Science.gov

Sample records for magnetic hysteresis loss

  1. The magnetization process: Hysteresis

    NASA Technical Reports Server (NTRS)

    Balsamel, Richard

    1990-01-01

    The magnetization process, hysteresis (the difference in the path of magnetization for an increasing and decreasing magnetic field), hysteresis loops, and hard magnetic materials are discussed. The fabrication of classroom projects for demonstrating hysteresis and the hysteresis of common magnetic materials is described in detail.

  2. Amplitude and frequency dependence of hysteresis loss in a magnet-superconductor levitation system

    SciTech Connect

    Yang, Z.J.; Hull, J.R.; Mulcahy, T.M.; Rossing, T.D.

    1995-08-01

    Using an electromagnetically controlled mechanical pendulum, we measured the energy loss for different amplitudes in a magnetic levitation system that contained high temperature superconductors (HTSs). Two procedures were followed to measure losses at 77 K for frequencies of 93.8 mHz to 80 Hz. In the first procedure, the distance between the permanent magnet and the HTS levitator was the same as that during (field) cooling. In the second procedure, the magnet was lowered (after cooling) closer to the HTS levitator before the measurements were performed. The experimental data show that these two procedures give essentially the same results at the same distance despite different cooling (and magnetization) histories for melt-textured YBaCuO levitators, and the frequency-independent energy loss is a power-law function of amplitude. We attribute the energy loss to magnetic hysteresis in the superconductor. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Unveiling magnetic Hysteresis

    NASA Astrophysics Data System (ADS)

    Mellado, Paula; Concha, Andres; Aguayo, David

    Hysteresis manifests as the lack of retraceability of the magnetization curve in magnetic systems. It has been associated with rotation of magnetization and changes of magnetic domains. However, up to date there has been no realization that allows to separate these coupled mechanisms. We introduce a minimal magnetic system where hysteresis is realized in a simple and minimal fashion. The basic units are a few U(1) ferromagnetic altitudinal rotors placed along a one dimensional chain. They exhibit a dissipative dynamics, interacting via magnetic coupling among them and via Zeeman interaction with the external magnetic field. The system displays a hysteretic behavior starting with N=2 rotors which remains qualitatively invariant as more magnets are added to the chain. We explain this irreversibility by using a model that includes Coulombic interactions between magnetic charges located at the ends of the magnets, zeeman coupling and viscous dissipation. We show that interactions between the unit components is the key element responsible for hysteresis and find that the ability to perceive hysteresis, depends on how the time frequencies of damping and interactions inherent to the system compare with the time frequency set by the external field ramping rate.

  4. Calculation of hysteresis losses for Terfenol-D ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Zeng, Jianbin; Zeng, Haiquan; Bai, Baodong; Yan, Ming

    2009-07-01

    Thermal is one of critical factors effecting the application of Terfenol-D ultrasonic magnetostrictive transducer. Hysteresis losses are the main source for heating the it. A new method of hysteresis losses calculation, which based on Jiles-Atherton hysteresis model and electro-magnetic field finite element analysis, is proposed in this paper. The hysteresis losses obtained by this method can be used as thermal sources in electro-thermal finite element analysis of Terfenol-D ultrasonic transducer.

  5. Hysteresis of sextupole and ac loss in Energy Doubler dipole magnets

    SciTech Connect

    Ishibashi, K.

    1982-06-18

    A simple model gave utilized for calculation of magnetization effects on ac loss and sextupole for Energy Doubler dipole magnets. The calculation in the simple model gave an underestimation of ac loss by about 30%. Results of computation on ac harmonics were also described.

  6. A magnetic hysteresis model

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas W.; Henretty, Debra A.

    1995-01-01

    The Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) will be deployed from the Space Shuttle and used as a target for a Shuttle-mounted laser. It will be a cylindrical satellite with several corner cube reflectors on the ends. The center of mass of the cylinder will be near one end, and aerodynamic torques will tend to align the axis of the cylinder with the spacecraft velocity vector. Magnetic hysteresis rods will be used to provide passive despin and oscillation-damping torques on the cylinder. The behavior of the hysteresis rods depends critically on the 'B/H' curves for the combination of materials and rod length-to-diameter ratio ('l-over-d'). These curves are qualitatively described in most Physics textbooks in terms of major and minor 'hysteresis loops'. Mathematical modeling of the functional relationship between B and H is very difficult. In this paper, the physics involved is not addressed, but an algorithm is developed which provides a close approximation to empirically determined data with a few simple equations suitable for use in computer simulations.

  7. Second VAMAS a.c. loss measurement intercomparison: a.c. magnetization measurement of hysteresis and coupling losses in NbTi multifilamentary strands

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Itoh, K.; Wada, H.

    The article summarizes results of part of the second VAMAS a.c. loss measurement intercomparison. This program was carried out at 17 participating laboratories on two sets of multifilamentary NbTi strands (Set No. 1: copper matrix, fil. diam. between 0.5 and 12 μm; Set No. 2: cupronickel matrix, fil. diam. between 0.4 and 1.2 μm). The results reported here were measured by means of a.c. magnetization methods and separated into hysteresis and coupling losses. One laboratory used a calorimetric method. The data scatter in measured hysteresis losses among the participating laboratories was reasonably small for different measuring methods adopted and experimental arrangements used. On the other hand, the data scatter in coupling losses was large, mainly because in most laboratories a.c. losses were measured only at low frequencies (below 1 Hz), where the separation of coupling losses from total losses tends to be inaccurate. The comparison of measured hysteresis losses with the critical state model showed a large disagreement, which is assumed to be due to proximity effect coupling between filaments. 1997 Elsevier Science Limited

  8. Hysteresis in rotation magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanyi, Amalia

    2000-01-01

    The different properties of the vector Jiles-Atherton hysteresis operator is proved under forced H- and B-field supply. Feeding the magnetic material with alternating and circular polarised rotational excitation, the different properties of the model under the input field intensity and the flux density are investigated and the results are proved in figures.

  9. Hysteresis in layered spring magnets.

    SciTech Connect

    Jiang, J. S.; Kaper, H. G.; Leaf, G. K.; Mathematics and Computer Science

    2001-01-01

    This article addresses a problem of micromagnetics: the reversal of magnetic moments in layered spring magnets. A one-dimensional model is used of a film consisting of several atomic layers of a soft material on top of several atomic layers of a hard material. Each atomic layer is taken to be uniformly magnetized, and spatial inhomogeneities within an atomic layer are neglected. The state of such a system is described by a chain of magnetic spin vectors. Each spin vector behaves like a spinning top driven locally by the effective magnetic field and subject to damping (Landau-Lifshitz-Gilbert equation). A numerical integration scheme for the LLG equation is presented that is unconditionally stable and preserves the magnitude of the magnetization vector at all times. The results of numerical investigations for a bilayer in a rotating in-plane magnetic field show hysteresis with a basic period of 2{pi} at moderate fields and hysteresis with a basic period of {pi} at strong fields.

  10. Synthesis and magnetic properties of platelet γ-Fe 2O 3 particles for medical applications using hysteresis-loss heating

    NASA Astrophysics Data System (ADS)

    Kishimoto, Mikio; Minagawa, Makoto; Yanagihara, Hideto; Oda, Tatsuya; Ohkochi, Nobuhiro; Kita, Eiji

    2012-04-01

    Platelet γ-Fe2O3 particles of particle size less than 100 nm were prepared for medical applications that use the hysteresis-loss heating of ferromagnetic particles. The γ-Fe2O3 particles were obtained through the dehydration, reduction, and oxidation of platelet α-FeOOH particles, which were synthesized by the precipitation of ferric ions in an alkaline solution containing ethanolamine, and the crystals grown using a hydrothermal treatment. The γ-Fe2O3 particles contained dimples formed by the dehydration of α-FeOOH particles. The coercive force and the saturation magnetization of the γ-Fe2O3 particles were in the ranges 11.9 to 12.7 kA/m (150 to 160 Oe), and 70 to 72 Am2/kg (70 to 72 emu/g), respectively. The specific loss power of the γ-Fe2O3 particles, estimated from their temperature-raising property measured under a peak magnetic field of 50.9 kA/m (640 Oe) and at a frequency of 117 kHz, was 590 W/g. This value is higher than that of spherical cobalt-containing iron oxide particles having equivalent coercive force and saturation magnetization, reflecting the larger area of the minor hysteresis loop measured under a peak magnetic field of 50.9 kA/m (640 Oe).

  11. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    SciTech Connect

    Wieserman, W.R.; Schwarze, G.E.; Niedra, J.M.

    1994-09-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglass 2605SC over the frequency range of 1-50 kHz and temperature range of 23-300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  12. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  13. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loop for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  14. Electromagnetic phenomena and hysteresis losses in superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, T.

    Hysteresis losses in superconductors are caused by irreversible motion of fluxoids. This motion is, in most cases, described by the critical state model. In this article, various electromagnetic phenomena due to flux pinning effects are reviewed and explanations of these phenomena are given using the critical state model. The phenomena which cannot be well described by the present model, such as reversible fluxoid motion and the longitudinal field effect, are also introduced.

  15. Modeling of the interleaved hysteresis loop in the measurements of rotational core losses

    NASA Astrophysics Data System (ADS)

    Alatawneh, Natheer; Pillay, Pragasen

    2016-01-01

    The measurement of core losses in machine laminations reveals a fundamental difference between rotational and pulsating types. Rotational core losses under rotating fields decrease at high flux density, while pulsating losses keep increasing steadily. Experimental analyses of loss components Px and Py in x and y directions with rotating fields show that the loss decreases in one loss component and sometimes attains negative values. Tracking the evolution of hysteresis loops along this loss component discloses a peculiar behavior of magnetic hysteresis, where the loop changes its path from counterclockwise to clockwise within a cycle of magnetization process, the so called interleaved hysteresis loop. This paper highlights a successful procedure for modeling the interleaved hysteresis loop in the measurement of rotational core losses in electrical machine laminations using the generalized Prandtl-Ishlinskii (PI) model. The efficiency of the proposed model is compared to Preisach model. Results and conclusion of this work are of importance toward building an accurate model of rotational core losses.

  16. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-01

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

  17. Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation

    NASA Astrophysics Data System (ADS)

    Sablik, M. J.; Rios, S.; Landgraf, F. J. G.; Yonamine, T.; de Campos, M. F.

    2005-05-01

    In 2.2% Si electrical steel, the magnetic hysteresis behavior is sharply sheared by a rather small plastic deformation (0.5%). A modification to the Jiles-Atherton hysteresis model makes it possible to model magnetic effects of plastic deformation. In this paper, with this model, it is shown how a narrow hysteresis with an almost steplike hysteresis curve for an undeformed specimen is sharply sheared by plastic deformation. Computed coercivity and hysteresis loss show a sharp step to higher values at small strain due to an n =1/2 power law dependence on residual strain. The step is seen experimentally.

  18. Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation

    SciTech Connect

    Sablik, M.J.; Rios, S.; Landgraf, F.J.G.; Yonamine, T.; Campos, M.F. de

    2005-05-15

    In 2.2% Si electrical steel, the magnetic hysteresis behavior is sharply sheared by a rather small plastic deformation (0.5%). A modification to the Jiles-Atherton hysteresis model makes it possible to model magnetic effects of plastic deformation. In this paper, with this model, it is shown how a narrow hysteresis with an almost steplike hysteresis curve for an undeformed specimen is sharply sheared by plastic deformation. Computed coercivity and hysteresis loss show a sharp step to higher values at small strain due to an n=1/2 power law dependence on residual strain. The step is seen experimentally.

  19. Hysteresis model and statistical interpretation of energy losses in non-oriented steels

    NASA Astrophysics Data System (ADS)

    Mănescu (Păltânea), Veronica; Păltânea, Gheorghe; Gavrilă, Horia

    2016-04-01

    In this paper the hysteresis energy losses in two non-oriented industrial steels (M400-65A and M800-65A) were determined, by means of an efficient classical Preisach model, which is based on the Pescetti-Biorci method for the identification of the Preisach density. The excess and the total energy losses were also determined, using a statistical framework, based on magnetic object theory. The hysteresis energy losses, in a non-oriented steel alloy, depend on the peak magnetic polarization and they can be computed using a Preisach model, due to the fact that in these materials there is a direct link between the elementary rectangular loops and the discontinuous character of the magnetization process (Barkhausen jumps). To determine the Preisach density it was necessary to measure the normal magnetization curve and the saturation hysteresis cycle. A system of equations was deduced and the Preisach density was calculated for a magnetic polarization of 1.5 T; then the hysteresis cycle was reconstructed. Using the same pattern for the Preisach distribution, it was computed the hysteresis cycle for 1 T. The classical losses were calculated using a well known formula and the excess energy losses were determined by means of the magnetic object theory. The total energy losses were mathematically reconstructed and compared with those, measured experimentally.

  20. Dynamic Hysteresis in Compacted Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chowdary, Krishna M.

    The frequency and temperature dependent magnetic response of a bulk soft magnetic nanocomposite made by compacting Fe10Co 90 nanoparticles was measured and modeled. Electron microscopy and x-ray diffraction were used to characterize the size, composition, and structure of the nanoparticles and nanocomposite. Polyol synthesis was used to produce 200 nm particles with average grain size 20 nm and large superparamagnetic fraction. The nanoparticles were consolidated to 90% theoretical density by plasma pressure compaction. The compacted nanoparticles retained the 20 nm average grain size and large superparamagnetic fraction. The nanocomposite resistivity was more than three times that of the bulk alloy. Vibrating sample and SQUID-MPMS magnetometers were used for low frequency magnetic measurements of the nanoparticles and nanocomposite. Compaction reduced the coercivity from 175 Oe to 8 Oe and the effective anisotropy from 124 x 10 3 ergs/cc to 7.9 x 103 ergs/cc. These reductions were caused by increased exchange coupling between surface nanograins, consistent with predictions from the Random Anisotropy model. Varying degrees of exchange coupling existed within the nanocomposite, contributing to a distribution of energy barriers. A permeameter was used for frequency dependent magnetic measurements on a toroid cut from the nanocomposite. Complex permeability, coercivity, and power loss were extracted from dynamic minor hysteresis loops measured over a range of temperatures (77 K - 873 K) and frequencies (0.1 kHz - 100 kHz). The real and imaginary parts of the complex permeability spectrum showed asymmetries consistent with a distribution of energy barriers and high damping. When the complex permeability, power loss, and coercivity were scaled relative to the peak frequency of the imaginary permeability, all fell on universal curves. Various microscopic and macroscopic models for the complex permeability were investigated. The complex permeability was successfully fit

  1. Hysteresis prediction inside magnetic shields and application.

    PubMed

    Morić, Igor; De Graeve, Charles-Marie; Grosjean, Olivier; Laurent, Philippe

    2014-07-01

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60 μT. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission. PMID:25085183

  2. Hysteresis prediction inside magnetic shields and application

    NASA Astrophysics Data System (ADS)

    Morić, Igor; De Graeve, Charles-Marie; Grosjean, Olivier; Laurent, Philippe

    2014-07-01

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60 μT. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission.

  3. Hysteresis prediction inside magnetic shields and application

    SciTech Connect

    Morić, Igor; De Graeve, Charles-Marie; Grosjean, Olivier; Laurent, Philippe

    2014-07-15

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60 μT. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission.

  4. Analysis of wasp-waisted hysteresis loops in magnetic rocks.

    PubMed

    Kharwanlang, R S; Shukla, Prabodh

    2012-01-01

    The random-field Ising model of hysteresis is generalized to dilute magnets and is solved on a Bethe lattice. Exact expressions for the major and minor hysteresis loops are obtained. In the strongly dilute limit the model provides a simple and useful understanding of the shapes of hysteresis loops in magnetic rock samples. PMID:22400529

  5. Predictability of magnetic hysteresis and thermoremanent magnetization using Preisach theory

    NASA Astrophysics Data System (ADS)

    Newell, A. J.; Niemerg, M.; Bates, D.

    2014-12-01

    Preisach theory is a phenomenological model of hysteresis that is the basis for FORC analysis in rock magnetism. In FORC analysis, a system is characterized using first-order reversal curves (FORCs), each of which is a magnetization curve after a reversal in the direction of change of the magnetic field. Preisach theory uses the same curves to predict the magnetic response to changes in the magnetic field. In rock magnetism, the Preisach model has been adapted to predict general properties of thermoremanent magnetization (TRM), and even to inferpaleointensity from room-temperature FORCs. Preisach theory represents hysteresis by a collection of hysteresis units called hysterons; the distribution of hysterons is inferred from FORC measurements. Each hysteron represents a two-state system. This is similar to a single-domain (SD) magnet, but the first-order theory cannot represent the magnetism of a simple system of randomly oriented SD magnets. Such a system can be represented by a second-order Preisach theory, which requires the measurement of magnetization curves after two reversals of the direction of change. One can generalize this process to higher order reversal curves, although each increase in the number of reversals greatly increases the number of measurements that are needed. The magnetic hysteresis of systems of interacting SD magnets is calculated using numerical homotopy, a method that can find all the solutions of the equilibrium equations for such a system. The hysteresis frequently has features that cannot be represented by any order of Preisach theory. Furthermore, there are stable magnetic states that are not reachable during isothermal hysteresis unless thermal fluctuations are large enough. Such states would not be visible at room temperature but would contribute to TRM.

  6. Dynamic magnetic hysteresis and nonlinear susceptibility of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Ouari, Bachir; Titov, Serguey V.

    2016-08-01

    The nonlinear ac stationary response of antiferromagnetic nanoparticles subjected to both external ac and dc fields of arbitrary strength and orientation is investigated using Brown's continuous diffusion model. The nonlinear complex susceptibility and dynamic magnetic hysteresis (DMH) loops of an individual antiferromagnetic nanoparticle are evaluated and compared with the linear regime for extensive ranges of the anisotropy, the ac and dc magnetic fields, damping, and the specific antiferromagnetic parameter. It is shown that the shape and area of the DMH loops of antiferromagnetic particles are substantially altered by applying a dc field that permits tuning of the specific magnetic power loss in the nanoparticles.

  7. Could linear hysteresis contribute to shear wave losses in tissues?

    PubMed

    Parker, Kevin J

    2015-04-01

    For nearly 100 y in the study of cyclical motion in materials, a particular phenomenon called "linear hysteresis" or "ideal hysteretic damping" has been widely observed. More recently in the field of shear wave elastography, the basic mechanisms underlying shear wave losses in soft tissues are in question. Could linear hysteresis play a role? An underlying theoretical question must be answered: Is there a real and causal physical model that is capable of producing linear hysteresis over a band of shear wave frequencies used in diagnostic imaging schemes? One model that can approximately produce classic linear hysteresis behavior, by examining a generalized Maxwell model with a specific power law relaxation spectrum, is described here. This provides a theoretical plausibility for the phenomenon as a candidate for models of tissue behavior. PMID:25701527

  8. Improvement of magnetic hysteresis loss, corrosion resistance and compressive strength through spark plasma sintering magnetocaloric LaFe11.65Si1.35/Cu core-shell powders

    NASA Astrophysics Data System (ADS)

    You, Caiyin; Wang, Shaopeng; Zhang, Jing; Yang, Nannan; Tian, Na

    2016-05-01

    LaFe11.65Si1.35/Cu core-shell powders were achieved by self-designed magnetron sputtering system, which presents a better solidification during spark plasma sintering in comparison to the naked LaFe11.65Si1.35 powders. Much higher compressive strength, lower corrosion current density and magnetic hysteresis losses are achieved for the sintered sample of LaFe11.65Si1.35/Cu core-shell powders without significant decrease of the magnetic entropy change. The compressive strength, corrosion current density and maximum magnetic hysteresis losses are 105.6 MPa/16.8 MPa, 1.08 × 10-3A/cm2/3.03 × 10-3 A/cm2 and 1.33 J/kg/2.71 J/kg, respectively for the sintered samples of core-shell structured/naked powders. The technique of fabricating the core-shell structured powders demonstrated here is also applicable for other types of functional powders.

  9. Magnetic hysteresis based on dipolar interactions in granular magnetic systems

    NASA Astrophysics Data System (ADS)

    Allia, Paolo; Coisson, Marco; Knobel, Marcelo; Tiberto, Paola; Vinai, Franco

    1999-11-01

    The magnetic hysteresis of granular magnetic systems is investigated in the high-temperature limit (T>> blocking temperature of magnetic nanoparticles). Measurements of magnetization curves have been performed at room temperature on various samples of granular bimetallic alloys of the family Cu100-xCox (x=5-20 at. %) obtained in ribbon form by planar flow casting in a controlled atmosphere, and submitted to different thermal treatments. The loop amplitude and shape, which are functions of sample composition and thermal history, are studied taking advantage of a novel method of graphical representation, particularly apt to emphasize the features of thin, elongated loops. The hysteresis is explained in terms of the effect of magnetic interactions of the dipolar type among magnetic-metal particles, acting to hinder the response of the system of moments to isothermal changes of the applied field. Such a property is accounted for in a mean-field scheme, by introducing a memory term in the argument of the Langevin function which describes the anhysteretic behavior of an assembly of noninteracting superparamagnetic particles. The rms field arising from the cumulative effect of dipolar interactions is linked by the theory to a measurable quantity, the reduced remanence of a major symmetric hysteresis loop. The theory's self-consistence and adequacy have been properly tested at room temperature on all examined systems. The agreement with experimental results is always striking, indicating that at high temperatures the magnetic hysteresis of granular systems is dominated by interparticle, rather than single-particle, effects. Dipolar interactions seem to fully determine the magnetic hysteresis in the high-temperature limit for low Co content (x<=10). For higher concentrations of magnetic metal, the experimental results indicate that additional hysteretic mechanisms have to be introduced.

  10. Modeling of hysteresis in magnetic multidomains

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Carpentieri, M.; Faba, A.; Finocchio, G.

    2014-02-01

    In this paper, the analysis of multi-domain nanostructures is made by means of numerical approaches. The Landau-Lifshitz-Gilbert LLG equation is used to compute the magnetic hysteresis loops for different alternate scalar polarizations. The data computed are then used to identify the parameters of a phenomenological model, based on the extension of the Preisach model in 2-D. The identification in this case is the evaluation of the size and the position of the hysterons in the H-plane. Each hysteron is associated to a domain of the nanostructure and the assembly of hysterons reproduces with satisfactory accuracy the hysteretic behavior of the nanostructure computed by the LLG equation with an extremely reduced computational time. Some possible relationships between the magnetization nanostructure and the parameters of the hysteron are suggested. These relationship should be used for a “blind” prediction of the magnetization state of much larger magnetic structures, whose computation using the LLG equation is not possible in practice due to the enormous computational time, supposing that magnetic structures with the same aspect ratio exhibit a similar distribution of magnetic domains. The theory is applied here to an example of Permalloy nanostructure.

  11. Hysteresis analysis for the permanent magnet assisted synchronous reluctance motor by coupled FEM and Preisach modelling

    SciTech Connect

    Lee, J.H.; Hyun, D.S. . Dept. of Electrical Engineering)

    1999-05-01

    In high speed applications of PMASynRM, hysteresis losses can become the major cause of power dissipation. Therefore, whereas in other kind of machines a rough estimation of hysteresis can be accepted, their importance in PMASynRM justifies a greater effort in calculating them more precisely. This study investigates the hysteresis phenomena of the Permanent Magnet Assisted Synchronous Reluctance Motor (PMASynRM) using coupled FEM and Preisach modelling. Preisach's model, which allows accurate prediction of hysteresis, is adopted in this procedure to provide a nonlinear solution. The computer simulation and experimental result for the i-[lambda] loci show the propriety of the proposed method.

  12. Critical hysteresis for n-component magnets

    NASA Astrophysics Data System (ADS)

    Silveira, Ravá Da; Kardar, Mehran

    1999-02-01

    Earlier work on dynamical critical phenomena in the context of magnetic hysteresis for uniaxial (scalar) spins is extended to the case of a multicomponent (vector) field. From symmetry arguments and a perturbative renormalization-group approach (in the path-integral formalism), it is found that the generic behavior at long time and length scales is described by the scalar fixed point (reached for a given value of the magnetic field and of the quenched disorder), with the corresponding Ising-like exponents. By tuning an additional parameter, however, a fully rotationally invariant fixed point can be reached, at which all components become critical simultaneously, with O(n)-like exponents. Furthermore, the possibility of a spontaneous nonequilibrium transverse ordering, controlled by a distinct fixed point, is unveiled and the associated exponents calculated. In addition to these central results, a didactic ``derivation'' of the equations of motion for the spin field are given, the scalar model is revisited and treated in a more direct fashion, and some issues pertaining to time dependences and the problem of multiple solutions within the path-integral formalism are clarified.

  13. Magnetic hysteresis curve influenced by power-semiconductor characteristics in pulse-width-modulation inverter

    NASA Astrophysics Data System (ADS)

    Fujisaki, Keisuke; Liu, Sungju

    2014-05-01

    The influence of power semiconductor characteristic in Pulse-width-modulation (PWM) inverter on the magnetic hysteresis curve in silicon steel is discussed through the measured magnetic hysteresis curves. The magnetic hysteresis curve of PWM inverter-fed silicon steel has a lot of minor loops as closed loops and open loops, which make an influence on the iron loss. Two shapes of minor loops are found to be caused by the voltage shifts and they are derived from the on-voltage of the semiconductors in PWM inverter circuit. Therefore, it is concluded that the power-semiconductor characteristic in PWM inverter makes an influence on the magnetic hysteresis curve in silicon steel.

  14. A MHO-based magnetic hysteresis model for amorphous materials

    NASA Astrophysics Data System (ADS)

    Ma, Lianwei; Shen, Yu; Li, Jinrong; Zhao, Xinlong

    2014-12-01

    A magnetic hysteretic operator (MHO) is proposed in this paper. Based on the constructed MHO, the input space of neural networks is expanded from one-dimension to two-dimension using the expanded space method so that the one-to-multiple mapping of magnetic hysteresis is transformed into one-to-one mapping. Based on the expanded input space, a neural network is employed to identify magnetic hysteresis. The result of an experimental example suggests the proposed approach is effective.

  15. The significance of observed rotational magnetic hysteresis in lunar samples

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1974-01-01

    Rotational magnetic hysteresis curves for lunar soils 10084, 12070, and 14259, and rock 14053 have been published. There is no adequate explanation to date for the observed large hysteresis at high fields. Lunar rock magnetism researchers consider fine particle iron to be the primary source of stable magnetic remanence in lunar samples. Iron has cubic anisotropy with added shape anisotropy for extreme particle shapes. The observed high-field hysteresis must have its source in uniaxial or unidirectional anisotropy. This implies the existence of minerals with uniaxial anisotropy or exchange-coupled spin states. Therefore, the source of this observed high-field hysteresis must be identified and understood before serious paleointensity studies are made. It is probable that the exchange-coupled spin states and/or the source of uniaxial anisotropy responsible for the high-field hysteresis might be influenced by the lunar surface diurnal temperature cycling. The possible sources of high-field hysteresis in lunar samples are presented and considered.

  16. Attachment/detachment hysteresis of fiber-based magnetic grabbers.

    PubMed

    Gu, Yu; Kornev, Konstantin G

    2014-04-28

    We developed an experimental protocol to analyze the behaviour of a model fiber-based magnetic grabber. A fiber is vertically suspended and fixed to the substrate by its upper end. A magnetic droplet is attached to the free end of the fiber and when a permanent magnet approaches the droplet, the fiber is forced to bow and finally jumps to the magnet. It appears that one can flex the micro-fibers by very small micro or even nano-Newton forces. Using this setup, we discovered a hysteresis of fiber attachment/detachment: the pathway of the fiber jumping to and off the magnet depends on the distance between the magnet and the clamped end. This phenomenon was successfully explained by the Euler-Benoulli model of an elastic beam. The observed hysteresis of fiber attachment/detachment was attributed to the multiple equilibrium configurations of the fiber tip placed in a dipole-type magnetic field. PMID:24668160

  17. Magnetic hysteresis in a lanthanide molecular magnet dimer system

    NASA Astrophysics Data System (ADS)

    Atkinson, James; Cebulka, Rebecca; Del Barco, Enrique; Roubeau, Olivier; Velasco, Veronica; Barrios, Leo; Aromi, Guillem

    Molecular magnets present a wonderful means for studying the dynamics of spin. Often synthesized as a crystal lattice of identical systems, ensemble measurements enable thorough detailing of the internal degrees of freedom. Here we present the results of characterization performed on a dimer system, CeTm(HL)2(H2L)NO3pyH2O (L = ligand, C45H31O15N3), consisting of two lanthanide spins (Cerium and Thulium) with expected local axial anisotropies tilted with respect to each other. Microwave EPR spectroscopy at low temperature reveals hysteresis in observed absorption features, with angle dependence studies indicating the presence of several ``easy axis'' orientations. We attempt to understand this system through modelling via a spin Hamiltonian, and to determine the strength and nature of the coupling between the lanthanide centers. This research was funded through NSF Grant # 24086159.

  18. Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis

    SciTech Connect

    Sablik, M.J. ); Jiles, D.C. . Ames Lab.)

    1993-07-01

    A physical model is developed for the coupling between magnetic and magnetostrictive hysteresis and for the effect of mechanical stress on both types of hysteresis. The Jiles-Atherton-Sablik model for magnetomechanical hysteresis is reviewed and interpreted. In that model, under applied stress, the magnetization is coupled to magnetostriction through the derivative of the magnetostriction with respect to magnetization. The magnetostriction is also a function of the magnetization even in the absence of stress. An expression for the magnetostriction is derived from minimization of the internal energy with respect to strains, which is necessary for mechanical equilibrium. In the case where stress [sigma]/Y, where Y is Young's modulus, and a magnetostrain which goes to zero at saturation ([Delta]E effect). From the magnetostrain, the magnetostriction is obtained, using the convention that magnetostriction is zero in the unmagnetized state. By taking into account fluctuations in the magnetic energy due to hysteresis, one finds that the magnetostriction initially moves to higher values as the magnitude of the flux density B decreases from its extremum value in [lambda] versus B plots. Various numerical cases are evaluated, and the modeling is compared to previous measurements in polycrystalline iron and steel and in terfenol and Ni-Zn ferrites.

  19. Magnetization and Hysteresis of Dilute Magnetic-Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Skomski, Ralph; Balamurugan, B.; Sellmyer, D. J.

    2014-03-01

    Real-structure imperfections in dilute magnetic oxides tend to create small concentrations of local magnetic moments that are coupled by fairly long-range exchange interactions, mediated by p-electrons. The robustness of these interactions is caused by the strong overlap of the p orbitals, as contrasted to the much weaker interatomic exchange involving iron-series 3d electrons. The net exchange between defect moments can be positive or negative, which gives rise to spin structures with very small net moments. Similarly, the moments exhibit magnetocrystalline anisotropy, reinforced by electron hopping to and from 3d states and generally undergoing some random-anuisotropy averaging. Since the coercivity scales as 2K1/M and M is small, this creates pronounced and -- in thin films -- strongly anisotropic hysteresis loops. In finite systems with N moments, both K1 and M are reduced by a factor of order N1/2 due to random anisotropy and moment compensation, respectively, so that that typical coercivities are comparable to bulk magnets. Thermal activation readily randomizes the net moment of small oxide particles, so that the moment is easier to measure in compacted or aggregated particle ensembles. This research is supported by DOE (BES).

  20. Thermodynamics of a general stochastic model of magnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Clatterbuck, D. M.; Morris, J. W., Jr.

    2001-03-01

    The thermodynamics of a general stochastic model of magnetic hysteresis are analyzed and the implications are discussed. The idea of modeling magnetic hysteresis in terms of a single degree of freedom evolving in a random potential was first proposed by Neel and subsequently studied by a number of authors. One difficulty with these models is the need for ad-hoc assumptions about the form of the random potential. Starting with a general stochastic model with no assumptions about the potential, an analysis of the conditions of equilibrium and stability demonstrates that the potential must divide into two components. One term represents the equilibrium behavior, and the other is a random pinning term with average slope of zero. This clarifies some of the past work on hysteresis and the magnetic Barkhausen effect. The thermodynamic analysis also demonstrates that the Jiles-Atherton hysteresis model can be derived from the stochastic model using a specific form of the potential. Research supported by DOE under Contract No. DE-AC03-76SF00098.

  1. Hysteresis modeling of anisotropic and isotropic nanocrystalline hard magnetic films

    NASA Astrophysics Data System (ADS)

    Cornejo, D. R.; Azevedo, A.; Rezende, S. M.

    2003-05-01

    In the Hauser model, the magnetic state of a system is obtained by minimizing the so-called total energy function for a statistical set of magnetic domains. In this article, this energetic model of ferromagnetic materials is used in order to calculate hysteresis loops of isotropic and anisotropic nanocrystalline SmCo films at room temperature. A qualitative very good agreement between the calculated and experimental curves is obtained, mainly in the anisotropic case. Also, it has been verified that, under suitable approximations, the free parameters of the model can tie with intrinsic characteristics of the reversal magnetization process.

  2. Hysteresis in magnetic shape memory composites: Modeling and simulation

    NASA Astrophysics Data System (ADS)

    Conti, Sergio; Lenz, Martin; Rumpf, Martin

    2016-04-01

    Magnetic shape memory alloys are characterized by the coupling between the reorientation of structural variants and the rearrangement of magnetic domains. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the reorientation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the twin boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimality condition. We illustrate and discuss the influence of the particle geometry (volume fraction, shape, arrangement) and the polymer elastic parameters on the observed hysteresis and compare with recent experimental results.

  3. Hysteresis in magnetic shape memory composites: Modeling and simulation

    NASA Astrophysics Data System (ADS)

    Conti, Sergio; Lenz, Martin; Rumpf, Martin

    2016-04-01

    Magnetic shape memory alloys are characterized by the coupling between a structural phase transition and magnetic one. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the transformation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the phase boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimality condition. We illustrate and discuss the influence of the particle geometry (volume fraction, shape, arrangement) and the polymer elastic parameters on the observed hysteresis and compare with recent experimental results.

  4. Magnetic hysteresis measurements of thin films under isotropic stress.

    NASA Astrophysics Data System (ADS)

    Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus

    2000-10-01

    Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.

  5. Magnetic field-controlled hysteresis loop bias in orthogonal exchange-spring coupling composite magnetic films

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Yu, Tian; Pan, Rui; Zhang, Qin-Tong; Liu, Pan; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Han, Xiufeng

    2016-06-01

    The exchange bias (EB) is an effective fundamental and applicational method to realize magnetic hysteresis loop shifting. However, further manipulation of EB unidirectional anisotropy is difficult after setup using either field deposition or post-annealing. In this work, we experimentally show a new approach to control the magnetic hysteresis loop bias in a [Co(0.2)/Pd(1)]5/CoFeB orthogonal exchange-spring (ES) coupling system, where the direction and strength of unidirectional anisotropy can be easily manipulated by applying an external magnetic field.

  6. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang Y.; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-09-25

    Hysteresis loops and Magnetic Barkhausen Noise in a single crystal α-iron containing a nonmagnetic particle were simulated based on the Laudau-Lifshitz-Gilbert equation. The analyses of domain morphologies and hysteresis loops show that reversal magnetization process is control by nucleation of reversed domains at nonmagnetic particle when the particle size reaches a particle value. In such a situation, the value of nucleation field is determined by the size of nonmagnetic particles, and moreover, coercive field and Magnetic Barkhausen Noise signal are strongly affected by the nucleation field of reversed domains.

  7. Modelling of microstructural effects on magnetic hysteresis properties

    NASA Astrophysics Data System (ADS)

    Dupré, L.; Sablik, M. J.; Van Keer, R.; Melkebeek, J.

    2002-09-01

    In this paper, the relationship between microstructural properties of steels and the material parameters in the Preisach model and in the Jiles-Atherton (JA) model is discussed, in the instance where both models describe quasi-static hysteretic magnetic behaviour. It is shown how the material parameters in both hysteresis models should be modified to reflect their dependence on dislocation density and grain size. The dependence of the Preisach material parameters on these microstructural features is identified starting from hysteresis loops calculated by the microstructurally dependent modified JA model. For the Preisach model, a Lorentzian distribution function is used for the distribution function. This makes it possible to compare predictions here to results of an earlier paper in which the Lorentzian distribution was used for Preisach fits to experimental data for steels of different grain sizes. Also, in a different earlier paper, it was shown how the Lorentzian distribution can be formulated so that it connects with salient features of the JA model. The procedure in this paper enables one to examine and predict microstructural variations of Preisach parameters in steels not only for the case of grain size variation but also for the case of variation in dislocation density.

  8. Hysteresis of the magnetic properties of soft magnetic gels.

    PubMed

    Zubarev, A Yu; Chirikov, D N; Borin, D Yu; Stepanov, G V

    2016-08-14

    We present results of an experimental and theoretical study of the magnetic properties of soft magnetic gels consisting of micron-sized magnetizable particles embedded in a polymer matrix. Experiments demonstrate hysteretic dependences of composite magnetization on an applied magnetic field and non-monotonic, with maximum, dependence of the sample susceptibilities on the field. We propose a theoretical approach which describes the main physical features of these experimental results. PMID:27406554

  9. Magnetic properties modeling of soft magnetic composite materials using two-dimensional vector hybrid hysteresis model

    NASA Astrophysics Data System (ADS)

    Li, Dandan; Liu, Fugui; Li, Yongjian; Zhao, Zhigang; Zhang, Changgeng; Yang, Qingxin

    2014-05-01

    A 2-D vector hybrid hysteresis model for a soft magnetic composite (SMC) material is established, which is combined with classical Preisach model and Stoner-Wohlfarth (S-W) model. The rotational magnetic properties of SMC materials were studied using the vector model, and the computed results were compared with the experimental measurement. It is shown that the vector hybrid model can effectively simulate the rotational magnetic properties under low magnetization fields.

  10. Modeling of two-phase magnetic materials based on Jiles-Atherton theory of hysteresis

    NASA Astrophysics Data System (ADS)

    Raghunathan, A.; Melikhov, Y.; Snyder, J. E.; Jiles, D. C.

    2012-01-01

    The Jiles-Atherton (JA) theory of hysteresis has been extended in the present paper to model hysteresis in two-phase magnetic materials. Two-phase materials are those that exhibit two magnetic phases in one hysteresis cycle: one at lower fields and the other at higher fields. In magnetic hysteresis, the transition from one phase to the other i.e. low field phase to high field phase depends mainly on the exchange field. Hence, the material-dependent microstructural parameters of JA theory: spontaneous magnetization, MS, pinning factor, k, domain density, a, domain coupling, α, and reversibility factor, c, are represented as functions of the exchange field. Several cases based on this model have been discussed and compared with the measured data from existing literature. The shapes of the calculated and measured hysteresis loops are in excellent agreement.

  11. Evaluation of fatigue damage in steels using Preisach model analysis of magnetic hysteresis measurements

    NASA Astrophysics Data System (ADS)

    Lo, C. C. H.; Melikhov, Y. Y.; Kadlecová, J.; Perevertov, O. V.; Tomáš, I.; Ring, A. P.; Jiles, D. C.

    2001-04-01

    The Preisach model analysis of magnetic hysteresis measurements has been applied to evaluate the microstructural changes in steels subjected to cyclic loading. Families of hysteresis loops were measured to obtain the Preisach-like functions. Barkhausen effect signals were also measured. The Preisach representation was found to be more sensitive to the increase in the number of stress cycles during the stable fatigue stage than the traditional hysteresis loop properties and Barkhausen effect signals.

  12. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Hernández-Gómez, P.; Muñoz, J. M.; Valente, M. A.; Torres, C.; de Francisco, C.

    2013-01-01

    Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer's formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  13. Ac magnetorestriction hysteresis and magnetization direction in grain oriented silicon steels

    SciTech Connect

    Mogi, Hisashi; Matsuo, Yukio; Kumano, Tomoji

    1999-09-01

    A hysteresis curve of ac magnetostriction was measured, magnetizing a grain oriented silicon steel in the direction deviated from rolling direction of a sample. The ac magnetostriction ({lambda} ac) curves were analyzed as harmonics in the interest of noise spectrum of such as a power transformer. The domain structure model in this magnetostriction process was proposed. The hysteresis was large in the magnetization direction inclined at 30 and 90{degree} from the rolling direction.

  14. Effects of grain size, hardness, and stress on the magnetic hysteresis loops of ferromagnetic steels

    NASA Astrophysics Data System (ADS)

    Kwun, H.; Burkhardt, G. L.

    1987-02-01

    Effects of grain size, hardness, and stress on the magnetic hysteresis loops of AISI 410 stainless steel and SAE 4340 steel specimens were investigated experimentally. It was observed that both hardness and stress significantly influenced the hysteresis loops, while the grain size had a minimal effect. For each material, the mechanically harder specimen was more difficult to magnetize. Upon application of uniaxial stress, the magnetic induction increased under tension and decreased under compression, with the sides of the hysteresis loops becoming inclined more toward the vertical axis under tension and the horizontal axis under compression. For each material, the effects of stress on the hysteresis loops were greater for the mechanically softer specimen and exhibited an inverse relationship to the hardness. The effects of stress were not dependent on grain size.

  15. Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator.

    PubMed

    Wäckerlin, Christian; Donati, Fabio; Singha, Aparajita; Baltic, Romana; Rusponi, Stefano; Diller, Katharina; Patthey, François; Pivetta, Marina; Lan, Yanhua; Klyatskaya, Svetlana; Ruben, Mario; Brune, Harald; Dreiser, Jan

    2016-07-01

    TbPc2 single-molecule magnets adsorbed on a magnesium oxide tunnel barrier exhibit record magnetic remanence, record hysteresis opening, perfect out-of-plane alignment of the magnetic easy axes, and self-assembly into a well-ordered layer. PMID:27159732

  16. Calculation of the magnetic field in the active zone of a hysteresis clutch

    NASA Technical Reports Server (NTRS)

    Ermilov, M. A.; Glukhov, O. M.

    1977-01-01

    The initial distribution of magnetic induction in the armature stationary was calculated relative to the polar system of a hysteresis clutch. Using several assumptions, the problem is reduced to calculating the static magnetic field in the ferromagnetic plate with finite and continuous magnetic permeability placed in the air gap between two identical, parallel semiconductors with rack fixed relative to the tooth or slot position.

  17. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    PubMed Central

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  18. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy.

    PubMed

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  19. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  20. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  1. Metallogrid Single-Molecule Magnet: Solvent-Induced Nuclearity Transformation and Magnetic Hysteresis at 16 K.

    PubMed

    Huang, Wei; Shen, Fu-Xing; Wu, Shu-Qi; Liu, Li; Wu, Dayu; Zheng, Zhe; Xu, Jun; Zhang, Ming; Huang, Xing-Cai; Jiang, Jun; Pan, Feifei; Li, Yao; Zhu, Kun; Sato, Osamu

    2016-06-01

    Structural assembly and reversible transformation between a metallogrid Dy4 SMM (2) and its fragment Dy2 (1) were established in the different solvent media. The zero-field magnetization relaxation was slowed for dysprosium metallogrid (2) with relaxation barrier of Ueff = 61.3 K when compared to Dy2 (1). Both magnetic dilution and application of a moderate magnetic field suppress ground-state quantum tunneling of magnetization and result in an enhanced Ueff of 119.9 and 96.7 K for 2, respectively. Interestingly, the lanthanide metallogrid complex (2) exhibits magnetic hysteresis loop even up to 16 K at a given field sweep rate of 500 Oe/s. PMID:27164298

  2. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    DOE PAGESBeta

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domainsmore » on the magnetization reversal behavior and the magnetic properties.« less

  3. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Li, Qiulin; Liu, Wei; Xu, Ben; Hu, Shenyang; Li, Yulan

    2015-07-15

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  4. Two-level model and magnetic field effects on the hysteresis in n-GaAs

    NASA Astrophysics Data System (ADS)

    Tzeng, Shwu-Yun Tsay; Tzeng, Yiharn

    2004-08-01

    Efforts are made in this work to interpret the experimentally observed magnetic effects on the hysteretic I-V curve for an n-GaAs semiconductor through a two-impurity-level model with the assumptions of spatial homogeneity in current flow direction and instantaneous energy balance. We construct the model by considering carefully the Landau level shifts for the electrons in the conduction band, the magnetoresistance property, and the modification on the cross sections of the impact ionization. With the inclusions of the effects from the carrier electron temperature variation and the field-dependent electron mobility, we are able to describe the hysteretic I-V characteristics satisfactorily for the case of applying either a longitudinal or a transverse magnetic field simultaneously within a single model. Our numerical results show that when the applied longitudinal magnetic field B increases, the holding voltage of the hysteresis shifts towards a higher value, while the breakdown voltage remains almost fixed and thus the width of the hysteresis decreases. Above a critical magnetic field intensity 86mT , the hysteresis vanishes. Under the transverse magnetic field, the breakdown voltage of the hysteresis shifts significantly towards the higher direction with a stronger magnetic field B , and therefore a considerably wider hysteresis width. The dynamic behavior of our model has displayed the same features of the experimental observations described by Aoki, Kondo, and Watanabe in Solid State Commun. 77, 91 (1991).

  5. Magnetic resonance imaging (MRI) study of jet height hysteresis in packed beds

    NASA Astrophysics Data System (ADS)

    Köhl, Maximilian H.; Lu, Guang; Third, James R.; Prüssmann, Klaas P.; Müller, Christoph R.

    2013-06-01

    The jet-spout transition in fluidized beds can show hysteretic behavior. In this study the jet-spout transition was studied as a function of orifice velocity for particles of different size and shape using Magnetic Resonance Imaging (MRI). The measurements showed that the particle shape primarily affect to the width of the hysteresis loop whereas particle size governs the position of the hysteresis loop with regards to the orifice velocity.

  6. Strong Nonlinearity and Hysteresis of Hall Resistance versus Magnetization in Nickel Thin Films

    SciTech Connect

    Song, X. H.; Fan, J.; Zhang, Xiaoguang; Zhang, D. L.

    2010-01-01

    We report experimental observation that the Hall resistivity of nickel films is a strongly nonlinear function of the magnetization $M$ and displays clear hysteresis with respect to $M$. At low temperatures, the anomalous Hall coefficient switches between two saturated values under the magnetic field with a narrow transition region, but with a strong hysteresis, in contrast to the slow saturation of the magnetization. The nonlinearity and the hysteresis become more apparent with decreasing temperature or film thickness. Despite the simplicity of the lattice and magnetic structure of nickel films, these results are outsideour current understanding of AHE, whether using intrinsic or extrinsic mechanisms of AHE. It presents a challenge for these models, and may be used as a test of validity for both types of theories.

  7. A Neural-FEM tool for the 2-D magnetic hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.

    2016-04-01

    The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.

  8. A combined Preisach-Hyperbolic Tangent model for magnetic hysteresis of Terfenol-D

    NASA Astrophysics Data System (ADS)

    Talebian, Soheil; Hojjat, Yousef; Ghodsi, Mojtaba; Karafi, Mohammad Reza; Mirzamohammadi, Shahed

    2015-12-01

    This study presents a new model using the combination of Preisach and Hyperbolic Tangent models, to predict the magnetic hysteresis of Terfenol-D at different frequencies. Initially, a proper experimental setup was fabricated and used to obtain different magnetic hysteresis curves of Terfenol-D; such as major, minor and reversal loops. Then, it was shown that the Hyperbolic Tangent model is precisely capable of modeling the magnetic hysteresis of the Terfenol-D for both rate-independent and rate-dependent cases. Empirical equations were proposed with respect to magnetic field frequency which can calculate the non-dimensional coefficients needed by the model. These empirical equations were validated at new frequencies of 100 Hz and 300 Hz. Finally, the new model was developed through the combination of Preisach and Hyperbolic Tangent models. In the combined model, analytical relations of the Hyperbolic Tangent model for the first order reversal loops determined the weighting function of the Preisach model. This model reduces the required experiments and errors due to numerical differentiations generally needed for characterization of the Preisach function. In addition, it can predict the rate-dependent hysteresis as well as rate-independent hysteresis.

  9. An eddy current vector potential formulation for estimating hysteresis losses of superconductors with FEM

    NASA Astrophysics Data System (ADS)

    Stenvall, A.; Tarhasaari, T.

    2010-12-01

    Many people these days employ only commercial finite element method (FEM) software when solving for the hysteresis losses of superconductors. Thus, the knowledge of a modeller is in the capability of using the black boxes of software efficiently. This has led to a relatively superficial examination of different formulations while the discussion stays mainly on the usage of the user interfaces of these programs. Also, if we stay only at the mercy of commercial software producers, we end up having less and less knowledge on the details of solvers. Then, it becomes more and more difficult to conceptually solve new kinds of problem. This may prevent us finding new kinds of method to solve old problems more efficiently, or finding a solution for a problem that was considered almost impossible earlier. In our earlier research, we presented the background of a co-tree gauged T-phiv FEM solver for computing the hysteresis losses of superconductors. In this paper, we examine the feasibility of FEM and eddy current vector potential formulation in the same problem.

  10. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    SciTech Connect

    Heczko, O. Drahokoupil, J.; Straka, L.

    2015-05-07

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  11. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Heczko, O.; Drahokoupil, J.; Straka, L.

    2015-05-01

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  12. Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Ersin, Kantar

    2015-10-01

    Magnetic behaviors of the Ising system with bilayer honeycomb lattice (BHL) structure are studied by using the effective-field theory (EFT) with correlations. The effects of the interaction parameters on the magnetic properties of the system such as the hysteresis and compensation behaviors as well as phase diagrams are investigated. Moreover, when the hysteresis behaviors of the system are examined, single and double hysteresis loops are observed for various values of the interaction parameters. We obtain the L-, Q-, P-, and S-type compensation behaviors in the system. We also observe that the phase diagrams only exhibit the second-order phase transition. Hence, the system does not show the tricritical point (TCP).

  13. Hybrid models of hysteresis for mixed hysteretic loops in heterogeneous magnetic materials

    NASA Astrophysics Data System (ADS)

    Dimian, M.; Andrei, P.; Grayson, M.

    2014-05-01

    The mixed hysteresis behavior of counter-clockwise and clockwise loops has recently attracted the attention of the magnetics community, due to several experimental findings in inhomogeneous and hetero-structure magnetic systems. Various hybrid models are proposed here to address this behavior based on the superposition of standard hysteresis models and their newly developed clockwise variants. A special attention is also devoted to Bouc-Wen model, a typical clockwise often used by applied mechanics community, and to its relevance for mixed hysteresis. These clockwise and hybrid models have been implemented in an open-access academic software and their performance is illustrated by examples of hysteretic loops, first order reversal curves and diagrams simulated in this framework.

  14. A guided enquiry approach to introduce basic concepts concerning magnetic hysteresis to minimize student misconceptions

    NASA Astrophysics Data System (ADS)

    Wei, Yajun; Zhai, Zhaohui; Gunnarsson, Klas; Svedlindh, Peter

    2014-11-01

    Basic concepts concerning magnetic hysteresis are of vital importance in understanding magnetic materials. However, these concepts are often misinterpreted by many students and even textbooks. We summarize the most common misconceptions and present a new approach to help clarify these misconceptions and enhance students’ understanding of the hysteresis loop. In this approach, students are required to perform an experiment and plot the measured magnetization values and thereby calculated demagnetizing field, internal field, and magnetic induction as functions of the applied field point by point on the same graph. The concepts of the various coercivity, remanence, saturation magnetization, and saturation induction will not be introduced until this stage. By plotting this graph, students are able to interlink all the preceding concepts and intuitively visualize the underlying physical relations between them.

  15. Magnetic Hysteresis in Mn_12 -- a Status Report

    NASA Astrophysics Data System (ADS)

    Sarachik, Myriam P.

    2000-03-01

    The molecular magnet Mn_12 acetate consists of a large (Avogadro's) number of identical nanoscopic-sized spin-10 magnetic clusters, each composed of 12 exchange-coupled Mn atoms, regularly arranged on a tetragonal lattice. In the absence of a magnetic field, strong uniaxial anisotropy favors doubly-degenerate spin alignment along the c-axis of the crystal, m_s= ± 10, and two-fold-degenerate excited states corresponding to spin-projections m_s=± 9, ± 8,....0 in a double-well potential. When cooled below its blocking temperature of 3 K, Mn_12 exhibits hysteretic behavior with steep ``steps'' at reproducible, regularly-spaced magnetic fields, indicating enhanced magnetic relaxation at these special field values. This behavior has been attributed to mesoscopic quantum tunneling of the magnetization of the spin-10 magnetic clusters at magnetic fields corresponding to level crossings on opposite sides of the anisotropy barrier. Subsequent EPR and neutron scattering measurements, as well as precise measurements of the magnetic response, have provided detailed information regarding the form of the spin Hamiltonian and the symmetry-breaking terms that drive the tunneling process. Very recent measurements have provided evidence for an abrupt transition to ground-state tunneling (pure quantum tunneling requiring no thermal activation to excited states within the metastable potential well). These experiments will be briefly reviewed and explained, and open questions will be discussed.

  16. Do micromagnetic simulations correctly predict hard magnetic hysteresis properties?

    NASA Astrophysics Data System (ADS)

    Toson, P.; Zickler, G. A.; Fidler, J.

    2016-04-01

    Micromagnetic calculations using the finite element technique describe semi-quantitatively the coercivity of novel rare earth permanent magnets in dependence on grain size, grain shape, grain alignment and composition of grain boundaries and grain boundary junctions and allow the quantitative prediction of magnetic hysteretic properties of rare earth free magnets based on densely packed elongated Fe and Co nanoparticles, which depend on crystal anisotropy, aspect ratio and packing density. The nucleation of reversed domains preferentially takes place at grain boundary junctions in granular sintered and melt-spun magnets independently on the grain size. The microstructure and the nanocompostion of the intergranular regions are inhomogeneous and too complex in order to make an exact model for micromagnetic simulations and to allow a quantitative prediction. The incoherent magnetization reversal processes near the end surfaces reduce and determine the coercive field values of Co- and Fe-based nanoparticles.

