Science.gov

Sample records for magnetic launch assist

  1. Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    Jacobs, W. A.

    2000-01-01

    With the ever-increasing cost of getting to space and the need for safe, reliable, and inexpensive ways to access space, NASA is taking a look at technologies that will get us there. One of these technologies is Magnetic Launch Assist (MagLev). This is the concept of using both magnetic levitation and magnetic propulsion to provide an initial velocity by using electrical power from ground sources. The use of ground based power can significantly reduce operational costs over the consumables necessary to attain the same velocity. The technologies to accomplish this are both old and new. The concept of MagLev has been around for a long time and several MagLev Trains have already been made. Where NASA's MagLev diverges from the traditional train is in the immense power required to propel this vehicle to 600 feet per second in less than 10 seconds. New technologies or the upgrade of existing technologies will need to be investigated in areas of energy storage and power switching. Plus the separation of a very large mass (the space vehicle) and the aerodynamics of that vehicle while on the carrier are also of great concern and require considerable study and testing. NASA's plan is to mature these technologies in the next 10 years to achieve our goal of launching a full sized space vehicle off a MagLev rail.

  2. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  3. Magnetic Launch Assist Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  4. Magnetic Launch Assist Experimental Track

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  5. Magnetic Launch Assist System-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This illustration is an artist's concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  6. Magnetic Launch Assist Vehicle-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  7. Tabletop Experimental Track for Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  8. Magnetic Launch Assist System Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  9. Artist's Concept of Magnetic Launch Assisted Air-Breathing Rocket

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  10. Magnetic Launch Assist: NASA's Vision for the Future

    NASA Technical Reports Server (NTRS)

    Jacobs, William A.; Montenegro, Justino (Technical Monitor)

    2000-01-01

    With the ever-increasing cost of getting to space and the need for safe, reliable, and inexpensive ways to access space. The National Aeronautics and Space Administration (NASA) is taking a look at technologies that will get us there. One of these technologies is Magnetic Launch Assist (MagLev). This is the concept of using both magnetic levitation and magnetic propulsion to provide an initial velocity by using electrical power from ground sources. The use of ground generated electricity can significantly reduce operational costs over the consumables necessary to attain the same velocity. The technologies to accomplish this are both old and new. The concept of MagLev has been around for a long time and several MagLev Trains have been developed. Where NASA's MagLev diverges from the traditional train is in the immense amount of power required to propel this vehicle to 183 meters per second in less than 10 seconds. New technologies or the upgrade of existing technologies will need to be investigated in the areas of energy storage and power switching. An added difficulty is the separation of a very large mass (the space vehicle) from the track and the aerodynamics of that vehicle while on the track. These are of great concern and require considerable study and testing. NASA's plan is to mature these technologies in the next 25 years to achieve our goal of launching a full sized space vehicle for under $300 a kilogram.

  11. Developments in Understanding Stability as Applied to Magnetic Levitated Launch Assist

    NASA Technical Reports Server (NTRS)

    Gering, James A.

    2002-01-01

    Magnetic levitation is a promising technology, with the potential of constituting the first stage of a third generation space transportation system. Today, the Space Shuttle burns on the order of one million pounds of solid rocket propellant to bring the orbiter and external tank to nearly Mach 1 (1,000 kph). Imagine the reductions in launch vehicle weight, complexity and risk if an aerospace vehicle could be accelerated to the same speed utilizing about $1,000 of off-board electrical energy stored in flywheels. After over two decades of development, maglev trains travel on full-scale demonstration tracks in Germany and Japan reaching speeds approaching 500 kph. Encouraging as this may appear, the energy and power required to accelerate a 1 million pound launch vehicle to 1,000 kph would radically redefine the state-of-the-art in electrical energy storage and delivery. Reaching such a goal will require levitation with sufficient stability to withstand an operating environment fundamentally different from that of a high-speed train. Recently NASA let contracts for the construction of three maglev demonstration tracks. This construction and several associated trade studies represent a first-order investigation into the feasibility of maglev launch assist. This report provides a review of these efforts, other government sponsored maglev projects and additional technical literature pertinent to maglev stability. This review brings to light details and dimensions of the maglev stability problem which are not found in previous NASA-sponsored trade studies and which must be addressed in order to realize magnetic levitation as a launch assist technology.

  12. 66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS IN CONSOLE LOCATED CENTRALLY IN SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT IN BACKGROUND: LAUNCH OPERATOR, LAUNCH ANALYST, AND FACILITIES PANELS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. 65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS LOCATED NEAR CENTER OF SLC-3E CONTROL ROOM. NOTE 30-CHANNEL COMMUNICATIONS PANELS. PAYLOAD ENVIRONMENTAL CONTROL AND MONITORING PANELS (LEFT) AND LAUNCH OPERATORS PANEL (RIGHT) IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. The Feasibility of Railgun Horizontal-Launch Assist

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Cox, Robert B.

    2011-01-01

    Railguns typically operate for a few milliseconds, supplying thousands of G's of acceleration to a small projectile, resulting in exceptional speeds. This paper argues through analysis and experiment, that this "standard" technology can be modified to provide 2-3 G's acceleration to a relatively heavy launch vehicle for a time period exceeding several seconds, yielding a launch assist velocity in excess of Mach 1. The key insight here is that an efficient rail gun operates at a speed approximately given by the system resistance divided by the inductance gradient, which can be tailored because recent MOSFET and ultra-capacitor advances allow very low total power supply resistances with high capacitance and augmented railgun architectures provide a scalable inductance gradient. Consequently, it should now be possible to construct a horizontal launch assist system utilizing railgun based architecture.

  15. Aero-Assisted Pre-Stage for Ballistic and Aero-Assisted Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ustinov, Eugene A.

    2012-01-01

    A concept of an aero-assisted pre-stage is proposed, which enables launch of both ballistic and aero-assisted launch vehicles from conventional runways. The pre-stage can be implemented as a delta-wing with a suitable undercarriage, which is mated with the launch vehicle, so that their flight directions are coaligned. The ample wing area of the pre-stage combined with the thrust of the launch vehicle ensure prompt roll-out and take-off of the stack at airspeeds typical for a conventional jet airliner. The launch vehicle is separated from the pre-stage as soon as safe altitude is achieved, and the desired ascent trajectory is reached. Nominally, the pre-stage is non-powered. As an option, to save the propellant of the launch vehicle, the pre-stage may have its own short-burn propulsion system, whereas the propulsion system of the launch vehicle is activated at the separation point. A general non-dimensional analysis of performance of the pre-stage from roll-out to separation is carried out and applications to existing ballistic launch vehicle and hypothetical aero-assisted vehicles (spaceplanes) are considered.

  16. Vehicle Dynamics due to Magnetic Launch Propulsion

    NASA Technical Reports Server (NTRS)

    Galaboff, Zachary J.; Jacobs, William; West, Mark E.; Montenegro, Justino (Technical Monitor)

    2000-01-01

    The field of Magnetic Levitation Lind Propulsion (MagLev) has been around for over 30 years, primarily in high-speed rail service. In recent years, however, NASA has been looking closely at MagLev as a possible first stage propulsion system for spacecraft. This approach creates a variety of new problems that don't currently exist with the present MagLev trains around the world. NASA requires that a spacecraft of approximately 120,000 lbs be accelerated at two times the acceleration of gravity (2g's). This produces a greater demand on power over the normal MagLev trains that accelerate at around 0.1g. To be able to store and distribute up to 3,000 Mega Joules of energy in less than 10 seconds is a technical challenge. Another problem never addressed by the train industry and, peculiar only to NASA, is the control of a lifting body through the acceleration of and separation from the MagLev track. Very little is understood about how a lifting body will react with external forces, Such as wind gusts and ground effects, while being propelled along on soft springs such as magnetic levitators. Much study needs to be done to determine spacecraft control requirements as well as what control mechanisms and aero-surfaces should be placed on the carrier. Once the spacecraft has been propelled down the track another significant event takes place, the separation of the spacecraft from the carrier. The dynamics involved for both the carrier and the spacecraft are complex and coupled. Analysis of the reaction of the carrier after losing, a majority of its mass must be performed to insure control of the carrier is maintained and a safe separation of the spacecraft is achieved. The spacecraft angle of attack required for lift and how it will affect the carriage just prior to separation, along with the impacts of around effect and aerodynamic forces at ground level must be modeled and analyzed to define requirements on the launch vehicle design. Mechanisms, which can withstand the

  17. Single-impulse magnetic focusing of launched cold atoms

    NASA Astrophysics Data System (ADS)

    Pritchard, Matthew J.; Arnold, Aidan S.; Smith, David A.; Hughes, Ifan G.

    2004-11-01

    We have theoretically investigated the focusing of a launched cloud of cold atoms. Time-dependent spatially-varying magnetic fields are used to impart impulses leading to a three-dimensional focus of the launched cloud. We discuss possible coil arrangements for a new focusing regime: isotropic 3D focusing of atoms with a single-impulse magnetic lens. We investigate focusing aberrations and find that, for typical experimental parameters, the widely used assumption of a purely harmonic lens is often inaccurate. The baseball lens offers the best possibility for isotropically focusing a cloud of weak-field-seeking atoms in 3D.

  18. Preliminary Design of a Ramjet for Integration with Ground-Based Launch Assist

    NASA Technical Reports Server (NTRS)

    Sayles, Emily L.

    2008-01-01

    This viewgraph presentation reviews the preliminary design of a ramjet for integration with a ground based launch assist. The reasons for the use of ground-based launch assist and the proposed mechanism for a system are reviewed. The use of a Optimal Trajectory by Implicit Simulation (OTIS), to model the flight and comparison with an actual rocket trajectory is given. The OTIS system is reviewed, The benefits of a launch assist system are analyzed concluding that a launch assist can provide supersonic speeds thus allowing ignition of ramjet without an onboard compressor. This means a further reduction in total launch weight. The Ramjet study is reviewed next. This included a review of the ONX simulations, the verification of the ONX results with the use of Holloman Sled experiment data as derived from the Feasibility of Ramjet Engine Test Capability on The Holloman AFB Sled Track. The conclusion was that the ONX system was not sufficient to meet the needs for the modeling required. The GECAT (Graphical Engine Cycle Analysis Tool) is examined. The results of the GECAT simulations was verified with data from Stataltex and D21 flights. The Next steps are: to create a GECAT Model of a launch assist ramjet, to adjust the geometry to produce the desired thrust, and to survey the ramjet's performance over a range of Mach numbers. The assumptions and requirements of a launch assist ramjet are given, and the acceptable flight regimes are reviewed.

  19. Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott

    2008-01-01

    A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.

  20. Spatially Assisted Schwinger Mechanism and Magnetic Catalysis.

    PubMed

    Copinger, Patrick; Fukushima, Kenji

    2016-08-19

    Using the worldline formalism we compute an effective action for fermions under a temporally modulated electric field and a spatially modulated magnetic field. It is known that the former leads to an enhanced Schwinger mechanism, while we find that the latter can also result in enhanced particle production and even cause a reorganization of the vacuum to acquire a larger dynamical mass in equilibrium which spatially assists the magnetic catalysis. PMID:27588845

  1. Microwave assisted formation of magnetic carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Yerra, Narendranath

    Magnetic epoxy carbon nanostructures from microwave energy assisted- and conventional-pyrolysis processes are compared. Unlike graphitized carbon shell in the conventional heating, different carbon shell morphologies including carbon nanotubes, carbon nanoflakes and amorphous carbon were observed. Crystalline metallic iron and cementite were observed in the magnetic core, different from a single cementite produced in the conventional process. Carbon coated magnetic nanostructures as well as dielectric semiconductors can be produced using this process. Microwave assisted pyrolysis process is also used to form the magnetic core-shell carbon nanostructure from polyaniline (PANI)-magnetite (Fe 3O4) nanocomposites. The amorphous combined with graphitized carbon shell is observed by the transmission electron microscopy (TEM). The crystalline metallic iron, cementite, Fe3O4 and iron oxide (Fe2O 3) are observed in the magnetic core in the Mossbauer spectra measurements. The increased magnetic properties are observed in the formed core-shell carbon nanostructure after microwave annealing compared with PANI-Fe3O 4 nanocomposites. The formed solid carbon nanostructure can protect the material from the acid dissolution and magnetic core favors the recycling of material. This magnetic carbon nanostructure has the potential application in the removal of heavy metals from waste water.

  2. Magnetic Assisted Colloidal Pattern Formation

    NASA Astrophysics Data System (ADS)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  3. Closed end launch tube (CELT)

    NASA Astrophysics Data System (ADS)

    Lueck, Dale E.; Parrish, Clyde F.

    2001-02-01

    As an alternative to magnetic propulsion for launch assist, the authors propose a pneumatic launch assist system. Using off-the-shelf components, coupled with familiar steel and concrete construction, a launch assist system can be brought from the initial feasibility stage, through a flight capable 5000 kg demonstrator to a deployed full size launch assist system in 10 years. The final system would be capable of accelerating a 450,000 kg vehicle to 270 ms-1. The CELT system uses commercially available compressors and valves to build a fail-safe system in less than half the time of a full Mag-Lev (magnetic levitation) system, and at a small fraction of the development cost. The resulting system could be ready in time to support some Gen 2 (Generation 2) vehicles, as well as the proposed Gen 3 vehicle. .

  4. Closed End Launch Tube (CELT)

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E.; Parrish, Clyde F.; Delgado, H. (Technical Monitor)

    2000-01-01

    As an alternative to magnetic propulsion for launch assist, the authors propose a pneumatic launch assist system. Using off the shelf components, coupled with familiar steel and concrete construction, a launch assist system can be brought from the initial feasibility stage, through a flight capable 5000 kg. demonstrator to a deployed full size launch assist system in 10 years. The final system would be capable of accelerating a 450,000 kg. vehicle to 270 meters per second. The CELT system uses commercially available compressors and valves to build a fail-safe system in less than half the time of a full Mag-Lev (magnetic levitation) system, and at a small fraction of the development cost. The resulting system could be ready in time to support some Gen 2 (generation 2) vehicles, as well as the proposed Gen 3 vehicle.

  5. BIPOLAR JETS LAUNCHED FROM MAGNETICALLY DIFFUSIVE ACCRETION DISKS. I. EJECTION EFFICIENCY VERSUS FIELD STRENGTH AND DIFFUSIVITY

    SciTech Connect

    Sheikhnezami, Somayeh; Fendt, Christian; Porth, Oliver; Vaidya, Bhargav; Ghanbari, Jamshid E-mail: fendt@mpia.de

    2012-09-20

    We investigate the launching of jets and outflows from magnetically diffusive accretion disks. Using the PLUTO code, we solve the time-dependent resistive magnetohydrodynamic equations taking into account the disk and jet evolution simultaneously. The main question we address is which kind of disks launch jets and which kind of disks do not? In particular, we study how the magnitude and distribution of the (turbulent) magnetic diffusivity affect mass loading and jet acceleration. We apply a turbulent magnetic diffusivity based on {alpha}-prescription, but also investigate examples where the scale height of diffusivity is larger than that of the disk gas pressure. We further investigate how the ejection efficiency is governed by the magnetic field strength. Our simulations last for up to 5000 dynamical timescales corresponding to 900 orbital periods of the inner disk. As a general result, we observe a continuous and robust outflow launched from the inner part of the disk, expanding into a collimated jet of superfast-magnetosonic speed. For long timescales, the disk's internal dynamics change, as due to outflow ejection and disk accretion the disk mass decreases. For magnetocentrifugally driven jets, we find that for (1) less diffusive disks, (2) a stronger magnetic field, (3) a low poloidal diffusivity, or (4) a lower numerical diffusivity (resolution), the mass loading of the outflow is increased-resulting in more powerful jets with high-mass flux. For weak magnetization, the (weak) outflow is driven by the magnetic pressure gradient. We consider in detail the advection and diffusion of magnetic flux within the disk and we find that the disk and outflow magnetization may substantially change in time. This may have severe impact on the launching and formation process-an initially highly magnetized disk may evolve into a disk of weak magnetization which cannot drive strong outflows. We further investigate the jet asymptotic velocity and the jet rotational velocity in

  6. Physical principles of microwave assisted magnetic recording

    SciTech Connect

    Rivkin, Kirill; Benakli, Mourad; Yin, Huaqing; Tabat, Ned

    2014-06-07

    While the basic physics of Microwave Assisted Magnetization Reversal (MAMR) phenomenon is well established both theoretically and experimentally, its application in a practical magnetic recording environment was so far studied primarily with the help of micromagnetic recording models. In this work, we instead attempt to use analytical formulation and simple numerical models to understand the main challenges as well as benefits that are associated with such a system. It appears that the main difference between the previously introduced theory [G. Bertotti et al., Phys. Rev. Lett. 86, 724 (2001); K. Rivkin et al., Appl. Phys. Lett. 92, 153104 (2008); S. Okamoto et al., J. Appl. Phys. 107, 123914 (2010).] and recording environment is that both the RF and DC magnetic fields are applied at a substantial angle to the anisotropy axis. While the associated symmetry breaking prevents one from describing the reversal process explicitly, it is possible to approximate the solutions well enough to satisfactorily match numerical models both in the case of wire and Spin Torque Oscillator generated RF fields. This approach allows for physical explanation of various effects associated with MAMR such as high gradient of writeable anisotropy and reduction of track width, and offers a clear guidance regarding future optimization of MAMR recording.

  7. Feasibility study on linear-motor-assisted take-off (LMATO) of winged launch vehicle

    NASA Astrophysics Data System (ADS)

    Nagatomo, Makoto; Kyotani, Yoshihiro

    1987-11-01

    Application of technology of magnetically levitated transportation to horizontal take-off of an experimental space vehicle has been studied. An experimental system of linear-motor-assisted take-off (LMATO) consists of the HIMES space vehicle and a magnetically levitated and propelled sled which is a modified MLU model developed by the JNR. The original MLU model is a train of three cars which weighs 30 tons and is driven by a thrust of 15 tons. The maximum speed is 400 km/h. The highest speed of 517 km/h has been obtained by the first JNR linear motor car. Since the take-off speed of the HIMES vehicle with the initial mass of 14 tons is 470 km/h, the existing technology can be used for the LMATO of the vehicle. The concept of the HIMES/LMATO is to use the MLU vehicles to accelerate the HIMES vehicle at 0.33 g on a 5 km guide track until the speed reaches 300 km/h, when the rocket engines of the space vehicle are started to increase the acceleration up to 1 g. The total system will take the final checkout for take-off during the acceleration phase and the speed exceeds 470 km/h which is large enough to aerodynamically lift the space vehicle, then the fastening mechanism is unlocked to separate the vehicles. The experimental system can be applied for initial acceleration of a vehicle with air-breathing propulsion.

  8. Field assisted spin switching in magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Jeong, W. C.; Park, J. H.; Oh, J. H.; Koh, G. H.; Jeong, G. T.; Jeong, H. S.; Kim, Kinam

    2006-04-01

    A switching method called by field assisted spin switching has been investigated. A field assisted spin switching consists of a metal line induced magnetic field and a spin switching through a magnetic tunnel junction. It is a variation of a current induced switching and assisted by the magnetic field induced by the current-carrying metal line. Various current paths have been tested to investigate how and how much the spin switching contributes to the overall switching and the results will be explained. A computer simulation has been complemented to measure the degree of the thermal effect in the switching.

  9. Launching Cosmic-Ray-driven Outflows from the Magnetized Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Girichidis, Philipp; Naab, Thorsten; Walch, Stefanie; Hanasz, Michał; Mac Low, Mordecai-Mark; Ostriker, Jeremiah P.; Gatto, Andrea; Peters, Thomas; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Baczynski, Christian

    2016-01-01

    We present a hydrodynamical simulation of the turbulent, magnetized, supernova (SN)-driven interstellar medium (ISM) in a stratified box that dynamically couples the injection and evolution of cosmic rays (CRs) and a self-consistent evolution of the chemical composition. CRs are treated as a relativistic fluid in the advection-diffusion approximation. The thermodynamic evolution of the gas is computed using a chemical network that follows the abundances of H+, H, H2, CO, C+, and free electrons and includes (self-)shielding of the gas and dust. We find that CRs perceptibly thicken the disk with the heights of 90% (70%) enclosed mass reaching ≳ 1.5 {kpc} (≳ 0.2 {kpc}). The simulations indicate that CRs alone can launch and sustain strong outflows of atomic and ionized gas with mass loading factors of order unity, even in solar neighborhood conditions and with a CR energy injection per SN of {10}50 {erg}, 10% of the fiducial thermal energy of an SN. The CR-driven outflows have moderate launching velocities close to the midplane (≲ 100 {km} {{{s}}}-1) and are denser (ρ ˜ 10-24-10-26 g cm-3), smoother, and colder than the (thermal) SN-driven winds. The simulations support the importance of CRs for setting the vertical structure of the disk as well as the driving of winds.

  10. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    SciTech Connect

    Jiao, Yipeng; Liu, Zengyuan; Victora, R. H.

    2015-05-07

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation.

  11. Strong permanent magnet-assisted electromagnetic undulator

    SciTech Connect

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  12. Magnetic gold nanotriangles by microwave-assisted polyol synthesis

    NASA Astrophysics Data System (ADS)

    Yu, Siming; Hachtel, Jordan A.; Chisholm, Matthew F.; Pantelides, Sokrates T.; Laromaine, Anna; Roig, Anna

    2015-08-01

    Simple approaches to synthesize hybrid nanoparticles with magnetic and plasmonic functionalities, with high control of their shape and avoiding cytotoxic reactants, to target biomedical applications remain a huge challenge. Here, we report a facile, fast and bio-friendly microwave-assisted polyol route for the synthesis of a complex multi-material consisting of monodisperse gold nanotriangles around 280 nm in size uniformly decorated by superparamagnetic iron oxide nanoparticles of 5 nm. These nanotriangles are readily dispersible in water, display a strong magnetic response (10 wt% magnetic fraction) and exhibit a localized surface plasmon resonance band in the NIR region (800 nm). Moreover, these hybrid particles can be easily self-assembled at the liquid-air interfaces.Simple approaches to synthesize hybrid nanoparticles with magnetic and plasmonic functionalities, with high control of their shape and avoiding cytotoxic reactants, to target biomedical applications remain a huge challenge. Here, we report a facile, fast and bio-friendly microwave-assisted polyol route for the synthesis of a complex multi-material consisting of monodisperse gold nanotriangles around 280 nm in size uniformly decorated by superparamagnetic iron oxide nanoparticles of 5 nm. These nanotriangles are readily dispersible in water, display a strong magnetic response (10 wt% magnetic fraction) and exhibit a localized surface plasmon resonance band in the NIR region (800 nm). Moreover, these hybrid particles can be easily self-assembled at the liquid-air interfaces. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03113c

  13. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.

    PubMed

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W T

    2016-12-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications. PMID:27067737

  14. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2016-04-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications.

  15. Analytical expression for critical frequency of microwave assisted magnetization switching

    NASA Astrophysics Data System (ADS)

    Arai, Hiroko; Imamura, Hiroshi

    2016-02-01

    The microwave-assisted switching (MAS) of magnetization in a perpendicularly magnetized circular disk is studied based on the macrospin model in a rotating frame. The analytical expression for the critical frequency of MAS is derived by analyzing the presence of a quasiperiodic mode. The critical frequency is expressed as a function of the radio frequency (rf) field Hrf and the effective anisotropy field H\\text{k}\\text{eff}. For a small rf field such that H\\text{rf} \\ll H\\text{k}\\text{eff}, the critical frequency is approximately equal to (γ /π )\\root 3 \\of{\\smash{H\\text{k}\\text{eff}H\\text{rf}2}\\mathstrut}.

  16. Laser-assisted H- charge exchange injection in magnetic fields

    NASA Astrophysics Data System (ADS)

    Gorlov, T.; Danilov, V.; Shishlo, A.

    2010-05-01

    The use of stripping foils for charge exchange injection can cause a number of operational problems in high intensity hadron accelerators. A recently proposed three-step method of laser-assisted injection is capable of overcoming these problems. This paper presents advances in the physical model of laser-assisted charge exchange injection of H- beams and covers a wide field of atomic physics. The model allows the calculation of the evolution of an H0 beam taking into account spontaneous emission, field ionization, and external electromagnetic fields. Some new data on the hydrogen atom related to the problem are calculated. The numerical calculations in the model use realistic descriptions of laser field and injection beam. Generally, the model can be used for design and optimization of a laser-assisted injection cell within an accelerator lattice. Example calculations of laser-assisted injection for an intermediate experiment at SNS in Oak Ridge and for the PS2 accelerator at CERN are presented. Two different schemes, distinctively characterized by various magnetic fields at the excitation point, are discussed. It was shown that the emittance growth of an injected beam can be drastically decreased by moving the excitation point into a strong magnetic field.

  17. Prototype ventricular assist device supported on magnetic bearings

    SciTech Connect

    Allaire, P.E.; Maslen, E.H.; Kim, H.C.; Olsen, D.B.; Bearnson, G.D.

    1995-12-31

    Mechanical artificial hearts are now expected to be used as assist or total replacements for failing human hearts, if a reliable, anatomically appropriate design is developed. Initially, ventricular assist or total replacement devices were pulsatile air driven units containing a flexing polymeric diaphragm and two valves for each ventricle. Many reliability problems were encountered. Recently, attention has been focused on axial or centrifugal continuous flow blood pumps. Magnetic bearings employed in such devices offer the advantages of no required lubrication and large operating clearances. This paper describes a prototype continuous flow pump supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. It delivered 6 liters/min of flow at 100 mm Hg differential head operating at 2,400 rpm in water. The pump is totally magnetically supported in four magnetic bearings - two radial and two thrust. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity, current gains, and open loop stiffness are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water.

  18. Ablation modeling of electro-magnetically launched projectile for access to space

    NASA Astrophysics Data System (ADS)

    Gosse, Ryan C.

    It has been proposed to study and identify the technical issues involved in the launch to space of micro-satellite payloads using an airborne electromagnetic launcher (AEML). A computational fluid dynamics (CFD) computer code was developed to help characterize the aerothermal issues involved with the flight of the projectile as it exits the Earth's atmosphere. Conceptual geometries were chosen to evaluate the feasibility of launching to orbit from an aircraft. Due to expected high heating fluxes, carboncarbon material was selected for the thermal protection system (TPS). Results of the conceptual study are presented and used to evaluate the practicality of the AEML concept.

  19. Multimaterial magnetically assisted 3D printing of composite materials

    NASA Astrophysics Data System (ADS)

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.

    2015-10-01

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.

  20. Multimaterial magnetically assisted 3D printing of composite materials

    PubMed Central

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.

    2015-01-01

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature. PMID:26494528

  1. Multimaterial magnetically assisted 3D printing of composite materials.

    PubMed

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R

    2015-01-01

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature. PMID:26494528

  2. [Experience of medical assistance in the hosital of Plesetsk Cosmodrome under conditions of large patient load after explosion of a launch vehicle].

    PubMed

    Plekhanov, V N; Mel'nikov, O N; Shut', A D

    2013-11-01

    Military hospital of Plesetsk Cosmodrome was founded on 20 December 1958. The aims of the hospital were always connected with medical support of the cosmodrome, including emergency situations. On 18 March 1980 a Vostok-2M rocket exploded on its launch pad during a fuelling operation. Experience of medical assistance under conditions of large patient load showed the necessity of constant readiness to medical assistance to patients with combined pathology (burn injury, orthopedic trauma and thermochemical injury of the upper respiratory tract), expediency of compact patient accommodation along with the modern anaesthetic machine and readiness to frequent suction bronchoscopy. PMID:24611312

  3. Magnetic nanoparticle and magnetic field assisted siRNA delivery in vitro.

    PubMed

    Mykhaylyk, Olga; Sanchez-Antequera, Yolanda; Vlaskou, Dialechti; Cerda, Maria Belen; Bokharaei, Mehrdad; Hammerschmid, Edelburga; Anton, Martina; Plank, Christian

    2015-01-01

    This chapter describes how to design and conduct experiments to deliver siRNA to adherent cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles (MNPs). These magnetic complexes are targeted to the cell surface by the application of a gradient magnetic field. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected MNPs, phospholipids, and siRNAs are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres (microbubbles). Methods are described how to accomplish the synthesis of magnetic nanoparticles for magnetofection and how to test the association of siRNA with the magnetic components of the transfection vector. A simple method is described to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Procedures are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA as well as magnetic microbubbles for magnetofection and downregulation of the target gene expression analysis with account for the toxicity determined using an MTT-based respiration activity test. A modification of the magnetic transfection triplexes with INF-7, fusogenic peptide, is described resulting in reporter gene silencing improvement in HeLa, Caco-2, and ARPE-19 cells. The methods described can also be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized siRNA transfection by magnetofection in any cell type. PMID:25319646

  4. Dynamic compact model of thermally assisted switching magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    El Baraji, M.; Javerliac, V.; Guo, W.; Prenat, G.; Dieny, B.

    2009-12-01

    The general purpose of spin electronics is to take advantage of the electron's spin in addition to its electrical charge to build innovative electronic devices. These devices combine magnetic materials which are used as spin polarizer or analyzer together with semiconductors or insulators, resulting in innovative hybrid CMOS/magnetic (Complementary MOS) architectures. In particular, magnetic tunnel junctions (MTJs) can be used for the design of magnetic random access memories [S. Tehrani, Proc. IEEE 91, 703 (2003)], magnetic field programmable gate arrays [Y. Guillement, International Journal of Reconfigurable Computing, 2008], low-power application specific integrated circuits [S. Matsunaga, Appl. Phys. Express 1, 091301 (2008)], and rf oscillators. The thermally assisted switching (TAS) technology requires heating the MTJ before writing it by means of an external field. It reduces the overall power consumption, solves the data writing selectivity issues, and improves the thermal stability of the written information for high density applications. The design of hybrid architectures requires a MTJ compact model, which can be used in standard electrical simulators of the industry. As a result, complete simulations of CMOS/MTJ hybrid circuits can be performed before experimental realization and testing. This article presents a highly accurate model of the MTJ based on the TAS technology. It is compatible with the Spectre electrical simulator of Cadence design suite.

  5. Impurity-assisted tunneling magnetoresistance under a weak magnetic field.

    PubMed

    Txoperena, Oihana; Song, Yang; Qing, Lan; Gobbi, Marco; Hueso, Luis E; Dery, Hanan; Casanova, Fèlix

    2014-10-01

    Injection of spins into semiconductors is essential for the integration of the spin functionality into conventional electronics. Insulating layers are often inserted between ferromagnetic metals and semiconductors for obtaining an efficient spin injection, and it is therefore crucial to distinguish between signatures of electrical spin injection and impurity-driven effects in the tunnel barrier. Here we demonstrate an impurity-assisted tunneling magnetoresistance effect in nonmagnetic-insulator-nonmagnetic and ferromagnetic-insulator-nonmagnetic tunnel barriers. In both cases, the effect reflects on-off switching of the tunneling current through impurity channels by the external magnetic field. The reported effect is universal for any impurity-assisted tunneling process and provides an alternative interpretation to a widely used technique that employs the same ferromagnetic electrode to inject and detect spin accumulation. PMID:25325651

  6. Impurity-Assisted Tunneling Magnetoresistance under a Weak Magnetic Field

    NASA Astrophysics Data System (ADS)

    Txoperena, Oihana; Song, Yang; Qing, Lan; Gobbi, Marco; Hueso, Luis E.; Dery, Hanan; Casanova, Fèlix

    2014-10-01

    Injection of spins into semiconductors is essential for the integration of the spin functionality into conventional electronics. Insulating layers are often inserted between ferromagnetic metals and semiconductors for obtaining an efficient spin injection, and it is therefore crucial to distinguish between signatures of electrical spin injection and impurity-driven effects in the tunnel barrier. Here we demonstrate an impurity-assisted tunneling magnetoresistance effect in nonmagnetic-insulator-nonmagnetic and ferromagnetic-insulator-nonmagnetic tunnel barriers. In both cases, the effect reflects on-off switching of the tunneling current through impurity channels by the external magnetic field. The reported effect is universal for any impurity-assisted tunneling process and provides an alternative interpretation to a widely used technique that employs the same ferromagnetic electrode to inject and detect spin accumulation.

  7. Current induced perpendicular-magnetic-anisotropy racetrack memory with magnetic field assistance

    SciTech Connect

    Zhang, Y.; Klein, J.-O.; Chappert, C.; Ravelosona, D.; Zhao, W. S.

    2014-01-20

    High current density is indispensable to shift domain walls (DWs) in magnetic nanowires, which limits the using of racetrack memory (RM) for low power and high density purposes. In this paper, we present perpendicular-magnetic-anisotropy (PMA) Co/Ni RM with global magnetic field assistance, which lowers the current density for DW motion. By using a compact model of PMA RM and 40 nm design kit, we perform mixed simulation to validate the functionality of this structure and analyze its density potential. Stochastic DW motion behavior has been taken into account and statistical Monte-Carlo simulations are carried out to evaluate its reliability performance.

