Bernd A. Berg; Urs M. Heller; Hildegard Meyer-Ortmanns; Alexander Velytsky

    2003-10-31

    In studies of the QCD deconfining phase transition or crossover by means of heavy ion experiments, one ought to be concerned about non-equilibrium effects due to heating and cooling of the system. Motivated by this, we look at hysteresis methods to study the dynamics of phase transitions. Our systems are temperature driven through the phase transition using updating procedures in the Glauber universality class. Hysteresis calculations are presented for a number of observables, including the (internal) energy, properties of Fortuin-Kasteleyn clusters and structure functions. We test the methods for 2d Potts models, which provide a rich collection of phase transitions with a number of rigorously known properties. Comparing with equilibrium configurations we find a scenario where the dynamics of the transition leads to a spinodal decomposition which dominates the statistical properties of the configurations. One may expect an enhancement of low energy gluon production due to spinodal decomposition of the Polyakov loops, if such a scenario is realized by nature.

  19. Fractal growth of liquid crystals as a hysteresis phenomenon

    NASA Astrophysics Data System (ADS)

    Chan, Ho-Kei; Dierking, Ingo

    2006-03-01

    Fractal percolation growth of liquid crystal phases within a supercooled isotropic liquid medium has been observed in recent years. Notable examples include the B2 phase of `banana' mesogens [1] and the smectic C phase of a calamitic hydrogen-bonding liquid crystal [2]. Here we present a dynamical model that describes such fractal growth as well as the spherical growth conventionally observed for nematics and cholesterics. The essential idea is that the supercooled medium does not fully respond to the temperature quench immediately (hysteresis). Its fraction of space available for the phase transition only relaxes from 0 to 1 at some finite rate. Depending on the coupling between the relaxation and growth rates, the liquid crystal phase either grows as a percolation cluster of fractal dimension D 1.89 or approaches a spherical shape of Euclidean dimension D -> 2. The crossover behaviour from relatively slow to fast relaxation is thoroughly investigated. Possible causes of the hysteresis for fractal growth will be discussed. [1] I. Dierking, Liq. Cryst. Today 12(1), (2003), 1 [2] I. Dierking, Chan H. K., Culfaz F., McQuire S., Phys. Rev. E 70, (2004), 051701

  20. Wavenumber selection and hysteresis in nonlinear baroclinic flow

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung

    1995-01-01

    Wavenumber transition and hysteresis in a highly unstable baroclinic flow are investigated using a high-resolution spectral numerical model. As the flow becomes more supercritical, the dominant wave gradually shifts from the most unstable wave predicted by the linear theory to a longer wave with a larger time-averaged amplitude, while the rectified mean flow attains a stronger shear at the center of the channel. The numerical results display a complex hysteresis behavior, which occurs not only between the states of different dominant wavenumbers, but also between the states of identical dominant wavenumber but of different dynamic characteristics. In a certain parameter range three stable states, each with different dominant wavenumber, are possible, and in another parameter range four stable states are possible, among them three stable states with an identical dominant wave. The numerical results suggest that a multiple weather regime exists even without external forcing in which the flow aperiodically varies between two distinct behaviors. The effects of stable higher harmonics are assessed and it is found that their presence contributes not only to the better approximation of the model solutions but also to the selection of the final equilibrium state, due to the chaotic nature of the initial transient period.

  1. A General Model for Investigating the Effects of the Frequency Converter on the Magnetic Iron Losses of a Squirrel-Cage Induction Motor

    Microsoft Academic Search

    Emad Dlala; Antero Arkkio

    2009-01-01

    We present a comprehensive analysis of iron losses in an inverter-fed induction motor. We performed experimental and numerical investigations to assess the additional losses produced by a pulsewidth modulated (PWM) supply compared to a sinusoidal supply. We developed an iron-loss model, called the hybrid model, and incorporated it into a two-dimensional (2-D) finite-element method (FEM) to investigate the losses. The

  2. Improvement on magnetic power loss of MnZn-ferrite materials by V 2O 5 and Nb 2O 5 co-doping

    Microsoft Academic Search

    S. H. Chen; S. C. Chang; C. Y. Tsay; K. S. Liu; I. N. Lin

    2001-01-01

    Simultaneous incorporation of V2O5 and Nb2O5 dopants into low loss MnZn-ferrites markedly improves the power loss characteristics of the materials, provided no abnormal grain growth phenomenon was induced. The finer the grain size is, the smaller the power loss. The beneficial effect of V2O5 and Nb2O5 co-doping is presumed to be the reduction on the eddy current loss for the

  3. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Céspedes, Eva; Byrne, James M.; Farrow, Neil; Moise, Sandhya; Coker, Victoria S.; Bencsik, Martin; Lloyd, Jonathan R.; Telling, Neil D.