  17. A novel model for magnetic hysteresis of silicon-iron sheets

    NASA Astrophysics Data System (ADS)

    Boukhtache, S.; Azoui, B.; Féliachi, M.

    2006-06-01

    A new approach to calculate the magnetic hysteresis, based on the Brillouin theory associated with the Jiles-Atherton approach, is presented. This study represents a general model compared with the classical Jiles-Atherton one. A Brillouin function, using the kinetic atomic moment mathaccent"017E{J}, allows to determine accurately the value of the anhysteretic magnetization. The obtained results are compared with experimental ones of the silicon-iron sheets.

  18. Magnetic hysteresis in natural materials. [chondrites, lunar samples and terrestrial rocks

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.

    1973-01-01

    Magnetic hysteresis loops and the derived hysteresis ratios R sub H and R sub I are used to classify the various natural dilute magnetic materials. R sub I is the ratio of saturation isothermal remanence (I sub R) to saturation (I sub S) magnetization, and R sub H is the ratio of remanent coercive force (H sub R) to coercive force (H sub C). The R sub H and R sub I values depend on grain size, the characteristics of separate size modes in mixtures of grains of high and low coercivity, and the packing characteristics. Both R sub H and R sub I are affected by thermochemical alterations of the ferromagnetic fraction. Hysteresis loop constriction is observed in lunar samples, chondrite meteorites, and thermochemically altered basaltic rocks, and is due to mixtures of components of high and low coercivity. Discrete ranges of R sub H and R sub I for terrestrial and lunar samples and for chondrite meteorites provide for a classification of these natural materials based on their hysteresis properties.

  19. Scaling Behavior of Barkhausen Avalanches along the Hysteresis loop in Nucleation-Mediated Magnetization Reversal Process

    SciTech Connect

    Im, Mi-Young; Fischer, Peter; Kim, D.-H.; Shin, S.-C.

    2008-10-14

    We report the scaling behavior of Barkhausen avalanches for every small field step along the hysteresis loop in CoCrPt alloy film having perpendicular magnetic anisotropy. Individual Barkhausen avalanche is directly observed utilizing a high-resolution soft X-ray microscopy that provides real space images with a spatial resolution of 15 nm. Barkhausen avalanches are found to exhibit power-law scaling behavior at all field steps along the hysteresis loop, despite their different patterns for each field step. Surprisingly, the scaling exponent of the power-law distribution of Barkhausen avalanches is abruptly altered from 1 {+-} 0.04 to 1.47 {+-} 0.03 as the field step is close to the coercive field. The contribution of coupling among adjacent domains to Barkhausen avalanche process affects the sudden change of the scaling behavior observed at the coercivity-field region on the hysteresis loop of CoCrPt alloy film.

  20. Mechanisms of magnetic and temperature hysteresis in ErFeO3 and TmFeO3 single crystals

    NASA Astrophysics Data System (ADS)

    Tsymbal, L. T.; Bazaliy, Ya. B.; Kakazei, G. N.; Vasiliev, S. V.

    2010-10-01

    Magnetic hysteresis is studied in the orthoferrites ErFeO3 and TmFeO3 using the single crystal samples of millimeter dimensions. It is shown that in both materials one observes a temperature transition manifesting itself through the temperature hysteresis of the magnetic moment and a peculiar temperature evolution of the field hysteresis loop shapes near this transition. Experiments rule out the hypothesis that the ordering of the orthoferrite's rare-earth magnetic moments plays an important role in these phenomena. The hysteresis curves can be explained by a few-domain magnetic state of the samples that results from the weak ferromagnetism of the orthoferrites. The phenomenon is generic for weak ferromagnets with temperature dependent magnetization. A large characteristic magnetic length makes the behavior of the relatively big samples analogous to that observed in the nanosize samples of strong ferromagnets.

  1. A. C. losses in the SSC high energy booster dipole magnets

    SciTech Connect

    Jayakumar, R.; Kovachev, V.; Snitchler, G.; Orrell, D.

    1991-06-01

    The baseline design for the SSC High Energy Booster (HEB) has dipole bending magnets with a 50 mm aperture. An analysis of the cryogenic heat load due to A.C. losses generated in the HEB ramp cycle are reported for this magnet. Included in this analysis are losses from superconductor hysteresis, yoke hysteresis, strand eddy currents, and cable eddy currents. The A.C. loss impact of 2.5 {mu}m vs. 6 {mu}m filament conductor is presented. A 60 mm aperture design is also investigated. 8 refs., 3 tabs.

  2. Simulations of magnetic hysteresis loops at high temperatures

    SciTech Connect

    Plumer, M. L.; Whitehead, J. P.; Fal, T. J.; Ek, J. van; Mercer, J. I.

    2014-09-28

    The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700 Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680 K. Our results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300 K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.

  3. Unconventional Magnetic and Resistive Hysteresis in an Iodine-Bonded Molecular Conductor.

    PubMed

    Kawaguchi, Genta; Maesato, Mitsuhiko; Komatsu, Tokutaro; Kitagawa, Hiroshi; Imakubo, Tatsuro; Kiswandhi, Andhika; Graf, David; Brooks, James S

    2015-08-24

    Simultaneous manipulation of both spin and charge is a crucial issue in magnetic conductors. We report on a strong correlation between magnetism and conductivity in the iodine-bonded molecular conductor (DIETSe)2 FeBr2 Cl2 [DIETSe=diiodo(ethylenedithio)tetraselenafulvalene], which is the first molecular conductor showing a large hysteresis in both magnetic moment and magnetoresistance associated with a spin-flop transition. Utilizing a mixed-anion approach and iodine bonding interactions, we tailored a molecular conductor with random exchange interactions exhibiting unforeseen physical properties. PMID:26179678

  4. Metal phases in ordinary chondrites: Magnetic hysteresis properties and implications for thermal history

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Suavet, C.; Rochette, P.; Weiss, B. P.; Winklhofer, M.; Uehara, M.; Friedrich, Jon M.

    2014-04-01

    Magnetic properties are sensitive proxies to characterize FeNi metal phases in meteorites. We present a data set of magnetic hysteresis properties of 91 ordinary chondrite falls. We show that hysteresis properties are distinctive of individual meteorites while homogeneous among meteorite subsamples. Except for the most primitive chondrites, these properties can be explained by a mixture of multidomain kamacite that dominates the induced magnetism and tetrataenite (both in the cloudy zone as single-domain grains, and as larger multidomain grains in plessite and in the rim of zoned taenite) dominates the remanent magnetism, in agreement with previous microscopic magnetic observations. The bulk metal contents derived from magnetic measurements are in agreement with those estimated previously from chemical analyses. We evidence a decreasing metal content with increasing petrologic type in ordinary chondrites, compatible with oxidation of metal during thermal metamorphism. Types 5 and 6 ordinary chondrites have higher tetrataenite content than type 4 chondrites. This is compatible with lower cooling rates in the 650-450 °C interval for higher petrographic types (consistent with an onion-shell model), but is more likely the result of the oxidation of ordinary chondrites with increasing metamorphism. In equilibrated chondrites, shock-related transient heating events above approximately 500 °C result in the disordering of tetrataenite and associated drastic change in magnetic properties. As a good indicator of the amount of tetrataenite, hysteresis properties are a very sensitive proxy of the thermal history of ordinary chondrites, revealing low cooling rates during thermal metamorphism and high cooling rates (e.g., following shock reheating or excavation after thermal metamorphism). Our data strengthen the view that the poor magnetic recording properties of multidomain kamacite and the secondary origin of tetrataenite make equilibrated ordinary chondrites challenging

  5. A neural approach for the numerical modeling of two-dimensional magnetic hysteresis

    SciTech Connect

    Cardelli, E.; Faba, A.; Laudani, A.; Riganti Fulginei, F.; Salvini, A.

    2015-05-07

    This paper deals with a neural network approach to model magnetic hysteresis at macro-magnetic scale. Such approach to the problem seems promising in order to couple the numerical treatment of magnetic hysteresis to FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, making possible a full computer simulation in a reasonable time. The neural system proposed consists of four inputs representing the magnetic field and the magnetic inductions components at each time step and it is trained by 2-d measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the neural system returns the predicted value of the field H at the same time step. A suitable partitioning of the neural system, described in the paper, makes the computing process rather fast. Validations with experimental tests and simulations for non-symmetric and minor loops are presented.

  6. Article surveillance magnetic marker having an hysteresis loop with large Barkhausen discontinuities

    DOEpatents

    Humphrey, Floyd B.

    1987-01-01

    A marker for an electronic article surveillance system is disclosed comprising a body of magnetic material with retained stress and having a magnetic hysteresis loop with a large Barkhausen discontinuity such that, upon exposure of the marker to an external magnetic field whose field strength in the direction opposing the instantaneous magnetic polarization of the marker exceeds a predetermined threshold value, there results a regenerative reversal of the magnetic polarization of the marker. An electronic article surveillance system and a method utilizing the marker are also disclosed. Exciting the marker with a low frequency and low field strength, so long as the field strength exceeds the low threshold level for the marker, causes a regenerative reversal of magnetic polarity generating a harmonically rich pulse that is readily detected and easily distinguished.

  7. Specific features of magnetic properties of ferrihydrite nanoparticles of bacterial origin: A shift of the hysteresis loop

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Krasikov, A. A.; Dubrovskiy, A. A.; Semenov, S. V.; Popkov, S. I.; Stolyar, S. V.; Iskhakov, R. S.; Ladygina, V. P.; Yaroslavtsev, R. N.

    2016-02-01

    The results of the experimental investigation into the magnetic hysteresis of systems of superparamagnetic ferrihydrite nanoparticles of bacterial origin have been presented. The hysteresis properties of these objects are determined by the presence of an uncompensated magnetic moment in antiferromagnetic nanoparticles. It has been revealed that, under the conditions of cooling in an external magnetic field, there is a shift of the hysteresis loop with respect to the origin of the coordinates. These features are associated with the exchange coupling of the uncompensated magnetic moment and the antiferromagnetic "core" of the particles, as well as with processes similar to those responsible for the behavior of minor hysteresis loops due to strong local anisotropy fields of the ferrihydrite nanoparticles.

  8. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters.

  9. Mastering hysteresis in magnetocaloric materials.

    PubMed

    Gutfleisch, O; Gottschall, T; Fries, M; Benke, D; Radulov, I; Skokov, K P; Wende, H; Gruner, M; Acet, M; Entel, P; Farle, M

    2016-08-13

    Hysteresis is more than just an interesting oddity that occurs in materials with a first-order transition. It is a real obstacle on the path from existing laboratory-scale prototypes of magnetic refrigerators towards commercialization of this potentially disruptive cooling technology. Indeed, the reversibility of the magnetocaloric effect, being essential for magnetic heat pumps, strongly depends on the width of the thermal hysteresis and, therefore, it is necessary to understand the mechanisms causing hysteresis and to find solutions to minimize losses associated with thermal hysteresis in order to maximize the efficiency of magnetic cooling devices. In this work, we discuss the fundamental aspects that can contribute to thermal hysteresis and the strategies that we are developing to at least partially overcome the hysteresis problem in some selected classes of magnetocaloric materials with large application potential. In doing so, we refer to the most relevant classes of magnetic refrigerants La-Fe-Si-, Heusler- and Fe2P-type compounds.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402928

  10. Nonlinear ac stationary response and dynamic magnetic hysteresis of quantum uniaxial superparamagnets

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Titov, Serguey V.; Coffey, William T.

    2015-11-01

    The nonlinear ac stationary response of uniaxial paramagnets and superparamagnets—nanoscale solids or clusters with spin number S ˜100-104 —in superimposed uniform ac and dc bias magnetic fields of arbitrary strength, each applied along the easy axis of magnetization, is determined by solving the evolution equation for the reduced density matrix represented as a finite set of three-term differential-recurrence relations for its diagonal matrix elements. The various harmonic components arising from the nonlinear response of the magnetization, dynamic magnetic hysteresis loops, etc., are then evaluated via matrix continued fractions indicating a pronounced dependence of the response on S arising from the quantum spin dynamics, which differ markedly from the magnetization dynamics of classical nanomagnets. In the linear response approximation, the results concur with existing solutions.

  11. Origin of modulated phases and magnetic hysteresis in TmB4

    NASA Astrophysics Data System (ADS)

    Wierschem, Keola; Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Panagopoulos, Christos; Sengupta, Pinaki

    2015-12-01

    We investigate the low-temperature magnetic phases in TmB4 , a metallic quantum magnet on the geometrically frustrated Shastry-Sutherland lattice, using coordinated experimental and theoretical studies. Our results provide an explanation for the appearance of the intriguing fractional plateau in TmB4 and accompanying magnetic hysteresis. Together with observation of the bump in the half plateau, our results support the picture that the magnetization plateau structure in TmB4 is strongly influenced by the zero-field modulated phases. We present a phenomenological model to explain the appearance of the modulated phases and a microscopic Hamiltonian that captures the complete magnetic behavior of TmB4 .

  12. Origin of modulated phases and magnetic hysteresis in TmB4

    SciTech Connect

    Wierschem, Keola; Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Panagopoulos, Christos; Sengupta, Pinaki

    2015-12-23

    In this study, we investigate the low-temperature magnetic phases in TmB4, a metallic quantum magnet on the geometrically frustrated Shastry-Sutherland lattice, using coordinated experimental and theoretical studies. Our results provide an explanation for the appearance of the intriguing fractional plateau in TmB4 and accompanying magnetic hysteresis. Together with observation of the bump in the half plateau, our results support the picture that the magnetization plateau structure in TmB4 is strongly influenced by the zero-field modulated phases. We present a phenomenological model to explain the appearance of the modulated phases and a microscopic Hamiltonian that captures the complete magnetic behavior of TmB4.

  13. Origin of modulated phases and magnetic hysteresis in TmB4

    DOE PAGESBeta

    Wierschem, Keola; Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Panagopoulos, Christos; Sengupta, Pinaki

    2015-12-23

    In this study, we investigate the low-temperature magnetic phases in TmB4, a metallic quantum magnet on the geometrically frustrated Shastry-Sutherland lattice, using coordinated experimental and theoretical studies. Our results provide an explanation for the appearance of the intriguing fractional plateau in TmB4 and accompanying magnetic hysteresis. Together with observation of the bump in the half plateau, our results support the picture that the magnetization plateau structure in TmB4 is strongly influenced by the zero-field modulated phases. We present a phenomenological model to explain the appearance of the modulated phases and a microscopic Hamiltonian that captures the complete magnetic behavior ofmore » TmB4.« less

  14. Stress-induced magnetic hysteresis in amorphous microwires probed by microwave giant magnetoimpedance measurements

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Berzhansky, V. N.; Gomonay, H. V.; Qin, F. X.

    2013-05-01

    We report the results of a detailed study of the effects of tensile and torsional stresses on the giant magnetoimpedance (GMI) characteristics of vanishing-magnetostrictive Co-rich microwires at microwave frequency. A complex stress-induced hysteresis behaviour is identified in the GMI response in the presence of tensile and torsional stresses. It is also revealed that there exists a competition between these two kinds of stresses on the critical field via the interactions with the intrinsic anisotropy. An "enhanced core-shell" model is proposed here to resolve the physical origin of the low-field hysteresis and the dependence of induced anisotropy field on the applied tensile and/or torsional stress. Our results are of both technical importance to the design of non-contact stress sensors exploiting the GMI of microwires and fundamental significance to the understanding of the microwave GMI characteristics of soft magnetic microwires in the presence of external stresses.

  15. Hysteresis, thermomagnetic, and low-temperature magnetic properties of Southwestern U.S. obsidians

    NASA Astrophysics Data System (ADS)

    Sternberg, R. S.; Jackson, M. J.; Shackley, M. S.

    2011-12-01

    Geochemical signatures of Southwestern U.S. obsidians have been intensively studied, in part to use as a provenance method for archaeological obsidians (Shackley, 2005). We reported (Sternberg et al. 2010) examined magnetic properties of 50 unoriented samples from 10 geologic obsidian sources in Arizona, Nevada, and New Mexico; here we provide additional results measured at the Institute for Rock magnetism. Room-temperature hysteresis curves were measured using a vibrating sample magnetometer on 58 specimens from all 50 samples. The Quantum Designs Magnetic Properties Measurement System was used to measure low temperature cycling of the natural remanence and/or of a room-temperature saturation isothermal remanence for 10 specimens, and frequency dependence of susceptibility for 7 specimens. A Princeton VSM was used to measure hysteresis curves and thermomagnetic curves for 19 specimens from 17 samples. Eleven of the thermomagnetic curves show Curie temperatures close to that for magnetite, and most of them are almost perfectly reversible. Many of the specimens also show a less well-defined Curie point around 150-200°C; for a few specimens the thermomagnetic behavior is dominated by paramagnetic iron and no ferromagnetic phases can be identified. The low-temperature remanence and susceptibility measurements show the magnetite Verwey transition in almost all specimens, and a significant superparamagnetic presence in only a few cases. Hysteresis parameters plot mainly in the lower half of the PSD domain on a Day plot, and saturation magnetization values indicate magnetite concentrations of about 0.2% to 0.5% for most specimens. The coercivity of remanence decreased considerably for one specimen after surface cleaning, although for 5 other comparisons there was no change.

  16. Naturally Produced Co/CoO Nanocrystalline Magnetic Multilayers: Structure and Inverted Hysteresis.

    PubMed

    Santarossa, Francesca; Pappas, Spiridon D; Delimitis, Andreas; Sousanis, Andreas; Poulopoulos, Panagiotis

    2016-05-01

    Cobalt-based multilayers with excellent sequencing are grown via radiofrequency magnetron sputtering with the use of one Co target and natural oxidation. The Co layers are continuous, fully textured {111} and have the face centered cubic structure. At the end of deposition of each Co layer air is let to flow into the vacuum chamber via a fine (leak) valve. The top of Co is oxidized. The oxidized layers consist of cubic CoO crystallites. Near the film surface hexagonal Co(OH)2 is also detected. Magneto-optical Kerr effect hysteresis loops show in-plane magnetized films. The magnetic saturation field in the out-of-plane measurements is large exceeding 12 kOe. This observation supports indirectly the fact that Co is face centered cubic; if it was c-axis textured hexagonal the magnetocrystalline anisotropy would be large resulting in smaller values of the saturation field. As the Co-layer thickness decreases the in-plane loops show reduced remanence, slow approach to magnetic saturation and the out-of-plane loops show inverted hysteresis and/or crossing loop features with sizeable remanence. The effects are discussed with respect to the enhanced orbital magnetic moment of Co and the antiferromagnetic coupling between Co spins at the Co/CoO interface. PMID:27483852

  17. Effect of the exchange bias on the magnetization hysteresis of a ferromagnetic film in contact with an antiferromagnet

    NASA Astrophysics Data System (ADS)

    Grechnev, A. G.; Kovalev, A. S.; Pankratova, M. L.

    2013-12-01

    The transformation of the hysteretic field dependence of the magnetization of a ferromagnetic thin layer in contact with a magnetically hard antiferromagnet is considered. It is shown that this interaction leads to a shift of the hysteresis loop from the configuration symmetric with respect to magnetic field (exchange bias). Furthermore, upon increasing the magnitude of the exchange interaction, within a narrow range of the magnitudes, there occurs a qualitative change in the hysteresis loop shape and its subsequent disappearance; hence the field dependence of the magnetization becomes monotonous and single-valued.

  18. Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator Based on Krasnosel'skii-Pokrovskii Model

    PubMed Central

    Wang, Shoubin; Gao, Wei

    2013-01-01

    As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator. PMID:23737730

  19. Hysteresis Analysis and Positioning Control for a Magnetic Shape Memory Actuator

    PubMed Central

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2015-01-01

    Magnetic shape memory alloys (MSM alloys), a new kind of smart materials, have become a potential candidate in many engineering fields. MSMs have the advantage of bearing a huge strain, much larger than other materials. In addition, they also have fast response. These characteristics make MSM a good choice in micro engineering. However, MSMs display the obvious hysteresis phenomenon of nonlinear behavior. Thus the difficulty in using the MSM element as a positioning actuator is increased due to the hysteresis. In this paper, the hysteresis phenomenon of the MSM actuator is analyzed, and the closed-loop positioning control is also implemented experimentally. For that, a modified fuzzy sliding mode control (MFSMC) is proposed. The MFSMC and the PID control are used to design the controllers for realizing the positioning control. The experimental results are compared under different experimental conditions, such as different frequency, amplitude, and loading. The experimental results show that the precise positioning control of MFSMC can be achieved satisfactorily. PMID:25853405

  20. Nanomechanical Detection of Magnetic Hysteresis of a Single-crystal Yttrium Iron Garnet Micromagnetic Disk

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Diao, Zhu; Burgess, Jacob; Compton, Shawn; Fani Sani, Fatemeh; Firdous, Tayyaba; Vick, Douglas; Belov, Miro; Hiebert, Wayne; Freeman, Mark

    2013-03-01

    A micromagnetic disk was milled from a monocrystalline yttrium iron garnet film using a focused ion beam and micromanipulated onto a nanoscale torsional resonator. Nanomechanical torque magnetometry results show a unipolar magnetic hysteresis characteristic of a magnetic vortex state. Landau-Lifshitz-Gilbert-based micromagnetic simulations of the disk show a rich, flux-enclosed, three-dimensional domain structure. On the top and bottom faces of the disk, a skewed vortex state exists with a very small core. The core region extends through the thickness of the disk with a smooth variation in core diameter reaching a maximum along the midplane of the disk. The single crystalline nature of the disk lends to an observed absence of Barkhausen-like steps in the magnetization-versus-field curves, qualitatively different in comparison to the magnetometry results of an individual polycrystalline permalloy microdisk. Prospects for the mechanical detection of spin dynamical modes in these structures will also be discussed.

  1. Magnetic hysteresis classification of the lunar surface and the interpretation of permanent remanence in lunar surface samples

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1972-01-01

    A magnetic hysteresis classification of the lunar surface is presented. It was found that there is a distinct correlation between natural remanence (NRM), saturation magnetization, and the hysteresis ratios for the rock samples. The hysteresis classification is able to explain some aspects of time dependent magnetization in the lunar samples and relates the initial susceptibility to NRM, viscous remanence, and to other aspects of magnetization in lunar samples. It is also considered that since up to 60% of the iron in the lunar soil may be super paramagnetic at 400 K, and only 10% at 100 K, the 50% which becomes ferromagnetic over the cycle has the characteristics of thermoremanence and may provide for an enhancement in measurable field on the dark side during a subsatellite magnetometer circuit.

  2. Permanent magnet online magnetization performance analysis of a flux mnemonic double salient motor using an improved hysteresis model

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyong; Quan, Li; Chen, Yunyun; Liu, Guohai; Shen, Yue; Liu, Hui

    2012-04-01

    The concept of the memory motor is based on the fact that the magnetization level of the AlNiCo permanent magnet in the motor can be regulated by a temporary current pulse and memorized automatically. In this paper, a new type of memory motor is proposed, namely a flux mnemonic double salient motor drive, which is particularly attractive for electric vehicles. To accurately analyze the motor, an improved hysteresis model is employed in the time-stepping finite element method. Both simulation and experimental results are given to verify the validity of the new method.

  3. A Jiles-Atherton and fixed-point combined technique for time periodic magnetic field problems with hysteresis

    SciTech Connect

    Chiampi, M.; Repetto, M.; Chiarabaglio, D.

    1995-11-01

    The hysteresis phenomenon can significantly affect the behavior of magnetic cores in electrical machines and devices. This paper presents a finite element solution of periodic steady state magnetic field problems in soft materials with scalar hysteresis. The Jiles-Atherton model is employed for the generation of symmetric B-H loops and it is coupled with the Fixed Point Technique for handling magnetic nonlinearities. The proposed procedure is applied to a hysteretic model problem whose analytical solution is available. The results show that the Fixed Point Technique can efficiently deal with non-single valued material characteristics under periodic operating conditions.

  4. Ba-ferrite particles for magnetic liquids with enhanced Neel relaxation time and loss investigations

    NASA Astrophysics Data System (ADS)

    Muller, R.; Hiergeist, R.; Gawalek, W.; Hoell, A.

    2003-03-01

    Nanometer-scale particles are interesting because of their unique magnetic properties. Barium ferrite with particle sizes ⪉ 10 nm behave superparamagnetically and show at bigger sizes the transition to single domain behaviour. Beside the particle size, the anisotropy energy K_1\\cdot V, and thus the Neel relaxation time, depends also on the amount of doping. The glass crystallisation method was used for preparation of different Ba-ferrites. Ferrofluids have been prepared using Isopar^{circledR} M or dodecane as a carrier liquid. Magnetic parameters were obtained by VSM, hysteresis losses (specific loss power) of ferrite powders by a hysteresometer at 50 Hz. Magnetic core sizes were calculated from hysteresis loops. SANS curves of a ferrofluid reveal single magnetic particles and aggregated magnetic particles with an incomplete organic shell. Figs 3, Refs 9.

  5. Magnetic biasing of a ferroelectric hysteresis loop in a multiferroic orthoferrite.

    PubMed

    Tokunaga, Y; Taguchi, Y; Arima, T; Tokura, Y

    2014-01-24

    In a multiferroic orthoferrite Dy0.7Tb0.3FeO3, which shows electric-field-(E-)driven magnetization (M) reversal due to a tight clamping between polarization (P) and M, a gigantic effect of magnetic-field (H) biasing on P-E hysteresis loops is observed in the case of rapid E sweeping. The magnitude of the bias E field can be controlled by varying the magnitude of H, and its sign can be reversed by changing the sign of H or the relative clamping direction between P and M. The origin of this unconventional biasing effect is ascribed to the difference in the Zeeman energy between the +P and -P states coupled with the M states with opposite sign. PMID:24484164

  6. Modeling of permanent magnets: Interpretation of parameters obtained from the Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Lewis, L. H.; Gao, J.; Jiles, D. C.; Welch, D. O.

    1996-04-01

    The Jiles-Atherton theory is based on considerations of the dependence of energy dissipation within a magnetic material resulting from changes in its magnetization. The algorithm based on the theory yields five computed model parameters, MS, a, α, k, and c, which represent the saturation magnetization, the effective domain density, the mean exchange coupling between the effective domains, the flexibility of domain walls and energy-dissipative features in the microstructure, respectively. Model parameters were calculated from the algorithm and linked with the physical attributes of a set of three related melt-quenched permanent magnets based on the Nd2Fe14B composition. Measured magnetic parameters were used as inputs into the model to reproduce the experimental hysteresis curves. The results show that two of the calculated parameters, the saturation magnetization MS and the effective coercivity k, agree well with their directly determined analogs. The calculated a and α parameters provide support for the concept of increased intergranular exchange coupling upon die upsetting, and decreased intergranular exchange coupling with the addition of gallium.

  7. Anomalous thermal hysteresis in the high-field magnetic moments of magnetic nanoparticles embedded in multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Wang, Jun; Ren, Yang; Beeli, Pieder

    2012-02-01

    We report high-temperature (300-1120 K) magnetic properties of Fe and Fe3O4 nanoparticles embedded in multi-walled carbon nanotubes. We unambiguously show that the magnetic moments of Fe and Fe3O4 nanoparticles are seemingly enhanced by a factor of about 3 compared with what they would be expected to have for free (unembedded) magnetic nanoparticles. What is more intriguing is that the enhanced moments were completely lost when the sample was heated up to 1120 K and the lost moments at 1120 K were completely recovered through several thermal cycles below 1020 K. The anomalous thermal hysteresis of the high-field magnetic moments is unlikely to be explained by existing physical models except for the high-field paramagnetic Meissner effect due to the existence of ultrahigh temperature superconductivity in the multi-walled carbon nanotubes.

  8. Deriving a functional form of anhysteretic magnetization function for Jiles-Atherton theory of hysteresis

    NASA Astrophysics Data System (ADS)

    Jiles, David; Raghunathan, Arun; Melikhov, Yevgen; Snyder, John

    2010-03-01

    The Jiles-Atherton (JA) theory explains the ferromagnetic hysteresis through contributions of irreversible and reversible magnetization components [1]. Anhysteretic magnetization function, a function of energy of the moments in a domain, forms a basic building block of this model. This function has known forms for specific cases of anisotropy: axially anisotropic (one-dimensional), planar anisotropic (two-dimensional), and isotropic (three-dimensional) [1, 2]. Hence there is a need to generalize anhysteretic magnetization function to extend JA theory to other forms of anisotropy. In this work, a functional form of anhysteretic magnetization function has been derived. It was shown that this functional form of anhysteretic magnetization with necessary boundary conditions can be reduced to the familiar specific model equations in the particular cases. This work extends the applicability of the JA model to systems with various anisotropy dependences. This research was supported by the UK EPSRC (EP/D057094) and the US NSF (DMR-0402716). [1] D. C. Jiles et. al., JMMM. 61, 48 (1986). [2] Y. M. Shi et. al., JMMM. 187, 75 (1998).

  9. Experimental measurement and calculation of losses in planar radial magnetic bearings

    NASA Technical Reports Server (NTRS)

    Kasarda, M. E. F.; Allaire, P. E.; Hope, R. W.; Humphris, R. R.

    1994-01-01

    The loss mechanisms associated with magnetic bearings have yet to be adequately characterized or modeled analytically and thus pose a problem for the designer of magnetic bearings. This problem is particularly important for aerospace applications where low power consumption of components is critical. Also, losses are expected to be large for high speed operation. The iron losses in magnetic bearings can be divided into eddy current losses and hysteresis losses. While theoretical models for these losses exist for transformer and electric motor applications, they have not been verified for magnetic bearings. This paper presents the results from a low speed experimental test rig and compares them to calculated values from existing theory. Experimental data was taken over a range of 90 to 2,800 rpm for several bias currents and two different pole configurations. With certain assumptions agreement between measured and calculated power losses was within 16 percent for a number of test configurations.

  10. Application of hysteresis modeling to magnetic techniques for monitoring biaxial stress

    SciTech Connect

    Sablik, M.J.; Burkhardt, G.L.; Kwun, H.

    1993-12-31

    A probe, consisting of two excitation coils and a detection coil wrapped around a core with a Hall probe between the pole pieces, has been used to measure indirectly the influence of biaxial stress on the magnetic properties of a ferromagnetic specimen, in this case annealed SAE-4130 steel. Properties measured indirectly included remanence, coercivity, and first, third and fifth harmonic amplitudes. The properties were extracted from the voltage measured across the detection coil and incorporate the magnetic influence of the soft iron core, but with the effect of air gap variation between pole piece and sample kept to a controlled range. Results were compared to a micromagnetic model for the effect of biaxial stress on hysteresis and on magnetic properties. The micromagnetic model is a modified version of a model previously employed by Schneider et al. The experimental remanence variation due to biaxial stress compared very well to the predictions of the model. Furthermore, the model predict,s and experiment bears out, that the remanence with the field along one stress axis minus the remanence with the field along the other stress axis falls in a straight-line band of values when plotted against the difference of the two stresses. This suggests a possible NDE technique for detecting differences in biaxial stresses at a given location in a steel specimen.

  11. The origin of noise and magnetic hysteresis in crystalline permalloy ring-core fluxgate sensors

    NASA Astrophysics Data System (ADS)

    Narod, B. B.

    2014-06-01

    6-81.3 Mo permalloy, developed in the 1960s for use in high performance ring-core fluxgate sensors, remains the state-of-the-art for permalloy-cored fluxgate magnetometers. The magnetic properties of 6-81.3, namely magnetocrystalline and magnetoelastic anisotropies and saturation induction are all optimum in the Fe-Ni-Mo system. In such polycrystalline permalloy fluxgate sensors a single phenomenon may cause both fluxgate noise and magnetic hysteresis, explain Barkhausen jumps, remanence and coercivity, and avoid domain denucleation. The phenomenon, domain wall reconnection, is presented as part of a theoretical model. In the unmagnetized state a coarse-grain high-quality permalloy foil ideally forms stripe domains, which present at the free surface as parallel, uniformly spaced domain walls that cross the entire thickness of the foil. Leakage flux "in" and "out" of alternating domains is a requirement of the random orientation, grain-by-grain, of magnetic easy axes' angles with respect to the foil free surface. Its magnetostatic energy together with domain wall energy determines an energy budget to be minimized. Throughout the magnetization cycle the free surface domain pattern remains essentially unchanged, due to the magnetostatic energy cost such a change would elicit. Thus domain walls are "pinned" to free surfaces. Driven to saturation, domain walls first bulge then reconnect via Barkhausen jumps to form a new domain configuration this author has called "channel domains", that are attached to free surfaces. The approach to saturation now continues as reversible channel domain compression. Driving the permalloy deeper into saturation compresses the channel domains to arbitrarily small thickness, but will not cause them to denucleate. Returning from saturation the channel domain structure will survive through zero H, thus explaining remanence. The Barkhausen jumps being irreversible exothermic events are sources of fluxgate noise, powered by the energy

  12. The origin of noise and magnetic hysteresis in crystalline permalloy ring-core fluxgate sensors

    NASA Astrophysics Data System (ADS)

    Narod, B. B.

    2014-09-01

    Developed in the 1960s for use in high-performance ring-core fluxgate sensors, 6-81.3 Mo permalloy remains the state of the art for permalloy-cored fluxgate magnetometers. The magnetic properties of 6-81.3, namely magnetocrystalline and magnetoelastic anisotropies and saturation induction, are all optimum in the Fe-Ni-Mo system. In such polycrystalline permalloy fluxgate sensors, a single phenomenon may cause both fluxgate noise and magnetic hysteresis; explain Barkhausen jumps, remanence and coercivity; and avoid domain denucleation. This phenomenon, domain wall reconnection, is presented as part of a theoretical model. In the unmagnetized state a coarse-grain high-quality permalloy foil ideally forms stripe domains, which present at the free surface as parallel, uniformly spaced domain walls that cross the entire thickness of the foil. Leakage flux "in" and "out" of alternating domains is a requirement of the random orientation, grain by grain, of magnetic easy axes' angles with respect to the foil free surface. Its magnetostatic energy together with domain wall energy determines an energy budget to be minimized. Throughout the magnetization cycle the free-surface domain pattern remains essentially unchanged, due to the magnetostatic energy cost such a change would elicit. Thus domain walls are "pinned" to free surfaces. Driven to saturation, domain walls first bulge then reconnect via Barkhausen jumps to form a new domain configuration that I have called "channel domains", which are attached to free surfaces. The approach to saturation now continues as reversible channel domain compression. Driving the permalloy deeper into saturation compresses the channel domains to arbitrarily small thickness, but will not cause them to denucleate. Returning from saturation the channel domain structure will survive through zero H, thus explaining remanence. The Barkhausen jumps, being irreversible exothermic events, are sources of fluxgate noise powered by the energy

  13. Hysteresis in the tearing mode locking/unlocking due to resonant magnetic perturbations in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Fridström, R.; Frassinetti, L.; Brunsell, P. R.

    2015-10-01

    The physical mechanisms behind the hysteresis in the tearing mode locking and unlocking to a resonant magnetic perturbation (RMP) are experimentally studied in EXTRAP T2R reversed-field pinch. The experiments show that the electromagnetic and the viscous torque increase with increasing perturbation amplitude until the mode locks to the wall. At the wall-locking, the plasma velocity reduction profile is peaked at the radius where the RMP is resonant. Thereafter, the viscous torque drops due to the relaxation of the velocity in the central plasma. This is the main reason for the hysteresis in the RMP locking and unlocking amplitude. The increased amplitude of the locked tearing mode produces further deepening of the hysteresis. Both experimental results are in qualitative agreement with the model in Fitzpatrick et al (2001 Phys. Plasmas 8 4489)

  14. Magnetic hysteresis of p(+) and He-3(2+) irradiated melt-textured YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Song, S. N.; Liu, J.; Chen, I. G.; Weinstein, Roy

    1992-01-01

    We have measured the magnetic hysteresis loops and temperature dependent trapped fields in melt-textured YBa2Cu3O(7-delta) samples before and after p(+) and He-3(2+) irradiation using a Hall effect magnetometer (HEM) as well as a commercial vibrating sample magnetometer (VSM). For proper He-3(2+) fluence, the critical current density may be enhanced by a factor of 10. Calculations based on various critical state models show that before the irradiation, the hysteresis loops can be well accounted for by a critical current density of a modified power law field dependence. After the irradiation, the best fit has been achieved by using an exponential form. Jc and its field dependence deduced from HEM hysteresis loops are in good agreement with those deduced from the VSM loops, suggesting that the Hall effect magnetometer can be conveniently used to characterize bulk high Tc oxide superconductors.

  15. Damage Monitoring of Unidirectional C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading using A Hysteresis Loss Energy-Based Damage Parameter at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    The damage evolution of unidirectional C/SiC ceramic-matrix composite (CMC) under cyclic fatigue loading has been investigated using a hysteresis loss energy-based damage parameter at room and elevated temperatures. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy versus cycle number have been analyzed. By comparing the experimental fatigue hysteresis loss energy with theoretical computational values, the interface shear stress corresponding to different cycle number and peak stress has been estimated. The experimental evolution of fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter versus cycle number has been predicted for unidirectional C/SiC composite at room and elevated temperatures. The predicted results of interface shear stress degradation, stress-strain hysteresis loops corresponding to different number of applied cycles, fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter as a functions of cycle number agreed with experimental data. It was found that the fatigue hysteresis energy-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.

  16. Damage Monitoring of Unidirectional C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading using A Hysteresis Loss Energy-Based Damage Parameter at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-06-01

    The damage evolution of unidirectional C/SiC ceramic-matrix composite (CMC) under cyclic fatigue loading has been investigated using a hysteresis loss energy-based damage parameter at room and elevated temperatures. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy versus cycle number have been analyzed. By comparing the experimental fatigue hysteresis loss energy with theoretical computational values, the interface shear stress corresponding to different cycle number and peak stress has been estimated. The experimental evolution of fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter versus cycle number has been predicted for unidirectional C/SiC composite at room and elevated temperatures. The predicted results of interface shear stress degradation, stress-strain hysteresis loops corresponding to different number of applied cycles, fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter as a functions of cycle number agreed with experimental data. It was found that the fatigue hysteresis energy-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.

  17. A new stator-flux orientation strategy for flux-switching permanent magnet motor based on current-hysteresis control

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Cheng, Ming; Lu, Wei; Jia, Hongyun

    2009-04-01

    A stator-flux orientation strategy based on current hysteresis for the flux-switching permanent magnet (FSPM) motor is proposed, in which the stator-PM FSPM motor is considered as a conventional rotor-PM surface-mounted motor and an equivalent rotor-orientated dq-axes synchronous reference frame is built although there are actually no rotary magnetic motive force produced by the stator magnets in the FSPM motor. Based on the proposed model, a vector-control strategy with current hysteresis for the FSPM motor drive is investigated and implemented on a dSPACE-based platform, and both the simulated and experimental results validate the effectiveness. It should be emphasized that the proposed stator-flux orientation strategy can be applied to other stator-PM machines (including doubly salient and flux-reversal PM machines) and other control methods (including space-vector pulsed-width-modification and direct torque control).

  18. Analysis of Magnetic Minor Hysteresis Loops in Thermally Aged and Cold-rolled Fe-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Takahashi, F.; Kobayashi, S.; Murakami, T.; Takahashi, S.; Kamada, Y.; Kikuchi, H.

    2011-01-01

    Neutron irradiation causes the formation of Cu precipitate in reactor pressure vessel steel and makes the steel susceptible to rupture. In the present study, we have examined magnetic minor hysteresis loops of Fe-1wt%Cu alloy after thermally ageing at 753 K and subsequent cold rolling to elucidate the effects of Cu precipitation on magnetic properties. Minor-loop coefficients, obtained from scaling power laws between field-dependent parameters of minor hysteresis loops, decrease with ageing time and show a local maximum around 200 min, reflecting the growth of Cu precipitates with ageing. For the alloy cold-rolled after ageing, the minor-loop properties linearly increase with reduction and show a good relationship with mechanical properties such as DBTT and hardness. These observations indicate that the analysis method using magnetic minor loops can be an useful technique of nondestructive evaluation of irradiation embrittlement and subsequent deformation hardening in reactor pressure vessel steels.

  19. The effect of surface grain reversal on the AC losses of sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Moore, Martina; Roth, Stefan; Gebert, Annett; Schultz, Ludwig; Gutfleisch, Oliver

    2015-02-01

    Sintered Nd-Fe-B magnets are exposed to AC magnetic fields in many applications, e.g. in permanent magnet electric motors. We have measured the AC losses of sintered Nd-Fe-B magnets in a closed circuit arrangement using AC fields with root mean square-values up to 80 mT (peak amplitude 113 mT) over the frequency range 50 to 1000 Hz. Two magnet grades with different dysprosium content were investigated. Around the remanence point the low grade material (1.7 wt% Dy) showed significant hysteresis losses; whereas the losses in the high grade material (8.9 wt% Dy) were dominated by classical eddy currents. Kerr microscopy images revealed that the hysteresis losses measured for the low grade magnet can be mainly ascribed to grains at the sample surface with multiple domains. This was further confirmed when the high grade material was subsequently exposed to DC and AC magnetic fields. Here a larger number of surface grains with multiple domains are also present once the step in the demagnetization curve attributed to the surface grain reversal is reached and a rise in the measured hysteresis losses is evident. If in the low grade material the operating point is slightly offset from the remanence point, such that zero field is not bypassed, its AC losses can also be fairly well described with classical eddy current theory.

  20. Magnetic evaluation of irradiation hardening in A533B reactor pressure vessel steels: Magnetic hysteresis measurements and the model analysis

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Yamamoto, T.; Klingensmith, D.; Odette, G. R.; Kikuchi, H.; Kamada, Y.

    2012-03-01

    We report results of measurements of magnetic minor hysteresis loops for neutron-irradiated A533B nuclear reactor pressure vessel steels varying alloy composition and irradiation condition. A minor-loop coefficient, which is obtained from a scaling power law between minor-loop parameters exhibits a steep decrease just after irradiation, followed by a maximum in the intermediate fluence regime for most alloys. A model analysis assuming Avrami-type growth for Cu-rich precipitates and an empirical logarithmic law for relaxation of residual stress demonstrates that an increment of the coefficient due to Cu-rich precipitates increases with Cu and Ni contents and is in proportion to a yield stress change, which is related to irradiation hardening.

  1. Magnetic hysteresis in small-grained CoxPd1-x nanowire arrays

    NASA Astrophysics Data System (ADS)

    Viqueira, M. S.; Pozo-López, G.; Urreta, S. E.; Condó, A. M.; Cornejo, D. R.; Fabietti, L. M.

    2015-11-01

    Co-Pd nanowires with small grain size are fabricated by AC electrodeposition into hexagonally ordered alumina pores, 20-35 nm in diameter and about 1 μm long. The effects of the alloy composition, the nanowire diameter and the grain size on the hysteresis properties are considered. X-ray diffraction indicates that the nanowires are single phase, a fcc Co-Pd solid solution; electron microscopy results show that they are polycrystalline, with randomly oriented grains (7-12 nm), smaller than the wire diameter. Nanowire arrays are ferromagnetic, with an easy magnetization axis parallel to the nanowire long axis. Both, the coercive field and the loop squareness monotonously increase with the Co content and with the grain size, but no clear correlation with the wire diameter is found. The Co and Co-rich nanowire arrays exhibit coercive fields and reduced remanence values quite insensitive to temperature in the range 4 K-300 K; on the contrary, in Pd-rich nanowires both magnitudes are smaller and they largely increase during cooling below 100 K. These behaviors are systematized by considering the strong dependences displayed by the magneto-crystalline anisotropy and the saturation magnetostriction on composition and temperature. At low temperatures the effective anisotropy value and the domain-wall width to grain size ratio drastically change, promoting less cooperative and harder nucleation modes.

  2. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples--a useful setup for magnetic hyperthermia applications.

    PubMed

    Connord, V; Mehdaoui, B; Tan, R P; Carrey, J; Respaud, M

    2014-09-01

    A setup for measuring the high-frequency hysteresis loops of magnetic samples is described. An alternating magnetic field in the range 6-100 kHz with amplitude up to 80 mT is produced by a Litz wire coil. The latter is air-cooled using a forced-air approach so no water flow is required to run the setup. High-frequency hysteresis loops are measured using a system of pick-up coils and numerical integration of signals. Reproducible measurements are obtained in the frequency range of 6-56 kHz. Measurement examples on ferrite cylinders and on iron oxide nanoparticle ferrofluids are shown. Comparison with other measurement methods of the hysteresis loop area (complex susceptibility, quasi-static hysteresis loops, and calorific measurements) is provided and shows the coherency of the results obtained with this setup. This setup is well adapted to the magnetic characterization of colloidal solutions of magnetic nanoparticles for magnetic hyperthermia applications. PMID:25273736

  3. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples—A useful setup for magnetic hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Connord, V.; Mehdaoui, B.; Tan, R. P.; Carrey, J.; Respaud, M.

    2014-09-01

    A setup for measuring the high-frequency hysteresis loops of magnetic samples is described. An alternating magnetic field in the range 6-100 kHz with amplitude up to 80 mT is produced by a Litz wire coil. The latter is air-cooled using a forced-air approach so no water flow is required to run the setup. High-frequency hysteresis loops are measured using a system of pick-up coils and numerical integration of signals. Reproducible measurements are obtained in the frequency range of 6-56 kHz. Measurement examples on ferrite cylinders and on iron oxide nanoparticle ferrofluids are shown. Comparison with other measurement methods of the hysteresis loop area (complex susceptibility, quasi-static hysteresis loops, and calorific measurements) is provided and shows the coherency of the results obtained with this setup. This setup is well adapted to the magnetic characterization of colloidal solutions of magnetic nanoparticles for magnetic hyperthermia applications.

  4. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    SciTech Connect

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zou, Chao; Yang, Jun; Dong, Juan

    2013-12-16

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz. In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.0078hysteresis loss coefficient is lower for the silicone-MnZn ferrite coated sample (k{sub 2} =1.4058) in comparison with other samples.

  5. Kinetic effects on double hysteresis in spin crossover molecular magnets analyzed with first order reversal curve diagram technique

    SciTech Connect

    Stan, Raluca-Maria; Gaina, Roxana; Enachescu, Cristian E-mail: radu.tanasa@uaic.ro; Stancu, Alexandru; Tanasa, Radu E-mail: radu.tanasa@uaic.ro; Bronisz, Robert

    2015-05-07

    In this paper, we analyze two types of hysteresis in spin crossover molecular magnets compounds in the framework of the First Order Reversal Curve (FORC) method. The switching between the two stable states in these compounds is accompanied by hysteresis phenomena if the intermolecular interactions are higher than a threshold. We have measured the static thermal hysteresis (TH) and the kinetic light induced thermal hysteresis (LITH) major loops and FORCs for the polycrystalline Fe(II) spin crossover compound [Fe{sub 1−x}Zn{sub x}(bbtr){sub 3}](ClO{sub 4}){sub 2} (bbtr = 1,4-di(1,2,3-triazol-1-yl)butane), either in a pure state (x = 0) or doped with Zn ions (x = 0.33) considering different sweeping rates. Here, we use this method not only to infer the domains distribution but also to disentangle between kinetic and static components of the LITH and to estimate the changes in the intermolecular interactions introduced by dopants. We also determined the qualitative relationship between FORC distributions measured for TH and LITH.

  6. Ac hysteresis loop measurement of stator-tooth in induction motor

    SciTech Connect

    Son, D.

    1999-09-01

    The properties of ac hysteresis loop of a stator tooth in a 5 hp induction motor was measured and analyzed. The load increase on the motor decreased magnetic induction, however increase the minor hysteresis loops in the high induction region. This effect caused increase in the core loss. Depending on condition of the motor, the core loss of the stator tooth can be 50% greater than the core loss under sinusoidal magnetic induction waveform.

  7. Enhancement of magnetic domain topologies in Co/Pt thin films by fine tuning the magnetic field path throughout the hysteresis loop

    NASA Astrophysics Data System (ADS)

    Westover, Andrew S.; Chesnel, Karine; Hatch, Kelsey; Salter, Philip; Hellwig, Olav

    2016-02-01

    We have studied the influence of magnetic history on the topology of perpendicular magnetic domains in a thin ferromagnetic film made of [Co(8 Å)/Pt(7 Å)]50 multilayers. More specifically, we have followed the morphological changes in the domain pattern when applying a magnetic field perpendicular to the layer, throughout minor and major magnetization loops, and in the resulting remanent state. We carried out this study by using MFM microscopy with an in-situ magnetic field. We find that the morphology of the magnetic domain pattern is greatly influenced by the magnetic history of the material and that some features, such as the degree of bubbliness (i.e., the extent of bubble domain formation) and density of isolated domains can be enhanced by fine tuning the magnetic field path within the major hysteresis loop towards different remanent states. In particular, we see how hysteresis is correlated to irreversible changes in the domain morphology. More interestingly, we find that the magnetic domain morphology at remanence can be changed from an interconnected labyrinthine stripe state to a state of many separated bubble domains by fine tuning the magnitude of the field previously applied to the material. These results agree well with other findings, such as the magnetic reversal behavior and magnetic memory effects in Co/Pt multilayers, and provide opportunities for potential technological applications.

  8. Magnetic core loss of ultrahigh strength FeCo alloys

    NASA Astrophysics Data System (ADS)

    Cheng, X. M.; Zhang, X. K.; Zhang, D. Z.; Lee, S. H.; Duckham, A.; Weihs, T. P.; Cammarata, R. C.; Xiao, John Q.; Chien, C. L.

    2003-05-01

    Hiperco® 50 alloy heat treated between 450 and 650 °C exhibits superior mechanical properties. We report the measurements of the ac core loss at various frequencies up to 4500 Hz of the Hiperco® 50 alloy samples annealed at 450 and 650 °C. The 650 °C annealed specimens have lower ac core loss than that of the 450 °C annealed ones. The total core loss, consisting of contributions from hysteresis core loss and eddy-current core loss, depends on frequency f as af+bf2. The eddy-current loss of a single laminate is minor compared to the hysteresis loss.

  9. Butterfly hysteresis and slow relaxation of the magnetization in (Et 4N) 3Fe 2F 9: manifestations of a single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Schenker, Ralph; Leuenberger, Michael N.; Chaboussant, Grégory; Güdel, Hans U.; Loss, Daniel

    2002-06-01

    (Et 4N) 3Fe 2F 9 exhibits a butterfly-shaped hysteresis below 5 K when the magnetic field is parallel to the threefold axis, in accordance with a very slow magnetization relaxation in the timescale of minutes. This is attributed to an energy barrier Δ=2.40 K resulting from the S=5 dimer ground state of [Fe 2F 9] 3- and a negative axial anisotropy. The relaxation partly occurs via thermally assisted quantum tunneling. These features of a single-molecule magnet are observable at temperatures comparable to the barrier height, due to an extremely inefficient energy exchange between the spin system and the phonons. The butterfly shape of the hysteresis arises from a phonon avalanche effect.

  10. Investigation into loss in ferrofluid magnetization

    NASA Astrophysics Data System (ADS)

    Li, J.; Gong, X. M.; Lin, Y. Q.; Liu, X. D.; Chen, L. L.; Li, J. M.; Mao, H.; Li, D. C.

    2014-07-01

    Ferrofluids containing γ-Fe2O3/Ni2O3 nanoparticles (not chemically treated) were synthesized using water and mixed water-glycerol as carrier liquid and the ferrofluid viscosity was modified by varying the glycerol content in the carrier liquid. The apparent magnetization of the ferrofluids decreased with increasing glycerol content. The loss in magnetization is described by the ratio of effective magnetic volume fraction to physical volume fraction of nanoparticles in the ferrofluids as a characteristic parameter. We ascribe the loss to the formation of "dead aggregates" having a ring-like structure of closed magnetic flux rather than to any chemical reaction. Such dead aggregates exist in zero magnetic field and do not contribute to the magnetization in the low or high field regime, so that the effective magnetic volume fraction in the ferrofluids decrease. An increase in carrier liquid viscosity is similar to a weakening of the thermal effect, so the number of dead aggregates increases and the magnetization decreases in inverse proportion to the viscosity. This relationship between the apparent magnetization and ferrofluid carrier liquid viscosity can be termed the "viscomagnetic effect".

  11. Mass loss from warm giants: Magnetic effects

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1980-01-01

    Among warm giant stars, rapid mass loss sets in along a well defined velocity dividing line (VDL). Hot corona also disappear close to the VDL and thermal pressure cannot drive the observed rapid mass loss in these stars. The VDL may be associated with magnetic fields changing from closed to open. Such a change is consistent with the lack of X-rays from late-type giants. A magnetic transition locus based on Pneuman's work on helmet streamer stability agrees well with the empirical VDL. The change from closed to open fields not only makes rapid mass loss possible, but also contributes to energizing the mass loss in the form of discrete bubbles.

  12. A neural network for incorporating the thermal effect on the magnetic hysteresis of the 3F3 material using the Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Nouicer, A.; Nouicer, E.; Feliachi, Mouloud

    2015-01-01

    The present paper deals with the temperature dependent modeling approach for the generation of hysteresis loops of ferromagnetic materials. The physical model is developed to study the effect of temperature on the magnetic hysteresis loop using the Jiles-Atherton (J-A) model. The thermal effects were incorporated through temperature dependent hysteresis parameters of JA model. The temperature-dependent J-A model was validated by measurements made on the ferrite material. The results of proposed model were in good agreement with the measurements.

  13. Mathematical models of hysteresis. Progress report, January 1993--December 1993

    SciTech Connect

    Mayergoyz, I.D.