  8. Magnetic Assisted Navigation in Electrophysiology and Cardiac Resynchronisation: A Review

    PubMed Central

    Thornton, AS; Maximo Rivero-Ayerza, M; Jordaens, LJ

    2006-01-01

    Magnetic assisted navigation is a new innovation that may prove useful in catheter ablation of cardiac arrhythmias and cardiac resynchronization therapy. The ability to steer extremely floppy catheters and guidewires may allow for these to be positioned safely in previously inaccessible areas of the heart. The integration of other new technology, such as image integration and electroanatomic mapping systems, should advance our abilities further. Although studies have shown the technology to be feasible, with the advantage to the physician of decreased radiation exposure, studies need to be performed to show additional benefit over standard techniques. PMID:17031421

  9. Experimental and theoretical studies of implant assisted magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Aviles, Misael O.

    One way to achieve drug targeting in the body is to incorporate magnetic nanoparticles into drug carriers and then retain them at the site using an externally applied magnetic field. This process is referred to as magnetic drug targeting (MDT). However, the main limitation of MDT is that an externally applied magnetic field alone may not be able to retain a sufficient number of magnetic drug carrier particles (MDCPs) to justify its use. Such a limitation might not exist when high gradient magnetic separation (HGMS) principles are applied to assist MDT by means of ferromagnetic implants. It was hypothesized that an Implant Assisted -- MDT (IA-MDT) system would increase the retention of the MDCPs at a target site where an implant had been previously located, since the magnetic forces are produced internally. With this in mind, the overall objective of this work was to demonstrate the feasibility of an IA-MDT system through mathematical modeling and in vitro experimentation. The mathematical models were developed and used to demonstrate the behavior and limitations of IA-MDT, and the in vitro experiments were designed and used to validate the models and to further elucidate the important parameters that affect the performance of the system. IA-MDT was studied with three plausible implants, ferromagnetic stents, seed particles, and wires. All implants were studied theoretically and experimentally using flow through systems with polymer particles containing magnetite nanoparticles as MDCPs. In the stent studies, a wire coil or mesh was simply placed in a flow field and the capture of the MDCPs was studied. In the other cases, a porous polymer matrix was used as a surrogate capillary tissue scaffold to study the capture of the MDCPs using wires or particle seeds as the implant, with the seeds either fixed within the polymer matrix or captured prior to capturing the MDCPs. An in vitro heart tissue perfusion model was also used to study the use of stents. In general, all

  10. Radiolysis and hydrolysis of magnetically assisted chemical separation particles

    SciTech Connect

    Buchholz, B.A.; Nunez, L.; Vandegrift, G.F.

    1995-05-01

    The magnetically assisted chemical separation (MACS) process is designed to separate transuranic (TRU) elements out of high-level waste (HLW) or TRU waste. Magnetic microparticles (1--25 {mu}m) were coated with octyl (phenyl)N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in tributyl phosphate (TBP) and tested for removing TRU elements from acidic nitrate solutions. The particles were contacted with nitric acid solutions and Hanford plutonium finishing plant (PFP) simulant, irradiated with a high intensity {sup 60}Co {gamma}-ray source, and evaluated for effectiveness in removing TRU elements from 2m HNO{sub 3} solutions. The resistance of the coatings and magnetic cores to radiolytic damage and hydrolytic degradation was investigated by irradiating samples of particles suspended in a variety of solutions with doses of up to 5 Mrad. Transmission electron microscopy (TEM), magnetic susceptibility measurements, and physical observations of the particles and suspension solutions were used to assess physical changes to the particles. Processes that affect the surface of the particles dramatically alter the binding sites for TRU in solution. Hydrolysis played a larger role than radiolysis in the degradation of the extraction capacity of the particles.

  11. TOPICAL REVIEW: Ultimate limits to thermally assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    McDaniel, Terry W.

    2005-02-01

    The application of thermal energy to enable recording on extremely high anisotropy magnetic media appears to be a viable means of extending the density of stored information. The central physical issue facing the technology is what gain can be realized in writability along with long-term data stability using imaginable media materials. We reasonably expect the material properties M(T) and Hk(T) to determine this, since a stability metric for media with characteristic magnetization switching unit volume V is MV Hk/2kBT. This matter is controversial owing to still open questions related to thermomagnetic recording with temperature elevation above the Curie point and optimal cooling rates. There are indications that multi-component magnetic media may offer advantages in achieving performance goals. Beyond the physical issues lie engineering matters related to the correct system architecture to yield a practical storage device to meet future customer expectations. Here one must address a detailed means of delivering localized heating to the magnetic medium to perform efficient recording. To date, magnetic recording devices have been highly mechanical systems, so it is natural to inquire how a need for an aggressively heated head-medium interface could impact the evolution of future systems. Eventually elements of thermally assisted recording could be combined with patterned media approaches such as self-organized magnetic arrays to push toward ultimate limits where the thermal instability of bits overtakes engineered media materials. Finally, a practical recording system cannot be realized unless a means of finding, following, and reading the smallest bits with a usable signal-to-noise ratio exists—engineering issues separate from an ability to reliably record those bits. This paper is based on an invited presentation of the same title given at the meeting of the American Physical Society, 22-26 March 2004, in Montreal, Quebec, Canada.

  12. MATra - Magnet Assisted Transfection: combining nanotechnology and magnetic forces to improve intracellular delivery of nucleic acids.

    PubMed

    Bertram, J

    2006-08-01

    Recent efforts combining nanotechnology and magnetic properties resulted in the development and commercialization of magnetic nanoparticles that can be used as carriers for nucleic acids for in vitro transfection and for gene therapy approaches including DNA-based vaccination strategies. The efficiency of intracellular delivery is still a limiting factor for basic cell biological research and also for emerging technologies such as temporary gene silencing based on inhibitory RNA/siRNA. Nanotechnology has resulted in a variety of different nanostructures and especially nanoparticles as carriers in a wide range of new drug delivery systems for conventional drugs, recombinant proteins, vaccines and more recently nucleic acids. It is possible to combine superparamagnetic nanoparticles with magnetic forces to increase, direct and optimize intracellular delivery of biomolecules. This article discusses the main approaches in the field of magnet assisted transfection (MATra) focusing on the transfection or intracellular delivery of nucleic acids, although also suitable to improve the intracellular delivery of other biomolecules. PMID:16918404

  13. Launch Services Safety Overview

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.

    2008-01-01

    NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities

  14. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase

    NASA Astrophysics Data System (ADS)

    Konwarh, Rocktotpal; Karak, Niranjan; Rai, Sudhir Kumar; Mukherjee, Ashis Kumar

    2009-06-01

    Nanotechnology holds the prospect for avant-garde changes to improve the performance of materials in various sectors. The domain of enzyme biotechnology is no exception. Immobilization of industrially important enzymes onto nanomaterials, with improved performance, would pave the way to myriad application-based commercialization. Keratinase produced by Bacillus subtilis was immobilized onto poly(ethylene glycol)-supported Fe3O4 superparamagnetic nanoparticles. The optimization process showed that the highest enzyme activity was noted when immobilized onto cyanamide-activated PEG-assisted MNP prepared under conditions of 25 °C and pH 7.2 of the reaction mixture before addition of H2O2 (3% w/w), 2% (w/v) PEG6000 and 0.062:1 molar ratio of PEG to FeCl2·4H2O. Further statistical optimization using response surface methodology yielded an R2 value that could explain more than 94% of the sample variations. Along with the magnetization studies, the immobilization of the enzyme onto the PEG-assisted MNP was characterized by UV, XRD, FTIR and TEM. The immobilization process had resulted in an almost fourfold increase in the enzyme activity over the free enzyme. Furthermore, the immobilized enzyme exhibited a significant thermostability, storage stability and recyclability. The leather-industry-oriented application of the immobilized enzyme was tested for the dehairing of goat-skin.

  15. Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper

    NASA Astrophysics Data System (ADS)

    Cochrane, K. R.; Lemke, R. W.; Riford, Z.; Carpenter, J. H.

    2016-03-01

    The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materials experiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic (MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolates those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this paper, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/-1%.

  16. Microwave assisted magnetization switching in Co/Pt multilayer

    SciTech Connect

    Okamoto, S.; Kikuchi, N.; Kitakami, O.; Shimatsu, T.; Aoi, H.

    2011-04-01

    In this study, we have experimentally investigated the microwave assisted magnetization by switching (MAS) on the microstructured Co/Pt multilayer. The sample exhibits the typical magnetization curve peculiar to perpendicular anisotropy films, that is, a steep reversal initiated by nucleation of a reversed domain followed by its subsequent gradual expansion by the domain wall displacement. By applying microwaves with the frequency of GHz order, the nucleation field H{sub n} is significantly reduced at three frequencies. Taking into account the effective anisotropy field of our sample, the first dip of H{sub n} at the lowest frequency probably corresponds to the Kittel mode excitation, and the other two dips at higher frequencies correspond to unidentified excitation modes other than the Kittel mode. Among them, the last dip of H{sub n} at the highest frequency reaches about 1/3 of that without microwave application. These results suggest the existence of more effective excitation modes for MAS than the Kittel mode.

  17. Composite media for high density heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Liu, Zengyuan; Jiao, Yipeng; Victora, R. H.

    2016-06-01

    A heat assisted magnetic recording composite media with a superparamagnetic writing layer is proposed. The recording process is initiated in the write layer that is magnetically softer than the long term storage layer. Upon cooling, the composite structure copies the information from the writing layer to the lower Curie temperature (Tc) storage layer, e.g., doped FePt. The advantages include insensitivity to Tc variance in the storage layer, and thus the opportunity to significantly lower the FePt Tc without the resulting Tc distribution adversely affecting the performance. The composite structure has a small jitter within 0.1 nm of the grain size limit owing to the sharp transition width of the optimized superparamagnetic writing layer. The user density of the composite structure can reach 4.7 Tb/in.2 for a Gaussian heat spot with a full-width-at-half-maximum of 30 nm, a 12 nm reader width, and an optimized bit length of 6 nm.

  18. 34 CFR 280.1 - What is the Magnet Schools Assistance Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 1 2014-07-01 2014-07-01 false What is the Magnet Schools Assistance Program? 280.1 Section 280.1 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION MAGNET SCHOOLS ASSISTANCE PROGRAM General § 280.1 What is...

  19. 34 CFR 280.1 - What is the Magnet Schools Assistance Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 1 2013-07-01 2013-07-01 false What is the Magnet Schools Assistance Program? 280.1 Section 280.1 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION MAGNET SCHOOLS ASSISTANCE PROGRAM General § 280.1 What is...

  20. 34 CFR 280.1 - What is the Magnet Schools Assistance Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false What is the Magnet Schools Assistance Program? 280.1 Section 280.1 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION MAGNET SCHOOLS ASSISTANCE PROGRAM General § 280.1 What is...

  1. In vitro study of magnetic particle seeding for implant assisted-magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Avilés, Misael O.; Ebner, Armin D.; Ritter, James A.

    The concept of using magnetic particles (seeds) as the implant for implant assisted-magnetic drug targeting (IA-MDT) was analyzed in vitro. Since this MDT system is being explored for use in capillaries, a highly porous ( ɛ˜70%), highly tortuous, cylindrical, polyethylene polymer was prepared to mimic capillary tissue, and the seeds (magnetite nanoparticles) were already fixed within. The well-dispersed seeds were used to enhance the capture of 0.87 μm diameter magnetic drug carrier particles (MDCPs) (polydivinylbenzene embedded with 24.8 wt% magnetite) under flow conditions typically found in capillary networks. The effects of the fluid velocity (0.015-0.15 cm/s), magnetic field strength (0.0-250 mT), porous polymer magnetite content (0-7 wt%) and MDCP concentration ( C=5 and 50 mg/L) on the capture efficiency (CE) of the MDCPs were studied. In all cases, when the magnetic field was applied, compared to when it was not, large increases in CE resulted; the CE increased even further when the magnetite seeds were present. The CE increased with increases in the magnetic field strength, porous polymer magnetite content and MDCP concentration. It decreased only with increases in the fluid velocity. Large magnetic field strengths were not necessary to induce MDCP capture by the seeds. A few hundred mT was sufficient. Overall, this first in vitro study of the magnetic seeding concept for IA-MDT was very encouraging, because it proved that magnetic particle seeds could serve as an effective implant for MDT systems, especially under conditions found in capillaries.

  2. Spin-orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy.

    PubMed

    Li, Peng; Liu, Tao; Chang, Houchen; Kalitsov, Alan; Zhang, Wei; Csaba, Gyorgy; Li, Wei; Richardson, Daniel; DeMann, August; Rimal, Gaurab; Dey, Himadri; Jiang, J S; Porod, Wolfgang; Field, Stuart B; Tang, Jinke; Marconi, Mario C; Hoffmann, Axel; Mryasov, Oleg; Wu, Mingzhong

    2016-01-01

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down states of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. It can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field. PMID:27581060

  3. Mixing of nanosize particles by magnetically assisted impaction techniques

    NASA Astrophysics Data System (ADS)

    Scicolone, James V.

    approach based on use of small magnetic particles as mixing media is introduced that achieves a high-degree of mixing at scales of about a micron. The method is tested for binary mixture of alumina/silica and silica/titania. Various parameters such as processing time, size of the magnets, and magnetic particle to powder mixed ratio are considered. Experiments are carried out in batch containers in liquid and dry mediums, as well as a fluidized bed set-up. Homogeneity of Mixing (HoM), defined as the compliment of the Intensity of Segregation, was evaluated at the micron scale through field-emission scanning electron microscopy (FESEM) and the energy dispersive x-ray spectroscopy (EDS). Secondary electron images, along with elemental mappings, were used to visualize the change in agglomerate sizes. Compositional percent data of each element were obtained through an EDS spatial distribution point analysis and used to obtain quantitative analysis on the homogeneity of the mixture. The effect of magnet impaction on mixing quality was examined on the HoM of binary mixtures. The research shows that HoM improved with magnetically assisted impaction mixing techniques indicating that the HoM depends on the product of processing time with the number of magnets. In a fluidized bed set-up, MAIM not only improved dispersion, but it was also found that the magnetic particles served to break down the larger agglomerates, to reduce the minimum fluidization velocity, to delay the onset of bubbling, and to convert the fluidization behavior of ABF powder to APF. Thus MAIM techniques may be used to achieve mixing of nanopowders at a desired HoM through adjusting the number of magnets and processing time; and its inherent advantages are its simplicity, an environmentally benign operation, and reduced cost as compared with wet mixing techniques.

  4. Stable microwave-assisted magnetization switching for nanoscale exchange-coupled composite grain

    PubMed Central

    2013-01-01

    Magnetization mechanisms of nanoscale magnetic grains greatly differ from well-known magnetization mechanisms of micrometer- or millimeter-sized magnetic grains or particles. Magnetization switching mechanisms of nanoscale exchange-coupled composite (ECC) grain in a microwave field was studied using micromagnetic simulation. Magnetization switching involving a strongly damped or precessional oscillation was studied using various strengths of external direct current and microwave fields. These studies imply that the switching behavior of microwave-assisted magnetization switching of the ECC grain can be divided into two groups: stable and unstable regions, similar to the case of the Stoner-Wahlfarth grain. A significant reduction in the switching field was observed in the ECC grain when the magnetization switching involved precessional oscillations similar to the case of the Stoner-Wohlfarth grain. This switching behavior is preferred for the practical applications of microwave-assisted magnetization switching. PMID:24191895

  5. In vitro study of magnetic nanoparticles as the implant for implant assisted magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Mangual, Jan O.; Avilés, Misael O.; Ebner, Armin D.; Ritter, James A.

    2011-07-01

    Magnetic nanoparticle (MNP) seeds were studied in vitro for use as an implant in implant assisted-magnetic drug targeting (IA-MDT). The magnetite seeds were captured in a porous polymer, mimicking capillary tissue, with an external magnetic field (70 mT) and then used subsequently to capture magnetic drug carrier particles (MDCPs) (0.87 μm diameter) with the same magnetic field. The effects of the MNP seed diameter (10, 50 and 100 nm), MNP seed concentration (0.25-2.0 mg/mL), and fluid velocity (0.03-0.15 cm/s) on the capture efficiency (CE) of both the MNP seeds and the MDCPs were studied. The CE of the 10 nm MNP seeds was never more than 30%, while those of the 50 and 100 nm MNP seeds was always greater than 80% and in many cases exceeded 90%. Only the MNP seed concentration affected its CE. The 10 nm MNP seeds did not increase the MDCP CE over that obtained in the absence of the MNP seeds, while the 50 and 100 nm MNP seeds increased significantly, typically by more than a factor of two. The 50 and 100 nm MNP seeds also exhibited similar abilities to capture the MDCPs, with the MDCP CE always increasing with decreasing fluid velocity and generally increasing with increasing MNP seed concentration. The MNP seed size, magnetic properties, and capacity to self-agglomerate and form clusters were key properties that make them a viable implant in IA-MDT.

  6. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

    SciTech Connect

    Huang, H. B.; Hu, J. M.; Yang, T. N.; Chen, L. Q.; Ma, X. Q.

    2014-09-22

    Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

  7. Alternative material study for heat assisted magnetic recording transducer application

    SciTech Connect

    Xu, B. X. Cen, Z. H.; Hu, J. F.; Tsai, J. W. H.

    2015-05-07

    In heat assisted magnetic recording (HAMR), optical near field transducer (NFT) is a key component. Au is currently used as NFT material because of its strong surface plasmon effect. Due to the soft property of Au material, reliability of Au NFT becomes a key issue for realizing HAMR production. In this paper, the possibility of alternative materials, including transition metal nitrides (TMNs) and transparent conducting oxides (TCOs) to replace Au is studied. The results show that all of the listed TMN and TCO materials can meet the mechanical requirements at room temperature in terms of hardness and thermal expansion. An optical model, which includes optical waveguide, NFT and FePt media, is used to simulate NFT performances. The results indicate that the resonant wavelengths for NFT with TCO materials are longer than 1500 nm, which is not suitable for HAMR application. TMN materials are suitable for NFT application at wavelength band of around 800 nm. But the NFT efficiency is very low. ZrN is the best material among TMN materials and the efficiency of ZrN NFT is only 13% of the Au NFT's efficiency. Reducing refractive index (n) and increasing extinction coefficient (k) will both lead to efficiency increase. Increasing k contributes more in the efficiency increase, while reducing n has a relatively low NFT absorption. For materials with the same figure of merit, the NFT with larger k material has higher efficiency. Doping materials to increase the material conduction electron density and growing film with larger size grain may be the way to increase k and reduce n.

  8. Alternative material study for heat assisted magnetic recording transducer application

    NASA Astrophysics Data System (ADS)

    Xu, B. X.; Cen, Z. H.; Hu, J. F.; Tsai, J. W. H.

    2015-05-01

    In heat assisted magnetic recording (HAMR), optical near field transducer (NFT) is a key component. Au is currently used as NFT material because of its strong surface plasmon effect. Due to the soft property of Au material, reliability of Au NFT becomes a key issue for realizing HAMR production. In this paper, the possibility of alternative materials, including transition metal nitrides (TMNs) and transparent conducting oxides (TCOs) to replace Au is studied. The results show that all of the listed TMN and TCO materials can meet the mechanical requirements at room temperature in terms of hardness and thermal expansion. An optical model, which includes optical waveguide, NFT and FePt media, is used to simulate NFT performances. The results indicate that the resonant wavelengths for NFT with TCO materials are longer than 1500 nm, which is not suitable for HAMR application. TMN materials are suitable for NFT application at wavelength band of around 800 nm. But the NFT efficiency is very low. ZrN is the best material among TMN materials and the efficiency of ZrN NFT is only 13% of the Au NFT's efficiency. Reducing refractive index (n) and increasing extinction coefficient (k) will both lead to efficiency increase. Increasing k contributes more in the efficiency increase, while reducing n has a relatively low NFT absorption. For materials with the same figure of merit, the NFT with larger k material has higher efficiency. Doping materials to increase the material conduction electron density and growing film with larger size grain may be the way to increase k and reduce n.

  9. Phase dependence of microwave-assisted switching of a single magnetic nanoparticle.

    PubMed

    Piquerel, R; Gaier, O; Bonet, E; Thirion, C; Wernsdorfer, W

    2014-03-21

    Microwave-assisted switching of the magnetization is an efficient way to reduce the magnetic field required to reverse the magnetization of nanostructures. Here, the phase sensitivity of microwave-assisted switching of an individual cobalt nanoparticle is studied using a pump-probe technique. The pump microwave pulse prepares an initial state of the magnetization, and the probe pulse tests its stability against switching. Precession states are established, which are stable against switching. Their basin of attraction is measured and is in qualitative agreement with numerical macrospin calculations. The damping parameter is evaluated using the variable delay pump-probe technique. PMID:24702409

  10. Phase Dependence of Microwave-Assisted Switching of a Single Magnetic Nanoparticle

    NASA Astrophysics Data System (ADS)

    Piquerel, R.; Gaier, O.; Bonet, E.; Thirion, C.; Wernsdorfer, W.

    2014-03-01

    Microwave-assisted switching of the magnetization is an efficient way to reduce the magnetic field required to reverse the magnetization of nanostructures. Here, the phase sensitivity of microwave-assisted switching of an individual cobalt nanoparticle is studied using a pump-probe technique. The pump microwave pulse prepares an initial state of the magnetization, and the probe pulse tests its stability against switching. Precession states are established, which are stable against switching. Their basin of attraction is measured and is in qualitative agreement with numerical macrospin calculations. The damping parameter is evaluated using the variable delay pump-probe technique.

  11. Many particle magnetic dipole-dipole and hydrodynamic interactions in magnetizable stent assisted magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Cregg, P. J.; Murphy, Kieran; Mardinoglu, Adil; Prina-Mello, Adriele

    2010-08-01

    The implant assisted magnetic targeted drug delivery system of Avilés, Ebner and Ritter is considered both experimentally ( in vitro) and theoretically. The results of a 2D mathematical model are compared with 3D experimental results for a magnetizable wire stent. In this experiment a ferromagnetic, coiled wire stent is implanted to aid collection of particles which consist of single domain magnetic nanoparticles (radius ≈10 nm). In order to model the agglomeration of particles known to occur in this system, the magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included. Simulations based on this mathematical model were performed using open source C++ code. Different initial positions are considered and the system performance is assessed in terms of collection efficiency. The results of this model show closer agreement with the measured in vitro experimental results and with the literature. The implications in nanotechnology and nanomedicine are based on the prediction of the particle efficiency, in conjunction with the magnetizable stent, for targeted drug delivery.

  12. Magnetic properties of Fe-Mn-Pt for heat assisted magnetic recording applications

    NASA Astrophysics Data System (ADS)

    Park, Jihoon; Hong, Yang-Ki; Kim, Seong-Gon; Gao, Li; Thiele, Jan-Ulrich

    2015-02-01

    We calculate the electronic structures of FePt and Fe0.5Mn0.5Pt using first-principles calculations based on density functional theory within the local-spin-density approximation. The Curie temperature (Tc) was calculated by mean field approximation. Composition dependence of the Cure temperature (Tc(x)) of Fe1-xMnxPt was used to identify a composition to meet the desired Tc in the range of 600-650 K. The identified composition (0.0294 ≤ x ≤ 0.0713) gives saturation magnetization (Ms) in the range of 1041-919 emu/cm3 and magnetocrystalline anisotropy constant (K) in the range of 9.96-8.36 × 106 J/m3 at 0 K. Temperature dependent M(T) and K(T) of Fe1-xMnxPt (0.0294 ≤ x ≤ 0.0713) were calculated using the Brillouin function and Callen-Callen experimental relation, respectively. Fe1-xMnxPt (0.0294 ≤ x ≤ 0.0713) shows 930-800 emu/cm3 of Ms and 7.18-5.61 × 106 J/m3 of K at 300 K, thereby satisfying desired magnetic properties for heat-assisted magnetic recording media to achieve 4 Tb/in.2 areal density.

  13. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.

    2016-06-01

    The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.

  14. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography.

    PubMed

    Albisetti, E; Petti, D; Pancaldi, M; Madami, M; Tacchi, S; Curtis, J; King, W P; Papp, A; Csaba, G; Porod, W; Vavassori, P; Riedo, E; Bertacco, R

    2016-06-01

    The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method. PMID:26950242

  15. Magnetic carbon nanostructures: microwave energy-assisted pyrolysis vs. conventional pyrolysis.

    PubMed

    Zhu, Jiahua; Pallavkar, Sameer; Chen, Minjiao; Yerra, Narendranath; Luo, Zhiping; Colorado, Henry A; Lin, Hongfei; Haldolaarachchige, Neel; Khasanov, Airat; Ho, Thomas C; Young, David P; Wei, Suying; Guo, Zhanhu

    2013-01-11

    Magnetic carbon nanostructures from microwave assisted- and conventional-pyrolysis processes are compared. Unlike graphitized carbon shells from conventional heating, different carbon shell morphologies including nanotubes, nanoflakes and amorphous carbon were observed. Crystalline iron and cementite were observed in the magnetic core, different from a single cementite phase from the conventional process. PMID:23172110

  16. Magnetic actuator intended for left ventricular assist system

    NASA Astrophysics Data System (ADS)

    Saotome, H.; Okada, T.

    2006-04-01

    With the goal of developing an artificial heart, the authors fabricated a prototype pump employing a linear motion magnetic actuator, and carried out performance tests. The actuator is composed of two disk-shaped Nd-Fe-B magnets having a diameter of 80 mm and a thickness of 7 mm. The disks are magnetized in the direction normal to the circular surface, and are formed by semicircular pieces; one semicircle serves as a N pole and the other as a S pole. The magnets face each other in the actuator. One magnet is limited to spin around its axis while the second magnet is limited to move in linear motion along its axis. In this way, the circumferential rotation of one of the magnets produces reciprocating forces on the other magnet, causing it to move back and forth. This coupled action produces a pumping motion. Because the two magnets are magnetically coupled without any mechanical contact, the rotating magnet does not have to be implanted and should be placed outside the body. The rotating magnet is driven by a motor. The motor power is magnetically conveyed, via the rotating magnet, to the implanted linear motion magnet through the skin. The proposed system yields no problems with infection that would otherwise require careful treatment in a system employing a tube penetrating the skin for power transmission. Comparison of the proposed system with another system using a transcutaneous transformer shows that our system has good potential to occupy a smaller space in the body, because it obviates implantation of a secondary part of the transformer, a power supply, and armature windings. The dimensions of the trial pump are designed in accordance with the fluid mechanical specifications of a human left ventricle, by computing magnetic fields that provide the magnetic forces on the magnets. The output power of the trial pump, 1.0 W at 87 beats/min, is experimentally obtained under the pressure and flow conditions of water, 100 mm Hg and 4.5 l/min.

  17. Scout Launch

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Scout Launch. James Hansen wrote: 'As this sequence of photos demonstrates, the launch of ST-5 on 30 June 1961 went well; however, a failure of the rocket's third stage doomed the payload, a scientific satellite known as S-55 designed for micrometeorite studies in orbit.'

  18. Magnetic properties of Fe-Mn-Pt for heat assisted magnetic recording applications

    SciTech Connect

    Park, Jihoon; Hong, Yang-Ki; Kim, Seong-Gon; Gao, Li; Thiele, Jan-Ulrich

    2015-02-07

    We calculate the electronic structures of FePt and Fe{sub 0.5}Mn{sub 0.5}Pt using first-principles calculations based on density functional theory within the local-spin-density approximation. The Curie temperature (T{sub c}) was calculated by mean field approximation. Composition dependence of the Cure temperature (T{sub c}(x)) of Fe{sub 1−x}Mn{sub x}Pt was used to identify a composition to meet the desired T{sub c} in the range of 600–650 K. The identified composition (0.0294 ≤ x ≤ 0.0713) gives saturation magnetization (M{sub s}) in the range of 1041–919 emu/cm{sup 3} and magnetocrystalline anisotropy constant (K) in the range of 9.96–8.36 × 10{sup 6 }J/m{sup 3} at 0 K. Temperature dependent M(T) and K(T) of Fe{sub 1−x}Mn{sub x}Pt (0.0294 ≤ x ≤ 0.0713) were calculated using the Brillouin function and Callen-Callen experimental relation, respectively. Fe{sub 1−x}Mn{sub x}Pt (0.0294 ≤ x ≤ 0.0713) shows 930–800 emu/cm{sup 3} of M{sub s} and 7.18–5.61 × 10{sup 6 }J/m{sup 3} of K at 300 K, thereby satisfying desired magnetic properties for heat-assisted magnetic recording media to achieve 4 Tb/in.{sup 2} areal density.

  19. A study: Effect of Students Peer Assisted Learning on Magnetic Field Achievement

    NASA Astrophysics Data System (ADS)

    Mueanploy, Wannapa

    2016-04-01

    This study is the case study of Physic II Course for students of Pathumwan Institute of Technology. The purpose of this study is: 1) to develop cooperative learning method of peer assisted learning (PAL), 2) to compare the learning achievement before and after studied magnetic field lesson by cooperative learning method of peer assisted learning. The population was engineering students of Pathumwan Institute of Technology (PIT’s students) who registered Physic II Course during year 2014. The sample used in this study was selected from the 72 students who passed in Physic I Course. The control groups learning magnetic fields by Traditional Method (TM) and experimental groups learning magnetic field by method of peers assisted learning. The students do pretest before the lesson and do post-test after the lesson by 20 items achievement tests of magnetic field. The post-test higher than pretest achievement significantly at 0.01 level.

  20. Jet rotation: Launching region, angular momentum balance and magnetic properties in the bipolar outflow from RW Aur

    NASA Astrophysics Data System (ADS)

    Woitas, J.; Bacciotti, F.; Ray, T. P.; Marconi, A.; Coffey, D.; Eislöffel, J.

    2005-03-01

    Using STIS on board the HST we have obtained a spectroscopic map of the bipolar jet from RW Aur with the slit parallel to the jet axis and moved across the jet in steps of 0.07 arcsec. After applying a velocity correction due to uneven slit illumination we find signatures of rotation within the first 300 AU of the jet (1.5 arcsec at the distance of RW Aur). Both lobes rotate in the same direction (i.e. with different helicities), with toroidal velocities in the range 5-30 km s-1 at 20 and 30 AU from the symmetry axis in the blueshifted and redshifted lobes, respectively. The sense of rotation is anti-clockwise looking from the tip of the blue lobe (PA 130° north to east) down to the star. Rotation is more evident in the [OI] and [NII] lines and at the largest sampled distance from the axis. These results are consistent with other STIS observations carried out with the slit perpendicular to the jet axis, and with theoretical simulations. Using current magneto-hydrodynamic models for the launch of the jets, we find that the mass ejected in the observed part of the outflow is accelerated from a region in the disk within about 0.5 AU from the star for the blue lobe, and within 1.6 AU from the star for the red lobe. Using also previous results we estimate upper and lower limits for the angular momentum transport rate of the jet. We find that this can be a large fraction (two thirds or more) of the estimated rate transported through the relevant portion of the disk. The magnetic lever arm (defined as the ratio rA/r0 between the Alfvèn and footpoint radii) is in the range 3.5-4.6 (with an accuracy of 20-25%), or, alternatively, the ejection index ξ = dln (dot{M}acc ) / d r is in the range 0.025-0.046 (with similar uncertainties). The derived values are in the range predicted by the models, but they also suggest that some heating must be provided at the base of the flow. Finally, using the general disk wind theory we derive the ratio Bφ / Bp of the toroidal and

  1. NPP Launch

    NASA Video Gallery

    NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft was launched aboard a Delta II rocket at 5:48 a.m. EDT today, on a mission to measure ...

  2. Microbially assisted recording of the Earth's magnetic field in sediment

    PubMed Central

    Zhao, Xiangyu; Egli, Ramon; Gilder, Stuart A.; Müller, Sebastian

    2016-01-01

    Sediments continuously record variations of the Earth's magnetic field and thus provide an important archive for studying the geodynamo. The recording process occurs as magnetic grains partially align with the geomagnetic field during and after sediment deposition, generating a depositional remanent magnetization (DRM) or post-DRM (PDRM). (P)DRM acquisition mechanisms have been investigated for over 50 years, yet many aspects remain unclear. A key issue concerns the controversial role of bioturbation, that is, the mechanical disturbance of sediment by benthic organisms, during PDRM acquisition. A recent theory on bioturbation-driven PDRM appears to solve many inconsistencies between laboratory experiments and palaeomagnetic records, yet it lacks experimental proof. Here we fill this gap by documenting the important role of bioturbation-induced rotational diffusion for (P)DRM acquisition, including the control exerted on the recorded inclination and intensity, as determined by the equilibrium between aligning and perturbing torques acting on magnetic particles. PMID:26864428

  3. Microbially assisted recording of the Earth's magnetic field in sediment

    NASA Astrophysics Data System (ADS)

    Zhao, Xiangyu; Egli, Ramon; Gilder, Stuart A.; Müller, Sebastian

    2016-02-01

    Sediments continuously record variations of the Earth's magnetic field and thus provide an important archive for studying the geodynamo. The recording process occurs as magnetic grains partially align with the geomagnetic field during and after sediment deposition, generating a depositional remanent magnetization (DRM) or post-DRM (PDRM). (P)DRM acquisition mechanisms have been investigated for over 50 years, yet many aspects remain unclear. A key issue concerns the controversial role of bioturbation, that is, the mechanical disturbance of sediment by benthic organisms, during PDRM acquisition. A recent theory on bioturbation-driven PDRM appears to solve many inconsistencies between laboratory experiments and palaeomagnetic records, yet it lacks experimental proof. Here we fill this gap by documenting the important role of bioturbation-induced rotational diffusion for (P)DRM acquisition, including the control exerted on the recorded inclination and intensity, as determined by the equilibrium between aligning and perturbing torques acting on magnetic particles.