    2014-10-01

    Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy. Electronic supplementary information (ESI) available: Further details of the cluster model of polydisperse nanoparticles used for the AC susceptibility simulations (Fig. S1 to S3). Examples of the heating curves and the linear fit used to determine the SAR values are shown in Fig. S4. Fig. S5 exhibits the energy loss per mass of iron during magnetic hyperthermia (from SAR values) normalized to H2 and frequency for further comparison among samples. Fig. S6 shows the comparison between the simulations of AC susceptibility spectra including regions below and above the experimental frequency range for MNA, Zn0.2 and Zn0.4 nanoparticles suspended in solvents with different viscosities (water, glycerol and a hypothetical high viscous solvent). Fig. S7 exhibits a comparison among the simulated ?'' susceptibility of MNA, Zn0.2 and Zn0.4 nanoparticles (a) in water and (b) in glycerol. See DOI: 10.1039/c4nr03004d

  4. Hearing Loss

    MedlinePLUS

    ... interpret those sounds, including the sounds of speech. Factors that determine how much hearing loss will negatively affect a person’s quality of life include the degree of the hearing loss the pattern of hearing loss across different frequencies (pitches) whether ...

  5. Magnetic ?-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers.

    PubMed

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2015-02-01

    A series of magnetic ?-Fe2O3, Fe3O4, and Fe nanoparticles have been successfully introduced into the mesochannels of ordered mesoporous carbons by the combination of the impregnation of iron salt precursors and then in situ hydrolysis, pyrolysis and reduction processes. The magnetic nanoparticles are uniformly dispersed and confined within the mesopores of mesoporous carbons. Although the as-prepared magnetic mesoporous carbon composites have high contents of magnetic components, they still possess very high specific surface areas and pore volumes. The magnetic hysteresis loops measurements indicate that the magnetic constituents are poorly-crystalline nanoparticles and their saturation magnetization is evidently smaller than bulky magnetic materials. The confinement of magnetic nanoparticles within the mesopores of mesoporous carbons results in the decrease of the complex permittivity and the increase of the complex permeability of the magnetic nanocomposites. The maximum reflection loss (RL) values of -32 dB at 11.3 GHz and a broad absorption band (over 2 GHz) with RL values <-10 dB are obtained for 10-Fe3O4-CMK-3 and 10-?-Fe2O3-CMK-3 composites in a frequency range of 8.2-12.4 GHz (X-band), showing their great potentials in microwave absorption. This research opens a new method and idea for developing novel magnetic mesoporous carbon composites as high-performance microwave absorbing materials. PMID:25562071

  6. Revealing the origin of the vertical hysteresis loop shifts in an exchange biased Co/YMnO3 bilayer.

    PubMed

    Barzola-Quiquia, J; Lessig, A; Ballestar, A; Zandalazini, C; Bridoux, G; Bern, F; Esquinazi, P

    2012-09-12

    We have investigated exchange bias effects in bilayers composed of the antiferromagnetic o-YMnO(3) and ferromagnetic Co thin film by means of SQUID magnetometry, magnetoresistance, anisotropic magnetoresistance and the planar Hall effect. The magnetization and magneto-transport properties show pronounced asymmetries in the field and magnetization axes of the field hysteresis loops. Both exchange bias parameters, the exchange bias field H(E)(T) as well as the magnetization shift M(E)(T), vanish around the Néel temperature T(N) =/~ 45 K. We show that the magnetization shift M(E)(T) is also measured by a shift in the anisotropic magnetoresistance and planar Hall resistance having a similar temperature dependence as the one obtained from magnetization measurements. Because the o-YMnO(3) film is highly insulating, our results demonstrate that the M(E)(T) shift originates at the interface within the ferromagnetic Co layer. To show that the main results obtained are general and not because of some special characteristics of the o-YMO(3) layer, similar measurements were done in Co/CoO micro-wires. The transport and magnetization characterization of the micro-wires supports the main conclusion that these effects are related to the response of the ferromagnetic Co layer at the interface. PMID:22907198

  7. On leaf magnetic homogeneity in particulate matter biomonitoring studies

    NASA Astrophysics Data System (ADS)

    Szönyi, Michael; Sagnotti, Leonardo; Hirt, Ann M.