    1993-09-01

    Progress is reported in 7 areas: development of vector Preisach-type models of hysteresis; modeling of rotational hysteretic losses; experimental testing of generalized vector Preisach models of hysteresis; development of Preisach-type models for aftereffect; analytical investigation of penetration of electromagnetic fields into superconductors with gradual resistive transitions; computation of magnetic fields in hysteretic media; and development of new techniques for calculating 3-D eddy current problems.

  14. Magnetic hysteresis at the domain scale of a multi-scale material model for magneto-elastic behaviour

    NASA Astrophysics Data System (ADS)

    Vanoost, D.; Steentjes, S.; Peuteman, J.; Gielen, G.; De Gersem, H.; Pissoort, D.; Hameyer, K.

    2016-09-01

    This paper proposes a multi-scale energy-based material model for poly-crystalline materials. Describing the behaviour of poly-crystalline materials at three spatial scales of dominating physical mechanisms allows accounting for the heterogeneity and multi-axiality of the material behaviour. The three spatial scales are the poly-crystalline, grain and domain scale. Together with appropriate scale transitions rules and models for local magnetic behaviour at each scale, the model is able to describe the magneto-elastic behaviour (magnetostriction and hysteresis) at the macroscale, although the data input is merely based on a set of physical constants. Introducing a new energy density function that describes the demagnetisation field, the anhysteretic multi-scale energy-based material model is extended to the hysteretic case. The hysteresis behaviour is included at the domain scale according to the micro-magnetic domain theory while preserving a valid description for the magneto-elastic coupling. The model is verified using existing measurement data for different mechanical stress levels.

  15. Superconducting properties of internal-tin route Nb 3Sn wires with radially arranged filaments . Development that realizes high Jc and low hysteresis loss

    NASA Astrophysics Data System (ADS)

    Kubo, Yoshio; Egawa, Kunihiko; Nagai, Takayuki; Sone, Takanori; Ikeda, Bunko; Hasegawa, Mitsuru; Kosuge, Michio

    2006-04-01

    An internal-tin route Nb 3Sn superconducting wire that has both remarkably low hysteresis loss ( Qh) and high critical current density ( Jc) was developed according to a new design idea. The wire was constructed by arranging the filaments in a radial layout, enlarging the outer filaments along the radial direction, narrowing the filament spacing in the radial direction intentionally and enlarging the filament spacing in tangential direction. Thus, the electromagnetic coupling among the filaments in tangential direction due to the bridging and/or proximity effect was suppressed without decreasing the volume fraction of Nb. As a result, excellent properties such as Jc(12 T) = 1.15 × 10 3 A/mm 2 and Qh = 301 mJ/cm 3 (for 1 cycle of B = ±3 T) were obtained. We also evaluated the transition temperature ( Tc) and upper critical field ( Bc2) of the wire. The values for Tc and Bc2 were 17.3 K and 24.1 T, respectively, which were much better than those of usual internal-tin route wires. Moreover, electron probe micro-analyses confirmed that the good Tc and Bc2 were the result of the qualitative improvement of the Nb 3Sn compound based on the effects of arranging the Nb filaments radially, increasing the ratio of Sn-to-Nb and shortening the diffusion length for Sn. This wire is promising for use with conduction-cooled high-field magnets, in which there is a need to decrease the load of the cryocooler, and also for the strands of fusion coils.

  16. Application of the Preisach and Jiles-Atherton models to the simulation of hysteresis in soft magnetic alloys

    NASA Astrophysics Data System (ADS)

    Pasquale, M.; Bertotti, G.; Jiles, D. C.; Bi, Y.

    1999-04-01

    This article describes the advances in unification of model descriptions of hysteresis in magnetic materials and demonstrates the equivalence of two widely accepted models, the Preisach (PM) and Jiles-Atherton (JA) models. Recently it was shown that starting from general energy relations, the JA equation for a loop branch can be derived from PM. The unified approach is here applied to the interpretation of magnetization measured in nonoriented Si-Fe steels with variable grain size , and also in as-cast and annealed Fe amorphous alloys. In the case of NO Fe-Si, the modeling parameter k defined by the volume density of pinning centers is such that k≈A+B/, where the parameters A and B are related to magnetocrystalline anisotropy and grain texture. The value of k in the amorphous alloys can be used to estimate the microstructural correlation length playing the role of effective grain size in these materials.

  17. Tailoring Staircase-like Hysteresis Loops in Electrodeposited Trisegmented Magnetic Nanowires: a Strategy toward Minimization of Interwire Interactions.

    PubMed

    Zhang, Jin; Agramunt-Puig, Sebastià; Del-Valle, Núria; Navau, Carles; Baró, Maria D; Estradé, Sònia; Peiró, Francesca; Pané, Salvador; Nelson, Bradley J; Sanchez, Alvaro; Nogués, Josep; Pellicer, Eva; Sort, Jordi

    2016-02-17

    A new strategy to minimize magnetic interactions between nanowires (NWs) dispersed in a fluid is proposed. Such a strategy consists of preparing trisegmented NWs containing two antiparallel ferromagnetic segments with dissimilar coercivity separated by a nonmagnetic spacer. The trisegmented NWs exhibit a staircase-like hysteresis loop with tunable shape that depends on the relative length of the soft- and hard-magnetic segments and the respective values of saturation magnetization. Such NWs are prepared by electrodepositing CoPt/Cu/Ni in a polycarbonate (PC) membrane. The antiparallel alignment is set by applying suitable magnetic fields while the NWs are still embedded in the PC membrane. Analytic calculations are used to demonstrate that the interaction magnetic energy from fully compensated trisegmented NWs with antiparallel alignment is reduced compared to a single-component NW with the same length or the trisegmented NWs with the two ferromagnetic counterparts parallel to each other. The proposed approach is appealing for the use of magnetic NWs in certain biological or catalytic applications where the aggregation of NWs is detrimental for optimized performance. PMID:26804742

  18. Anomalous hysteresis as evidence for a magnetic-field-induced chiral superconducting state in LiFeAs

    NASA Astrophysics Data System (ADS)

    Li, G.; Urbano, R. R.; Goswami, P.; Tarantini, C.; Lv, B.; Kuhns, P.; Reyes, A. P.; Chu, C. W.; Balicas, L.

    2013-01-01

    Magnetometry measurements in high-quality LiFeAs single crystals reveal a change in the sign of the magnetic hysteresis in the vicinity of the upper critical field Hc2, from a clear diamagnetic response dominated by the pinning of vortices to a considerably smaller net hysteretic response of opposite sign, which disappears at Hc2. If the diamagnetic response at high fields results from pinned vortices and associated screening supercurrents, this sign change must result from currents circulating in the opposite sense, which give rise to a small field-dependent magnetic moment below Hc2. This behavior seems to be extremely sensitive to the sample quality or stoichiometry, as we have observed it only in a few fresh crystals, which also display the de Haas van Alphen effect. We provide arguments against the surface superconductivity, the flux compression, and the random π junction scenarios, which have been previously put forward to explain a paramagnetic Meissner effect, below the lower critical field Hc1. The observed anomalous hysteresis at high fields will be compatible with the existence of chiral gap wave functions, which possess a field-dependent magnetic moment. Within a Landau-Ginzburg framework, we demonstrate how a (dx2-y2+idxy) or a (px+ipy) chiral superconducting component can be stabilized in the mixed state of s± superconductor, due to the combined effects of the magnetic field and the presence of competing pairing channels. The realization of a particular chiral pairing depends on the microscopic details of the strengths of the competing pairing channels.

  19. Magnetization, anomalous Barkhausen effect, and core loss of Supermendur under high temperature cycling.

    NASA Technical Reports Server (NTRS)

    Niedra, J. M.; Schwarze, G. E.

    1971-01-01

    The magnetization and core loss of Supermendur were measured up to 900 C under conditions of slow temperature cycling in vacuum. As a consequence of this heating, the coercivity at 25 C increased from 21 A/m to about 110 A/m. This increase is less than previously reported. A prominent anomalous Barkhausen effect, pinched-in hysteresis loops, and a magnetic viscosity field in excess of 20 A/m were observed in the range of 600 to 700 C. At 850 C, Supermendur had a coercivity of 23 A/m, a saturation induction exceeding 1.5 T, a core loss of 26 W/kg at 400 Hz, and a maximum induction of 1.5 T. Supermendur may be useful for high temperature soft magnetic material applications where some history dependence of properties and instability of minor loops at lower temperatures is acceptable.

  20. Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy

    PubMed Central

    2011-01-01

    High-resolution magnetic imaging is of utmost importance to understand magnetism at the nanoscale. In the present work, we use a magnetic force microscope (MFM) operating under in-plane magnetic field in order to observe with high accuracy the domain configuration changes in Co nanowires as a function of the externally applied magnetic field. The main result is the quantitative evaluation of the coercive field of the individual nanostructures. Such characterization is performed by using an MFM-based technique in which a map of the magnetic signal is obtained as a function of both the lateral displacement and the magnetic field. PMID:21711935

  1. Doping evolution of magnetization hysteresis in (Ba1-xKx)Fe2 As2 single crystals: Crossover from the second magnetization peak to peak effect

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Lograsso, Thomas

    Magnetic hysteresis loops (MHLs) have been systematically measured in a series of (Ba1-xKx)Fe2As2 single crystals from underdoped x =0.177 to end member x =1 with applied magnetic fields parallel to c axis (H//c). The second magnetization peak (SMP) or fishtail effect was observed within the doping range 0.177 <=x <=0.650. Remarkably, with further increasing doping the SMP becomes narrow and emerges very close to the irreversible field (Hirr) for the samples 0.692 <=x <=0.910. The similar peak effect (PE) had been widely observed in various conventional or low Tc superconductors. Meanwhile, the magnetization curves change from symmetrical to asymmetric hysteresis loops, which suggests a dominant surface pinning instead of bulk pinning in the samples. Our findings demonstrate that (Ba1-xKx)Fe2As2 system is a very unique system that that links the SMP and PE by its doping dependence. Our results will lead to a better understanding of the underlying mechanisms for the origin of the SMP and PE. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.

  2. Magnetic anisotropy, unusual hysteresis and putative "up-up-down" magnetic structure in EuTAl4Si2 (T = Rh and Ir).

    PubMed

    Maurya, Arvind; Thamizhavel, A; Dhar, S K; Bonville, P

    2015-01-01

    We present detailed investigations on single crystals of quaternary EuRhAl4Si2 and EuIrAl4Si2. The two compounds order antiferromagnetically at TN1 = 11.7 and 14.7 K, respectively, each undergoing two magnetic transitions. The magnetic properties in the ordered state present a large anisotropy despite Eu(2+)being an S-state ion for which the single-ion anisotropy is expected to be weak. Two features in the magnetization measured along the c-axis are prominent. At 1.8 K, a ferromagnetic-like jump occurs at very low field to a value one third of the saturation magnetization (1/3 M0) followed by a wide plateau up to 2 T for Rh and 4 T for Ir-compound. At this field value, a sharp hysteretic spin-flop transition occurs to a fully saturated state (M0). Surprisingly, the magnetization does not return to origin when the field is reduced to zero in the return cycle, as expected in an antiferromagnet. Instead, a remnant magnetization 1/3 M0 is observed and the magnetic loop around the origin shows hysteresis. This suggests that the zero field magnetic structure has a ferromagnetic component, and we present a model with up to third neighbor exchange and dipolar interaction which reproduces the magnetization curves and hints to an "up-up-down" magnetic structure in zero field. PMID:26156410

  3. Assessment of Retained Austenite in AISI D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters

    NASA Astrophysics Data System (ADS)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-03-01

    Inaccurate heat treatment process could result in excessive amount of retained austenite, which degrades the mechanical properties, like strength, wear resistance, and hardness of cold work tool steel parts. Thus, to control the mechanical properties, quantitative measurement of the retained austenite is a critical step in optimizing the heat-treating parameters. X-ray diffraction method is the most frequently used technique for this purpose. This technique is, however, destructive and time consuming. Furthermore, it is not applicable to 100% quality inspection of industrial parts. In the present paper, the influence of austenitizing temperature on the retained austenite content and hardness of AISI D2 tool steel has been studied. Additionally, nondestructive magnetic hysteresis parameters of the samples including coercivity, magnetic saturation, and maximum differential permeability as well as their magnetic Barkhausen noise features (RMS peak voltage and peak position) have been investigated. The results revealed direct relations between magnetic saturation, differential permeability, and MBN peak amplitude with increasing austenitizing temperature due to the retained austenite formation. Besides, both parameters of coercivity and peak position had an inverse correlation with the retained austenite fraction.

  4. Acquisition of vector hysteresis loops from micro-arrays of nano-magnets

    NASA Astrophysics Data System (ADS)

    Keatley, P. S.; Kruglyak, V. V.; Hicken, R. J.; Childress, J. R.; Katine, J. A.

    2006-11-01

    A modified scanning Kerr microscope has been used as a static Kerr magnetometer to acquire in-plane vector hysteresis loops from square Si/Ta(50 Å)/Co 80Fe 20(40 Å)/Ni 88Fe 12(108 Å)/Ta(100 Å) elements with size ranging from 123 nm to 10 μm. The nanoscale elements were arranged in square arrays of 4 μm size. The laser beam was focused to a sub-micron spot, while polarization changes were recorded with an optical bridge detector containing a beam-splitting polarizer and two quadrant photodiodes. The coercive field exhibited a non-monotonic increase from 11 Oe in the 10 μm element to 170 Oe in the 123 nm elements. Loops acquired with the field applied parallel to the easy and hard in-plane uniaxial anisotropy axes were observed to become more similar in shape as the element size decreased.

  5. Comprehensive modelling of dynamic hysteresis loops in the rolling and transverse directions for transformer laminations

    NASA Astrophysics Data System (ADS)

    Baghel, A. P. S.; Gupta, A.; Chwastek, K.; Kulkarni, S. V.

    2015-04-01

    Magnetic properties of grain-oriented materials are affected by hysteresis, anisotropy and dynamic effects. The attempts to describe dynamic hysteresis loops are usually limited to the rolling direction (RD). On the other hand, modelling of magnetic properties for the transverse direction (TD) is important for numerical analysis of core-joints and corner regions in transformers. For this direction, hysteresis loops reveal complex shapes particularly for dynamic magnetization conditions. This paper presents a comprehensive approach for modelling of dynamic hysteresis loops in RD and TD. This work uses the magnetic viscosity-based approach, which is able to describe irregular widening of dynamic loops. The loss separation scheme is also considered for both principal directions. Variations of loss components with frequency for both directions are discussed. The computed dynamic loops in RD and TD are in a close agreement with experimental ones.

  6. Photoneutrino energy losses in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Previously computed rates of energy losses (Petrosian et al., 1967) ignored the presence of strong magnetic fields, hence the change brought in when such a field (about 10 to the 12th to 10 to the 13th power G) is included is studied. The results indicate that for T about 10 to the 8th power K and densities rho of about 10,000 g/cu cm, the presence of a strong H field decreases the energy losses by at the most a factor between 10 and 100 in the region up to rho = 1,000,000 g/cu cm. At higher densities the neutrino emissivities are almost identical.

  7. Beam based measurements of hysteresis effects in Fermilab main injector magnets

    SciTech Connect

    Bruce C. Brown and David P Capista

    2003-05-27

    Operation of the Fermilab Main Injector is sensitive to magnetic field differences due to hysteretic effects. Measurements using the beam are reported with various current ramps. This will provide magnetic field information for accelerator operations with better ramp control than is available from magnet test facility data. This makes possible improved low field reproducibility with mixed 120 GeV and 150 GeV operation of the Main Injector.

  8. Characterizing local anisotropy of coercive force in motor laminations with the moving magnet hysteresis comparator

    NASA Astrophysics Data System (ADS)

    Garshelis, I. J.; Crevecoeur, G.

    2014-05-01

    Non oriented silicon steels are widely used within rotating electrical machines and are assumed to have no anisotropy. There exists a need to detect the anisotropic magnetic properties and to evaluate the local changes in magnetic material properties due to manufacturing cutting processes. In this paper, the so called moving magnet hyteresis comparator is applied to non destructively detect directional variations in coercive force in a variety of local regions of rotor and stator laminations of two materials commonly used to construct induction motors cores. Maximum to minimum coercive force ratios were assessed, varying from 1.4 to 1.7.

  9. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Burkhardt, G.L.

    1993-01-31

    Research was done on the biaxial stress problem accomplished in the first half of the second year. All of the work done was preparatory to magnetic measurements. Issues addressed were: construction of a model for extracting changes in the magnetic properties of a specimen from the readings of an indirect sensor; initial development of a model for how biaxial stress alters the intrinsic magnetic properties of thespecimen; use of finite element stress analysis modeling to determine a detailed shape for the cruciform biaxial stress specimen; and construction of the biaxial stress loading apparatus.

  10. Wireless and passive temperature indicator utilizing the large hysteresis of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bergmair, Bernhard; Liu, Jian; Huber, Thomas; Gutfleisch, Oliver; Suess, Dieter

    2012-07-01

    An ultra-low cost, wireless magnetoelastic temperature indicator is presented. It comprises a magnetostrictive amorphous ribbon, a Ni-Mn-Sn-Co magnetic shape memory alloy with a highly tunable transformation temperature, and a bias magnet. It allows to remotely detect irreversible changes due to transgressions of upper or lower temperature thresholds. Therefore, the proposed temperature indicator is particularly suitable for monitoring the temperature-controlled supply chain of, e.g., deep frozen and chilled food or pharmaceuticals.

  11. Application of the Preisach and Jiles{endash}Atherton models to the simulation of hysteresis in soft magnetic alloys

    SciTech Connect

    Pasquale, M.; Bertotti, G.; Jiles, D.C.; Bi, Y.

    1999-04-01

    This article describes the advances in unification of model descriptions of hysteresis in magnetic materials and demonstrates the equivalence of two widely accepted models, the Preisach (PM) and Jiles{endash}Atherton (JA) models. Recently it was shown that starting from general energy relations, the JA equation for a loop branch can be derived from PM. The unified approach is here applied to the interpretation of magnetization measured in nonoriented Si{endash}Fe steels with variable grain size {l_angle}s{r_angle}, and also in as-cast and annealed Fe amorphous alloys. In the case of NO Fe{endash}Si, the modeling parameter {ital k} defined by the volume density of pinning centers is such that k{approx}A+B/{l_angle}s{r_angle}, where the parameters {ital A} and {ital B} are related to magnetocrystalline anisotropy and grain texture. The value of {ital k} in the amorphous alloys can be used to estimate the microstructural correlation length playing the role of effective grain size in these materials. {copyright} {ital 1999 American Institute of Physics.}

  12. Magnetic anisotropy, unusual hysteresis and putative “up-up-down” magnetic structure in EuTAl4Si2 (T = Rh and Ir)

    PubMed Central

    Maurya, Arvind; Thamizhavel, A.; Dhar, S. K.; Bonville, P.

    2015-01-01

    We present detailed investigations on single crystals of quaternary EuRhAl4Si2 and EuIrAl4Si2. The two compounds order antiferromagnetically at TN1 = 11.7 and 14.7 K, respectively, each undergoing two magnetic transitions. The magnetic properties in the ordered state present a large anisotropy despite Eu2+being an S-state ion for which the single-ion anisotropy is expected to be weak. Two features in the magnetization measured along the c-axis are prominent. At 1.8 K, a ferromagnetic-like jump occurs at very low field to a value one third of the saturation magnetization (1/3 M0) followed by a wide plateau up to 2 T for Rh and 4 T for Ir-compound. At this field value, a sharp hysteretic spin-flop transition occurs to a fully saturated state (M0). Surprisingly, the magnetization does not return to origin when the field is reduced to zero in the return cycle, as expected in an antiferromagnet. Instead, a remnant magnetization 1/3 M0 is observed and the magnetic loop around the origin shows hysteresis. This suggests that the zero field magnetic structure has a ferromagnetic component, and we present a model with up to third neighbor exchange and dipolar interaction which reproduces the magnetization curves and hints to an “up-up-down” magnetic structure in zero field. PMID:26156410

  13. Hysteresis in the behavior of a long periodically modulated Josephson junction in a magnetic field for not small values of the pinning parameter

    NASA Astrophysics Data System (ADS)

    Zelikman, M. A.

    2016-03-01

    The magnetization curve for a long periodically modulated Josephson junction is calculated using the approach based on analysis of the continuous change in the configuration in the direction of the decrease in the Gibbs potential upon cyclic variation of the external magnetic field for not small values of pinning parameter I. It is shown that unlike in the case of small I, when the hysteresis loop is a part of a certain universal curve, the segments of the loops corresponding to a decrease in h in the first and second quadrants (and symmetric to them) pass below the universal loop, the degree of deviation increasing with pinning parameter I. The properties of the hysteresis loops are considered for various amplitudes of the magnetic field variation on the basis of analysis of vortex configurations.

  14. Separation of ferromagnetic components by analyzing the hysteresis loops of remanent magnetization

    NASA Astrophysics Data System (ADS)

    Kosareva, L. R.; Utemov, E. V.; Nurgaliev, D. K.; Shcherbakov, V. P.; Kosarev, V. E.; Yasonov, P. G.

    2015-09-01

    The new method is suggested for separating ferromagnetic components in sediments through analyzing the coercivity spectra of the samples by the continuous wavelet transform with the Gaussian-based wavelet (MHAT). A total of 1056 samples of Lake Khuvsgul's sediments (Mongolia) are studied. At least four groups of magnetic components are identified based on the analysis of their magnetization and remagnetization curves. Almost all samples are found to contain two components of bacterial origin which are represented by the assemblages of the interacting single-domain grains and differ by the grain compositions (magnetite and greigite). The applicability of the magnetic data for diagnosing magnetotactic bacteria in sediments and building paleoecological and paleoclimatic reconstructions is demonstrated.

  15. Generalized form of anhysteretic magnetization function for Jiles-Atherton theory of hysteresis

    NASA Astrophysics Data System (ADS)

    Raghunathan, A.; Melikhov, Y.; Snyder, J. E.; Jiles, D. C.

    2009-10-01

    A generalized form of anhysteretic magnetization function to extend Jiles-Atherton theory to different forms of anisotropy has been derived. The general equation for the function has been compared with those of calculations made on the basis of known equations for specific cases: axially anisotropic (one-dimensional), planar anisotropic (two-dimensional), and isotropic (three-dimensional). The Jiles-Atherton model using the proposed functional form of generalized anhysteretic magnetization function for anisotropy dependence has been validated and the necessary equations derived. It has been shown in this work that this functional form of anhysteretic magnetization with necessary boundary conditions can be reduced to the familiar specific model equations in the particular cases.

  16. Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys

    SciTech Connect

    Emre, Baris; Bruno, Nickolaus M.; Yuce Emre, Suheyla; Karaman, Ibrahim

    2014-12-08

    The effect of Nb substitution for Ni in Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} magnetic shape memory alloys on their magnetic properties, martensitic transformation characteristics, transformation hysteresis, and magnetocaloric properties was studied using wavelength-dispersive X-ray spectroscopy, differential scanning calorimetry, and the temperature and field dependence of the magnetization. Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} alloy has a very low transformation hysteresis; however, the martensitic transformation temperatures are notably above room temperature, which is not desirable for magnetic refrigeration applications. In this study, small quantities of Nb substitution were shown to drastically shift the transformation temperatures to lower temperatures, at a rate of 68 K/at. % Nb, which is needed for household refrigeration. The austenite Curie temperature also decreased with increasing Nb content. However, a decrease in the latent heat of the martensitic transition was observed, which negatively affects the magnetic field-induced adiabatic temperature change capability. Still, the relatively large transformation entropy and the low transformation hysteresis make the Nb-doped Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} alloys potential candidates for solid state refrigeration near room temperature.

  17. Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Emre, Baris; Bruno, Nickolaus M.; Yuce Emre, Suheyla; Karaman, Ibrahim

    2014-12-01

    The effect of Nb substitution for Ni in Ni45Co5Mn40Sn10 magnetic shape memory alloys on their magnetic properties, martensitic transformation characteristics, transformation hysteresis, and magnetocaloric properties was studied using wavelength-dispersive X-ray spectroscopy, differential scanning calorimetry, and the temperature and field dependence of the magnetization. Ni45Co5Mn40Sn10 alloy has a very low transformation hysteresis; however, the martensitic transformation temperatures are notably above room temperature, which is not desirable for magnetic refrigeration applications. In this study, small quantities of Nb substitution were shown to drastically shift the transformation temperatures to lower temperatures, at a rate of 68 K/at. % Nb, which is needed for household refrigeration. The austenite Curie temperature also decreased with increasing Nb content. However, a decrease in the latent heat of the martensitic transition was observed, which negatively affects the magnetic field-induced adiabatic temperature change capability. Still, the relatively large transformation entropy and the low transformation hysteresis make the Nb-doped Ni45Co5Mn40Sn10 alloys potential candidates for solid state refrigeration near room temperature.

  18. Magnetic hysteresis properties and 57Fe Mössbauer spectroscopy of iron and stony-iron meteorites: Implications for mineralogy and thermal history

    NASA Astrophysics Data System (ADS)

    Dos Santos, E.; Gattacceca, J.; Rochette, P.; Scorzelli, R. B.; Fillion, G.

    2015-05-01

    Since the solid matter in our solar system began to assemble 4.57 billion years ago, meteorites have recorded a large range of processes, including metamorphism, melting, irradiation and hypervelocity impacts. These processes as well as solar system magnetic fields can be accessed through the investigation of magnetic properties of meteorites. In this work, we present magnetic hysteresis properties, isothermal remanent magnetization acquisition curves and 57Fe Mössbauer spectra for nineteen iron and eleven stony-iron meteorites. These data will be the background for a discussion about the thermal and shock history of these meteorites. Although Mössbauer spectroscopy and hysteresis measurements are not able to provide cooling rates like the conventional metallographic method does, we show that the combination of the ordering degree of taenite phase measured by Mössbauer spectroscopy and hysteresis properties are useful for constraining the thermal and shock history of meteorites. In particular, strong shock and the associated thermal event that result in disordering of tetrataenite can be easily identified.

  19. 3-D Magnetic Field Analysis of Permanent Magnet Motor Considering Magnetizing, Demagnetizing and Eddy Current Loss

    NASA Astrophysics Data System (ADS)

    Miyata, Koji; Aoyama, Yasuaki; Yokoyama, Tomonori; Ohashi, Ken; Kondo, Minoru; Matsuoka, Koichi

    Rare-earth magnets, which have high energy product, have been widely used in several industrial applications such as voice coil motors for hard disk drives, MRI for medical devices and motors for electric vehicle. In order to realize a small and high performance device, the magnetic field analysis techniques are required. In this paper, we applied the magnetic field analysis to design the permanent magnet synchronous motors into the rail traction system. In the inverter fed motor drive, the eddy current loss in the permanent magnet increased. We simulated the effect that eddy current was decreased by using a divided permanent magnet. Furthermore, the permanent magnet tends to be demagnetized due to the effect of a demagnetizing field formed at high temperatures. However, according to our analysis, demagnetization does not occur within the range of our design specifications. Also, we performed magnetic field analysis assuming a pulse-type magnetization process and designed an optimal magnetizing coil.

  20. Magnetoresistance hysteresis in granular HTSCs as a manifestation of the magnetic flux trapped by superconducting grains in YBCO + CuO composites

    SciTech Connect

    Balaev, D. A. Gokhfeld, D. M.; Dubrovskii, A. A.; Popkov, S. I.; Shaikhutdinov, K. A.; Petrov, M. I.

    2007-12-15

    Hysterestic behavior of the magnetoresistance of granular HTSCs and its interaction with the magnetic hysteresis are studied by measuring magnetoresistance R(H) and critical current I{sub c}(H) of composites formed by HTSC Y{sub 0.75}Lu{sub 0.25}Ba{sub 2}Cu{sub 3}O{sub 7} and CuO. A network of Josephson junctions is formed in such composites, in which the nonsuperconducting component plays the role of barriers between HTSC grains. Hysteretic dependences R(H) of magnetoresistance are studied in a wide range of transport current density j and are analyzed in the framework of the two-level model of a granular superconductor, in which dissipation takes place in the Josephson medium and the magnetic flux can be pinned both in grains and in the Josephson medium. The interrelation between the hysteresis of critical current I{sub c}(H) and the evolution of the hysterestic dependence R(H) of the magnetoresistance upon transport current variation is demonstrated experimentally. The effect of the magnetic past history on the hysteretic behavior of R(H) and the emergence of a segment with a negative magnetoresistance are analyzed. It is shown for the first time that the R(H) dependences are characterized by a parameter that is independent of the transport current, viz., the width of the R(H) hysteresis loop.

  1. Study of AC Magnetic Properties and Core Losses of Fe/Fe3O4-epoxy Resin Soft Magnetic Composite

    NASA Astrophysics Data System (ADS)

    Laxminarayana, T. A.; Manna, Subhendu Kumar; Fernandes, B. G.; Venkataramani, N.

    Soft Magnetic Composites (SMC) were prepared by coating of nanocrystalline Fe3O4 particles, synthesized by co-precipitation method, on atomized iron powder of particle size less than 53 μm in size using epoxy resin as a binder between iron and Fe3O4. Fe3O4 was chosen, for its high electric resistivity and suitable magnetic properties, to keep the coating layer magnetic and seek improvement to the magnetic properties of SMC. SEM images and XRD patterns were recorded in order to investigate the coatings on the surface of iron powder. A toroid was prepared by cold compaction of coated iron powder at 1050 MPa and subsequently cured at 150˚C for 1 hr in argon atmosphere. For comparison of properties, a toroid of uncoated iron powder was also compacted at 1050 MPa and annealed at 600˚C for 2 hr in argon atmosphere. The coated iron powder composite has a resistivity of greater than 200 μΩm, measured by four probe method. A comparison of Magnetic Hysteresis loops and core losses using B-H Loop tracer in the frequency range 0 to 1500 Hz on the coated and uncoated iron powder is reported.

  2. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress. Progress report, June 1991--December 1991

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters.

  3. Blade loss dynamics of a magnetically supported rotor

    NASA Astrophysics Data System (ADS)

    Viggiano, F.; Schweitzer, G.

    The equations for a rigid rotor in magnetic bearings are derived and examined for their response following a sudden unbalance created by a blade loss. The investigations concentrate on the maximum transient and steady-state response after unbalance. The analytical results are compared with experiments which were performed on a magnetic bearing test stand at our laboratory. A major result is that magnetic bearings are very well suited to cope with the loss of a rotor blade.

  4. Observation of Magnetically Induced Trap Loss of Ultracold Thulium Atoms

    NASA Astrophysics Data System (ADS)

    Kalganova, E. S.; Vishnyakova, G. A.; Golovizin, A. A.; Tregubov, D. O.; Sukachev, D. D.; Akimov, A. V.; Kolachevsky, N. N.; Khabarova, K. Yu.; Sorokin, V. N.

    2015-09-01

    We report the observation of influence of homogeneous magnetic field on an optical lattice losses of ultracold thulium atoms. The atomic cloud temperature was T = 15 mK. The dependence of trap population on a value of magnetic field has a broad resonance in the low-field region with a center at B = 0.4 G. We also have measured a decrease of optical lattice lifetime in a presence of resonance magnetic field. The observed magnetically-induced trap losses are assumed to be Feshbach resonance which is a dependence of an atomic scattering length on magnetic field.

  5. [Mathematical models of hysteresis

    SciTech Connect

    Mayergoyz, I.D.

    1991-01-01

    The research described in this proposal is currently being supported by the US Department of Energy under the contract Mathematical Models of Hysteresis''. Thus, before discussing the proposed research in detail, it is worthwhile to describe and summarize the main results achieved in the course of our work under the above contract. Our ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories''. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. Our research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. Our study has by and large been centered around the following topics: various generalizations and extensions of the classical Preisach model, finding of necessary and sufficient conditions for the representation of actual hysteretic nonlinearities by various Preisach type models, solution of identification problems for these models, numerical implementation and experimental testing of Preisach type models. Although the study of Preisach type models has constituted the main direction of the research, some effort has also been made to establish some interesting connections between these models and such topics as: the critical state model for superconducting hysteresis, the classical Stoner-Wohlfarth model of vector magnetic hysteresis, thermal activation type models for viscosity, magnetostrictive hysteresis and neural networks.

  6. Hysteresis in the Sky

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Banerjee, Shreya

    2016-07-01

    Hysteresis is a phenomenon occurring naturally in several magnetic and electric materials in condensed matter physics. When applied to cosmology, aka cosmological hysteresis, has interesting and vivid implications in the scenario of a cyclic bouncy universe. Most importantly, this physical prescription can be treated as an alternative proposal to inflationary paradigm. Cosmological hysteresis is caused by the asymmetry in the equation of state parameter during expansion and contraction phase of the universe, due to the presence of a single scalar field. This process is purely thermodynamical in nature, results in a non-vanishing hysteresis loop integral (∮pdV) in cosmology. When applied to variants of modified gravity models 1) Dvali-Gabadadze-Porrati (DGP) brane world gravity, 2) Cosmological constant dominated Einstein gravity, 3) Loop Quantum Gravity (LQG), 4) Einstein-Gauss-Bonnet brane world gravity and 5) Randall Sundrum single brane world gravity (RSII), under certain circumstances, this phenomenon leads to the increase in amplitude of the consecutive cycles and to a universe with older and larger successive cycles, provided we have physical mechanisms to make the universe bounce and turnaround. This inculcates an arrow of time in a dissipationless cosmology. Remarkably, this phenomenon appears to be widespread in several cosmological potentials in variants of modified gravity background, which we explicitly study for i) Hilltop, ii) Natural and iii) Coleman-Weinberg potentials, in this paper. Semi-analytical analysis of these models, for different potentials with minimum/minima, show that the conditions which creates a universe with an ever increasing expansion, depend on the signature of the hysteresis loop integral (∮pdV) as well as on the variants of model parameters.

  7. Effect of texture and grain size on the magnetic flux density and core loss of cold-rolled high silicon steel sheets

    NASA Astrophysics Data System (ADS)

    Qin, Jing; Yang, Ping; Mao, Weimin; Ye, Feng

    2015-11-01

    The effects of texture and grain size on the magnetic flux density and core loss (50-20 kHz) of 0.23 mm-thick cold-rolled high silicon steel sheets are investigated by means of electron back-scattered diffraction (EBSD), loss separation, and anisotropy parameter (ε) calculation. A model of the hysteresis loss coefficient kh considering average grain size and ε is established. The magnetic flux density at 800 A/m (B8) is closely related to the volume fraction of η-fiber-oriented grains, while the magnetic flux density at 5000 A/m (B50) is closely related to the volume fractions of γ- and λ-fiber-oriented grains in high silicon steel. The hysteresis loss of high silicon steel can be greatly reduced by increasing the grain size and optimizing the texture of the sheets. Although increases in frequencies decrease the effect of texture on core loss, the effect cannot be ignored. As annealing temperature and time increase, the relative difference in core loss between the rolling direction (RD) and the transverse direction (TD) is maintained at higher frequencies because of increases in grain size, decreases in γ texture, and maintenance of a strong η texture. Texture and grain size jointly affect the high-frequency core loss of high silicon steel.

  8. Hysteresis and Frequency Tunability of Gyrotrons

    NASA Astrophysics Data System (ADS)

    Dumbrajs, O.; Khutoryan, E. M.; Idehara, T.

    2016-06-01

    We present the first devoted theoretical and experimental study of the hysteresis phenomenon in relation to frequency tunability of gyrotrons. In addition, we generalize the theory describing electron tuning of frequency in gyrotrons developed earlier to arbitrary harmonics. It is found that theoretical magnetic and voltage hysteresis loops are about two times larger than experimental loops. In gyrotrons whose cavities have high quality factors, hysteresis allows one only little to broaden the frequency tunability range.

  9. Development of Interior Permanent Magnet Motors with Concentrated Windings for Reducing Magnet Eddy Current Loss

    NASA Astrophysics Data System (ADS)

    Yamazaki, Katsumi; Kanou, Yuji; Fukushima, Yu; Ohki, Shunji; Nezu, Akira; Ikemi, Takeshi; Mizokami, Ryoichi

    In this paper, we present the development of interior magnet motors with concentrated windings, which reduce the eddy current loss of the magnets. First, the mechanism of the magnet eddy current loss generation is investigated by a simple linear magnetic circuit. Due to the consideration, an automatic optimization method using an adaptive finite element method is carried out to determine the stator and rotor shapes, which decrease the eddy current loss of the magnet. The determined stator and rotor are manufactured in order to proof the effectiveness by the measurement.

  10. Passive magnetic bearing element with minimal power losses

    DOEpatents

    Post, R.F.

    1998-12-08

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in US Patent No. 5,495,221 entitled ``Dynamically Stable Magnetic Suspension/Bearing System.`` The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity. 8 figs.

  11. Passive magnetic bearing element with minimal power losses

    DOEpatents

    Post, Richard F.

    1998-01-01

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in U.S. Patent No. 5,495,221 entitled "Dynamically Stable Magnetic Suspension/Bearing System." The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity.

  12. Experimental Study on Interlayer Magnetic Coupling in Sputtered Al/Fe/Al/Gd Magnetic Multilayer Films: II. Hysteresis Curves of X-ray Magnetic Circular Dicroism at the Gd-L3 Edge

    NASA Astrophysics Data System (ADS)

    Nobuhiko Sakai,; Ritthikrai Chai-Ngam,; Akihisa Koizumi,; Hisao Kobayashi,

    2010-06-01

    The spacer thickness dependence of the interlayer magnetic coupling (IMC) between Gd and Fe layers separated by Al spacers has been studied. Magnetization measurement and X-ray magnetic circular dicroism (XMCD) spectroscopy at the Gd-L3 edge have been carried out on sputtered Fe (20 Å)/Al (R Å)/Gd (40 Å) multilayer films (MLFs) for R = 0, 5, 10, and 100 and on some reference films. Experimental data at low magnetic fields below 1 kOe are carefully investigated. A simple theoretical model is introduced to evaluate the strength of IMC. The energy of IMC is represented by the term J MFe \\cdot MGd, in which MFe and MGd denote the average overall magnetic moments of Fe and Gd layers, respectively. It is found that J, which is evaluated from the magnetization curves and the Gd-XMCD signals, is 370 × 104 Oe\\cdotcm2/emu for MLF of R = 0, and can be reduced by one order of magnitude when R is changed from 0 to 10. Most of characteristic features of the experimental data are ascribed to the varing magnetization of Gd layers. It is found that 40 Å Gd layers, which are paramagnetic at 5 K when isolated using 100 Å Al spacers, show magnetic hysteresis when sandwiched between Fe layers.

  13. Structural magnetic loss of vertical aligned carbon fibres

    NASA Astrophysics Data System (ADS)

    Hong, Wen; Xiao, Peng; Luo, Heng

    2013-06-01

    The electromagnetic spectroscopy of vertical aligned carbon fibres (VACF) reinforced epoxy resin has been performed in the frequency range from 8.2 to 12.4 GHz. The composite was prepared by conventional epoxy polymerization. The results indicate VACF could possess magnetic loss and the structural magnetic properties could be tailored by adjusting the forest structure. The corresponding mechanism of the structural magnetic properties is proposed by the Faradays' law of induction. The structural magnetism is further confirmed by measuring VACF reinforced Al2O3 composites in 1073 K environment. The measurement agrees well with the trend predicted by the parallel fibres model. These results represent a crucial step towards high temperature microwave absorber design and open a new avenue for realizing magnetic losses in the dielectric material.

  14. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS)

    SciTech Connect

    Professor Isaak Mayergoyz

    2006-08-21

    This research has further advanced the current state of the art in the areas of dynamic aspects of hysteresis and nonlinear large scale magnetization dynamics. The results of this research will find important engineering applications in the areas of magnetic data storage technology and the emerging technology of “spintronics”. Our research efforts have been focused on the following tasks: • Study of fast (pulse) precessional switching of magnetization in magnetic materials. • Analysis of critical fields and critical angles for precessional switching of magnetization. • Development of inverse problem approach to the design of magnetic field pulses for precessional switching of magnetization. • Study of magnetization dynamics induced by spin polarized current injection. • Construction of complete stability diagrams for spin polarized current induced magnetization dynamics. • Development of the averaging technique for the analysis of the slow time scale magnetization dynamics. • Study of thermal effects on magnetization dynamics by using the theory of stochastic processes on graphs.

  15. Automated setup for magnetic hysteresis characterization based on a voltage controlled current source with 500 kHz full power bandwidth and 10 A peak-to-peak current

    SciTech Connect

    Calabrese, G.; Capineri, L.; Granato, M.; Frattini, G.

    2015-04-15

    This paper describes the design of a system for the characterization of magnetic hysteresis behavior in soft ferrite magnetic cores. The proposed setup can test magnetic materials exciting them with controlled arbitrary magnetic field waveforms, including the capability of providing a DC bias, in a frequency bandwidth up to 500 kHz, with voltages up to 32 V peak-to-peak, and currents up to 10 A peak-to-peak. In order to have an accurate control of the magnetic field waveform, the system is based on a voltage controlled current source. The electronic design is described focusing on closed loop feedback stabilization and passive components choice. The system has real-time hysteretic loop acquisition and visualization. The comparisons between measured hysteresis loops of sample magnetic materials and datasheet available ones are shown. Results showing frequency and thermal behavior of the hysteresis of a test sample prove the system capabilities. Moreover, the B-H loops obtained with a multiple waveforms excitation signal, including DC bias, are reported. The proposal is a low-cost and replicable solution for hysteresis characterization of magnetic materials used in power electronics.

  16. Advances in core loss calculations for magnetic materials

    NASA Technical Reports Server (NTRS)

    Triner, J. E.

    1982-01-01

    A new analytical technique which predicts the basic magnetic properties under various operating conditions encountered in state-of-the-art dc-ac/dc converters is discussed. Using a new flux-controlled core excitation circuit, magnetic core characteristics were developed for constant values of ramp flux (square wave voltage excitation) and frequency. From this empirical data, a mathematical loss characteristics equation is developed to analytically predict the specific core loss of several magnetic materials under various waveform excitation conditions. In addition, these characteristics show the circuit designer for the first time the direct functional relatonships between induction level and specific core loss as a function of the two key dc-dc converter operating parameters of input voltage and duty cycle.

  17. AC Loss Analysis on the Superconducting Coupling Magnet in MICE

    SciTech Connect

    Wu, Hong; Wang, Li; Green, Michael; Li, LanKai; Xu, FengYu; Liu, XiaoKun; Jia, LinXinag

    2008-07-08

    A pair of coupling solenoids is used in MICE experiment to generate magnetic field which keeps the muons within the iris of thin RF cavity windows. The coupling solenoids have a 1.5-meter inner diameter and will produce 7.4 T peak magnetic field. Three types of AC losses in coupling solenoid are discussed. The affect of AC losses on the temperature distribution within the cold mass during charging and rapid discharging process is analyzed also. The analysis result will be further confirmed by the experiment of the prototype solenoid for coupling solenoid, which will be designed, fabricated and tested at ICST.

  18. AC magnetic field losses in BSCCO-2223 superconducting tapes

    SciTech Connect

    Lelovic, M.; Mench, S.; Deis, T.

    1997-09-01

    The AC magnetic losses at power frequencies (60 Hz) were investigated for mono- and multifilament Ag-sheathed (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (BSCCO-2223) tapes with similar transport critical current (I{sub c}) values at 77 K. The multifilament sample exhibited higher losses than the monofilament under the same conditions. Loss peaks are discussed in terms of intergranular, intragranular and eddy current losses. Because of BSCCO`s anisotropy, field orientation has a large effect on the magnitude of these peaks, even at relatively small angles. Losses for fields applied parallel to the c-axis of the textured BSCCO grains are larger by more than one order of magnitude than those applied perpendicular.

  19. Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles.

    PubMed

    Xu, S T; Ma, Y Q; Zheng, G H; Dai, Z X

    2015-04-21

    Well-dispersed uniform cobalt ferrite nanoparticles were synthesized by thermal decomposition of a metal-organic salt in organic solvent with a high boiling point. Some of the nanoparticles were diluted in a SiO2 matrix and then the undiluted and diluted samples were characterized and their magnetic behavior explored. The undiluted and diluted samples exhibited maximum coercivity Hc of 23,817 and 15,056 Oe at 10 K, respectively, which are the highest values reported to date, and the corresponding ratios of remanence (Mr) to saturation (Ms) magnetization (Mr/Ms) were as high as 0.85 and 0.76, respectively. Interestingly, the magnetic properties of the samples changed at 200 K, which was observed in magnetic hysteresis M(H) loops and zero-field cooling curves as well as the temperature dependence of Hc, Mr/Ms, anisotropy, dipolar field, and the magnetic grain size. Below 200 K, both samples have large effective anisotropy, which arises from the surface spins, resulting in large Hc and Mr/Ms. Above 200 K, the effective anisotropy decreases because there is no contribution from surface spins, while the dipolar interaction increases, resulting in small Hc and Mr/Ms. Our results indicate that strong anisotropy and weak dipolar interaction tend to increase Hc and Mr/Ms, and also clarify that the jumps around H = 0 in M(H) loops can be attributed to the reorientation of surface spins. This work exposes the underlying mechanism in nanoscale magnetic systems, which should lead to improved magnetic performance. PMID:25787852

  20. Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, S. T.; Ma, Y. Q.; Zheng, G. H.; Dai, Z. X.

    2015-04-01

    Well-dispersed uniform cobalt ferrite nanoparticles were synthesized by thermal decomposition of a metal-organic salt in organic solvent with a high boiling point. Some of the nanoparticles were diluted in a SiO2 matrix and then the undiluted and diluted samples were characterized and their magnetic behavior explored. The undiluted and diluted samples exhibited maximum coercivity Hc of 23 817 and 15 056 Oe at 10 K, respectively, which are the highest values reported to date, and the corresponding ratios of remanence (Mr) to saturation (Ms) magnetization (Mr/Ms) were as high as 0.85 and 0.76, respectively. Interestingly, the magnetic properties of the samples changed at 200 K, which was observed in magnetic hysteresis M(H) loops and zero-field cooling curves as well as the temperature dependence of Hc, Mr/Ms, anisotropy, dipolar field, and the magnetic grain size. Below 200 K, both samples have large effective anisotropy, which arises from the surface spins, resulting in large Hc and Mr/Ms. Above 200 K, the effective anisotropy decreases because there is no contribution from surface spins, while the dipolar interaction increases, resulting in small Hc and Mr/Ms. Our results indicate that strong anisotropy and weak dipolar interaction tend to increase Hc and Mr/Ms, and also clarify that the jumps around H = 0 in M(H) loops can be attributed to the reorientation of surface spins. This work exposes the underlying mechanism in nanoscale magnetic systems, which should lead to improved magnetic performance.

  1. Peak effect on magnetic hysteresis in oxygen-overdoped single crystals of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}}

    SciTech Connect

    Xu, M.; Li, T.W.; Hinks, D.G.; Crabtree, G.W.; Jaeger, H.M.; Aoki, H. |

    1999-06-01

    Magnetic hysteresis loops in single crystals of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} for H{parallel}c have been investigated in order to study the peak effect or {open_quotes}fishtail{close_quotes} feature. The peak effect was observed in a series of oxygen-overdoped crystals covering a wide range in T{sub c}. The peak fields H{sub pk} show scaling behavior with reduced temperature T/T{sub c}, and the normalized slope (T{sub c}/H{sub pk}) (dH{sub pk}/dT) is found to assume a nearly constant value for all investigated overdoped Tl-2201 crystals. This suggests that the underlying mechanism for the origin of the peak effect is independent of oxygen defect concentration. {copyright} {ital 1999} {ital The American Physical Society}

  2. Early pregnancy loss and exposure to 50-Hz magnetic fields

    SciTech Connect

    Juutilainen, J.; Matilainen, P.; Saarikoski, S.; Laeaerae Esuo; Suonio, S. )

    1993-01-01

    The possibility of an association of early pregnancy loss (EPL) with residential exposure to ELF magnetic fields was investigated in a case-control study. Eighty-nine cases and 102 controls were obtained from the data of an earlier study aimed at investigating the occurrence of EPL in a group of women attempting to get pregnant. Magnetic-field exposure was characterized by measurements in residences. Strong magnetic fields were measured more often in case than in control residences. In an analysis based on fields measured at the front door, a cutoff score of 0.5 A/m (0.63 microT) resulted in an odds ratio of 5.1 (95% confidence interval 1.0-25). The results should be interpreted cautiously due to the small number of highly exposed subjects and other limitations of the data.

  3. Thermo-magnetic history effects in the giant magnetostriction across the first-order transition and minor hysteresis loops modeling in Fe0.955Ni0.045Rh alloy.

    PubMed

    Manekar, Meghmalhar; Sharma, V K; Roy, S B

    2012-05-30

    Results of temperature- and magnetic field-dependent strain measurements across the first-order antiferromagnetic to ferromagnetic phase transition in Fe(0.955)Ni(0.045)Rh are presented. Distinct thermal and magnetic field hystereses are observed in the measured strain across the phase transition. The minor hysteresis loops inside the hysteretic regime across the temperature-driven transition are modeled using the Preisach model of hysteresis. The applicability of the Preisach model to explain the general features of minor hysteresis loops is discussed for a disorder influenced first-order transition. The minor hysteresis loops show the property of retaining the memory of the starting or end point of the temperature cycle followed within the hysteretic region. A larger temperature excursion within the hysteretic region wipes out the memory of a smaller temperature cycle which contains one of the extrema of the larger cycle. The end-point memory and the wiping-out property of the minor hysteresis loops can be described quite well within the Preisach model, irrespective of the temperature history followed to reach a particular starting point. Thermo-magnetic history effects across the magnetic field-induced transition are explained, which will enable the choice of the starting point of an experimental cycle in the field-temperature phase space so as to achieve the desired functionality. Our results highlight the necessity to understand the influence of disorder on a first-order phase transition so as to achieve a repeatable performance of materials whose functionalities are based on such a transition. PMID:22543692

  4. Calculation of the energy loss in giant magnetic impedance elements using the complex magnetic permeability spectra

    NASA Astrophysics Data System (ADS)

    Rustemaj, Driton; Mukherjee, Debashis

    2013-01-01

    The giant magnetic impedance (GMI) effect in ferromagnetic materials has been investigated for sensing applications. The GMI properties were evaluated via numerical solution of the complex magnetic permeability of the material. MATLAB simulation was carried out to study the frequency dependence of magnetic permeability via obtaining solutions of the Landau-Lifshitz-Gilbert (LLG) and the Maxwell's equations. The results indicate that the complex magnetic permeability peaks at a frequency of 6 GHz, corresponding to the ferromagnetic resonant (FMR) frequency, where the energy loss is maximum. A variation of the Gilbert damping parameter (α) associated with the LLG equation inversely affects this peak value. The area under the curve of complex magnetic permeability, calculated through counting the number of pixels within the image, provides an estimate of the average energy loss density within the material and appears to be consistent with the variation of the peak intensity.

  5. Extended frequency analysis of magnetic losses under rotating induction in soft magnetic composites

    NASA Astrophysics Data System (ADS)

    de la Barrière, O.; Appino, C.; Fiorillo, F.; Ragusa, C.; Lecrivain, M.; Rocchino, L.; Ben Ahmed, H.; Gabsi, M.; Mazaleyrat, F.; LoBue, M.

    2012-04-01

    We present novel results on magnetic losses in soft magnetic composites (SMCs) excited with rotating field. Soft composites are very promising in electrical engineering applications, where new topologies of electrical machines with two- and three-dimensional induction loci are increasingly found. An experimental characterization of industrial SMC products has, therefore, been carried out, up to the kilohertz range, under alternating and circular flux loci, making use of a specifically designed and optimized loss measuring setup. The obtained results have been analyzed for all kinds of excitation, according to the loss separation concept, with the emphasis being placed on the relationship between the rotational and the alternating loss components. In particular, it is found that the ratio between the rotational and the alternating losses is, for any given peak induction, independent of frequency.

  6. Unusual magnetic hysteresis and the weakened transition behavior induced by Sn substitution in Mn{sub 3}SbN

    SciTech Connect

    Sun, Ying; Guo, Yanfeng; Li, Jun; Wang, Xia; Tsujimoto, Yoshihiro; Wang, Cong; Feng, Hai L.; Sathish, Clastin I.; Yamaura, Kazunari; Matsushita, Yoshitaka

    2014-01-28

    Substitution of Sb with Sn was achieved in ferrimagnetic antiperovskite Mn{sub 3}SbN. The experimental results indicate that with an increase in Sn concentration, the magnetization continuously decreases and the crystal structure of Mn{sub 3}Sb{sub 1-x}Sn{sub x}N changes from tetragonal to cubic phase at around x of 0.8. In the doping series, step-like anomaly in the isothermal magnetization was found and this behavior was highlighted at x = 0.4. The anomaly could be attributed to the magnetic frustration, resulting from competition between the multiple spin configurations in the antiperovskite lattice. Meantime, H{sub c} of 18 kOe was observed at x = 0.3, which is probably the highest among those of manganese antiperovskite materials reported so far. With increasing Sn content, the abrupt change of resistivity and the sharp peak of heat capacity in Mn{sub 3}SbN were gradually weakened. The crystal structure refinements indicate the weakened change at the magnetic transition is close related to the change of c/a ratio variation from tetragonal to cubic with Sn content. The results derived from this study indicate that the behavior of Mn{sub 3}Sb{sub 1-x}Sn{sub x}N could potentially enhance its scientific and technical applications, such as spin torque transfer and hard magnets.

  7. Coronal holes - Mass loss driven by magnetic reconnection

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Ahmad, I. A.

    1982-01-01

    A nonthermal mechanism for driving coronal hole mass loss is proposed. Three empirical results are noted, namely (1) that polar plumes with short-lived X-ray bright points (XBP) at their base are sites of matter flow sufficient to account for the total solar mass flux, (2) that solar wind densities are positively correlated with the number of XBP in coronal holes, and (3) that XBP are associated with newly emerged magnetic flux. It is noted that since the dynamical development following the onset of nonequilibrium is a hitherto unsolved problem, subsequent features in the scenario described here are relatively speculative. It is proposed that bubbles of matter ejected from magnetic reconnection sites in polar plumes drive the solar wind in coronal holes.