  4. Microbially assisted recording of the Earth's magnetic field in sediment.

    PubMed

    Zhao, Xiangyu; Egli, Ramon; Gilder, Stuart A; Müller, Sebastian

    2016-01-01

    Sediments continuously record variations of the Earth's magnetic field and thus provide an important archive for studying the geodynamo. The recording process occurs as magnetic grains partially align with the geomagnetic field during and after sediment deposition, generating a depositional remanent magnetization (DRM) or post-DRM (PDRM). (P)DRM acquisition mechanisms have been investigated for over 50 years, yet many aspects remain unclear. A key issue concerns the controversial role of bioturbation, that is, the mechanical disturbance of sediment by benthic organisms, during PDRM acquisition. A recent theory on bioturbation-driven PDRM appears to solve many inconsistencies between laboratory experiments and palaeomagnetic records, yet it lacks experimental proof. Here we fill this gap by documenting the important role of bioturbation-induced rotational diffusion for (P)DRM acquisition, including the control exerted on the recorded inclination and intensity, as determined by the equilibrium between aligning and perturbing torques acting on magnetic particles. PMID:26864428

  5. Ulysses Launch

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Ulysses is a joint mission between the United States National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) to explore the heliosphere over the full range of solar latitudes, especially in the polar regions. The goal of the Ulysses mission is to provide an accurate assessment of our total solar environment. This collaborative ESA/NASA mission will, for the first time, explore the heliosphere -- the region of space that is dominated by the Sun-- within a few astronomical units of the Sun over the full range of heliographic latitudes. The path followed by the spacecraft, using a Jupiter gravity-assist to achieve a trajectory extending to high solar latitudes, will enable the highly sophisticated scientific instruments on board to make measurements in the uncharted third dimension of the heliosphere. The Ulysses spacecraft will carry nine scientific instruments to measure the properties of the solar corona, the solar wind, the Sun/wind interface, the heliospheric magnetic field, solar radio bursts, plasma waves, solar X-rays, solar and galactic cosmic rays, and the interplanetary/interstellar neutral gas and dust. Scientists will take advantage of the enormous distance between the spacecraft and the Earth to perform astrophysical measurements and to search for gravitational waves. In conjunction with instrumentation on Earth-orbiting spacecraft, Ulysses will help to precisely locate the mysterious sources of cosmic gamma bursts. The results obtained will help to solve outstanding problems in solar and heliospheric physics, while undoubtedly revealing new and unanticipated phenomena.

  6. Ferrimagnetic DyCo5 Nanostructures for Bits in Heat-Assisted Magnetic Recording

    NASA Astrophysics Data System (ADS)

    Ünal, A. A.; Valencia, S.; Radu, F.; Marchenko, D.; Merazzo, K. J.; Vázquez, M.; Sánchez-Barriga, J.

    2016-06-01

    Increasing the magnetic data recording density requires reducing the size of the individual memory elements of a recording layer as well as employing magnetic materials with temperature-dependent functionalities. Therefore, we predict that the near future of magnetic data storage technology involves a combination of energy-assisted recording on nanometer-scale magnetic media. We present the potential of heat-assisted magnetic recording on a patterned sample; a ferrimagnetic alloy composed of a rare-earth and a transition metal DyCo5, which is grown on a hexagonal-ordered nanohole array membrane. The magnetization of the antidot array sample is out-of-plane oriented at room temperature and rotates towards in plane upon heating above its magnetic anisotropy reorientation temperature (TR) of 350 K, just above room temperature. Upon cooling back to room temperature (below TR), we observe a well-defined and unexpected in-plane magnetic domain configuration modulating with 45 nm. We discuss the underlying mechanisms giving rise to this behavior by comparing the magnetic properties of the patterned sample with the ones of its extended thin-film counterpart. Our results pave the way for future applications of ferrimagnetic antidot arrays of superior functionality in magnetic nanodevices near room temperature.

  7. Magnetic-field-assisted atomic polarization spectroscopy of 4 He

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Wang, Haidong; Wu, Teng; Peng, Xiang; Guo, Hong; Cream Team

    2016-05-01

    Atomic polarization spectroscopy (PS) is a high resolution sub-Doppler atomic spectroscopic technique with free modulation. It is always desirable to obtain a PS signal with zero background as it can provide a more preferable laser frequency stabilization performance. There are many factors that can affect the PS signal background, i.e., the laser power, the laser polarization and the magnetic field. Here, we demonstrate a method for observing and analyzing the effects on the PS signal of 4 He under different magnetic fields. At the beginning, under nearly zero magnetic field, the large asymmetrical PS signal background has been observed and cannot be eliminated by only optically adjusting. Then, we find that the PS signal profile can be changed and controlled by varying the magnetic field with transverse or longitudinal direction and different intensity. The optimized PS signal with symmetrical dispersive profile and zero background is obtained when the magnetic field is chosen and controlled in the transverse direction and more than 20000nT intensity. Similar phenomenon cannot be observed under the longitudinal magnetic field. A theoretical model is also presented, which explains and agrees well with our experimental results.

  8. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    NASA Astrophysics Data System (ADS)

    Irshad, M. I.; Ahmad, F.; Mohamed, N. M.; Abdullah, M. Z.; Yar, A.

    2015-07-01

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO4.6H2O buffered with H3BO3 and acidized by dilute H2SO4. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (˜ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  9. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    SciTech Connect

    Irshad, M. I. Mohamed, N. M. Yar, A.; Ahmad, F. Abdullah, M. Z.

    2015-07-22

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO{sub 4.}6H{sub 2}O buffered with H{sub 3}BO{sub 3} and acidized by dilute H{sub 2}SO{sub 4}. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (∼ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  10. Microwave assistance effect on magnetization switching in Co-Cr-Pt granular film

    NASA Astrophysics Data System (ADS)

    Okamoto, Satoshi; Kikuchi, Nobuaki; Hotta, Akira; Furuta, Masaki; Kitakami, Osamu; Shimatsu, Takehito

    2013-11-01

    Experimental verification of microwave assistance effect on a perpendicular magnetic CoCrPt based granular film is demonstrated. Significant reduction of coercivity under the assistance of a radio frequency (rf) field is clearly observed. But the coercivity strongly depends on the duration of rf field, indicating that the magnetic moments of constituent grains are severely perturbed by thermal agitation. Analysis based on the Néel-Arrhenius law has revealed that the dynamic coercivity in nanosecond region can be reduced by 50% only by applying a small rf field with the amplitude less than 2% of the anisotropy field.

  11. Iron oxide nanoparticles for magnetically assisted patterned coatings

    NASA Astrophysics Data System (ADS)

    Dodi, Gianina; Hritcu, Doina; Draganescu, Dan; Popa, Marcel I.

    2015-08-01

    Iron oxide nanoparticles able to magnetically assemble during the curing stage of a polymeric support to create micro-scale surface protuberances in a controlled manner were prepared and characterized. The bare Fe3O4 particles were obtained by two methods: co-precipitation from an aqueous solution containing Fe3+/Fe2+ ions with a molar ratio of 2:1 and partial oxidation of ferrous ions in alkaline conditions. The products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetization measurement. They were subsequently functionalized using oleic acid, sodium oleate, or non-ionic surfactant mixtures with various hydrophilic to lipophilic balance (HLB) values. Composite nanoparticle-polymer films prepared by spraying were deposited and cured by drying on glass slides under a static magnetic field in the range of 1.5-5.5 mT. Magnetic field generated surface roughness was evidenced by optical and scanning electron microscopy. The optimum hierarchical patterning was obtained with the nanoparticles produced by partial oxidation and functionalized with hydrophobic surfactants. Possible applications may include ice-phobic composite coatings.

  12. Development of a prototype magnetically suspended rotor ventricular assist device.

    PubMed

    Bearnson, G B; Maslen, E H; Olsen, D B; Allaire, P E; Khanwilkar, P S; Long, J W; Kim, H C

    1996-01-01

    A continuous flow centrifugal blood pump with magnetically suspended impeller has been designed, constructed, and tested. The system can be functionally divided into three subsystem designs: 1) centrifugal pump and flow paths, 2) magnetic bearings, and 3) brushless DC motor. The centrifugal pump is a Francis vane type design with a designed operating point of 6 L/min flow and 100 mmHg pressure rise at 2,300 RPM. Peak hydraulic efficiency is over 50%. The magnetic bearing system is an all active design with five axes of control. Rotor position sensors were developed as part of the system to provide feedback to a proportional-integral-derivative controller. The motor is a sensorless brushless DC motor. Back electromotive force voltage generated by the motor is used to provide commutation for the motor. No slots are employed in the motor design in order to reduce the radial force that the bearings must generate. Tests pumping blood in vitro were very encouraging; an index of hemolysis of 0.0086 +/- 0.0012 was measured. Further design refinement is needed to reduce power dissipation and size of the device. The concept of using magnetic bearings in a blood pump shows promise in a long-term implantable blood pump. PMID:8828784

  13. In vitro characterization of a magnetically suspended continuous flow ventricular assist device.

    PubMed

    Kim, H C; Bearnson, G B; Khanwilkar, P S; Olsen, D B; Maslen, E H; Allaire, P E

    1995-01-01

    A magnetically suspended continuous flow ventricular assist device using magnetic bearings was developed aiming at an implantable ventricular assist device. The main advantage of this device includes no mechanical wear and minimal chance of blood trauma such, as thrombosis and hemolysis, because there is no mechanical contact between the stationary and rotating parts. The total system consists of two subsystems: the centrifugal pump and the magnetic bearing. The centrifugal pump is comprised of a 4 vane logarithmic spiral radial flow impeller and a brushless DC motor with slotless stator, driven by the back emf commutation scheme. Two radial and one thrust magnetic bearing that dynamically controls the position of the rotor in a radial and axial direction, respectively, contains magnetic coils, the rotor's position sensors, and feedback electronic control system. The magnetic bearing system was able to successfully suspend a 365.5g rotating part in space and sustain it for up to 5000 rpm of rotation. Average force-current square factor of the magnetic bearing was measured as 0.48 and 0.44 (kg-f/Amp2) for radial and thrust bearing, respectively. The integrated system demonstrated adequate performance in mock circulation tests by providing a 6 L/min flow rate against 100 mmHg differential pressure at 2300 rpm. Based on these in vitro performance test results, long-term clinical application of the magnetically suspended continuous flow ventricular assist device is very promising after system optimization with a hybrid system using both active (electromagnet) and passive (permanent magnets) magnet bearings. PMID:8573825

  14. Year 3 Magnet Schools Assistance Program Annual Progress Report, 2009-10. E&R Report No. 10.09

    ERIC Educational Resources Information Center

    Brasfield, Jon; Cárdenas, Virginia

    2010-01-01

    The three Magnet Schools Assistance Program (MSAP) schools: East Garner International Baccalaureate Magnet Middle School (EGMMS), Garner International Baccalaureate Magnet High School (GMHS), and Southeast Raleigh Leadership and Technology Magnet High School (SRMHS) have shown progress on MSAP performance measures during the 3rd year of the grant.…

  15. Finite Larmor radius assisted velocity shear stabilization of the interchange instability in magnetized plasmas

    SciTech Connect

    Ng Sheungwah; Hassam, A.B.

    2005-06-15

    Finite Larmor radius (FLR) effects, originally shown to stabilize magnetized plasma interchange modes at short wavelength, are shown to assist velocity shear stabilization of long wavelength interchanges. It is shown that the FLR effects result in stabilization with roughly the same efficacy as the stabilization from dissipative (resistive and viscous) effects found earlier.

  16. First Report on Accomplishments in Achieving Other Project Objectives. Magnet Assistance Program Performance Report.

    ERIC Educational Resources Information Center

    Charlotte-Mecklenburg Public Schools, Charlotte, NC.

    The 1993-94 school year marked the first year of the federally-assisted magnet program implemented by Charlotte-Mecklenberg (North Carolina) Schools (CMS). This paper presents the program's goals, the measurable objectives developed to meet the goals, and first-year outcomes. The goals were to reduce, eliminate, or prevent minority group isolation…

  17. Magnet Schools Assistance Program. Final Regulations. Federal Register, Department of Education, 34 CFR Part 280

    ERIC Educational Resources Information Center

    National Archives and Records Administration, 2007

    2007-01-01

    The Secretary amends the regulations governing the Magnet Schools Assistance Program (MSAP) in 34 CFR part 280. These amendments allow the MSAP to use an approach similar to that in section 75.200 for establishing selection criteria in grant competitions. Under this approach the MSAP has the flexibility to use selection criteria from its program…

  18. Magnet Schools Assistance Program. Final Regulations. Federal Register, Department of Education, 34 CFR Part 280

    ERIC Educational Resources Information Center

    National Archives and Records Administration, 2004

    2004-01-01

    The Secretary amends the Magnet Schools Assistance Program (MSAP) regulations to reflect changes made to the Elementary and Secondary Education Act of 1965 (ESEA), as amended by the No Child Left Behind Act of 2001 (NCLB). These regulations are effective March 3, 2004. [These final regulations were prepared by the Office of Innovation and…

  19. In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Avilés, Misael O.; Chen, Haitao; Ebner, Armin D.; Rosengart, Axel J.; Kaminski, Michael D.; Ritter, James A.

    2007-04-01

    Implant-assisted-magnetic drug targeting (IA-MDT) was studied in vitro using a coiled ferromagnetic wire stent made from stainless steel 430 or 304, and magnetic drug carrier particle (MDCP) surrogates composed of poly(styrene/divinylbenzene) embedded with 20 wt% magnetite. The fluid velocity, particle concentration, magnetic field strength, and stent material all proved to be important for capturing the MDCP surrogates. Overall, this in vitro study further confirmed the important role of the ferromagnetic implant for attracting and retaining MDCPs at the target zone.

  20. Theoretical study of thermally activated magnetization switching under microwave assistance: Switching paths and barrier height

    NASA Astrophysics Data System (ADS)

    Suto, H.; Kudo, K.; Nagasawa, T.; Kanao, T.; Mizushima, K.; Sato, R.; Okamoto, S.; Kikuchi, N.; Kitakami, O.

    2015-03-01

    Energy barrier height for magnetization switching is theoretically studied for a system with uniaxial anisotropy in a circularly polarized microwave magnetic field. A formulation of the Landau-Lifshitz-Gilbert equation in a rotating frame introduces an effective energy that includes the effects of both the microwave field and static field. This allows the effective-energy profiles to rigorously describe the switching paths and corresponding barrier height, which govern thermally activated magnetization switching under microwave assistance. We show that fixed points and limit cycles in the rotating frame lead to various switching paths and that under certain conditions, switching becomes a two-step process with an intermediate state.

  1. Far-field head-media optical interaction in heat-assisted magnetic recording.

    PubMed

    Yang, Ruoxi; Jones, Paul; Klemmer, Timmothy; Olson, Heidi; Zhang, Deming; Perry, Tyler; Scholz, Werner; Yin, Huaqing; Hipwell, Roger; Thiele, Jan-Ulrich; Tang, Huan; Seigler, Mike

    2016-02-20

    We have used a plane wave expansion method to theoretically study the far-field head-media optical interaction in heat-assisted magnetic recording. For the Advanced Storage Technology Consortium media stack specifically, we notice the outstanding sensitivity related to the interlayer's optical thickness for media reflection and the magnetic layer's light absorption. With 10 nm interlayer thickness change, the recording layer absorption can be changed by more than 25%. The 2D results are found to correlate well with the full 3D model and magnetic recording tests on a flyable disc with different interlayer thickness. PMID:26906574

  2. Numerical analysis of thermally assisted spin-transfer torque magnetization reversal in synthetic ferrimagnetic free layers

    SciTech Connect

    Shen, J.; Shi, M.; Tanaka, T. Matsuyama, K.

    2015-05-07

    The spin transfer torque magnetization reversal of synthetic ferrimagnetic free layers under pulsed temperature rise was numerically studied by solving the Landau–Lifshitz–Gilbert equation, taking into account the stochastic random fields, the temperature dependence of magnetic parameters, and the spin torque terms. The anti-parallel magnetization configuration was retained at the elevated temperature, due to interlayer dipole coupling. A significant thermal assistance effect, resulting in a 40% reduction in the switching current, was demonstrated during a nanosecond pulsed temperature rise up to 77% of the Curie temperature.

  3. Numerical analysis of thermally assisted spin-transfer torque magnetization reversal in synthetic ferrimagnetic free layers

    NASA Astrophysics Data System (ADS)

    Shen, J.; Shi, M.; Tanaka, T.; Matsuyama, K.

    2015-05-01

    The spin transfer torque magnetization reversal of synthetic ferrimagnetic free layers under pulsed temperature rise was numerically studied by solving the Landau-Lifshitz-Gilbert equation, taking into account the stochastic random fields, the temperature dependence of magnetic parameters, and the spin torque terms. The anti-parallel magnetization configuration was retained at the elevated temperature, due to interlayer dipole coupling. A significant thermal assistance effect, resulting in a 40% reduction in the switching current, was demonstrated during a nanosecond pulsed temperature rise up to 77% of the Curie temperature.

  4. Effects of a spin-polarized current assisted Ørsted field in magnetization patterning

    SciTech Connect

    Volkov, Oleksii M. Sheka, Denis D.; Kravchuk, Volodymyr P.; Gaididei, Yuri; Mertens, Franz G.

    2015-06-07

    A spin-polarized electrical current leads to a variety of periodical magnetic structures in nanostripes. In the presence of the Ørsted field, which always assists an electrical current, the basic types of magnetic structures, i.e., a vortex-antivortex crystal and cross-tie domain walls, survive. The Ørsted field prevents saturation of the nanostripe and a longitudinal domain wall appears instead. Possible magnetization structures in stripes with different geometrical and material properties are studied numerically and analytically.

  5. A strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, K.

    1987-01-30

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

  6. Giant thermal spin-torque-assisted magnetic tunnel junction switching.

    PubMed

    Pushp, Aakash; Phung, Timothy; Rettner, Charles; Hughes, Brian P; Yang, See-Hun; Parkin, Stuart S P

    2015-05-26

    Spin-polarized charge currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin currents from temperature gradients, and their associated thermal-spin torques (TSTs), have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe. PMID:25971730

  7. Giant thermal spin-torque–assisted magnetic tunnel junction switching

    PubMed Central

    Pushp, Aakash; Phung, Timothy; Rettner, Charles; Hughes, Brian P.; Yang, See-Hun; Parkin, Stuart S. P.

    2015-01-01

    Spin-polarized charge currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin currents from temperature gradients, and their associated thermal-spin torques (TSTs), have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe. PMID:25971730

  8. Magnetically assisted slip casting of bioinspired heterogeneous composites.

    PubMed

    Le Ferrand, Hortense; Bouville, Florian; Niebel, Tobias P; Studart, André R

    2015-11-01

    Natural composites are often heterogeneous to fulfil functional demands. Manufacturing analogous materials remains difficult, however, owing to the lack of adequate and easily accessible processing tools. Here, we report an additive manufacturing platform able to fabricate complex-shaped parts exhibiting bioinspired heterogeneous microstructures with locally tunable texture, composition and properties, as well as unprecedentedly high volume fractions of inorganic phase (up to 100%). The technology combines an aqueous-based slip-casting process with magnetically directed particle assembly to create programmed microstructural designs using anisotropic stiff platelets in a ceramic, metal or polymer functional matrix. Using quantitative tools to control the casting kinetics and the temporal pattern of the applied magnetic fields, we demonstrate that this approach is robust and can be exploited to design and fabricate heterogeneous composites with thus far inaccessible microstructures. Proof-of-concept examples include bulk composites with periodic patterns of microreinforcement orientation, and tooth-like bilayer parts with intricate shapes exhibiting site-specific composition and texture. PMID:26390326

  9. Magnetically assisted slip casting of bioinspired heterogeneous composites

    NASA Astrophysics Data System (ADS)

    Le Ferrand, Hortense; Bouville, Florian; Niebel, Tobias P.; Studart, André R.

    2015-11-01

    Natural composites are often heterogeneous to fulfil functional demands. Manufacturing analogous materials remains difficult, however, owing to the lack of adequate and easily accessible processing tools. Here, we report an additive manufacturing platform able to fabricate complex-shaped parts exhibiting bioinspired heterogeneous microstructures with locally tunable texture, composition and properties, as well as unprecedentedly high volume fractions of inorganic phase (up to 100%). The technology combines an aqueous-based slip-casting process with magnetically directed particle assembly to create programmed microstructural designs using anisotropic stiff platelets in a ceramic, metal or polymer functional matrix. Using quantitative tools to control the casting kinetics and the temporal pattern of the applied magnetic fields, we demonstrate that this approach is robust and can be exploited to design and fabricate heterogeneous composites with thus far inaccessible microstructures. Proof-of-concept examples include bulk composites with periodic patterns of microreinforcement orientation, and tooth-like bilayer parts with intricate shapes exhibiting site-specific composition and texture.

  10. Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor.

    PubMed

    Huang, Yang; Huang, Yan; Zhu, Minshen; Meng, Wenjun; Pei, Zengxia; Liu, Chang; Hu, Hong; Zhi, Chunyi

    2015-06-23

    Yarn-based supercapacitors have received considerable attention recently, offering unprecedented opportunities for future wearable electronic devices (e.g., smart clothes). However, the reliability and lifespan of yarn-based supercapacitors can be seriously limited by accidental mechanical damage during practical applications. Therefore, a supercapacitor endowed with mechanically and electrically self-healing properties is a brilliant solution to the challenge. Compared with the conventional planar-like or large wire-like structure, the reconnection of the broken yarn electrode composed of multiple tiny fibers (diameter <20 μm) is much more difficult and challenging, which directly affects the restoration of electrical conductivity after damage. Herein, a self-healable yarn-based supercapacitor that ensures the reconnection of broken electrodes has been successfully developed by wrapping magnetic electrodes around a self-healing polymer shell. The strong force from magnetic attraction between the broken yarn electrodes benefits reconnection of fibers in the yarn electrodes during self-healing and thus offers an effective strategy for the restoration of electric conductivity, whereas the polymer shell recovers the configuration integrity and mechanical strength. With the design, the specific capacitance of our prototype can be restored up to 71.8% even after four breaking/healing cycles with great maintenance of the whole device's mechanical properties. This work may inspire the design and fabrication of other distinctive self-healable and wearable electronic devices. PMID:26029976

  11. New vibration-assisted magnetic abrasive polishing (VAMAP) method for microstructured surface finishing.

    PubMed

    Guo, Jiang; Kum, Chun Wai; Au, Ka Hing; Tan, Zhi'En Eddie; Wu, Hu; Liu, Kui

    2016-06-13

    In order to polish microstructured surface without deteriorating its profile, we propose a new vibration-assisted magnetic abrasive polishing (VAMAP) method. In this method, magnetic force guarantees that the magnetic abrasives can well contact the microstructured surface and access the corners of microstructures while vibration produces a relative movement between microstructures and magnetic abrasives. As the vibration direction is parallel to the microstructures, the profile of the microstructures will not be deteriorated. The relation between vibration and magnetic force was analyzed and the feasibility of this method was experimentally verified. The results show that after polishing, the surface finish around microstructures was significantly improved while the profile of microstructures was well maintained. PMID:27410370

  12. Modeling of Ultrafast Heat- and Field-Assisted Magnetization Dynamics in FePt

    NASA Astrophysics Data System (ADS)

    Nieves, P.; Chubykalo-Fesenko, O.

    2016-01-01

    The switching of magnetization by ultrafast lasers alone in FePt could open a technological perspective for magnetic recording technology. Recent experimental results [D. Lambert et al., Science 345, 1337 (2014)] indicate a dynamical magnetization response in FePt under circularly polarized laser pulses. Using high-temperature micromagnetic modeling, based on the stochastic Landau-Lifshitz-Bloch equation, we investigate the possibility of magnetization switching in FePt under the action of an ultrafast heat pulse assisted by either a constant or optomagnetic field. We evaluate the necessary magnitude and duration of the inverse Faraday field to produce a reliable switching. Our results also reproduce experimentally observed magnetization patterns originated from the nonhomogeneous temperature distribution.

  13. The Cassini spacecraft is mated to the launch vehicle adapter in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Flight mechanics from NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., secure the Cassini spacecraft to its launch vehicle adapter in KSC's Payload Hazardous Servicing Facility. The adapter will later be mated to a Titan IV/Centaur expendable launch vehicle that will lift Cassini into space. The mechanic in the crane lift at right is assisting in exact positioning of the spacecraft for precise fitting. Scheduled for launch in October, the Cassini mission seeks insight into the origins and evolution of the early solar system. Scientific instruments carried aboard the spacecraft will study Saturn's atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA.

  14. Spin-Hall-assisted magnetic random access memory

    SciTech Connect

    Brink, A. van den Swagten, H. J. M.; Koopmans, B.; Cosemans, S.; Manfrini, M.; Van Roy, W.; Min, T.; Cornelissen, S.; Vaysset, A.; Departement elektrotechniek , KU Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee

    2014-01-06

    We propose a write scheme for perpendicular spin-transfer torque magnetoresistive random-access memory that significantly reduces the required tunnel current density and write energy. A sub-nanosecond in-plane polarized spin current pulse is generated using the spin-Hall effect, disturbing the stable magnetic state. Subsequent switching using out-of-plane polarized spin current becomes highly efficient. Through evaluation of the Landau-Lifshitz-Gilbert equation, we quantitatively assess the viability of this write scheme for a wide range of system parameters. A typical example shows an eight-fold reduction in tunnel current density, corresponding to a fifty-fold reduction in write energy, while maintaining a 1 ns write time.

  15. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy.

    PubMed

    Gopman, D B; Dennis, C L; Chen, P J; Iunin, Y L; Finkel, P; Staruch, M; Shull, R D

    2016-01-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices. PMID:27297638

  16. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D.

    2016-06-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices.

  17. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy

    PubMed Central

    Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D.

    2016-01-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices. PMID:27297638

  18. Bit patterned media with composite structure for microwave assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Eibagi, Nasim

    Patterned magnetic nano-structures are under extensive research due to their interesting emergent physics and promising applications in high-density magnetic data storage, through magnetic logic to bio-magnetic functionality. Bit-patterned media is an example of such structures which is a leading candidate to reach magnetic densities which cannot be achieved by conventional magnetic media. Patterned arrays of complex heterostructures such as exchange-coupled composites are studied in this thesis as a potential for next generation of magnetic recording media. Exchange-coupled composites have shown new functionality and performance advantages in magnetic recording and bit patterned media provide unique capability to implement such architectures. Due to unique resonant properties of such structures, their possible application in spin transfer torque memory and microwave assisted switching is also studied. This dissertation is divided into seven chapters. The first chapter covers the history of magnetic recording, the need to increase magnetic storage density, and the challenges in the field. The second chapter introduces basic concepts of magnetism. The third chapter explains the fabrication methods for thin films and various lithographic techniques that were used to pattern the devices under study for this thesis. The fourth chapter introduces the exchanged coupled system with the structure of [Co/Pd] / Fe / [Co/Pd], where the thickness of Fe is varied, and presents the magnetic properties of such structures using conventional magnetometers. The fifth chapter goes beyond what is learned in the fourth chapter and utilizes polarized neutron reflectometry to study the vertical exchange coupling and reversal mechanism in patterned structures with such structure. The sixth chapter explores the dynamic properties of the patterned samples, and their reversal mechanism under microwave field. The final chapter summarizes the results and describes the prospects for future

  19. Animal trials of a Magnetically Levitated Left-Ventricular Assist Device

    NASA Technical Reports Server (NTRS)

    Paden, Brad; Antaki, James; Groom, Nelson

    2000-01-01

    The University of Pittsburgh/Magnetic Moments mag-lev left-ventricular assist devices (LVADs), the Streamliner HG3b and HG3c, have successfully been implanted in calves. The first was implanted for 4 hours on July 10, 1998 and the second for 34 days on August 24, 1999 respectively. The tests confirmed the feasibility of low power levitation (1.5 watts coil power) and very low blood damage in a mag-lev ventricular assist device. In this paper, we describe the unique geometry of this pump and its design. Key features of this LVAD concept are the passive radial suspension and active voice-coil thrust bearing.

  20. Biodegradable nanocomposite magnetite stent for implant-assisted magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Mangual, Jan O.; Li, Shigeng; Ploehn, Harry J.; Ebner, Armin D.; Ritter, James A.

    2010-10-01

    This study shows, for the first time, the fabrication of a biodegradable polymer nanocomposite magnetic stent and the feasibility of its use in implant-assisted-magnetic drug targeting (IA-MDT). The nanocomposite magnetic stent was made from PLGA, a biodegradable copolymer, and iron oxide nanopowder via melt mixing and extrusion into fibers. Degradation and dynamic mechanical thermal analyses showed that the addition of the iron oxide nanopowder increased the polymer's glass transition temperature ( Tg) and its modulus but had no notable effect on its degradation rate in PBS buffer solution. IA-MDT in vitro experiments were carried out with the nanocomposite magnetic fiber molded into a stent coil. These stent prototypes were used in the presence of a homogeneous magnetic field of 0.3 T to capture 100 nm magnetic drug carrier particles (MDCPs) from an aqueous solution. Increasing the amount of magnetite in the stent nanocomposite (0, 10 and 40 w/w%) resulted in an increase in the MDCP capture efficiency (CE). Reducing the MDCP concentrations (0.75 and 1.5 mg/mL) in the flowing fluid and increasing the fluid velocities (20 and 40 mL/min) both resulted in decrease in the MDCP CE. These results show that the particle capture performance of PLGA-based, magnetic nanocomposite stents are similar to those exhibited by a variety of different non-polymeric magnetic stent materials studied previously.

  1. A study on dynamic heat assisted magnetization reversal mechanisms under insufficient reversal field conditions

    SciTech Connect

    Chen, Y. J.; Yang, H. Z.; Leong, S. H.; Yu Ko, Hnin Yu; Wu, B. L.; Ng, V.; Asbahi, M.; Yang, J. K. W.

    2014-10-20

    We report an experimental study on the dynamic thermomagnetic (TM) reversal mechanisms at around Curie temperature (Tc) for isolated 60 nm pitch single-domain [Co/Pd] islands heated by a 1.5 μm spot size laser pulse under an applied magnetic reversal field (Hr). Magnetic force microscopy (MFM) observations with high resolution MFM tips clearly showed randomly trapped non-switched islands within the laser irradiated spot after dynamic TM reversal process with insufficient Hr strength. This observation provides direct experimental evidence by MFM of a large magnetization switching variation due to increased thermal fluctuation/agitation over magnetization energy at the elevated temperature of around Tc. The average percentage of non-switched islands/magnetization was further found to be inversely proportional to the applied reversal field Hr for incomplete magnetization reversal when Hr is less than 13% of the island coercivity (Hc), showing an increased switching field distribution (SFD) at elevated temperature of around Tc (where main contributions to SFD broadening are from Tc distribution and stronger thermal fluctuations). Our experimental study and results provide better understanding and insight on practical heat assisted magnetic recording (HAMR) process and recording performance, including HAMR writing magnetization dynamics induced SFD as well as associated DC saturation noise that limits areal density, as were previously observed and investigated by theoretical simulations.

  2. Calibration and measurement of the thermal reflection coefficient of heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Yang, H. Z.; Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.

    2015-08-01

    With increased interest in heat assisted magnetic recording (HAMR), the thermal reflection coefficient of HAMR media becomes more important, as it is related to the change of optical parameters of the media at different temperatures and can potentially be used for non-contact temperature measurement. In this report, we introduce a method to calibrate the thermal reflection coefficient of magnetic thin films by in situ measurement of the thermal reflectance as well as the magneto-optic Kerr effect (MOKE) signal from the media. In the measurement, we use one beam to locally heat up the media, while using a second beam, whose diameter and intensity is much smaller, to measure in situ the MOKE and thermal reflectance signal of the heated media. We characterize the media temperature by heating up the magnetic media with prewritten magnetic patterns in an ultra-high vacuum system and the resulting magnetic remanence in the prewritten area is measured by magnetic force microscopy. Thus the thermal reflection coefficient is measured by performing a pump-probe experiment, with the temperature calibrated at the zero thermoremanence temperature of the HAMR media, at which temperature all grains under test have reached Curie temperature. This method can be extended to comparative studies of the thermo-optical properties of magnetic thin films, whose magnetic properties are sensitive to temperature.