    2007-03-01

    Biomonitoring of magnetic properties of tree leaves has been postulated to be a good approach to measure particulate matter (PM) pollution levels. We studied the variation of magnetic hysteresis parameters on leaves of Quercus ilex, an evergreen oak previously used for magnetic biomonitoring of air pollution in Rome (Italy). The hysteresis parameters (MRS, MS, BCR and BC) measured on specimens collected at a close spacing on the surface of two single leaves show variances that are smaller than those observed on a collection of Q. ilex leaves sampled from several trees distributed along high-traffic roads. The variability is higher for magnetizations than for coercivities. This suggests a uniform source for the magnetic particles, such that variations are due mainly to changes in concentration. The normalized hysteresis cycles are remarkably similar for all the specimens. Normalization of magnetic moments by mass appears however more efficient than normalization by volume.

  8. Structural and magnetic study of La0.7Sr0.3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Manh, D. H.; Phong, P. T.; Nam, P. H.; Tung, D. K.; Phuc, N. X.; Lee, In-Ja

    We investigated structural and magnetic properties and alternating current magnetic heating characteristics of La0.7Sr0.3MnO3 nanoparticles with respect to the possible application for magnetic hyperthermia treatments. Using Rietveld Profile refinement of powder X-ray diffraction data, the hexagonal structure has been observed. The particle sizes varied from 20 to 50 nm as the annealing temperature increases from 700 to 900 °C. The hysteresis loop is not observed and the good fit of Langevin function with magnetization data reveals the superparamagnetic nature at room temperature for all samples. Characteristic magnetic parameters of the particles including saturation magnetization in the temperature range 10-300 K, an effective anisotropy constant and a magnetocrystalline anisotropy constant have been determined. The Specific Absorption Rate for 15 mg/mL sample concentration was measured in alternating magnetic fields of 50-80 Oe at a fixed frequency of 236 kHz. In addition, the intrinsic loss power (ILP) has been calculated from SAR values. It is believed that La0.7Sr0.3MnO3 nanoparticles with a high ILP will be useful for the in situ hyperthermia treatment of cancer.

  9. A compact single-pass architecture for hysteresis thresholding and component labeling

    Microsoft Academic Search

    Mayssaa Al Najjar; Swetha Karlapudi; Magdy A. Bayoumi

    2010-01-01

    Hysteresis thresholding offers enhanced edge\\/object detection in the presence of noise. However, due to its recursive nature, it requires a lot of memory and execution time. Thus, it is restricted and sometimes totally avoided in streaming processors with limited memory. We propose an efficient architecture coupling hysteresis thresholding with component labeling and feature extraction in a single pass over the

  10. A novel hysteresis current controller for multilevel single phase voltage source inverters

    Microsoft Academic Search

    G. H. Bode; D. N. Zmood; P. C. Loh; D. G. Holmes

    2001-01-01

    The application and benefits of hysteresis current control for two level voltage source inverters are well understood, but the extension of the strategy to multilevel inverters is much less established. Previous approaches have used either multiple hysteresis bands or a time based lockout strategy to decide when to switch to successive voltage levels, but these approaches are either complex, and\\/or

  11. Hysteresis compensation in PZT bimorph mirrors: Preisach's classical and non-linear models

    Microsoft Academic Search

    Alfredo Dubra; John S. Massa; Carl Paterson

    2005-01-01

    A number of reflective wavefront correctors used in adaptive optics are based on the use of piezoelectric effect, either in piston, tip\\/tilt or curvature devices. The relation between the voltage applied to drive these devices and the mechanical response always presents hysteresis to some extent. In this work we study the performance of Preisach's classical and non-linear models of hysteresis

  12. Capillary Condensation in Porous Materials. Hysteresis and Interaction Mechanism without Pore Blocking/Percolation Process

    E-print Network

    Paris-Sud XI, Université de

    Capillary Condensation in Porous Materials. Hysteresis and Interaction Mechanism without Pore loops, reversal curves, and subloops in p+-type porous silicon, a porous material composed of straight hysteresis loops which depends on the porous material (H1 for MCM-41 and SBA-15, H2 for porous glass and p

  13. Onset of water stress, hysteresis in plant conductance, and hydraulic lift: Scaling soil water dynamics

    E-print Network

    Katul, Gabriel

    Onset of water stress, hysteresis in plant conductance, and hydraulic lift: Scaling soil water hysteresis in canopy conductance, hydraulic lift, and compensatory root water uptake during extended drying effective is dictated by soil hydraulic properties and surrogates for atmospheric water vapor demand

  14. Why Are Some Hysteresis Loops Shaped Like a Butterfly? Bojana Drincic a

    E-print Network

    Tan, Xiaobo

    Why Are Some Hysteresis Loops Shaped Like a Butterfly? Bojana Drinci´c a , Xiaobo Tan b , Dennis S The contribution of this paper is a framework for relating butterfly-shaped hysteresis maps to simple (single, a unimodal mapping is used to transform simple loops to butterfly loops. For the practically important class