  8. Dynamics of magnetic shells and information loss problem

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han

    2015-07-01

    We investigate dynamics of magnetic thin-shells in three dimensional anti-de Sitter background. Because of the magnetic field, an oscillatory solution is possible. This oscillating shell can tunnel to a collapsing shell or a bouncing shell, where both tunnelings induce an event horizon and a singularity. In the entire path integral, via the oscillating solution, there is a nonzero probability to maintain a trivial causal structure without a singularity. Therefore, due to the path integral, the entire wave function can conserve information. Since an oscillating shell can tunnel after a number of oscillations, in the end, it will allow an infinite number of different branchings to classical histories. This system can be a good model of the effective loss of information, where information is conserved by a solution that is originated from gauge fields.

  9. Hysteresis in Metal Hydrides.

    ERIC Educational Resources Information Center

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  10. The extrinsic hysteresis behavior of dilute binary ferrofluids.

    PubMed

    Lin, Lihua; Li, Jian; Lin, Yueqiang; Liu, Xiaodong; Chen, Longlong; Li, Junming; Li, Decai

    2014-10-01

    We report on the magnetization behavior of dilute binary ferrofluids based on γ-Fe(2)O(3)/Ni(2)O(3) composite nanoparticles (A particles), with diameter about 11 nm, and ferrihydrite (Fe(5)O(7)(OH) ・4H2O) nanoparticles (B particles), with diameter about 6 nm. The results show that for the binary ferrofluids with A-particle volume fraction φ(A) = 0.2% and B-particle volume fractions φ(B) = 0.1% and φ(B) = 0.6%, the magnetization curves exhibit quasi-magnetic hysteresis behavior. The demagnetizing curves coincide with the magnetizing curves at high fields. However, for single γ-Fe(2)O(3)/Ni(2)O(3) ferrofluids with φ(A) = 0.2% and binary ferrofluids with φ(A) = 0.2% and φ(B) = 1.0%, the magnetization curves do not behave in this way. Additionally, at high field (750 kA/m), the binary ferrofluid with φ(B) = 1.0% has the smallest magnetization. From the model-of-chain theory, the extrinsic hysteresis behavior of these samples is attributed to the field-induced effects of pre-existing A particle chains, which involve both Brownian rotation of the chains'moments and a Néel rotation of the particles' moments in the chains. The loss of magnetization for the ferrofluids with φ(B) = 1.0% is attributed to pre-existing ring-like A-particle aggregates. These magnetization behaviors of the dilute binary ferrofluids not only depend on features of the strongly magnetic A-particle system, but also modifications of the weaker magnetic B-particle system. PMID:25365919

  11. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  12. Magnetic Hysteresis Loop as a Tool for the Evaluation of Microstructure and Mechanical Properties of DP Steels

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Kumar, Satendra; Akela, Arbind Kumar; Prakash Rao, S.; Kaza, Marutiram

    2016-06-01

    DP steel of 1.3-mm thickness full hard sheet was heat treated at different temperatures in the range of 700-850 °C with 25 °C step for 15 min soaking followed by water quenching. The variation of the soaking temperatures leads to variation of volume fraction of martensite which was measured by image analysis software in optical microscopy. Mechanical properties of the samples were evaluated using micro Vicker's hardness test and tensile test machine. Magnetic properties of the samples were measured by MagStar to correlate with the microstructure and mechanical properties of the samples. It was observed that the coercivity of the samples increased linearly with the increase in volume fraction of martensite and mechanical properties. Hence monitoring coercivity would help non-destructive evaluation of mechanical properties of the DP steels. Additionally, it would also helpful for the non-destructive evaluation of variation in heat treatment conditions since coercivity also found to increase linearly with the increase in soaking temperature.

  13. Magnetic Hysteresis Loop as a Tool for the Evaluation of Microstructure and Mechanical Properties of DP Steels

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Kumar, Satendra; Akela, Arbind Kumar; Prakash Rao, S.; Kaza, Marutiram

    2016-04-01

    DP steel of 1.3-mm thickness full hard sheet was heat treated at different temperatures in the range of 700-850 °C with 25 °C step for 15 min soaking followed by water quenching. The variation of the soaking temperatures leads to variation of volume fraction of martensite which was measured by image analysis software in optical microscopy. Mechanical properties of the samples were evaluated using micro Vicker's hardness test and tensile test machine. Magnetic properties of the samples were measured by MagStar to correlate with the microstructure and mechanical properties of the samples. It was observed that the coercivity of the samples increased linearly with the increase in volume fraction of martensite and mechanical properties. Hence monitoring coercivity would help non-destructive evaluation of mechanical properties of the DP steels. Additionally, it would also helpful for the non-destructive evaluation of variation in heat treatment conditions since coercivity also found to increase linearly with the increase in soaking temperature.

  14. Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Biller, A. M.; Stolbov, O. V.; Raikher, Yu. L.

    2015-08-01

    Field-induced magnetostatic interaction in a pair of identical particles made of a magnetically soft ferromagnet is studied. It is shown that due to saturation of the ferromagnet magnetization, this case differs significantly from the (super)paramagnetic one. A numerical solution is given, discussed, and compared with that provided by a simpler model (nonlinear mutual dipoles). We show that for multidomain ferromagnetic particles embedded in an elastomer matrix, as for paramagnetic ones in the same environment, pair clusters may form or break by a hysteresis scenario. However, the magnetization saturation brings in important features to this effect. First, the bistability state and the hysteresis take place only in a limited region of the material parameters of the system. Second, along with the hysteresis jumps occurring under the sole influence of the field, the "latent" hysteresis is possible which realizes only if the action of the field is combined with some additional (nonmagnetic) external factor. The obtained conditions, when used to assess the possibility of clustering in real magnetorheological polymers, infer an important role of mesoscopic magnetomechanical hysteresis for the macroscopic properties of these composites.

  15. AC Losses in the MICE Channel Magnets -- Is This a Curse or aBlessing?

    SciTech Connect

    Green, M.A.; Wu, H.; Wang, L.; Kai, L.L.; Jia, L.X.; Yang, S.Q.

    2008-01-31

    This report discusses the AC losses in the MICE channelmagnets during magnet charging and discharging. This report talks aboutthe three types of AC losses in the MICE magnets; the hysteretic AC lossin the superconductor, the coupling AC loss in the superconductor and theeddy current AC loss in the magnet mandrel and support structure. AClosses increase the heat load at 4 K. The added heat load increases thetemperature of the second stage of the cooler. In addition, AC losscontributes to the temperature rise between the second stage cold headand the high field point of the magnet, which is usually close to themagnet hot spot. These are the curses of AC loss in the MICE magnet thatcan limit the rate at which the magnet can be charge or discharged. Ifone is willing to allow some of the helium that is around the magnet toboil away during a magnet charge or discharge, AC losses can become ablessing. The boil off helium from the AC losses can be used to cool theupper end of the HTS leads and the surrounding shield. The AC losses arepresented for all three types of MICE magnets. The AC loss temperaturedrops within the coupling magnet are presented as an example of how boththe curse and blessing of the AC losses can be combined.

  16. Wide Temperature Core Loss Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1999-01-01

    100 kHz core loss properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. For example, the 100 kHz specific core loss ranged from 50 - 70 mW/cubic cm for the 3 materials, when measured at 0.1 T and 50 C. This very low high frequency core loss, together with near zero saturation magnetostriction and insensitivity to rough handling, makes these amorphous ribbons strong candidates for power magnetics applications in wide temperature aerospace environments.

  17. A study of the effect of iron island morphology and interface oxidation on the magnetic hysteresis of Fe-MgO (001) thin film composites

    NASA Astrophysics Data System (ADS)

    Spurgeon, Steven R.; Sloppy, Jennifer D.; Tao, Runzhe; Klie, Robert F.; Lofland, Samuel E.; Baldwin, Jon K.; Misra, Amit; Taheri, Mitra L.

    2012-07-01

    Fe-MgO tunnel junctions have received much attention for their use in hard drive read heads and other spintronic applications. The system is particularly interesting because of its magnetoresistive behavior and the abundance and low cost of its constituent elements. However, many questions remain about how the structure and chemistry of the Fe-MgO interface mediates magnetic behavior. In this study, we report on transmission electron microscopy, electron energy loss spectroscopy, and magnetic characterization of Fe-MgO composite films with various morphologies. We explore relationships between film morphology, intermixing, and the resulting effects on magnetic structure. We find the presence of oxidation at the Fe-MgO interface, with a detrimental impact on the saturation magnetization of the composite. We also observe changes in coercivity and magnetocrystalline anisotropy with film morphology and thickness. These results will inform the design of MgO-based tunnel junctions and improve our understanding of how processing conditions, resulting in morphological and chemical changes such as oxidation, affect magnetization.

  18. Single-Molecule Magnets: Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator (Adv. Mater. 26/2016).

    PubMed

    Wäckerlin, Christian; Donati, Fabio; Singha, Aparajita; Baltic, Romana; Rusponi, Stefano; Diller, Katharina; Patthey, François; Pivetta, Marina; Lan, Yanhua; Klyatskaya, Svetlana; Ruben, Mario; Brune, Harald; Dreiser, Jan

    2016-07-01

    In Tb(Pc)2 single-molecule magnets, where Pc is phthalocyanine, adsorbed on magnesium oxide, the fluctuations of the terbium magnetic moment are strongly suppressed in contrast to the adsorption on silver. On page 5195, J. Dreiser and co-workers investigate that the molecules are perfectly organized by self-assembly, as seen in the scanning tunnelling microscopy image (top part of the design). The molecules are probed by circularly polarized X-rays depicted as green spirals. PMID:27383020

  19. Mathematical models of hysteresis

    SciTech Connect

    1998-08-01

    The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.

  20. Transient multi-physics analysis of a magnetorheological shock absorber with the inverse Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Zheng, Jiajia; Li, Yancheng; Li, Zhaochun; Wang, Jiong

    2015-10-01

    This paper presents multi-physics modeling of an MR absorber considering the magnetic hysteresis to capture the nonlinear relationship between the applied current and the generated force under impact loading. The magnetic field, temperature field, and fluid dynamics are represented by the Maxwell equations, conjugate heat transfer equations, and Navier-Stokes equations. These fields are coupled through the apparent viscosity and the magnetic force, both of which in turn depend on the magnetic flux density and the temperature. Based on a parametric study, an inverse Jiles-Atherton hysteresis model is used and implemented for the magnetic field simulation. The temperature rise of the MR fluid in the annular gap caused by core loss (i.e. eddy current loss and hysteresis loss) and fluid motion is computed to investigate the current-force behavior. A group of impulsive tests was performed for the manufactured MR absorber with step exciting currents. The numerical and experimental results showed good agreement, which validates the effectiveness of the proposed multi-physics FEA model.

  1. Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Zhang, Yide (Inventor); Wang, Shihe (Inventor); Xiao, Danny (Inventor)

    2004-01-01

    A series of bulk-size magnetic/insulating nanostructured composite soft magnetic materials with significantly reduced core loss and its manufacturing technology. This insulator coated magnetic nanostructured composite is comprises a magnetic constituent, which contains one or more magnetic components, and an insulating constituent. The magnetic constituent is nanometer scale particles (1-100 nm) coated by a thin-layered insulating phase (continuous phase). While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase (or coupled nanoparticles) provide the desired soft magnetic properties, the insulating material provides the much demanded high resistivity which significantly reduces the eddy current loss. The resulting material is a high performance magnetic nanostructured composite with reduced core loss.

  2. Performance Calculation of High Temperature Superconducting Hysteresis Motor Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Konar, G.; Chakraborty, N.; Das, J.

    Hysteresis motors being capable of producing a steady torque at low speeds and providing good starting properties at loaded condition became popular among different fractional horse power electrical motors. High temperature superconducting materials being intrinsically hysteretic are suitable for this type of motor. In the present work, performance study of a 2-pole, 50 Hz HTS hysteresis motor with conventional stator and HTS rotor has been carried out numerically using finite element method. The simulation results confirm the ability of the segmented HTS rotor with glued circular sectors to trap the magnetic field as high as possible compared to the ferromagnetic rotor. Also the magnetization loops in the HTS hysteresis motor are obtained and the corresponding torque and AC losses are calculated. The motor torque thus obtained is linearly proportional to the current which is the common feature of any hysteresis motor. Calculations of torques, current densities etc are done using MATLAB program developed in-house and validated using COMSOL Multiphysics software. The simulation result shows reasonable agreement with the published results.

  3. Introducing a domain flexing function in the Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Miljavec, Damijan; Zidarič, Bogomir

    The Jiles-Atherton hysteresis model (J-A model) exhibits a certain unphysical behavior when magnetic excitation reaches or reverses from the extremity of the hysteresis loop. Introducing a domain flexing function, coherent with the magnetic excitation level, improves accuracy of the J-A hysteresis model and at the same time prevents its unphysical behavior. Moreover, applying this function also improves representation of inner (lower excitation level) hysteresis loops. Implementation of magnetic excitation dependence in the domain flexing function adds a valuable parameter to the J-A original model on the way towards its further optimization. In the proposed hysteresis model, genetic algorithms are used in parameters optimization.

  4. 3D analysis of eddy current loss in the permanent magnet coupling

    NASA Astrophysics Data System (ADS)

    Zhu, Zina; Meng, Zhuo

    2016-07-01

    This paper first presents a 3D analytical model for analyzing the radial air-gap magnetic field between the inner and outer magnetic rotors of the permanent magnet couplings by using the Amperian current model. Based on the air-gap field analysis, the eddy current loss in the isolation cover is predicted according to the Maxwell's equations. A 3D finite element analysis model is constructed to analyze the magnetic field spatial distributions and vector eddy currents, and then the simulation results obtained are analyzed and compared with the analytical method. Finally, the current losses of two types of practical magnet couplings are measured in the experiment to compare with the theoretical results. It is concluded that the 3D analytical method of eddy current loss in the magnet coupling is viable and could be used for the eddy current loss prediction of magnet couplings.

  5. 3D analysis of eddy current loss in the permanent magnet coupling.

    PubMed

    Zhu, Zina; Meng, Zhuo

    2016-07-01

    This paper first presents a 3D analytical model for analyzing the radial air-gap magnetic field between the inner and outer magnetic rotors of the permanent magnet couplings by using the Amperian current model. Based on the air-gap field analysis, the eddy current loss in the isolation cover is predicted according to the Maxwell's equations. A 3D finite element analysis model is constructed to analyze the magnetic field spatial distributions and vector eddy currents, and then the simulation results obtained are analyzed and compared with the analytical method. Finally, the current losses of two types of practical magnet couplings are measured in the experiment to compare with the theoretical results. It is concluded that the 3D analytical method of eddy current loss in the magnet coupling is viable and could be used for the eddy current loss prediction of magnet couplings. PMID:27475575

  6. Alternating current loss of second-generation high-temperature superconducting coils with magnetic and non-magnetic substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Kvitkovic, J.; Kim, Jae-Ho.; Kim, C. H.; Pamidi, S. V.; Coombs, T. A.

    2012-09-01

    It is widely believed that the second-generation high-temperature superconducting (2G HTS) tapes with magnetic substrates suffer higher transport loss compared to those with non-magnetic substrates. To test this, we prepared two identical coils with magnetic and non-magnetic substrates, respectively. The experimental result was rather surprising that they generated roughly the same amount of transport loss. We used finite element method to understand this result. It is found that, unlike in the single tape where the magnetic field-dependent critical current characteristic can be neglected and the effect of magnetic substrate dominates, the magnetic field-dependent critical current characteristic of 2G tape plays as an equally important role as magnetic substrate in terms of HTS coils.

  7. Hail Growth Hysteresis.

    NASA Astrophysics Data System (ADS)

    Johnson, David B.; Rasmussen, Roy M.

    1992-12-01

    The transition between wet and dry growth for graupel and hail is examined, and new figures are presented illustrating the critical water contents necessary for transitions into or out of the wet-growth regime. These figures are extended to smaller sizes and lower bulk densities than considered in previous studies. In addition, the possibility of hysteresis in the transitions is examined.

  8. Semi-empirical modeling of hysteresis compensation in magnetostrictive actuator

    NASA Astrophysics Data System (ADS)

    Ji, Ki-Hyun; Park, Hae-Jung; Park, Young-Woo; Wereley, Norman M.

    2013-04-01

    Hysteresis causes a delayed response to a given input in a magnetostrictive actuator (MA). It becomes critical when the MA has to be controlled in precise and real-time mode. An efficient way to compensate hysteresis must be considered. The Jiles-Atherton and Preisach models have been applied mostly in the literature, but these models need complex mathematics that makes them difficult to be applied in precise and real-time mode. Thus, this paper presents a semi-empirical model to compensate hysteresis in the MA. The idea comes from the similarity of the shapes between the hysteresis-compensated input voltage to the MA, and the output voltage of R-C circuit. The respective hysteresis-compensated input voltage and R-C circuit are expressed as polynomial and exponential equations, resulting in two closed-form equations about capacitance. One set of capacitance values for each frequency is selected by simulating the derived equations. Experiments are performed to choose one capacitance value among a set of capacitance values from simulation, based on trial-and-error. The concept of the hysteresis loss is introduced and defined as the ratio of areas between the hysteretic and reference curves. It is observed that the percent change of hysteresis loss increases as the frequency increases up to 400 Hz, but decreases with further increase of the frequency up to 800 Hz. It can be concluded that the proposed approach is effective to compensate hysteresis in the MA, and that hysteresis loss definition introduced by us can be used as a helpful measure of hysteresis compensation.

  9. Macroscopic theory for capillary-pressure hysteresis.

    PubMed

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-01

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials. PMID:25646688

  10. Realization of small intrinsic hysteresis with large magnetic entropy change in La{sub 0.8}Pr{sub 0.2}(Fe{sub 0.88}Si{sub 0.10}Al{sub 0.02}){sub 13} by controlling itinerant-electron characteristics

    SciTech Connect

    Fujita, A.; Matsunami, D.; Yako, H.

    2014-03-24

    Tuning of phase-transition characteristics in La(Fe{sub x}Si{sub 1−x}){sub 13} was conducted in view of the correlation between microscopic itinerant electron natures and macroscopic thermodynamic (magnetocaloric) quantities. To realize a small hysteresis loss Q{sub H} accompanied by a large magnetic entropy change ΔS{sub M} in La(Fe{sub x}Si{sub 1−x}){sub 13}, two types of modulation based on itinerant electron characteristics, namely, the Fermi-level shift and the magnetovolume effect were combined by complex partial substitution of Al and Pr. Ab-initio calculations predict the reduction of a transition hysteresis owing to the Fermi-level shift after partial substitution of Al. On the other hand, the chemical pressure arisen from partial substitution of Pr enhances ΔS{sub M} through magnetovolume effect. The selective enhancement of ΔS{sub M} apart from Q{sub H} by the magnetovolume effect is well explained by the phenomenological Landau model. Consequently, ΔS{sub M} of La{sub 0.8}Pr{sub 0.2}(Fe{sub 0.88}Si{sub 0.10}Al{sub 0.02}){sub 13} is −18 J/kg K under a magnetic field change of 0–1.2 T, while the maximum value of Q{sub H} becomes 1/6 of that for La(Fe{sub 0.88}Si{sub 0.12}){sub 13}.

  11. AC loss measurement of superconducting dipole magnets by the calorimetric method

    SciTech Connect

    Morita, Y.; Hara, K.; Higashi, N.; Kabe, A.

    1996-12-31

    AC losses of superconducting dipole magnets were measured by the calorimetric method. The magnets were model dipole magnets designed for the SSC. These were fabricated at KEK with 50-mm aperture and 1.3-m overall length. The magnet was set in a helium cryostat and cooled down to 1.8 K with 130 L of pressurized superfluid helium. Heat dissipated by the magnet during ramp cycles was measured by temperature rise of the superfluid helium. Heat leakage into the helium cryostat was 1.6 W and was subtracted from the measured heat to obtain AC loss of the magnet. An electrical measurement was carried out for calibration. Results of the two methods agreed within the experimental accuracy. The authors present the helium cryostat and measurement system in detail, and discuss the results of AC loss measurement.

  12. Power losses of soft magnetic composite materials under two-dimensional excitation

    NASA Astrophysics Data System (ADS)

    Zhu, J. G.; Zhong, J. J.; Ramsden, V. S.; Guo, Y. G.

    1999-04-01

    Soft magnetic composite materials produced by powder metallurgy techniques can be very useful for construction of low cost small motors. However, the rotational core losses and the corresponding B-H relationships of soft magnetic composite materials with two-dimensional rotating fluxes have neither been supplied by the manufacturers nor reported in the literature. This article reports the core loss measurement of a soft magnetic composite material, SOMALOY™ 500, Höganäs AB, Sweden, under two-dimensional excitations. The principle of measurement, testing system, and power loss calculation are presented. The results are analyzed and discussed.

  13. Preisach-type modeling of high-temperature superconducting hysteresis

    NASA Astrophysics Data System (ADS)

    ElBidweihy, Hatem

    2016-05-01

    Even though Isaak Mayergoyz described it as: "much more accurate for the description of superconducting hysteresis than for the description of hysteresis of magnetic materials", Preisach modeling of superconducting hysteresis is not a popular investigative tool. This might be due to the complexity of identifying the Preisach distribution function or due to lack of convincing physical reasoning behind pure phenomenological versions. In this paper, a two-component Preisach-type model is presented which is computationally-efficient and physically-sound. The change in the slope of the minor hysteresis loops is incorporated in the model and is attributed to reversible fluxoid motion. The model presented is clearly capable of simulating various shapes of superconducting hysteresis loops and could be easily coupled with finite element method (FEM) numerical software.

  14. Prediction of iron losses in doubly salient permanent magnet machine with rectangular current waveform

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Wang, Minxi; Cheng, Ming

    2012-04-01

    Iron losses in doubly salient permanent magnet (DSPM) machine are difficult to predict, as the flux waveforms are complex and dc bias existed. This paper measures iron losses at no load for different rotor speeds and these measured loss data are used to calibrate the iron loss model of the DSPM machine. Then the iron losses at rated load are predicted under three phase rectangular currents exerting on the armature windings. The result shows that small increment of iron losses is in the rotor at rated load which do benefit to the rotor thermal dissipation design.

  15. Isotropic hysteresis modeling of Fe-Co-B alloys

    NASA Astrophysics Data System (ADS)

    Hauser, Hans; Grössinger, Roland

    1999-04-01

    The energetic model of ferromagnetic hysteresis calculates the magnetic state of materials by minimizing the total energy function for statistical domain behavior. The physical constants of this model are derived from anisotropy energy constants, initial susceptibility, coercivity, and saturation magnetization. The approach shows a good agreement to the magnetization curves of FeCoB strips, also in dependence of applied stress.

  16. Investigation of magnetic fluids exhibiting field-induced increasing loss peaks

    NASA Astrophysics Data System (ADS)

    Fannin, P. C.; Marin, C. N.; Couper, C.

    2010-05-01

    A theoretical analysis to explain an increase of the Brownian loss peak with increasing polarizing field, H, in a magnetic fluid, is presented. The model is based on the competition between the Brownian and Néel relaxation processes. It is demonstrated that in magnetic fluids with particles having small anisotropy constant, small average magnetic diameter and narrow particle size distribution an increase of the Brownian loss peak with the polarizing field can be observed. The theoretical results are compared with the experimental results of an Isopar M-based magnetic fluid with magnetite particles stabilized with oleic acid and the model explains qualitatively the main characteristics of the experimental results.

  17. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-01

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  18. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-15

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  19. Vectorized Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Szymański, Grzegorz; Waszak, Michał

    2004-01-01

    This paper deals with vector hysteresis modeling. A vector model consisting of individual Jiles-Atherton components placed along principal axes is proposed. The cross-axis coupling ensures general vector model properties. Minor loops are obtained using scaling method. The model is intended for efficient finite element method computations defined in terms of magnetic vector potential. Numerical efficiency is ensured by differential susceptibility approach.

  20. Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2016-01-01

    Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (˜8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore, a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.

  1. Iron yoke eddy current induced losses with application to the ALS septum magnets

    SciTech Connect

    Schlueter, R.D.

    1991-08-16

    The theoretical development of relations governing the eddy current induced losses in iron electromagnet yokes is reviewed. A baseline laminated electromagnet design is analyzed and a parametric study illustrates the sensitivity of core losses to perturbations of various geometrical, material, and excitation parameters. Core losses and field gradients for the ALS septum magnets are calculated. Design modifications capable of eliminating transverse and longitudinal field gradients are discussed.

  2. Effect of chemically active medium on frequency dependence of magnetic losses in soft magnetic Fe-based amorphous alloys

    NASA Astrophysics Data System (ADS)

    Skulkina, N. A.; Ivanov, O. A.; Stepanova, E. A.; Pavlova, I. O.

    2013-03-01

    The effects of the electrolytic hydrogenation and oxidation and of the interaction of the surface ribbon with water and vapor on the frequency dependence of magnetic losses per magnetization-reversal cycle are studied based on the example of soft magnetic Fe81B13Si4C2 amorphous alloy, which exhibits a positive saturation magnetostriction. It was shown that, after the hydrogenation and oxidation of soft magnetic amorphous alloys, their frequency dependences of magnetic losses per magnetization-reversal cycle, which are reduced to unit induction, exhibit groups of hydrogen- and oxygen-related peaks in the frequency ranges of 35-55 and 55-80 Hz, which can be explained by the formation of O- A and H- A atomic pairs (where A are atoms of alloy components) and their reorientation in a magnetic field in the course of magnetization reversal at certain frequencies. The formation of analogous groups of peaks for samples of soft magnetic Fe-based amorphous alloys was observed after the interaction of the ribbon surface with water and vapor and after heat treatment in air. This fact confirms the possibility of the hydrogenation and oxidation of the alloys during the aforementioned processes.

  3. Magnetic and electrical transport properties of La0.65Ca0.30Pb0.05Mn0.90Cu0.10O3 compounds: Thermal hysteresis

    NASA Astrophysics Data System (ADS)

    Irmak, A. E.; Taşarkuyu, E.; Coşkun, A.; Acet, M.; Samancıoğlu, Y.; Aktürk, S.

    2015-08-01

    Structural, electrical, and magnetic properties of La0.65(Ca0.30Pb0.05)Mn0.90Cu0.10O3 compound were investigated. The compound, prepared by the sol-gel route, was pressed into pellets and one of them was sintered at 900 °C and the other at 1000 °C for 24 h. The aim of the study was to explore structural, electrical and magnetic properties of the compound. Temperature dependent X-ray powder diffraction studies on the sample sintered at 900 °C reveal an orthorhombic-Pbnm perovskite structure through the temperature range between 320 K and 86 K. Scanning electron microcopy and energy dispersive spectroscopy analyses showed grainy, homogeneous and stoichiometric structure. Magnetization and resistivity measurements reveal that the Curie temperatures, TC, and insulator-metal transition temperatures, TIM, coincide, but the samples sintered at 900 °C also exhibit thermal hysteresis both in magnetization and resistivity upon cooling and warming.

  4. Distribution of AC loss in a HTS magnet for SMES with different operating conditions

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tang, Y.; Ren, L.; Jiao, F.; Song, M.; Cao, K.; Wang, D.; Wang, L.; Dong, H.

    2013-11-01

    The AC loss induced in superconducting tape may affect the performance of a superconducting device applied to power system, such as transformer, cable, motor and even Superconducting Magnetic Energy Storage (SMES). The operating condition of SMES is changeable due to the need of compensation to the active or reactive power according to the demand of a power grid. In this paper, it is investigated that the distribution of AC loss for a storage magnet on different operating conditions, which is based on finite element method (FEM) and measured properties of BSCCO/Ag tapes. This analytical method can be used to optimize the SMES magnet.

  5. Development of Interior Permanent Magnet Motors Reducing Harmonic Iron Losses under Field Weakening Control

    NASA Astrophysics Data System (ADS)

    Yamazaki, Katsumi; Ohki, Shunji; Nezu, Akira; Ikemi, Takeshi

    In this paper, we present the development of interior magnet motors reducing iron loss at high rotational speed under the flux weakening control. The rotor core and magnet shapes are determined by the automatic numerical calculation using combination of the optimization method and the adaptive finite element method. The optimized motor is manufactured to proof the effectiveness by the measurement of the iron loss. Both results of the calculation and the measurement indicate that the iron loss of the proposed motor at the high rotational speed under the flux weakening control is reduced as half compared with the initial rotor shape while the torque is nearly constant.

  6. Analysis of power loss in Ni-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Chiba, T.; Yamada, S.; Otsuki, E.

    2000-05-01

    The power loss (Pcv) was analyzed by combining two methods. The first, Pcv, is divided into hysteresis loss (Ph) and residual loss (Pr) from the frequency dependence of the power loss according to the method of Otsuki et al., and, second, the loss factors are attributed to domain wall motion (Pw) and the rotation magnetization (Prot) by adapting the method proposed by Visser et al. It was found that Pw coincides with Ph in the lower frequency range, but the difference between them becomes significant as frequency goes up. The higher value of Pw, in comparison with Ph in the higher frequency range, can be attributed to the enhancement of loss due to the dynamic motion of the domain wall (Pwd) by raising the frequency. The hysteresis loss dominates Pcv in the frequency range below 500 kHz, while Pwd becomes predominant factor in the higher frequency range more than 500 kHz.

  7. Novel magnetic core materials impact modelling and analysis for minimization of RF heating loss

    NASA Astrophysics Data System (ADS)

    Ghosh, Bablu Kumar; Mohamad, Khairul Anuar; Saad, Ismail

    2016-02-01

    The eddy current that exists in RF transformer/inductor leads to generation of noise/heat in the circuit and ultimately reduces efficiency in RF system. Eddy current is generated in the magnetic core of the inductor/transformer largely determine the power loss for power transferring process. The losses for high-frequency magnetic components are complicated due to both the eddy current variation in magnetic core and copper windings reactance variation with frequency. Core materials permeability and permittivity are also related to variation of such losses those linked to the operating frequency. This paper will discuss mainly the selection of novel magnetic core materials for minimization of eddy power loss by using the approach of empirical equation and impedance plane simulation software TEDDY V1.2. By varying the operating frequency from 100 kHz to 1GHz and magnetic flux density from 0 to 2 Tesla, the eddy power loss is evaluated in our study. The Nano crystalline core material is found to be the best core material due to its low eddy power loss at low conductivity for optimum band of frequency application.

  8. Including effects of microstructure and anisotropy in theoretical models describing hysteresis of ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Hauser, H.; Melikhov, Y.; Jiles, D. C.

    2007-10-01

    Two recent theoretical hysteresis models (Jiles-Atherton model and energetic model) are examined with respect to their capability to describe the dependence of the magnetization on magnetic field, microstructure, and anisotropy. It is shown that the classical Rayleigh law for the behavior of magnetization at low fields and the Stoner-Wohlfarth theory of domain magnetization rotation in noninteracting magnetic single domain particles can be considered as limiting cases of a more general theoretical treatment of hysteresis in ferromagnetism.

  9. Magnetization losses in superconducting YBCO conductor-on-round-core (CORC) cables

    NASA Astrophysics Data System (ADS)

    Majoros, M.; Sumption, M. D.; Collings, E. W.; van der Laan, D. C.

    2014-12-01

    Described are the results of magnetization loss measurements made at 77 K on several YBCO conductor-on-round-core (CORC) cables in ac magnetic fields of up to 80 mT in amplitude and frequencies of 50 to 200 Hz, applied perpendicular to the cable axis. The cables contained up to 40 tapes that were wound in as many as 13 layers. Measurements on the cables with different configurations were made as functions of applied ac field amplitude and frequency to determine the effects of their layout on ac loss. In large scale devices such as e.g. Superconducting Magnetic Energy Storage (SMES) magnets, the observed ac losses represent less than 0.1% of their stored energy.

  10. AC current distribution and losses in multifilamentary superconductors exposed to longitudinal magnetic field

    SciTech Connect

    Le Naour, S.; Lacaze, A.; Laumond, Y.; Estop, P.; Verhaege, T.

    1996-07-01

    The current distribution and also AC losses, in a multifilamentary superconductor carrying a transport current, are influenced by the self and the external magnetic field. By using the Maxwell equations, a model has been developed in order to calculate the temporal evolution of current distribution in a single wire exposed or not to external magnetic field. This model is based on the actual relationship of electrical field E with current density J and takes into account the twist pitch of the wire. AC losses are calculated by adding all local losses through the cross section. This paper presents calculations of the influence of the cable twist coupled with the longitudinal magnetic field, and also gives some ideas how to decrease losses.

  11. Hysteresis in Transport Critical-Current Measurements of Oxide Superconductors

    PubMed Central

    Goodrich, L. F.; Stauffer, T. C.

    2001-01-01

    We have investigated magnetic hysteresis in transport critical-current (Ic) measurements of Ag-matrix (Bi,Pb)2Sr2Ca2Cu3O10–x (Bi-2223) and AgMg-matrix Bi2Sr2CaCu2O8+x (Bi-2212) tapes. The effect of magnetic hysteresis on the measured critical current of high temperature superconductors is a very important consideration for every measurement procedure that involves more than one sweep of magnetic field, changes in field angle, or changes in temperature at a given field. The existence of this hysteresis is well known; however, the implications for a measurement standard or interlaboratory comparisons are often ignored and the measurements are often made in the most expedient way. A key finding is that Ic at a given angle, determined by sweeping the angles in a given magnetic field, can be 17 % different from the Ic determined after the angle was fixed in zero field and the magnet then ramped to the given field. Which value is correct is addressed in the context that the proper sequence of measurement conditions reflects the application conditions. The hysteresis in angle-sweep and temperature-sweep data is related to the hysteresis observed when the field is swept up and down at constant angle and temperature. The necessity of heating a specimen to near its transition temperature to reset it to an initial state between measurements at different angles and temperatures is discussed. PMID:27500042

  12. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    SciTech Connect

    Kispert, Lowell D; Focsan, A Ligia; Konovalova, Tatyana A; Lawrence, Jesse; Bowman, Michael K; Dixon, David A; Molnar, Peter; Deli, Jozsef

    2007-06-11

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond lengthening, a mechanism for nonradiative energy

  13. Vortex flow hysteresis

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1986-01-01

    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  14. Hysteresis modeling and measurement for two-dimensional particle assemblies

    NASA Astrophysics Data System (ADS)

    Hauser, H.; Fulmek, P. L.; Grössinger, R.

    2002-04-01

    The increasing accuracy of circuit data storage simulations demands reliable models for the magnetic behaviour of the magnetic storage material. This paper introduces and compares the results of measurements and the results of model calculations by applying the Jiles-Atherton model, and the energetic model of ferromagnetic hysteresis by Hauser. The results show good agreement for uniaxial particle assemblies.

  15. Modeling of dynamic hysteresis for grain-oriented laminations using a viscosity-based modified dynamic Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Baghel, A. P. S.; Shekhawat, S. K.; Kulkarni, S. V.; Samajdar, I.

    2014-09-01

    Grain-oriented (GO) materials exhibit arbitrary frequency-loss behaviors and anomalies in dynamic hysteresis loop shapes. Significant attempts have been made in the literature to approximate dynamic hysteresis loops using the dynamic Jiles-Atherton (JA) model based Bertotti's approach. Such a model is inefficient in accurate loss computation over a wide range of frequencies and in predictions of correct loop shapes. Moreover, the original static JA model also needs to be improved for accurate prediction of highly steep, gooseneck, and narrow-waist static loops of GO materials. An alternative approach based on magnetic viscosity provides flexibilities to handle indefinite frequency dependence of the losses and to control the anomalous loop shapes. This paper proposes a viscosity-based dynamic JA model which gives accurate prediction of dynamic loops of GO materials. A modified static JA model which considers crystalline and textured structures of GO materials is used to predict static hysteresis loops. The dynamic losses are included in the modified model using the field separation approach. The proposed model is validated using experimental measurements. The computed and measured dynamic loops are in close agreement in the frequency range of 1-200 Hz.

  16. Losses at magnetic nulls in pulsed-power transmission line systems

    NASA Astrophysics Data System (ADS)

    Mendel, C. W.; Pointon, T. D.; Savage, M. E.; Seidel, D. B.; Magne, I.; Vézinet, R.

    2006-04-01

    Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds.

  17. Losses at magnetic nulls in pulsed-power transmission line systems

    SciTech Connect

    Mendel, C.W. Jr.; Pointon, T.D.; Savage, M.E.; Seidel, D.B.; Magne, I.; Vezinet, R.

    2006-04-15

    Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds.

  18. Losses at magnetic nulls in pulsed-power transmission line systems.

    SciTech Connect

    Magne, I.; Savage, Mark Edward; Seidel, David Bruce; Mendel, Clifford Will, Jr.; Pointon, Timothy David; Vezinet, R.

    2004-08-01

    Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds.

  19. Calorimetric method of ac loss measurement in a rotating magnetic field.

    PubMed

    Ghoshal, P K; Coombs, T A; Campbell, A M

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines. PMID:20687748

  20. Calorimetric method of ac loss measurement in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-Tc superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  1. Calorimetric method of ac loss measurement in a rotating magnetic field

    SciTech Connect

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  2. Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis In Planar Diodes

    SciTech Connect

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian; Maksymovych, Petro; Sargent, Edward H.

    2015-03-31

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3 antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  3. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes

    NASA Astrophysics Data System (ADS)

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-05-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3- antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  4. Estimation of the Iron Loss in Deep-Sea Permanent Magnet Motors considering Seawater Compressive Stress

    PubMed Central

    Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress. PMID:25177717

  5. with very high saturation magnetization and negligible dielectric loss synthesized via a soft chemical route

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Pradip, S.; Mishra, A. K.; Das, D.

    2014-07-01

    Materials with high saturation magnetization and low dielectric loss are in great demand due to the great boom in communication industry. In this paper, we report the synthesis of nanoferrites with the generic formula Zn x Ni(1- x)Fe2O4 ( x = 0.0, 0.1, 0.3 and 0.5) through chemical co-precipitation technique. The sample with x = 0.5 showed a saturation magnetization of 8.2 μ B which is the highest reported for any ferrite. Coupled to this excellent magnetic property, this ferrite has shown a negligible dielectric loss tangent over a large frequency window from 100 Hz to 1 MHz. The high values of saturation magnetization have been attributed to the composite effect of large-scale cationic migration and surface spin disorder.

  6. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress. Second year interim report, June 1992--December 1992

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Burkhardt, G.L.

    1993-01-31

    Research was done on the biaxial stress problem accomplished in the first half of the second year. All of the work done was preparatory to magnetic measurements. Issues addressed were: construction of a model for extracting changes in the magnetic properties of a specimen from the readings of an indirect sensor; initial development of a model for how biaxial stress alters the intrinsic magnetic properties of thespecimen; use of finite element stress analysis modeling to determine a detailed shape for the cruciform biaxial stress specimen; and construction of the biaxial stress loading apparatus.

  7. Energy loss of ions by electric-field fluctuations in a magnetized plasma

    SciTech Connect

    Nersisyan, Hrachya B.; Deutsch, Claude

    2011-06-15

    The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.

  8. Magnetism variations and susceptibility hysteresis at the metal-insulator phase transition temperature of VO2 in a composite film containing vanadium and tungsten oxides

    NASA Astrophysics Data System (ADS)

    Akande, Amos A.; Rammutla, Koena E.; Moyo, Thomas; Osman, Nadir S. E.; Nkosi, Steven S.; Jafta, Charl J.; Mwakikunga, Bonex W.

    2015-02-01

    We report on the magnetic property of 0.67-WO3+0.33-VOx mixture film deposit on the corning glass substrate using the chemical sol-gel and atmospheric pressure chemical vapor deposition (APCVD) methods. The XRD and Raman spectroscopy confirm species of both materials, and the morphological studies with FIB-SEM and TEM reveal segregation of W and V atoms. XPS reveals that V4+ from VO2 forms only 11% of the film; V3+ in the form of V2O3 form 1% of the film, 21% is V5+ from V2O5 and 67% is given to W6+ from WO3. The analysis of the ESR data shows some sharp changes in the magnetism near the metal-to-insulator (MIT), which could be theoretically interpreted as the ordering or alignment of electron spins from net moment nature to parallel alignment of magnetic moment. The derivatives of magnetic susceptibility established the thermally induced magnetic property: two distinct transitions of 339 K for heating data and 338 K for cooling data for 151.2 mT field were obtained. Similar results were also obtained for 308.7 mT field, 336 K for heating data and 335 K for cooling data. VSM results confirm a paramagnetic phase with a small amount of magnetically ordered phase.

  9. Low hysteresis FeMn-based top spin valve.

    PubMed

    Ustinov, V V; Krinitsina, T P; Milyaev, M A; Naumova, L I; Proglyado, V V

    2012-09-01

    FeMn-based top spin valves Ta/[FeNi/CoFe]/Cu/CoFe/FeMn/Ta with different Cu and FeMn layers thicknesses were prepared by DC magnetron sputtering at room temperature. It was shown that low field hysteresis due to free layer magnetization reversal can be reduced down to (0.1 divided by 0.2) Oe keeping the GMR ratio higher 8% by using both layers thicknesses optimization and non-collinear geometry of magnetoresistance measurements. Dependence of low field hysteresis and GMR ratio on the angle between applied magnetic field and pinning direction are presented. PMID:23035516

  10. The frequency-dependent Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Malczyk, Robert; Izydorczyk, Jacek

    2015-04-01

    An extension of the Jiles-Atherton (J-A) magnetic hysteresis model is proposed in the paper. The physical J-A model has been substituted with the specially chosen mathematical Chua model. The proposed model produces identical results to those of the original J-A model for the static magnetic hysteresis loop. The new model permits the inclusion of a wide variety of additional effects observed for ferromagnetic materials without invalidating the well-known and broadly used J-A model parameters. Thus, it is possible to effectively model phenomena, whose detailed physical model would require complex mathematical calculations.

  11. Incorporation of Hysteresis Effects into Magnetc Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Lee, S. J.; Melikhov, Y.; Jiles, D. C.; Garton, M.; Lopez, R.; Brasche, L.

    2004-02-01

    Hysteresis effects have usually been ignored in magnetic modeling due to the multi-valued property causing difficulty in its incorporation into numerical calculations such as those based on finite elements. A linear approximation of magnetic permeability or a nonlinear B-H curve formed by connecting the tips of the hysteresis loops has been widely used in magnetic modeling for these types of calculations. We have employed the Jiles-Atherton (J-A) hysteresis model for development of a finite element method algorithm incorporating hysteresis effects. J-A model is suited for numerical analysis such as finite element modeling because of the small number of degrees of freedom and its simple form of equation. A finite element method algorithm for hysteretic materials has been developed for estimation of the volume and the distribution of retained magnetic particles around a defect site. The volume of retained magnetic particles was found to depend not only on the existing current source strength but also on the remaining magnetization of a hysteretic material. Detailed algorithm and simulation results are presented.

  12. A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber

    SciTech Connect

    Candiani, A.; Argyros, A.; Leon-Saval, S. G.; Lwin, R.; Selleri, S.; Pissadakis, S.

    2014-03-17

    We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

  13. Magnetic-field-induced microwave losses in epitaxial Bi-Sr-Ca-Cu-O films

    SciTech Connect

    Silva, E.; Giura, M.; Marcon, R.; Fastampa, R. ); Balestrino, G.; Marinelli, M.; Milani, E. )

    1992-06-01

    Magnetic-field-induced microwave losses in epitaxial {ital c}-axis-oriented Bi-Sr-Ca-Cu-O films have been observed. At low magnetic field, the behavior of the absorption is qualitatively analogous to that already observed in granular samples. The dominant part is attributed to the dephasing of a network of Josephson junctions. A structural analysis shows evidence of such a network. The dependence of the absorption on the angle between the magnetic field and the {ital a}-{ital b} plane is consistent with this model.

  14. Loss of magnetization induced by doping in CeO2 films

    NASA Astrophysics Data System (ADS)

    Fernandes, V.; Schio, P.; de Oliveira, A. J. A.; Schreiner, W. H.; Varalda, J.; Mosca, D. H.

    2011-12-01

    This work reports the effect of Mn, Fe, Co, and Cu low doping (˜3 at. %) on the ferromagnetic behavior of oxygen-defective CeO2-δ films electrodeposited on SiO2/Si(001). Our results indicate that the incorporation of a small number of 3d dopants with unoccupied outermost atomic orbitals, presumably magnetically active, strongly perturb the ferromagnetic ground-state associated with the network of electron clouds surrounding oxygen vacancies. As a consequence, a strong loss of magnetization occurs and saturation magnetization becomes uncorrelated with number of oxygen vacancies.

  15. Inkjet printing of magnetic materials with aligned anisotropy

    NASA Astrophysics Data System (ADS)

    Song, Han; Spencer, Jeremy; Jander, Albrecht; Nielsen, Jeffrey; Stasiak, James; Kasperchik, Vladek; Dhagat, Pallavi

    2014-05-01

    3-D printing processes, which use drop-on-demand inkjet printheads, have great potential in designing and prototyping magnetic materials. Unlike conventional deposition and lithography, magnetic particles in the printing ink can be aligned by an external magnetic field to achieve both high permeability and low hysteresis losses, enabling prototyping and development of novel magnetic composite materials and components, e.g., for inductor and antennae applications. In this work, we report an inkjet printing technique with magnetic alignment capability. Magnetic films with and without particle alignment are printed, and their magnetic properties are compared. In the alignment-induced hard axis direction, an increase in high frequency permeability and a decrease in hysteresis losses are observed. Our results suggest that unique magnetic structures with arbitrary controllable anisotropy, not feasible otherwise, may be fabricated via inkjet printing.

  16. Mach, methodology, hysteresis and economics

    NASA Astrophysics Data System (ADS)

    Cross, R.

    2008-11-01

    This methodological note examines the epistemological foundations of hysteresis with particular reference to applications to economic systems. The economy principles of Ernst Mach are advocated and used in this assessment.

  17. Magnetic field structure influence on primary electron cusp losses for micro-scale discharges

    SciTech Connect

    Dankongkakul, Ben; Araki, Samuel J.; Wirz, Richard E.

    2014-04-15

    An experimental effort was used to examine the primary electron loss behavior for micro-scale (≲3 cm diameter) discharges. The experiment uses an electron flood gun source and an axially aligned arrangement of ring-cusps to guide the electrons to a downstream point cusp. Measurements of the electron current collected at the point cusp show an unexpectedly complex loss pattern with azimuthally periodic structures. Additionally, in contrast to conventional theory for cusp losses, the overall radii of the measured collection areas are over an order of magnitude larger than the electron gyroradius. Comparing these results to Monte Carlo particle tracking simulations and a simplified analytical analysis shows that azimuthal asymmetries of the magnetic field far upstream of the collection surface can substantially affect the electron loss structure and overall loss area.

  18. Magnetic particle hyperthermia: power losses under circularly polarized field in anisotropic nanoparticles.

    PubMed

    Nándori, I; Rácz, J

    2012-12-01

    The deterministic Landau-Lifshitz-Gilbert equation has been used to investigate the nonlinear dynamics of magnetization and the specific power loss in magnetic nanoparticles with uniaxial anisotropy driven by a rotating magnetic field, generalizing the results obtained for the isotropic case found by P. F. de Châtel, I. Nándori, J. Hakl, S. Mészáros, and K. Vad [J. Phys. Condens. Matter 21, 124202 (2009)]. As opposed to many applications of magnetization reversal in single-domain ferromagnetic particles, where losses must be minimized, in this paper, we study the mechanisms of dissipation used in cancer therapy by hyperthermia, which requires the enhancement of energy losses. We show that for circularly polarized field, the energy loss per cycle is decreased by the anisotropy compared to the isotropic case when only dynamical effects are taken into account. Thus, in this case, in the low-frequency limit, a better heating efficiency can be achieved for isotropic nanoparticles. The possible role of thermal fluctuations is also discussed. Results obtained are compared to experimental data. PMID:23367947

  19. Fast ion loss associated with perturbed field by resonant magnetic perturbation coils in KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Jun Young; Kim, Junghee; Rhee, Tongnyeol; Yoon, S. W.; Park, G. Y.; Jeon, Y. M.; Isobe, M.; Shimizu, A.; Ogawa, K.; Park, J.-K.; Garcia-Munoz, M.

    2013-10-01

    Resonant magnetic perturbation (RMP) is the most promising strategies for ELM mitigation/suppression. However, it has been found through the modeling and the experiments that RMP for the ELM mitigation can enhance the toroidally localized fast ion loss. During KSTAR experimental campaigns in 2011 and 2012, sudden increase or decrease of the fast ion loss has been observed by the scintillator-based fast ion loss detector (FILD) when the RMP is applied. Three-dimensional perturbed magnetic field by RMP coil in vacuum is calculated by Biot-Savart's law embedded in the Lorentz orbit code (LORBIT). The LORBIT code which is based on gyro-orbit following motion has been used for the simulation of the three-dimensional fast ion trajectories in presence of non-axisymmetric magnetic perturbation. It seems the measured fast ion loss rate at the localized position depends on not only the RMP field configuration but also the plasma profile such as safety factor and so on, varying the ratio between radial drift and stochastization of the fat-ion orbits. The simulation results of fast ion orbit under magnetic perturbation w/ and w/o plasma responses will be presented and compared with KSTAR FILD measurement results in various cases.

  20. Calculations of alpha particle loss for reversed magnetic shear in the Tokamak Fusion Test Reactor

    SciTech Connect

    Redi, M.H.; White, R.B.; Batha, S.H.; Levinton, F.M.; McCune, D.C.

    1997-03-01

    Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma predict both total alpha losses and ripple diffusion losses to be greater than those from a comparable non-reversed magnetic shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. A simple ripple loss model, benchmarked against the guiding center code, is found to work satisfactorily in transport analysis modelling of reversed and monotonic shear scenarios. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. The 40% alpha particle loss predictions for TFTR suggest that reduction of toroidal field ripple will be a critical issue in the design of a reversed shear fusion reactor.

  1. Determination of the magnetic losses in laminated cores under pulse width modulation voltage supply

    NASA Astrophysics Data System (ADS)

    Vidal, N.; Gandarias, K.; Almandoz, G.; Poza, J.

    2015-08-01

    In the laminated ferromagnetic cores employed in transformers and electrical machines energy losses occur resulting in a warming effect and efficiency decrease. Normally, manufacturers only provide iron losses data when a sinusoidal voltage supply is applied, but the actual operating characteristics of electrical machines include non-sinusoidal supplies, in particular pulse-width modulation (PWM). This information can be experimentally obtained, but only measuring systems that have function generators with arbitrarily programmable waveforms allow measurements in the presence of higher harmonics. Therefore, having an analytical tool to obtain the most accurate estimation of the magnetic losses is of great interest in addressing the design of electric machines. This paper validates an analytical-expression-based procedure, which delivers results with acceptable accuracy under all operating conditions for the estimation of losses in laminated cores. In addition, it investigates the influence of the modulation amplitude and the switching frequency of the PWM signals in the magnetic losses of soft magnetic materials. For this purpose, non-oriented fully processed electrical steel strips have been measured in a commercial AC permeameter using a single strip tester.

  2. An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles

    PubMed Central

    Osaci, Mihaela

    2015-01-01

    Summary Background: Nanoparticles can be used in biomedical applications, such as contrast agents for magnetic resonance imaging, in tumor therapy or against cardiovascular diseases. Single-domain nanoparticles dissipate heat through susceptibility losses in two modes: Néel relaxation and Brownian relaxation. Results: Since a consistent theory for the Néel relaxation time that is applicable to systems of interacting nanoparticles has not yet been developed, we adapted the Coffey theoretical model for the Néel relaxation time in external magnetic fields in order to consider local dipolar magnetic fields. Then, we obtained the effective relaxation time. The effective relaxation time is further used for obtaining values of specific loss power (SLP) through linear response theory (LRT). A comparative analysis between our model and the discrete orientation model, more often used in literature, and a comparison with experimental data from literature have been carried out, in order to choose the optimal magnetic parameters of a nanoparticle system. Conclusion: In this way, we can study effects of the nanoparticle concentration on SLP in an acceptable range of frequencies and amplitudes of external magnetic fields for biomedical applications, especially for tumor therapy by magnetic hyperthermia. PMID:26665090

  3. Magnetization AC losses in MgB2 wires made by IMD process

    NASA Astrophysics Data System (ADS)

    Kováč, J.; Šouc, J.; Kováč, P.; Hušek, I.

    2015-01-01

    Magnetization AC losses of MgB2 superconductors with one and four filaments made by an internal magnesium diffusion (IMD) into boron process were measured and analyzed. For AC loss measurement a system based on a calibration-free method was used. Short samples of MgB2 wires were exposed to an external magnetic field with amplitudes up to 0.07 T, frequencies up to 1200 Hz, and a temperature range between 15 K and 40 K. A strong effect of eddy current losses was found in single-core wire containing pure copper sheath, which was proved by the same wire measurement after Cu etching. The impact of coupling current losses in non-twisted four-filament wire and the decoupling effect after twisting were observed. Coupling current losses in a low-frequency region were effectively reduced in agreement with theoretical assumption. The degradation of transport currents due to torsion stress by twisting was taken into account and the normalized AC losses of MgB2 wires made by IMD and powder-in-tube processes were compared. It appears that the IMD process is more perspective for AC applications due to much higher current densities and smaller degradation of current-carrying capability by twisting.

  4. Disc formation in turbulent cloud cores: is magnetic flux loss necessary to stop the magnetic braking catastrophe or not?

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; de Gouveia Dal Pino, E. M.; Lazarian, A.