  3. A machine vision assisted system for fluorescent magnetic particle inspection of railway wheelsets

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Sun, Zhenguo; Zhang, Wenzeng; Chen, Qiang

    2016-02-01

    Fluorescent magnetic particle inspection is a conventional non-destructive evaluation process for detecting surface and slightly subsurface cracks of the wheelsets. Using machine vision instead of workers' direct observation could remarkably improve the working condition and repeatability of the inspection. This paper presents a machine vision assisted automatic fluorescent magnetic particle inspection system for surface defect inspection of railway wheelsets. The system setup of it is composed of a semiautomatic fluorescent magnetic particle inspection machine, a vision system and an industrial computer. The detection of magnetic particle indications of quantitative quality indicators and cracks is studied: the detection of quantitative quality indicators is achieved by mathematical morphology, Otsu's thresholding and a RANSAC based ellipse fitting algorithm; the crack detection algorithm is a multiscale algorithm using Gaussian blur, mathematical morphology and several shape and color descriptors. Tests show that the algorithms are able to detect the indications of the quantitative quality indicators and the cracks precisely.

  4. Interplay between magnetic anisotropy and vibron-assisted tunneling in a single-molecule magnet transistor

    NASA Astrophysics Data System (ADS)

    Park, Kyungwha; McCaskey, Alexander; Yamamoto, Yoh; Warnock, Michael; Burzuri, Enrique; van der Zant, Herre

    2015-03-01

    Molecules trapped in single-molecule devices vibrate with discrete frequencies characteristic to the molecules, and the molecular vibrations can couple to electronic charge and/or spin degrees of freedom. For a significant electron-vibron coupling, electrons may tunnel via the vibrational excitations unique to the molecules. Recently, electron transport via individual anisotropic magnetic molecules (referred to as single-molecule magnets) has been observed in single-molecule transistors. A single-molecule magnet has a large spin moment and a large magnetic anisotropy barrier. So far, studies of electron-vibron coupling effects in single-molecule devices, are mainly for isotropic molecules. Here we investigate how the electron-vibron coupling influences electron transport via a single-molecule magnet Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (arXiv:1411.2677). We show that the magnetic anisotropy of the Fe4 induces new features in vibrational conductance peaks and creates vibrational satellite peaks. The main and satellite peak heights have a strong, unusual dependence on the direction and magnitude of applied magnetic field, because the magnetic anisotropy barrier is comparable to vibrational energies. Funding from NSF DMR-1206354, EU FP7 program project 618082 ACMOL, advanced ERC grant (Mols@Mols). Computer resources from SDSC Trestles under DMR060009N and VT ARC.

  5. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    SciTech Connect

    Bauer, C.B.; Rogers, R.D.; Nunez, L.; Ziemer, M.D.; Pleune, T.T.; Vandegrift, G.F.

    1995-11-01

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (K{sub d}) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles.

  6. Modelling of heat assisted magnetic recording with the Landau-Lifshitz-Bloch equation and Brillouin functions

    NASA Astrophysics Data System (ADS)

    Greaves, Simon John; Muraoka, Hiroaki; Kanai, Yasushi

    2015-05-01

    Brillouin functions were used to model the temperature dependence of magnetisation in media for heat assisted magnetic recording. Although dHk/dT was higher when Brillouin functions with J = 0.5 or J = 1 were used, an earlier onset of the linear reversal mode led to a drop in dHc/dT near to Tc, resulting in wider written bits. Tracks written with a higher thermal gradient were also wider when J was small and had lower SNR.

  7. Thermally assisted electric field control of magnetism in flexible multiferroic heterostructures

    PubMed Central

    Liu, Yiwei; Zhan, Qingfeng; Dai, Guohong; Zhang, Xiaoshan; Wang, Baomin; Liu, Gang; Zuo, Zhenghu; Rong, Xin; Yang, Huali; Zhu, Xiaojian; Xie, Yali; Chen, Bin; Li, Run-Wei

    2014-01-01

    Thermal and electrical control of magnetic anisotropy were investigated in flexible Fe81Ga19 (FeGa)/Polyvinylidene fluoride (PVDF) multiferroic heterostructures. Due to the large anisotropic thermal deformation of PVDF (α1 = −13 × 10−6 K−1 and α2 = −145 × 10−6 K−1), the in-plane uniaxial magnetic anisotropy (UMA) of FeGa can be reoriented 90° by changing the temperature across 295 K where the films are magnetically isotropic. Thus, the magnetization of FeGa can be reversed by the thermal cycling between 280 and 320 K under a constant magnetic field lower than coercivity. Moreover, under the assistance of thermal deformation with slightly heating the samples to the critical temperature, the electric field of ± 267 kV cm−1 can well align the UMA along the two orthogonal directions. The new route of combining thermal and electrical control of magnetic properties realized in PVDF-based flexible multiferroic materials shows good prospects in application of flexible thermal spintronic devices and flexible microwave magnetic materials. PMID:25370605

  8. Structural and magnetic studies of thin Fe57 films formed by ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Lyadov, N. M.; Bazarov, V. V.; Vagizov, F. G.; Vakhitov, I. R.; Dulov, E. N.; Kashapov, R. N.; Noskov, A. I.; Khaibullin, R. I.; Shustov, V. A.; Faizrakhmanov, I. A.

    2016-08-01

    Thin Fe57 films with the thickness of 120 nm have been prepared on glass substrates by using the ion-beam-assisted deposition technique. X-ray diffraction, electron microdiffraction and Mössbauer spectroscopy studies have shown that as-deposited films are in a stressful nanostructured state containing the nanoscaled inclusions of α-phase iron with the size of ∼10 nm. Room temperature in-plane and out-of-plane magnetization measurements confirmed the presence of the magnetic α-phase in the iron film and indicated the strong effect of residual stresses on magnetic properties of the film as well. Subsequent thermal annealing of iron films in vacuum at the temperature of 450 °C stimulates the growth of α-phase Fe crystallites with the size of up to 20 nm. However, electron microdiffraction and Mössbauer spectroscopic data have shown the partial oxidation and carbonization of the iron film during annealing. The stress disappeared after annealing of the film. The magnetic behaviour of the annealed samples was characterized by the magnetic hysteresis loop with the coercive field of ∼10 mT and the saturation magnetization decreased slightly in comparison with the α-phase Fe magnetization due to small oxidation of the film.

  9. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism

    PubMed Central

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-01-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered “solid-cored” CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process. PMID:25761381

  10. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism.

    PubMed

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-01-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered "solid-cored" CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process. PMID:25761381

  11. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism

    NASA Astrophysics Data System (ADS)

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-03-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered ``solid-cored'' CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process.

  12. Penetration and screening of perpendicularly launched electromagnetic waves through bounded supercritical plasma confined in multicusp magnetic field

    NASA Astrophysics Data System (ADS)

    Dey, Indranuj; Bhattacharjee, Sudeep

    2011-02-01

    The question of electromagnetic wave penetration and screening by a bounded supercritical (ωp>ω with ωp and ω being the electron-plasma and wave frequencies, respectively) plasma confined in a minimum B multicusp field, for waves launched in the k ⊥Bo mode, is addressed through experiments and numerical simulations. The scale length of radial plasma nonuniformity (|ne/(∂ne/∂r)|) and magnetostatic field (Bo) inhomogeneity (|Bo/(∂Bo/∂r)|) are much smaller than the free space (λo) and guided wavelengths (λg). Contrary to predictions of plane wave dispersion theory and the Clemow-Mullaly-Allis (CMA) diagram, for a bounded plasma a finite propagation occurs through the central plasma regions where αp2=ωp2/ω2≥1 and βc2=ωce2/ω2≪1(˜10-4), with ωce being the electron cyclotron frequency. Wave screening, as predicted by the plane wave model, does not remain valid due to phase mixing and superposition of reflected waves from the conducting boundary, leading to the formation of electromagnetic standing wave modes. The waves are found to satisfy a modified upper hybrid resonance (UHR) relation in the minimum B field and are damped at the local electron cyclotron resonance (ECR) location.

  13. Current and future role of magnetically assisted gastric capsule endoscopy in the upper gastrointestinal tract

    PubMed Central

    Ching, Hey-Long; Hale, Melissa Fay; McAlindon, Mark Edward

    2016-01-01

    Capsule endoscopy first captivated the medical world when it provided a means to visualize the small bowel, which was previously out of endoscopic reach. In the subsequent decade and a half we continue to learn of the true potential that capsule endoscopy has to offer. Of particular current interest is whether capsule endoscopy has any reliable investigative role in the upper gastrointestinal tract. Much research has already been dedicated to enhancing the diagnostic and indeed therapeutic properties of capsule endoscopy. Specific modifications to tackle the challenges of the gut have already been described in the current literature. In the upper gastrointestinal tract, the capacious anatomy of the stomach represents one of many challenges that capsule endoscopy must overcome. One solution to improving diagnostic yield is to utilize external magnetic steering of a magnetically receptive capsule endoscope. Notionally this would provide a navigation system to direct the capsule to different areas of the stomach and allow complete gastric mucosal examination. To date, several studies have presented promising data to support the feasibility of this endeavour. However the jury is still out as to whether this system will surpass conventional gastroscopy, which remains the gold standard diagnostic tool in the foregut. Nevertheless, a minimally invasive and patient-friendly alternative to gastroscopy remains irresistibly appealing, warranting further studies to test the potential of magnetically assisted capsule endoscopy. In this article the authors would like to share the current state of magnetically assisted capsule endoscopy and anticipate what is yet to come. PMID:27134661

  14. Current and future role of magnetically assisted gastric capsule endoscopy in the upper gastrointestinal tract.

    PubMed

    Ching, Hey-Long; Hale, Melissa Fay; McAlindon, Mark Edward

    2016-05-01

    Capsule endoscopy first captivated the medical world when it provided a means to visualize the small bowel, which was previously out of endoscopic reach. In the subsequent decade and a half we continue to learn of the true potential that capsule endoscopy has to offer. Of particular current interest is whether capsule endoscopy has any reliable investigative role in the upper gastrointestinal tract. Much research has already been dedicated to enhancing the diagnostic and indeed therapeutic properties of capsule endoscopy. Specific modifications to tackle the challenges of the gut have already been described in the current literature. In the upper gastrointestinal tract, the capacious anatomy of the stomach represents one of many challenges that capsule endoscopy must overcome. One solution to improving diagnostic yield is to utilize external magnetic steering of a magnetically receptive capsule endoscope. Notionally this would provide a navigation system to direct the capsule to different areas of the stomach and allow complete gastric mucosal examination. To date, several studies have presented promising data to support the feasibility of this endeavour. However the jury is still out as to whether this system will surpass conventional gastroscopy, which remains the gold standard diagnostic tool in the foregut. Nevertheless, a minimally invasive and patient-friendly alternative to gastroscopy remains irresistibly appealing, warranting further studies to test the potential of magnetically assisted capsule endoscopy. In this article the authors would like to share the current state of magnetically assisted capsule endoscopy and anticipate what is yet to come. PMID:27134661

  15. Implant assisted-magnetic drug targeting: Comparison of in vitro experiments with theory

    NASA Astrophysics Data System (ADS)

    Avilés, Misael O.; Ebner, Armin D.; Ritter, James A.

    Implant assisted-magnetic drug targeting (IA-MDT) was studied both in vitro and theoretically, with extensive comparisons made between model and experiment. Magnetic drug carrier particles (MDCPs) comprised of magnetite encased in a polymer were collected magnetically using a ferromagnetic, coiled, wire stent as the implant and a NdFeB permanent magnet for the applied magnetic field. A 2-D mathematical model with no adjustable parameters was developed and compared to the 3-D experimental results. The effects of the fluid velocity, stent and MDCP properties, and magnetic field strength on the performance of the system were evaluated in terms of the capture efficiency (CE) of the MDCPs. In nearly all cases, the parametric trends predicted by the model were in good agreement with the experimental results: the CE always increased with decreasing velocity, increasing magnetic field strength, increasing MDCP size or magnetite content, or increasing wire size. The only exception was when experiments showed an increase in the CE with an increase in the number of loops in the wire, while the model showed no dependence. The discrepancies between experiment and theory were attributed to phenomena not accounted for by the model, such as 3-D to 2-D geometric and magnetic field orientation differences, and interparticle interactions between the MDCPs that lead to magnetic agglomeration and shearing force effects. Overall, this work showed the effectiveness of a stent-based IA-MDT system through both in vitro experimentation and corroborated theory, with the designs of the ferromagnetic wire and the MDCPs both being paramount to the CE.

  16. Simulation of Magnetic Field Assisted Finishing (MFAF) Process Utilizing Smart MR Polishing Tool

    NASA Astrophysics Data System (ADS)

    Barman, Anwesa; Das, Manas

    2016-05-01

    Magnetic field assisted finishing process is an advanced finishing process. This process is capable of producing nanometer level surface finish. In this process magnetic field is applied to control the finishing forces using magnetorheological polishing medium. In the current study, permanent magnet is used to provide the required magnetic field in the finishing zone. The working gap between the workpiece and the magnet is filled with MR fluid which is used as the polishing brush to remove surface undulations from the top surface of the workpiece. In this paper, the distribution of magnetic flux density on the workpiece surface and behaviour of MR polishing medium during finishing are analyzed using commercial finite element packages (Ansys Maxwell® and Comsol®). The role of magnetic force in the indentation of abrasive particles on the workpiece surface is studied. A two-dimensional simulation study of the steady, laminar, and incompressible MR fluid flow behaviour during finishing process is carried out. The material removal and surface roughness modelling of the finishing process are also presented. The indentation force by a single active abrasive particle on the workpiece surface is modelled during simulation. The velocity profile of MR fluid with and without application of magnetic field is plotted. It shows non-Newtonian property without application of magnetic field. After that the total material displacement due to one abrasive particle is plotted. The simulated roughness profile is in a good agreement with the experimental results. The conducted study will help in understanding the fluid behavior and the mechanism of finishing during finishing process. Also, the modelling and simulation of the process will help in achieving better finishing performance.

  17. Theoretical modelling of physiologically stretched vessel in magnetisable stent assisted magnetic drug targetingapplication

    NASA Astrophysics Data System (ADS)

    Mardinoglu, Adil; Cregg, P. J.; Murphy, Kieran; Curtin, Maurice; Prina-Mello, Adriele

    2011-02-01

    The magnetisable stent assisted magnetic targeted drug delivery system in a physiologically stretched vessel is considered theoretically. The changes in the mechanical behaviour of the vessel are analysed under the influence of mechanical forces generated by blood pressure. In this 2D mathematical model a ferromagnetic, coiled wire stent is implanted to aid collection of magnetic drug carrier particles in an elastic tube, which has similar mechanical properties to the blood vessel. A cyclic mechanical force is applied to the elastic tube to mimic the mechanical stress and strain of both the stent and vessel while in the body due to pulsatile blood circulation. The magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included and agglomeration of particles is also modelled. The resulting collection efficiency of the mathematical model shows that the system performance can decrease by as much as 10% due to the effects of the pulsatile blood circulation.

  18. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments.

    PubMed

    Zhang, Xuping; Wang, Guiji; Zhao, Jianheng; Tan, Fuli; Luo, Binqiang; Sun, Chengwei

    2014-05-01

    High velocity flyer plates with good flatness and some thickness have being widely used to the field of shock physics for characterizations of materials under dynamical loading. The techniques of magnetically driven high-velocity flyer plates are further researched based on our pulsed power generators CQ-4 and some good results got on Sandia's Z machine. With large current of several mega-amperes, the loading surface of electrode panel will suffer acute phase transitions caused from magnetic diffusion and Joule heating, and the thickness and flatness of the flyer plates will change with time. In order to obtain the flyer plates with high performances for shock physics, some researches on electrode panels were done by means of LS-DYNA980 software with electro-magnetic package. Two typical configurations for high velocity flyer plates were compared from distribution uniformity of magnetic field in simulation. The results show that the configuration with counter-bore with "notch" and "ear" is better than the other. Then, with the better configuration panels, some experiments were designed and done to validate the simulation results and obtain high velocity flyer plates with good flatness for one-dimensional strain shock experiments on CQ-4. The velocity profiles of the flyer plates were measured by displacement interferometer systems for any reflectors. And the planarity of flyer plates was measured by using the optical fiber pins array for recording the flyer arrival time. The peak velocities of 8.7 km/s with initial dimension of 10 × 7.2 × 0.62 mm for aluminum flyer plates have been achieved. And the flyer plate with initial size of 12 × 9.2 × 0.73 mm was accelerated to velocity of 6.5 km/s with the flatness of less than 11 ns in the central region of 6 mm in diameter and the effective thickness of about 0.220 mm. Based on these work, the symmetrical impact experiments were performed to obtain the high accuracy Hugoniot data of OFHC (oxygen free high conductance

  19. Monte Carlo simulation for thermal assisted reversal process of micro-magnetic torus ring with bistable closure domain structure

    NASA Astrophysics Data System (ADS)

    Terashima, Kenichi; Suzuki, Kenji; Yamaguchi, Katsuhiko

    2016-04-01

    Monte Carlo simulations were performed for temperature dependences of closure domain parameter for a magnetic micro-torus ring cluster under magnetic field on limited temperature regions. Simulation results show that magnetic field on tiny limited temperature region can reverse magnetic closure domain structures when the magnetic field is applied at a threshold temperature corresponding to intensity of applied magnetic field. This is one of thermally assisted switching phenomena through a self-organization process. The results show the way to find non-wasteful pairs between intensity of magnetic field and temperature region for reversing closure domain structure by temperature dependence of the fluctuation of closure domain parameter. Monte Carlo method for this simulation is very valuable to optimize the design of thermally assisted switching devices.

  20. Loading of Launch Vehicle when Launching from Floating Launch Platform

    NASA Astrophysics Data System (ADS)

    Agarkov, A. V.; Pyrig, V. A.

    2002-01-01

    equator, which is a most effective way from payload capability standpoint. But mobility of the Launch Platform conditions an increase in LV loading as compared with onground launch. Therefore, to provide efficiency of lounching from LP requires solving certain issues to minimize LV loading at launch processing. The paper at hand describes ways to solve these issues while creating and operating the international space launch system Sea Launch, which provides commercial spacecraft launches onboard Zenit-3SL launch vehicle from the floating launch platform located at the equator in the Pacific. Methods to decrease these loads by selecting the optimum position of LP and by correcting LP trim and heel were described. In order to account for impact of weather changing (i.e. waves and winds) and launch support operations on the launch capability, a system of predicted load calculation was designed. By measuring LP roll and pitch parameters as well as wind speed and direction, the system defines loading at LV root section, compares it with the allowable value and, based on the compavision, forms a conclusion on launch capability. launches by Sea Launch.

  1. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    NASA Astrophysics Data System (ADS)

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-04-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.

  2. Magnetic levitation assisted aircraft take-off and landing (feasibility study - GABRIEL concept)

    NASA Astrophysics Data System (ADS)

    Rohacs, Daniel; Rohacs, Jozsef

    2016-08-01

    The Technology Roadmap 2013 developed by the International Air Transport Association envisions the option of flying without an undercarriage to be in operation by 2032. Preliminary investigations clearly indicate that magnetic levitation technology (MagLev) might be an appealing solution to assist the aircraft take-off and landing. The EU supported research project, abbreviated as GABRIEL, was dealing with (i) the concept development, (ii) the identification, evaluation and selection of the deployable magnetic levitation technology, (iii) the definition of the core system elements (including the required aircraft modifications, the ground-based system and airport elements, and the rendezvous control system), (iv) the analysis of the safety and security aspects, (v) the concept validation and (vi) the estimation of the proposed concept impact in terms of aircraft weight, noise, emission, cost-benefit). All results introduced here are compared to a medium size hypothetic passenger aircraft (identical with an Airbus A320). This paper gives a systematic overview of (i) the applied methods, (ii) the investigation of the possible use of magnetic levitation technology to assist the commercial aircraft take-off and landing processes and (iii) the demonstrations, validations showing the feasibility of the radically new concept. All major results are outlined.

  3. Perpendicular-anisotropy magnetic tunnel junction switched by spin-Hall-assisted spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohao; Zhao, Weisheng; Deng, Erya; Klein, Jacques-Olivier; Chappert, Claude

    2015-02-01

    We investigate the magnetization switching induced by spin-Hall-assisted spin-transfer torque (STT) in a three-terminal device consisting of a perpendicular-anisotropy magnetic tunnel junction (MTJ) and an β-W strip. Magnetization dynamics in free layer of MTJ is simulated by solving numerically a modified Landau-Lifshitz-Gilbert equation. The influences of spin-Hall write current (density, duration and direction) on the STT switching are evaluated. We find that the switching speed of a STT-MTJ can be significantly improved (reduced to <1 ns) by using a sufficiently large spin-Hall write current density (~25 MA cm-2) with an appropriate duration (~0.5 ns). Finally we develop an electrical model of three-terminal MTJ/β-W device with Verilog-A language and perform transient simulation of switching a 4 T/1MTJ/1β-W memory cell with Spectre simulator. Simulation results demonstrate that spin-Hall-assisted STT-MTJ has advantages over conventional STT-MTJ in write speed and energy.

  4. Magnetic-Field-Assisted Terahertz Quantum Cascade Laser Operating up to 225 K

    NASA Technical Reports Server (NTRS)

    Wade, A.; Fedorov, G.; Smirnov, D.; Kumar, S.; Williams, B. S.; Hu, Q.; Reno, J. L.

    2008-01-01

    Advances in semiconductor bandgap engineering have resulted in the recent development of the terahertz quantum cascade laser1. These compact optoelectronic devices now operate in the frequency range 1.2-5 THz, although cryogenic cooling is still required2.3. Further progress towards the realization of devices operating at higher temperatures and emitting at longer wavelengths (sub-terahertz quantum cascade lasers) is difficult because it requires maintaining a population inversion between closely spaced electronic sub-bands (1 THz approx. equals 4 meV). Here, we demonstrate a magnetic-field-assisted quantum cascade laser based on the resonant-phonon design. By applying appropriate electrical bias and strong magnetic fields above 16 T, it is possible to achieve laser emission from a single device over a wide range of frequencies (0.68-3.33 THz). Owing to the suppression of inter-landau-level non-radiative scattering, the device shows magnetic field assisted laser action at 1 THz at temperatures up to 215 K, and 3 THz lasing up to 225 K.

  5. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    PubMed Central

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-01-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems. PMID:24770490

  6. A multi-functional testing instrument for heat assisted magnetic recording media

    SciTech Connect

    Yang, H. Z. Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.; Yin, M. J.

    2014-05-07

    With recent developments in heat assisted magnetic recording (HAMR), characterization of HAMR media is becoming very important. We present a multi-functional instrument for testing HAMR media, which integrates HAMR writing, reading, and a micro-magneto-optic Kerr effect (μ-MOKE) testing function. A potential application of the present instrument is to make temperature dependent magnetic property measurement using a pump-probe configuration. In the measurement, the media is heated up by a heating (intense) beam while a testing (weak) beam is overlapped with the heating beam for MOKE measurement. By heating the media with different heating beam power, magnetic measurements by MOKE at different temperatures can be performed. Compared to traditional existing tools such as the vibrating sample magnetometer, the present instrument provides localized and efficient heating at the measurement spot. The integration of HAMR writing and μ-MOKE system can also facilitate a localized full investigation of the magnetic media by potential correlation of HAMR head independent write/read performance to localized magnetic properties.

  7. A novel bubbling-assisted exfoliating method preparation of magnetically separable γ-Fe2O3/graphene recyclable photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Hu, Hongrui; Wu, Mingzai; Yu, Xinxin; Sun, Zhaoqi; Li, Guang; Liu, Xiansong; Zheng, Xiuwen

    2014-06-01

    A facile and novel bubbling-assisted exfoliating method was developed for the preparation of γ-Fe2O3/graphene composite, which showed desirable photocatalytic activity toward methyl orange with excellent cycling abilities and the possible growth mechanism was discussed. Photocatalytic and magnetic properties measurements show that the composite has excellent recyclable degradation efficiency and soft magnetic parameters, which makes the composite magnetically separable in a suspension system and can be recycled without significant loss of catalytic activity.

  8. Porous cobalt spheres for high temperature gradient magnetically assisted fluidized beds

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.; Jovanovic, Goran N.; Wheeler, Richard R Jr; Sornchamni, Thana

    2003-01-01

    Porous metallic cobalt spheres have been prepared as high temperature capable media for employment in gradient magnetically assisted fluidization and filtration technologies. Cobalt impregnated alginate beads are first formed by extrusion of an aqueous suspension of Co3O4 into a Co(II) chloride solution. The organic polymer is thermally decomposed yielding cobalt oxide spheres, followed by reduction to the metallic state, and densification. Cobalt beads have been produced with porosities ranging between 10 and 50%, depending upon sintering conditions. The product media have been characterized by scanning electron microscopy (SEM), nitrogen adsorption porosimetry, and vibrating sample magnetometry. c2003 Elsevier Science Ltd. All rights reserved.

  9. Optimizing the coating process of organic actinide extractants on magnetically assisted chemical separation particles.

    SciTech Connect

    Buchholz, B. A.; Tuazon, H. E.; Kaminski, M. D.; Aase, S. B.; Nunez, L.; Vandegrift, G. F.; Chemical Engineering; LLNL; California State Polytechnic Univ. at Pomona; Univ. of Illinois; Univ. of Illinois at Chicago

    1997-01-01

    The coatings of ferromagnetic-charcoal-polymer microparticles (1-25 gm) with organic extractants specific for actinides were optimized for use in the magnetically assisted chemical separation (MACS) process. The organic extractants, octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in tributyl phosphate (TBP), coated the particles when a carrier organic solvent was evaporated. Coated particles were heated in an oven overnight to drive off any remaining carrier solvent and fix the extractants on the particles. Partitioning coefficients for americium obtained with the coated particles routinely reached 3000-4000 ml g-1, approximately 10 times the separation efficiency observed with the conventional solvent extraction system using CMPO and TBP.

  10. Porous cobalt spheres for high temperature gradient magnetically assisted fluidized beds

    SciTech Connect

    Atwater, James E.; Akse, James R.; Jovanovic, Goran N.; Wheeler, Richard R.; Sornchamni, Thana

    2003-02-20

    Porous metallic cobalt spheres have been prepared as high temperature capable media for employment in gradient magnetically assisted fluidization and filtration technologies. Cobalt impregnated alginate beads are first formed by extrusion of an aqueous suspension of Co{sub 3}O{sub 4} into a Co(II) chloride solution. The organic polymer is thermally decomposed yielding cobalt oxide spheres, followed by reduction to the metallic state, and densification. Cobalt beads have been produced with porosities ranging between 10 and 50%, depending upon sintering conditions. The product media have been characterized by scanning electron microscopy (SEM), nitrogen adsorption porosimetry, and vibrating sample magnetometry.

  11. Hysteresis analysis for the permanent magnet assisted synchronous reluctance motor by coupled FEM and Preisach modelling

    SciTech Connect

    Lee, J.H.; Hyun, D.S. . Dept. of Electrical Engineering)

    1999-05-01

    In high speed applications of PMASynRM, hysteresis losses can become the major cause of power dissipation. Therefore, whereas in other kind of machines a rough estimation of hysteresis can be accepted, their importance in PMASynRM justifies a greater effort in calculating them more precisely. This study investigates the hysteresis phenomena of the Permanent Magnet Assisted Synchronous Reluctance Motor (PMASynRM) using coupled FEM and Preisach modelling. Preisach's model, which allows accurate prediction of hysteresis, is adopted in this procedure to provide a nonlinear solution. The computer simulation and experimental result for the i-[lambda] loci show the propriety of the proposed method.

  12. Characteristic analysis of permanent magnet-assisted synchronous reluctance motor for high power application

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ho; Jang, Young-Jin; Hong, Jung-Pyo

    2005-05-01

    In this paper, finite element analysis for a permanent magnet-assisted synchronous reluctance motor (PMASynRM) is presented and the inductance, torque characteristics analysis is performed under the effect of saturation. Comparisons are given with inductance and torque characteristics of normal synchronous reluctance motor (SynRM) and those according to quantity of residual flux density (0.1-0.4T) in PMASynRM, respectively. Comparisons are given with output characteristics of normal SynRM and those of PMASynRM, according to load, respectively. It is confirmed that the proposed model results in high output power performance.

  13. Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2

    NASA Astrophysics Data System (ADS)

    Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter; Praetorius, Dirk

    2016-03-01

    The limits of areal storage density that is achievable with heat-assisted magnetic recording are unknown. We addressed this central question and investigated the areal density of bit-patterned media. We analyzed the detailed switching behavior of a recording bit under various external conditions, allowing us to compute the bit error rate of a write process (shingled and conventional) for various grain spacings, write head positions, and write temperatures. Hence, we were able to optimize the areal density yielding values beyond 10 Tb/in2. Our model is based on the Landau-Lifshitz-Bloch equation and uses hard magnetic recording grains with a 5-nm diameter and 10-nm height. It assumes a realistic distribution of the Curie temperature of the underlying material, grain size, as well as grain and head position.

  14. Nanoscale heat transfer in the head-disk interface for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Wu, Haoyu; Xiong, Shaomin; Canchi, Sripathi; Schreck, Erhard; Bogy, David

    2016-02-01

    Laser heating has been introduced in heat-assisted magnetic recording in order to reduce the magnetic coercivity and enable data writing. However, the heat flow inside a couple of nanometers head-disk gap is still not well understood. An experimental stage was built for studying heat transfer in the head-disk interface (HDI) and the heat-induced instability of the HDI. A laser heating system is included to produce a heated spot on the disk at the position of the slider. A floating air bearing slider is implemented in the stage for sensing the temperature change of the slider due to the heat transfer from the disk by the use of an embedded contact sensor, and the gap between the two surfaces is controlled by the use of a thermal fly-height control actuator. By using this system, we explore the dependency of the heat transfer on the gap spacing as well as the disk temperature.

  15. Using hybrid magnetic bearings to completely suspend the impeller of a ventricular assist device.

    PubMed

    Khanwilkar, P; Olsen, D; Bearnson, G; Allaire, P; Maslen, E; Flack, R; Long, J

    1996-06-01

    Clinically available blood pumps and those under development suffer from poor mechanical reliability and poor biocompatibility related to anatomic fit, hemolysis, and thrombosis. To alleviate these problems concurrently in a long-term device is a substantial challenge. Based on testing the performance of a prototype, and on our judgment of desired characteristics, we have configured an innovative ventricular assist device, the CFVAD4, for long-term use. The design process and its outcome, the CFVAD4 system configuration, is described. To provide unprecedented reliability and biocompatibility, magnetic bearings completely suspend the rotating pump impeller. The CFVAD4 uses a combination of passive (permanent) and active (electric) magnetic bearings, a mixed flow impeller, and a slotless 3-phase brushless DC motor. These components are shaped, oriented, and integrated to provide a compact, implantable, pancake-shaped unit for placement in the left upper abdominal quadrant of adult humans. PMID:8817963

  16. Magnetically-Assisted Remote Controlled Microcatheter Tip Deflection under Magnetic Resonance Imaging.

    PubMed

    Hetts, Steven W; Saeed, Maythem; Martin, Alastair; Lillaney, Prasheel; Losey, Aaron; Yee, Erin Jeannie; Sincic, Ryan; Do, Loi; Evans, Lee; Malba, Vincent; Bernhardt, Anthony F; Wilson, Mark W; Patel, Anand; Arenson, Ronald L; Caton, Curtis; Cooke, Daniel L

    2013-01-01

    X-ray fluoroscopy-guided endovascular procedures have several significant limitations, including difficult catheter navigation and use of ionizing radiation, which can potentially be overcome using a magnetically steerable catheter under MR guidance. The main goal of this work is to develop a microcatheter whose tip can be remotely controlled using the magnetic field of the MR scanner. This protocol aims to describe the procedures for applying current to the microcoil-tipped microcatheter to produce consistent and controllable deflections. A microcoil was fabricated using laser lathe lithography onto a polyimide-tipped endovascular catheter. In vitro testing was performed in a waterbath and vessel phantom under the guidance of a 1.5-T MR system using steady-state free precession (SSFP) sequencing. Various amounts of current were applied to the coils of the microcatheter to produce measureable tip deflections and navigate in vascular phantoms. The development of this device provides a platform for future testing and opportunity to revolutionize the endovascular interventional MRI environment. PMID:23609143

  17. Super-paramagnetic nanoparticles synthesis in a thermal plasma reactor assisted by magnetic bottle

    NASA Astrophysics Data System (ADS)

    Cartaya, R.; Puerta, J.; Martín, P.