  15. Continuum Damage Mechanics for hysteresis and fatigue of quasi-brittle materials and structures

    E-print Network

    Continuum Damage Mechanics for hysteresis and fatigue of quasi-brittle materials and structures R in the present work that damage, from the Continuum Damage Mechanics point of view, may be seen as the link@lmt.ens-cachan.fr, tel: 33 1 47 40 74 60, fax: 33 1 47 40 74 65 #12;CONTINUUM DAMAGE MECHANICS FOR HYSTERESIS AND FATIGUE

  16. cond-mat/9809122v223Apr1999 Hysteresis, Avalanches, and Noise

    E-print Network

    Sethna, James P.

    cond-mat/9809122v223Apr1999 Hysteresis, Avalanches, and Noise Matthew C. Kuntz, Olga Perkovi becomes crucial for larger simulations. In our studies of hysteresis and avalanches in a sim- ple model participating in an avalanche), or a spin can be triggered because of an increase in the external field H

  17. Interval Maps with Hysteresis A thesis submitted to the University of Strathclyde

    E-print Network

    Berkolaiko, Gregory

    Dynamics of Interval Maps with Hysteresis A thesis submitted to the University of Strathclyde of multistate maps, maps with hysteresis. The map under consideration is a collection of two continuous function is applied. We study two di#11;erent aspects of such maps: topological and combinato- rial

  18. A time-based double band hysteresis current regulation strategy for single-phase multilevel inverters

    Microsoft Academic Search

    P. C. Loh; G. H. Bode; D. G. Holmes; T.A. Lipo

    2002-01-01

    Most multilevel inverter hysteresis current regulators use either multiple hysteresis bands, or a time-based switching logic that forces the current error back to zero by recursively stepping through successive voltage levels. Of these two alternatives, the time-based approach has the merit of only requiring simple analog circuitry and digital logic to implement the voltage level selection process for inverters of

  19. Hysteresis in the metachronal-tripod gait transition of insects: A modeling study

    NASA Astrophysics Data System (ADS)

    Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo

    2013-07-01

    Locomotion in biological systems involves various gaits, and hysteresis appears when the gaits change in accordance with the locomotion speed. That is, the gaits vary at different locomotion speeds depending on the direction of speed change. Although hysteresis is a typical characteristic of nonlinear dynamic systems, the underlying mechanism for the hysteresis in gait transitions remains largely unclear. In this study, we construct a neuromechanical model of an insect and investigate the dynamic characteristics of its gait and gait transition. The simulation results show that our insect model produces metachronal and tripod gaits depending on the locomotion speed through dynamic interactions among the body mechanical system, the nervous system, and the environment in a self-organized manner. They also show that it undergoes the metachronal-tripod gait transition with hysteresis by changing the locomotion speed. We examined the hysteresis mechanism in the metachronal-tripod gait transition of insects from a dynamic viewpoint.

  20. Note: Simple hysteresis parameter inspector for camera module with liquid lens.

    PubMed

    Chen, Po-Jui; Liao, Tai-Shan; Hwang, Chi-Hung

    2010-05-01

    A method to inspect hysteresis parameter is presented in this article. The hysteresis of whole camera module with liquid lens can be measured rather than a single lens merely. Because the variation in focal length influences image quality, we propose utilizing the sharpness of images which is captured from camera module for hysteresis evaluation. Experiments reveal that the profile of sharpness hysteresis corresponds to the characteristic of contact angle of liquid lens. Therefore, it can infer that the hysteresis of camera module is induced by the contact angle of liquid lens. An inspection process takes only 20 s to complete. Thus comparing with other instruments, this inspection method is more suitable to integrate into the mass production lines for online quality assurance. PMID:20515182

  1. Hysteresis in coral reefs under macroalgal toxicity and overfishing.

    PubMed

    Bhattacharyya, Joydeb; Pal, Samares

    2015-03-01

    Macroalgae and corals compete for the available space in coral reef ecosystems.While herbivorous reef fish play a beneficial role in decreasing the growth of macroalgae, macroalgal toxicity and overfishing of herbivores leads to proliferation of macroalgae. The abundance of macroalgae changes the community structure towards a macroalgae-dominated reef ecosystem. We investigate coral-macroalgal phase shifts by means of a continuous time model in a food chain. Conditions for local asymptotic stability of steady states are derived. It is observed that in the presence of macroalgal toxicity and overfishing, the system exhibits hysteresis through saddle-node bifurcation and transcritical bifurcation. We examine the effects of time lags in the liberation of toxins by macroalgae and the recovery of algal turf in response to grazing of herbivores on macroalgae by performing equilibrium and stability analyses of delay-differential forms of the ODE model. Computer simulations have been carried out to illustrate the different analytical results. PMID:25708511