    2013-03-01

    Recent numerical analysis of Keplerian disc formation in turbulent, magnetized cloud cores by Santos-Lima et al. demonstrated that reconnection diffusion is an efficient process to remove the magnetic flux excess during the buildup of a rotationally supported disc. This process is induced by fast reconnection of the magnetic fields in a turbulent flow. In a similar numerical study, Seifried et al. concluded that reconnection diffusion or any other non-ideal magnetohydrodynamic effects would not be necessary and turbulence shear alone would provide a natural way to build up a rotating disc without requiring magnetic flux loss. Their conclusion was based on the fact that the mean mass-to-flux ratio (μ) evaluated over a spherical region with a radius much larger than the disc is nearly constant in their models. In this paper, we compare the two sets of simulations and show that this averaging over large scales can mask significant real increases of μ in the inner regions where the disc is built up. We demonstrate that turbulence-induced reconnection diffusion of the magnetic field happens in the initial stages of the disc formation in the turbulent envelope material that is accreting. Our analysis is suggestive that reconnection diffusion is present in both sets of simulations and provides a simple solution for the `magnetic braking catastrophe' which is discussed in the literature in relation to the formation of protostellar accretion discs.

  5. Minor hysteresis loops model based on exponential parameters scaling of the modified Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Hamimid, M.; Mimoune, S. M.; Feliachi, M.

    2012-07-01

    In this present work, the minor hysteresis loops model based on parameters scaling of the modified Jiles-Atherton model is evaluated by using judicious expressions. These expressions give the minor hysteresis loops parameters as a function of the major hysteresis loop ones. They have exponential form and are obtained by parameters identification using the stochastic optimization method “simulated annealing”. The main parameters influencing the data fitting are three parameters, the pinning parameter k, the mean filed parameter α and the parameter which characterizes the shape of anhysteretic magnetization curve a. To validate this model, calculated minor hysteresis loops are compared with measured ones and good agreements are obtained.

  6. MODELING OF STOCHASTIC MAGNETIC FLUX LOSS FROM THE EDGE OF A POOIDALLY DIVERTED TOKAMAK

    SciTech Connect

    EVANS, TE,; MOYER, RA; MONAT, P

    2002-06-01

    OAK A271 MODELING OF STOCHASTIC MAGNETIC FLUX LOSS FROM THE EDGE OF A POOIDALLY DIVERTED TOKAMAK. A field line integration code is used to study the loss of edge poloidal magnetic flux due to stochastic magnetic fields produced by an error field correction coil (C-coil) in DIII-D for various plasma shapes, coil currents and edge magnetic shear profiles. The authors find that the boundary of a diverted tokamak is more sensitive to stochastic flux loss than a nondiverted tokamak. The C-coil has been used to produce a stochastic layer in an ohmic diverted discharge with characteristics similar to those seen in stochastic boundary experiments in circular limiter ohmic plasmas, including: (1) an overall increase in recycling, (2) a broadening of the recycling profile at the divertor, and (3) a flattening of the boundary profiles over the extent of the stochastic layer predicted by the field line integration code. Profile flattening consistent with field line integration results is also seen in some high performance discharges with edge transport barriers. The prediction of a significant edge stochastic layer even in discharges with high performance and edge radial transport barriers indicates that either the self-consistent plasma response heals the stochastic layer or that edge stochastic layers are compatible with edge radial transport barriers.

  7. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  8. Numerical study on AC loss characteristics of superconducting power transmission cables comprising coated conductors with magnetic substrates

    NASA Astrophysics Data System (ADS)

    Amemiya, N.; Nakahata, M.

    2007-10-01

    Electromagnetic field analyses were made for mono-layer conductors comprising coated conductors for superconducting power transmission cables in order to evaluate their AC loss characteristics. We focused on the magnetic properties of the substrates of coated conductors. The current distribution in each coated conductor and the magnetic flux profile around each coated conductor were visualized. The influence of relative permeability and the space between coated conductors on the AC loss characteristics of mono-layer conductors were studied based on the visualized current and magnetic flux distributions. The influence of a saturated magnetic property on a calculated AC loss was also discussed.

  9. An inclusive model of ferromagnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Phelps, Brian Fletcher

    A new inclusive macroscopic model of ferromagnetic hysteresis is proposed. The model is developed from a Stoner-Wohlfarth approach by adding mean field or nearest neighbour dipole-dipole interactions. Pinning of domain rotation is also postulated, and a rotational pinning extension included. The model includes the principal features of the Jiles-Atherton model in the previous Atherton-Beattie extension of the Stoner-Wohlfarth model, but still omits the domain wall energy effects included in the Globus model. The new model describes both reversible and irreversible processes, and hysteresis caused by combinations of interaction, anisotropy, and pinning. Computational approaches to both two and three dimensional calculations are detailed, and examples given. Simulations of hard magnetic materials are done, including major loops to near saturation, minor loops, and demagnetizations. The complete 2 x 2 magnetization tensor response is shown, including fan diagram representations. The minor loop simulations involve complicated sets of field turning points typical of the Preisach model, and the minor loops are seen to exhibit incongruence and eventual closure. The demagnetization simulations are done for both rotating and oscillating applied field cycles. Both isotropic and anisotropic polycrystalline easy axis distributions are treated.

  10. Residual stresses and vector hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Ktena, Aphrodite

    2016-04-01

    Residual stresses in magnetic materials, whether the result of processing or intentional loading, leave their footprint on macroscopic data, such hysteresis loops and differential permeability measurements. A Preisach-type vector model is used to reproduce the phenomenology observed based on assumptions deduced from the data: internal stresses lead to smaller and misaligned grains, hence increased domain wall pinning and angular dispersion of local easy axes, favouring rotation as a magnetization reversal mechanism; misaligned grains contribute to magnetostatic fields opposing the direction of the applied field. The model is using a vector operator which accounts for both reversible and irreversible processes; the Preisach concept for interactions for the role of stress related demagnetizing fields; and a characteristic probability density function which is constructed as a weighed sum of constituent functions: the material is modeled as consisting of various subsystems, e.g. reversal mechanisms or areas subject to strong/weak long range interactions and each subsystem is represented by a constituent probability density function. Our assumptions are validated since the model reproduces the hysteresis loops and differential permeability curves observed experimentally and calculations involving rotating inputs at various residual stress levels are consistent and in agreement with experimental evidence.

  11. The Effect of Magnetic Spots on Stellar Winds and Angular Momentum Loss

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Drake, J. J.; Kashyap, V. L.; Gombosi, T. I.

    2009-07-01

    We simulate the effect of latitudinal variations in the location of star spots, as well as their magnetic field strength, on stellar angular momentum loss (AML) to the stellar wind. We use the Michigan solar corona global magnetohydrodynamic model, which incorporates realistic relation between the magnetic field topology and the wind distribution. We find that the spots' location significantly affects the stellar wind structure, and as a result, the total mass loss rate and AML rate. In particular, we find that the AML rate is controlled by the mass flux when spots are located at low latitudes but is controlled by an increased plasma density between the stellar surface and the Alfvén surface when spots are located at high latitudes. Our results suggest that there might be a feedback mechanism between the magnetic field distribution, wind distribution, AML through the wind, and the motions at the convection zone that generate the magnetic field. This feedback might explain the role of coronal magnetic fields in stellar dynamos.

  12. Alternating current loss reduction for rectangular busbars by covering their edges with low permeable magnetic caps

    NASA Astrophysics Data System (ADS)

    Sasada, Ichiro

    2014-05-01

    A method to reduce ac conductive losses in a thin rectangular busbar made of copper is presented. The method is based on a technique, which makes the distribution of the ac current in the cross section of a busbar flatter. Edges of a thin busbar are covered with low permeability magnetic thin layers as caps. The magnetic cap makes the impedance experienced by the current flowing near the edge comparatively larger so that currents cannot get crowded near the edges of a busbar. This method is numerically verified.

  13. Alternating current loss reduction for rectangular busbars by covering their edges with low permeable magnetic caps

    SciTech Connect

    Sasada, Ichiro

    2014-05-07

    A method to reduce ac conductive losses in a thin rectangular busbar made of copper is presented. The method is based on a technique, which makes the distribution of the ac current in the cross section of a busbar flatter. Edges of a thin busbar are covered with low permeability magnetic thin layers as caps. The magnetic cap makes the impedance experienced by the current flowing near the edge comparatively larger so that currents cannot get crowded near the edges of a busbar. This method is numerically verified.

  14. Onset of rapid mass loss in cool giant stars - Magnetic field effects

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1982-01-01

    The possibility that closed magnetic field loops exist in steady state in stellar atmospheres in the HR diagram is examined. A model derived by Pneuman (1968) for helmet streamers in the solar corona is applied using a semi-empirical technique, to find that long-lived closed loops exist only below a certain boundary in the HR diagram. The region below this boundary is occupied by stars which are known to have hot coronae and slow mass loss. It is suggested that rapid mass loss sets in when closed field loops can no longer exist in steady state in the atmosphere.

  15. On the Treatment of Electric and Magnetic Loss in the Linear Bicharacteristic Scheme for Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2000-01-01

    The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been extended to treat lossy dielectric and magnetic materials. This paper examines different methodologies for treatment of the electric loss term in the Linear Bicharacteristic Scheme for computational electromagnetics. Several different treatments of the electric loss term using the LBS are explored and compared on one-dimensional model problems involving reflection from lossy dielectric materials on both uniform and nonuniform grids. Results using these LBS implementations are also compared with the FDTD method for convenience.

  16. APPARATUS FOR MINIMIZING ENERGY LOSSES FROM MAGNETICALLY CONFINED VOLUMES OF HOT PLASMA

    DOEpatents

    Post, R.F.

    1961-10-01

    An apparatus is described for controlling electron temperature in plasma confined in a Pyrotron magnetic containment field. Basically the device comprises means for directing low temperature electrons to the plasma in controlled quantities to maintain a predetermined optimum equilibrium electron temperature whereat minimum losses of plasma ions due to ambipolar effects and energy damping of the ions due to dynamical friction with the electrons occur. (AEC)

  17. Use of magnetic iron oxide to determine soil losses in rainfed olive orchard plots

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Gómez, J. A.; Giráldez, J. V.

    2012-04-01

    Soil erosion is a major threat for sustainability of olive cropped areas in Mediterranean countries, like southern Spain where ~17% of its surface is covered by olive orchards (Gómez et al. 2005). Despite the large number of research dedicated to the study of soil erosion in olive orchards, a significant uncertainty persists in the estimation of actual erosion rates in these areas (Gómez et al. 2008; Fleskens and Stroosnijder, 2007). Due to the technical and economic limitations of traditional methods used in erosion measurement, there is a growing interest in the use of new methods including tracking of soil incorporating tracers in experiments performed at different scales and time periods. Magnetic iron oxide particles are good tracers to complement, or even replace traditional techniques of soil loss measurement after rainfall events under controlled rainfall conditions, especially at the small scale (Guzmán et al. 2010). From October 2008 to August 2010 soil losses were measured in two olive orchard runoff plots. During that period magnetic iron oxide concentration changes were also determined to estimate total soil losses and soil redistribution by water and tillage erosion in the plots, differentiating between the inter-tree rows, tree rows and rill areas influence. Average measured and estimated soil losses in the plots were 14.1 and 14.2 kg·m-2 respectively. Magnetic iron oxide as a sediment tracer allowed the estimation of soil losses with a RSME of 0.72 kg·m-2. Although soil erosion rates from tree rows were lower (0.6 kg·m-2·month-1) compared to inter-tree row rates (1.1 kg·m-2·month-1), the contribution of tree row areas to total soil losses was considerably high because of the great volume of the tree canopies in the plots and therefore, covered area (53.5 %). Magnetite content variations both overland and within the soil profile, selectivity of the tracer for finer soil particles, and soil bulk density changes, due to tillage-compaction and

  18. Design for a 1 MHz soft magnetic material hysteresisgraph (abstract)

    NASA Astrophysics Data System (ADS)

    Dennison, Eric

    1993-05-01

    Until recently, high frequency (1 MHz) testing of magnetically soft materials has been typically limited to measurement of core loss and peak or inductive ac permeability. A high frequency hysteresisgraph allows direct examination of the hysteresis loop and calculation of values for magnetic parameters such as coercivity (Hc), peak permeability (μp), remanence (Br), core loss (Pc,Pcv,Pcm), bias drive field strength (Hbias), maximum H drive (Hmax) and maximum or saturation induction (Bmax). This paper describes the methods used to construct and calibrate a commercial high frequency magnetic hysteresisgraph which is capable of recording the primary current and secondary voltage waveforms of magnetic cores driven at up to 1 MHz. A system accuracy of 2% (for B and H parameter values) and 5% (for core loss) was achieved through careful control and calibration of signal phase shifts within the circuitry. System calibration, magnetic field calculations, and use of FFT post-processing of the acquired waveforms are discussed. The ability to accurately record the hysteresis loop of a material at 1 MHz allows high frequency core materials to be characterized not only by core loss and permeability, but by their hysteresis loop shape, coercivity, and remanence, both under pure ac and dc biased ac drive conditions. Changes in material characteristics due to dc biasing, temperature variations, defects, or mechanical stresses can be readily observed and described in terms of changes to the hysteresis curve shape.

  19. Atomic site sensitivity of the energy loss magnetic chiral dichroic spectra of complex oxides

    SciTech Connect

    Calmels, L.; Rusz, J.

    2011-04-01

    The quantitative analysis of magnetic oxide core level spectra can become complicated when the magnetic atoms are located at several nonequivalent atomic sites in the crystal. This is, for instance, the case for Fe atoms in magnetite, which are located in tetrahedral and octahedral atomic sites; in this case, the x-ray magnetic circular dichroic (XMCD) spectra recorded at the L{sub 2,3} edge of Fe contain contributions from the different nonequivalent atomic sites, which unfortunately cannot be separated. Energy loss magnetic chiral dichroic (EMCD) spectra are the transmission electron microscope analogies of the XMCD spectra. One of the important differences between these two techniques of magnetic analysis is that EMCD uses a fast electron beam instead of polarized light. The fast electrons behave like Bloch states in the sample, and the fine structure of the EMCD spectra is strongly influenced by channeling and dynamical diffraction effects. These effects can be adjusted by changing the experimental configuration. We use theoretical calculations, which include dynamical diffraction effects and in which electronic transitions are treated in the atomic multiplet formalism, to show that the relative weight of the Fe atoms in different nonequivalent atomic sites can be changed by a proper choice of the position of the detector and of the magnetite sample orientation and thickness. We conclude that EMCD spectra could be used to isolate the magnetic contribution of atoms in each of the nonequivalent atomic sites, which would not be possible with XMCD techniques.

  20. Barkhausen discontinuities and hysteresis of ferromagnetics: New stochastic approach

    SciTech Connect

    Vengrinovich, Valeriy

    2014-02-18

    The magnetization of ferromagnetic material is considered as periodically inhomogeneous Markov process. The theory assumes both statistically independent and correlated Barkhausen discontinuities. The model, based on the chain evolution-type process theory, assumes that the domain structure of a ferromagnet passes successively the steps of: linear growing, exponential acceleration and domains annihilation to zero density at magnetic saturation. The solution of stochastic differential Kolmogorov equation enables the hysteresis loop calculus.

  1. Domain-wall motion in random potential and hysteresis modeling

    SciTech Connect

    Pasquale, M.; Basso, V.; Bertotti, G.; Jiles, D.C.; Bi, Y.

    1998-06-01

    Two different approaches to hysteresis modeling are compared using a common ground based on energy relations, defined in terms of dissipated and stored energy. Using the Preisach model and assuming that magnetization is mainly due to domain-wall motion, one can derive the expression of magnetization along a major loop typical of the Jiles{endash}Atherton model and then extend its validity to cases where mean-field effects and reversible contributions are present. {copyright} {ital 1998 American Institute of Physics.}

  2. Domain-wall motion in random potential and hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Pasquale, M.; Basso, V.; Bertotti, G.; Jiles, D. C.; Bi, Y.

    1998-06-01

    Two different approaches to hysteresis modeling are compared using a common ground based on energy relations, defined in terms of dissipated and stored energy. Using the Preisach model and assuming that magnetization is mainly due to domain-wall motion, one can derive the expression of magnetization along a major loop typical of the Jiles-Atherton model and then extend its validity to cases where mean-field effects and reversible contributions are present.

  3. Phase analysis of nanocomposite magnetic materials by electron energy loss spectrometry

    NASA Astrophysics Data System (ADS)

    Hébert-Souche, C.; Bernardi, J.; Schattschneider, P.; Fidler, J.; Jouffrey, B.

    2000-02-01

    EELS (electron energy loss spectrometry) in the transmission electron microscope (TEM) was used to determine the composition of a nanocrystalline magnetic specimen. The relative amounts of the hard magnetic phase Nd2Fe{14}B and the soft magnetic phase Fe3B at the point of measurement was measured by standard EELS quantification. In order to determine the structure of Fe3B present, the fine structure of the boron K-ionisation edge was analysed. Comparison of the experimental spectra with simulations of the fine structures based on the TELNES extension of the WIEN97 program package, a full potential linearised augmented plane wave approach to the calculation of electronic structure in crystals, shows that the tetragonal form of Fe3B is predominant.

  4. Depinning of flux lines and AC losses in magnet-superconductor levitation system

    SciTech Connect

    Terentiev, A. N.; Hull, J. R.; De Long, L. E.

    1999-11-29

    The AC loss characteristics of a magnet-superconductor system were studied with the magnet fixed to the free end of an oscillating cantilever located near a stationary melt-textured YBCO pellet. Below a threshold AC field amplitude {approx}2Oe, the dissipation of the oscillator is amplitude-independent, characteristic of a linear, non-hysteretic regime. Above threshold,dissipation increases with amplitude, reflecting the depinning and hysteretic motion of flux lines. The threshold AC field is an order of magnitude higher than that measured for the same YBCO material via AC susceptometry in a uniform DC magnetic field, A partial lock-in of flux lines between YBCO ab planes is proposed as the mechanism for the substantial increase of the depinning threshold.

  5. An Estimation Approach for PWM Carrier Loss on Rotor in Slotless Permanent Magnet Motors

    NASA Astrophysics Data System (ADS)

    Kosaka, Takashi; Shikayama, Toru; Matsui, Nobuyuki

    This paper presents an analytical estimation approach for PWM carrier loss on the rotor in the design stage of slotless permanent magnet motors. The experimental studies using 400W, 3000r/min test motor show that the eddy current on the rotor surfaced by rare-earth magnets decreases the winding inductance and increases the winding resistance as the supplied frequency rises. The resultant lower inductance for high frequency over 10kHz produces a large amount of current harmonics caused by voltage PWM as well as the carrier loss combined with the resistance increment. At first, the frequency dependent winding inductance and resistance of test motor are estimated by 3D-finite element method considering the eddy current on the rotor. The current spectrum is subsequently calculated from the obtained frequency dependent winding impedance and the simulated voltage spectrum. The carrier loss is finally derived from the current spectrum and the calculated resistance increment. The effectiveness of the proposed estimation approach for PWM carrier loss on the rotor is experimentally verified using test motor.

  6. Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra

    NASA Astrophysics Data System (ADS)

    Park, Myung-Jun; Kim, Sung-Soo

    2016-07-01

    Wide bandwidth microwave absorbers with a pyramidal shape and a significantly reduced thickness can be designed using high lossy ferrite materials with broad magnetic loss spectra. The microwave absorbing properties of pyramidal cone absorbers are analyzed using the transmission line approximation, which provides the reflection loss as a function of the material parameters and absorber geometry. Three types of ferrite materials (NiZn spinel ferrite, Co2Z hexaferrite, and RuCoM hexaferrite) are used as the absorbent fillers in a rubber matrix. Among these, Co2Z ferrite is the most suitable material for wide bandwidth pyramidal absorbers, due to its broad magnetic loss spectrum in the GHz frequency range. The optimal geometry of the pyramidal absorber is also determined using the transmission line theory. With the reduced total height of the pyramidal absorber (approximately 60 mm), a wide bandwidth (1.5-18 GHz with respect to the -20 dB reflection loss) can be realized. The proposed absorbers have a thickness advantage over the classical pyramidal ohmic absorbers; thus, they are suitable for small and semi-anechoic chambers.

  7. Unconventional dynamic hysteresis in a periodic assembly of paramagnetic colloids

    NASA Astrophysics Data System (ADS)

    Tierno, Pietro; Johansen, Tom H.; Sancho, J. M.

    2013-06-01

    Dynamic hysteresis phenomena are widespread in physical sciences and describe the complex behavior of systems driven out of equilibrium by a periodic forcing. We use here paramagnetic colloids above a stripe-patterned garnet film as the model system to study dynamic hysteresis, the latter induced when the particles are periodically translated by an oscillating magnetic field. In contrast to the expected behavior for a bistable system, we observe that the area of the hysteresis loop decreases by increasing the driving frequency and reduces to zero for frequencies higher than 5-7s-1. To explain the experimental results, we develop a simple model based on an overdamped Brownian particle driven by a periodic potential with an oscillating amplitude.

  8. Hysteresis modeling in ballistic carbon nanotube field-effect transistors.

    PubMed

    Liu, Yian; Moura, Mateus S; Costa, Ademir J; de Almeida, Luiz Alberto L; Paranjape, Makarand; Fontana, Marcio

    2014-01-01

    Theoretical models are adapted to describe the hysteresis effects seen in the electrical characteristics of carbon nanotube field-effect transistors. The ballistic transport model describes the contributions of conduction energy sub-bands over carbon nanotube field-effect transistor drain current as a function of drain-source and gate-source voltages as well as other physical parameters of the device. The limiting-loop proximity model, originally developed to understand magnetic hysteresis, is also utilized in this work. The curves obtained from our developed model corroborate well with the experimentally derived hysteretic behavior of the transistors. Modeling the hysteresis behavior will enable designers to reliably use these effects in both analog and memory applications. PMID:25187698

  9. An Energy-Based Hysteresis Model for Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Calkins, F. T.; Smith, R. C.; Flatau, A. B.

    1997-01-01

    This paper addresses the modeling of hysteresis in magnetostrictive transducers. This is considered in the context of control applications which require an accurate characterization of the relation between input currents and strains output by the transducer. This relation typically exhibits significant nonlinearities and hysteresis due to inherent properties of magnetostrictive materials. The characterization considered here is based upon the Jiles-Atherton mean field model for ferromagnetic hysteresis in combination with a quadratic moment rotation model for magnetostriction. As demonstrated through comparison with experimental data, the magnetization model very adequately quantifies both major and minor loops under various operating conditions. The combined model can then be used to accurately characterize output strains at moderate drive levels. The advantages to this model lie in the small number (six) of required parameters and the flexibility it exhibits in a variety of operating conditions.

  10. Hysteresis Modeling in Magnetostrictive Materials Via Preisach Operators

    NASA Technical Reports Server (NTRS)

    Smith, R. C.

    1997-01-01

    A phenomenological characterization of hysteresis in magnetostrictive materials is presented. Such hysteresis is due to both the driving magnetic fields and stress relations within the material and is significant throughout, most of the drive range of magnetostrictive transducers. An accurate characterization of the hysteresis and material nonlinearities is necessary, to fully utilize the actuator/sensor capabilities of the magnetostrictive materials. Such a characterization is made here in the context of generalized Preisach operators. This yields a framework amenable to proving the well-posedness of structural models that incorporate the magnetostrictive transducers. It also provides a natural setting in which to develop practical approximation techniques. An example illustrating this framework in the context of a Timoshenko beam model is presented.

  11. Hysteresis modeling in ballistic carbon nanotube field-effect transistors

    PubMed Central

    Liu, Yian; Moura, Mateus S; Costa, Ademir J; de Almeida, Luiz Alberto L; Paranjape, Makarand; Fontana, Marcio

    2014-01-01

    Theoretical models are adapted to describe the hysteresis effects seen in the electrical characteristics of carbon nanotube field-effect transistors. The ballistic transport model describes the contributions of conduction energy sub-bands over carbon nanotube field-effect transistor drain current as a function of drain-source and gate-source voltages as well as other physical parameters of the device. The limiting-loop proximity model, originally developed to understand magnetic hysteresis, is also utilized in this work. The curves obtained from our developed model corroborate well with the experimentally derived hysteretic behavior of the transistors. Modeling the hysteresis behavior will enable designers to reliably use these effects in both analog and memory applications. PMID:25187698

  12. Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Lauda, M.; Füzer, J.; Kollár, P.; Strečková, M.; Bureš, R.; Kováč, J.; Baťková, M.; Baťko, I.

    2016-08-01

    We investigated composites that have been prepared from FeSi powders covered with MnZnFe2O4 (MnZn ferrite), which was prepared by sol-gel synthesis accompanied with the auto-combustion process. The aim of this paper is to analyze the complex permeability and core losses of prepared samples with different amount of MnZn ferrite. The microstructure and the powder morphology were examined by scanning electron microscopy. Magnetic measurements on bulk samples were carried out using a vibrating sample magnetometer, an impedance analyzer and hysteresisgraphs. The results indicate that the composites with 2.6 wt% MnZn ferrite show better soft magnetic properties than the composites with about 6 wt% MnZn ferrite.

  13. Nonlinear diffusion and superconducting hysteresis

    SciTech Connect

    Mayergoyz, I.D.

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  14. Hysteresis and Back Transitions in Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Jhang, Hogun; Terzolo, L.; Kim, J. Y.; Kwon, J. M.; Diamond, P. H.; Malkov, M.; Hahm, T. S.

    2010-11-01

    Understanding and control of the transport barrier formation and back transition are essential to achieve the optimized plasma operation and performance in tokamak plasmas. Back transition dynamics, in particular, is complicated due to the phenomenon of hysteresis, whereby the barrier state persists when the driving power is lowered below the initial threshold value. Here we report new results from theoretical and computational studies of hysteresis in internal transport barrier (ITB) with reversed magnetic shear. A revised version of the global gyrofluid TRB code has been used to study ITG turbulence. ITB formation, back transition, and hysteresis are manifested during slow ramp-ups/downs of the central heating power. Comparisons are made of the similarity/difference in the characteristics of hysteresis when the control parameter is lowered dynamically. The strength of hysteresis is quantified as functions of ion Nusselt number, q-profile shape and lower order rational q surface. In addition to the computational study, an analytical study of a two-field model of pressure and density dynamics is presented for a reversed shear ITB plasma by extending a previous theory that is applied to the edge pedestal.

  15. Calculating transport AC losses in stacks of high temperature superconductor coated conductors with magnetic substrates using FEM

    NASA Astrophysics Data System (ADS)

    Ainslie, Mark D.; Flack, Tim J.; Campbell, Archie M.

    2012-01-01

    In this paper, the authors investigate the electromagnetic properties of stacks of high temperature superconductor (HTS) coated conductors with a particular focus on calculating the total transport AC loss. The cross-section of superconducting cables and coils is often modeled as a two-dimensional stack of coated conductors, and these stacks can be used to estimate the AC loss of a practical device. This paper uses a symmetric two dimensional (2D) finite element model based on the H formulation, and a detailed investigation into the effects of a magnetic substrate on the transport AC loss of a stack is presented. The number of coated conductors in each stack is varied from 1 to 150, and three types of substrate are compared: non-magnetic weakly magnetic and strongly magnetic. The non-magnetic substrate model is comparable with results from existing models for the limiting cases of a single tape (Norris) and an infinite stack (Clem). The presence of a magnetic substrate increases the total AC loss of the stack, due to an increased localized magnetic flux density, and the stronger the magnetic material, the further the flux penetrates into the stack overall. The AC loss is calculated for certain tapes within the stack, and the differences and similarities between the losses throughout the stack are explained using the magnetic flux penetration and current density distributions in those tapes. The ferromagnetic loss of the substrate itself is found to be negligible in most cases, except for small magnitudes of current. Applying these findings to practical applications, where AC transport current is involved, superconducting coils should be wound where possible using coated conductors with a non-magnetic substrate to reduce the total AC loss in the coil.

  16. On the energy losses of hot worked Nd-Fe-B magnets and ferrites in a small alternating magnetic field perpendicular to a bias field

    SciTech Connect

    Staa, F. von; Hempel, K.A.; Artz, H.

    1995-11-01

    Torsion pendulum magnetometer measurements on ferrites and on neodymium-iron-boron permanent magnets are presented. The damping of the oscillation of the pendulum leads to information on the magnetic energy losses of the magnets in a small alternating magnetic field applied perpendicular to a bias field. The origin of the energy absorption is explained by the magnetization reversal of single-domain particles. It is shown experimentally that the energy absorption mechanism requires the ferromagnetic order of the sample, and that the magnetic field strength of maximal energy absorption coincides with the effective anisotropy field strength.

  17. Hysteresis in quartz resonators-a review.

    PubMed

    Kusters, J A; Vig, J R

    1991-01-01

    The literature on the frequency versus temperature characteristics of quartz crystal resonators is reviewed. Three papers that deal with frequency versus pressure hysteresis are included, as these may possibly have relevance to frequency versus temperature hysteresis. It is seen that the causes of hysteresis are not well understood. The evidence to date is inconclusive. The mechanisms that can cause hysteresis include: strain changes changes in the quartz, contamination redistribution, oscillator circuitry hysteresis, and apparent hysteresis due to thermal gradients. The results to date seem to indicate that lattice defects are somehow related to thermal hysteresis. Stress relief in the mounting structure can also produce significant hysteresis. As crystal processing techniques have improved. contamination has become less of a problem. PMID:18267585

  18. Modelling offset minor hysteresis loops with the modified Jiles-Atherton description

    NASA Astrophysics Data System (ADS)

    Chwastek, K.

    2009-08-01

    The paper addresses the issue of modelling offset minor hysteresis loops within the framework of the Jiles-Atherton model. Two of the model parameters are expressed in terms of scaling power laws with respect to the magnetization level. The approach is consistent with earlier theoretical considerations on the effective 'volume fraction' by Professor D Jiles. The influence of eddy currents on hysteresis loop is taken into account using an additional term of magnetic field.

  19. Early Prediction of Postmeningitic Hearing Loss in Children Using Magnetic Resonance Imaging

    PubMed Central

    Kopelovich, Jonathan C.; Germiller, John A.; Laury, Adrienne M.; Shah, Samir S.; Pollock, Avrum N.

    2013-01-01

    Objective To determine whether early gadolinium-enhanced magnetic resonance imaging (GdMRI) can reliably detect meningitic labyrinthitis and thereby predict which children are at high risk for hearing loss. Permanent sensorineural hearing loss (SNHL) remains a common sequela of bacterial meningitis, and early diagnosis of the associated suppurative labyrinthitis can be difficult, especially in critically ill, sedated patients and young children. Design Retrospective cohort study. Setting Tertiary pediatric hospital. Participants Twenty-three survivors of bacterial meningitis (median age, 15 months [range, 3 months–14 years]) who had undergone brain GdMRI during the acute disease and had subsequent ear-specific audiometric data. Main Outcome Measure Blinded to disease and outcome, a neuroradiologist rated the relative enhancement of each cochlea on T1-weighted images using a 4-point scale. Scores were then correlated with the degree of hearing loss on subsequent testing. Results Sensorineural hearing loss occurred in 15 of 46 ears (8 of 23 patients). Enhancement on GdMRI was detected in 13 of the 15 ears that later developed SNHL but was absent in all 31 unaffected ears. Thus, GdMRI was 87% sensitive and 100% specific for predicting which ears would develop permanent SNHL. In the subgroup with pneumococcal meningitis (n=15), GdMRI was 100% sensitive and 100% specific. Labyrinthine enhancement was detectable as early as 1 day after diagnosis. Conclusion Gadolinium-enhanced MRI detected meningitic labyrinthitis at early stages and accurately predicted which patients would later develop hearing loss. PMID:21339394

  20. Simulation of a vector hysteresis measurement system taking hysteresis into account by the vector Preisach model

    NASA Astrophysics Data System (ADS)

    Kuczmann, Miklós

    2008-02-01

    The paper deals with the numerical analysis of a rotational single sheet tester with round-shaped specimen (RRSST) which is now under construction. The measurement setup consists of an induction motor the rotor of which has been removed, and its windings have been replaced to a special two phase one which can generate homogeneous magnetic field inside the motor. The two orthogonal components of the magnetic field intensity and of the magnetic flux density vectors can be measured by H-coils and B-coils, respectively. The Finite Element Method (FEM) with the T, Φ-Φ potential formulation has been applied in the simulations. The vector hysteresis property of the specimen has been approximated by the vector Preisach model. Finally, the nonlinear problem has been solved by the fixed-point technique. The aim of the present work is to focus on the design aspects of this kind of measurement system.

  1. Bistability and hysteresis of annular impinging jets

    NASA Astrophysics Data System (ADS)

    Tisovsky, Tomas

    2016-06-01

    In present study, the bistability and hysteresis of annular impinging jets is investigated. Annular impinging jets are simulated using open source CFD code - OpenFOAM. Both flow field patterns of interest are obtained and hysteresis is found by means of dynamic mesh simulation. Effect of nozzle exit velocity on resulting hysteresis loop is also illustrated.

  2. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    NASA Astrophysics Data System (ADS)

    Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem

    2014-02-01

    The Gd5Ge2Si2 alloy and the off-stoichiometric Ni50Mn35In15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd5Ge2Si2 and Ni50Mn35In15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis.

  3. Magnetic Flux Leakage and Principal Component Analysis for metal loss approximation in a pipeline

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Mujica, L. E.; Quintero, M.; Florez, J.; Quintero, S.

    2015-07-01

    Safety and reliability of hydrocarbon transportation pipelines represent a critical aspect for the Oil an Gas industry. Pipeline failures caused by corrosion, external agents, among others, can develop leaks or even rupture, which can negatively impact on population, natural environment, infrastructure and economy. It is imperative to have accurate inspection tools traveling through the pipeline to diagnose the integrity. In this way, over the last few years, different techniques under the concept of structural health monitoring (SHM) have continuously been in development. This work is based on a hybrid methodology that combines the Magnetic Flux Leakage (MFL) and Principal Components Analysis (PCA) approaches. The MFL technique induces a magnetic field in the pipeline's walls. The data are recorded by sensors measuring leakage magnetic field in segments with loss of metal, such as cracking, corrosion, among others. The data provide information of a pipeline with 15 years of operation approximately, which transports gas, has a diameter of 20 inches and a total length of 110 km (with several changes in the topography). On the other hand, PCA is a well-known technique that compresses the information and extracts the most relevant information facilitating the detection of damage in several structures. At this point, the goal of this work is to detect and localize critical loss of metal of a pipeline that are currently working.

  4. Low loss pole configuration for multi-pole homopolar magnetic bearings

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor); Hakun, Claef F. (Inventor)

    2001-01-01

    A new pole configuration for multi-pole homopolar bearings proposed in this invention reduces rotational losses caused by eddy-currents generated when non-uniform flux distributions exist along the rotor surfaces. The new homopolar magnetic bearing includes a stator with reduced pole-to-pole and exhibits a much more uniform rotor flux than with large pole-to-pole gaps. A pole feature called a pole-link is incorporated into the low-loss poles to provide a uniform pole-to-pole gap and a controlled path for pole-to-pole flux. In order to implement the low-loss pole configuration of magnetic bearings with small pole-to-pole gaps, a new stator configuration was developed to facilitate installation of coil windings. The stator was divided into sector shaped pieces, as many pieces as there are poles. Each sector-shaped pole-piece can be wound on a standard coil winding machine, and it is practical to wind precision layer wound coils. To achieve maximum actuation efficiency, it is desirable to use all the available space for the coil formed by the natural geometric configuration. Then, the coils can be wound in a tapered shape. After winding, the sectored-pole-pieces are installed into and fastened by bonding or other means, to a ring of material which encloses the sectored-pole-pieces, forming a complete stator.

  5. A simple model of hysteresis behavior using spreadsheet analysis

    NASA Astrophysics Data System (ADS)

    Ehrmann, A.; Blachowicz, T.

    2015-01-01

    Hysteresis loops occur in many scientific and technical problems, especially as field dependent magnetization of ferromagnetic materials, but also as stress-strain-curves of materials measured by tensile tests including thermal effects, liquid-solid phase transitions, in cell biology or economics. While several mathematical models exist which aim to calculate hysteresis energies and other parameters, here we offer a simple model for a general hysteretic system, showing different hysteresis loops depending on the defined parameters. The calculation which is based on basic spreadsheet analysis plus an easy macro code can be used by students to understand how these systems work and how the parameters influence the reactions of the system on an external field. Importantly, in the step-by-step mode, each change of the system state, compared to the last step, becomes visible. The simple program can be developed further by several changes and additions, enabling the building of a tool which is capable of answering real physical questions in the broad field of magnetism as well as in other scientific areas, in which similar hysteresis loops occur.

  6. Anomalous Beam-Ion Loss in TFTR Reversed Magnetic Shear Plasmas

    SciTech Connect

    Ruskov, E.; Bell, M.; Budny, R.V.; McCune, D.C.; Medley, S.S.; Redi, M.H.; Scott, S.; Synakowski, E.J.; von Goeler, S.; White, R.B.; Zweben, S.J.

    1999-02-01

    Anomalous beam-ion loss has been observed in an experiment with short tritium beam pulses injected into deuterium-beam-heated Tokamak Fusion Test Reactor plasmas (P{sub NBI}=15 thinspthinspMW) with reversed magnetic shear (RS). Comparisons of the measured total 14thinspthinspMeV neutron emission, the neutron flux along eight radial locations, and the perpendicular plasma stored energy with predictions from an extensive set of TRANSP simulations suggest that about 40{percent} beam power is lost on a time scale much shorter than the tritium beam pulse length {Delta}t=70 thinspthinspms. In contrast with recent results [K. Tobita {ital et al.,} Nucl.thinspthinspFusion {bold 37}, 1583 (1997)] from RS experiments at JT-60U, we were not able to show conclusively that magnetic field ripple is responsible for this anomaly. {copyright} {ital 1999} {ital The American Physical Society}

  7. Anomalous Beam-Ion Loss in TFTR Reversed Magnetic Shear Plasmas

    NASA Astrophysics Data System (ADS)

    Ruskov, E.; Bell, M.; Budny, R. V.; McCune, D. C.; Medley, S. S.; Redi, M. H.; Scott, S.; Synakowski, E. J.; von Goeler, S.; White, R. B.; Zweben, S. J.

    1999-02-01

    Anomalous beam-ion loss has been observed in an experiment with short tritium beam pulses injected into deuterium-beam-heated Tokamak Fusion Test Reactor plasmas ( PNBI = 15 MW) with reversed magnetic shear (RS). Comparisons of the measured total 14 MeV neutron emission, the neutron flux along eight radial locations, and the perpendicular plasma stored energy with predictions from an extensive set of TRANSP simulations suggest that about 40% beam power is lost on a time scale much shorter than the tritium beam pulse length Δt = 70 ms. In contrast with recent results [K. Tobita et al., Nucl. Fusion 37, 1583 (1997)] from RS experiments at JT-60U, we were not able to show conclusively that magnetic field ripple is responsible for this anomaly.

  8. Convective Power Loss Measurements in a Field Reversed Configuration with Rotating Magnetic Field Current Drive

    NASA Astrophysics Data System (ADS)

    Melnik, Paul

    The Translation, Confinement, and Sustainment Upgrade (TCSU) experiment achieves direct formation and sustainment of a field reversed configuration (FRC) plasma through rotating magnetic fields (RMF). The pre-ionized gas necessary for FRC formation is supplied by a magnetized cascade arc source that has been developed for TCSU. To ensure ideal FRC performance, the condition of the vacuum chamber prior to RMF start-up has been characterized with the use of a fast response ion gauge. A circuit capable of gating the puff valves with initial high voltage for quick response and then indefinite operational voltage was also designed. A fully translatable combination Langmuir / Mach probe was also built to measure the electron temperature, electron density, and ion velocity of the FRC. These measurements were also successfully completed in the FRC exhaust jets allowing for an accurate analysis of the FRC power loss through convection.

  9. Energy deposition in TEVATRON magnets from beam losses in interaction regions

    SciTech Connect

    Ginneken, A.V.

    1988-10-01

    In addition to interacting in the detector, particles produced at an interaction region also deposit energy, with less desirable consequences, in magnets and other components of the accelerator. This note briefly assesses the damage potential of these (essentially unavoidable) beam losses from the viewpoint of quenching of superconducting magnets in an upgraded Tevatron, specifically for the 1 TeV p-/ovr string/p option with a luminosity of 10/sup 31/ cm/sup - 2/ sec/sup -1/, through the results carry more generality. Related issues such as radiation damage to detector electronics or other components are not addressed here. These are thought to be less problematic at the Tevatron, as in thus far supported by operational experience. 8 refs., 10 figs.

  10. Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms

    DOE PAGESBeta

    Jain, Aditya; Moitra, Parikshit; Koschny, Thomas; Valentine, Jason; Soukoulis, Costas M.

    2015-07-14

    Artificially created surfaces or metasurfaces, composed of appropriately shaped subwavelength structures, namely, meta-atoms, control light at subwavelength scales. Historically, metasurfaces have used radiating metallic resonators as subwavelength inclusions. However, while resonant optical metasurfaces made from metal have been sufficiently subwavelength in the propagation direction, they are too lossy for many applications. Metasurfaces made out of radiating dielectric resonators have been proposed to solve the loss problem, but are marginally subwavelength at optical frequencies. We designed subwavelength resonators made out of nonradiating dielectrics. The resonators are decorated with appropriately placed scatterers, resulting in a meta-atom with an engineered electromagnetic response. Amore » metasurface that yields an electric response is fabricated, experimentally characterized, and a method to obtain a magnetic response at optical frequencies is theoretically demonstrated. In conclusion, this design methodology paves the way for metasurfaces that are simultaneously subwavelength and low loss.« less

  11. Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms

    SciTech Connect

    Jain, Aditya; Moitra, Parikshit; Koschny, Thomas; Valentine, Jason; Soukoulis, Costas M.

    2015-07-14

    Artificially created surfaces or metasurfaces, composed of appropriately shaped subwavelength structures, namely, meta-atoms, control light at subwavelength scales. Historically, metasurfaces have used radiating metallic resonators as subwavelength inclusions. However, while resonant optical metasurfaces made from metal have been sufficiently subwavelength in the propagation direction, they are too lossy for many applications. Metasurfaces made out of radiating dielectric resonators have been proposed to solve the loss problem, but are marginally subwavelength at optical frequencies. We designed subwavelength resonators made out of nonradiating dielectrics. The resonators are decorated with appropriately placed scatterers, resulting in a meta-atom with an engineered electromagnetic response. A metasurface that yields an electric response is fabricated, experimentally characterized, and a method to obtain a magnetic response at optical frequencies is theoretically demonstrated. In conclusion, this design methodology paves the way for metasurfaces that are simultaneously subwavelength and low loss.

  12. Particle Events as a Possible Source of Large Ozone Loss during Magnetic Polarity Transitions

    NASA Technical Reports Server (NTRS)

    vonKoenig, M.; Burrows, J. P.; Chipperfield, M. P.; Jackman, C. H.; Kallenrode, M.-B.; Kuenzi, K. F.; Quack, M.

    2002-01-01

    The energy deposition in the mesosphere and stratosphere during large extraterrestrial charged particle precipitation events has been known for some time to contribute to ozone losses due to the formation of potential ozone destroying species like NO(sub x), and HO(sub x). These impacts have been measured and can be reproduced with chemistry models fairly well. In the recent past, however, even the impact of the largest solar proton events on the total amount of ozone has been small compared to the dynamical variability of ozone, and to the anthropogenic induced impacts like the Antarctic 'ozone hole'. This is due to the shielding effect of the magnetic field. However, there is evidence that the earth's magnetic field may approach a reversal. This could lead to a decrease of magnetic field strength to less than 25% of its usual value over a period of several centuries . We show that with realistic estimates of very large solar proton events, scenarios similar to the Antarctic ozone hole of the 1990s may occur during a magnetic polarity transition.

  13. Eddy current disruption: effect on nuclear magnetic resonance coil impedance and power loss.

    PubMed

    Harpen, M D

    1989-01-01

    We present a theoretical development and experimental verification of a description of power loss and sample resistance for a lossy sample in a nuclear magnetic resonance radio frequency coil for a sample geometry where the eddy current streamlines are disrupted from their usually assumed circular paths. Specifically treated is the case of a lossy hemisphere. The problem is solved for two orientations; with the induction parallel and perpendicular to the flat surface of the hemisphere. Results of this analysis as well as those for the full sphere as presented by Hoult and Lauterbur are compared with observation for a variety of sample conductivities and orientation. PMID:2811760

  14. Transient loss of plasma from a theta pinch having an initially reversed magnetic field

    SciTech Connect

    Heidrich, J. E.

    1981-01-01

    The results of an experimental study of the transient loss of plasma from a 25-cm-long theta pinch initially containing a reversed trapped magnetic field are presented. The plasma, amenable to MHD analyses, was a doubly ionized helium plasma characterized by an ion density N/sub i/ = 2 x 10/sup 16/ cm/sup -3/ and an ion temperature T/sub i/ = 15 eV at midcoil and by N/sub i/ = 0.5 x 10/sup 16/ cm/sup -3/ and T/sub i/ = 6 eV at a position 2.5 cm beyond the end of the theta coil.

  15. Impact of cycle-hysteresis interactions on the performance of giant magnetocaloric effect refrigerants

    NASA Astrophysics Data System (ADS)

    Brown, T. D.; Karaman, I.; Shamberger, P. J.

    2016-07-01

    Magnetic refrigeration technology based on the giant magnetocaloric effect in solid-state refrigerants is known qualitatively to be limited by dissipative mechanisms accompanying hysteresis in the magneto-structural solid–solid phase transition. In this paper, we quantitatively explore the dependence of cycle performance metrics (cooling power, temperature span, work input, and fractional Carnot efficiency) on hysteresis properties (thermal hysteresis, one-way transition width) of the magneto-structural phase transition in a Ni45Co5Mn36.6In13.4 alloy system. We investigate a variety of Ericsson-type magnetic refrigeration cycles, using a Preisach-based non-equilibrium thermodynamic framework to model the evolution of the alloy's magnetic and thermal properties. Performance metrics are found to depend strongly on hysteresis parameters, regardless of the cycle chosen. However, for a given hysteresis parameter set, the material's transformation temperatures determine a unique cycle that maximizes efficiency. For the model system used undergoing Ericsson cycles with 5 and 1.5 {{T}} maximum field constraint, fractional Carnot efficiencies in excess of 0.9 require thermal hysteresis below 1.5 {{K}} and 0.5 {{K}}, respectively. We conclude briefly with some general materials considerations for mitigating these hysteresis inefficiencies through microstructure design and other materials processing strategies.

  16. Wetting hysteresis induced by nanodefects.

    PubMed

    Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried

    2016-01-19

    Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. PMID:26721395

  17. Efficient Computational Model of Hysteresis

    NASA Technical Reports Server (NTRS)

    Shields, Joel

    2005-01-01

    A recently developed mathematical model of the output (displacement) versus the input (applied voltage) of a piezoelectric transducer accounts for hysteresis. For the sake of computational speed, the model is kept simple by neglecting the dynamic behavior of the transducer. Hence, the model applies to static and quasistatic displacements only. A piezoelectric transducer of the type to which the model applies is used as an actuator in a computer-based control system to effect fine position adjustments. Because the response time of the rest of such a system is usually much greater than that of a piezoelectric transducer, the model remains an acceptably close approximation for the purpose of control computations, even though the dynamics are neglected. The model (see Figure 1) represents an electrically parallel, mechanically series combination of backlash elements, each having a unique deadband width and output gain. The zeroth element in the parallel combination has zero deadband width and, hence, represents a linear component of the input/output relationship. The other elements, which have nonzero deadband widths, are used to model the nonlinear components of the hysteresis loop. The deadband widths and output gains of the elements are computed from experimental displacement-versus-voltage data. The hysteresis curve calculated by use of this model is piecewise linear beyond deadband limits.

  18. Wetting hysteresis induced by nanodefects

    PubMed Central

    Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried

    2016-01-01

    Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. PMID:26721395

  19. Prediction of high frequency core loss for electrical steel using the data provided by manufacturer

    NASA Astrophysics Data System (ADS)

    Roy, Rakesh; Dalal, Ankit; Kumar, Praveen

    2016-07-01

    This paper describes a technique to determine the core loss data, at high frequencies, using the loss data provided by the lamination manufacturer. Steinmetz equation is used in this proposed method to determine core loss at high frequency. This Steinmetz equation consists of static hysteresis and eddy current loss. The presented technique considers the coefficients of Steinmetz equation as variable with frequency and peak magnetic flux density. The high frequency core loss data, predicted using this model is compared with the catalogue data given by manufacturer and very good accuracy has been obtained for a wide range of frequency.

  20. Finite-element simulations of hysteretic alternating current losses in a magnetically coated superconducting tubular wire subject to an oscillating transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Genenko, Y. A.; Rauh, H.; Kurdi, S.

    2015-06-01

    Numerical simulations of hysteretic ac losses in a tubular superconductor/paramagnet heterostructure subject to an oscillating transverse magnetic field are performed within the quasistatic approach, calling upon the COMSOL finite-element software package and exploiting magnetostatic-electrostatic analogues. It is shown that one-sided magnetic shielding of a thin, type-II superconducting tube by a coaxial paramagnetic support results in a slight increase of hysteretic ac losses as compared to those for a vacuum environment, when the support is placed inside; a spectacular shielding effect with a possible reduction of hysteretic ac losses by orders of magnitude, however, ensues, depending on the magnetic permeability and the amplitude of the applied magnetic field, when the support is placed outside.

  1. Core losses of an inverter-fed permanent magnet synchronous motor with an amorphous stator core under no-load

    NASA Astrophysics Data System (ADS)

    Denis, Nicolas; Kato, Yoshiyuki; Ieki, Masaharu; Fujisaki, Keisuke

    2016-05-01

    In this paper, an interior permanent magnet synchronous motor (IPMSM) with a stator core made of amorphous magnetic material (AMM) is presented. The IPMSM is driven by a voltage source three-phase inverter with classical pulse width modulation (PWM) control. The core losses under no-load condition are measured by experiment and compared to an equivalent IPMSM with a stator core made of NO steel. Under these conditions, the core losses are influenced by the stator, rotor and magnet shapes but also by the PWM carrier signal that implies a high frequency harmonic in the magnetic flux density. It is demonstrated that the AMM can reduce the core losses by about 56 %.

  2. Modeling of hysteresis in gene regulatory networks.

    PubMed

    Hu, J; Qin, K R; Xiang, C; Lee, T H

    2012-08-01

    Hysteresis, observed in many gene regulatory networks, has a pivotal impact on biological systems, which enhances the robustness of cell functions. In this paper, a general model is proposed to describe the hysteretic gene regulatory network by combining the hysteresis component and the transient dynamics. The Bouc-Wen hysteresis model is modified to describe the hysteresis component in the mammalian gene regulatory networks. Rigorous mathematical analysis on the dynamical properties of the model is presented to ensure the bounded-input-bounded-output (BIBO) stability and demonstrates that the original Bouc-Wen model can only generate a clockwise hysteresis loop while the modified model can describe both clockwise and counter clockwise hysteresis loops. Simulation studies have shown that the hysteresis loops from our model are consistent with the experimental observations in three mammalian gene regulatory networks and two E.coli gene regulatory networks, which demonstrate the ability and accuracy of the mathematical model to emulate natural gene expression behavior with hysteresis. A comparison study has also been conducted to show that this model fits the experiment data significantly better than previous ones in the literature. The successful modeling of the hysteresis in all the five hysteretic gene regulatory networks suggests that the new model has the potential to be a unified framework for modeling hysteresis in gene regulatory networks and provide better understanding of the general mechanism that drives the hysteretic function. PMID:22588784

  3. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials

    NASA Astrophysics Data System (ADS)

    Wildeboer, R. R.; Southern, P.; Pankhurst, Q. A.

    2014-12-01

    In the clinical application of magnetic hyperthermia, the heat generated by magnetic nanoparticles in an alternating magnetic field is used as a cancer treatment. The heating ability of the particles is quantified by the specific absorption rate (SAR), an extrinsic parameter based on the clinical response characteristic of power delivered per unit mass, and by the intrinsic loss parameter (ILP), an intrinsic parameter based on the heating capacity of the material. Even though both the SAR and ILP are widely used as comparative design parameters, they are almost always measured in non-adiabatic systems that make accurate measurements difficult. We present here the results of a systematic review of measurement methods for both SAR and ILP, leading to recommendations for a standardised, simple and reliable method for measurements using non-adiabatic systems. In a representative survey of 50 retrieved datasets taken from published papers, the derived SAR or ILP was found to be more than 5% overestimated in 24% of cases and more than 5% underestimated in 52% of cases.

  4. Noncontact evaluation of surface-modified materials by a model-assisted hysteresis measurement technique

    NASA Astrophysics Data System (ADS)

    Lo, C. C. H.

    2010-05-01

    This paper reports on a model-assisted magnetic hysteresis measurement method for noncontact characterization of surface-modified materials whose magnetic properties vary with depth. The technique involves measuring hysteresis loops from a test sample using a surface sensor probe in close proximity to the sample without any direct contact with it. The sensor outputs were simulated based on an extended magnetic hysteresis model to describe the magnetic hysteresis of the sample and its influence on the magnetic reluctance of the magnetic circuit. The technique was applied to characterize a series of surface hardened Fe-C samples with hardening depths ranging from 1.09 to 5.68 mm. The hysteresis behavior of the samples was modeled using a parametrized function to describe the depth profile of domain wall pinning strength. The midpoints of the inverted pinning strength profiles were found to agree with those of the measured hardness profiles, demonstrating the potential of the model-assisted technique for quantitative evaluation of surface-modified magnetic materials.

  5. Magnetic measurement of creep damage: modeling and measurement

    NASA Astrophysics Data System (ADS)

    Sablik, Martin J.; Jiles, David C.