    2015-03-01

    The present work is a study of the synthesis of super-paramagnetic particles. A preliminary study based on thermodynamic diagrams of Gibbs free energy minimization, was performed with the CSIRO Thermochemical System. In this way, the synthesis of magnetite nanoparticles from precursor powder of ore iron in a thermal reactor, was performed. Then the process was simulated mathematically using magnetohydrodynamic and kinetic equations, in order to predict the synthesis process. A cylindrical reactor assisted by magnetic mirrors was used. The peak intensity of 0.1 tesla (1000 Gauss) was measured at the end of the solenoid. A PlazjetTM 105/15 thermal plasma torch was used. The precursor powder was iron oxide and the plasma gas, nitrogen. The magnetite powder was magnetized whit rare-earth super-magnets, alloy of neodymium-iron boron (NdFeB) grade N-42. The synthesized nanoparticles diameters was measured with a scanning electron microscope LECO and the permanent magnetization with a YOKOGAWA gauss meter, model 325i. Our experimental results show that it is possible the synthesis of super-paramagnetic nanoparticles in thermal plasma reactors.

  18. Microgravity and Hypogravity Compatible Methods for the Destruction of Solid Wastes by Magnetically Assisted Gasification

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.; Wheeler, Richard R., Jr.; Jovanovic, Goran N.; Pinto-Espinoza, Joaquin; Reed, Brian; Sornchamni, Thana

    2003-01-01

    This report summarizes a three-year collaborative effort between researchers at UMPQUA Research Company (URC) and the Chemical Engineering Department at Oregon State University (OSU). The Magnetically Assisted Gasification (MAG) concept was originally conceived as a microgravity and hypogravity compatible means for the decomposition of solid waste materials generated aboard spacecraft, lunar and planetary habitations, and for the recovery of potentially valuable resources. While a number of methods such as supercritical water oxidation (SCW0), fluidized bed incineration, pyrolysis , composting and related biological processes have been demonstrated for the decomposition of solid wastes, none of these methods are particularly well- suited for employment under microgravity or hypogravity conditions. For example, fluidized bed incineration relies upon a balance between drag forces which the flowing gas stream exerts upon the fluidization particles and the opposing force of gravity. In the absence of gravity, conventional fluidization cannot take place. Hypogravity operation can also be problematic for conventional fluidized bed reactors, because the various factors which govern fluidization phenomena do not all scale linearly with gravity. For this reason it may be difficult to design and test fluidized bed reactors in lg, which are intended to operate under different gravitational conditions. However, fluidization can be achieved in microgravity (and hypogravity) if a suitable replacement force to counteract the forces between fluid and particles can be found. Possible alternatives include: centripetal force, electric fields, or magnetic fields. Of these, magnetic forces created by the action of magnetic fields and magnetic field gradients upon ferromagnetic media offer the most practical approach. The goal of this URC-OSU collaborative effort was to develop magnetic hardware and methods to control the degree of fluidization (or conversely consolidation) of granular

  19. Development of a high magnetic field assisted pulsed laser deposition system

    NASA Astrophysics Data System (ADS)

    Zhang, Kejun; Dai, Jianming; Wu, Wenbin; Zhang, Peng; Zuo, Xuzhong; Zhou, Shu; Zhu, Xuebin; Sheng, Zhigao; Liang, Changhao; Sun, Yuping

    2015-09-01

    A high magnetic field assisted pulsed laser deposition (HMF-PLD) system has been developed to in situ grow thin films in a high magnetic field up to 10 T. In this system, a specially designed PLD cylindrical vacuum chamber is horizontally located in the bore configuration of a superconducting magnet with a bore diameter of 200 mm. To adjust the focused pulsed laser into the target in such a narrow PLD vacuum chamber, an ingeniously built-in laser leading-in chamber is employed, including a laser mirror with a reflection angle of 65° and a damage threshold up to 3.4 J/cm2. A laser alignment system consisting of a built-in video-unit leading-in chamber and a low-energy alignment laser is applied to monitor and align the pulsed laser propagation in the PLD vacuum chamber. We have grown La0.7Sr0.3MnO3 (LSMO) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) [LSAT (001)] substrates by HMF-PLD. The results show that the nanostructures of the LSMO films can be tuned from an epitaxially continuous film structure without field to a vertically aligned nanorod structure with an applied high magnetic field above 5 T, and the dimension size of the nanorods can be tuned by the strength of the magnetic field. The associated magnetic anisotropy is found to be highly dependent on the nanorod structures. We show how the HMF-PLD provides an effective route toward tuning the nanostructures and the physical properties of functional thin films, giving it an important role in development of nanodevices and their application.

  20. Development of a high magnetic field assisted pulsed laser deposition system.

    PubMed

    Zhang, Kejun; Dai, Jianming; Wu, Wenbin; Zhang, Peng; Zuo, Xuzhong; Zhou, Shu; Zhu, Xuebin; Sheng, Zhigao; Liang, Changhao; Sun, Yuping

    2015-09-01

    A high magnetic field assisted pulsed laser deposition (HMF-PLD) system has been developed to in situ grow thin films in a high magnetic field up to 10 T. In this system, a specially designed PLD cylindrical vacuum chamber is horizontally located in the bore configuration of a superconducting magnet with a bore diameter of 200 mm. To adjust the focused pulsed laser into the target in such a narrow PLD vacuum chamber, an ingeniously built-in laser leading-in chamber is employed, including a laser mirror with a reflection angle of 65° and a damage threshold up to 3.4 J/cm(2). A laser alignment system consisting of a built-in video-unit leading-in chamber and a low-energy alignment laser is applied to monitor and align the pulsed laser propagation in the PLD vacuum chamber. We have grown La0.7Sr0.3MnO3 (LSMO) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) [LSAT (001)] substrates by HMF-PLD. The results show that the nanostructures of the LSMO films can be tuned from an epitaxially continuous film structure without field to a vertically aligned nanorod structure with an applied high magnetic field above 5 T, and the dimension size of the nanorods can be tuned by the strength of the magnetic field. The associated magnetic anisotropy is found to be highly dependent on the nanorod structures. We show how the HMF-PLD provides an effective route toward tuning the nanostructures and the physical properties of functional thin films, giving it an important role in development of nanodevices and their application. PMID:26429478

  1. Thermal effects on transducer material for heat assisted magnetic recording application

    SciTech Connect

    Ji, Rong Xu, Baoxi; Cen, Zhanhong; Ying, Ji Feng; Toh, Yeow Teck

    2015-05-07

    Heat Assisted Magnetic Recording (HAMR) is a promising technology for next generation hard disk drives with significantly increased data recording capacities. In HAMR, an optical near-field transducer (NFT) is used to concentrate laser energy on a magnetic recording medium to fulfill the heat assist function. The key components of a NFT are transducer material, cladding material, and adhesion material between the cladding and the transducer materials. Since transducer materials and cladding materials have been widely reported, this paper focuses on the adhesion materials between the Au transducer and the Al{sub 2}O{sub 3} cladding material. A comparative study for two kinds of adhesion material, Ta and Cr, has been conducted. We found that Ta provides better thermal stability to the whole transducer than Cr. This is because after thermal annealing, chromium forms oxide material at interfaces and chromium atoms diffuse remarkably into the Au layer and react with Au to form Au alloy. This study also provides insights on the selection of adhesion material for HAMR transducer.

  2. Launch summary for 1978

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1978-01-01

    Sounding rocket, satellite, and space probe launchings are presented. Time, date, and location of the launches are provided. The sponsoring countries and the institutions responsible for the launch are listed.

  3. Ultra-sensitive magnetic field sensor with resolved temperature cross-sensitivity employing microfiber-assisted modal interferometer integrated with magnetic fluids

    NASA Astrophysics Data System (ADS)

    Liu, Haifeng; Zhang, Hao; Liu, Bo; Song, Binbin; Wu, Jixuan; Lin, Lie

    2016-07-01

    A compact and ultra-sensitive magnetic field sensor has been proposed by exploiting a microfiber-assisted Mach-Zehnder interferometer functionalized by magnetic fluids. We have experimentally investigated the transmission spectral responses of the proposed sensor to the variation of applied magnetic field intensity and environmental temperature. The interference dips exhibit a magnetic field sensitivity as large as -1.193 nm/Oe for a low magnetic field intensity range of 3 Oe to 21 Oe. By using the sensing matrix containing the magnetic field as well as temperature sensitivities for different interference dips, the temperature cross-sensitivity issue could be effectively resolved. Our proposed sensor is anticipated to find potential applications in weak magnetic field detection, and moreover, the immunity to temperature cross-sensitivity effect ensures its applicability in temperature-fluctuated environments.

  4. A novel permanently magnetised high gradient magnetic filter using assisted capture for fine particles

    SciTech Connect

    Watson, J.H.P.

    1995-02-01

    This paper describes the structure and properties of a novel permanently magnetised magnetic filter for fine friable radioactive material. Previously a filter was described and tested. This filter was designed so that the holes in the filter are left open as capture proceeds which means the pressure drop builds up only slowly. This filter is not suitable for friable composite particles which can be broken by mechanical forces. The structure of magnetic part of the second filter has been changed so as to strongly capture particles composed of fine particles weakly bound together which tend to break when captured. This uses a principle of assisted-capture in which coarse particles aid the capture of the fine fragments. The technique has the unfortunate consequence that the pressure drop across the filter rises faster as capture capture proceeds than the filter described previously. These filters have the following characteristics: (1) No external magnet is required. (2) No external power is required. (3) Small is size and portable. (4) Easily interchangeable. (5) Can be cleaned without demagnetising.

  5. Microwave Assisted Synthesis of Ferrite Nanoparticles: Effect of Reaction Temperature on Particle Size and Magnetic Properties.

    PubMed

    Kalyani, S; Sangeetha, J; Philip, John

    2015-08-01

    The preparation of ferrite magnetic nanoparticles of different particle sizes by controlling the reaction temperature using microwave assisted synthesis is reported. The iron oxide nanoparticles synthesized at two different temperatures viz., 45 and 85 °C were characterized using techniques such as X-ray diffraction (XRD), small angle X-ray scattering (SAXS), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The average size of iron oxide nanoparticles synthesized at 45 and 85 °C is found to be 10 and 13.8 nm, respectively, and the nanoparticles exhibited superparamagantic behavior at room temperature. The saturation magnetization values of nanoparticles synthesized at 45 and 85 °C were found to be 67 and 72 emu/g, respectively. The increase in particle size and saturation magnetization values with increase in incubation temperature is attributed to a decrease in supersaturation at elevated temperature. The Curie temperature was found to be 561 and 566 0C for the iron oxide nanoparticles synthesized at 45 and 85 °C, respectively. The FTIR spectrum of the iron oxide nanoparticles synthesized at different temperatures exhibited the characteristic peaks that corresponded to the stretching of bonds between octahedral and tetrahedral metal ions to oxide ions. Our results showed that the ferrite nanoparticle size can be varied by controlling the reaction temperature inside a microwave reactor. PMID:26369150

  6. Areal density optimizations for heat-assisted magnetic recording of high-density media

    NASA Astrophysics Data System (ADS)

    Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter; Praetorius, Dirk

    2016-06-01

    Heat-assisted magnetic recording (HAMR) is hoped to be the future recording technique for high-density storage devices. Nevertheless, there exist several realization strategies. With a coarse-grained Landau-Lifshitz-Bloch model, we investigate in detail the benefits and disadvantages of a continuous and pulsed laser spot recording of shingled and conventional bit-patterned media. Additionally, we compare single-phase grains and bits having a bilayer structure with graded Curie temperature, consisting of a hard magnetic layer with high TC and a soft magnetic one with low TC, respectively. To describe the whole write process as realistically as possible, a distribution of the grain sizes and Curie temperatures, a displacement jitter of the head, and the bit positions are considered. For all these cases, we calculate bit error rates of various grain patterns, temperatures, and write head positions to optimize the achievable areal storage density. Within our analysis, shingled HAMR with a continuous laser pulse moving over the medium reaches the best results and thus has the highest potential to become the next-generation storage device.

  7. The Operation of Magnetically Assisted Fluidized Bed in Microgravity and Variable Gravity: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Sornchamni, T.; Jovanovic, G.; Atwater, J.; Akse, J.; Wheeler, R.

    Typically, the operation of a conventional fluidized bed relies on the balance of gravitational, buoyancy, and drag forces. In the absence of normal gravity, or under microgravity and variable gravity conditions, the gravitational force must be replaced with an alternative force to restore fluidization. Our work has shown that, given a suitable variable magnetic field design, the resulting magnetic field gradient can create sufficient magnetic force acting upon the ferromagnetic particles to replace or supplement the gravitational force. Therefore, the ferromagnetic granular media can be fluidized in either microgravity or hypogravity. In this paper, we present our experimental and theoretical work leading to a) development of theoretical model based on fundamental principles for the design of the Gradient Magnetically Assisted Fluidized Bed (G-MAFB), and b) practical implementation of the G-MAFB in the filtration and destruction of solid biowaste particles from liquid streams. The G-MAFB system consists of a fluidization column and series of Helmholtz electromagnetic coils, with DC power supply. Each Helmholtz ring is powered and controlled separately. Experiments are performed in both 0g (on board NASA KC- 135) and 1g (laboratory) environments. The experiments in 0g are conducted in a two-dimensional, square cross-section, tapered fluidization column. The tapered shape is introduced to provide additional stability to the fluidization particles. The experiments in 0g prove that the magnetic force has a significant role in keeping the particles from extruding out of the bed. Without the magnetic force, it is impossible to have fluidization in space. Solid waste destruction technologies are needed to support long duration human habitation in space. The current technologies, including supercritical water oxidation (SCWO), microwave powered combustion and fluidized bed incineration, have been applied to the destruction of solid wastes, but none are compatible with

  8. Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching

    SciTech Connect

    Balasundaram, Karthik; Mohseni, Parsian K.; Li, Xiuling E-mail: xiuling@illinois.edu; Shuai, Yi-Chen; Zhao, Deyin; Zhou, Weidong E-mail: xiuling@illinois.edu

    2013-11-18

    Metal-assisted chemical etching (MacEtch) is a simple etching method that uses metal as the catalyst for anisotropic etching of semiconductors. However, producing nano-structures using MacEtch from discrete metal patterns, in contrast to interconnected ones, has been challenging because of the difficulties in keeping the discrete metal features in close contact with the semiconductor. We report the use of magnetic field-guided MacEtch (h-MacEtch) to fabricate periodic nanohole arrays in silicon-on-insulator (SOI) wafers for high reflectance photonic crystal membrane reflectors. This study demonstrates that h-MacEtch can be used in place of conventional dry etching to produce ordered nanohole arrays for photonic devices.

  9. Fabrication of a glucose biosensor based on citric acid assisted cobalt ferrite magnetic nanoparticles.

    PubMed

    Krishna, Rahul; Titus, Elby; Chandra, Sudeshna; Bardhan, Neel Kanth; Krishna, Rohit; Bahadur, Dhirendra; Gracio, José

    2012-08-01

    A novel and practical glucose biosensor was fabricated with immobilization of Glucose oxidase (GOx) enzyme on the surface of citric acid (CA) assisted cobalt ferrite (CF) magnetic nanoparticles (MNPs). This innovative sensor was constructed with glassy carbon electrode which is represented as (GOx)/CA-CF/(GCE). An explicit high negative zeta potential value (-22.4 mV at pH 7.0) was observed on the surface of CA-CF MNPs. Our sensor works on the principle of detection of H2O2 which is produced by the enzymatic oxidation of glucose to gluconic acid. This sensor has tremendous potential for application in glucose biosensing due to the higher sensitivity 2.5 microA/cm2-mM and substantial increment of the anodic peak current from 0.2 microA to 10.5 microA. PMID:22962799

  10. Preparation of magnetic Ni@graphene nanocomposites and efficient removal organic dye under assistance of ultrasound

    NASA Astrophysics Data System (ADS)

    Zhao, Chuang; Guo, Jianhui; Yang, Qing; Tong, Lei; Zhang, Jingwei; Zhang, Jiwei; Gong, Chunhong; Zhou, Jingfang; Zhang, Zhijun

    2015-12-01

    In this article, we report a facile one-step synthesis of Ni@graphene nanocomposite microspheres (NGs) in hydrazine hydrate solution under ultrasound conditions. During the ultrasonic process, graphene oxide (GO) was reduced effectively under mild conditions and Ni nanoparticles were simultaneously formed and anchored on graphene sheets, which act as spacers to keep the neighboring sheets separated. The target products exhibit excellent performance for fast and efficient removal of dye contaminants, rhodamine B (RhB) in aqueous solution, under assistance of ultrasound. Finally, the nanocomposites can be easily separated from solution by a magnet. Furthermore, higher content of graphene can be produced under sonication, which facilitates faster and more efficient removal of organic contaminates in the solution. The nanocomposites were also characterized by scanning electron microscopy, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and thermogravimetric analysis.

  11. Operation of magnetically assisted fluidized beds in microgravity and variable gravity: experiment and theory

    NASA Astrophysics Data System (ADS)

    Sornchamni, T.; Jovanovic, G. N.; Reed, B. P.; Atwater, J. E.; Akse, J. R.; Wheeler, R. R.

    2004-01-01

    The conversion of solid waste into useful resources in support of long duration manned missions in space presents serious technological challenges. Several technologies, including supercritical water oxidation, microwave powered combustion and fluidized bed incineration, have been tested for the conversion of solid waste. However, none of these technologies are compatible with microgravity or hypogravity operating conditions. In this paper, we present the gradient magnetically assisted fluidized bed (G-MAFB) as a promising operating platform for fluidized bed operations in the space environment. Our experimental and theoretical work has resulted in both the development of a theoretical model based on fundamental principles for the design of the G-MAFB, and also the practical implementation of the G-MAFB in the filtration and destruction of solid biomass waste particles from liquid streams.

  12. Operation of magnetically assisted fluidized beds in microgravity and variable gravity: experiment and theory

    NASA Technical Reports Server (NTRS)

    Sornchamni, T.; Jovanovic, G. N.; Reed, B. P.; Atwater, J. E.; Akse, J. R.; Wheeler, R. R.

    2004-01-01

    The conversion of solid waste into useful resources in support of long duration manned missions in space presents serious technological challenges. Several technologies, including supercritical water oxidation, microwave powered combustion and fluidized bed incineration, have been tested for the conversion of solid waste. However, none of these technologies are compatible with microgravity or hypogravity operating conditions. In this paper, we present the gradient magnetically assisted fluidized bed (G-MAFB) as a promising operating platform for fluidized bed operations in the space environment. Our experimental and theoretical work has resulted in both the development of a theoretical model based on fundamental principles for the design of the G-MAFB, and also the practical implementation of the G-MAFB in the filtration and destruction of solid biomass waste particles from liquid streams. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process

    SciTech Connect

    Zhang Jilin; Shi Jianxin; Gong Menglian

    2009-08-15

    Nickel ferrite nanospheres were successfully synthesized by a reverse emulsion-assisted hydrothermal method. The reverse emulsion was composed of water, cetyltrimethyl ammonium bromide, polyoxyethylene(10)nonyl phenyl ether, iso-amyl alcohol and hexane. During the hydrothermal process, beta-FeO(OH) and Ni{sub 0.75}Fe{sub 0.25}(CO{sub 3}){sub 0.125}(OH){sub 2}.0.38H{sub 2}O (INCHH) nanorods formed first and then transformed into nickel spinel ferrite nanospheres. The phase transformation mechanism is proposed based on the results of X-ray powder diffraction, transmission electron microscopy and energy-dispersive X-ray spectroscopy, etc. Nickel ferrite may form at the end of the INCHH nanorods or from the solution accompanied by the dissolution of beta-FeO(OH) and INCHH nanorods. The X-ray photoelectron spectroscopy analysis shows that a few Fe{sup 3+} ions have been reduced to Fe{sup 2+} ions during the formation of nickel ferrite. The maximum magnetization of the nickel ferrite nanospheres obtained after hydrothermal reaction for 30 h is 55.01 emu/g, which is close to that of bulk NiFe{sub 2}O{sub 4}. - Graphical abstract: Nickel ferrite nanospheres were obtained through a reverse emulsion-assisted hydrothermal process. The phase transformation as a function of reaction time was studied based on the XRD, TEM and EDS analyses.

  14. Magnetic field assisted assembly of highly ordered percolated nanostructures and their application for transparent conductive thin films

    NASA Astrophysics Data System (ADS)

    Trotsenko, Oleksandr; Tokarev, Alexander; Gruzd, Alexey; Enright, Timothy; Minko, Sergiy

    2015-04-01

    Magnetic field assisted assembly is used to fabricate aligned single nanowire mesh-like nanostructured films. Inhomogeneous magnetic field is applied to translocate high aspect ratio silver nanowires from suspensions to the surface of solid supports. The tangential component of the magnetic field vector is rotated in two consecutive steps to arrange the rectangular mesh-like structure of orthogonally oriented nanowires with minimal fractions of loops and bent structures. This work demonstrates highly ordered nanowire films with superior properties to randomly deposited structures- specifically one order of magnitude greater conductivity and more than ten percent higher transparency. This method is simple, scalable and can be used for the directed assembly of magnetic and nonmagnetic highly ordered, percolated structures.Magnetic field assisted assembly is used to fabricate aligned single nanowire mesh-like nanostructured films. Inhomogeneous magnetic field is applied to translocate high aspect ratio silver nanowires from suspensions to the surface of solid supports. The tangential component of the magnetic field vector is rotated in two consecutive steps to arrange the rectangular mesh-like structure of orthogonally oriented nanowires with minimal fractions of loops and bent structures. This work demonstrates highly ordered nanowire films with superior properties to randomly deposited structures- specifically one order of magnitude greater conductivity and more than ten percent higher transparency. This method is simple, scalable and can be used for the directed assembly of magnetic and nonmagnetic highly ordered, percolated structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00154d

  15. Effect analysis of magnet on L[sub d] and L[sub q] inductance of permanent magnet assisted synchronous reluctance motor using finite element method

    SciTech Connect

    Lee, J.H.; Kim, J.C.; Hyun, D.S. . Dept. of Electrical Engineering)

    1999-05-01

    This study investigates the characteristics of Permanent Magnet Assisted Synchronous Reluctance Motor (PMASynRM) using coupled FEM and Preisach modelling. The focus of this paper is the characteristics analysis of d, q axis inductance according to magnetizing direction and quantity of interior permanent magnet for PMASynRM. Investigation on nonlinear characteristic of machine is performed by Preisach's theory application. Comparisons are given with characteristics of normal Synchronous reluctance motor (SynRM) and those according to the quantity of residual flux density (0.3T and 0.4T) in PMASynRM, respectively.

  16. Magnetic-field-assisted photothermal therapy of cancer cells using Fe-doped carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Vardarajan, Vijaylakshmi; Koymen, Ali R.; Mohanty, Samarendra K.

    2012-01-01

    Photothermal therapy with assistance of nanoparticles offers a solution for the destruction of cancer cells without significant collateral damage to otherwise healthy cells. However, minimizing the required number of injected nanoparticles is a major challenge. Here, we introduce the use of magnetic carbon nanoparticles (MCNPs), localizing them in a desired region by applying an external magnetic-field, and irradiating the targeted cancer cells with a near-infrared laser beam. The MCNPs were prepared in benzene, using an electric plasma discharge, generated in the cavitation field of an ultrasonic horn. The CNPs were made ferromagnetic by use of Fe-electrodes to dope the CNPs, as confirmed by magnetometry. Transmission electron microscopy measurements showed the size distribution of these MCNPs to be in the range of 5 to 10 nm. For photothermal irradiation, a tunable continuous wave Ti: Sapphire laser beam was weakly focused on to the cell monolayer under an inverted fluorescence microscope. The response of different cell types to photothermal irradiation was investigated. Cell death in the presence of both MCNPs and laser beam was confirmed by morphological changes and propidium iodide fluorescence inclusion assay. The results of our study suggest that MCNP based photothermal therapy is a promising approach to remotely guide photothermal therapy.

  17. Magnetic-Field-Assisted Fabrication and Manipulation of Nonspherical Polymer Particles in Ferrofluid-Based Droplet Microfluidics.

    PubMed

    Zhu, Taotao; Cheng, Rui; Sheppard, Gareth R; Locklin, Jason; Mao, Leidong

    2015-08-11

    We report a novel magnetic-field-assisted method for the fabrication and manipulation of nonspherical polymer particles within a ferrofluid-based droplet microfluidic device. Shape control and chain assembly of droplets with tunable lengths have been achieved. PMID:26212067

  18. Characterization of heat-assisted magnetic probe recording on cobalt nickel/platinum multilayers

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    In this PhD project, a method of heat-assisted magnetic recording (HAMR) potentially suitable for probe-based storage systems is characterized. Field emission current from a scanning tunneling microscope (STM) tip is used as the heating source. Pulse voltages of 2--7 V were applied to a CoNi/Pt multilayered film. Identical films fabricated on a bare silicon substrate and an oxidized silicon substrate were applied as the recording medium. Different types of Ir/Pt and W STM tips were used in the experiment. Without the external magnetic field, results show that thermally recorded magnetic marks are formed in the film on silicon substrate, with a nearly uniform mark size of 170 nm when the pulse voltage is above a threshold value. Larger marks were obtained on the film on oxidized silicon substrate. The threshold voltage depends on the material work function of tip. External fields will change the mark size: negative fields lead to smaller marks and positive fields lead to larger marks. Field addition during writing also shows that positive field lowers the threshold write voltage. A model is used to quantitatively simulate our experimental results. It contains three aspects: model of emission current, model of heat transfer in a multilayered structure, and model of magnetic domain. The simulation result agrees well with our experimental results. Based on the model, the requirements to achieve smaller marks are sharp STM tip and high coercivity granular perpendicular medium fabricated on a high thermal conductivity substrate. Some experiments were done on some high coercivity samples. We achieved the smallest marks as 50 nm. We also tried writing by very sharp STM tips with radius below 10 nm, and unfortunately no marks were written. In order to achieve small marks for the purpose of 1 Terabits/in2 recording density, i.e., mark size of 25 nm, we propose writing on a granular perpendicular medium by applying a 3.5 V voltage between a sharp W STM tip (with tip radius of

  19. Fifth FLTSATCOM to be launched

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Launch of the FLTSATOOM-E, into an elliptical orbit by the Atlas Centaur launch vehicle is announced. The launch and relevant launch operations are described. A chart of the launch sequence for FLTSATCOM-E communication satellite is given.

  20. Launching jets from accretion belts

    NASA Astrophysics Data System (ADS)

    Schreier, Ron; Soker, Noam

    2016-05-01

    We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide solid angle. The basic ingredients of the flow are a turbulent region where the accretion belt interacts with the accreting object via a shear layer, and two avoidance regions on the poles where the accretion rate is very low. A dynamo that is developed in the shear layer amplifies magnetic fields to high values. It is likely that the amplified magnetic fields form polar outflows from the avoidance regions. Our speculative belt-launched jets model has implications on a rich variety of astrophysical objects, from the removal of common envelopes to the explosion of core collapse supernovae by jittering jets.

  1. Magnetic Separation-Assistant Fluorescence Resonance Energy Transfer Inhibition for Highly Sensitive Probing of Nucleolin.

    PubMed

    Li, Yan-Ran; Liu, Qian; Hong, Zhangyong; Wang, He-Fang

    2015-12-15

    For the widely used "off-on" fluorescence (or phosphorescence) resonance energy transfer (FRET or PRET) system, the separation of donors and acceptors species was vital for enhancing the sensitivity. To date, separation of free donors from FRET/PRET inhibition systems was somewhat not convenient, whereas separation of the target-induced far-between acceptors has hardly been reported yet. We presented here a novel magnetic separation-assistant fluorescence resonance energy transfer (MS-FRET) inhibition strategy for highly sensitive detection of nucleolin using Cy5.5-AS1411 as the donor and Fe3O4-polypyrrole core-shell (Fe3O4@PPY) nanoparticles as the NIR quenching acceptor. Due to hydrophobic interaction and π-π stacking of AS1411 and PPY, Cy5.5-AS1411 was bound onto the surface of Fe3O4@PPY, resulting in 90% of fluorescence quenching of Cy5.5-AS1411. Owing to the much stronger specific interaction of AS1411 and nucleolin, the presence of nucleolin could take Cy5.5-AS1411 apart from Fe3O4@PPY and restore the fluorescence of Cy5.5-AS1411. The superparamagnetism of Fe3O4@PPY enabled all separations and fluorescence measurements complete in the same quartz cell, and thus allowed the convenient but accurate comparison of the sensitivity and fluorescence recovery in the cases of separation or nonseparation. Compared to nonseparation FRET inhibition, the separation of free Cy5.5-AS1411 from Cy5.5-AS1411-Fe3O4@PPY solution (the first magnetic separation, MS-1) had as high as 25-fold enhancement of the sensitivity, whereas further separation of the nucleolin-inducing far-between Fe3O4@PPY from the FRET inhibition solution (the second magnetic separation, MS-2) could further enhance the sensitivity to 35-fold. Finally, the MS-FRET inhibition assay displayed the linear range of 0.625-27.5 μg L(-1) (8.1-359 pM) and detection limit of 0.04 μg L(-1) (0.05 pM) of nucleolin. The fluorescence intensity recovery (the percentage ratio of the final restoring fluorescence intensity

  2. IRIS Launch Animation

    NASA Video Gallery

    This animation demonstrates the launch and deployment of NASA's Interface Region Imaging Spectrograph (IRIS) mission satellite via a Pegasus rocket. The launch is scheduled for June 26, 2013 from V...

  3. Space Launch System Animation

    NASA Video Gallery

    NASA is ready to move forward with the development of the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new national capability for human exploration be...

  4. Shuttle Era: Launch Directors

    NASA Video Gallery

    A space shuttle launch director is the leader of the complex choreography that goes into a shuttle liftoff. Ten people have served as shuttle launch directors, making the final decision whether the...

  5. Launch Vehicle Operations Simulator

    NASA Technical Reports Server (NTRS)

    Blackledge, J. W.

    1974-01-01

    The Saturn Launch Vehicle Operations Simulator (LVOS) was developed for NASA at Kennedy Space Center. LVOS simulates the Saturn launch vehicle and its ground support equipment. The simulator was intended primarily to be used as a launch crew trainer but it is also being used for test procedure and software validation. A NASA/contractor team of engineers and programmers implemented the simulator after the Apollo XI lunar landing during the low activity periods between launches.

  6. Launch Summary for 1979

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1980-01-01

    Spacecraft launching for 1979 are identified and listed under the categories of (1) sounding rockets, and (2) artificial Earth satellites and space probes. The sounding rockets section includes a listing of the experiments, index of launch sites and tables of the meanings and codes used in the launch listing.

  7. Launch summary for 1980

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1981-01-01

    Sounding rockets, artificial Earth satellites, and space probes launched betweeen January 1 and December 31, 1980 are listed. Data tabulated for the rocket launchings show launching site, instruments carried, date of launch, agency rocket identification, sponsoring country, experiment discipline, peak altitude, and the experimenter or institution responsible. Tables for satellites and space probes show COSPAR designation, spacecraft name, country, launch date, epoch date, orbit type, apoapsis, periapsis and inclination period. The functions and responsibilities of the World Data Center and the areas of scientific interest at the seven subcenters are defined. An alphabetical listing of experimenters using the sounding rockets is also provided.

  8. Thermal modeling of head disk interface system in heat assisted magnetic recording

    SciTech Connect

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S.; Min Kim, Hyung

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfer in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.

  9. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  10. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  11. Launch operations efficiency

    NASA Technical Reports Server (NTRS)

    Diloreto, Clem; Fischer, Carl; Atkins, Bob

    1988-01-01

    The paper discusses launch operations from a program perspective. Launch operations cost is a significant part of program cost. New approaches to launch operations, integrated with lessons learned, have the potential to increase safety and reliability as well as reduce cost. Operational efficiency must be an initial program goal. Design technology and management philosophy must be implemented early to ensure operational cost goals. Manufacturing cost and launch cost are related to operational efficiency. True program savings can be realized through implementation of launch operations cost saving approaches which do not correspondingly increase cost in other program areas such as manufacturing and software development and maintenance. Launch rate is a key factor in the cost/flight analysis and the determination of launch operations efficiency goals.