  2. Hysteresis in multiphase microfluidics at a T-junction.

    PubMed

    Zagnoni, Michele; Anderson, Jamie; Cooper, Jonathan M

    2010-06-15

    Multiphase microfluidics offer a wide range of functionalities in the fields of fluid dynamics, biology, particle synthesis, and, more recently, also in logical computation. In this article, we describe the hysteresis of immiscible, multiphase flow obtained in hydrophilic, microfluidic systems at a T-junction. Stable and unstable state behaviors, in the form of segmented and parallel flow patterns of oil and water, were reliably produced, depending upon the history of the flow rates applied to the phases. The transition mechanisms between the two states were analyzed both experimentally and using numerical simulations, describing how the physical and fluid dynamic parameters influenced the hysteretic behavior of the flow. The characteristics of these multiphase systems render them suitable to be used as pressure comparators and also for the implementation of microfluidic logic operations. PMID:20465264

  3. Wafer-level hysteresis-free resonant carbon nanotube transistors.

    PubMed

    Cao, Ji; Bartsch, Sebastian T; Ionescu, Adrian M

    2015-03-24

    We report wafer-level fabrication of resonant-body carbon nanotube (CNT) field-effect transistors (FETs) in a dual-gate configuration. An integration density of >10(6) CNTFETs/cm(2), an assembly yield of >80%, and nanoprecision have been simultaneously obtained. Through combined chemical and thermal treatments, hysteresis-free (in vacuum) suspended-body CNTFETs have been demonstrated. Electrostatic actuation by lateral gate and FET-based readout of mechanical resonance have been achieved at room temperature. Both upward and downward in situ frequency tuning has been experimentally demonstrated in the dual-gate architecture. The minuscule mass, high resonance frequency, and in situ tunability of the resonant CNTFETs offer promising features for applications in radio frequency signal processing and ultrasensitive sensing. PMID:25752991

  4. The thermodynamic origin of hysteresis in insertion batteries

    NASA Astrophysics Data System (ADS)

    Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens; Huth, Robert; Moškon, Jože; Gaberš?ek, Miran

    2010-05-01

    Lithium batteries are considered the key storage devices for most emerging green technologies such as wind and solar technologies or hybrid and plug-in electric vehicles. Despite the tremendous recent advances in battery research, surprisingly, several fundamental issues of increasing practical importance have not been adequately tackled. One such issue concerns the energy efficiency. Generally, charging of 1010-1017 electrode particles constituting a modern battery electrode proceeds at (much) higher voltages than discharging. Most importantly, the hysteresis between the charge and discharge voltage seems not to disappear as the charging/discharging current vanishes. Herein we present, for the first time, a general explanation of the occurrence of inherent hysteretic behaviour in insertion storage systems containing multiple particles. In a broader sense, the model also predicts the existence of apparent equilibria in battery electrodes, the sequential particle-by-particle charging/discharging mechanism and the disappearance of two-phase behaviour at special experimental conditions.

  5. Phase transition and hysteresis in scale-free network traffic

    E-print Network

    Hu, M B; Wang, W X; Wu, Q S; Wu, Y H; Hu, Mao-Bin; Jiang, Rui; Wang, Wen-Xu; Wu, Qing-Song; Wu, Yong-Hong

    2006-01-01

    We model information traffic on scale-free networks by introducing the node queue length L proportional to the node degree and its delivering ability C proportional to L. The simulation gives the overall capacity of the traffic system which is quantified by a phase transition from free flow to congestion. It is found that the maximal capacity of the system results from the case of the local routing coefficient \\phi slightly larger than zero, and we provide an analysis for the optimal value of \\phi. In addition, we report for the first time the fundamental diagram of flow against density, in which hysteresis is found, and thus we can classify the traffic flow with four states: free flow, saturated flow, bistable and jammed.

  6. Experimental study of loss mechanisms of AgAu\\/PbBi-2223 tapes with twisted filaments under perpendicular AC magnetic fields at power frequencies

    Microsoft Academic Search

    E. Mart??nez; Y. Yang; C. Beduz; Y. B. Huang

    2000-01-01

    AC losses under perpendicular AC fields have been measured at 77 K and power frequencies for multifilamentary AgAu (10 wt.%)\\/Bi-2223 tapes with filaments twisted at different pitches. Using simultaneous measurements of the first and higher harmonics of the voltage induced in the pick-up coil, the main loss contributions (superconductor and coupling current losses) have been obtained separately. At power frequencies,

  7. Vortex structures and magnetic domain patterns in the superconductor/ferromagnet hybrid bilayer

    NASA Astrophysics Data System (ADS)