    1996-11-01

    Results of inspection of creep damage by magnetic hysteresis measurements on Cr-Mo steel are presented. It is shown that structure-sensitive parameters such as coercivity, remanence and hysteresis loss are sensitive to creep damage. Previous metallurgical studies have shown that creep changes the microstructure of he material by introducing voids, dislocations, and grain boundary cavities. As cavities develop, dislocations and voids move out to grain boundaries; therefore, the total pinning sources for domain wall motion are reduced.This, together with the introduction of a demagnetizing field due to the cavities, results in the decrease of both coercivity, remanence and hence, concomitantly, hysteresis loss. Incorporating these structural effects into a magnetomechanical hysteresis model developed previously by us produces numerical variations of coercivity, remanence and hysteresis loss consistent with what is measured. The magnetic model has therefore been used to obtain appropriately modified magnetization curves for each element of creep-damaged material in a finite element (FE) calculation. The FE calculation has been used to simulate magnetic detection of non-uniform creep damage around a seam weld in a 2.25 Cr 1Mo steam pipe. In particular, in the simulation, a magnetic C-core with primary and secondary coils was placed with its pole pieces flush against the specimen in the vicinity of the weld. The secondary emf was shown to be reduced when creep damage was present inside the pipe wall at the cusp of the weld and in the vicinity of the cusp. The calculation showed that the C- core detected creep damage best if it spanned the weld seam width and if the current in the primary was such that the C- core was not magnetically saturated. Experimental measurements also exhibited the dip predicted in emf, but the measurements are not yet conclusive because the effects of magnetic property changes of weld materials, heat- affected material, and base material have

  6. Magnetic core test stand for energy loss and permeability measurements at a high constant magnetization rate and test results for nanocrystalline and ferrite materials.

    PubMed

    Burdt, Russell; Curry, Randy D

    2008-09-01

    A test stand was developed to measure the energy losses and unsaturated permeability of toroidal magnetic cores, relevant to applications of magnetic switching requiring a constant magnetization rate of the order of 1-10 T/micros. These applications in pulsed power include linear induction accelerators, pulse transformers, and discharge switches. The test stand consists of a coaxial transmission line pulse charged up to 100 kV that is discharged into a magnetic core load. Suitable diagnostics measure the voltage across and the current through a winding on the magnetic core load, from which the energy losses and unsaturated permeability are calculated. The development of the test stand is discussed, and test results for ferrite CN20 and the nanocrystalline material Finemet FT-1HS are compared to demonstrate the unique properties of a nanocrystalline material. The experimental data are compared with published data in a similar parameter space to demonstrate the efficacy of the experimental methods. PMID:19044442

  7. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators.

    PubMed

    Sakellari, D; Brintakis, K; Kostopoulou, A; Myrovali, E; Simeonidis, K; Lappas, A; Angelakeris, M

    2016-01-01

    Colloidal nanocrystal assemblies (nanoclusters), consisting of 13 nm iron oxide nanocrystals, were synthesized in various sizes (45-98 nm), and were investigated as heating mediators for magnetic particle hyperthermia. The colloidal nanocrystal clusters show enhanced heating efficiency in comparison with their constituent primary iron oxide nanocrystals due to collective magnetic features. The fine tuning of intra-cluster magnetic interactions results to the domination of the hysteresis losses mechanism over the relaxation loss heating contributions and eventually to a versatile magnetic particle hyperthermia mediator. PMID:26478302

  8. Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis In Planar Diodes

    DOE PAGESBeta

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey; et al

    2015-03-31

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3 antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solarmore » cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.« less

  9. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes

    PubMed Central

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-01-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3− antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour. PMID:25953105

  10. Research on the dynamic hysteresis loop model of the residence times difference (RTD)-fluxgate.

    PubMed

    Wang, Yanzhang; Wu, Shujun; Zhou, Zhijian; Cheng, Defu; Pang, Na; Wan, Yunxia

    2013-01-01

    Based on the core hysteresis features, the RTD-fluxgate core, while working, is repeatedly saturated with excitation field. When the fluxgate simulates, the accurate characteristic model of the core may provide a precise simulation result. As the shape of the ideal hysteresis loop model is fixed, it cannot accurately reflect the actual dynamic changing rules of the hysteresis loop. In order to improve the fluxgate simulation accuracy, a dynamic hysteresis loop model containing the parameters which have actual physical meanings is proposed based on the changing rule of the permeability parameter when the fluxgate is working. Compared with the ideal hysteresis loop model, this model has considered the dynamic features of the hysteresis loop, which makes the simulation results closer to the actual output. In addition, other hysteresis loops of different magnetic materials can be explained utilizing the described model for an example of amorphous magnetic material in this manuscript. The model has been validated by the output response comparison between experiment results and fitting results using the model. PMID:24002230

  11. Research on the Dynamic Hysteresis Loop Model of the Residence Times Difference (RTD)-Fluxgate

    PubMed Central

    Wang, Yanzhang; Wu, Shujun; Zhou, Zhijian; Cheng, Defu; Pang, Na; Wan, Yunxia

    2013-01-01

    Based on the core hysteresis features, the RTD-fluxgate core, while working, is repeatedly saturated with excitation field. When the fluxgate simulates, the accurate characteristic model of the core may provide a precise simulation result. As the shape of the ideal hysteresis loop model is fixed, it cannot accurately reflect the actual dynamic changing rules of the hysteresis loop. In order to improve the fluxgate simulation accuracy, a dynamic hysteresis loop model containing the parameters which have actual physical meanings is proposed based on the changing rule of the permeability parameter when the fluxgate is working. Compared with the ideal hysteresis loop model, this model has considered the dynamic features of the hysteresis loop, which makes the simulation results closer to the actual output. In addition, other hysteresis loops of different magnetic materials can be explained utilizing the described model for an example of amorphous magnetic material in this manuscript. The model has been validated by the output response comparison between experiment results and fitting results using the model. PMID:24002230

  12. Hysteresis of the resonance frequency of magnetostrictive bending cantilevers

    NASA Astrophysics Data System (ADS)

    Löffler, Michael; Kremer, Ramona; Sutor, Alexander; Lerch, Reinhard

    2015-05-01

    Magnetostrictive bending cantilevers are applicable for wirelessly measuring physical quantities such as pressure and strain. Exploiting the ΔE-effect, the resonance frequency of the cantilevers is shifted because of a change in the magnetic biasing field. The biasing field, in turn, depends on the applied pressure or strain, respectively. With a view to the application as a reliable sensor, maximum sensitivity but minimum hysteresis in the biasing field/resonance frequency dependence is preferred. In this contribution, monomorph bending cantilevers fabricated using magnetostrictive Fe49Co49V2 and Metglas 2605SA1 are investigated regarding their applicability for future sensors. For this purpose, the biasing field-dependent polarization of the magnetostrictive materials and bending of the cantilevers are determined. Furthermore, a setup to magnetically bias the cantilevers and determine the bending resonance frequency is presented. Here, the resonance frequency is identified by measuring the impulse response employing a laser Doppler vibrometer. The measurement results reveal that cantilevers made of Fe49Co49V2 possess a distinct hysteretic behaviour at low magnetic biasing field magnitudes. This is ascribed to the polarization and bending hysteresis. Cantilevers fabricated using Metglas 2605SA1 feature a lower resonance frequency shift compared to cantilevers with Fe49Co49V2, which would result in a lower sensitivity of the sensor. However, their resonance frequency hysteresis is almost negligible.

  13. Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system

    SciTech Connect

    Kocakaplan, Yusuf; Keskin, Mustafa

    2014-09-07

    The hysteresis and compensation behaviors of the spin-3/2 cylindrical Ising nanotube system are studied within the framework of the effective-field theory with correlations. The effects of the Hamiltonian parameters are investigated on the magnetic and thermodynamic quantities, such as the total magnetization, hysteresis curves, and compensation behaviors of the system. Depending on the Hamiltonian parameters, some characteristic hysteresis behaviors are found, such as the existence of double and triple hysteresis loops. According to Néel classification nomenclature, the system displays Q-, R-, P-, N-, M-, and S- types of compensation behaviors for the appropriate values of the system parameters. We also compare our results with some recently published theoretical and experimental works and find a qualitatively good agreement.

  14. Asymmetric-hysteresis compensation in piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Aguirre, Gorka; Janssens, Thierry; Van Brussel, Hendrik; Al-Bender, Farid

    2012-07-01

    The advantages of using piezoelectric actuators in ultra-precision applications are often impaired by nonlinear effects, in particular hysteresis, which may lead to positioning uncertainties of up to 15% of the actuator's stroke. Model-based compensation strategies are often prescribed in order to overcome this limitation and achieve better dynamical accuracy. This comes, however, at the expense of increasing identification and implementation complexity, especially when hysteresis is of the asymmetric type, such as prevalent in hard piezoceramic materials. This paper proposes a new compensation strategy based upon (i) treating hysteresis as being separate from other dynamical effects and (ii) formulating a new, simplified model to deal with asymmetric hysteresis, based on applying a linear operator to the conventional hysteresis models. After developing the theoretical background of the compensation strategy, the accuracy improvement due to the new hysteresis-compensation method is demonstrated experimentally.

  15. Influence of control strategy on stator and rotor losses in high-speed permanent magnet brushless motors

    NASA Astrophysics Data System (ADS)

    Zhu, Z. Q.; Chen, Y.; Howe, D.

    2005-05-01

    The stator iron loss and rotor eddy current loss which results in a high-speed permanent magnet brushless motor when operated in brushless dc and ac modes, on both open-circuit and at rated load, with four different current control strategies, is investigated by finite element analysis. It has highlighted the significant influence of the phase current wave form. It has also shown that, on load, the rotor eddy current loss can be the dominant loss component, particularly in brushless dc mode.

  16. Improved charge amplifier using hybrid hysteresis compensation

    NASA Astrophysics Data System (ADS)

    Amin-Shahidi, Darya; Trumper, David L.

    2013-08-01

    We present a novel charge amplifier, with a robust feedback circuit and a method for compensating piezoelectric actuator's hysteresis at low frequencies. The amplifier uses a modified feedback circuit which improves robustness to the addition of series load impedance such as in cabling. We also describe a hybrid hysteresis compensation method for enabling the charge amplifier to reduce hysteresis at low frequencies. Experimental results demonstrate the utility of the new amplifier design.

  17. Synthesis of bulk FeHfBO soft magnetic materials and its loss characterization at megahertz frequency

    SciTech Connect

    Zhou Yang; Kou Xiaoming; Warsi Muhammad, Asif; Lin Shuo; Harris, Brendan S.; Parsons, Paul E.; Xiao, John Q.; Mu Mingkai; Lee, Fred C.; Zhu Hao

    2013-05-07

    Magnetic core materials with low loss, high saturation magnetization, large permeability, and operating frequency above 1 MHz are in high demands for the next generation of miniaturized power electronics. Amorphous FeHfB ribbons with thickness around 20 {mu}m have been fabricated through melt-spinning. Different heat treatments were performed on the FeHfB ribbons, and the relations among heat treatments, microstructure, and magnetic properties have been explored. Properties such as coercivity (H{sub c}) of 2.0 Oe and saturation magnetic flux density (B{sub S}) of 1.2 T have been achieved in samples with exchange coupling. The losses can be minimized by balancing the hysteretic and eddy current losses and can be further reduced with additional magnetic field annealing. At 5 MHz with peak magnetic flux density of 20 mT, the materials show core losses comparable to the best ferrites, but with higher permeability value of about 200 and superior saturation induction of more than 1 T.

  18. Core hysteresis in nematic defects

    NASA Astrophysics Data System (ADS)

    Kralj, Samo; Virga, Epifanio G.

    2002-08-01

    We study field-induced transformations in the biaxial core of a nematic disclination with strength m=1, employing the Landau-de Gennes order tensor parameter Q. We first consider the transition from the defectless escaped radial structure into the structure hosting a line defect with a negative uniaxial order parameter along the axis of a cylinder of radius R. The critical field of the transition monotonically increases with R and asymptotically approaches a value corresponding to ξb/ξf~0.3, where the correlation lengths ξb and ξf are related to the biaxial order and the external field, respectively. Then, in the same geometry, we focus on the line defect structure with a positive uniaxial ordering along the axis, surrounded by the uniaxial sheath, the uniaxial cylinder of radius ξu with negative order parameter and director in the transverse direction. We study the hysteresis in the position of the uniaxial sheath upon increasing and decreasing the field strength. In general, two qualitatively different solutions exist, corresponding to the uniaxial sheath located close to the defect symmetry axis or close to the cylinder wall. This latter solution exists only for strong enough anchorings. The uniaxial sheath is for a line defect what the uniaxial ring is for a point defect: by resorting to an approximate analytic estimate, we show that essentially the same hysteresis exhibited by the uniaxial sheath is expected to occur at the uniaxial ring in the core structure of a point defect.

  19. Calorimetric AC loss measurement of MgB2 superconducting tape in an alternating transport current and direct magnetic field

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2012-11-01

    Applications of MgB2 superconductors in electrical engineering have been widely reported, and various studies have been made to define their alternating current (AC) losses. However, studies on the transport losses with an applied transverse DC magnetic field have not been conducted, even though this is one of the favored conditions in applications of practical MgB2 tapes. Methods and techniques used to characterize and measure these losses have so far been grouped into ‘electrical’ and ‘calorimetric’ approaches with external conditions set to resemble the application conditions. In this paper, we present a new approach to mounting the sample and employ the calorimetric method to accurately determine the losses in the concurrent application of AC transport current and DC magnetic fields that are likely to be experienced in practical devices such as generators and motors. This technique provides great simplification compared to the pickup coil and lock-in amplifier methods and is applied to a long length (˜10 cm) superconducting tape. The AC loss data at 20 and 30 K will be presented in an applied transport current of 50 Hz under external DC magnetic fields. The results are found to be higher than the theoretical predictions because of the metallic fraction of the tape that contributes quite significantly to the total losses. The data, however, will allow minimization of losses in practical MgB2 coils and will be used in the verification of numerical coil models.

  20. Complex permeability and core loss of soft magnetic Fe-based nanocrystalline powder cores

    NASA Astrophysics Data System (ADS)

    Füzerová, Jana; Füzer, Ján; Kollár, Peter; Bureš, Radovan; Fáberová, Mária

    2013-11-01

    Rapidly quenched ribbons of Fe73Cu1Nb3Si16B7 were ball milled and cryomilled to get powder and warm consolidated to get bulk compacts. The data presented here are relative to different experimental procedures, one corresponding to milling at room temperature (sample R1) and the other corresponding to cryomilling at temperature of liquid nitrogen (sample L1). It was found that the properties of the initial powder influenced the density, the electrical resistivity and electromagnetic properties of the resulting bulk alloys. Permeability and core loss are structure sensitive and depend on factors such as powder size and shape, porosity, purity, and internal stress. Permeability spectra of sample R1 decreases with increasing the frequency and its values are larger than that for sample L1 at low frequencies. On the other hand the permeability of sample L1 remains steady up to 1 kHz and at certain frequency is larger than that for sample R1. Also there are different frequency dependences of the imaginary parts of permeability and loss factor, respectively. The cryomilling of the amorphous ribbon positively influences on the AC magnetic properties at higher frequencies (above 100 Hz) of resulting bulk sample.

  1. Tunable negligible-loss energy transfer between dipolar-coupled magnetic disks by stimulated vortex gyration

    PubMed Central

    Jung, Hyunsung; Lee, Ki-Suk; Jeong, Dae-Eun; Choi, Youn-Seok; Yu, Young-Sang; Han, Dong-Soo; Vogel, Andreas; Bocklage, Lars; Meier, Guido; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2011-01-01

    A wide variety of coupled harmonic oscillators exist in nature. Coupling between different oscillators allows for the possibility of mutual energy transfer between them and the information-signal propagation. Low-energy input signals and their transport with negligible energy loss are the key technological factors in the design of information-signal processing devices. Here, utilizing the concept of coupled oscillators, we experimentally demonstrated a robust new mechanism for energy transfer between spatially separated dipolar-coupled magnetic disks - stimulated vortex gyration. Direct experimental evidence was obtained by a state-of-the-art experimental time-resolved soft X-ray microscopy probe. The rate of energy transfer from one disk to the other was deduced from the two normal modes' frequency splitting caused by dipolar interaction. This mechanism provides the advantages of tunable energy transfer rates, low-power input signals and negligible energy loss in the case of negligible intrinsic damping. Coupled vortex-state disks might be implemented in applications for information-signal processing. PMID:22355578

  2. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  3. A one-dimension coupled hysteresis model for giant magnetostrictive materials

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaojing; Sun, Le

    2007-02-01

    This paper addresses the development of a one-dimension model for quantifying magnetic-elastic-thermal coupling and hysteresis inherent to giant magnetostrictive materials. Firstly, the anhysteretic law is modeled by considering the Gibbs free energy function G( σ, M, T), and thermodynamic relations are used to obtain the constitutive expressions. These expressions character the effects of coupling between stress, magnetization, and temperature in the giant magnetostrictive material but hysteresis, i.e. strain and magnetic intensity described by above the constitutive expressions are single-valued function of the magnetization. And then pinning is incorporated to describe hysteresis based on Jiles-Atherton model. The model considered in the paper is demonstrated valid by comparing the predicted results with experimental data. Moreover, the model proposed in the paper is convenient to be used in engineering applications since the parameters referred to the model have definite physical mean and can all be easily determined by experiments.

  4. Tuning size and thermal hysteresis in bistable spin crossover nanoparticles.

    PubMed

    Galán-Mascarós, José Ramón; Coronado, Eugenio; Forment-Aliaga, Alicia; Monrabal-Capilla, María; Pinilla-Cienfuegos, Elena; Ceolin, Marcelo

    2010-06-21

    Nanoparticles of iron(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition "moves" towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications. PMID:20503990

  5. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    SciTech Connect

    Velikovich, A. L. Giuliani, J. L.; Zalesak, S. T.

    2014-12-15

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  6. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-12-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ωeτe effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ωeτe as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  7. Coupling loss time constants in full-size Nb{sub 3}Sn CIC model conductors for fusion magnets

    SciTech Connect

    Nijhuis, A.; Kate, H.H.J. ten; Duchateau, J.L.

    1997-06-01

    The cable-in-conduit conductor for the ITER coils have to perform at magnetic fields up to 13 T under the conditions of normal high ramp rates as well as extreme magnetic pulses during a plasma disruption. Modelling, ac loss computations and design optimisations require to understand and identify the coupling loss time constants in multistage cables. For this AC loss measurements are performed on jacketed full size Nb{sub 3}Sn cable-in-conduit conductors. A transverse sinusoidal magnetic field is applied on the conductor to determine the coupling loss time constants with a calorimetric method. Moreover the decay of the coupling currents after a linear ramp is monitored with compensated pick-up coils. A comparison is made between the results obtained with both measuring methods. It appears that the n.{tau} value taken from the slope of the loss versus frequency curve in the low frequency limit has only a meaning at these low frequencies. At higher rates of magnetic field change which are relevant to describe a plasma disruption, internal shielding effects are not negligible and a different approach has to be used. The experimental results and a straightforward model are presented to find the coupling current time constants of this type of conductors. It is shown that several dominant time constants can exist that are associated with relatively small volume fractions of a cable.

  8. Domain structure and magnetization loss in a toroidal core based on an Fe-based amorphous alloy

    NASA Astrophysics Data System (ADS)

    Azuma, Daichi; Hasegawa, Ryusuke; Saito, Shin; Takahashi, Migaku

    2012-04-01

    By utilizing a wide-view Kerr-effect magnetic domain observation system designed for domain observation on curved surfaces, domain images were taken on the surface of a toroidal core based on an Fe-based amorphous alloy. The results of the observation are discussed in terms of Bertotti's eddy-current loss model, helping to clarify the concept of magnetic objects proposed by the model.

  9. Joining of parts via magnetic heating of metal aluminum powders

    SciTech Connect

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  10. Hysteresis multicycles in nanomagnet arrays.

    PubMed

    Deutsch, J M; Mai, Trieu; Narayan, Onuttom

    2005-02-01

    We predict two physical effects in arrays of single-domain nanomagnets by performing simulations using a realistic model Hamiltonian and physical parameters. First, we find hysteretic multicycles for such nanomagnets. The simulation uses continuous spin dynamics through the Landau-Lifshitz-Gilbert (LLG) equation. In some regions of parameter space, the probability of finding a multicycle is as high as approximately 0.6 . We find that systems with larger and more anisotropic nanomagnets tend to display more multicycles. Our results also demonstrate the importance of disorder and frustration for multicycle behavior. Second, we show that there is a fundamental difference between the more realistic vector LLG equation and scalar models of hysteresis, such as Ising models. In the latter case spin and external field inversion symmetry is obeyed, but in the former it is destroyed by the dynamics, with important experimental implications. PMID:15783391

  11. Hysteresis in a quantized superfluid 'atomtronic' circuit.

    PubMed

    Eckel, Stephen; Lee, Jeffrey G; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W; Lobb, Christopher J; Phillips, William D; Edwards, Mark; Campbell, Gretchen K

    2014-02-13

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices). PMID:24522597

  12. Hysteresis in the phase transition of chocolate

    NASA Astrophysics Data System (ADS)

    Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua

    2016-01-01

    We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.

  13. Loading-unloading hysteresis loop of randomly rough adhesive contacts

    NASA Astrophysics Data System (ADS)

    Carbone, Giuseppe; Pierro, Elena; Recchia, Giuseppina

    2015-12-01

    We investigate the loading and unloading behavior of soft solids in adhesive contact with randomly rough profiles. The roughness is assumed to be described by a self-affine fractal on a limited range of wave vectors. A spectral method is exploited to generate such randomly rough surfaces. The results are statistically averaged, and the calculated contact area and applied load are shown as a function of the penetration, for loading and unloading conditions. We found that the combination of adhesion forces and roughness leads to a hysteresis loading-unloading loop. This shows that energy can be lost simply as a consequence of roughness and van der Waals forces, as in this case a large number of local energy minima exist and the system may be trapped in metastable states. We numerically quantify the hysteretic loss and assess the influence of the surface statistical properties and the energy of adhesion on the hysteresis process.

  14. Loading-unloading hysteresis loop of randomly rough adhesive contacts.

    PubMed

    Carbone, Giuseppe; Pierro, Elena; Recchia, Giuseppina

    2015-12-01

    We investigate the loading and unloading behavior of soft solids in adhesive contact with randomly rough profiles. The roughness is assumed to be described by a self-affine fractal on a limited range of wave vectors. A spectral method is exploited to generate such randomly rough surfaces. The results are statistically averaged, and the calculated contact area and applied load are shown as a function of the penetration, for loading and unloading conditions. We found that the combination of adhesion forces and roughness leads to a hysteresis loading-unloading loop. This shows that energy can be lost simply as a consequence of roughness and van der Waals forces, as in this case a large number of local energy minima exist and the system may be trapped in metastable states. We numerically quantify the hysteretic loss and assess the influence of the surface statistical properties and the energy of adhesion on the hysteresis process. PMID:26764700

  15. The application of the load-stroke hysteresis technique for evaluating fatigue damage development

    SciTech Connect

    Baxter, T.; Reifsnider, K.L.

    1994-12-31

    A new experimental method was developed to measure hysteresis loss during a fatigue test from the load and stroke signals of a standard servo-hydraulic materials testing system. The method was used to characterize changes in properties and performance induced by long-term cyclic loading. Advantages of the load-stroke hysteresis measurement include: (1) contact with the specimen is not required, (2) the fatigue test is not interrupted for data collection, (3) the measured quantity (the hysteresis loop area) is directly related to the (damage) events that alter material properties and life, and (4) a quantitative measure of damage extent and development rate is obtained. The method was used to evaluate damage development during fatigue tests of polymeric composite laminates with unidirectional and angle-ply fiber orientations. The hysteresis loop measurements were used to identify the different stages of damage development and the different damage mechanisms (matrix cracking, delamination, and fiber fracture) in the material systems. The results from the hysteresis technique were correlated with conventional NDE methods such as dynamic signal analysis and specimen surface temperature measurements. It was found that the load-stroke hysteresis technique was especially sensitive to the fiber fracture, the most difficult type of damage process to interrogate in-situ. The hysteresis technique may provide a valuable method for predicting fatigue failure in composite specimens.

  16. Verification of modified Jiles-Atherton model for determination of hysteresis behavior of materials with two ferromagnetic phases

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, Neelam; Nlebedim, Cajetan; Jiles, David

    2013-03-01

    Robust theoretical models of hysteresis are important for describing the properties of ferromagnetic materials. Of the available hysteresis models, the J-A model is widely studied. Efforts have been made to modify and extend the applicability of this model and to improve its accuracy in accounting for different conditions that affect the magnetic state of ferromagnetic materials, such as stress. Recently, the J-A model has been extended to describe the ferromagnetic hysteresis in two-phase magnetic materials. Modeling hysteresis of multi-phase ferromagnetic materials is crucial especially due to the need to develop high performance composite magnetic structures. In this study, the extension of the J-A to accommodate materials with two ferromagnetic phases is experimentally verified. The approach to extracting of the J-A model parameters including saturation magnetization (Ms) , domain coupling factor (α) , domain density (a), reversibility (c) and pinning coefficient (k) in two-phase materials will be presented.

  17. Magnetic Bearings for Inertial Energy Storage

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1983-01-01

    The selection of a noncontacting bearing technique with no wear out phenomena and which is vacuum compatible which is the decisive factor in selecting magnetic bearings for kinetic energy storage was investigated. Unlimited cycle life without degradation is a primary goal. Storage efficiency is a key parameter which is defined as the ratio of the energy remaining to energy stored after a fixed time interval at no load conditions. Magnetic bearings, although noncontacting, are not perfectly frictionless in that magnetic losses due to eddy currents and hysteresis can occur. Practical magnetic bearings, however, deviate from perfect symmetry and have discontinuities and asymmetric flux paths either by design or when controlled in the presence of disturbances, which cause losses. These losses can be kept smaller in the bearings than in a high power motor/generator, however, are a significant factor in selecting the magnetic bearing type.

  18. The magnetisation profiles and ac magnetisation losses in a single layer YBCO thin film caused by travelling magnetic field waves

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Coombs, Timothy

    2015-05-01

    This paper studies the magnetisation and ac magnetisation losses caused by a travelling magnetic wave on a single-layer YBCO thin film. This work provides thorough investigations on how the critical magnetic field gradient has been changed by the application of a travelling wave. Several conditions were studied such as zero-field cooling (ZFC), field cooling (FC) and a delta-shaped trapped field. It was found that the travelling wave tends to attenuate the existing critical magnetic field gradients in all these conditions. This interesting magnetic behaviour can be well predicted by the finite element (FEM) software with the E-J power law and Maxwell’s equations. The numerical simulations show that the existing critical current density has been compromised after applying the travelling wave. The magnetisation profile caused by the travelling wave is very different from the standing wave, while the magnetisation based on the standing wave can be interpreted by the Bean model and constant current density assumption. Based on the numerical method, which has reliability that has been solidly proven in the study, we have extended the study to the ac magnetisation losses. Comparisons were made between the travelling wave and the standing wave for this specific YBCO sample. It was found that by applying the magnetic wave of the same amplitude, the ac magnetisation loss caused by the travelling wave is about 1/3 of that caused by the standing wave. These results are helpful in understanding the general magnetism problems and ac magnetisation loss in the travelling magnetic wave conditions such as inside a high temperature superconducting (HTS) rotating machine, etc.

  19. Induced magnetization and power loss for a periodically driven system of ferromagnetic nanoparticles with randomly oriented easy axes

    NASA Astrophysics Data System (ADS)

    Denisov, S. I.; Lyutyy, T. V.; Pedchenko, B. O.; Hryshko, O. M.

    2016-07-01

    We study the effect of an elliptically polarized magnetic field on a system of noninteracting, single-domain ferromagnetic nanoparticles characterized by a uniform distribution of easy axis directions. Our main goal is to determine the average magnetization of this system and the power loss in it. In order to calculate these quantities analytically, we develop a general perturbation theory for the Landau-Lifshitz-Gilbert (LLG) equation and find its steady-state solution for small magnetic field amplitudes. On this basis, we derive the second-order expressions for the average magnetization and power loss, investigate their dependence on the magnetic field frequency, and analyze the role of subharmonic resonances resulting from the nonlinear nature of the LLG equation. For arbitrary amplitudes, the frequency dependence of these quantities is obtained from the numerical solution of this equation. The impact of transitions between different regimes of regular and chaotic dynamics of magnetization, which can be induced in nanoparticles by changing the magnetic field frequency, is examined in detail.

  20. Energy-loss magnetic chiral dichroism study of epitaxial MnAs film on GaAs(001)

    SciTech Connect

    Fu, X.; Warot-Fonrose, B.; Arras, R.; Serin, V.; Demaille, D.; Eddrief, M.; Etgens, V.

    2015-08-10

    The room-temperature ferromagnetic behavior of MnAs/GaAs(001) thin film has been locally explored by Transmission Electron Microscope (TEM). We first differentiated hexagonal α-MnAs and quasi-hexagonal β-MnAs which are very similar in atomic structure by electron diffraction. Local magnetic moment information of the identified α-MnAs was extracted from manganese-L{sub 2,3} edges using Energy-loss Magnetic Circular Dichroism technique and the ratio of orbital to spin magnetic moment was measured. In this experiment, atomic structure identification, chemical analysis, and magnetic moment measurement were simultaneously achieved at high spatial resolution in TEM, thus providing a potential method for in-situ study of local properties of multiphase magnetic materials.

  1. Magnetic resonance temperature imaging-based quantification of blood flow-related energy losses.

    PubMed

    Dillon, Christopher; Roemer, Robert; Payne, Allison

    2015-07-01

    This study presents a new approach for evaluating bioheat transfer equation (BHTE) models used in treatment planning, control and evaluation of all thermal therapies. First, 3D magnetic resonance temperature imaging (MRTI) data are used to quantify blood flow-related energy losses, including the effects of perfusion and convection. Second, this information is used to calculate parameters of a BHTE model: in this paper the widely used Pennes BHTE. As a self-consistency check, the BHTE parameters are utilized to predict the temperatures from which they were initially derived. The approach is evaluated with finite-difference simulations and implemented experimentally with focused ultrasound heating of an ex vivo porcine kidney perfused at 0, 20 and 40 ml/min (n = 4 each). The simulation results demonstrate accurate quantification of blood flow-related energy losses, except in regions of sharp blood flow discontinuities, where the transitions are spatially smoothed. The smoothed transitions propagate into estimates of the Pennes perfusion parameter but have limited effect on the accuracy of temperature predictions using these estimates. Longer acquisition time periods mitigate the effects of MRTI noise, but worsen the effect of flow discontinuities. For the no-flow kidney experiments the estimates of a uniform, constant Pennes perfusion parameter are approximately zero, and at 20 and 40 ml/min the average estimates increase with flow rate to 3.0 and 4.2 kg/m(3) /s, respectively. When Pennes perfusion parameter values are allowed to vary spatially, but remain temporally constant, BHTE temperature predictions are more accurate than when using spatially uniform, constant Pennes perfusion values, with reductions in RMSE values of up to 79%. Locations with large estimated perfusion values correspond to high flow regions of the kidney observed in T1 -weighted MR images. This novel, MRTI-based technique holds promise for improving understanding of thermal therapy biophysics

  2. Enhanced loss of magnetic-mirror-trapped fast electrons by a shear Alfvén wave

    SciTech Connect

    Wang, Y.; Gekelman, W.; Pribyl, P.; Papadopoulos, K.

    2014-05-15

    Laboratory observations of enhanced loss of magnetic mirror trapped fast electrons irradiated by a shear Alfvén Wave (SAW) are reported. The experiment is performed in the quiescent after-glow plasma in the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62(12), 2875–2883 (1991)]. A trapped energetic electron population (>100 keV) is generated in a magnetic mirror section (mirror ratio ≈ 2, length = 3.5 m) by an X-mode high power microwave pulse, and forms a hot electron ring due to the grad-B and curvature drift. SAWs of arbitrary polarization are launched externally by a Rotating Magnetic Field source (δB/B{sub 0} ≈ 0.1%, λ{sub ∥} ≈ 9 m). Irradiated by a right-handed circularly polarized SAW, the loss of electrons, in both the radial and the axial direction of the mirror field, is significantly enhanced and is modulated at f{sub Alfvén}. The periodical loss continues even after the termination of the SAW. Experimental observations suggest that a spatial distortion of the ring is formed in the SAW field and creates a collective mode of the hot electron population that degrades its confinement and leads to electron loss from the magnetic mirror. The results could have implications on techniques of radiation belt remediation.

  3. Asymmetric Hysteresis for Probing Dzyaloshinskii–Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Han, Dong-Soo; Kim, Nam-Hui; Kim, June-Seo; Yin, Yuxiang; Koo, Jung-Woo; Cho, Jaehun; Lee, Sukmock; Kläui, Mathias; Swagten, Henk J. M.; Koopmans, Bert; You, Chun-Yeol

    2016-07-01

    The interfacial Dzyaloshinskii-Moriya interaction (DMI) is intimately related to the prospect of superior domain-wall dynamics and the formation of magnetic skyrmions. Although some experimental efforts have been recently proposed to quantify these interactions and the underlying physics, it is still far from trivial to address the interfacial DMI. Inspired by the reported tilt of the magnetization of the side edge of a thin film structure, we here present a quasi-static, straightforward measurement tool. By using laterally asymmetric triangular-shaped microstructures, it is demonstrated that interfacial DMI combined with an in-plane magnetic field yields a unique and significant shift in magnetic hysteresis. By systematic variation of the shape of the triangular objects combined with a droplet model for domain nucleation, a robust value for the strength and sign of interfacial DMI is obtained. This method gives immediate and quantitative access to DMI, enabling a much faster exploration of new DMI systems for future nanotechnology.

  4. Modeling of hysteresis loops by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Nehme, Z.; Labaye, Y.; Sayed Hassan, R.; Yaacoub, N.; Greneche, J. M.

    2015-12-01

    Recent advances in MC simulations of magnetic properties are rather devoted to non-interacting systems or ultrafast phenomena, while the modeling of quasi-static hysteresis loops of an assembly of spins with strong internal exchange interactions remains limited to specific cases. In the case of any assembly of magnetic moments, we propose MC simulations on the basis of a three dimensional classical Heisenberg model applied to an isolated magnetic slab involving first nearest neighbors exchange interactions and uniaxial anisotropy. Three different algorithms were successively implemented in order to simulate hysteresis loops: the classical free algorithm, the cone algorithm and a mixed one consisting of adding some global rotations. We focus particularly our study on the impact of varying the anisotropic constant parameter on the coercive field for different temperatures and algorithms. A study of the angular acceptation move distribution allows the dynamics of our simulations to be characterized. The results reveal that the coercive field is linearly related to the anisotropy providing that the algorithm and the numeric conditions are carefully chosen. In a general tendency, it is found that the efficiency of the simulation can be greatly enhanced by using the mixed algorithm that mimic the physics of collective behavior. Consequently, this study lead as to better quantified coercive fields measurements resulting from physical phenomena of complex magnetic (nano)architectures with different anisotropy contributions.

  5. Corneal hysteresis and its relevance to glaucoma

    PubMed Central

    Deol, Madhvi; Taylor, David A.; Radcliffe, Nathan M.

    2015-01-01

    Purpose of review Glaucoma is a leading cause of irreversible blindness worldwide. It is estimated that roughly 60.5 million people had glaucoma in 2010 and that this number is increasing. Many patients continue to lose vision despite apparent disease control according to traditional risk factors. The purpose of this review is to discuss the recent findings with regard to corneal hysteresis, a variable that is thought to be associated with the risk and progression of glaucoma. Recent findings Low corneal hysteresis is associated with optic nerve and visual field damage in glaucoma and the risk of structural and functional glaucoma progression. In addition, hysteresis may enhance intraocular pressure (IOP) interpretation: low corneal hysteresis is associated with a larger magnitude of IOP reduction following various glaucoma therapies. Corneal hysteresis is dynamic and may increase in eyes after IOP-lowering interventions are implemented. Summary It is widely accepted that central corneal thickness is a predictive factor for the risk of glaucoma progression. Recent evidence shows that corneal hysteresis also provides valuable information for several aspects of glaucoma management. In fact, corneal hysteresis may be more strongly associated with glaucoma presence, risk of progression, and effectiveness of glaucoma treatments than central corneal thickness. PMID:25611166

  6. Pinning Loss Power Density in Superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, Teruo

    2015-03-01

    The pinning loss power density is theoretically derived based on the resistive energy dissipation when the flux lines are driven by the Lorentz force in a superconductor. The obtained loss power density does not depend on the viscosity or flow resistivity, but is proportional to the pinning force density only, and it possesses the nature of hysteresis loss, as commonly measured in experiments. These features are predicted by the critical state model, which was recently proved theoretically. The obtained pinning force density is consistent with the prediction of the coherent potential approximation theory, a kind of statistical summation theory, for flux pinning. Thus, the irreversible properties associated with the flux pinning can be comprehensively described by these flux pinning theories. The irreversible flux pinning in the superconductor is compared with similar irreversible phenomena such as the motion of magnetic domain walls in ferromagnetic materials and the friction in mechanical systems. The possibility is also discussed for a general theoretical description of these irreversible phenomena in which the hysteresis loss occurs.

  7. Abnormal Magnetic Resonance Imaging Findings in Patients With Sudden Sensorineural Hearing Loss

    PubMed Central

    Jeong, Kyung-Hwa; Choi, Jin Woo; Shin, Jung Eun; Kim, Chang-Hee

    2016-01-01

    Abstract The etiology of sudden sensorineural hearing loss (SSNHL) remains unclear in most cases. This study aimed to assess abnormal magnetic resonance imaging (MRI) findings in patients with SSNHL and evaluate the value of MRI in identifying the cause of SSNHL. A retrospective analysis of the charts and MRI findings of 291 patients with SSNHL was performed. In 291 patients, MRI abnormality, which was considered a cause of SSNHL, was detected in 13 patients. Vestibular schwannoma involving the internal auditory canal (IAC) and/or cerebellopontine angle was observed in 9 patients. All 9 patients had intrameatal tumors, and 6 of the 9 patients displayed extrameatal extension of their tumors. The tumor was small (<1 cm) or medium-sized (1.1–2.9 cm) in these 6 patients. Intralabyrinthine schwannoma, labyrinthine hemorrhage, IAC metastasis, and a ruptured dermoid cyst were each observed in 1 patient. The most commonly observed MRI abnormality in patients with SSNHL was vestibular schwannoma, and all of the lesions were small or medium-sized tumors involving the IAC. PMID:27124066

  8. Modeling the effects of torsional stress on hysteretic magnetization

    SciTech Connect

    Sablik, M.J.; Jiles, D.C.

    1999-01-01

    Opposite torques applied axially to a polycrystalline ferromagnetic rod result in tensile and compressive stresses acting perpendicularly at the rod surface at 45{degree} to the rod axis. These stresses affect the magnetization of the rod when a magnetic field is applied parallel to the rod axis. It is shown how one can formulate the magnetomechanical hysteresis model so as to treat this special case of biaxial stress and take into account the effect of opposite torques on the magnetic properties of the rod. Variation of hysteresis parameters such as coercive field, remanent flux density, differential permeability at the coercive field, and hysteresis loss as a function of applied torque are determined from the model. In the model, the torque is applied first and then the field is cycled to give hysteresis loops. It is found that the torque dependence of the magnetic properties is different, depending on what is chosen for H{sub max}, the maximum value of the applied magnetic field H. The best parameter to use for tracking the torque is found to be H{sub c} at saturation or near saturation, since that parameter shows an almost linear decrease with the applied torque.

  9. CABLE DESIGN FOR FAST RAMPED SUPERCONDUCTING MAGNETS (COS-0 DESIGN).

    SciTech Connect

    GHOSH,A.

    2004-03-22

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 300 T-m and 100 T-m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of ac loss and magnetic field distortion. The development of the low loss Rutherford cable that can be used is described, together with a novel insulation scheme designed to promote efficient cooling. Measurements of contact resistance in the cable are presented and the results of these measurements are used to predict the ac losses, in the magnets during fast ramp operation. For the high energy ring, a lm model dipole magnet was built, based on the RHIC dipole design. This magnet was tested under boiling liquid helium in a vertical cryostat. The quench current showed very little dependence on ramp rate. The ac losses, measured by an electrical method, were fitted to straight line plots of loss/cycle versus ramp rate, thereby separating the eddy current and hysteresis components. These results were compared with calculated values, using parameters which had previously been measured on short samples of cable. Reasonably good agreement between theory and experiment was found, although the measured hysteresis loss is higher than expected in ramps to the highest field levels.

  10. Hysteresis during contact angles measurement.

    PubMed

    Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D

    2010-03-15

    A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle. PMID:20060981

  11. Implementation and identification of Preisach type hysteresis models with Everett Function in closed form

    NASA Astrophysics Data System (ADS)

    Szabó, Zsolt; Füzi, János

    2016-05-01

    The Preisach function is considered as a product of two special one dimensional functions, which allows the closed form evaluation of the Everett integral. The deduced closed form expressions are included in Preisach models, in particular in the static model, moving model and a rate dependent hysteresis model, which can simulate the frequency dependence of the magnetization process. The details of the freely available implementations, which are available online are presented. The identification of the model parameters and the accuracy to describe the magnetization process are discussed and demonstrated by fitting measured data. Transient electric circuit simulation with hysteresis demonstrates the applicability of the developed models.

  12. A 2D finite element study on the role of material properties on eddy current losses in soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Ren, Xiaotao; Corcolle, Romain; Daniel, Laurent

    2016-02-01

    The use of soft magnetic composites (SMCs) in electrical engineering applications is growing. SMCs provide an effective alternative to laminated steels because they exhibit a high permeability with low eddy current losses. Losses are a critical feature in the design of electrical machines, and it is necessary to evaluate the role of microstructure and constitutive properties of SMCs during the predesign stage. In this paper we propose a simplified finite element approach to compute eddy current losses in these materials. The computations allow to quantify the role of exciting source and material properties on eddy current losses. This analysis can later be used in the development of homogenization models for SMC. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek

  13. Electric and magnetic losses modeled by a stable hybrid with explicit-implicit time-stepping for Maxwell's equations

    SciTech Connect

    Halleroed, Tomas Rylander, Thomas

    2008-04-20

    A stable hybridization of the finite-element method (FEM) and the finite-difference time-domain (FDTD) scheme for Maxwell's equations with electric and magnetic losses is presented for two-dimensional problems. The hybrid method combines the flexibility of the FEM with the efficiency of the FDTD scheme and it is based directly on Ampere's and Faraday's law. The electric and magnetic losses can be treated implicitly by the FEM on an unstructured mesh, which allows for local mesh refinement in order to resolve rapid variations in the material parameters and/or the electromagnetic field. It is also feasible to handle larger homogeneous regions with losses by the explicit FDTD scheme connected to an implicitly time-stepped and lossy FEM region. The hybrid method shows second-order convergence for smooth scatterers. The bistatic radar cross section (RCS) for a circular metal cylinder with a lossy coating converges to the analytical solution and an accuracy of 2% is achieved for about 20 points per wavelength. The monostatic RCS for an airfoil that features sharp corners yields a lower order of convergence and it is found to agree well with what can be expected for singular fields at the sharp corners. A careful convergence study with resolutions from 20 to 140 points per wavelength provides accurate extrapolated results for this non-trivial test case, which makes it possible to use as a reference problem for scattering codes that model both electric and magnetic losses.

  14. Adhesion hysteresis of silane coated microcantilevers

    SciTech Connect

    DE BOER,MAARTEN P.; KNAPP,JAMES A.; MICHALSKE,TERRY A.; SRINIVASAN,U.; MABOUDIAN,R.

    2000-04-17

    The authors have developed a new experimental approach for measuring hysteresis in the adhesion between micromachined surfaces. By accurately modeling the deformations in cantilever beams that are subject to combined interfacial adhesion and applied electrostatic forces, they determine adhesion energies for advancing and receding contacts. They draw on this new method to examine adhesion hysteresis for silane coated micromachined structures and found significant hysteresis for surfaces that were exposed to high relative humidity (RH) conditions. Atomic force microscopy studies of these surfaces showed spontaneous formation of agglomerates that they interpreted as silages that have irreversibly transformed from uniform surface layers at low RH to isolated vesicles at high RH. They used contact deformation models to show that the compliance of these vesicles could reasonably account for the adhesion hysteresis that develops at high RH as the surfaces are forced into contact by an externally applied load.

  15. Loss Calculation of Induction Motors Considering Harmonic Electromagnetic Fields in Stator and Rotor

    NASA Astrophysics Data System (ADS)

    Yamazaki, Katsumi

    A method of loss calculation for induction motors is proposed. The combined 3D-2D time stepping finite element analysis is carried out to obtain the copper loss and the time-variation of the magnetic field in the motor. The iron loss is calculated approximately considering the time-variation of the magnetic field direction and the minor hysteresis loops caused by the time-harmonic fields using practical computer resources. The proposed method is applied to 4 types of induction motors, which are the solid rotor induction motors with/without slot and the cage induction motors with/without skew. The measured and the calculated total losses and the iron losses agree well in all cases. The differences of the loss distributions of each motor are also compared and investigated.

  16. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  17. Free boundaries in problems with hysteresis

    PubMed Central

    Apushkinskaya, D. E.; Uraltseva, N. N.

    2015-01-01

    Here, we present a survey concerning parabolic free boundary problems involving a discontinuous hysteresis operator. Such problems describe biological and chemical processes ‘with memory’ in which various substances interact according to hysteresis law. Our main objective is to discuss the structure of the free boundaries and the properties of the so-called ‘strong solutions’ belonging to the anisotropic Sobolev class with sufficiently large q. Several open problems in this direction are proposed as well. PMID:26261368

  18. Spatial versus time hysteresis in damping mechanisms

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Fabiano, R. H.; Wang, Y.; Inman, D. J.; Cudney, H., Jr.

    1988-01-01

    A description is given of continuing investigations on the task of estimating internal damping mechanisms in flexible structures. Specifically, two models for internal damping in Euler-Bernoulli beams are considered: spatial hysteresis and time hysteresis. A theoretically sound computational algorithm for estimation is described, and experimental results are discussed. It is concluded that both models perform well in the sense that they accurately predict response for the experiments conducted.

  19. Anomalous hysteresis properties of iron films deposited on liquid surfaces

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Lin; Feng, Chun-Mu; Xu, Xiao-Jun; Jin, Jin-Sheng; Xia, A.-Gen; Ye, Gao-Xiang

    2005-07-01

    A nearly free sustained iron film system, deposited on silicone oil surfaces by vapor-phase deposition method, has been fabricated and its crystal structure as well as magnetic properties has been studied. Both the temperature-dependent coercivity Hc(T) and exchange anisotropy field HE(T) of the iron films possess a maximum peak around the critical temperature Tcrit=10-15 and 4K, respectively. Our experimental results show that the anomalous hysteresis properties mainly result from the oxide surfaces of the films with spin-glass-like phase below freezing temperature Tf=30-50K.

  20. Transport, hysteresis and avalanches in artificial spin ice systems

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, A

    2010-01-01

    We examine the hopping dynamics of an artificial spin ice system constructed from colloids on a kagome optical trap array where each trap has two possible states. By applying an external drive from an electric field which is analogous to a biasing applied magnetic field for real spin systems, we can create polarized states that obey the spin-ice rules of two spins in and one spin out at each vertex. We demonstrate that when we sweep the external drive and measure the fraction of the system that has been polarized, we can generate a hysteresis loop analogous to the hysteretic magnetization versus external magnetic field curves for real spin systems. The disorder in our system can be readily controlled by changing the barrier that must be overcome before a colloid can hop from one side of a trap to the other. For systems with no disorder, the effective spins all flip simultaneously as the biasing field is changed, while for strong disorder the hysteresis curves show a series of discontinuous jumps or avalanches similar to Barkhausen noise.

  1. High temperature oxidation and its induced coercivity loss of a 2:17 type SmCo-based magnet

    SciTech Connect

    Wang, X.; Peng, X. Zhao, H.; Wang, F.; Guo, Zh.; Li, W.

    2015-03-07

    Oxidation has been explained as one possibility for unacceptable and irreversible coercivity loss of 2:17 type SmCo-based magnets at high temperatures over 550 °C, but the question for how oxidation affects coercivity in the magnet has not been fundamentally answered. In this work, oxidation and its induced degradation of the magnetic phases of a Sm(Co{sub bal}Fe{sub 0.22}Cu{sub 0.08}Zr{sub 0.02}){sub 7.5} magnet in air at 600 °C have been investigated by using transmission electron microscopy and correlated with the demagnetization curves measured. It shows that the coercivity loss, which is significantly increased with oxidation time, is small and independent of time in the magnet unaffected by oxidation. The reason lies in that the 2:17 cell and 1:5 cell boundary, although they have been completely disintegrated in the oxidized part by external oxidation of Co, Fe, and Cu and internal oxidation of Sm, remains in the unoxidized part except that 1:5 boundary close to the oxidized part is decreased in thickness and Cu content.

  2. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors.

    PubMed

    Glowacki, B A; Majoros, M

    2009-06-24

    Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa(2)Cu(3)O(7) and (Pb,Bi)(2)Sr(2)Ca(2)Cu(3)O(9) conductors, and buffer layers have to be used. In contrast, in MgB(2) conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties. PMID:21828430

  3. Load-Dependent Friction Hysteresis on Graphene.

    PubMed

    Ye, Zhijiang; Egberts, Philip; Han, Gang Hee; Johnson, A T Charlie; Carpick, Robert W; Martini, Ashlie

    2016-05-24

    Nanoscale friction often exhibits hysteresis when load is increased (loading) and then decreased (unloading) and is manifested as larger friction measured during unloading compared to loading for a given load. In this work, the origins of load-dependent friction hysteresis were explored through atomic force microscopy (AFM) experiments of a silicon tip sliding on chemical vapor deposited graphene in air, and molecular dynamics simulations of a model AFM tip on graphene, mimicking both vacuum and humid air environmental conditions. It was found that only simulations with water at the tip-graphene contact reproduced the experimentally observed hysteresis. The mechanisms underlying this friction hysteresis were then investigated in the simulations by varying the graphene-water interaction strength. The size of the water-graphene interface exhibited hysteresis trends consistent with the friction, while measures of other previously proposed mechanisms, such as out-of-plane deformation of the graphene film and irreversible reorganization of the water molecules at the shearing interface, were less correlated to the friction hysteresis. The relationship between the size of the sliding interface and friction observed in the simulations was explained in terms of the varying contact angles in front of and behind the sliding tip, which were larger during loading than unloading. PMID:27110836

  4. Cumulative growth of minor hysteresis loops in the Kolmogorov model

    SciTech Connect

    Meilikhov, E. Z. Farzetdinova, R. M.

    2013-01-15

    The phenomenon of nonrepeatability of successive remagnetization cycles in Co/M (M = Pt, Pd, Au) multilayer film structures is explained in the framework of the Kolmogorov crystallization model. It is shown that this model of phase transitions can be adapted so as to adequately describe the process of magnetic relaxation in the indicated systems with 'memory.' For this purpose, it is necessary to introduce some additional elements into the model, in particular, (i) to take into account the fact that every cycle starts from a state 'inherited' from the preceding cycle and (ii) to assume that the rate of growth of a new magnetic phase depends on the cycle number. This modified model provides a quite satisfactory qualitative and quantitative description of all features of successive magnetic relaxation cycles in the system under consideration, including the surprising phenomenon of cumulative growth of minor hysteresis loops.

  5. Computer Calculations of Eddy-Current Power Loss in Rotating Titanium Wheels and Rims in Localized Axial Magnetic Fields

    SciTech Connect

    Mayhall, D J; Stein, W; Gronberg, J B

    2006-05-15

    We have performed preliminary computer-based, transient, magnetostatic calculations of the eddy-current power loss in rotating titanium-alloy and aluminum wheels and wheel rims in the predominantly axially-directed, steady magnetic fields of two small, solenoidal coils. These calculations have been undertaken to assess the eddy-current power loss in various possible International Linear Collider (ILC) positron target wheels. They have also been done to validate the simulation code module against known results published in the literature. The commercially available software package used in these calculations is the Maxwell 3D, Version 10, Transient Module from the Ansoft Corporation.

  6. Analysis and comparison for rotor eddy current losses of permanent magnet synchronous generator according to dc and ac load conditions

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Kim, Hyun-Kyu; Choi, Jang-Young; Ko, Kyoung-Jin

    2009-04-01

    This paper presents an analytical procedure for the calculation of the eddy current losses of permanent magnet synchronous generator (PMSG). The dc and ac loading effects on the eddy current is examined through the suggested analytical procedure that considers the radial and tangential flux density waveform through a phase current harmonic analysis. The corresponding test results are also presented to quantify and compare those loading effects on the eddy current. The results verified the suggested analytical procedures and show that the rotor eddy current losses for PMSG with the dc loads turned out to be more significant than those with the ac loads.

  7. Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma

    NASA Astrophysics Data System (ADS)

    Kakati, H.; M. Borah, S.

    2015-12-01

    In order to make sufficient use of reactive cylindrical magnetron plasma for depositing compound thin films, it is necessary to characterize the hysteresis behavior of the discharge. Cylindrical magnetron plasmas with different targets namely titanium and aluminium are studied in an argon/oxygen and an argon/nitrogen gas environment respectively. The aluminium and titanium emission lines are observed at different flows of reactive gases. The emission intensity is found to decrease with the increase of the reactive gas flow rate. The hysteresis behavior of reactive cylindrical magnetron plasma is studied by determining the variation of discharge voltage with increasing and then reducing the flow rate of reactive gas, while keeping the discharge current constant at 100 mA. Distinct hysteresis is found to be formed for the aluminium target and reactive gas oxygen. For aluminium/nitrogen, titanium/oxygen and titanium/nitrogen, there is also an indication of the formation of hysteresis; however, the characteristics of variation from metallic to reactive mode are different in different cases. The hysteresis behaviors are different for aluminium and titanium targets with the oxygen and nitrogen reactive gases, signifying the difference in reactivity between them. The effects of the argon flow rate and magnetic field on the hysteresis are studied and explained. Project supported by the Department of Science and Technology, Government of India and Council of Scientific and Industrial Research, India.