  12. Heat-Assisted Magnetic Recording: Fundamental Limits to Inverse Electromagnetic Design

    NASA Astrophysics Data System (ADS)

    Bhargava, Samarth

    In this dissertation, we address the burgeoning fields of diffractive optics, metals-optics and plasmonics, and computational inverse problems in the engineering design of electromagnetic structures. We focus on the application of the optical nano-focusing system that will enable Heat-Assisted Magnetic Recording (HAMR), a higher density magnetic recording technology that will fulfill the exploding worldwide demand of digital data storage. The heart of HAMR is a system that focuses light to a nano- sub-diffraction-limit spot with an extremely high power density via an optical antenna. We approach this engineering problem by first discussing the fundamental limits of nano-focusing and the material limits for metal-optics and plasmonics. Then, we use efficient gradient-based optimization algorithms to computationally design shapes of 3D nanostructures that outperform human designs on the basis of mass-market product requirements. In 2014, the world manufactured ˜1 zettabyte (ZB), ie. 1 Billion terabytes (TBs), of data storage devices, including ˜560 million magnetic hard disk drives (HDDs). Global demand of storage will likely increase by 10x in the next 5-10 years, and manufacturing capacity cannot keep up with demand alone. We discuss the state-of-art HDD and why industry invented Heat-Assisted Magnetic Recording (HAMR) to overcome the data density limitations. HAMR leverages the temperature sensitivity of magnets, in which the coercivity suddenly and non-linearly falls at the Curie temperature. Data recording to high-density hard disks can be achieved by locally heating one bit of information while co-applying a magnetic field. The heating can be achieved by focusing 100 microW of light to a 30nm diameter spot on the hard disk. This is an enormous light intensity, roughly ˜100,000,000x the intensity of sunlight on the earth's surface! This power density is ˜1,000x the output of gold-coated tapered optical fibers used in Near-field Scanning Optical Microscopes

  13. COSMOS Launch Services

    NASA Astrophysics Data System (ADS)

    Kalnins, Indulis

    2002-01-01

    COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.

  14. NAP1-Assisted Nucleosome Assembly on DNA Measured in Real Time by Single-Molecule Magnetic Tweezers

    PubMed Central

    Vlijm, Rifka; Smitshuijzen, Jeremy S. J.; Lusser, Alexandra; Dekker, Cees

    2012-01-01

    While many proteins are involved in the assembly and (re)positioning of nucleosomes, the dynamics of protein-assisted nucleosome formation are not well understood. We study NAP1 (nucleosome assembly protein 1) assisted nucleosome formation at the single-molecule level using magnetic tweezers. This method allows to apply a well-defined stretching force and supercoiling density to a single DNA molecule, and to study in real time the change in linking number, stiffness and length of the DNA during nucleosome formation. We observe a decrease in end-to-end length when NAP1 and core histones (CH) are added to the dsDNA. We characterize the formation of complete nucleosomes by measuring the change in linking number of DNA, which is induced by the NAP1-assisted nucleosome assembly, and which does not occur for non-nucleosomal bound histones H3 and H4. By rotating the magnets, the supercoils formed upon nucleosome assembly are removed and the number of assembled nucleosomes can be counted. We find that the compaction of DNA at low force is about 56 nm per assembled nucleosome. The number of compaction steps and associated change in linking number indicate that NAP1-assisted nucleosome assembly is a two-step process. PMID:23050009

  15. A novel magnetic field-assisted polishing method using magnetic compound slurry and its performance in mirror surface finishing of miniature V-grooves

    NASA Astrophysics Data System (ADS)

    Wang, Youliang; Wu, Yongbo; Mitsuyoshi, Nomura

    2016-05-01

    A novel magnetic field-assisted polishing technique was proposed for finishing 3D structured surface using a magnetic compound (MC) slurry. The MC slurry was prepared by blending carbonyl-iron-particles, abrasive grains and α-cellulose into a magnetic fluid which contains nano-scale magnetite particles. An experimental setup was constructed firstly by installing an oscillation worktable and a unit onto a polishing machine. Then, experimental investigations were conducted on oxygen-free copper workpiece with parallel distributed linear V-grooves to clarify the influence of the polishing time and abrasive impact angle on the grooves surface qualities. It was found that (1) the groove form accuracy, i.e. the form retention rate η varied with the polishing locations. Although the form retention rate η deteriorated during the polishing process, the final η was greater than 99.4%; (2) the effective impact angle θm affected the material removal and form accuracy seriously. An increase of the absolute value θm resulted with an increase of material removal rate and a decrease of the form accuracy; (3) the work-surface roughness decreased more than 6 times compared with the original surface after MC slurry polishing. These results confirmed the performance of the proposed new magnetic field-assisted polishing method in the finishing of 3D-structured surface.

  16. High-End Concept Based on Hypersonic Two-Stage Rocket and Electro-Magnetic Railgun to Launch Micro-Satellites Into Low-Earth

    NASA Astrophysics Data System (ADS)

    Bozic, O.; Longo, J. M.; Giese, P.; Behren, J.

    2005-02-01

    The electromagnetic railgun technology appears to be an interesting alternative to launch small payloads into Low Earth Orbit (LEO), as this may introduce lower launch costs. A high-end solution, based upon present state of the art technology, has been investigated to derive the technical boundary conditions for the application of such a new system. This paper presents the main concept and the design aspects of such propelled projectile with special emphasis on flight mechanics, aero-/thermodynamics, materials and propulsion characteristics. Launch angles and trajectory optimisation analyses are carried out by means of 3 degree of freedom simulations (3DOF). The aerodynamic form of the projectile is optimised to provoke minimum drag and low heat loads. The surface temperature distribution for critical zones is calculated with DLR developed Navier-Stokes codes TAU, HOTSOSE, whereas the engineering tool HF3T is used for time dependent calculations of heat loads and temperatures on project surface and inner structures. Furthermore, competing propulsions systems are considered for the rocket engines of both stages. The structural mass is analysed mostly on the basis of carbon fibre reinforced materials as well as classical aerospace metallic materials. Finally, this paper gives a critical overview of the technical feasibility and cost of small rockets for such missions. Key words: micro-satellite, two-stage-rocket, railgun, rocket-engines, aero/thermodynamic, mass optimization

  17. Launch facilities as infrastructure

    NASA Astrophysics Data System (ADS)

    Trial, Mike

    The idea is put forth that launch facilities in the U.S. impose inefficiencies on launch service providers due to the way they have been constructed. Rather than constructing facilities for a specific program, then discarding them when the program is complete, a better use of the facilities investment would be in constructing facilities flexible enough for use by multiple vehicle types over the course of a 25-year design lifetime. The planned National Launch System (NLS) program offers one possible avenue for the federal government to provide a nucleus of launch infrastructure which can improve launch efficiencies. The NLS goals are to develop a new space launch system to meet civil and national needs. The new system will be jointly funded by DOD and NASA but will actively consider commercial space needs. The NLS will improve reliability, responsiveness, and mission performance, and reduce operating costs. The specifics of the infrastructure concept are discussed.

  18. One-pot laser-assisted synthesis of porous carbon with embedded magnetic cobalt nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghimbeu, Camélia Matei; Sopronyi, Mihai; Sima, Felix; Delmotte, Luc; Vaulot, Cyril; Zlotea, Claudia; Paul-Boncour, Valérie; Le Meins, Jean-Marc

    2015-05-01

    A novel one-pot laser-assisted approach is reported herein for the synthesis of ordered carbons with embedded cobalt nanoparticles. The process is based on a UV pulsed laser exposure of an ethanolic solution consisting of green carbon precursors, a structure directing agent and a cobalt salt. Very short irradiation times (5 to 30 min) are only required to polymerize and cross-link carbon precursors (i.e. phloroglucinol and glyoxylic acid) independent of a catalyst presence. The influence of three metallic salts (acetate, nitrate and chloride) on the phenolic resin and carbon characteristics (structure, texture and particle size/distribution) was systematically studied. When exposed to UV laser, the metallic salt exhibited a strong influence on the particle size and distribution in the carbon matrix rather than on the textural carbon properties. Using cobalt acetate, very small (3.5 nm) and uniformly dispersed particles were obtained by this simple, fast and green one-pot synthesis approach. An original combined 13C CP-MAS and DP-DEC solid state NMR spectroscopy analysis allowed to determine the structure of phenolic resins as well as the location of the cobalt salt in the resin. Complementarily, the 1H solid-state and relaxation NMR provided unique insights into the rigidity (cross-linking) of the phenolic resin and dispersion of the cobalt salt. The magnetic properties of cobalt nanoparticles were found to be size-dependent: large Co nanoparticles (~50 nm) behave as bulk Co whereas small Co nanoparticles are superparamagnetic.A novel one-pot laser-assisted approach is reported herein for the synthesis of ordered carbons with embedded cobalt nanoparticles. The process is based on a UV pulsed laser exposure of an ethanolic solution consisting of green carbon precursors, a structure directing agent and a cobalt salt. Very short irradiation times (5 to 30 min) are only required to polymerize and cross-link carbon precursors (i.e. phloroglucinol and glyoxylic acid

  19. One-pot laser-assisted synthesis of porous carbon with embedded magnetic cobalt nanoparticles.

    PubMed

    Ghimbeu, Camélia Matei; Sopronyi, Mihai; Sima, Felix; Delmotte, Luc; Vaulot, Cyril; Zlotea, Claudia; Paul-Boncour, Valérie; Le Meins, Jean-Marc

    2015-06-14

    A novel one-pot laser-assisted approach is reported herein for the synthesis of ordered carbons with embedded cobalt nanoparticles. The process is based on a UV pulsed laser exposure of an ethanolic solution consisting of green carbon precursors, a structure directing agent and a cobalt salt. Very short irradiation times (5 to 30 min) are only required to polymerize and cross-link carbon precursors (i.e. phloroglucinol and glyoxylic acid) independent of a catalyst presence. The influence of three metallic salts (acetate, nitrate and chloride) on the phenolic resin and carbon characteristics (structure, texture and particle size/distribution) was systematically studied. When exposed to UV laser, the metallic salt exhibited a strong influence on the particle size and distribution in the carbon matrix rather than on the textural carbon properties. Using cobalt acetate, very small (3.5 nm) and uniformly dispersed particles were obtained by this simple, fast and green one-pot synthesis approach. An original combined (13)C CP-MAS and DP-DEC solid state NMR spectroscopy analysis allowed to determine the structure of phenolic resins as well as the location of the cobalt salt in the resin. Complementarily, the (1)H solid-state and relaxation NMR provided unique insights into the rigidity (cross-linking) of the phenolic resin and dispersion of the cobalt salt. The magnetic properties of cobalt nanoparticles were found to be size-dependent: large Co nanoparticles (∼50 nm) behave as bulk Co whereas small Co nanoparticles are superparamagnetic. PMID:25981107

  20. Heat assisted recording on bottom layer of dual recording layer perpendicular magnetic recording media for two and a half dimensional (2.5D) magnetic data storage

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Yang, H. Z.; Leong, S. H.; Santoso, B.; Shi, J. Z.; Xu, B. X.; Tsai, J. W. H.

    2015-05-01

    In this paper, we present a study on two and a half dimensional (2.5D) perpendicular magnetic recording (PMR) media consisting of dual hard magnetic recording layers (RL) with 1st or top RL1 used for conventional data storage and 2nd or bottom RL2 used for dedicated servo with lower linear densities or DC servo patterns with focus on the writability issue of the bottom servo layer (RL2). We demonstrate experimentally the feasibility to magnetically erase, write, and re-write RL2 by laser assist on a home built heat-assisted-magnetic-recording writing test system. Experimental data (by magnetic force microscopy measurements) show that the signal amplitudes of the pre-recorded magnetic patterns for both RL1 and RL2 decrease at almost the same rate with thermal erasure using scanning laser power (Pw) from 13 mW to 23 mW, clearly indicating equally effective laser heating and close temperature rise for RL1 and RL2 for far field laser heating with laser pulse duration in sub-μs and μs range. This is further verified by theoretical simulations of the thermal distribution and the temperature rise depth profile in dual layer media by laser heating. Simulations indicate very little temperature difference of less than 6 K (˜1% of maximum temperature rise) between RL1 and RL2 because the main mechanism of temperature rises in RL1 and RL2 is due to the effective thermal conduction from the top layers to lower layers. These experimental and theoretical study results could provide useful understanding and insights into servo writing methods of 2.5D PMR media.

  1. Kestrel balloon launch system

    SciTech Connect

    Newman, M.J.

    1991-10-01

    Kestrel is a high-altitude, Helium-gas-filled-balloon system used to launch scientific payloads in winds up to 20 knots, from small platforms or ships, anywhere over land or water, with a minimal crew and be able to hold in standby conditions. Its major components consist of two balloons (a tow balloon and a main balloon), the main deployment system, helium measurement system, a parachute recovery unit, and the scientific payload package. The main scope of the launch system was to eliminate the problems of being dependent of launching on long airfield runways, low wind conditions, and long launch preparation time. These objectives were clearly met with Kestrel 3.

  2. GPM: Waiting for Launch

    NASA Video Gallery

    The Global Precipitation Measurement mission's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, ...

  3. Usefulness of magnetic resonance imaging-guided vacuum-assisted breast biopsy in Korean women: a pilot study

    PubMed Central

    2013-01-01

    Background Magnetic resonance imaging (MRI)-guided vacuum-assisted biopsy is the technique of choice for lesions that are visible only with breast MRI. The purpose of this study was to report our clinical experience with MRI-guided vacuum-assisted biopsy in Korean women. Methods A total of 13 patients with 15 lesions for MRI-guided vacuum-assisted biopsy were prospectively entered into this study between September 2009 and November 2011. Biopsy samples were obtained in a 3-T magnet using a 9-guage MRI-compatible vacuum-assisted biopsy device. We evaluated clinical indications for biopsy, lesion characteristics on prebiopsy MRI, pathologic results, and postbiopsy complication status. Results The clinical indications for MRI-guided vacuum-assisted biopsy were as follows: abnormalities in patients with interstitial mammoplasty on screening MRI (n = 10); preoperative evaluation of patients with a recently diagnosed cancer (n = 3); and suspicious recurrence on follow-up MRI after cancer surgery (n = 1) or chemotherapy (n = 1). All lesions have morphologic features suspicious or highly suggestive of malignancy by the American College of Radiology Breast Imaging Reporting and Data System category of MRI (C4a = 12, C4b = 2, C5 = 1). In two of the 15 lesions (13.3%, <6 mm), MRI-guided 9-gauge vacuum-assisted breast biopsy was deferred due to nonvisualization of the MRI findings that led to biopsy and the lesions were stable or disappeared on follow up so were considered benign. Of 13 biopsied lesions, pathology revealed four malignancies (4/13, 30.8%; mean size 15.5 mm) and nine benign lesions (9/13, 69.2%; size 14.2 mm). Immediate postprocedural hematoma (mean size 23.5 mm) was observed in eight out of 13 patients (61.5%) and was controlled conservatively. Conclusions Our initial experience of MRI-guided vacuum-assisted biopsy showed a success rate of 86.7% and a cancer diagnosis rate of 30.8%, which was quite satisfactory. MRI-guided vacuum-assisted breast biopsy is a

  4. STS-114: Post Launch Press Conference

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Dean Acosta, Deputy Assistant Administrator for Public Affairs hosted this post launch press conference. Present were Mike Griffin, NASA Administrator; William Ready, Associate Administrator for Space Operations; Bill Parsons, Space Shuttle Program Manager; Mike Leinbach, NASA Launch Director; and Wayne Hill, Deputy Program Manager for Space Shuttle Program. Each expressed thanks to all of NASA Officials and employees, contractors, vendors and the crew for their hard work the past two and a half years that resulted the successful and pristine launch of Space Shuttle Discovery. The Panel emphasized that through extensive technical analysis, thorough planning and tremendous amount of public support brought them full circle again to return to flight. Flight safety, debris during rocket separation, sensors, observations from the mission control, launch conditions were some of the topics discussed with the News media.

  5. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  6. Foreign launch competition growing

    NASA Astrophysics Data System (ADS)

    Brodsky, R. F.; Wolfe, M. G.; Pryke, I. W.

    1986-07-01

    A survey is given of progress made by other nations in providing or preparing to provide satellite launch services. The European Space Agency has four generations of Ariane vehicles, with a fifth recently approved; a second launch facility in French Guiana that has become operational has raised the possible Ariane launch rate to 10 per year, although a May failure of an Ariane 2 put launches on hold. The French Hermes spaceplane and the British HOTOL are discussed. Under the auspices of the Italian National Space Plane, the Iris orbital transfer vehicle is developed and China's Long March vehicles and the Soviet Protons and SL-4 vehicles are discussed; the Soviets moreover are apparently developing not only a Saturn V-class heavy lift vehicle with a 150,000-kg capacity (about five times the largest U.S. capacity) but also a space shuttle and a spaceplane. Four Japanese launch vehicles and some vehicles in an Indian program are also ready to provide launch services. In this new, tough market for launch services, the customers barely outnumber the suppliers. The competition develops just as the Challenger and Titan disasters place the U.S. at a disadvantage and underline the hard work ahead to recoup its heretofore leading position in launch services.

  7. NASA launch schedule

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The National Aeronautics and Space Administration (NASA) has a record-setting launch schedule for 1984—10 space shuttle flights (see Table 1), 10 satellite deployments from the space shuttle in orbit and 12 unmanned missions using expendable launch vehicles. Also scheduled is the launch on March 1 for the National Oceanic and Atmospheric Administration of Landsat D‧, the nation's second earth resources satellite.The launch activity will begin February 3 with the launch of shuttle mission 41-B using the orbiter Challenger. Two communications satellites will be deployed from 41-B: Westar-VI, for Western Union, and Palapa B-2 for the government of Indonesia. The 8-day mission will feature the first shuttle landing at Kennedy Space Center in Florida; and the first flight of the Manned Maneuvering Unit, a self-contained, propulsive backpack that will allow astronauts to move about in space without being tethered to the spacecraft.

  8. A new concentric double prosthesis for sutureless, magnetic-assisted aortic arch inclusion.

    PubMed

    Cirillo, Marco

    2016-04-01

    Acute dissection of the ascending aorta is a life-threatening condition in which the aortic wall develops one or more tears of the intima associated with intramural rupture of the media layer with subsequent formation of a two lumina vessel. The remaining outer layer is just the adventitia, with high risk of complete rupture. Vital organs may be under-perfused. Mortality rate in this acute event is about 50% if an emergent surgical procedure is not performed as soon as possible to replace the tract affected by the primary rupture. Nevertheless, the emergent surgical procedure is affected by high risk of mortality or severe neurologic sequelae, due to the need for deep hypothermia and cardiocirculatory arrest and different methods of cerebral protection. If the patient survives the acute event, a frequent outcome is the establishment of a chronic aortic dissection in the remaining aorta and late chronic dissecting aneurysm, usually starting from the surgical suture itself. Traumatism of surgical stitches and of direct blood flow pressure on weak aortic wall can be important contributing factors of the chronic disease. In conclusions, the majority of these patients undergoes a high risk operation without a complete solution of the disease. We hypothesize that excluding the aortic layers from the blood direct flow and using an anastomotic technique which does not include surgical stitches could help to significantly reduce the recurrence of aortic dissection after the acute event and shorten hypothermic arrest duration. We devised a double tubular prosthesis consisting of two concentric artificial tubes between which the aortic wall is confined and excluded from direct blood flow. We also devised a magnetic assisted sutureless anastomotic technique that seals the aortic tissue between the two prostheses and avoids the perforation of the fragile aortic wall with surgical stitches. We are presenting here this new prototype and draw a few different models. Both acute and

  9. Size dependence of magnetization switching and its dispersion of Co/Pt nanodots under the assistance of radio frequency fields

    SciTech Connect

    Furuta, Masaki Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Shimatsu, Takehito

    2014-04-07

    We have studied the dot size dependence of microwave assisted magnetization switching (MAS) on perpendicular magnetic Co/Pt multilayer dot array. The significant microwave assistance effect has been observed over the entire dot size D ranging from 50 nm to 330 nm examined in the present study. The MAS behavior, however, critically depends on D. The excitation frequency dependence of the switching field is well consistent with the spin wave theory, indicating that the magnetization precession in MAS is in accordance with the well defined eigenmodes depending on the dot diameter. The lowest order spin wave is only excited for D ≤ 100 nm, and then the MAS effect is well consistent with that of the single macrospin prediction. On the other hand, higher order spin waves are excited for D > 100 nm, giving rise to the significant enhancement of the MAS effect. The dispersion of MAS effect also depends on D and is significantly reduced for the region of D > 100 nm. This significant reduction of the dispersion is attributed to the essential feature of the MAS effect which is insensitive to the local fluctuation of anisotropy field, such as defect, damaged layer, and so on.

  10. Thermally assisted interlayer magnetic coupling through Ba0.05Sr0.95TiO3 barriers

    NASA Astrophysics Data System (ADS)

    Carreira, Santiago J.; Avilés Félix, Luis; Sirena, Martín; Alejandro, Gabriela; Steren, Laura B.

    2016-08-01

    We report on the interlayer exchange coupling across insulating barriers observed on Ni80Fe20/Ba0.05Sr0.95TiO3/La0.66Sr0.33MnO3 (Py/BST0.05/LSMO) trilayers. The coupling mechanism has been analyzed in terms of the barrier thickness, samples' substrate, and temperature. We examined the effect of MgO (MGO) and SrTiO3 (STO) (001) single-crystalline substrates on the magnetic coupling and also on the magnetic anisotropies of the samples in order to get a deeper understanding of the magnetism of the structures. We measured a weak coupling mediated by spin-dependent tunneling phenomena whose sign and strength depend on barrier thickness and substrate. An antiferromagnetic (AF) exchange prevails for most of the samples and smoothly increases with the barrier thicknesses as a consequence of the screening effects of the BST0.05. The coupling monotonically increases with temperature in all the samples and this behavior is attributed to thermally assisted mechanisms. The magnetic anisotropy of both magnetic components has a cubic symmetry that in the case of permalloy is added to a small uniaxial component.

  11. Bifrost: A 4th Generation Launch Architecture Concept

    NASA Astrophysics Data System (ADS)

    Rohrschneider, R. R.; Young, D.; St.Germain, B.; Brown, N.; Crowley, J.; Maatsch, J.; Olds, J. R.

    2002-01-01

    A 4th generation launch architecture is studied for the purpose of drastically reducing launch costs and hence enabling new large mass missions such as space solar power and human exploration of other planets. The architecture consists of a magnetic levitation launch tube placed on the equator with the exit end elevated to approximately 20 km. Several modules exist for sending manned and unmanned payloads into Earth orbit. Analysis of the launch tube operations, launch trajectories, module aerodynamics, propulsion modules, and system costs are presented. Using the hybrid logistics module, it is possible to place payloads into low Earth orbit for just over 100 per lb.

  12. Magnetization reversal assisted by half antivortex states in nanostructured circular cobalt disks

    SciTech Connect

    Lara, A.; Aliev, F. G.; Dobrovolskiy, O. V.; Prieto, J. L.; Huth, M.

    2014-11-03

    The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here, we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt (Co) disks with two and three linearly arranged nanoholes directed at 45° and 135° with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magnetic permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.

  13. Magnetization reversal assisted by half antivortex states in nanostructured circular cobalt disks

    NASA Astrophysics Data System (ADS)

    Lara, A.; Dobrovolskiy, O. V.; Prieto, J. L.; Huth, M.; Aliev, F. G.

    2014-11-01

    The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here, we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt (Co) disks with two and three linearly arranged nanoholes directed at 45° and 135° with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magnetic permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.

  14. Mechanism of coercivity enhancement by Ag addition in FePt-C granular films for heat assisted magnetic recording media

    SciTech Connect

    Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K. Wang, J.; Hono, K.; Ina, T.; Nakamura, T.; Ueno, W.; Nitta, K.; Uruga, T.

    2014-06-02

    We investigated the Ag distribution in a FePtAg-C granular film that is under consideration for a heat assisted magnetic recording medium by aberration-corrected scanning transmission electron microscope-energy dispersive X-ray spectroscopy and X-ray absorption fine structure. Ag is rejected from the core of FePt grains during the deposition, forming Ag-enriched shell surrounding L1{sub 0}-ordered FePt grains. Since Ag has no solubility in both Fe and Pt, the rejection of Ag induces atomic diffusions thereby enhancing the kinetics of the L1{sub 0}-order in the FePt grains.

  15. A compact model for magnetic tunnel junction (MTJ) switched by thermally assisted Spin transfer torque (TAS + STT)

    NASA Astrophysics Data System (ADS)

    Zhao, Weisheng; Duval, Julien; Klein, Jacques-Olivier; Chappert, Claude

    2011-12-01

    Thermally assisted spin transfer torque [TAS + STT] is a new switching approach for magnetic tunnel junction [MTJ] nanopillars that represents the best trade-off between data reliability, power efficiency and density. In this paper, we present a compact model for MTJ switched by this approach, which integrates a number of physical models such as temperature evaluation and STT dynamic switching models. Many experimental parameters are included directly to improve the simulation accuracy. It is programmed in the Verilog-A language and compatible with the standard IC CAD tools, providing an easy parameter configuration interface and allowing high-speed co-simulation of hybrid MTJ/CMOS circuits.

  16. Preparation and characterization of magnetic carboxylated nanodiamonds for vortex-assisted magnetic solid-phase extraction of ziram in food and water samples.

    PubMed

    Yılmaz, Erkan; Soylak, Mustafa

    2016-09-01

    A simple and rapid vortex-assisted magnetic solid phase extraction (VA-MSPE) method for the separation and preconcentration of ziram (zinc dimethyldithiocarbamate), subsequent detection of the zinc in complex structure of ziram by flame atomic absorption spectrometry (AAS) has been developed. The ziram content was calculated by using stoichiometric relationship between the zinc and ziram. Magnetic carboxylated nanodiamonds (MCNDs) as solid-phase extraction adsorbent was prepared and characterized by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) spectrometry and scanning electron microscopy (SEM). These magnetic carboxylated nanodiamonds carrying the ziram could be easily separated from the aqueous solution by applying an external magnetic field; no filtration or centrifugation was necessary. Some important factors influencing the extraction efficiency of ziram such as pH of sample solution, amount of adsorbent, type and volume of eluent, extraction and desorption time and sample volume were studied and optimized. The total extraction and detection time was lower than 10min The preconcentration factor (PF), the precision (RSD, n=7), the limit of detection (LOD) and limit of quantification (LOQ) were 160, 7.0%, 5.3µgL(-1) and 17.5µgL(-1), respectively. The interference of various ions has been examined and the method has been applied for the determination of ziram in various waters, foodstuffs samples and synthetic mixtures. PMID:27343589

  17. Magnetocrystalline anisotropy and its electric-field-assisted switching of Heusler-compound-based perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Bai, Zhaoqiang; Shen, Lei; Cai, Yongqing; Wu, Qingyun; Zeng, Minggang; Han, Guchang; Feng, Yuan Ping

    2014-10-01

    Employing density functional theory combined with the non-equilibrium Green's function formalism, we systematically investigate the structural, magnetic and magnetoelectric properties of the Co2FeAl(CFA)/MgO interface, as well as the spin-dependent transport characteristics of the CFA/MgO/CFA perpendicular magnetic tunnel junctions (p-MTJs). We find that the structure of the CFA/MgO interface with the oxygen-top FeAl termination has high thermal stability, which is protected by the thermodynamic equilibrium limit. Furthermore, this structure is found to have perpendicular magnetocrystalline anisotropy (MCA). Giant electric-field-assisted modifications of this interfacial MCA through magnetoelectric coupling are demonstrated with an MCA coefficient of up to 10-7 erg V-1 cm. In addition, our non-collinear spin transport calculations of the CFA/MgO/CFA p-MTJ predict a good magnetoresistance performance of the device.

  18. GPM Launch Coverage

    NASA Video Gallery

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Core Observatory aboard, launched from the Tanegashima Space Center in Japan o...

  19. Advanced launch system

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1991-01-01

    The Advanced Launch System (ALS) is presented. The costs, reliability, capabilities, infrastructure are briefly described. Quality approach, failure modes, structural design, technology benefits, and key facilities are outlined. This presentation is represented by viewgraphs.

  20. Expedition 27 Launch

    NASA Video Gallery

    NASA astronaut Ron Garan and Russian cosmonauts Andrey Borisenko and Alexander Samokutyaev launch in their Soyuz TMA-21 spacecraft from the Baikonur Cosmodrome in Kazakhstan on April 4, 2011 (April...

  1. IRVE 3 Launch

    NASA Video Gallery

    The Inflatable Reentry Vehicle Experiment, or IRVE-3, launched on July 23, 2012, from NASA's Wallops Flight Facility. The purpose of the IRVE-3 test was to show that a space capsule can use an infl...

  2. Launch of Juno!

    NASA Video Gallery

    An Atlas V rocket lofted the Juno spacecraft toward Jupiter from Space Launch Complex-41. The 4-ton Juno spacecraft will take five years to reach Jupiter on a mission to study its structure and dec...

  3. Commercial space launches

    NASA Astrophysics Data System (ADS)

    Robb, David W.

    1984-04-01

    While the space shuttle is expected to be the principle Space Transportation System (STS) of the United States, the Reagan Administration is moving ahead with the President's declared space policy of encouraging private sector operation of expendable launch vehicles (ELV's). With the signing of the “Commercial Space Launch Law” on October 30, the administration hopes that it has opened up the door for commercial ventures into space by streamlining regulations and coordinating applications for launches. The administration considers the development and operation of private sector ELV's as an important part of an overall U.S. space policy, complementing the space shuttle and government ELV's. The law follows by nearly a year the creation of the Office of Commercial Space Transportation at the U.S. Department of Transportation (DOT), which will coordinate applications for commercial space launches.

  4. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  5. Hi-C Launch

    NASA Video Gallery

    The High resolution Coronal Imager (Hi-C) was launched on a NASA Black Brant IX two-stage rocket from White Sands Missile Range in New Mexico July 11, 2012. The experiment reached a maximum velocit...

  6. Anchor Trial Launch

    Cancer.gov

    NCI has launched a multicenter phase III clinical trial called the ANCHOR Study -- Anal Cancer HSIL (High-grade Squamous Intraepithelial Lesion) Outcomes Research Study -- to determine if treatment of HSIL in HIV-infected individuals can prevent anal canc

  7. NASA Now: Glory Launch

    NASA Video Gallery

    In this episode of NASA Now, Dr. Hal Maring joins us to explain why the upcoming launch of the Glory satellite is so important to further our understanding of climate change. He also will speak on ...

  8. STS-64 launch view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Passing through some of the trailer clouds of an overcast sky which temporarily postponed its launch, the Space Shuttle Discovery heads for its 19th Earth orbital flight. Several kilometers away, astronaut John H. Casper, Jr., who took this picture, was piloting the Shuttle Training Aircraft (STA) from which the launch and landing area weather was being monitored. Onboard Discovery were astronauts Richard N. Richards, L. Blaine Hammond, Jr., Mark C. Lee, Carl J. Meade, Susan J. Helms, and Jerry M. Linenger.

  9. Dynamics Explorer launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Simultaneously launched from the WSMC, two satellites are to be placed into polar, copolar orbit in order to acquire data on the coupling phenomena between Earth's lower thermosphere and the magnetosphere, as part of the Solar-Terrestrial Program. The mission sequence, instruments, and science data processing system are described as well as the characteristics of the Delta 3913 launch vehicle, and payload separation staging.

  10. Structural and magnetic characterization of Sm-doped GaN grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dehara, Kentaro; Miyazaki, Yuta; Hasegawa, Shigehiko

    2016-05-01

    We have investigated structural, optical and magnetic properties of Sm-doped GaN thin films grown by plasma-assisted molecular beam epitaxy. Reflection high-energy electron diffraction and X-ray diffraction reveal that Ga1- x Sm x N films with a SmN mole fraction of ˜8% or below are grown on GaN templates without segregation of any secondary phases. With increasing SmN mole fraction, the c-axis lattice parameter of the GaSmN films linearly increases. GaSmN films with low Sm concentrations exhibit inner-4f transitions of Sm3+ in photoluminescence spectra. The present findings show that Sm atoms are substituted for some Ga atoms as trivalent ions (Sm3+). The Ga1- x Sm x N films display hysteresis loops in magnetization versus external magnetic field (M-H) curves even at 300 K. We will discuss the origin of these features together with the corresponding temperature dependences of magnetization.

  11. Synthesis and magnetic properties of (Eu-Ni) substituted Y-type hexaferrite by surfactant assisted co-precipitation method

    NASA Astrophysics Data System (ADS)

    Ali, Irshad; Islam, M. U.; sadiq, Imran; Karamat, Nazia; Iftikhar, Aisha; khan, M. Azhar; Shah, Afzal; Athar, Muhammad; Shakir, Imran; Ashiq, Muhammad Naeem

    2015-07-01

    A series of (Eu-Ni) substituted Y-type hexaferrite with composition Sr2Co(2-x)NixEuyFe(12-y)O22 (x=0.0-1, Y=0.0-0.1) were prepared by the surfactant assisted co-precipitation method. The present samples were sintered at 1050 °C for 8 h. The shape of the particles is plate-like which is very advantageous for various applications and the grain size varies from 73 to 269 nm. The values of saturation magnetization (Ms), remanent magnetization (Mr) and magnetic moment (nB) were found to decrease which are attributed to the weakening of super exchange interactions. The values of in-plane Squareness ratios (Mr/Ms) ranging from 0.41 to 0.65 whereas in case of out of plane measurement it varies from 0.30 to 0.62.The investigated samples can be used in perpendicular recording media (PRM) due to high value of coercivity 2300 Oe which is analogous to the those of M-type and W-type hard magnetic.