    Jing, Ze; Yong, Huadong; Zhou, You-He

    2014-10-01

    Superconducting vortices and magnetic domain patterns’ evolution in the superconductor-ferromagnet (SC/FM) hybrid bilayer are investigated within the Ginzburg—Landau (GL) theory of superconductivity, in combination with the Landau—Lifshitz—Gilbert (LLG) equation of ferromagnetism. Magnetic domain patterns in the ferromagnetic thin film and the vortices’ nucleation in the superconducting layer for the hybrid bilayer, subjected to perpendicular magnetic fields, are obtained by numerical simulations. A dynamical evolution picture of the magnetic domain patterns and the associated superconducting vortices’ nucleation are clearly shown. The effect of geometry parameters and physical parameters on the magnetic domain and superconducting vortex evolution are discussed. The magnetization curve of the SC film has also been illustrated. We found that the vortex dynamic behavior of the superconducting film changes substantially, and the correlated magnetic hysteresis loss is significantly reduced due to the presence of the ferromagnetic thin layer. In addition, the spontaneous vortex-antivortex (V-AV) pairs’ nucleation in the hybrid bilayer are investigated.

  8. Thin-Film Ferro Electric-Coupled Microstripline Phase Shifters With Reduced Device Hysteresis

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Romanofsky, Robert; Mueller, Carl H.; VanKeuls, Frederick

    2010-01-01

    This work deals with the performance of coupled microstripline phase shifters (CMPS) fabricated using BaxSr 1 -xTiO 3 (BST) ferroelectric thin films. The CMPS were fabricated using commercially available pulsed laser deposition BST films with Ba:Sr ratios of 30:70 and 20:80. Microwave characterization of these CMPS was performed at upper Kuband frequencies, particularly at frequencies near 16 and 18 GHz. X-ray diffraction studies indicate that the 30:70 films exhibit almost a 1:1 ratio between the in-plane and out-of-plane lattice parameters, suggesting that their cubics create strain -free films suitable for producing CMPS devices with reduced hysteresis in the paraelectric state. The quality of performance of the CMPS was studied based on their relative phase shift and insertion loss within the DC bias range of 0 to 400 V (i.e., E-field ranges within 0 to 53 V/micron). The performance of the CMPS was tested as a function of temperature to investigate their operation in the paraelectric, as well as in the ferroelectric, state (i.e., above and below the Curie temperature, respectively). The novel behavior discussed here is based on the experimental observation of the CMPS. This behavior, observed for the aforementioned cation ratio, highlights the relevance of good crystalline structure for high-quality CMPS.

  9. Magnetoresistance in La2\\/3Ca1\\/3MnO3 + delta : Dependence on magnetic history

    Microsoft Academic Search

    R. von Helmolt; J. Wecker; T. Lorenz; K. Samwer

    1995-01-01

    We investigated the magnetoresistance of La2\\/3Ca1\\/3MnO3+? magnetic thin films. Under certain conditions, the magnetoresistance curves show a remarkable hysteresis and the resistance becomes dependent on the magnetic history. A relaxation behavior of the resistance has also been observed. Hysteresis and relaxation of the resistance are very similar to the phenomena of magnetoviscosity of the magnetic moment in spin glasses and

  10. Bifurcation and Hysteresis of the Magnetospheric Structure with a varying Southward IMF: Field Topology and Global Three-dimensional Full Particle Simulations

    NASA Technical Reports Server (NTRS)

    Cai, DongSheng; Tao, Weinfeng; Yan, Xiaoyang; Lembege, Bertrand; Nishikawa, Ken-Ichi

    2007-01-01

    Using a three-dimensional full electromagnetic particle model (EMPM), we have performed global simulations of the interaction between the solar wind and the terrestrial magnetosphere, and have investigated its asymptotic stability. The distance between the dayside magnetopause subsolar point and the Earth center, R(sub mp) is measured, as the intensity of southward IMF |B(sub z)| is slowly varying. Based on the field topology theory, one analyzes the variation of R(sub mp) as a reference index of the dynamics of this interaction, when IMF |B(sub z)| successively increases and decreases to its original value. Two striking results are observed. First, as the IMF |B(sub z)| increases above a critical value, the variation of R(sub mp) suddenly changes (so called 'bifurcation' process in field topology). Above this critical value, the overall magnetic field topology changes drastically and is identified as being the signature of magnetic reconnection at the subsolar point on the magnetopause. Second, this subsolar point recovers its original location R(sub mp) by following different paths as the IMF |B(sub z)| value increases (from zero to a maximum fixed value) and decreases (from this maximum to zero) passing through some critical values. These different paths are the signature of 'hysteresis' effect, and are characteristic of the so-called 'subcritical-type' bifurcation. This hysteresis signature indicates that dissipation processes take place via an energy transfer from the solar wind to the magnetosphere by some irreversible way, which leads to a drastic change in the magnetospheric field topology. This hysteresis is interpreted herein as a consequence of the magnetic reconnection taking place at the dayside magnetopause. The field topology reveals to be a very powerful tool to analyze the signatures of three-dimensional magnetic reconnection without the obligation for determining the mechanisms responsible for, and the consequences of the reconnection on the overall magnetospheric dynamics.