  8. Efficient hysteresis loop simulations of nanoparticle assemblies beyond the uniaxial anisotropy

    NASA Astrophysics Data System (ADS)

    Tamion, Alexandre; Bonet, Edgar; Tournus, Florent; Raufast, Cécile; Hillion, Arnaud; Gaier, Oksana; Dupuis, Véronique

    2012-04-01

    We propose a modified Stoner-Wohlfarth model combined with the geometrical approach of the coherent rotation of magnetization for simulating the hysteresis loops of an assembly of magnetic nanoparticles. The temperature and the size distribution are taken into account. This combined model enables the computation of hysteresis loops at low temperatures for assemblies of particles having an arbitrary type of anisotropy. The applicability of this model for fitting experimental data is discussed and results are compared to the zero-field-cooled and field-cooled fits. As an application, the hysteresis loops measured on Co clusters embedded in carbon and germanium matrices are fitted revealing unambiguously the presence of a biaxial anisotropy.

  9. Measurement of dynamic magnetization induced by a pulsed field: Proposal for a new rock magnetism method

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2015-02-01

    This study proposes a new method for measuring transient magnetization of natural samples induced by a pulsed field with duration of 11 ms using a pulse magnetizer. An experimental system was constructed, consisting of a pair of differential sensing coils connected with a high-speed digital oscilloscope for data acquisition. The data were transferred to a computer to obtain an initial magnetization curve and a descending branch of a hysteresis loop in a rapidly changing positive field. This system was tested with synthetic samples (permalloy ribbon, aluminum plate, and nickel powder) as well as two volcanic rock samples. Results from the synthetic samples showed considerable differences from those measured by a quasi-static method using a vibrating sample magnetometer (VSM). These differences were principally due to the time-dependent magnetic properties or to electromagnetic effects, such as magnetic viscosity, eddy current loss, or magnetic relaxation. Results from the natural samples showed that the transient magnetization-field curves were largely comparable to the corresponding portions of the hysteresis loops. However, the relative magnetization (scaled to the saturation magnetization) at the end of a pulse was greater than that measured by a VSM. This discrepancy, together with the occurrence of rapid exponential decay after a pulse, indicates magnetic relaxations that could be interpreted in terms of domain wall displacement. These results suggest that with further developments, the proposed technique can become a useful tool for characterizing magnetic particles contained in a variety of natural materials.

  10. A Preisach-Based Nonequilibrium Methodology for Simulating Performance of Hysteretic Magnetic Refrigeration Cycles

    NASA Astrophysics Data System (ADS)

    Brown, Timothy D.; Bruno, Nickolaus M.; Chen, Jing-Han; Karaman, Ibrahim; Ross, Joseph H.; Shamberger, Patrick J.

    2015-09-01

    In giant magnetocaloric effect (GMCE) materials a large entropy change couples to a magnetostructural first-order phase transition, potentially providing a basis for magnetic refrigeration cycles. However, hysteresis loss greatly reduces the availability of refrigeration work in such cycles. Here, we present a methodology combining a Preisach model for rate-independent hysteresis with a thermodynamic analysis of nonequilibrium phase transformations which, for GMCE materials exhibiting hysteresis, allows an evaluation of refrigeration work and efficiency terms for an arbitrary cycle. Using simplified but physically meaningful descriptors for the magnetic and thermal properties of a Ni45Co5Mn36.6In13.4 at.% single-crystal alloy, we relate these work/efficiency terms to fundamental material properties, demonstrating the method's use as a materials design tool. Following a simple two-parameter model for the alloy's hysteresis properties, we compute and interpret the effect of each parameter on the cyclic refrigeration work and efficiency terms. We show that hysteresis loss is a critical concern in cycles based on GMCE systems, since the resultant lost work can reduce the refrigeration work to zero; however, we also find that the lost work may be mitigated by modifying other aspects of the transition, such as the width over which the one-way transformation occurs.

  11. New magnetic techniques for inspection and metal-loss assessment of oil pipelines

    NASA Astrophysics Data System (ADS)

    Bruno, A. C.; Schifini, R.; Khüner, G. S.; Barbosa, C. H.; Wikswo, J. P.; Camerini, C. S.

    2001-05-01

    Superconducting quantum interference device (SQUID) magnetometer has been used to detect metal-loss on the outside surface of small diameter pipes covered with thermal insulation at lift-offs up to 40 mm. In addition, an inversion method based on a finite element model was developed to recover of the metal-loss three-dimensional shape from fields obtained with high sensitivity Hall sensors due to metal-loss in both wall surfaces of a large diameter pipe.

  12. Fatigue Hysteresis of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2016-02-01

    When the fiber-reinforced ceramic-matrix composites (CMCs) are first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. Under fatigue loading, the stress-strain hysteresis loops appear as fiber slipping relative to matrix in the interface debonded region upon unloading/reloading. Due to interface wear at room temperature or interface oxidation at elevated temperature, the interface shear stress degredes with increase of the number of applied cycles, leading to the evolution of the shape, location and area of stress-strain hysteresis loops. The evolution characteristics of fatigue hysteresis loss energy in different types of fiber-reinforced CMCs, i.e., unidirectional, cross-ply, 2D and 2.5D woven, have been investigated. The relationships between the fatigue hysteresis loss energy, stress-strain hysteresis loops, interface frictional slip, interface shear stress and interface radial thermal residual stress, matrix stochastic cracking and fatigue peak stress of fiber-reinforced CMCs have been established.

  13. AC losses and heat removal in three-dimensional winding pack of Samsung superconducting test facility under pulsed magnetic field operation

    NASA Astrophysics Data System (ADS)

    Wang, Qiuliang; Seong Yoon, Cheon; Baang, Sungkeun; Kim, Myungkyu; Park, Hyunki; Kim, Yongjin; Lee, Sangil; Kim, Keeman

    2001-04-01

    The Samsung superconducting test facility (SSTF) will be operated under the highly pulsed field to simulate the operating conditions of KSTAR. An analysis has been performed to study the transient heat removal characteristics and temperature margin for the main, blip and compensating coils in the SSTF. This method is based on a quasi-three-dimensional model, which the thermal coupling of turn-to-turn, pancake-to-pancake and channel-to-channel is taken into account, to simulate the conductor temperature rise and the thermal expansion of supercritical helium due to the high AC losses under the pulsed field. The local AC losses, which include coupling loss, eddy current loss and hysteresis loss in the cable-in-conduit conductor, are estimated. The temperature margin, mass flow rate, distribution of AC losses are studied under the given operating scenario. The mass flow reduction and peak temperature rise depending on the inlet pressure and inlet position of CICC are studied. It is shown that the initial mass flow rate remarkably influences on the peak temperature of superconducting strands. The large mass flow rate can reduce the temperature rise when the inlet of helium is located at the high field region. By contrast, because of heat induced flow to improve the cooling condition of the superconducting strands, the small initial mass flow rate results in the low peak temperature in strands when the inlet of helium is located at the low field region.

  14. Dynamical analysis to the levitated systems of high temperature superconductors with hysteresis

    NASA Astrophysics Data System (ADS)

    Zhou, You-He; Zhao, Xian-Feng

    2006-08-01

    Dynamic behavior and penetration history of shielding currents distribution associated with the hysteresis of magnetic levitation force are investigated to the vertically mechanical oscillation of a permanent magnet (PM) which is magnetically levitated over a YBCO superconductor based on Bean’s critical-state model and Ampére circulation theorem. After the shielding current distribution is analytically derived out from the Maxwell’s equations of the electromagnetic system to each monotonic procedure of the hysteresis, the dynamic differential equation of the levitation is solved to the damped free vibration of the system using the adaptive Runge-Kutta approach of order 4. The obtained results display that the partially wiping-out phenomenon of shielding currents always happens in the interior of the superconductor such that the PM experiences a damped vibration. It is found that the damping generated from the hysteresis in the superconductor is time-changeable in the whole response, and that the frequency of vibration or magnetic stiffness increases with time during the first four periods of the response, as well as that the maximum penetration depth, δp, of the shielding currents at the end of each procedure of the hysteresis decays with time or turning number, Ntur, i.e., δp=e where α0 and α1 are the fitting coefficients.

  15. Magnetic Force Microscopy and Energy Loss Imaging of Superparamagnetic Iron Oxide Nanoparticles”

    PubMed Central

    Torre, Bruno; Bertoni, Giovanni; Fragouli, Despina; Falqui, Andrea; Salerno, Marco; Diaspro, Alberto; Cingolani, Roberto; Athanassiou, Athanassia

    2011-01-01

    We present quantitative, high spatially resolved magnetic force microscopy imaging of samples based on 11 nm diameter superparamagnetic iron oxide nanoparticles in air at room temperature. By a proper combination of the cantilever resonance frequency shift, oscillation amplitude and phase lag we obtain the tip-sample interaction maps in terms of force gradient and energy dissipation. These physical quantities are evaluated in the frame of a tip-particle magnetic interaction model also including the tip oscillation amplitude. Magnetic nanoparticles are characterized both in bare form, after deposition on a flat substrate, and as magnetically assembled fillers in a polymer matrix, in the form of nanowires. The latter approach makes it possible to reveal the magnetic texture in a composite sample independently of the surface topography. PMID:22355717

  16. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Ehrmann, Andrea; Blachowicz, Tomasz

    2014-08-01

    The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  17. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    SciTech Connect

    Ehrmann, Andrea; Blachowicz, Tomasz

    2014-08-15

    The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  18. Influence of plasma loss area on transport of charged particles through a transverse magnetic field

    SciTech Connect

    Das, B. K.; Chakraborty, M.; Bandyopadhyay, M.

    2012-01-15

    Plasma transport in a double plasma device from the source region to the target region through a physical window comprising of electrically grounded magnet channels (filled with permanent magnet bars) for transverse magnetic field (TMF) and a pair of stainless steel (SS) plates is studied and presented in this manuscript. The study has relevance in negative ion source research and development where both TMF created by magnet channels and bias plate are used. The experiment is performed in two stages. In the first stage, a TMF is introduced between the two regions along with the SS plates, and corresponding plasma parameter data in the two regions are recorded by changing the distance between the TMF channels. In the second stage, the TMF is withdrawn from the system, and corresponding data are taken by changing the separation between the SS plates. The experimental results are then compared with a theoretical model. In the presence of TMF, where electrons are magnetized and ions are un-magnetized, it is observed that plasma transport perpendicular to the TMF is dominated by the ambipolar diffusion of ions. In the absence of TMF, plasma is un-magnetized, and plasma transport through the SS window aperture is almost independent of open area of the SS window.

  19. Dynamics and hysteresis in square lattice artificial spin ice

    NASA Astrophysics Data System (ADS)

    Wysin, G. M.; Moura-Melo, W. A.; Mól, L. A. S.; Pereira, A. R.

    2013-04-01

    Dynamical effects under geometrical frustration are considered in a model for artificial spin ice on a square lattice in two dimensions. Each island of the spin ice has a three-component Heisenberg-like dipole moment subject to shape anisotropies that influence its direction. The model has real dynamics, including rotation of the magnetic degrees of freedom, going beyond the Ising-type models of spin ice. The dynamics is studied using a Langevin equation solved via a second-order Heun algorithm. Thermodynamic properties such as the specific heat are presented for different couplings. A peak in specific heat is related to a type of melting-like phase transition present in the model. Hysteresis in an applied magnetic field is calculated for model parameters where the system is able to reach thermodynamic equilibrium.

  20. Geometric hysteresis of alveolated ductal architecture.

    PubMed

    Kojic, M; Butler, J P; Vlastelica, I; Stojanovic, B; Rankovic, V; Tsuda, A

    2011-11-01

    Low Reynolds number airflow in the pulmonary acinus and aerosol particle kinetics therein are significantly conditioned by the nature of the tidal motion of alveolar duct geometry. At least two components of the ductal structure are known to exhibit stress-strain hysteresis: smooth muscle within the alveolar entrance rings, and surfactant at the air-tissue interface. We hypothesize that the geometric hysteresis of the alveolar duct is largely determined by the interaction of the amount of smooth muscle and connective tissue in ductal rings, septal tissue properties, and surface tension-surface area characteristics of surfactant. To test this hypothesis, we have extended the well-known structural model of the alveolar duct by Wilson and Bachofen (1982, "A Model for Mechanical Structure of the Alveolar Duct," J. Appl. Physiol. 52(4), pp. 1064-1070) by adding realistic elastic and hysteretic properties of (1) the alveolar entrance ring, (2) septal tissue, and (3) surfactant. With realistic values for tissue and surface properties, we conclude that: (1) there is a significant, and underappreciated, amount of geometric hysteresis in alveolar ductal architecture; and (2) the contribution of smooth muscle and surfactant to geometric hysteresis are of opposite senses, tending toward cancellation. Quantitatively, the geometric hysteresis found experimentally by Miki et al. (1993, "Geometric Hysteresis in Pulmonary Surface-to-Volume Ratio during Tidal Breathing," J. Appl. Physiol. 75(4), pp. 1630-1636) is consistent with little or no smooth muscle tone in anesthetized rabbits in control conditions, and with substantial smooth muscle activation following methacholine challenge. The observed local hysteretic boundary motion of the acinar duct would result in irreversible acinar flow fields, which might be important mechanistic contributors to aerosol mixing and deposition deep in the lung. PMID:22168737

  1. Hysteresis modeling in graphene field effect transistors

    SciTech Connect

    Winters, M.; Rorsman, N.; Sveinbjörnsson, E. Ö.

    2015-02-21

    Graphene field effect transistors with an Al{sub 2}O{sub 3} gate dielectric are fabricated on H-intercalated bilayer graphene grown on semi-insulating 4H-SiC by chemical vapour deposition. DC measurements of the gate voltage v{sub g} versus the drain current i{sub d} reveal a severe hysteresis of clockwise orientation. A capacitive model is used to derive the relationship between the applied gate voltage and the Fermi energy. The electron transport equations are then used to calculate the drain current for a given applied gate voltage. The hysteresis in measured data is then modeled via a modified Preisach kernel.

  2. Identification techniques for phenomenological models of hysteresis based on the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Andrei, Petru; Oniciuc, Liviu; Stancu, Alexandru; Stoleriu, Laurentiu

    2007-09-01

    An identification technique for the parameters of phenomenological models of hysteresis is presented. The basic idea of our technique is to set up a system of equations for the parameters of the model as a function of known quantities on the major or minor hysteresis loops (e.g. coercive force, susceptibilities at various points, remanence), or other magnetization curves. This system of equations can be either over or underspecified and is solved by using the conjugate gradient method. Numerical results related to the identification of parameters in the Energetic, Jiles-Atherton, and Preisach models are presented.

  3. Disorder-driven first-order phase transformations: A model for hysteresis

    SciTech Connect

    Dahmen, K.; Kartha, S.; Krumhansl, J.A.; Roberts, B.W.; Sethna, J.P.; Shore, J.D. )

    1994-05-15

    Hysteresis loops in some magnetic systems are composed of small avalanches (manifesting themselves as Barkhausen pulses). Hysteresis loops in other first-order phase transitions (including some magnetic systems) often occur via one large avalanche. The transition between these two limiting cases is studied, by varying the disorder in the zero-temperature random-field Ising model. Sweeping the external field through zero at weak disorder, we get one large avalanche with small precursors and aftershocks. At strong disorder, we get a distribution of small avalanches (small Barkhausen effect). At the critical value of disorder where a macroscopic jump in the magnetization first occurs, universal power-law behavior of the magnetization and of the distribution of (Barkhausen) avalanches is found. This transition is studied by mean-field theory, perturbative expansions, and numerical simulation in three dimensions.

  4. A Test of HTS Power Cable in a Sweeping Magnetic Field

    SciTech Connect

    Piekarz, H.; Hays, S.; Blowers, J.; Shiltsev, V.; /Fermilab

    2011-11-29

    Short sample HTS power cable composed of multiple 344C-2G strands and designed to energize a fast-cycling dipole magnet was exposed to a sweeping magnetic field in the (2-20) T/s ramping rate. The B-field orientation toward the HTS strands wide surface was varied from 0{sup 0} to 10{sup 0}, in steps of 1{sup 0}. The test arrangement allowed measurement of the combined hysteresis and eddy current power losses. For the validity of these measurements, the power losses of a short sample cable composed of multiple LTS wire strands were also performed to compare with the known data. The test arrangement of the power cable is described, and the test results are compared with the projections for the eddy and hysteresis power losses using the fine details of the test cable structures.

  5. The loss rates of O{sup +} in the inner magnetosphere caused by both magnetic field line curvature scattering and charge exchange reactions

    SciTech Connect

    Ji, Y.; Shen, C.

    2014-03-15

    With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O{sup +} (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O{sup +} to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O{sup +} are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.

  6. MEASURED AND CALCULATED LOSSES IN A MODEL DIPOLE FOR GSI'S HEAVY ION SYNCHROTRON.

    SciTech Connect

    WANDERER,P.; ANERELLA,M.; GANETIS,G.; GHOSH,A.K.; JOSHI,P.; MARONE,A.; MURATORE,J.; ET AL.

    2003-06-15

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 300T{center_dot}m and 10OT{center_dot}m. Fast ramp times are needed. These can cause problems of ac loss and field distortion in the magnets. For the high energy ring, a lm model dipole magnet has been built, based on the RHIC dipole design. This magnet was tested under boiling liquid helium in a vertical dewar. The quench current showed very little dependence on ramp rate. The ac losses, measured by an electrical method, were fitted to straight line plots of loss/cycle versus ramp rate, thereby separating the eddy current and hysteresis components. These results were compared with calculated values, using parameters which had previously been measured on short samples of cable. Reasonably good agreement between theory and experiment was found, although the measured hysteresis loss is higher than expected in ramps to the highest field levels.

  7. Energy losses in mechanically modified bacterial magnetosomes

    NASA Astrophysics Data System (ADS)

    Molcan, Matus; Gojzewski, Hubert; Skumiel, Andrzej; Dutz, Silvio; Kovac, Jozef; Kubovcikova, Martina; Kopcansky, Peter; Vekas, Ladislau; Timko, Milan

    2016-09-01

    Magnetosomes are isolated from the Magnetospirillum magneticum strain AMB-1 bacteria. Two samples are compared: magnetosomes normally prepared of a ‘standard’ length and magnetosomes of a short length. Chains of magnetosomes are shortened by mechanical modification (cleavage) by means of sonication treatment. They represent a new geometry of magnetosomes that have not been investigated before. The effect of the sonication is analysed using transmission and electron microscopy, atomic force microscopy, and dynamic light scattering. Scanning imaging reveals three types of shortening effect in a sample of shortened magnetosomes, namely, membrane collapse, membrane destruction, and magnetosome cleavage. Dynamic light scattering shows a reduction of hydrodynamic diameter in a sample of shortened magnetosomes. The magnetic properties of magnetosomes are analysed and compared in DC and AC magnetic fields based on the evaluation of quasi-static hysteresis loops (energy losses) and calorimetric hyperthermia measurements (specific absorption rate), respectively. A sample of shortened magnetosomes behaves magnetically in a different manner, showing that both the energy loss and the specific absorption rate are reduced, and thereby indicates a variation in the heating process. The magnetic properties of magnetosomes, together with the new and stable geometry, are balanced, which opens the way for a better adaptation of the magnetic field parameters for particular applications.

  8. Fast-ion losses induced by ELMs and externally applied magnetic perturbations in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Garcia-Munoz, M.; Äkäslompolo, S.; de Marne, P.; Dunne, M. G.; Dux, R.; Evans, T. E.; Ferraro, N. M.; Fietz, S.; Fuchs, C.; Geiger, B.; Herrmann, A.; Hoelzl, M.; Kurzan, B.; Lazanyi, N.; McDermott, R. M.; Nocente, M.; Pace, D. C.; Rodriguez-Ramos, M.; Shinohara, K.; Strumberger, E.; Suttrop, W.; Van Zeeland, M. A.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.

    2013-12-01

    Phase-space time-resolved measurements of fast-ion losses induced by edge localized modes (ELMs) and ELM mitigation coils have been obtained in the ASDEX Upgrade tokamak by means of multiple fast-ion loss detectors (FILDs). Filament-like bursts of fast-ion losses are measured during ELMs by several FILDs at different toroidal and poloidal positions. Externally applied magnetic perturbations (MPs) have little effect on plasma profiles, including fast-ions, in high collisionality plasmas with mitigated ELMs. A strong impact on plasma density, rotation and fast-ions is observed, however, in low density/collisionality and q95 plasmas with externally applied MPs. During the mitigation/suppression of type-I ELMs by externally applied MPs, the large fast-ion bursts observed during ELMs are replaced by a steady loss of fast-ions with a broad-band frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection (NBI) prompt loss signal without MPs. Multiple FILD measurements at different positions, indicate that the fast-ion losses due to static 3D fields are localized on certain parts of the first wall rather than being toroidally/poloidally homogeneously distributed. Measured fast-ion losses show a broad energy and pitch-angle range and are typically on banana orbits that explore the entire pedestal/scrape-off-layer (SOL). Infra-red measurements are used to estimate the heat load associated with the MP-induced fast-ion losses. The heat load on the FILD detector head and surrounding wall can be up to six times higher with MPs than without 3D fields. When 3D fields are applied and density pump-out is observed, an enhancement of the fast-ion content in the plasma is typically measured by fast-ion D-alpha (FIDA) spectroscopy. The lower density during the MP phase also leads to a deeper beam deposition with an inward radial displacement of ≈2 cm in the maximum of the beam emission. Orbit simulations are used to test different models for 3D

  9. Transport ac losses of a second-generation HTS tape with a ferromagnetic substrate and conducting stabilizer

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Chen, Du-Xing; Fang, Jin

    2015-12-01

    The current-voltage curve and transport ac loss of a second-generation HTS tape with a ferromagnetic NiW substrate and brass stabilizer are measured. It is found that the ac loss is up to two orders of magnitude larger than what is expected by the power-law E(J) determined by the current-voltage curve and increases with increasing frequency. Modeling results show that the overly large ac loss is contributed by the ac loss in the HTS strip enhanced by the NiW substrate and the magnetic hysteresis loss in the substrate, and the frequency-dependent loss occurs in the brass layer covering the substrate but not in the ferromagnetic substrate itself as assumed previously. The ac loss in the brass layer is associated with transport currents but not eddy currents, and it has some features similar to ordinary eddy-current loss with significant differences.

  10. Influence of Nanocrystalline Ferrite Particles on Properties of Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Mueller, Robert; Habisreuther, Tobias; Hiergeist, Robert; Steinmetz, Hanna; Zeisberger, Matthias; Gawalek, Wolfgang

    Nanocrystalline mainly superparamagnetic ferrite particles ≈ 10 nm are used for the preparation of magnetic fluids. Barium hexaferrite BaFe12-2xTixCoxO19 powders with mean particle sizes < 30 nm show the transition to single domain Stoner-Wohlfarth behaviour. Hysteresis parameters, losses and the initial susceptibility versus temperature were obtained by VSM. Ba-ferrite ferrofluids have been prepared using Isopar M or dodecane as carrier liquid. Small Angle Neutron Scattering curves lead to a bimodal size distribution consisting of single magnetic particles and aggregated magnetic particles. Particle size investigations were done by TEM.

  11. Loss of confinement at the density limit due to the suppression of stabilizing zonal flows by magnetic turbulence

    SciTech Connect

    Kleva, Robert G.; Guzdar, Parvez N.

    2008-08-15

    The character of particle and energy transport in numerical simulations of drift-ballooning turbulence changes dramatically as the density exceeds a critical limit. When the density is not too large, then unstable drift-ballooning fluctuations grow and nonlinearly generate a sheared zonal (flux surface averaged) flow that saturates the turbulence. But when diamagnetic drift effects are small and the density increases beyond a critical limit, then the turbulent density flux increases monotonically in time to large values without saturation. This loss of confinement is caused by the suppression of the stabilizing zonal flow by the magnetic component of the turbulence. A Kelvin-Helmholtz-like shear-flow instability does not play any role in reducing the magnitude of the zonal flow. The magnetic turbulence prevents the zonal flow from growing large enough to become shear-flow unstable.

  12. Managing Hysteresis: Three Cornerstones to Fiscal Stability

    ERIC Educational Resources Information Center

    Weeks, Richard

    2012-01-01

    The effects of the Great Recession of 2007-2009 continue to challenge school business officials (SBOs) and other education leaders as they strive to prepare students for the global workforce. Economists have borrowed a word from chemistry to describe this state of affairs: hysteresis--the lingering effects of the past on the present. Today's SBOs…

  13. Design of hysteresis circuits using differential amplifiers

    NASA Technical Reports Server (NTRS)

    Cooke, W. A.

    1971-01-01

    Design equations for hysteresis circuit are based on the following assumptions: amplifier input impedance is larger than source impedance; amplifier output impedance is less than load impedance; and amplifier switches state when differential input voltage is approximately zero. Circuits are designed to any given specifications.

  14. Circuit increases capability of hysteresis synchronous motor

    NASA Technical Reports Server (NTRS)

    Markowitz, I. N.

    1967-01-01

    Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.

  15. Flexible pivot mount eliminates friction and hysteresis

    NASA Technical Reports Server (NTRS)

    Highman, C. O.

    1970-01-01

    Flexible steel pivot mount, suspended by flat vertical beryllium copper springs, is capable of rotation, free of hysteresis and starting friction. Mount requires no lubrication, is made in varying sizes, and is driven with either dc torque motor or mechanical linkage.

  16. Polymethyl methacrylate (PMMA)-bismuth ferrite (BFO) nanocomposite: low loss and high dielectric constant materials with perceptible magnetic properties.

    PubMed

    Tamboli, Mohaseen S; Palei, Prakash K; Patil, Santosh S; Kulkarni, Milind V; Maldar, Noormahmad N; Kale, Bharat B

    2014-09-21

    Herein, poly(methyl methacrylate)-bismuth ferrite (PMMA-BFO) nanocomposites were successfully prepared by an in situ polymerization method for the first time. Initially, the as prepared bismuth ferrite (BFO) nanoparticles were dispersed in the monomer, (methyl methacrylate) by sonication. Benzoyl peroxide was used to initiate the polymerization reaction in ethyl acetate medium. The nanocomposite films were subjected to X-ray diffraction analysis (XRD), (1)H NMR, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), infrared spectroscopy (IR), dielectric and magnetic characterizations. The dielectric measurement of the nanocomposites was investigated at a frequency range of 10 Hz to 1 MHz. It was found that the nanocomposites not only showed a significantly increased value of the dielectric constant with an increase in the loading percentage of BFO as compared to pure PMMA, but also exhibited low dielectric loss values over a wide range of frequencies. The values of the dielectric constant and dielectric loss of the PMMA-BFO5 (5% BFO loading) sample at 1 kHz frequency was found be ~14 and 0.037. The variation of the ferromagnetic response of the nanocomposite was consistent with the varying volume percentage of the nanoparticles. The remnant magnetization (Mr) and saturation magnetization (Ms) values of the composites were found to be enhanced by increasing the loading percentage of BFO. The value of Ms for PMMA-BFO5 was found to be ~6 emu g(-1). The prima facie observations suggest that the nanocomposite is a potential candidate for application in high dielectric constant capacitors. Significantly, based on its magnetic properties the composite will also be useful for use in hard disk components. PMID:25050918

  17. Multilayered perceptron neural networks to compute energy losses in magnetic cores

    NASA Astrophysics Data System (ADS)

    Kucuk, Ilker

    2006-12-01

    This paper presents a new approach based on multilayered perceptrons (MLPs) to compute the specific energy losses of toroidal wound cores built from 3% SiFe 0.27 mm thick M4, 0.1 and 0.08 mm thin gauge electrical steel strips. The MLP has been trained by a back-propagation and extended delta-bar-delta learning algorithm. The results obtained by using the MLP model were compared with a commonly used conventional method. The comparison has shown that the proposed model improved loss estimation with respect to the conventional method.

  18. Hysteresis modeling of synchronous reluctance motor considering PWM input voltage

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Kim, J. C.; Hyun, D. S.

    2000-01-01

    This paper deals with the hysteresis characteristics analysis in PWM fed synchronous reluctance motor (SynRM) using a coupled finite element method (FEM) and Preisach's modeling, which is presented to analyze the characteristics under the effect of saturation and hysteresis loss. With regard to the PWM characteristics, a vector control inverter is combined with an analysis tool. Also, a moving mesh technique is used with regard to rotation due to velocity. The focus of this paper is the applied method of Preisach modeling for rotating machines and the characteristics analysis of a SynRM using the proposed method of analysis. For the propriety of proposed method of analysis, TMS320C31 DSP-installed experimental devices are used. And then, computer simulation and experimental result for the i- λ loci, speed, current response, show the propriety of the proposed method. The characteristic analysis is performed in relation to the maximum efficiency condition for a SynRM in simulation and experiment.

  19. Loss of bone calcium in exposure to 50 Hz magnetic fields.

    PubMed

    Hanafy, Enas; Elhafez, Salam; Aly, Fadel; Elazhary, Mohamed

    2008-01-01

    This study investigates the effect of whole body exposure to magnetic fields on the calcium level of blood and bone in a trial to avoid the liability of osteoporosis, fractures, and delayed union of fractures after exposure to magnetic fields present everywhere in the environment. The procedures of the study included analysis for calcium level in both bone and blood. The procedures were performed on 50 Guinea pigs equally divided into 5 groups. Groups A, B, C, and D were exposed to 50 Hz, 0.2 mT magnetic field for 30 d. Group E animals were the control. Group A was sacrificed immediately after exposure; Group B was left away from the field for 15 d for spontaneous repair; Group C received the drug Centrum dissolved in drinking water for 15 d after exposure to the magnetic field; and Group D received centrum in drinking water during the period of exposure (30 d). After sacrificing all animals, the calcium level in both bone and blood was evaluated. Values of blood analysis revealed significant increase in the blood calcium level in exposed animals compared with the control group (P < 0.002) with excess in Group A. This indicated that the calcium left the bone to the blood. Values of the bone analysis revealed significant decrease in bone calcium concentration level in Group A compared with the control group and improvement in the bone condition in Groups C and D, indicating the role of trace element after the exposure period as a compensatory agent of magnetic field damage and its role during the exposure period as a radio-protecting agent. PMID:19037789

  20. A differential algebraic approach for the modeling of polycrystalline ferromagnetic hysteresis with minor loops and frequency dependence

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2016-07-01

    In the current paper, a nonlinear differential algebraic approach is proposed for the modeling of hysteretic dynamics of polycrystalline ferromagnetic materials. The model is constructed by employing a phenomenological theory to the magnetization orientation switching. For the modeling of hysteresis in polycrystalline ferromagnetic materials, the single crystal model is applied to each magnetic domain along its own principal axis. The overall dynamics of the polycrystalline materials is obtained by taking a weighted combination of the dynamics of all magnetic domains. The weight function for the combination is taken as the distribution function of the principal axes. Numerical simulations are performed and comparisons with its experimental counterparts are presented. The hysteretic dynamics caused by orientation switching processes is accurately captured by the proposed model. Minor hysteresis loops associated with partial-amplitude loadings are also captured. Rate dependence of the hysteresis loops are inherently incorporated into the model due to its differential nature.

  1. Ultracold magnetically tunable interactions without radiative-charge-transfer losses between Ca+, Sr+, Ba+, and Yb+ ions and Cr atoms

    NASA Astrophysics Data System (ADS)

    Tomza, Michał

    2015-12-01

    The Ca+, Sr+, Ba+, and Yb+ ions immersed in an ultracold gas of the Cr atoms are proposed as experimentally feasible heteronuclear systems in which ion-atom interactions at ultralow temperatures can be controlled with magnetically tunable Feshbach resonances without charge transfer and radiative losses. Ab initio techniques are applied to investigate electronic-ground-state properties of the (CaCr)+, (SrCr)+, (BaCr)+, and (YbCr)+ molecular ions. The potential energy curves, permanent electric dipole moments, and static electric dipole polarizabilities are computed. The spin-restricted open-shell coupled-cluster method restricted to single, double, and noniterative triple excitations and the multireference configuration-interaction method restricted to single and double excitations are employed. The scalar relativistic effects are included within the small-core energy-consistent pseudopotentials. The leading long-range induction and dispersion interaction coefficients are also reported. Finally, magnetic Feshbach resonances between the Ca+, Sr+, Ba+, and Yb+ ions interacting with the Cr atoms are analyzed. The present proposal opens the way towards robust quantum simulations and computations with ultracold ion-atom systems free of radiative charge-transfer losses.

  2. Torque meter aids study of hysteresis motor rings

    NASA Technical Reports Server (NTRS)

    Cole, M.

    1967-01-01

    Torque meter, simulating hysteresis motor operation, allows rotor ring performance characteristics to be analyzed. The meter determines hysteresis motor torque and actual stresses of the ring due to its mechanical situation and rotation, aids in the study of asymmetries or defects in motor rings, and measures rotational hysteresis.

  3. Analytical core loss calculations for magnetic materials used in high frequency high power converter applications. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Triner, J. E.

    1979-01-01

    The basic magnetic properties under various operating conditions encountered in the state-of-the-art DC-AC/DC converters are examined. Using a novel core excitation circuit, the basic B-H and loss characteristics of various core materials may be observed as a function of circuit configuration, frequency of operation, input voltage, and pulse-width modulation conditions. From this empirical data, a mathematical loss characteristics equation is developed to analytically predict the specific core loss of several magnetic materials under various waveform excitation conditions.

  4. Unmixing hysteresis loops of the late Miocene–early Pleistocene loess-red clay sequence

    PubMed Central

    Zhang, Rui; Necula, Cristian; Heslop, David; Nie, Junsheng

    2016-01-01

    Magnetic paleoclimatic records often represent mixed environmental signals. Unmixing these signals may improve our understanding of the paleoenvironmental information contained within these records, but such a task is challenging. Here we report an example of numerical unmixing of magnetic hysteresis data obtained from Chinese loess and red clay sequences. We find that the mixed magnetic assemblages of the loess and red clay sediments both contain a component characterized by a narrow hysteresis loop, the abundance of which is positively correlated with magnetic susceptibility. This component has grain sizes close to the superparamagnetic/stable single domain boundary and is attributed to pedogenic activity. Furthermore, a wasp-waisted component is found in both the loess and red clay, however, the wasp-waisted form is more constricted in the red clay. We attribute this component to a mixture of detrital ferrimagnetic grains with pedogenic hematite. The abundance of this component decreases from the base to the top of the red clay, a pattern we attribute to decreased hematite production over the Chinese Loess Plateau (CLP) due to long-term climate cooling. This work demonstrates the potential of hysteresis loop unmixing to recover quantitative paleoclimatic information carried by both low and high coercivity magnetic minerals. PMID:27389499

  5. Hysteresis properties of ordinary chondrites and implications for their thermal history

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Suavet, C. R.; Rochette, P.; Weiss, B. P.; Winklhofer, M.; Uehara, M.; Friedrich, J. M.

    2013-12-01

    We present a large dataset of magnetic hysteresis properties of ordinary chondrite falls. We show that hysteresis properties are distinctive of individual meteorites while homogeneous among meteorite subsamples. Except for the most primitive chondrites, these properties can be explained by a mixture of multidomain kamacite and tetrataenite (both in the cloudy zone and as larger grains in plessite and in the rim of zoned taenite). Kamacite dominates the induced magnetism whereas tetrataenite dominates the remanent magnetism, in agreement with previous microscopic magnetic observations. Type 5 and 6 chondrites have higher tetrataenite content than type 4 chondrites, suggesting they have lower cooling rates at least in the 650-450 °C interval, consistent with an onion-shell model. In equilibrated chondrites, shock-related transient heating events above ~500 °C result in the disordering of tetrataenite and associated drastic change in magnetic properties. As a good indicator of the amount of tetrataenite, hysteresis properties are a very sensitive proxy of the thermal history of ordinary chondrites, revealing low cooling rates during thermal metamorphism, and high cooling rates following shock reheating or excavation after thermal metamorphism.

  6. Unmixing hysteresis loops of the late Miocene-early Pleistocene loess-red clay sequence.

    PubMed

    Zhang, Rui; Necula, Cristian; Heslop, David; Nie, Junsheng

    2016-01-01

    Magnetic paleoclimatic records often represent mixed environmental signals. Unmixing these signals may improve our understanding of the paleoenvironmental information contained within these records, but such a task is challenging. Here we report an example of numerical unmixing of magnetic hysteresis data obtained from Chinese loess and red clay sequences. We find that the mixed magnetic assemblages of the loess and red clay sediments both contain a component characterized by a narrow hysteresis loop, the abundance of which is positively correlated with magnetic susceptibility. This component has grain sizes close to the superparamagnetic/stable single domain boundary and is attributed to pedogenic activity. Furthermore, a wasp-waisted component is found in both the loess and red clay, however, the wasp-waisted form is more constricted in the red clay. We attribute this component to a mixture of detrital ferrimagnetic grains with pedogenic hematite. The abundance of this component decreases from the base to the top of the red clay, a pattern we attribute to decreased hematite production over the Chinese Loess Plateau (CLP) due to long-term climate cooling. This work demonstrates the potential of hysteresis loop unmixing to recover quantitative paleoclimatic information carried by both low and high coercivity magnetic minerals. PMID:27389499

  7. Unmixing hysteresis loops of the late Miocene–early Pleistocene loess-red clay sequence

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Necula, Cristian; Heslop, David; Nie, Junsheng

    2016-07-01

    Magnetic paleoclimatic records often represent mixed environmental signals. Unmixing these signals may improve our understanding of the paleoenvironmental information contained within these records, but such a task is challenging. Here we report an example of numerical unmixing of magnetic hysteresis data obtained from Chinese loess and red clay sequences. We find that the mixed magnetic assemblages of the loess and red clay sediments both contain a component characterized by a narrow hysteresis loop, the abundance of which is positively correlated with magnetic susceptibility. This component has grain sizes close to the superparamagnetic/stable single domain boundary and is attributed to pedogenic activity. Furthermore, a wasp-waisted component is found in both the loess and red clay, however, the wasp-waisted form is more constricted in the red clay. We attribute this component to a mixture of detrital ferrimagnetic grains with pedogenic hematite. The abundance of this component decreases from the base to the top of the red clay, a pattern we attribute to decreased hematite production over the Chinese Loess Plateau (CLP) due to long-term climate cooling. This work demonstrates the potential of hysteresis loop unmixing to recover quantitative paleoclimatic information carried by both low and high coercivity magnetic minerals.

  8. Loss of spin entanglement for accelerated electrons in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Doukas, Jason; Hollenberg, Lloyd C. L.

    2009-05-01

    Using an open quantum system we calculate the time dependence of the concurrence between two maximally entangled electron spins with one accelerated uniformly in the presence of constant electric and magnetic fields, and the other at rest and isolated from fields. We find at high Rindler temperature that the proper time for the entanglement to be extinguished is proportional to the inverse of the acceleration cubed.

  9. Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide.

    PubMed

    Guan, Xiaowei; Chen, Pengxin; Chen, Sitao; Xu, Peipeng; Shi, Yaocheng; Dai, Daoxin

    2014-08-01

    An ultracompact and low-loss TM-pass polarizer on silicon is proposed and demonstrated experimentally with a subwavelength-grating (SWG) waveguide. The SWG waveguide is designed to support Bloch mode for TM polarization so that the incident TM-polarized light goes through the SWG waveguide with very low excess loss. On the other hand, for TE polarization, the SWG waveguide works as a Bragg reflector, and consequently the incident TE-polarized light is reflected. For a fabricated ∼9  μm long polarizer (with the period number N=20), the measured extinction ratio is ∼27  dB and the excess loss is ∼0.5  dB at the central wavelength 1550 nm. The bandwidth to achieve an extinction ratio of 20 dB is about 60 nm (from 1520 to 1580 nm). When increasing the period number to N=40, the measured extinction ratio is up to 40 dB (which is not as high as the expected theoretical value 65 dB due to the limit of the measurement system). PMID:25078216

  10. Analysis on operational power and eddy current losses for applying coreless double-sided permanent magnet synchronous motor/generator to high-power flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Park, Ji-Hoon; You, Dae-Joon; Choi, Sang-Ho

    2009-04-01

    This paper deals with analytical approach of operational power defined as load power and rotor loss represented as eddy current loss for applying a permanent magnet (PM) synchronous motor/generator to the high-power flywheel energy storage system. The used model is composed of a double-sided Halbach magnetized PM rotor and coreless three-phase winding stator. For one such motor/generator structure, we provide the magnetic field and eddy current with space and time harmonics via magnetic vector potential in two-dimensional (2D) polar coordinate system. From these, the operational power is estimated by backelectromotive force according to the PM rotor speed, and the rotor loss is also calculated from Poynting theorem.

  11. Asymmetric Hysteresis for Probing Dzyaloshinskii-Moriya Interaction.

    PubMed

    Han, Dong-Soo; Kim, Nam-Hui; Kim, June-Seo; Yin, Yuxiang; Koo, Jung-Woo; Cho, Jaehun; Lee, Sukmock; Kläui, Mathias; Swagten, Henk J M; Koopmans, Bert; You, Chun-Yeol

    2016-07-13

    The interfacial Dzyaloshinskii-Moriya interaction (DMI) is intimately related to the prospect of superior domain-wall dynamics and the formation of magnetic skyrmions. Although some experimental efforts have been recently proposed to quantify these interactions and the underlying physics, it is still far from trivial to address the interfacial DMI. Inspired by the reported tilt of the magnetization of the side edge of a thin film structure, we here present a quasi-static, straightforward measurement tool. By using laterally asymmetric triangular-shaped microstructures, it is demonstrated that interfacial DMI combined with an in-plane magnetic field yields a unique and significant shift in magnetic hysteresis. By systematic variation of the shape of the triangular objects combined with a droplet model for domain nucleation, a robust value for the strength and sign of interfacial DMI is obtained. This method gives immediate and quantitative access to DMI, enabling a much faster exploration of new DMI systems for future nanotechnology. PMID:27348607

  12. Estimate Interface Shear Stress of Woven Ceramic Matrix Composites from Hysteresis Loops

    NASA Astrophysics Data System (ADS)

    Li, Longbiao; Song, Yingdong

    2013-12-01

    An approach to estimate the fiber/matrix interface shear stress of woven ceramic matrix composites during fatigue loading has been developed in this paper. Based on the analysis of the microstructure, the woven ceramic matrix composites were divided into four elements of 0o warp yarns, 90o weft yarns, matrix outside of the yarns and the open porosity. When matrix cracking and fiber/matrix interface debonding occur upon first loading to the peak stress, it is assumed that fiber slipping relative to matrix in the interface debonded region of the 0o warp yarns is the mainly reason for the occurrence of the hysteresis loops of woven ceramic matrix composiets during unloading and subsequent reloading. The unloading interface reverse slip length and reloading interface new slip length are determined by the interface slip mechanisms. The hysteresis loops of three different cases have been derived. The hysteresis loss energy for the strain energy lost per volume during corresponding cycle is formulated in terms of the fiber/matrix interface shear stress. By comparing the experimental hysteresis loss energy with the computational values, the fiber/matrix interface shear stress of woven ceramic matrix composites corresponding to different cycles can then be derived. The theoretical results have been compared with experimental data of two different woven ceramic composites.

  13. Quasi-static magnetic properties and high-frequency energy losses in CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Tykhonenko-Polishchuk, Yu. O.; Kulyk, N. N.; Yelenich, O. V.; Bečyte, V.; Mažeika, K.; Kalita, V. M.; Belous, A. G.; Tovstolytkin, A. I.

    2016-06-01

    Two series of nanosized cobalt spinel ferrites CoFe2O4 are synthesized from metal salts using high-energy ball milling with the addition of NaCl as a growth agent (series CFO-NaCl), and without (CFO Series). The particle properties are characterized using atomic force microscopy, as well as magnetic and calorimetric measurements. It is shown that the average sizes of the nanoparticles were ˜5.6 and ˜10.3 nm for CFO and CFO-NaCl series, respectively. We performed magnetostatic measurements and determined the parameters that are required to analyze the magnetic state and remagnetization processes of the nanoparticles. It is shown that the blocking temperature is ≈160 K for CFO samples and ≈300 K for the CFO-NaCl series. It was concluded that at 293 K the CFO series particles exhibit a superparamagnetic state, whereas the CFO-NaCl series are in the blocked state. The specific loss power that is scattered by the synthesized nanoparticle ensembles placed in an alternating magnetic field, is measured experimentally and theoretically assessed. The nature of the processes that determine the thermal characteristics of the nanoparticles is analyzed.

  14. Microstructure and magnetic properties of Fe-Co alloys

    NASA Astrophysics Data System (ADS)

    Fingers, R. T.; Kozlowski, G.

    1997-04-01

    Fe-Co soft magnetic alloys exhibit high magnetic saturation, high yield strength, and moderate core loss. Use of such materials in cyclic high temperature high stress environments, such as generators and magnetic bearings, gives impetus to determining material properties. In particular, Hiperco® Alloy 50HS, provided by Carpenter Technology Corporation, has been a subject of our study. In order to fully understand the overall behavior of the alloy, both mechanical and magnetic properties must be investigated. Magnetic performance is a function of grain size, which varies with the annealing process. Fe-Co samples have been treated by various annealing recipes ranging in temperature from 1300 to 1350 °F and magnetic saturation along with hysteresis loop measurements made using a vibrating sample magnetometer. An etching and sample preparation process was developed and microstructural analyses were performed. The correlation between composition, heat treatment, microstructure, and magnetic properties of these samples is discussed.

  15. Wetting Hysteresis at the Molecular Scale

    NASA Technical Reports Server (NTRS)

    Jin, Wei; Koplik, Joel; Banavar, Jayanth R.

    1996-01-01

    The motion of a fluid-fluid-solid contact line on a rough surface is well known to display hysteresis in the contact angle vs. velocity relationship. In order to understand the phenomenon at a fundamental microscopic level, we have conducted molecular dynamics computer simulations of a Wilhelmy plate experiment in which a solid surface is dipped into a liquid bath, and the force-velocity characteristics are measured. We directly observe a systematic variation of force and contact angle with velocity, which is single-valued for the case of an atomically smooth solid surface. In the microscopically rough case, however, we find (as intuitively expected) an open hysteresis loop. Further characterization of the interface dynamics is in progress.

  16. Hysteresis modeling of the grain-oriented laminations with inclusion of crystalline and textured structure in a modified Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Baghel, A. P. S.; Kulkarni, S. V.

    2013-01-01

    Grain-oriented (GO) laminations owing to their crystalline and textured structure exhibit strong anisotropy in magnetic characteristics. GO laminations generally display highly steep, gooseneck, and narrow waist rolling direction (RD) hysteresis loops and complex-shaped transverse direction (TD) curves. The original Jiles-Atherton (JA) model needs improvisation while modeling such characteristics. The paper proposes a modified JA model for the hysteresis modeling of GO laminations with consideration of their crystalline and textured structure. The model is based on single crystal approximation of polycrystalline materials and modifies the anhysteretic magnetization on account of anisotropic energy. It takes into account the domain wall motion as well as domain magnetization rotation. The model provides a better prediction of RD hysteresis loops and also shows ability to characterize of TD hysteresis loops with reasonable accuracy. The model preserves simplicity of the original JA model.

  17. Synthesis of Bio-Compatible SPION–based Aqueous Ferrofluids and Evaluation of RadioFrequency Power Loss for Magnetic Hyperthermia

    PubMed Central

    2010-01-01

    Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies. PMID:21076702

  18. Angular Dependence of Transport AC Losses in Superconducting Wire with Position-Dependent Critical Current Density in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Su, Xing-liang; Xiong, Li-ting; Gao, Yuan-wen; Zhou, You-he

    2013-07-01

    Transport AC losses play a very important role in high temperature superconductors (HTSs), which usually carry AC transport current under applied magnetic field in typical application-like conditions. In this paper, we propose the analytical formula for transport AC losses in HTS wire by considering critical current density of both inhomogeneous and anisotropic field dependent. The angular dependence of critical current density is described by effective mass theory, and the HTS wire has inhomogeneous distribution cross-section of critical current density. We calculate the angular dependence of normalized AC losses under different DC applied magnetic fields. The numerical results of this formula agree well with the experiment data and are better than the results of Norris formula. This analytical formula can explain the deviation of experimental transport current losses from the Norris formula and apply to calculate transport AC losses in realistic practical condition.

  19. Hysteresis of thin film IPRTs in the range 100 °C to 600 °C

    NASA Astrophysics Data System (ADS)

    Zvizdić, D.; Šestan, D.

    2013-09-01

    As opposed to SPRTs, the IPRTs succumb to hysteresis when submitted to change of temperature. This uncertainty component, although acknowledged as omnipresent at many other types of sensors (pressure, electrical, magnetic, humidity, etc.) has often been disregarded in their calibration certificates' uncertainty budgets in the past, its determination being costly, time-consuming and not appreciated by customers and manufacturers. In general, hysteresis is a phenomenon that results in a difference in an item's behavior when approached from a different path. Thermal hysteresis results in a difference in resistance at a given temperature based on the thermal history to which the PRTs were exposed. The most prominent factor that contributes to the hysteresis error in an IPRT is a strain within the sensing element caused by the thermal expansion and contraction. The strains that cause hysteresis error are closely related to the strains that cause repeatability error. Therefore, it is typical that PRTs that exhibit small hysteresis also exhibit small repeatability error, and PRTs that exhibit large hysteresis have poor repeatability. Aim of this paper is to provide hysteresis characterization of a batch of IPRTs using the same type of thin-film sensor, encapsulated by same procedure and same company and to estimate to what extent the thermal hysteresis obtained by testing one single thermometer (or few thermometers) can serve as representative of other thermometers of the same type and manufacturer. This investigation should also indicate the range of hysteresis departure between IPRTs of the same type. Hysteresis was determined by cycling IPRTs temperature from 100 °C through intermediate points up to 600 °C and subsequently back to 100 °C. Within that range several typical sub-ranges are investigated: 100 °C to 400 °C, 100 °C to 500 °C, 100 °C to 600 °C, 300 °C to 500 °C and 300 °C to 600 °C . The hysteresis was determined at various temperatures by

  20. Electroosmotic flow hysteresis for dissimilar ionic solutions.

    PubMed

    Lim, An Eng; Lim, Chun Yee; Lam, Yee Cheong

    2015-03-01

    Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species. PMID:25945139

  1. Electroosmotic flow hysteresis for dissimilar ionic solutions

    PubMed Central

    Lim, An Eng; Lam, Yee Cheong

    2015-01-01

    Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species. PMID:25945139

  2. Fetal loss in mice exposed to magnetic fields during early pregnancy

    SciTech Connect

    Svedenstaal, B.M.; Johanson, K.J.

    1995-12-01

    The effects of low-frequency magnetic fields (MFs) on early pregnancy were studied in CBA/S mice. The magnetic field was a 20 kHz, 15 {micro}T sawtooth. Pregnant females were divided into four groups, two control groups and two exposed groups. One group was exposed to MFs continuously from day 1 postconception (pc) until day 5.5 pc, and the other group was exposed continuously until day 7 pc. All animals were sacrificed on day 19 pc, the day before partus, and their uterine contents were analyzed. No significant increase in the resorption (early fetal death) rate was found in the exposed animals compared to the sham controls. In the group exposed during days 1.0--5.5 pc, the body weight and length of the living fetuses were significantly decreased. Except on day 3 pc (progesterone) and day 13 pc (calcium) in the treated groups, there were no significant differences in progesterone and calcium levels in peripheral blood. Implantation occurred on the same day in MF-treated and control animals.

  3. NC-(CF2)4-CNSSN radical containing 1,2,3,5-dithiadiazolyl radical dimer exhibiting triplet excited states at low temperature and thermal hysteresis on melting-solidification: structural, spectroscopic, and magnetic characterization.

    PubMed

    Shuvaev, Konstantin V; Decken, Andreas; Grein, Friedrich; Abedin, Tareque S M; Thompson, Laurence K; Passmore, Jack

    2008-08-14

    A high yield, one-pot synthesis of the 1,2,3,5-dithiadiazolyl radical NC-(CF2)4-CNSSN radical by reduction of the corresponding 1,3,2,4-dithiadiazolium salt is reported. In the solid state, the title compound is dimerized in trans-cofacial fashion with intra-dimeric Sdelta+...N(delta-) interactions of ca. 3.2 angstroms, and the dimeric units are linked by electrostatic -C triple bond N(delta-)...Sdelta+ interactions forming an infinite chain. Magnetic susceptibility measurements performed on the solid state sample indicate a magnetic moment of 1.8 microB per dimer (1.3 microB per monomer) at 300 K and a good fit to the Bleaney-Bowers model in the temperature range 2-300 K with 2J = -1500 +/- 50 cm(-1), g = 2.02(5), rho = 0.90(3)%, and TIP = 1.25(4) x 10(-3) emu mol(-1). The [NC-(CF2)4-CNSSN radical]2 dimer is the second example of a 1,2,3,5-dithiadiazolyl radical dimer with an experimentally detected triplet excited state as probed by solid-state EPR [2J = -1730 +/- 100 cm(-1), |D| = 0.0278(5) cm(-1), |E| = 0.0047(5) cm(-1)]. The value of the singlet-triplet gap has enabled us to estimate the "in situ" dimerization energy of the radical dimer as ca. -10 kJ mol(-1). The diradical character of the dimer was calculated [CASSCF(6,6)/6-31G*] as 35%. The title radical shows magnetic bistability in the temperature range of 305-335 K as probed by the solid-state EPR presumably arising from the presence of a metastable paramagnetic supercooled phase. Bistability is accompanied by thermochromic behavior with a color change from dark green (dimeric solid) to dark brown (paramagnetic liquid). PMID:18648707

  4. The Dependence of Stellar Mass and Angular Momentum Losses on Latitude and the Interaction of Active Region and Dipolar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    2015-11-01

    Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates and that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.