  12. Electromagnetic launch, then lessening chemical thrust over time as laser beam powered ion thrust grows{emdash}to any orbit

    SciTech Connect

    Morse, T.M.

    1996-03-01

    The ElectroMagnetic (EM) Launch Tube (LT), using High-Temp SuperConduction (HTSC) EM launch coils if developed, will be built in a tall building, or, if not, at a steep angle up the west slope of an extinct volcano. The Reusable Launch Vehicle (RLV) exits the LT at such high velocity that the otherwise violent entry into the atmosphere is made possible by Special-Laser-Launch-Assist (SLLA), which ionizes and expands the atmosphere immediately ahead of the RLV. At first a brief period of chemical thrust is followed by a long period of ion thrust during ascent to orbit. As decades pass and greater ion thrust is developed, the period of chemical thrust shortens until it is no longer needed. The RLV{close_quote}s ion thrusters are powered by laser/maser, beamed first from the launch site, then from two large Solar-Power-Satellites (SPS) 180{degree} apart in Medium Earth Orbit (MEO) orbit. In orbit, the RLV is limited in where it can go only by the amount of propellant it carries or is stored in various orbits. The RLV can land at a launch site on Earth by using both chemical and ion thrust at first, and later by ion thrust alone as developments cause a far lighter RLV to carry no chemical engines/fuel/tanks. {copyright} {ital 1996 American Institute of Physics.}

  13. GPM Core Observatory Launch Animation

    NASA Video Gallery

    This animation depicts the launch of the Global Precipitation Measurement (GPM) Core Observatory satellite from Tanegashima Space Center, Japan. The launch is currently scheduled for Feb. 27, 2014....

  14. Optimization of Magnetic Field-Assisted Synthesis of Carbon Nanotubes for Sensing Applications

    PubMed Central

    Raniszewski, Grzegorz; Pyc, Marcin; Kolacinski, Zbigniew

    2014-01-01

    One of the most effective ways of synthesizing carbon nanotubes is the arc discharge method. This paper describes a system supported by a magnetic field which can be generated by an external coil. An electric arc between two electrodes is stabilized by the magnetic field following mass flux stabilization from the anode to the cathode. In this work four constructions are compared. Different configurations of cathode and coils are calculated and presented. Exemplary results are discussed. The paper describes attempts of magnetic field optimization for different configurations of electrodes. PMID:25295922

  15. Launch Period Development for the Juno Mission to Jupiter

    NASA Technical Reports Server (NTRS)

    Kowalkowski, Theresa D.; Johannesen, Jennie R.; Lam, Try

    2008-01-01

    The Juno mission to Jupiter is targeted to launch in 2011 and would reach the giant planet about five years later. The interplanetary trajectory is planned to include two large deep space maneuvers and an Earth gravity assist a little more than two years after launch. In this paper, we describe the development of a 21-day launch period for Juno with the objective of keeping overall launch energy and delta-V low while meeting constraints imposed on Earth departure, the deep space maneuvers' timing and geometry, and Jupiter arrival.

  16. Microwave assisted magnetization reversal in cylindrical antidot arrays with in-plane and perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Yumak, Mehmet; Ture, Kerim; Aktas, Gulen; Vega, Victor; Prida, Victor; Garcia, Carlos

    2012-02-01

    Porous anodic alumina is a particularly attractive self-ordered system used as template to fabricate nanostructures. The anodic film contains a self-ordered hexagonal array of parallel pores with tunable pore size and interpore distance, and whose pore locations can be templated. Deposition of magnetic films onto porous alumina leads to the formation of porous magnetic films, whose properties differ significantly from those of unpatterned films. The study of antidot arrays has both technological and fundamental importance. Although porous alumina films are typically synthesized in a planar geometry, in this work we deposited NiFe and Ti/CoCrPt magnetic films with in-plane and out-of-plane anisotropy onto cylindrical-geometry porous anodic alumina substrates to achieve cylindrical antidot arrays. The effect of both, the magnitude of the AC current and the circular magnetic field on the magnetization reversal has been studied for in-plane and perpendicular anisotropies. The level of reduction in the switching field was found to be dependent on the power, the frequency of the microwave pulses and the circular applied magnetic field. Such a reduction is associate with the competition between pumping and damping processes.

  17. AXONOMETRIC, LAUNCH DOOR AND DOOR CYLINDER, LAUNCH PLATFORM ROLLER GUIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AXONOMETRIC, LAUNCH DOOR AND DOOR CYLINDER, LAUNCH PLATFORM ROLLER GUIDE, CRIB SUSPENSION SHOCK STRUT, LAUNCH PLATFORM - Dyess Air Force Base, Atlas F Missle Site S-8, Launch Facility, Approximately 3 miles east of Winters, 500 feet southwest of Highway 1770, center of complex, Winters, Runnels County, TX

  18. Atomic hydrogen as a launch vehicle propellant

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb (sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 1b(sub f)/s/lb(sub m) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  19. Filling the launch gap

    NASA Astrophysics Data System (ADS)

    Hoeser, S.

    1986-05-01

    Vehicles proposed to fill the gap in the U.S. space program's space transport needs for the next decade resulting from the January Challenger disaster, are discussed. Prior to the accident, the Air Force planned to purchase a Complementary Expendable Launch Vehicle system consisting of 10 single-use Titan-34D7 rockets. Another heavy lift booster now considered is the Phoenix H. Commercial launch vehicle systems projected to be available in the necessary time frame include the 215,000-pound thrust 4000-pound LEO payload capacity NASA Delta, the 11,300-pound LEO payload capacity Atlas Centaur the first ICBM, and the all-solid propellant expendable 2000-pound LEO payload Conestoga rocket. Also considered is the man-rated fully reusable Phoenix vertical take-off and vertical-landing launch vehicle.

  20. STS-91 Launch of Discovery from Launch Pad 39-A

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The last mission of the Shuttle-Mir program begins as the Space Shuttle Discovery lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2. A torrent of water is seen flowing onto the mobile launcher platform (MLP) from numerous large quench nozzles, or 'rainbirds,' mounted on its surface. This water, part of the Sound Suppression System, helps protect the orbiter and its payloads from damage by acoustical energy and rocket exhaust reflected from the flame trench and MLP during launch. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir.

  1. Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures

    NASA Astrophysics Data System (ADS)

    Suess, D.; Vogler, C.; Abert, C.; Bruckner, F.; Windl, R.; Breth, L.; Fidler, J.

    2015-04-01

    The switching probability of magnetic elements for heat-assisted recording with pulsed laser heating was investigated. It was found that FePt elements with a diameter of 5 nm and a height of 10 nm show, at a field of 0.5 T, thermally written-in errors of 12%, which is significantly too large for bit-patterned magnetic recording. Thermally written-in errors can be decreased if larger-head fields are applied. However, larger fields lead to an increase in the fundamental thermal jitter. This leads to a dilemma between thermally written-in errors and fundamental thermal jitter. This dilemma can be partly relaxed by increasing the thickness of the FePt film up to 30 nm. For realistic head fields, it is found that the fundamental thermal jitter is in the same order of magnitude of the fundamental thermal jitter in conventional recording, which is about 0.5-0.8 nm. Composite structures consisting of high Curie top layer and FePt as a hard magnetic storage layer can reduce the thermally written-in errors to be smaller than 10-4 if the damping constant is increased in the soft layer. Large damping may be realized by doping with rare earth elements. Similar to single FePt grains in composite structure, an increase of switching probability is sacrificed by an increase of thermal jitter. Structures utilizing first-order phase transitions breaking the thermal jitter and writability dilemma are discussed.

  2. Zvezda Launch Coverage

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Footage shows the Proton Rocket (containing the Zvezda module) ready for launch at the Baikonur Cosmodrome in Kazakhstan, Russia. The interior and exterior of Zvezda are seen during construction. Computerized simulations show the solar arrays deploying on Zvezda in space, the maneuvers of the module as it approaches and connects with the International Space Station (ISS), the installation of the Z1 truss on the ISS and its solar arrays deploying, and the installations of the Destiny Laboratory, Remote Manipulator System, and Kibo Experiment Module. Live footage then shows the successful launch of the Proton Rocket.

  3. Juno II Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1958-01-01

    The modified Jupiter C (sometimes called Juno I), used to launch Explorer I, had minimum payload lifting capabilities. Explorer I weighed slightly less than 31 pounds. Juno II was part of America's effort to increase payload lifting capabilities. Among other achievements, the vehicle successfully launched a Pioneer IV satellite on March 3, 1959, and an Explorer VII satellite on October 13, 1959. Responsibility for Juno II passed from the Army to the Marshall Space Flight Center when the Center was activated on July 1, 1960. On November 3, 1960, a Juno II sent Explorer VIII into a 1,000-mile deep orbit within the ionosphere.

  4. STS-64 launch view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With a crew of six NASA astronauts aboard, the Space Shuttle Discovery heads for its nineteenth Earth-orbital mission. Launch was delayed because of weather, but all systems were 'go,' and the spacecraft left the launch pad at 6:23 p.m. (EDT) on September 9, 1994. Onboard were astronauts Richard N. Richards, L. Blaine Hammond, Carl J. Meade, Mark C. Lee, Susan J. Helms, and Jerry M. Linenger (051-2); Making a bright reflection in nearby marsh waters, the Space Shuttle Discovery heads for its 19th mission in earth orbit (053).

  5. NASA Launch Services Program Overview

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has need to procure a variety of launch vehicles and services for its unmanned spacecraft. The Launch Services Program (LSP) provides the Agency with a single focus for the acquisition and management of Expendable Launch Vehicle (ELV) launch services. This presentation will provide an overview of the LSP and its organization, approach, and activities.

  6. Railgun launch of small bodies

    SciTech Connect

    Drobyshevski, E.M.; Zhukov, B.G.; Sakharov, V.A.

    1995-01-01

    The small body launching using gas or plasma faces the fundamental problem caused by excess energy loss due to great wall surface/volume of the barrel ratio. That is why the efficiency of the plasma armature (PA) railgun acceleration is maximum for 8--10 mm-size bodies and drops as their size decreases. For the nuclear fusion applications, where {number_sign}1--2 mm-size pellets at 5--10 km/s velocity are desirable, one is forced to search for compromise between the body size (3--4 mm) and its velocity (3 km/s). Under these conditions, EM launchers did not demonstrate an advantage over the light-gas guns. When elaborating the {number_sign}1 mm railgun, the authors made use of the ideology of the body launching at constant acceleration close to the body strength or the electrode skin-layer explosion limits. That shortened the barrel length sufficiently. The system becomes highly compact thus permitting rapid test of new operation modes and different modifications of the design including the magnetic field augmentation. As a result of these refinements, the difficulties caused by the catastrophic supply of mass ablated from the electrodes were overcome and regimes of {number_sign}1 mm body non-sabot speed-up to 4.5 km/s were found. Potentialities of the small system created are far from being exhausted.

  7. Launch Vehicle Description

    NASA Technical Reports Server (NTRS)

    Coffey, E. E.; Geye, R. P.

    1970-01-01

    The Thorad-Agena is a two-stage launch vehicle consisting of a Thorad first-stage and an Agena second-stage, connected by a booster adapter. The composite vehicle, including the shroud and the booster adapter, is about 33 meters (109 ft) long. The total weight at lift-off is approximately 91 625 kilograms (202 000 lbm).

  8. Japan's launch vehicles

    NASA Astrophysics Data System (ADS)

    Kuroda, Y.; Hara, N.

    The development of Japan's Mu series scientific research launch vehicles, and N and H series practical applications vehicles, is described. The three-stage M-3C features a second-stage radio inertial guidance system. The evolution to the M-3S includes a first-stage TVC and Solid Motor Roll Control device, and eight 310-m strap-on boosters (SOB's). The M-3SII developed to launch an interplanetary satellite for the 1986 Halley's Comet apparition, employs two 735-mm SOB's and a microprocessor digitalized flight control system, and can put a 770 kg satellite into low earth orbit. The N-1 is a three-stage radio-guided vehicle using first and second stage liquid engines, a solid motor third stage, three SOB's, and having the capability to launch a 145 kg geostationary satellite. N-II improvements include a 350 kg geostationary payload capacity, nine SOB's, and an inertial guidance system. The H-1 planned for 1987 has a 550 kg geostationary payload capacity and a domestically developed cryogenic engine. The H-II planned for 1992 will be capable of launching a two-ton geostationary satellite, or LOX/LH2 plural satellites simultaneously. It will be powered by a single 95-ton thrust LE-7 main engine.

  9. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  10. AC 67 Launch Video

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Live footage of the Unmanned Atlas Centaur (AC) 67 launch is presented on March 26, 1987 at the WESH television station in Florida. Lightning is shown after 49 seconds into the flight. The vehicle is totally destroyed due to a cloud-to-ground lightning flash.

  11. NLS Advanced Development - Launch operations

    NASA Technical Reports Server (NTRS)

    Parrish, Carrie L.

    1992-01-01

    Attention is given to Autonomous Launch Operations (ALO), one of a number of the USAF's National Launch System (NLS) Launch Operations projects whose aim is to research, develop and apply new technologies and more efficient approaches toward launch operations. The goal of the ALO project is to develop generic control and monitor software for launch operation subsystems. The result is enhanced reliability of system design, and reduced software development and retention of expert knowledge throughout the life-cycle of the system.

  12. Designing a Poly (N-isopropylacrylamide) Nanocapsule for Magnetic Field-assisted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Denmark, Daniel; Mukherjee, Pritish; Witanachchi, Sarath

    2014-03-01

    The method of synthesis and the characteristics of polymer based nanocapsules as biomedical drug delivery systems are presented. Magnetic iron oxide nanoparticles have been incorporated into these capsules for effective guidance with external magnetic fields to transport therapeutic compounds to various parts of the human body. Once they have reached their destination they can be stimulated to release the drug to the target tissue through externally applied fields. The polymeric material that constitutes the capsules is specifically designed to melt away with the external stimuli to deliver the therapeutic bio agents near the target tissue. In this work we use nebulization to create aqueous poly (N-isopropylacrylamide) nanoparticles that decompose after being heated beyond their transition temperature. Transmission Electron Microscopic imaging (TEM) and dynamic light scattering (DLS) experiments have been conducted to study the decomposition of the capsules under external stimuli. Distribution of the magnetic nanoparticles within the capsules and their role in delivering the bio agents have been investigated by the Magnetic Force Microscopy (MFM).

  13. Size-tuned Highly-ordered Magnetic Nanodot Arrays via ALD-Assisted Block Copolymer Nanolithography

    NASA Astrophysics Data System (ADS)

    Polisetty, Srinivas; Lin, Chun-Hao; Gladfelter, Wayne L.; Hillmyer, Marc H.; Leighton, Chris

    2014-03-01

    Block copolymer nanolithography of large-area well-ordered magnetic nanostructures is now possible via a variety of approaches and holds considerable appeal for fundamental science and for bit patterned recording media. Here, we demonstrate a non-lift-off damascene-type approach combined with low temperature atomic layer deposition (ALD) of a conformal ZnO layer to provide size-controlled magnetic nanodots. Perpendicularly-aligned nonporous templates were achieved by solvent annealing polystyrene- b-polylactide (PS-PLA) films. Low temperature ALD was then used to conformally coat the template with a ZnO layer of variable thickness to systematically reduce the pore diameter. Our damascene-type non-lift-off process was then used to synthesize Ni80Fe20 dot arrays from such templates, achieving tunable dot diameters (6-30 nm) and controlled dot height (by Ar milling time). Magnetic measurements were used as a probe of island volume, good agreement being obtained between simple calculations, imaging, and blocking temperature measurements. The results demonstrate a simple route to size control from a fixed polymer template, enabling detailed studies of separation-dependent inter-dot magnetic interactions for example. This work was supported primarily by the NSF through the University of Minnesota MRSEC under Award Number DMR-0819885.

  14. Successful launch of SOHO

    NASA Astrophysics Data System (ADS)

    1995-12-01

    "Understanding how the Sun behaves is of crucial importance to all of us on Earth. It affects our everyday lives" said Roger Bonnet, Director of Science at ESA, who witnessed SOHO's spectacular nighttime launch from Cape Canaveral. "When SOHO begins work in four months time, scientists will, for the first time, be able to study this star 24 hours a day, 365 days a year". The 12 instruments on SOHO will probe the Sun inside out, from the star's very centre to the solar wind that blasts its way through the solar system. It will even listen to sounds, like musical notes, deep within the star by recording their vibrations when they reach the surface. SOHO was launched from Cape Canaveral Air Station, Florida, atop an Atlas IIAS rocket, at 09:08 CET on Saturday 2 December 1995. The 1.6 tonne observatory was released into its transfer orbit from the rocket's Centaur upper stage about two hours after launch. It will take four months for the satellite to reach its final position, a unique vantage point, located 1.5 million kilometres from Earth, where the gravitational pull of the Earth and Sun are equal. From here, the Lagrange point, SOHO will have an unobstructed view of the Sun all year round. SOHO's launch was delayed from 23 November because a flaw was discovered in a precision regulator, which throttles the power of the booster engine on the Atlas rocket. The system was replaced and retested before the launch. SOHO is a project of international cooperation between ESA and NASA. The spacecraft was designed and built in Europe, NASA provided the launch and will operate the satellite from its Goddard Space Flight Center, Maryland. European scientists provided eight of the observatory's instruments and US scientists a further three. The spacecraft is part of the international Solar-Terrestrial Science Programme, the next member of which is Cluster, a flotilla of four spacecraft that will study how the Sun affects Earth and surrounding space. Cluster is scheduled for

  15. Magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction of selenium for speciation in foods and beverages.

    PubMed

    Wang, Xiaojun; Wu, Long; Cao, Jiaqi; Hong, Xincheng; Ye, Rui; Chen, Weiji; Yuan, Ting

    2016-07-01

    A novel, simple and rapid method based on magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction (MEA-IL-DLLME) followed by graphite furnace atomic absorption spectrometry (GFAAS) determination was established for the speciation of selenium in various food and beverage samples. In the procedure, a special magnetic effervescent tablet containing CO2 sources (sodium carbonate and sodium dihydrogenphosphate), ionic liquids and Fe3O4 magnetic nanoparticles (MNPs) was used to combine extractant dispersion and magnetic recovery procedures into a single step. The parameters influencing the microextraction efficiency, such as pH of the sample solution, volume of ionic liquid, amount of MNPs, concentration of the chelating agent, salt effect and matrix effect were investigated and optimised. Under the optimised conditions, the limits of detection (LODs) for Se(IV) were 0.021 μg l(-)(1) and the linear dynamic range was 0.05-5.0 μg l(-)(1). The relative standard deviation for seven replicate measurements of 1.0 μg l(-)(1) of Se(IV) was 2.9%. The accuracy of the developed method was evaluated by analysis of the standard reference materials (GBW10016 tea, GBW10017 milk powder, GBW10043 Liaoning rice, GBW10046 Henan wheat, GBW10048 celery). The proposed method was successfully applied to food and beverage samples including black tea, milk powder, mushroom, soybean, bamboo shoots, energy drink, bottled water, carbonated drink and mineral water for the speciation of Se(IV) and Se(VI) with satisfactory relative recoveries (92.0-108.1%). PMID:27181611

  16. Astronaut Jean-Francois Clervoy in white room on launch pad 39B

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In the white room at Launch Pad 39B, STS-66 mission specialist Jean-Francois Clervoy is assisted with his partial pressure launch/entry suit by close-out crew members Travis Thompson and Danny Wyatt (background) before entering the Space Shuttle Atlantis for its November 3 launch.

  17. Head-disk Interface Study for Heat Assisted Magnetic Recording (HAMR) and Plasmonic Nanolithography for Patterned Media

    NASA Astrophysics Data System (ADS)

    Xiong, Shaomin

    The magnetic storage areal density keeps increasing every year, and magnetic recording-based hard disk drives provide a very cheap and effective solution to the ever increasing demand for data storage. Heat assisted magnetic recording (HAMR) and bit patterned media have been proposed to increase the magnetic storage density beyond 1 Tb/in2. In HAMR systems, high magnetic anisotropy materials are recommended to break the superparamagnetic limit for further scaling down the size of magnetic bits. However, the current magnetic transducers are not able to generate strong enough field to switch the magnetic orientations of the high magnetic anisotropy material so the data writing is not able to be achieved. So thermal heating has to be applied to reduce the coercivity for the magnetic writing. To provide the heating, a laser is focused using a near field transducer (NFT) to locally heat a ~(25 nm)2 spot on the magnetic disk to the Curie temperature, which is ~ 400 C-600°C, to assist in the data writing process. But this high temperature working condition is a great challenge for the traditional head-disk interface (HDI). The disk lubricant can be depleted by evaporation or decomposition. The protective carbon overcoat can be graphitized or oxidized. The surface quality, such as its roughness, can be changed as well. The NFT structure is also vulnerable to degradation under the large number of thermal load cycles. The changes of the HDI under the thermal conditions could significantly reduce the robustness and reliability of the HAMR products. In bit patterned media systems, instead of using the continuous magnetic granular material, physically isolated magnetic islands are used to store data. The size of the magnetic islands should be about or less than 25 nm in order to achieve the storage areal density beyond 1 Tb/in2. However, the manufacture of the patterned media disks is a great challenge for the current optical lithography technology. Alternative lithography

  18. Rapid microwave-assisted synthesis of PVP-coated ultrasmall gadolinium oxide nanoparticles for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Vahdatkhah, Parisa; Madaah Hosseini, Hamid Reza; Khodaei, Azin; Montazerabadi, Ali Reza; Irajirad, Rasoul; Oghabian, Mohamad Ali; Delavari H., Hamid

    2015-05-01

    Synthesis of polyvinyl pyrrolidone (PVP) coated ultrasmall Gd2O3 nanoparticles (NPs) with enhanced T1-weighted signal intensity and r2/r1 ratio close to unity is performed by a microwave-assisted polyol process. PVP coated Gd2O3NPs with spherical shape and uniform size of 2.5 ± 0.5 nm have been synthesized below 5 min and structure and morphology confirmed by HRTEM, XRD and FTIR. The longitudinal (r1) and transversal relaxation (r2) of Gd2O3NPs is measured by a 3 T MRI scanner. The results showed considerable increasing of relaxivity for Gd2O3NPs in comparison to gadolinium chelates which are commonly used for clinical magnetic resonance imaging. In addition, a mechanism for Gd2O3NPs formation and in situ surface modification of PVP-grafted Gd2O3NPs is proposed.

  19. Magnetically Assisted Remote-controlled Endovascular Catheter for Interventional MR Imaging: In Vitro Navigation at 1.5 T versus X-ray Fluoroscopy

    PubMed Central

    Losey, Aaron D.; Lillaney, Prasheel; Martin, Alastair J.; Cooke, Daniel L.; Wilson, Mark W.; Thorne, Bradford R. H.; Sincic, Ryan S.; Arenson, Ronald L.; Saeed, Maythem

    2014-01-01

    Purpose To compare in vitro navigation of a magnetically assisted remote-controlled (MARC) catheter under real-time magnetic resonance (MR) imaging with manual navigation under MR imaging and standard x-ray guidance in endovascular catheterization procedures in an abdominal aortic phantom. Materials and Methods The 2-mm-diameter custom clinical-grade microcatheter prototype with a solenoid coil at the distal tip was deflected with a foot pedal actuator used to deliver 300 mA of positive or negative current. Investigators navigated the catheter into branch vessels in a custom cryogel abdominal aortic phantom. This was repeated under MR imaging guidance without magnetic assistance and under conventional x-ray fluoroscopy. MR experiments were performed at 1.5 T by using a balanced steady-state free precession sequence. The mean procedure times and percentage success data were determined and analyzed with a linear mixed-effects regression analysis. Results The catheter was clearly visible under real-time MR imaging. One hundred ninety-two (80%) of 240 turns were successfully completed with magnetically assisted guidance versus 144 (60%) of 240 turns with nonassisted guidance (P < .001) and 119 (74%) of 160 turns with standard x-ray guidance (P = .028). Overall mean procedure time was shorter with magnetically assisted than with nonassisted guidance under MR imaging (37 seconds ± 6 [standard error of the mean] vs 55 seconds ± 3, P < .001), and time was comparable between magnetically assisted and standard x-ray guidance (37 seconds ± 6 vs 44 seconds ± 3, P = .045). When stratified by angle of branch vessel, magnetic assistance was faster than nonassisted MR guidance at turns of 45°, 60°, and 75°. Conclusion In this study, a MARC catheter for endovascular navigation under real-time MR imaging guidance was developed and tested. For catheterization of branch vessels arising at large angles, magnetically assisted catheterization was faster than manual catheterization

  20. Does magnetically assisted capsule endoscopy improve small bowel capsule endoscopy completion rate? A randomised controlled trial

    PubMed Central

    Hale, Melissa F.; Drew, Kaye; Sidhu, Reena; McAlindon, Mark E.

    2016-01-01

    Background and study aims: Delayed gastric emptying is a significant factor in incomplete small bowel capsule examinations. Gastric transit could be hastened by external magnetic control of the capsule. We studied the feasibility of this approach to improve capsule endoscopy completion rates. Patients and methods: Prospective, single-center, randomized controlled trial involving 122 patients attending for small bowel capsule endoscopy using MiroCam Navi. Patients were randomized to either the control group (mobilisation for 30 minutes after capsule ingestion, followed by intramuscular metoclopramide 10 mg if the capsule failed to enter the small bowel) or the intervention group (1000 mL of water prior to capsule ingestion, followed by positional change and magnetic steering). Outcome measures were capsule endoscopy completion rate, gastric clarity and distention, relationship of body habitus to capsule endoscopy completion rate (CECR), and patient comfort scores. Results: 122 patients were recruited (61 each to the control and intervention groups: mean age 49 years [range 21 – 85], 61 females). There was no significant difference in CECR between the two groups (P = 0.39). Time to first pyloric image was significantly shorter in the intervention group (P = 0.03) but there was no difference in gastric transit times (P = 0.12), suggesting that magnetic control hastens capsular transit to the gastric antrum but does not influence duodenal passage. Gastric clarity and distention were significantly better in the intervention group (P < 0.0001 and P < 0.0001 respectively). Conclusions: Magnetic steering of a small bowel capsule is unable to overcome pyloric contractions to enhance gastric emptying and improve capsule endoscope completion rate. Excellent mucosal visualisation within the gastric cavity suggests this technique could be harnessed for capsule examination of the stomach. PMID:26878053

  1. Magnetic and structural modifications in Fe and Ni films prepared by ion-assisted deposition

    SciTech Connect

    Lewis, W.A. ); Farle, M. ); Clemens, B.M.; White, R.L. )

    1994-05-15

    We summarize our observations of in-plane uniaxial magnetic anisotropy induced in 1000 A Ni and Fe thin films by 100 eV Xe[sup +] ion bombardment during deposition. The anisotropy was measured by means of the magneto-optic Kerr effect and full angular scan ferromagnetic resonance. The maximum in-plane anisotropy field was 150 Oe for Ni and 80 Oe for Fe. The hard direction of magnetization lies parallel to the plane of incidence for Ni and perpendicular to it for Fe. An expansion of the lattice of up to 0.6% normal to the film and an enhancement of the fiber texture are found in both cases. This out-of-plane expansion is accompanied by an in-plane compression. In addition, a small in-plane difference in lattice spacings ([lt]0.2%) is found between directions parallel and perpendicular to the plane of incidence of the ions. The in-plane uniaxial magnetic anisotropy is attributed to the in-plane anisotropic strain using a simple magnetoelastic model.

  2. Crystalline magnetic carbon nanoparticle assisted photothermal delivery into cells using CW near-infrared laser beam

    PubMed Central

    Gu, Ling; Koymen, Ali R.; Mohanty, Samarendra K.

    2014-01-01

    Efficient and targeted delivery of impermeable exogenous material such as small molecules, proteins, and plasmids into cells in culture as well as in vivo is of great importance for drug, vaccine and gene delivery for different therapeutic strategies. Though advent of optoporation by ultrafast laser microbeam has allowed spatial targeting in cells, the requirement of high peak power to create holes on the cell membrane is not practical and also challenging in vivo. Here, we report development and use of uniquely non-reactive crystalline magnetic carbon nanoparticles (CMCNPs) for photothermal delivery (PTD) of impermeable dyes and plasmids encoding light-sensitive proteins into cells using low power continuous wave near-infrared (NIR) laser beam. Further, we utilized the magnetic nature of these CMCNPs to localize them in desired region by external magnetic field, thus minimizing the required number of nanoparticles. We discovered that irradiation of the CMCNPs near the desired cell(s) with NIR laser beam leads to temperature rise that not only stretch the cell-membrane to ease delivery, it also creates fluid flow to allow mobilization of exogenous substances to the delivery. Due to significant absorption properties of the CMCNPs in the NIR therapeutic window, PTD under in vivo condition is highly possible. PMID:24870227

  3. Crystalline magnetic carbon nanoparticle assisted photothermal delivery into cells using CW near-infrared laser beam

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Koymen, Ali R.; Mohanty, Samarendra K.

    2014-05-01

    Efficient and targeted delivery of impermeable exogenous material such as small molecules, proteins, and plasmids into cells in culture as well as in vivo is of great importance for drug, vaccine and gene delivery for different therapeutic strategies. Though advent of optoporation by ultrafast laser microbeam has allowed spatial targeting in cells, the requirement of high peak power to create holes on the cell membrane is not practical and also challenging in vivo. Here, we report development and use of uniquely non-reactive crystalline magnetic carbon nanoparticles (CMCNPs) for photothermal delivery (PTD) of impermeable dyes and plasmids encoding light-sensitive proteins into cells using low power continuous wave near-infrared (NIR) laser beam. Further, we utilized the magnetic nature of these CMCNPs to localize them in desired region by external magnetic field, thus minimizing the required number of nanoparticles. We discovered that irradiation of the CMCNPs near the desired cell(s) with NIR laser beam leads to temperature rise that not only stretch the cell-membrane to ease delivery, it also creates fluid flow to allow mobilization of exogenous substances to the delivery. Due to significant absorption properties of the CMCNPs in the NIR therapeutic window, PTD under in vivo condition is highly possible.

  4. Synthesis and neuro-cytocompatibility of magnetic Zn-ferrite nanorods via peptide-assisted process.

    PubMed

    Zou, Yuanwen; Huang, Zhongbing; Deng, Min; Yin, Guangfu; Chen, Xianchun; Liu, Juan; Wang, Yan; Yan, Li; Gu, Jianwen

    2013-10-15

    In order to obtain magnetic nanorods (MNRs) with the neuro-cytocompatibility, silk-fibroin (SF)-coated Zn-ferrite NRs are successfully prepared via a mineralization process, and their saturation magnetization is 32emu g(-)(1). After the mineralization of 2d and 4d in the mixed solution of the concentrations of 15w/w% SF and 0.01M HCl, the lengths of NRs are ∼220nm and ∼2μm, respectively. Cell tests of NRs with 220nm length showed that the as-prepared Zn-ferrite NRs hardly produced toxicity on Escherichiacoli, Staphylococcusaureus, L929, and PC12 cells. The results of the outgrown neurites from PC12 cells indicated that the neurite length and the number of neurites were not significantly decreased at the low concentrations of SF-coated NRs (less than 0.25mg mL(-)(1)) in 1-5d culture time. TEM images of cell ultrathin sections indicated that, although Zn-ferrite NRs were split in the cytosol for 5d at the NR concentrations of 0.125mg mL(-)(1), some integrated mitochondria in a neurite suggested that SF-coated NRs inside cells did not influence the extension activity of neurites. Based on the good neuro-cytocompatibility and magnetic property of Zn-ferrite NRs, their potential applications in safe cell manipulation and axon guidance can be envisioned. PMID:23948460

  5. Cassini launch contingency effort

    NASA Astrophysics Data System (ADS)

    Chang, Yale; O'Neil, John M.; McGrath, Brian E.; Heyler, Gene A.; Brenza, Pete T.