  11. Magnetic Adaptive Testing of Non-magnetic Properties of Ferromagnetic Materials

    Microsoft Academic Search

    I. Tomáš

    2004-01-01

    A method of Magnetic Adaptive Testing (MAT) has been developed lately for optimized non-destructive detection and analysis of variation\\/degradation of non-magnetic features of ferromagnetic materials. Based on simple measurement of representative pools of magnetic hysteresis data, and on the fact that the inspected material degradation modifies the corresponding data-pools, remarkable magnetic descriptors - optimally adapted to the investigated system -

  12. Impact processes and lunar magnetism. [shock effects

    NASA Technical Reports Server (NTRS)

    Cisowski, C. S.; Dunn, J. R.; Fuller, M.; Rose, M. F.; Wasilewski, P. J.

    1974-01-01

    Progress reports are presented of work related to the magnetic characterization of lunar samples, taking into account total iron ratios, questions of hysteresis classification, aspects of normalized remanence to remanent coercivity plots, and a comparison of NRM of lunar samples with hysteresis characterization. Shock experiments on lunar soil are also considered, giving attention to the effect of shock on the magnetic characteristics of lunar soil and the acquisition of remanence during shock. Preliminary measurements of individual soil particles and of samples from the Lunar Crater are discussed.

  13. Electrodeposition and magnetic characterization of iron and iron-silicon alloys from the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate.

    PubMed

    Giridhar, Pulletikurthi; Weidenfeller, Bernd; El Abedin, Sherif Zein; Endres, Frank

    2014-11-10

    The electrodeposition of soft magnetic iron and iron-silicon alloys for magnetic measurements is presented. The preparation of these materials in 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate, [Py1,4]TfO, at 100?°C with FeCl2 and FeCl2 +SiCl4 was studied by using cyclic voltammetry. Constant-potential electrolysis was carried out to deposit either Fe or FeSi, and deposits of approximately 10 ?m thicknesses were obtained. By using scanning electron microscopy and X-ray diffraction, the microstructure and crystallinity of the deposits were investigated. Grain sizes in the nanometer regime (50-80 nm) were found and the presence of iron-silicon alloys was verified. Frequency-dependent magnetic polarizations, coercive forces, and power losses of some deposits were determined by using a digital hysteresis recorder. Corresponding to the small grain sizes, the coercive forces are around 950-1150 A?m(-1) and the power losses were at 6000 J?m(-3), which is much higher than in commercial Fe(3.2 wt?%)Si electrical steel. Below a polarization of 1.8 T, the power losses are mainly caused by domain wall movements and, above 1.8 T, by rotation of magnetic moments as well as domain wall annihilation and recreation. PMID:25146175

  14. FEA Simulations of Magnets with Grain Oriented Steel

    SciTech Connect

    Witte H.

    2012-08-06

    One of the potential successors of the Large Hadron Collider is a Muon Col- lider. Muons are short-lived particles, which therefore require fast acceleration. One potential avenue is a very fast cycling cyclotron, where the bending is sup- plied by a combination of fixed-field superconducting magnets and fast ramping normal conducting iron-cored coils. Due to the high ramping rate (around 1 kHz) eddy current and hysteresis losses are a concern. One way to overcome these is by using grain-oriented soft-iron, which promises superior magnetic properties in the direction of the grains. This note summarizes efforts to include the anisotropic material properties of grain-oriented steel in finite element analysis to predict the behaviour of the dipole magnets for this accelerator. It was found that including anisotropic material properties has a detrimental effect on model convergence. During this study it was not possible to include grain oriented steel with an accuracy necessary to study the field quality of a dipole magnet.