  5. A theoretical study of the hysteresis behaviors of a transverse spin-1/2 Ising nanocube

    NASA Astrophysics Data System (ADS)

    El Hamri, M.; Bouhou, S.; Essaoudi, I.; Ainane, A.; Ahuja, R.

    2016-09-01

    The applied magnetic field dependencies of the surface shell, core and total magnetizations of a transverse spin-1/2 Ising nanocube are investigated within the effective-field theory with correlations, based on the probability distribution technique, for both ferro- and antiferromagnetic exchange interactions. We have found that interfacial coupling has a strong effect on the shape and the number of hysteresis loops and also on the coercive field and remanent magnetization behaviors. Furthermore, when the temperature exceeds a critical one, the coercivities of the core, the surface shell and the system become zero.

  6. Mössbauer spectroscopy, magnetic characteristics, and reflection loss analysis of nickel-strontium substituted cobalt ferrite nanoparticles

    SciTech Connect

    Ghasemi, Ali; Paesano, Andrea; Cerqueira Machado, Carla Fabiana; Shirsath, Sagar E.; Liu, Xiaoxi; Morisako, Akimitsu

    2014-05-07

    In current research work, Co{sub 1-x}Ni{sub x/2}Sr{sub x/2}Fe{sub 2}O{sub 4} (x = 0–1 in a step of 0.2) ferrite nanoparticles were synthesized by a sol-gel method. According to the evolution in the subspectral areas obtained from Mössbauer spectroscopy, it was found that the relaxing iron belongs mostly to the site B, since the Mössbauer fraction of site A does not vary appreciably. With an increase in Ni-Sr substitution contents in cobalt ferrite, the coercivity and saturation of magnetization decrease. Variation of reflection loss versus frequency in microwave X-band demonstrates that the reflection peak shifts to lower frequency by adding substituted cations and the synthesized nanoparticles can be considered for application in electromagnetic wave absorber technology.

  7. Study on classical and excess eddy currents losses of Terfenol-D

    NASA Astrophysics Data System (ADS)

    Talebian, Soheil; Hojjat, Yousef; Ghodsi, Mojtaba; Karafi, Mohammad Reza

    2015-08-01

    In the present paper, classical and excess eddy currents losses of Terfenol-D are studied and effects of magnetic field frequency, peak of magnetic flux density and diameter of Terfenol-D on the eddy currents losses are investigated. To provide reliable data for the purpose of the paper, an experimental laboratory is fabricated and used to obtain major and minor hysteresis loops of Terfenol-D at different frequencies. In theoretical study, initially an analytical model based on uniform distribution of magnetic flux is developed which yields to calculation of classical eddy currents losses. Then, another eddy currents model based on non-uniform distribution of magnetic flux and nonlinear diffusion of electromagnetic fields is presented. The difference between output values of the two models is identified as excess eddy currents losses. Obtained results show that the values of excess losses are generally larger than classical losses and applying just classical model leads to wrong calculation of actual value of eddy currents losses. For the results obtained from two above models, empirical models with respect to the magnetic field frequency and the peak value of magnetic flux density are achieved which can predict the eddy currents losses precisely. To validate the empirical relations, experiments are repeated at a new frequency and values of power losses calculated from analytical equations are compared with the predicted values of the empirical models. The results point towards possibility to use the obtained empirical relations in order to calculate the classical and excess eddy currents losses of Terfenol-D at the frequencies below 200 Hz and different values of magnetic flux density.

  8. Studies of hysteresis in two-dimensional kinetic Ising model using the FORC technique

    NASA Astrophysics Data System (ADS)

    Robb, Daniel; Novotny, Mark; Rikvold, Per Arne

    2004-03-01

    We describe the FORC (first order reversal curve) technique [1] for hysteresis, first developed as an experimental method to better characterize magnetic materials, and present FORC distributions for simulations of a square-lattice kinetic Ising model. To understand the simulation results, we apply a theory of magnetization reversal for the multidroplet (MD) regime [2] for homogeneous nucleation and growth, also called the Kolmogorov-Johnson-Mehl-Avrami regime. The FORC `partial hysteresis' loops exhibit different properties than those of systems with strong disorder [1]. We compare the simulation and the theory for several lattice sizes, frequencies of the external field, and temperatures. [1] C.R. Pike, A.P. Roberts, and K.L. Verosub, J. Appl. Phys. 85, 6660 (1999). [2] S.W. Sides, P.A. Rikvold, and M.A. Novotny, Phys. Rev. E 59, 2710 (1999).

  9. Soft x-ray magneto-optic Kerr rotation and element-specific hysteresis measurement

    SciTech Connect

    Kortright, J.B.; Rice, M.

    1996-03-01

    Soft x-ray magneto-optic Kerr rotation has been measured using a continuously tunable multilayer linear polarizer in the beam reflected form samples in applied magnetic fields. Like magnetic circular dichroism, Kerr rotation in the soft x-ray can be element - specific and much larger than in the visible spectral range when the photon energy is tuned near atomic core resonances. Thus sensitive element-specific hysteresis measurements are possible with this technique. Examples showing large Kerr rotation from an Fe film and element-specific hysteresis loops of the Fe and Cr in an Fe/Cr multilayer demonstrate these new capabilities. Some consequences of the strong anomalous dispersion near the FeL{sub 2,3} edges to the Kerr rotation are discussed.

  10. Analytical modeling of eddy-current losses caused by pulse-width-modulation switching in permanent-magnet brushless direct-current motors

    SciTech Connect

    Deng, F.; Nehl, T.W.

    1998-09-01

    Because of their high efficiency and power density the PM brushless dc motor is a strong candidate for electric and hybrid vehicle propulsion systems. An analytical approach is developed to predict the inverter high frequency pulse width modulation (PWM) switching caused eddy-current losses in a permanent magnet brushless dc motor. The model uses polar coordinates to take curvature effects into account, and is also capable of including the space harmonic effect of the stator magnetic field and the stator lamination effect on the losses. The model was applied to an existing motor design and was verified with the finite element method. Good agreement was achieved between the two approaches. Hence, the model is expected to be very helpful in predicting PWM switching losses in permanent magnet machine design.

  11. Application of linear magnetic loss model of ferrite to induction cavity simulation

    SciTech Connect

    DeFord, J.F.; Kamin, G.

    1990-09-05

    A linear, frequency independent model of the rf properties of unbiased, soft ferrite has been implemented in finite-difference, time-domain, electromagnetic simulation code AMOS for the purposes of studying linac induction cavities. The simple model consists of adding a magnetic conductivity term ({sigma}{sub m}H) to Faraday's Law. The value of {sigma}{sub m} that is appropriate for a given ferrite at a particular frequency is obtained via an rf reflection experiment on a very thin ferrite toroid in a shorted coaxial line. It was found that in the frequency range 100 to 1000 MHz, the required value of {sigma}{sub m} varies only slightly (<10%), and so we approximated it as a frequency independent parameter in AMOS. A description of the experimental setup and the technique used to extract the complex {mu} from the measurements is described. The model has been used to study the impedances of the DARHT induction cavity, and comparisons between these experimental measurements and AMOS calculations is presented. Implementation of a frequency dependent version of this model in AMOS is being pursued, and a discussion of this effort is given.

  12. Significant loss of energetic electrons at the heart of the outer radiation belt during weak magnetic storms

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Lee, D.-Y.; Kim, K.-C.; Shin, D.-K.; Kim, J.-H.; Cho, J.-H.; Park, M.-Y.; Turner, D. L.

    2013-07-01

    For various reasons, the Earth's outer radiation belt often exhibits dramatic and sudden increases or decreases in the observed particle flux. In this paper, we report three dropout events of energetic electrons observed by multiple spacecraft while traveling across the outer radiation belt. The three events were first identified based on observations of a significant dropout in the >2 MeV electron flux at geosynchronous orbit. Subsequently, for each event, we analyzed the energetic electron data obtained near the magnetic equator by THEMIS spacecraft to determine the responses of the entire outer radiation belt. Our analysis is mainly based on the electron fluxes measured at energies of 52 keV, 203 keV, and 719 keV, and on the phase space densities estimated for the first adiabatic invariant μ values of 100 MeV/G, 200 MeV/G, and 300 MeV/G. The main shared feature among the three events is that while, for the lowest energy, sources from the convection and/or particle injections of plasma sheet electrons dominate over losses, the higher energies exhibit a dramatic dropout effect that penetrates deeply into L ~ 4.5 - 5. In terms of the phase space density, a similar dropout effect is clearly seen for the μ values of 200 MeV/G and 300 MeV/G, while the convection effect and/or injections dominates for μ = 100 MeV/G. What is astonishing about this dropout phenomenon is that the three events are all associated with only very weak magnetic storms with a SYM-H minimum of -40 nT or larger. This implies that a significant loss of electrons deep inside the outer radiation belt can occur even during a very weak magnetic storm. Low-altitude observations of electrons by NOAA POES satellites indicate no significant atmospheric precipitation due to strong diffusion. Our simulations with various conditions suggest that radial diffusion effect in combination with the magnetopause shadowing are responsible for the observed dropouts to a large extent for all of the three events

  13. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    NASA Astrophysics Data System (ADS)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean’s critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  14. Determination of energy release zones arising due to current losses in the convolution region of the magnetically insulated transmission lines of the ANGARA-5-1 facility

    SciTech Connect

    Grabovski, E. V.; Gribov, A. N.; Laukhin, Ya. N.; Shishlov, A. O.

    2015-05-15

    Among the factors limiting electromagnetic pulse transmission to the load in high-power electro-physical facilities, current losses in magnetically insulated transmission lines (MITLs) are of significant importance. One of such facilities is ANGARA-5-1—a multimodule facility with an output electric power of up to 6 TW. A fairly complicated configuration of the magnetic field in the convolution region of several MITLs makes it difficult to fix the places of current losses there. In this work, these places were determined by detecting the positions of IR sources in the convolution region of the MITLs of the ANGARA-5-1 facility.

  15. Hysteresis of Current in Noninteracting Atomic Fermi Gases in Optical Ring Potentials

    NASA Astrophysics Data System (ADS)

    Metcalf, Mekena; Chien, Chih-Chun; Lai, Chen-Yen

    Hysteresis is a ubiquitous phenomenon, which can be found in magnets, superfluids, and other many-body systems. Although interactions are present in most systems exhibiting hysteresis, here we show the current of a non-interacting Fermi gas in an optical ring potential produces hysteresis behavior when driven by a time-dependent artificial gauge field and subject to dissipation. Fermions in a ring potential threaded with flux can exhibit a persistent current when the system is in thermal equilibrium, but cold-atoms are clean and dissipation for reaching thermal equilibrium may be introduced by an external, thermal bath. We use the standard relaxation approximation to model the dynamics of cold-atoms driven periodically by an artificial gauge field. A competition of the driven time and the relaxation time leads to hysteresis of the mass current, and work done on the system, as a function of the relaxation time, exhibits similar behavior as Kramers transition rate in chemical reaction and one-dimensional thermal transport.

  16. Untangling perceptual memory: hysteresis and adaptation map into separate cortical networks.

    PubMed

    Schwiedrzik, Caspar M; Ruff, Christian C; Lazar, Andreea; Leitner, Frauke C; Singer, Wolf; Melloni, Lucia

    2014-05-01

    Perception is an active inferential process in which prior knowledge is combined with sensory input, the result of which determines the contents of awareness. Accordingly, previous experience is known to help the brain "decide" what to perceive. However, a critical aspect that has not been addressed is that previous experience can exert 2 opposing effects on perception: An attractive effect, sensitizing the brain to perceive the same again (hysteresis), or a repulsive effect, making it more likely to perceive something else (adaptation). We used functional magnetic resonance imaging and modeling to elucidate how the brain entertains these 2 opposing processes, and what determines the direction of such experience-dependent perceptual effects. We found that although affecting our perception concurrently, hysteresis and adaptation map into distinct cortical networks: a widespread network of higher-order visual and fronto-parietal areas was involved in perceptual stabilization, while adaptation was confined to early visual areas. This areal and hierarchical segregation may explain how the brain maintains the balance between exploiting redundancies and staying sensitive to new information. We provide a Bayesian model that accounts for the coexistence of hysteresis and adaptation by separating their causes into 2 distinct terms: Hysteresis alters the prior, whereas adaptation changes the sensory evidence (the likelihood function). PMID:23236204

  17. A stability-based mechanism for hysteresis in the walk–trot transition in quadruped locomotion

    PubMed Central

    Aoi, Shinya; Katayama, Daiki; Fujiki, Soichiro; Tomita, Nozomi; Funato, Tetsuro; Yamashita, Tsuyoshi; Senda, Kei; Tsuchiya, Kazuo

    2013-01-01

    Quadrupeds vary their gaits in accordance with their locomotion speed. Such gait transitions exhibit hysteresis. However, the underlying mechanism for this hysteresis remains largely unclear. It has been suggested that gaits correspond to attractors in their dynamics and that gait transitions are non-equilibrium phase transitions that are accompanied by a loss in stability. In the present study, we used a robotic platform to investigate the dynamic stability of gaits and to clarify the hysteresis mechanism in the walk–trot transition of quadrupeds. Specifically, we used a quadruped robot as the body mechanical model and an oscillator network for the nervous system model to emulate dynamic locomotion of a quadruped. Experiments using this robot revealed that dynamic interactions among the robot mechanical system, the oscillator network, and the environment generate walk and trot gaits depending on the locomotion speed. In addition, a walk–trot transition that exhibited hysteresis was observed when the locomotion speed was changed. We evaluated the gait changes of the robot by measuring the locomotion of dogs. Furthermore, we investigated the stability structure during the gait transition of the robot by constructing a potential function from the return map of the relative phase of the legs and clarified the physical characteristics inherent to the gait transition in terms of the dynamics. PMID:23389894

  18. Mechano-electric optoisolator transducer with hysteresis

    NASA Astrophysics Data System (ADS)

    Ciuruş, I. M.; Dimian, M.; Graur, A.

    2011-01-01

    This article presents a theoretical and experimental study of designing a mechano-electric optoisolator transducer with hysteresis. Our research is centred upon designing transducers on the basis of optical sensors, as photoelectric conversions eliminate the influence of electromagnetic disturbances. Conversion of the rotation/translation motions into electric signals is performed with the help of a LED-photoresistor Polaroid optocoupler. The driver of the optocoupler's transmitter module is an independent current source. The signal conditioning circuit is a Schmitt trigger circuit. The device is designed to be applied in the field of automation and mechatronics.

  19. Modeling mixed clockwise and counter-clockwise hysteresis in multi-layer materials by using a generalized Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Andrei, Petru; Mehta, Mohit; Dimian, Mihai

    2014-02-01

    A generalized Jiles-Atherton model is proposed to describe mixed clockwise and counter-clockwise hysteresis loops. While it is physically inconsistent for homogeneous magnetic materials, this mixed type of hysteresis is exhibited by several multi-layer and superlattice materials with antiferromagnetic coupling. The modeling approach is based on a newly developed clockwise hysteretic model using the Jiles-Atherton framework and its linear superposition to the classical counter-clockwise version. The resulting technique is implemented in open-access academic software for hysteresis and simulation samples are presented in the paper.

  20. Hysteresis of transient populations in absorbing-state systems

    NASA Astrophysics Data System (ADS)

    Kapitanchuk, Oleksiy L.; Marchenko, Oleksij M.; Teslenko, Victor I.

    2016-06-01

    A nonequilibrium density matrix theory is used in order to explicitly describe the hysteresis interrelation between populations of nonstationary states in an absorbing multi-stage chain system in the one-particle approximation. As an illustrative example, we restrict ourselves to consideration of the 3-stage absorbing case for which we identify three types of the hysteresis; that is, the causal time dependent hysteresis with leaf-like and triangle-like closed loops, the hidden hysteresis with broken-line loops and the true hysteresis with open loops. Furthermore, we observe a common critical threshold for the hysteresis types and ascertain a reciprocal correspondence of this threshold as between the types as well with the experiment.

  1. Scalar and vector hysteresis simulations using HysterSoft

    NASA Astrophysics Data System (ADS)

    Dimian, M.; Andrei, P.

    2015-02-01

    Hysteresis modeling has become an important research area with many applications in science and engineering. In this article we present a unified and robust simulation framework designed to perform scalar and vector hysteresis modeling. The framework is based on HysterSoft© which is a simulation platform that can be interfaced with other libraries and simulation programs to model various aspects of hysteresis. We describe the main features of our simulation framework by focusing on scalar and vector hysteresis modeling, direct and inverse modeling, dynamic hysteresis modeling, first-order reversal-curves analysis, identification of the scalar and vector Preisach distribution function using an experimental first- order reversal-curves, noise passage analysis through hysteretic systems, and thermal relaxation in scalar and vector hysteresis. The simulation modules, the user-defined features, and various parameter identification techniques are also presented.

  2. Magnetic Resonance Imaging of Changes in Abdominal Compartments in Obese Diabetics during a Low-Calorie Weight-Loss Program

    PubMed Central

    Vogt, Lena J.; Steveling, Antje; Meffert, Peter J.; Kromrey, Marie-Luise; Kessler, Rebecca; Hosten, Norbert; Krüger, Janine; Gärtner, Simone; Aghdassi, Ali A.; Mayerle, Julia; Lerch, Markus M.; Kühn, Jens-Peter

    2016-01-01

    Objectives To investigate changes in the fat content of abdominal compartments and muscle area during weight loss using confounder-adjusted chemical-shift-encoded magnetic resonance imaging (MRI) in overweight diabetics. Methods Twenty-nine obese diabetics (10/19 men/women, median age: 59.0 years, median body mass index (BMI): 34.0 kg/m2) prospectively joined a standardized 15-week weight-loss program (six weeks of formula diet exclusively, followed by reintroduction of regular food with gradually increasing energy content over nine weeks) over 15 weeks. All subjects underwent a standardized MRI protocol including a confounder-adjusted chemical-shift-encoded MR sequence with water/fat separation before the program as well at the end of the six weeks of formula diet and at the end of the program at 15 weeks. Fat fractions of abdominal organs and vertebral bone marrow as well as volumes of visceral and subcutaneous fat were determined. Furthermore, muscle area was evaluated using the L4/L5 method. Data were compared using the Wilcoxon signed-rank test for paired samples. Results Median BMI decreased significantly from 34.0 kg/m2 to 29.9 kg/m2 (p < 0.001) at 15 weeks. Liver fat content was normalized (14.2% to 4.1%, p < 0.001) and vertebral bone marrow fat (57.5% to 53.6%, p = 0.018) decreased significantly throughout the program, while fat content of pancreas (9.0%), spleen (0.0%), and psoas muscle (0.0%) did not (p > 0.15). Visceral fat volume (3.2 L to 1.6 L, p < 0.001) and subcutaneous fat diameter (3.0 cm to 2.2 cm, p < 0.001) also decreased significantly. Muscle area declined by 6.8% from 243.9 cm2 to 226.8 cm2. Conclusion MRI allows noninvasive monitoring of changes in abdominal compartments during weight loss. In overweight diabetics, weight loss leads to fat reduction in abdominal compartments, such as visceral fat, as well as liver fat and vertebral bone marrow fat while pancreas fat remains unchanged. PMID:27110719

  3. Application of superconducting coils to the NASA prototype magnetic balance

    NASA Technical Reports Server (NTRS)

    Haldeman, C. W.; Kraemer, R. A.; Phey, S. W.; Alishahi, M. M.; Covert, E. E.

    1981-01-01

    Application of superconducting coils to a general purpose magnetic balance was studied. The most suitable currently available superconducting cable for coils appears to be a bundle of many fine wires which are transposed and are mechanically confined. Sample coils were tested at central fields up to .5 Tesla, slewing rates up to 53 Tesla/ sec and frequencies up to 30 Hz. The ac losses were measured from helium boil-off and were approximately 20% higher than those calculated. Losses were dominated by hysteresis and a model for loss calculation which appears suitable for design purposes is presented along with computer listings. Combinations of two coils were also tested and interaction losses are reported. Two feasible geometries are also presented for prototype magnetic balance using superconductors.

  4. Hysteresis compensation and trajectory preshaping for piezoactuators in scanning applications

    NASA Astrophysics Data System (ADS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich; Qi, Naiming

    2014-01-01

    This paper focuses on the dynamics and control of piezoactuators (PEAs) for high-speed large-range scanning applications. Firstly, the nonlinear hysteresis is modeled by using a modified Maxwell resistive capacitor (MRC) model. Secondly, an inverse-based feedforward controller is proposed for this application with hysteresis compensation. Then, the scanning trajectories are preshaped by treating the hysteresis-compensated PEA as a linear system. Finally, experiments are conducted to verify the effectiveness of the proposed approaches.

  5. Method and apparatus for sub-hysteresis discrimination

    SciTech Connect

    De Geronimo, Gianluigi

    2015-12-29

    Embodiments of comparator circuits are disclosed. A comparator circuit may include a differential input circuit, an output circuit, a positive feedback circuit operably coupled between the differential input circuit and the output circuit, and a hysteresis control circuit operably coupled with the positive feedback circuit. The hysteresis control circuit includes a switching device and a transistor. The comparator circuit provides sub-hysteresis discrimination and high speed discrimination.

  6. Applications of a theory of ferromagnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Hodgdon, M. L.

    The differential equation dB/dt = alpha times the absolute value of dH/dt (f(H) - B) + dH/dt g(H) and a set of restrictions on the material functions f and g yield a theory of rate independent hysteresis for isoperm ferromagnetic materials. A modification based on exchanging the positions of B and H in the differential equation and on allowing for the dependence of the material functions on dH/dt extends the theory to rate dependent, nonisoperm materials. The theory and its extension exhibit all of the important features of ferromagnetic hysteresis, including the existence and stability of minor loops. Both are well suited for use in numerical field solving codes. Examples in which the material functions are simple combinations of analytic functions are presented here for Mn-Zn ferrite, Permalloy, CMD5005, and CoCr thin film. Also presented is a procedure for constructing a two dimensional vector model that yields bell-shaped and M-shaped curves for graphs of the angular variation of the coercive field.

  7. Effects of Hysteresis on Groundwater Recharge From Ephemeral Flows

    NASA Astrophysics Data System (ADS)

    Parissopoulos, G. A.; Wheater, H. S.

    1992-11-01

    The effects of hysteresis on the movement of the saturated and unsaturated soil water phase due to infiltration from ephemeral surface water flows are investigated for different scenarios of flood events in homogeneous and heterogeneous media with the use of a two-dimensional model based on Richards' equation and the dependent domain hysteresis model of Mualem (1984). Hysteresis effects were found in general to be small, but sensitive to water ponding depth, hydraulic contact between surface and groundwater and initial moisture distribution. In all cases tested, hysteresis resulted in higher rise of the toe of the water mound formed beneath the wadi despite a decrease of cumulative infiltration.

  8. Dynamic hysteresis modeling including skin effect using diffusion equation model

    NASA Astrophysics Data System (ADS)

    Hamada, Souad; Louai, Fatima Zohra; Nait-Said, Nasreddine; Benabou, Abdelkader

    2016-07-01

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  9. Hysteresis phenomena of the intelligent driver model for traffic flow

    NASA Astrophysics Data System (ADS)

    Dahui, Wang; Ziqiang, Wei; Ying, Fan

    2007-07-01

    We present hysteresis phenomena of the intelligent driver model for traffic flow in a circular one-lane roadway. We show that the microscopic structure of traffic flow is dependent on its initial state by plotting the fraction of congested vehicles over the density, which shows a typical hysteresis loop, and by investigating the trajectories of vehicles on the velocity-over-headway plane. We find that the trajectories of vehicles on the velocity-over-headway plane, which usually show a hysteresis loop, include multiple loops. We also point out the relations between these hysteresis loops and the congested jams or high-density clusters in traffic flow.

  10. Modeling the stress dependence of Barkhausen phenomena for stress axis linear and noncollinear with applied magnetic field (abstract)

    SciTech Connect

    Sablik, M.J.; Augustyniak, B.; Chmielewski, M.

    1996-04-01

    The almost linear dependence of the maximum Barkhausen noise signal amplitude on stress has made it a tool for nondestructive evaluation of residual stress. Recently, a model has been developed to account for the stress dependence of the Barkhausen noise signal. The model uses the development of Alessandro {ital et} {ital al}. who use coupled Langevin equations to derive an expression for the Barkhausen noise power spectrum. The model joins this expression to the magnetomechanical hysteresis model of Sablik {ital et} {ital al}., obtaining both a hysteretic and stress-dependent result for the magnetic-field-dependent Barkhausen noise envelope and obtaining specifically the almost linear stress dependence of the Barkhausen noise maximum experimentally. In this paper, we extend the model to derive the angular dependence observed by Kwun of the Barkhausen noise amplitude when stress axis is taken at different angles relative to magnetic field. We also apply the model to the experimental observation that in XC10 French steel, there is an apparent almost linear correlation with stress of hysteresis loss and of the integral of the Barkhausen noise signal over applied field {ital H}. Further, the two quantities, Barkhausen noise integral and hysteresis loss, are linearly correlated with each other. The model shows how that behavior is to be expected for the measured steel because of its sharply rising hysteresis curve. {copyright} {ital 1996 American Institute of Physics.}

  11. Experimental comparison of rate-dependent hysteresis models in characterizing and compensating hysteresis of piezoelectric tube actuators

    NASA Astrophysics Data System (ADS)

    Aljanaideh, Omar; Habineza, Didace; Rakotondrabe, Micky; Al Janaideh, Mohammad

    2016-04-01

    An experimental study has been carried out to characterize rate-dependent hysteresis of a piezoelectric tube actuator at different excitation frequencies. The experimental measurements were followed by modeling and compensation of the hysteresis nonlinearities of the piezoelectric tube actuator using both the inverse rate-dependent Prandtl-Ishlinskii model (RDPI) and inverse rate-independent Prandtl-Ishlinskii model (RIPI) coupled with a controller. The comparison of hysteresis modeling and compensation of the actuator with both models is presented.

  12. [Mathematical models of hysteresis]. Progress report No. 4, [January 1, 1991--December 31, 1991

    SciTech Connect

    Mayergoyz, I.D.

    1991-12-31

    The research described in this proposal is currently being supported by the US Department of Energy under the contract ``Mathematical Models of Hysteresis``. Thus, before discussing the proposed research in detail, it is worthwhile to describe and summarize the main results achieved in the course of our work under the above contract. Our ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with ``nonlocal memories``. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. Our research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. Our study has by and large been centered around the following topics: various generalizations and extensions of the classical Preisach model, finding of necessary and sufficient conditions for the representation of actual hysteretic nonlinearities by various Preisach type models, solution of identification problems for these models, numerical implementation and experimental testing of Preisach type models. Although the study of Preisach type models has constituted the main direction of the research, some effort has also been made to establish some interesting connections between these models and such topics as: the critical state model for superconducting hysteresis, the classical Stoner-Wohlfarth model of vector magnetic hysteresis, thermal activation type models for viscosity, magnetostrictive hysteresis and neural networks.

  13. Magnetic properties of iron-based soft magnetic composites with SiO2 coating obtained by reverse microemulsion method

    NASA Astrophysics Data System (ADS)

    Wu, Shen; Sun, Aizhi; Lu, Zhenwen; Cheng, Chuan; Gao, Xuexu

    2015-05-01

    In this work, iron-based soft magnetic composites coated with the amorphous SiO2 layer have been fabricated by utilizing tetraethoxysilane in the reverse microemulsion method, and then the effects of addition amount of SiO2 and annealing temperature on the magnetic properties were investigated. The results show that the surface of iron powders contains a thin amorphous SiO2 insulation layer, which effectively decreases the magnetic loss of synthesized magnets. The magnetic loss of coated samples decreased by 87.8% as compared with that of uncoated samples at 150 kHz. Magnetic measurements show that the sample with 1.25 wt% SiO2 has an acceptable real part and minimum imaginary part of permeability in comparison with other samples. Also, the annealing treatment increased the initial permeability, the maximum permeability and the magnetic induction and decreased the coercivity with increasing temperature in the range 300-600 °C. The results of the loss separation imply that the annealed SMCs have a higher hysteresis loss coefficient (k2) and lower eddy current loss coefficient (k3) as compared with the pure iron compacts after the same heat treatment due to the preservation of the SiO2 layer.

  14. Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, Xiao-Xi; Liu, Li-Mei; Chen, Jun-Nan; Zhang, Fan

    2014-03-01

    The effective-field theory with correlations (EFT) has been used to study the various shapes of the hysteresis loop for a ferromagnetic core of spin-1 and a ferromagnetic shell of spin-3/2 with ferrimagnetic interface coupling on a cubic nanowire. The magnetizations and phase diagrams of the nanowire have been investigated in the previous work (J. Magn. Magn. Mater. 324 (2012) 4034-4042). A number of characteristic behaviors are obtained especially for the triple and multiple hysteresis loop patterns for certain values of the system parameters at low temperature. We also examine the effect of the system parameters on coercivity of the nanowire.

  15. Quantum oscillations and ferromagnetic hysteresis observed in iron filled multiwall carbon nanotubes.

    PubMed

    Barzola-Quiquia, J; Klingner, N; Krüger, J; Molle, A; Esquinazi, P; Leonhardt, A; Martínez, M T

    2012-01-13

    We report on the electrical transport properties of single multiwall carbon nanotubes with and without an iron filling as a function of temperature and magnetic field. For the iron filled nanotubes the magnetoresistance shows a magnetic behavior induced by iron, which can be explained by taking into account a contribution of s-d hybridization. In particular, ferromagnetic-like hysteresis loops were observed up to 50 K for the iron filled multiwall carbon nanotubes. The magnetoresistance shows quantum interference phenomena such as universal conductance fluctuations and weak localization effects. PMID:22155967

  16. Measurements of the transverse resistance and eddy current losses in a cable-in-conduit conductor

    NASA Astrophysics Data System (ADS)

    Keilin, V. E.; Kovalev, I. A.; Kruglov, S. L.; Lelekhov, S. A.; Il'in, A. A.; Naumov, A. V.; Shcherbakov, V. I.; Shutov, K. A.

    2015-11-01

    In the case of plasma current interruption in tokamaks, the conductor of toroidial field (TF) coils experiences the action of a pulsed decreasing magnetic field (PDMF) parallel to the conductor's axis. To estimate the stability of a cable-in-conduit conductor against the PDMF, a new experimental method to study different types of losses is applied. This method exploits a high sensitivity of temperature and gas pressure to input energy in a closed volume. It allows one to measure hysteresis losses with a rather high accuracy (provided that the rate of change of the PDMF is low) and a sum of hysteresis losses and eddy current losses (when the rate of change of the PDMF is high). An experimental setup to measure the transverse (circumferential) resistance and losses has been developed at the National Research Centre Kurchatov Institute. A Russianmade Nb3Sn conductor intended for the TF coils of the International Thermonuclear Experimental Reactor is subjected to a PDMF with different amplitudes and characteristic times. The electromagnetic time constant and the transverse resistivity of the conductor are experimentally determined. The maximum temperature of strands under the action of the PDMF is calculated.

  17. Repetitive transcranial magnetic stimulation improves both hearing function and tinnitus perception in sudden sensorineural hearing loss patients

    PubMed Central

    Zhang, Dai; Ma, Yuewen

    2015-01-01

    The occurrence of sudden sensorineural hearing loss (SSHL) affects not only cochlear activity but also neural activity in the central auditory system. Repetitive transcranial magnetic stimulation (rTMS) above the auditory cortex has been reported to improve auditory processing and to reduce the perception of tinnitus, which results from network dysfunction involving both auditory and non-auditory brain regions. SSHL patients who were refractory to standard corticosteroid therapy (SCT) and hyperbaric oxygen (HBO) therapy received 20 sessions of 1 Hz rTMS to the temporoparietal junction ipsilateral to the symptomatic ear (rTMS group). RTMS therapy administered in addition to SCT and HBO therapy resulted in significantly greater recovery of hearing function and improvement of tinnitus perception compared SCT and HBO therapy without rTMS therapy. Additionally, the single photon emission computed tomography (SPECT) measurements obtained in a subgroup of patients suggested that the rTMS therapy could have alleviated the decrease in regional cerebral brain flow (rCBF) in SSHL patients. RTMS appears to be an effective, practical, and safe treatment strategy for SSHL. PMID:26463446

  18. Repetitive transcranial magnetic stimulation improves both hearing function and tinnitus perception in sudden sensorineural hearing loss patients.

    PubMed

    Zhang, Dai; Ma, Yuewen

    2015-01-01

    The occurrence of sudden sensorineural hearing loss (SSHL) affects not only cochlear activity but also neural activity in the central auditory system. Repetitive transcranial magnetic stimulation (rTMS) above the auditory cortex has been reported to improve auditory processing and to reduce the perception of tinnitus, which results from network dysfunction involving both auditory and non-auditory brain regions. SSHL patients who were refractory to standard corticosteroid therapy (SCT) and hyperbaric oxygen (HBO) therapy received 20 sessions of 1 Hz rTMS to the temporoparietal junction ipsilateral to the symptomatic ear (rTMS group). RTMS therapy administered in addition to SCT and HBO therapy resulted in significantly greater recovery of hearing function and improvement of tinnitus perception compared SCT and HBO therapy without rTMS therapy. Additionally, the single photon emission computed tomography (SPECT) measurements obtained in a subgroup of patients suggested that the rTMS therapy could have alleviated the decrease in regional cerebral brain flow (rCBF) in SSHL patients. RTMS appears to be an effective, practical, and safe treatment strategy for SSHL. PMID:26463446

  19. Thermal hysteresis of permeability and transport properties of Mn substituted Mg Cu Zn ferrites

    NASA Astrophysics Data System (ADS)

    Manjurul Haque, M.; Huq, M.; Hakim, M. A.

    2008-03-01

    Mn substituted Mg-Cu-Zn ferrites of composition Mg0.35Cu0.20Zn0.45O(Fe2-xMnx O3)0.97 have been prepared by the standard double sintering ceramic technique. X-ray diffraction patterns of the samples showed single phase cubic spinel structure without any detectable impurity phases. The lattice constant is found to increase linearly with increase in Mn3+ ion concentration obeying Vegard's law. The initial permeability (μi) of the Mg-Cu-Zn ferrites exhibits thermal hysteresis when the temperature is cycled from above the Curie temperature TC to below. The sharp decrease of μi at T = TC indicates that the samples have high homogeneity according to Globus et al. The Curie temperature TC of the studied ferrite system was determined from the μi-T curves where the Hopkinson type of effect at the TC has been observed with the manifestation of a sharp fall in permeability. The Curie temperature TC is found to increase with increasing Mn content. Dc electrical resistivity increases significantly with the increase in Mn content. The ac resistivity (ρac) and dielectric constant (ɛ') of the samples are found to decrease with increase in frequency, exhibiting normal ferrimagnetic behaviour. Dielectric relaxation peaks were observed for the frequency dependence of dielectric loss tangent curves. ɛ' increases as the temperature increases, which is the normal dielectric behaviour of the magnetic semiconductor ferrite. The observed variation of electrical and dielectric properties are explained on the basis of Fe2+/Fe3+ ionic concentration as well as the electronic hopping frequency between Fe2+ and Fe3+ ions in the present samples.

  20. A Hysteresis Model for Piezoceramic Materials

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.; Ounaies, Zoubeida

    1999-01-01

    This paper addresses the modeling of nonlinear constitutive relations and hysteresis inherent to piezoceramic materials at moderate to high drive levels. Such models are, necessary to realize the, full potential of the materials in high performance control applications, and a necessary prerequisite is the development of techniques which permit control implementation. The approach employed here is based on the qualification of reversible and irreversible domain wall motion in response to applied electric fields. A comparison with experimental data illustrates that because the resulting ODE model is physics-based, it can be employed for both characterization and prediction of polarization levels throughout the range of actuator operation. Finally, the ODE formulation is amenable to inversion which facilitates the development of an inverse compensator for linear control design.

  1. Hysteresis of misaligned hard-soft grains

    NASA Astrophysics Data System (ADS)

    Wan, X. L.; Zhao, G. P.; Zhang, X. F.; Xia, J.; Zhang, X. C.; Morvan, F. J.

    2016-01-01

    The demagnetization process in hard/soft multilayer systems has been investigated systematically within a self-contained micromagnetic model when a deviation angle β between the easy axis and the applied field exists. Hysteresis loops, spin distributions and energy products have been calculated with a finite hard layer thickness th. Both remanence and coercivity of the multilayer system decrease as β increases, leading to a significant decrease of the maximum energy product. A 30° deviation of the easy axis could result in a drop of the maximum energy product by more than 60%, which offers a possible explanation on the large discrepancy between the experimental and theoretical energy products. The effect of the finite hard layer thickness on the demagnetization process is important, which can only be ignored when th is large enough.

  2. Hysteresis in Pressure-Driven DNA Denaturation

    PubMed Central

    Hernández-Lemus, Enrique; Nicasio-Collazo, Luz Adriana; Castañeda-Priego, Ramón

    2012-01-01

    In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like) charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue. PMID:22496765

  3. Circuit measures hysteresis loop areas at 30 Hz

    NASA Technical Reports Server (NTRS)

    Hoffman, C.; Spilo, D.

    1967-01-01

    Analog circuit measures hysteresis loop areas as a function of time during fatigue testing of specimens subjected to sinusoidal tension-compression stresses at a frequency of Hz. When the sinusoidal stress signal is multiplied by the strain signal, the dc signal is proportional to hysteresis loop area.

  4. Angular dependence of hysteresis shift in oblique deposited ferromagnetic/antiferromagnetic coupled bilayers

    NASA Astrophysics Data System (ADS)

    Oliveira, A. B.; Rodriguez-Suarez, R. L.; Michea, S.; Vega, H.; Azevedo, A.; Rezende, S. M.; Aliaga, C.; Denardin, J.

    2014-07-01

    The angular dependence of the hysteresis shift has been investigated in ferromagnetic/antiferromagnetic (NiFe/IrMn) bilayers grown by oblique deposition under the influence of a static magnetic field applied perpendicular to the uniaxial anisotropy direction induced during the growth process. It was found that at low oblique deposition angles, the unidirectional anisotropy field is much greater than the uniaxial anisotropy field and the corresponding anisotropies directions are noncollinear. In these conditions, the angular dependence of the hysteresis loop shift exhibits the well know cosine like shape but demanding a phase shift. Contrary to this, at high oblique deposition angle (70°), the uniaxial anisotropy plays the fundamental role and the anisotropies directions are collinear. In this case, the exchange bias displays a jump phenomenon. The numerical calculations are consistent with the experimental data obtained from magneto-optical Kerr effect and ferromagnetic resonance.

  5. Efficient modeling of vector hysteresis using a novel Hopfield neural network implementation of Stoner–Wohlfarth-like operators

    PubMed Central

    Adly, Amr A.; Abd-El-Hafiz, Salwa K.

    2012-01-01

    Incorporation of hysteresis models in electromagnetic analysis approaches is indispensable to accurate field computation in complex magnetic media. Throughout those computations, vector nature and computational efficiency of such models become especially crucial when sophisticated geometries requiring massive sub-region discretization are involved. Recently, an efficient vector Preisach-type hysteresis model constructed from only two scalar models having orthogonally coupled elementary operators has been proposed. This paper presents a novel Hopfield neural network approach for the implementation of Stoner–Wohlfarth-like operators that could lead to a significant enhancement in the computational efficiency of the aforementioned model. Advantages of this approach stem from the non-rectangular nature of these operators that substantially minimizes the number of operators needed to achieve an accurate vector hysteresis model. Details of the proposed approach, its identification and experimental testing are presented in the paper. PMID:25685446

  6. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor.

    PubMed

    Woyessa, Getinet; Nielsen, Kristian; Stefani, Alessio; Markos, Christos; Bang, Ole

    2016-01-25

    The effect of humidity on annealing of poly (methyl methacrylate) (PMMA) based microstructured polymer optical fiber Bragg gratings (mPOFBGs) and the resulting humidity responsivity are investigated. Typically annealing of PMMA POFs is done in an oven without humidity control around 80°C and therefore at low humidity. We demonstrate that annealing at high humidity and high temperature improves the performances of mPOFBGs in terms of stability and sensitivity to humidity. PMMA POFBGs that are not annealed or annealed at low humidity level will have a low and highly temperature dependent sensitivity and a high hysteresis in the humidity response, in particular when operated at high temperature. PMMA mPOFBGs annealed at high humidity show higher and more linear humidity sensitivity with negligible hysteresis. We also report how annealing at high humidity can blue-shift the FBG wavelength more than 230 nm without loss in the grating strength. PMID:26832503

  7. Damping measurements of laminated composite materials and aluminum using the hysteresis loop method

    NASA Astrophysics Data System (ADS)

    Abramovich, H.; Govich, D.; Grunwald, A.

    2015-10-01

    The damping characteristics of composite laminates made of Hexply 8552 AGP 280-5H (fabric), used for structural elements in aeronautical vehicles, have been investigated in depth using the hysteresis loop method and compared to the results for aluminum specimens (2024 T351). It was found that the loss factor, η, obtained by the hysteresis loop method is linearly dependent only on the applied excitation frequency and is independent of the preloading and the stress amplitudes. For the test specimens used in the present tests series, it was found that the damping of the aluminum specimens is higher than the composite ones for longitudinal direction damping, while for bending vibrations the laminates exhibited higher damping values.

  8. The effect of tensile hysteresis and contact resistance on the performance of strain-resistant elastic-conductive webbing.

    PubMed

    Shyr, Tien-Wei; Shie, Jing-Wen; Jhuang, Yan-Er

    2011-01-01

    To use e-textiles as a strain-resistance sensor they need to be both elastic and conductive. Three kinds of elastic-conductive webbings, including flat, tubular, and belt webbings, made of Lycra fiber and carbon coated polyamide fiber, were used in this study. The strain-resistance properties of the webbings were evaluated in stretch-recovery tests and measured within 30% strain. It was found that tensile hysteresis and contact resistance significantly influence the tensile elasticity and the resistance sensitivity of the webbings. The results showed that the webbing structure definitely contributes to the tensile hysteresis and contact resistance. The smaller the friction is among the yarns in the belt webbing, the smaller the tensile hysteresis loss. However the close proximity of the conductive yarns in flat and tubular webbings results in a lower contact resistance. PMID:22319376

  9. The Effect of Tensile Hysteresis and Contact Resistance on the Performance of Strain-Resistant Elastic-Conductive Webbing

    PubMed Central

    Shyr, Tien-Wei; Shie, Jing-Wen; Jhuang, Yan-Er

    2011-01-01

    To use e-textiles as a strain-resistance sensor they need to be both elastic and conductive. Three kinds of elastic-conductive webbings, including flat, tubular, and belt webbings, made of Lycra fiber and carbon coated polyamide fiber, were used in this study. The strain-resistance properties of the webbings were evaluated in stretch-recovery tests and measured within 30% strain. It was found that tensile hysteresis and contact resistance significantly influence the tensile elasticity and the resistance sensitivity of the webbings. The results showed that the webbing structure definitely contributes to the tensile hysteresis and contact resistance. The smaller the friction is among the yarns in the belt webbing, the smaller the tensile hysteresis loss. However the close proximity of the conductive yarns in flat and tubular webbings results in a lower contact resistance. PMID:22319376

  10. Crystal Orientation and Temperature Effects on the Double Hysteresis Loop Behavior of a PVDF- g-PS Graft Copolymer

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Yang, Lianyun; Guan, Fangxiao

    2013-03-01

    In a recent report, double hysteresis loop behavior is observed in a nanoconfined poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene [P(VDF-TrFE-CTFE)- g-PS] copolymer. It is considered that the PS grafts are capable of reducing the compensation polarization and thus the polarization electric field during the reverse poling process, resulting in the double hysteresis loop behavior. In this study, we further investigated crystal orientation and temperature effects on this novel ferroelectric behavior. It is observed that with increasing the orientation factor, the electric displacement-electric field (D-E) loop changes from linear for non-oriented film to double loop for the well-oriented film. With increasing the temperature, the double hysteresis loop is gradually replaced by the single and open loop, which is attributed to the impurity ion migrational loss in the sample. This work is supported by NSF (DMR-0907580).

  11. Improvement of azimuthal homogeneity in permanent-magnet bearing rotors

    SciTech Connect

    Hull, J.R.; Rossing, T.D.; Mulcahy, T.M.; Uherka, K.L.

    1992-10-23

    Permanent magnets that are levitated and rotating over a bulk high-temperature superconductor (HTS) form the basis of many superconducting bearing designs. Experiments have shown that the rotational-loss``coefficient of friction`` for thrust bearings of this type can be as low as 8 {times} 10{sup {minus}6}. While the loss mechanisms of such bearings are not well understood, the azimuthal homogeneity of the rotating permanent magnet is believed to play an important role in determining the loss. One possible loss mechanism is magnetic hysteresis in the HTS, where the energy loss E per cycle is derived from the critical state model and given by E = K ({Delta}B{sup 3}/J{sub c}) where K is a geometric coefficient, {Delta}B is the variation in magnetic field at the surface of the HTS experienced during a rotation of the levitated magnet, and J{sub c} is the critical current density of the HTS. It is clear that a small decrease in {Delta}B (i.e., decreasing the azimuthal inhomogeneity of the rotating magnetic field) could have profound effects on decreasing E and the rotational coefficient of friction. The role of {Delta}B is also expected to be significant in reducing losses from eddy currents and other mechanisms. Low rotational losses in HTS bearings have been demonstrated only for levitated masses of several grams. For practical bearings, it is important to obtain these low losses with larger levitated masses. There are two main routes toward decreasing {Delta}B. The first is to improve the alignment of the magnetic particles during fabrication and to maintain close tolerances on grinding angles during manufacture of the permanent magnet. The second, the subject of this paper, is to provide correctional procedures after the magnet is fabricated.

  12. Second VAMAS a.c. loss measurement intercomparison: magnetization measurement of low-frequency (hysteretic) a.c. loss in NbTi multifilamentary strands

    NASA Astrophysics Data System (ADS)

    Collings, E. W.; Sumption, M. D.; Itoh, K.; Wada, H.; Tachikawa, K.

    The results of the 2 nd VAMAS measurement intercomparison program on low-frequency (hysteretic) a.c. loss are presented and discussed. Two sets of multifilamentary NbTi strands (Set No. 1: copper matrix, fil. diams 0.5, 1, 3, and 12 μm; Set No. 2: cupronickel matrix, fil. diams 0.4, 0.5, and 1 μm) were subjected to interlaboratory testing. In an initial series of tests, samples in various forms (e.g. wire bundles, coils) were measured mostly by vibrating-sample- and SQUID magnetometry. Considerable scatter was noted especially in the small-filament-diameter a.c.-loss data. In a study of measurement accuracy, a supplementary series of tests compared the results of VSM measurement of a given pair of copper-matrix samples. In the light of all the results, factors contributing to a.c. loss error are discussed and recommendations are made concerning the specification of future a.c.-loss measurement intercomparisons.

  13. Co/Cu multilayers with reduced magnetoresistive hysteresis

    NASA Astrophysics Data System (ADS)

    Kubinski, D. J.; Holloway, H.

    1997-01-01

    Practical applications of Co/Cu multilayers (MLs) require copper thicknesses either ≈ 9 Å or ≈ 20 Å corresponding to the first or second antiferromagnetic maximum (AFM). The first AFM has much smaller magnetoresistive hysteresis than the second, but also has lower sensitivity. We discuss application of these MLs when low hysteresis is required. For the first AFM we may improve the sensitivity while retaining low hysteresis by increasing the cobalt thickness to 30-40 Å. At the second AFM we can reduce the magnetoresistive hysteresis by reducing the cobalt thickness to ˜ 3 Å. A particularly attractive combination of high sensitivity and low hysteresis is obtained at the second AFM by alternating such very thin Co layers with 15 Å thick Co layers.

  14. Coexistence of negative photoconductivity and hysteresis in semiconducting graphene

    NASA Astrophysics Data System (ADS)

    Zhuang, Shendong; Chen, Yan; Xia, Yidong; Tang, Nujiang; Xu, Xiaoyong; Hu, Jingguo; Chen, Zhuo

    2016-04-01

    Solution-processed graphene quantum dots (GQDs) possess a moderate bandgap, which make them a promising candidate for optoelectronics devices. However, negative photoconductivity (NPC) and hysteresis that happen in the photoelectric conversion process could be harmful to performance of the GQDs-based devices. So far, their origins and relations have remained elusive. Here, we investigate experimentally the origins of the NPC and hysteresis in GQDs. By comparing the hysteresis and photoconductance of GQDs under different relative humidity conditions, we are able to demonstrate that NPC and hysteresis coexist in GQDs and both are attributed to the carrier trapping effect of surface adsorbed moisture. We also demonstrate that GQDs could exhibit positive photoconductivity with three-order-of-magnitude reduction of hysteresis after a drying process and a subsequent encapsulation. Considering the pervasive moisture adsorption, our results may pave the way for a commercialization of semiconducting graphene-based and diverse solution-based optoelectronic devices.

  15. On the origin of giant magnetocaloric effect and thermal hysteresis in multifunctional α-FeRh thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Tiejun; Cher, M. K.; Shen, L.; Hu, J. F.; Yuan, Z. M.

    2013-12-01

    We report temperature and field dependent lattice structure, magnetic properties and magnetocaloric effect in epitaxial Fe50Rh50 thin films with (001) texture. Temperature-dependent XRD measurements reveal an irreversible first-order phase transition with 0.66% lattice change upon heating/cooling. First-principle calculation shows a state change of Rh from non-magnetic (0 μB) for antiferromagnetic phase to magnetic (0.93 μB) state for ferromagnetic phase. A jump of magnetization at temperature of 305 K and field more than 5 T indicates a field-assisted magnetic state change of Ru that contributes to the jump. Giant positive magnetic entropy change was confirmed by isothermal magnetization measurements and an in-situ temperature rise of 15 K. The magnetic state change of Rh between antiferromagnetic and ferromagnetic states is the main origin of giant magnetic entropy change and large thermal hysteresis observed.

  16. Assessment of creep damage of ferromagnetic material using magnetic inspection

    SciTech Connect

    Chen, Z.J.; Govindaraju, M.R.; Jiles, D.C.; Biner, S.B. Iowa State Univ., Ames, IA . Center for NDE); Sablik, M.J. )

    1994-11-01

    Results of inspection creep damage by magnetic hysteresis measurements on Cr-Mo steel are presented. It is shown that structure sensitive parameters such as coercivity, remanence and hysteresis loss are sensitive to the creep damage. Previous metallographic studies have shown that creep changes the microstructure of the material by introducing voids, dislocations, and grain boundary cavities. As cavities develop, dislocations and voids move out to the grain boundaries; therefore the total pinning sources for domain wall motion are reduced. This, together with the introduction of a demagnetization field due to the cavities, results in the decrease of both coercivity and remanence. Numerical computations with a modified Jiles-Atherton model are presented which are consistent with the proposed mechanisms.

  17. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    PubMed Central

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-01-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices. PMID:25777540

  18. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-03-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices.

  19. Estimation of high-frequency loss properties through analytical calculation for semiconducting soft magnetic films in a near-field electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Kim, Sang Woo; Lee, Jung Hwan

    2009-04-01

    Gigahertz frequency characteristics were appraised by theoretical calculation based on a modified Landau-Lifshitz-Gilbert equation in order to examine the effect of electromagnetic induction and artificially controlled shape anisotropy in micropatterned magnetic films. Electromagnetic loss behaviors and magnetic fields of semiconducting soft magnetic films on a coplanar transmission line were numerically analyzed using a finite-element based electromagnetic solver. The combined relative permeability due to the electromagnetic induction and demagnetizing effect showed to be highly dependent on electrical resistivity and film thickness. Higher resistivity films at the same thickness of 2 μm showed higher loss in power and lower reflection because of the reduced electromagnetic induction. Thinner magnetic films at the same resistivity of 100 μΩ cm exhibited lower reflection due to the reduced electromagnetic induction and maxima of the reflection shifted to higher frequencies because of demagnetization associated with the structure of magnetic flux path. A severe increment of the radiated electromagnetic noise with decreasing resistivity was caused by the reflection of the radiated noise from the surface of the low resistivity films on the coplanar line in gigahertz frequency bands. A slight increase in the radiation noise with increasing thickness at the same resistivity confirmed to be caused by the increased reflection.

  20. Direct measurements of the magnetic entropy change.

    PubMed

    Nielsen, K K; Bez, H N; von Moos, L; Bjørk, R; Eriksen, D; Bahl, C R H

    2015-10-01

    An experimental device that can accurately measure the magnetic entropy change, Δs, as a function of temperature, T, and magnetic field, H, is presented. The magnetic field source is in this case a set of counter-rotating concentric Halbach-type magnets, which produce a highly homogeneous applied field with constant orientation. The field may be varied from 0 to 1.5 T in a continuous way. The temperature stability of the system is controlled to within ±10 mK and the standard range for the current setup is from 230 K to 330 K. The device is under high vacuum and we show that thermal losses to the ambient are negligible in terms of the calorimetric determination of the magnetic entropy change, while the losses cannot be ignored when correcting for the actual sample temperature. We apply the device to two different types of samples; one is commercial grade Gd, i.e., a pure second-order phase transition material, while the other is Gd5Si2Ge2, a first order magnetic phase transition material. We demonstrate the device's ability to fully capture the thermal hysteresis of the latter sample by following appropriate thermal resetting scheme and magnetic resetting scheme. PMID:26520967