  15. Molecular thermal hysteresis in helix-dimer formation of sulfonamidohelicene oligomers in solution.

    PubMed

    Shigeno, Masanori; Kushida, Yo; Yamaguchi, Masahiko

    2013-07-29

    Sulfonamidohelicene oligomers up to the nonamer level were synthesized by the repeated coupling reactions of a building block. A tetramer formed a helix dimer in 1,3-difluorobenzene, which unfolded to a random coil with heating. This structural change exhibited thermal hysteresis in which different thermal responses were observed in the course of temperature increase and decrease. The feature of the hysteresis was examined under different heating/cooling modes, and the mechanisms are discussed on the basis of the population change and the presence of an induction period. A proposal regarding the use of thermal hysteresis for sensing a temperature increase/decrease is also given. PMID:23775763

  16. Effects of annealing, pre-tension and mounting on the hysteresis of polymer strain sensors

    NASA Astrophysics Data System (ADS)

    Abang, Ada; Webb, David J.

    2014-01-01

    When exposed to high levels of strain, polymer optical fibre grating sensors recorded in poly(methyl methacrylate) based fibre often exhibit hysteresis in the response of their Bragg wavelength to strain. We demonstrate that the application of pre-tension and annealing of the polymer fibre can reduce this hysteresis when the fibre is suspended freely between two supports, but much better performance is obtained when the sensor is attached directly to a substrate. In this case, the hysteresis can be lessened by more than a factor of 12.

  17. Implementation and analysis of an innovative digital charge amplifier for hysteresis reduction in piezoelectric stack actuators

    SciTech Connect

    Bazghaleh, Mohsen, E-mail: mohsen.bazghaleh@adelaide.edu.au; Grainger, Steven; Cazzolato, Ben; Lu, Tien-Fu [School of Mechanical Engineering, The University of Adelaide, North Terrace, South Australia 5005 (Australia)] [School of Mechanical Engineering, The University of Adelaide, North Terrace, South Australia 5005 (Australia); Oskouei, Reza [School of Computer Science, Engineering and Mathematics, Flinders University, Bedford Park, South Australia 5042 (Australia)] [School of Computer Science, Engineering and Mathematics, Flinders University, Bedford Park, South Australia 5042 (Australia)

    2014-04-15

    Smart actuators are the key components in a variety of nanopositioning applications, such as scanning probe microscopes and atomic force microscopes. Piezoelectric actuators are the most common smart actuators due to their high resolution, low power consumption, and wide operating frequency but they suffer hysteresis which affects linearity. In this paper, an innovative digital charge amplifier is presented to reduce hysteresis in piezoelectric stack actuators. Compared to traditional analog charge drives, experimental results show that the piezoelectric stack actuator driven by the digital charge amplifier has less hysteresis. It is also shown that the voltage drop of the digital charge amplifier is significantly less than the voltage drop of conventional analog charge amplifiers.

  18. Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications

    NASA Astrophysics Data System (ADS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich

    2015-01-01

    This paper presents the control system design for a piezoelectric actuator (PEA) for a high-speed trajectory scanning application. First nonlinear hysteresis is compensated for by using the Maxwell resistive capacitor model. Then the linear dynamics of the hysteresis-compensated piezoelectric actuator are identified. A proportional plus integral (PI) controller is designed based on the linear system, enhanced by feedforward hysteresis compensation. It is found that the feedback controller does not always improve tracking accuracy. When the input frequency exceeds a certain value, feedforward control only may result in better control performance. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  19. Adsorption-desorption Hysteresis of Kr and Xe on the Surface of an Ag Single Crystal

    NASA Astrophysics Data System (ADS)

    Hamada, Nozomu; Moto, Shuichi; Nakazawa, Jun; Miura, Takashi; Arakawa, Ichiro

    The isotherms and the isobars of krypton and xenon physisorbed on a silver single crystal surface were investigated by ellipsometric observation of the amount of adsorption. It was found that they showed a hysteresis in an adsorption-desorption loop for both the first and the second layer condensations. Careful examination of the effect of instability of an equilibrium pressure and a substrate temperature during the measurement revealed that they were not responsible for hysteresis. The observed hysteresis is very likely to be intrinsic one though its origin and mechanism are unknown.

  20. Experimental investigations of boiling heat transfer hysteresis on sintered, metal - Fibrous, porous structures

    SciTech Connect

    Wojcik, Tadeusz Michal [Department of Heat Engineering, Kielce University of Technology, Al. Tysiaclecia P.P.7, 25-314 Kielce (Poland)

    2009-03-15

    The paper discusses the results of experimental investigations of boiling heat transfer on sintered metal capillary-porous coverings of the heating surface. The experiments were carried out for copper, fibrous structures with stochastic distribution of pores. The boiling curves were obtained at the increasing and decreasing of the heat flux, which made it possible to detect the hysteresis phenomena of different types. The classification of the hysteresis phenomena, based on the author's own results and those available in the literature, was provided. Three types of hysteresis were observed. The physical mechanism of the phenomenon was presented and the features characteristic of boiling in the porous covering were taken into account. (author)