    2002-01-01

    On 15 October 1997 at 4:43 AM EDT, the Cassini spacecraft was successfully launched on a Titan IVB/Centaur on a mission to explore the Saturnian system. It carried three Radioisotope Thermoelectric Generators (RTGs) and 117 Light Weight Radioisotope Heater Units (LWRHUs). As part of the joint National Aeronautics and Space Administration (NASA)/U.S. Department of Energy (DoE) safety effort, a contingency plan was prepared to address the unlikely events of an accidental suborbital reentry or out-of-orbital reentry. The objective of the plan was to develop procedures to predict, within hours, the Earth impact footprints (EIFs) for the nuclear heat sources released during the atmospheric reentry. The footprint predictions would be used in subsequent notification and recovery efforts. As part of a multi-agency team, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had the responsibility to predict the EIFs of the heat sources after a reentry, given the heat sources' release conditions from the main spacecraft. (No ablation burn-through of the heat sources' aeroshells was expected, as a result of earlier testing.) JHU/APL's other role was to predict the time of reentry from a potential orbital decay. The tools used were a three degree-of-freedom trajectory code, a database of aerodynamic coefficients for the heat sources, secure links to obtain tracking data, and a high fidelity special perturbation orbit integrator code to predict time of spacecraft reentry from orbital decay. In the weeks and days prior to launch, all the codes and procedures were exercised. Notional EIFs were derived from hypothetical reentry conditions. EIFs predicted by JHU/APL were compared to those by JPL and US SPACECOM, and were found to be in good agreement. The reentry time from orbital decay for a booster rocket for the Russian Progress M-36 freighter, a cargo ship for the Mir space station, was predicted to within 5 minutes more than two hours before reentry. For the

  6. Atomic hydrogen as a launch vehicle propellant

    SciTech Connect

    Palaszewski, B.A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I{sub sp}) were 750 and 1500 lb{sub f}/s/lb{sub m}. The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I{sub sp} (greater than 750 lb{sub f}/s/lb{sub m}) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  7. Atomic hydrogen as a launch vehicle propellant

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb(sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 lb(sub f)/s/lb(sub m)) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  8. Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording.

    PubMed

    Zhou, Nan; Traverso, Luis M; Xu, Xianfan

    2015-03-27

    To keep increasing the storage density in next-generation hard disk drives, heat-assisted magnetic recording is being developed where a nanoscale near field transducer (NFT) locally and temporally heats a sub-diffraction-limited region in the recording medium to reduce the magnetic coercivity. This allows the use of very small grain in the medium while still maintaining data thermal stability. Plasmonic nanostructures made of apertures or antennas are good candidates for NFTs because of their capability of subwavelength light manipulation in optical frequencies. The NFT must simultaneously deliver enough power to the recording medium with as small as possible incident laser power to reduce self-heating in the NFT, which could cause thermal expansion and materials failure that lead to degradation of the overall hard drive performance. In this work, we study the effect of optical properties on the power delivery efficiency of nanoscale bowtie aperture antennas, with the presence of a recording media stack. Heat dissipation and temperature rise in the NFT are also computed to investigate their dependence on materials' properties. The possibility of using alternative plasmonic materials for delivering higher power and/or reducing heating in NFTs is discussed. PMID:25759907

  9. Synthesis of chitosan networks: Swelling, drug release, and magnetically assisted BSA separation using Fe3O4 nanoparticles.

    PubMed

    Ghaemy, Mousa; Naseri, Motahare

    2012-10-15

    Chitosan (CS) nanohydrogel networks were prepared by reaction with glyceroldiglycidylether (GDE) and poly(dimethylsiloxane) (PDMS), as crosslinking agents in an emulsion system. The nanogel content increased with increasing the amount of crosslinkers and reached to a maximum of 90% with GDE. The nanogels structure was characterized by FT-IR, AFM, DSC, and TGA. The average size for CS-GDE and CS-PDMS particles were 59nm and 180nm, respectively. The swelling behavior of nanohydrogels was observed to be dependent on pH, temperature, degree of crosslinking, and on the chemical structure of crosslinker. The equilibrium water content of CS-GDE nanohydrogels reached to a maximum of 600% at neutral pH, and decreased at high and low pH and low temperature. These nanohydrogels were tested for sodium diclofenac (SDF) loading and releasing efficiency. The covalent conjugation of bovine serum albumin (BSA) and magnetic Fe(3)O(4) nanoparticles on the hydrogels were found to hold a potential application in magnetically assisted bioseparation. PMID:22939340

  10. A perfect launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Billows of smoke and steam spread across Launch Pad 39A as Space Shuttle Discovery lifts off on mission STS-92 to the International Space Station. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  11. Russian Soyuz in Launch Position

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle is shown in the vertical position for its launch from Baikonur, carrying the first resident crew to the International Space Station. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960s until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  12. Expendable launch vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Fuller, Paul N.

    1991-01-01

    The current status is reviewed of the U.S. Expendable Launch Vehicle (ELV) fleet, the international competition, and the propulsion technology of both domestic and foreign ELVs. The ELV propulsion technology areas where research, development, and demonstration are most needed are identified. These propulsion technology recommendations are based on the work performed by the Commercial Space Transportation Advisory Committee (COMSTAC), an industry panel established by the Dept. of Transportation.

  13. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  14. Launch of Zoological Letters.

    PubMed

    Fukatsu, Takema; Kuratani, Shigeru

    2016-02-01

    A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year of Zoological Letters, providing an overview on the current achievements and future directions of the journal. PMID:26853862

  15. Space Probe Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  16. Animal magnetocardiography using superconducting quantum interference device gradiometers assisted with magnetic nanoparticle injection: A sensitive method for early detecting electromagnetic changes induced by hypercholesterolemia

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; Hong, B. F.; Wu, B. H.; Yang, S. Y.; Horng, H. E.; Yang, H. C.; Tseng, W. Y. Isaac; Tseng, W. K.; Liu, Y. B.; Lin, L. C.; Lu, L. S.; Lee, Y. H.

    2007-01-01

    In this work, the authors used a superconducting quantum interference device (SQUID) magnetocardiography (MCG) system consisted of 64-channel low-transition-temperature SQUID gradiometers to detect the MCG signals of hepercholesterolemic rabbits. In addition, the MCG signals were recorded before and after the injection of magnetic nanoparticles into the rabbits' ear veins to investigate the effects of magnetic nanoparticles on the MCG signals. These MCG data were compared to those of normal rabbits to reveal the feasibility for early detection of the electromagnetic changes induced by hypercholesterolemia using MCG with the assistance of magnetic nanoparticle injection.

  17. 73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED NEAR CENTER OF SOUTH WALL OF SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT ON WALL IN BACKGROUND: COMMUNICATIONS HEADSET AND FOOT PEDAL IN FORGROUND. ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures

    SciTech Connect

    Suess, D.; Abert, C.; Bruckner, F.; Windl, R.; Vogler, C.; Breth, L.; Fidler, J.

    2015-04-28

    The switching probability of magnetic elements for heat-assisted recording with pulsed laser heating was investigated. It was found that FePt elements with a diameter of 5 nm and a height of 10 nm show, at a field of 0.5 T, thermally written-in errors of 12%, which is significantly too large for bit-patterned magnetic recording. Thermally written-in errors can be decreased if larger-head fields are applied. However, larger fields lead to an increase in the fundamental thermal jitter. This leads to a dilemma between thermally written-in errors and fundamental thermal jitter. This dilemma can be partly relaxed by increasing the thickness of the FePt film up to 30 nm. For realistic head fields, it is found that the fundamental thermal jitter is in the same order of magnitude of the fundamental thermal jitter in conventional recording, which is about 0.5–0.8 nm. Composite structures consisting of high Curie top layer and FePt as a hard magnetic storage layer can reduce the thermally written-in errors to be smaller than 10{sup −4} if the damping constant is increased in the soft layer. Large damping may be realized by doping with rare earth elements. Similar to single FePt grains in composite structure, an increase of switching probability is sacrificed by an increase of thermal jitter. Structures utilizing first-order phase transitions breaking the thermal jitter and writability dilemma are discussed.

  19. Simultaneous in situ derivatization and ultrasound-assisted dispersive magnetic solid phase extraction for thiamine determination by spectrofluorimetry.

    PubMed

    Tarigh, Ghazale Daneshvar; Shemirani, Farzaneh

    2014-06-01

    A simple and rapid method for the simultaneous in situ derivatizaion, preconcentration and extraction of thiamine (vitamin B1) as a model analyte was developed by a novel quantitative method, namely ultrasound-assisted dispersive magnetic solid phase extraction spectrofluorimetry (USA-DMSPE-FL) from different real samples. This method consists of sample preparation, in situ derivatization, exhaustive extraction and clean up by a single process. High extraction efficiency and in situ derivatization in a short period of time is the main advantages of this procedure. For this purpose, the reusable magnetic multi-wall carbon nanotube (MMWCNT) nanocomposite was used as an adsorbent for preconcentration and determination of thiamine. Thiamine was, simultaneously, in situ derivatized as thiochrome by potassium hexacyanoferrate (III) and adsorbed on MMWCNT in an ultrasonic water bath. The MMWCNTs were then collected using an external magnetic field. Subsequently, the extracted thiochrome was washed from the surface of the adsorbent and determined by spectrofluorimetry. The developed method, which has been analytically characterized under its optimal operating conditions, allows the detection of the analyte in the samples with method detection limits of 0.37 µg L(-1). The repeatability of the method, expressed as the relative standard deviation (RSD, n=6), varies between 2.0% and 4.8% in different real samples, while the enhancement factor is 197. The proposed procedure has been applied for the determination of thiamine in biological (serum and urine), pharmaceutical (multivitamin tablet and B complex syrup) and foodstuff samples (cereal, wheat flour, banana and honey) with the good recoveries in the range from 90% to 105%. PMID:24725866

  20. 42GHz ECRH assisted Plasma Breakdown in tokamak SST-1

    NASA Astrophysics Data System (ADS)

    Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.

    2015-03-01

    In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.

  1. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect

    Ludtka, Gail Mackiewicz-; Chourey, Aashish

    2010-08-01

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  2. Microwave assisted synthesis, spectral, magnetic and bioevolution of few Mn (II)-amide complexes

    NASA Astrophysics Data System (ADS)

    Joshi, Gaurav; Verma, K. K.; Gudesaria, D. D.; Bhojak, N.

    2016-05-01

    The importance and versatility of amide group containing ligands have promoted the selection of this class of ligands and their complexes for the study. The present work describes the synthesis, spectral and biological investigations on the complexes of amides derived from heterocyclic amines with Mn (II) ions. Four ligands derived 2-aminopyridine and their complexes with Mn (II) have been synthesized. A method for the synthesis of complexes has been developed by the use of microwave irradiation which is in agreement to Green chemistry approach. The complexes have been characterized on the basis of elemental analysis, infrared, electronic, ESR spectra and magnetic susceptibility studies. The diffuse reflectance spectrum of the complexes show bands in the region 20,000 cm-1 to 26,000 cm-1 assignable to 6A1g → 4T2g and 6A1g → 4E1g transitions. These are also typical of tetrahedral environment around the manganese. The magnetic moment (5.80 BM) of the complex indicates high spin tetrahedral environment. The microwave method of synthesis of complexes have been found easier, convenient and ecofriendly. Antimicrobial activities of compounds were also carried out against bacteria and fungi. Further minimal inhibitory concentration (MIC) was also determined for each compound.

  3. Development program for magnetically assisted chemical separation: Evaluation of cesium removal from Hanford tank supernatant

    SciTech Connect

    Nunez, L.; Buchholz, B.A.; Ziemer, M.; Dyrkacz, G.; Kaminski, M.; Vandegrift, G.F.; Atkins, K.J.; Bos, F.M.; Elder, G.R.; Swift, C.A.

    1994-12-01

    Magnetic particles (MAG*SEP{sup SM}) coated with various absorbents were evaluated for the separation and recovery of low concentrations of cesium from nuclear waste solutions. The MAG*SEP{sup SM} particles were coated with (1) clinoptilolite, (2) transylvanian volcanic tuff, (3) resorcinol formaldehyde, and (4) crystalline silico-titanate, and then were contacted with a Hanford supernatant simulant. Particles coated with the crystalline silico-titanate were identified by Bradtec as having the highest capacity for cesium removal under the conditions tested (variation of pH, ionic strength, cesium concentration, and absorbent/solution ratio). The MAG*SEP{sup SM} particles coated with resorcinol formaldehyde had high distribution ratios values and could also be used to remove cesium from Hanford supernant simulant. Gamma irradiation studies were performed on the MAG*SEP{sup SM} particles with a gamma dose equivalent to 100 cycles of use. This irradiation decreased the loading capacity and distribution ratios for the particles by greater than 75%. The particles demonstrated high sensitivity to radiolytic damage due to the degradation of the polymeric regions. These results were supported by optical microscopy measurements. Overall, use of magnetic particles for cesium separation under nuclear waste conditions was found to be marginally effective.

  4. Constrained simulations of flow in haemodynamic devices: towards a computational assistance of magnetic resonance imaging measurements.

    PubMed

    Cenova, Iva; Kauzlarić, David; Greiner, Andreas; Korvink, Jan G

    2011-06-28

    Cardiovascular diseases, mostly related to atherosclerosis, are the major cause of death in industrial countries. It is observed that blood flow dynamics play an important role in the aetiology of atherosclerosis. Especially, the blood velocity distribution is an important indicator for predisposition regions. Today magnetic resonance imaging (MRI) delivers, in addition to the morphology of the cardiovascular system, blood flow patterns. However, the spatial resolution of the data is slightly less than 1 mm and owing to severe restrictions in magnetic field gradient switching frequencies and intensities, this limit will be very hard to overcome. In this paper, constrained fluid dynamics is applied within the smoothed particle hydrodynamics formalism to enhance the MRI flow data. On the one hand, constraints based on the known volumetric flow rate are applied. They prove the plausibility of the order of magnitude of the measurements. On the other hand, the higher resolution of the simulation allows one to determine in detail the flow field between the coarse data points and thus to improve their spatial resolution. PMID:21576164

  5. Heavy Lift Launch Vehicle Concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During the Space Shuttle development phase, Marshall plarners concluded a Heavy Lift Launch Vehicle (HLLV) would be needed for successful Space Industrialization. Shown here in this 1976's artist's conception is an early version of the HLLV during launch.

  6. SMAP Launch and Deployment Sequence

    NASA Video Gallery

    This video combines file footage of a Delta II rocket and computer animation to depict the launch and deployment of NASA's Soil Moisture Active Passive satellite. SMAP is scheduled to launch on Nov...

  7. Launch Services Program EMC Issues

    NASA Technical Reports Server (NTRS)

    trout, Dawn

    2004-01-01

    Presentation covers these issues: (1) Vehicles of the Launch Services Program, (2) RF Environment, (3) Common EMC Launch Vehicle Payload Integration Issues, (4) RF Sensitive Missions and (5) Lightning Monitoring,

  8. Launching Garbage-Bag Balloons.

    ERIC Educational Resources Information Center

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  9. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  10. Potential use of SERS-assisted theranostic strategy based on Fe3O4/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia.

    PubMed

    Han, Yu; Lei, Sheng-Lan; Lu, Jian-Hua; He, Yuan; Chen, Zhi-Wei; Ren, Lei; Zhou, Xi

    2016-07-01

    A surface-enhanced Raman scattering (SERS)-assisted theranostic strategy was designed based on a synthesized multifunctional Fe3O4/Au cluster/shell nanocomposite. This theranostic strategy was used for free prostate specific antigen (free-PSA) detection, magnetic resonance imaging (MRI), and magnetic hyperthermia. The lowest protein concentration detected was 1ngmL(-1), and the limit of detection (LOD) of the calculated PSA was 0.75ngmL(-1). Then, MRI was carried out to visualize the tumor cell. Lastly, magnetic hyperthermia was employed and revealed a favorable killing effect for the tumor cells. Thus, this SERS-assisted strategy based on a Fe3O4/Au cluster/shell nanocomposite showed great advantages in theranostic treatment. PMID:27127045

  11. Morphology and magnetic properties of CeCo5 submicron flakes prepared by surfactant-assisted high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Zhang, J. J.; Gao, H. M.; Yan, Y.; Bai, X.; Su, F.; Wang, W. Q.; Du, X. B.

    2012-10-01

    CeCo5 permanent magnetic alloy has been processed by surfactant assisted high energy ball milling. Heptane and oleic acid were used as the solvent and surfactant, respectively. The amount of surfactant used was 50% by weight of the starting powder. The produced particles were deposited on a piece of copper (4 mm in length and width) under a magnetic field of 27 kOe applied along the copper surface and immobilized by ethyl α-cyanoacrylate. Scanning electron microscope pictures show that the particles are flakes, several μm in length and width and tens of nm in thickness. X-ray diffraction patterns and magnetic measurements prove that the flakes are crystalline with c-axes magnetic anisotropy. The easy magnetization axis is oriented perpendicular to the surface of the flake. A maximum coercivity of 3.3 kOe was obtained for the sample milled for 40 min.

  12. Intelsat satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The launch schedule for Intelsat 5-B, the prime Intelsat satellite to provide communications services between the Americas, Europe, the Middle East, and Africa, is presented. The planned placement of the satellite into an elliptical transfer orbit, and circularization of the orbit at geosynchronous altitude over the equator are described. Characteristics of the Atlas Centaur launch vehicle, AC-56, are given. The launch operation is summarized and the launch sequence presented. The Intelsat team and contractors are listed.

  13. Experimental Studies on Flexible Forming of Sheet Metals Assisted by Magnetic Force Transfer Medium

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhou, Fu Jian; Wang, Mo Nan; Xu, Peng; Jin, Cheng Chuang

    2016-06-01

    To improve the thickness uniformity and increase the forming limit of sheets to enhance their overall quality, a magnetorheological fluid (MRF) was injected into the punch cavity to act as the force transfer medium and fulfill the function of flexible pressing during the sheet bulging process. The rheological properties of the MRF were changed under the influence of a magnetic field produced by loading different currents, which allowed variation of stress states and deformation modes in the 0.75-mm-thick 304 stainless steel sheets. With increasing current (up to 3.5 A), the sheet-forming limit increased by 16.13% at most, and the fracture morphology experienced a certain change. Additionally, both the bulge height and the wall thickness distribution had obvious changes with a punch stroke of 10 mm. According to the experimental analysis, the MRF can be used successfully as a pressure-carrying medium in the sheet forming process.

  14. The role of magnetic assisted capsule endoscopy (MACE) to aid visualisation in the upper GI tract.

    PubMed

    Rahman, Imdadur; Afzal, Nadeem Ahmad; Patel, Praful

    2015-10-01

    Examination of the upper gastrointestinal tract by a standard endoscope is often thought as a daunting experience to many who have undertaken or are about to undergo the procedure. The overall perceived size of the gastroscope, unpleasantness of stimulation of the gag reflex and the need often for sedation is discouraging to many. A method to visualise the upper gastrointestinal mucosa which negates the need for sedation, the associated expensive decontamination costs and the possibility of having a community based examination would be particularly welcoming to this endoscopy field. Since the first swallow of a capsule endoscope by a human volunteer in 1999, their usage for examining the small bowel has exponentially grown to that of over a million patients worldwide. More recently, innovation in this field have shown plausibility for its use to visualise the upper gastrointestinal tract, with the integration of magnets within the capsule the most promising method. PMID:25934086

  15. Apollo 11 astronaut Neil Armstrong suits up before launch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 Commander Neil Armstrong prepares to put on his helmet with the assistance of a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  16. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  17. Expendable launch vehicle studies

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to

  18. Space Shuttle Columbia launch

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Great Blue Heron seems oblivious to the tremendous spectacle of light and sound generated by a Shuttle liftoff, as the Space Shuttle Columbia (STS-73) soars skyward from Launch Pad 39B. Columbia's seven member crew's mission included continuing experimentation in the Marshall managed payloads including the United States Microgravity Laboratory 2 (USML-2) and the keel-mounted accelerometer that characterizes the very low frequency acceleration environment of the orbiter payload bay during space flight, known as the Orbital Acceleration Research Experiment (OARE).

  19. STS-39 Launch

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Launched aboard the Space Shuttle Discovery on April 28, 1991 at 7:33:14 am (EDT), STS-39 was a Department of Defense (DOD) mission. The crew included seven astronauts: Michael L. Coats, commander; L. Blaine Hammond, pilot; Guion S. Buford, Jr., mission specialist 1; Gregory J. Harbaugh, mission specialist 2; Richard J. Hieb, mission specialist 3; Donald R. McMonagle, mission specialist 4; and Charles L. Veach, mission specialist 5. The primary unclassified payload included the Air Force Program 675 (AFP-675), the Infrared Background Signature Survey (IBSS), and the Shuttle Pallet Satellite II (SPAS II).

  20. Hypersonic Interplanetary Flight: Aero Gravity Assist

    NASA Technical Reports Server (NTRS)

    Bowers, Al; Banks, Dan; Randolph, Jim

    2006-01-01

    The use of aero-gravity assist during hypersonic interplanetary flights is highlighted. Specifically, the use of large versus small planet for gravity asssist maneuvers, aero-gravity assist trajectories, launch opportunities and planetary waverider performance are addressed.

  1. First Stage of a Highly Reliable Reusable Launch System

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Pickrel, Jonathan B.; Sayles, Emily L.; Wright, Michael; Marriott, Darin; Holland, Leo; Kuznetsov, Stephen

    2009-01-01

    Electromagnetic launch assist has the potential to provide a highly reliable reusable first stage to a space access system infrastructure at a lower overall cost. This paper explores the benefits of a smaller system that adds the advantages of a high specific impulse air-breathing stage and supersonic launch speeds. The method of virtual specific impulse is introduced as a tool to emphasize the gains afforded by launch assist. Analysis shows launch assist can provide a 278-s virtual specific impulse for a first-stage solid rocket. Additional trajectory analysis demonstrates that a system composed of a launch-assisted first-stage ramjet plus a bipropellant second stage can provide a 48-percent gross lift-off weight reduction versus an all-rocket system. The combination of high-speed linear induction motors and ramjets is identified, as the enabling technologies and benchtop prototypes are investigated. The high-speed response of a standard 60 Hz linear induction motor was tested with a pulse width modulated variable frequency drive to 150 Hz using a 10-lb load, achieving 150 mph. A 300-Hz stator-compensated linear induction motor was constructed and static-tested to 1900 lbf average. A matching ramjet design was developed for use on the 300-Hz linear induction motor.

  2. The continuing challenge of electromagnetic launch

    SciTech Connect

    Cowan, M.; Cnare, E.C.; Duggin, B.W.; Kaye, R.J.; Marder, B.M.; Shokair, I.R.

    1993-07-01

    Interest in launching payloads through the atmosphere to ever higher velocity is robust. For hundreds of years, guns and rockets have been improved for this purpose until they are now considered to be near to their performance limits. While the potential of electromagnetic technology to increase launch velocity has been known since late in the nineteenth century, it was not until about 1980 that a sustained and large-scale effort was started to exploit it. Electromagnetic launcher technology is restricted here to mean only that technology which establishes both a current density, J, and a magnetic field, B, within a part of the launch package, called the armature, so that J {times} B integrated over the volume of the armature is the launching force. Research and development activity was triggered by the discovery that high velocity can be produced with a simple railgun which uses an arc for its armature. This so called ``plasma-armature railgun`` has been the launcher technology upon which nearly all of the work has focused. Still, a relatively small parallel effort has also been made to explore the potential of electromagnetic launchers which do not use sliding contacts on stationary rails to establish current in the armature. One electromagnetic launcher of this type is called an induction coilgun because armature current is established by electromagnetic induction. In this paper, we first establish terminology which we will use not only to specify requirements for successful endoatmospheric launch but also to compare different launcher types. Then, we summarize the statuses of the railgun and induction coilgun technologies and discuss the issues which must be resolved before either of these launchers can offer substantial advantage for endoatomospheric launch.

  3. STS-86 Atlantis Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Atlantis blazes through the night sky to begin the STS-86 mission, slated to be the seventh of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Liftoff on Sept. 25 from Launch Pad 39A was at 10:34:19 p.m. EDT, within seconds of the preferred time, during a six-minute, 45- second launch window. The 10-day flight will include the transfer of the sixth U.S. astronaut to live and work aboard the Mir. After the docking, STS-86 Mission Specialist David A. Wolf will become a member of the Mir 24 crew, replacing astronaut C. Michael Foale, who will return to Earth aboard Atlantis with the remainder of the STS-86 crew. Foale has been on the Russian Space Station since mid-May. Wolf is scheduled to remain there about four months. Besides Wolf (embarking to Mir) and Foale (returning), the STS-86 crew includes Commander James D. Wetherbee, Pilot Michael J. Bloomfield, and Mission Specialists Wendy B. Lawrence, Scott E. Parazynski, Vladimir Georgievich Titov of the Russian Space Agency, and Jean-Loup J.M. Chretien of the French Space Agency, CNES. Other primary objectives of the mission are a spacewalk by Parazynski and Titov, and the exchange of about three-and-a-half tons of science/logistical equipment and supplies between Atlantis and the Mir.

  4. STS-86 Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Atlantis blazes through the night sky to begin the STS-86 mission, slated to be the seventh of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Liftoff on September 25 from Launch Pad 39A was at 10:34 p.m. EDT, within seconds of the preferred time, during a six minute, 45 second launch window. The 10 day flight will include the transfer of the sixth U.S. astronaut to live and work aboard the Mir. After the docking, STS-86 Mission Specialist David A. Wolf will become a member of the Mir 24 crew, replacing astronaut C. Michael Foale, who will return to Earth aboard Atlantis with the remainder of the STS-86 crew. Foale has been on the Russian Space Station since mid May. Wolf is scheduled to remain there about four months. Besides Wolf (embarking to Mir) and Foale (returning), the STS-86 crew includes Commander James D. Wetherbee, Pilot Michael J. Bloomfield, and Mission Specialists Wendy B. Lawrence, Scott E. Parazynski, Vladimir Georgievich Titov of the Russian Space Agency, and Jean-Loup J.M. Chretien of the French Space Agency, CNES. Other primary objectives of the mission are a spacewalk by Parazynski and Titov, and the exchange of about 3.5 tons of science/logistical equipment and supplies between Atlantis and the Mir.

  5. New Product Launching Ideas

    NASA Astrophysics Data System (ADS)

    Kiruthika, E.

    2012-09-01

    Launching a new product can be a tense time for a small or large business. There are those moments when you wonder if all of the work done to develop the product will pay off in revenue, but there are many things are can do to help increase the likelihood of a successful product launch. An open-minded consumer-oriented approach is imperative in todayís diverse global marketplace so a firm can identify and serve its target market, minimize dissatisfaction, and stay ahead of competitors. Final consumers purchase for personal, family, or household use. Finally, the kind of information that the marketing team needs to provide customers in different buying situations. In high-involvement decisions, the marketer needs to provide a good deal of information about the positive consequences of buying. The sales force may need to stress the important attributes of the product, the advantages compared with the competition; and maybe even encourage ìtrialî or ìsamplingî of the product in the hope of securing the sale. The final stage is the post-purchase evaluation of the decision. It is common for customers to experience concerns after making a purchase decision. This arises from a concept that is known as ìcognitive dissonance

  6. Mortar launched surveillance system

    NASA Astrophysics Data System (ADS)

    Lewis, Carl E.; Carlton, Lindley A.

    2001-02-01

    Accurate Automation Corporation has completed the conceptual design of a mortar launched air vehicle system to perform close range or over-the-horizon surveillance missions. Law enforcement and military units require an organic capability to obtain real time intelligence information of time critical targets. Our design will permit law enforcement to detect, classify, locate and track these time critical targets. The surveillance system is a simple, unmanned fixed-winged aircraft deployed via a conventional mortar tube. The aircraft's flight surfaces are deployed following mortar launch to permit maximum range and time over target. The aircraft and sensor system are field retrievable. The aircraft can be configured with an engine to permit extended time over target or range. The aircraft has an integrated surveillance sensor system; a programmable CMOS sensor array. The integrated RF transmitted to capable of down- linking real-time video over line-of-sight distances exceeding 10 kilometers. The major benefit of the modular design is the ability to provide surveillance or tracking quickly at a low cost. Vehicle operational radius and sensor field coverage as well as design trade results of vehicle range and endurance performance and payload capacity at operational range are presented for various mortar configurations.

  7. A new device for magnetic stirring-assisted dispersive liquid-liquid microextraction of UV filters in environmental water samples.

    PubMed

    Zhang, Ping-Ping; Shi, Zhi-Guo; Yu, Qiong-Wei; Feng, Yu-Qi

    2011-02-15

    A new method based on dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography (HPLC) has been developed for the analysis of UV filters. A specially designed flask, which has two narrow open necks with one of them having a capillary tip, was employed to facilitate the DLLME process. By adopting such a device, the extraction and subsequent phase separation were conveniently achieved. A binary solvent system of water sample and low-density extraction solvent (1-octanol) was used for the DLLME and no disperser solvent was involved. The extraction was accelerated by magnetic agitation of the two phases. After extraction, phase separation of the extraction solvent from the aqueous sample was easily achieved by leaving the extraction system statically for a while. No centrifugation step involving in classical DLLME was necessary. The analyte-enriched phase, floating above the sample solution, was elevated and concentrated into the narrow open tip of the flask by adding pure water into it via the other port, which was withdrawn with a microsyringe for the subsequent HPLC analysis. Under the optimized conditions, the limits of detection for the analytes were in range of 0.2-0.8ngmL(-1) .The linearity ranges were 8-20,000 ng mL(-1) for HB, 7-20,000 ng mL(-1) for DB, 8-10,000 ng mL(-1) for BP and 5-20,000 ng mL(-1) for HMB, respectively. Enrichment factors ranging from 59 to 107 folders were obtained for the analytes. The relative standard deviations (n=3) at a spiked level of 80 ng mL(-1) were between 1.4 and 4.8%. The proposed magnetic stirring-assisted DLLME method was successfully applied to the analysis of lake water samples. PMID:21238773

  8. STS-114: Discovery Launch Postponement Press Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This press briefing addresses the problem that occurred prior to the launch of the STS-114. Dean Acosta, Deputy Assistant Administrator of Public Affairs, introduces the panel which consists of Dr. Michael Griffin, NASA Administrator, William Readdy, Associate Administrator for Space Operations, Wayne Hale, Space Shuttle Program Deputy Manager, Steve Poulas, Orbiter Project Manager, Mike Leinbach, NASA Launch Director, and Bill Parsons, Space Shuttle Program Manager. Wayne Hale expresses that a problem occurred with one of the low level sensors in the hydrogen tank and that the cause of the problem must be identified and rectified. Steve Poulos talks about establishing a troubleshooting plan as a part of the scrub effort and Mike Leinbach describes the process of draining the external tank. Wayne Hale answers questions about the sensors and if the Space Shuttle Discovery is safe to fly and Steve Poulos answers questions about the possible suspects for this problem.

  9. Launch of STS-134

    NASA Video Gallery

    Space Shuttle Endeavour lifts off from NASA's Kennedy Space Center in Florida on its final mission. Commander Mark Kelly and crew will deliver the Alpha Magnetic Spectrometer to the International S...

  10. Diffusion-assisted selective dynamical recoupling: A new approach to measure background gradients in magnetic resonance

    SciTech Connect

    Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio

    2014-02-28

    Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out “intrinsic” T{sub 1} and T{sub 2} weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed.

  11. Diffusion-assisted selective dynamical recoupling: A new approach to measure background gradients in magnetic resonance

    NASA Astrophysics Data System (ADS)

    Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio

    2014-02-01

    Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out "intrinsic" T1 and T2 weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed.

  12. Thyristor-based current-fed drive with direct power control for permanent magnet-assisted synchronous reluctance generator

    NASA Astrophysics Data System (ADS)

    Baek, J.; Kwak, S.-S.; Toliyat, H. A.

    2015-03-01

    This paper proposes a robust and simple direct power control (DPC) of a thyristor-based current-fed drive for generator applications. A current-fed drive and permanent magnet-assisted synchronous reluctance generator (PMa-SynRG) are investigated to deliver 3 kW power using a combustion engine. The current-fed drive utilises a thyristor-based three-phase rectifier to convert generator power to DC-link power and a single-phase current-fed inverter to supply a single-phase inductive load. In addition, a new control algorithm is developed based on DPC for the current-fed drive. The DC-link voltage-based DPC is proposed in order to directly control the output power. The goal of the DPC is to maintain the DC-link voltage at the required output power operating point. The DPC has advantages such as a simple algorithm for constant speed operation. Another feature of the developed current-fed drive is its inherent capability to provide generating action by making the PMa-SynRG operates as a generator, rectifying the phase voltages by means of the three-phase rectifier and feeding the power into the load. These features make the current-fed drive a good candidate for driving any type of synchronous generators including the proposed PMa-SynRG.

  13. Matrix-assisted laser desorption using a fast-atom bombardment ion source and a magnetic mass spectrometer.

    PubMed

    Annan, R S; Köchling, H J; Hill, J A; Biemann, K

    1992-04-01

    A conventional fast-atom bombardment (FAB) ion source was used to achieve matrix-assisted laser desorption (MALD) in a high-mass, double-focusing, magnetic mass spectrometer. The pulsed ion signals generated by irradiation of a mixture of sample and matrix (2,5-dihydroxybenzoic acid) with either a XeF excimer laser (353 nm) or a nitrogen laser (337 nm) were recorded with a focal-plane detector. A resolution (full-width at half maximum) of 4500 was achieved at m/z 1347.7 (the peptide substance P), 2500 for CsI cluster ions at m/z 10,005.7, and 1250 for the isotope cluster of the small protein cytochrome c (horse) [M+H]+ = m/z 12,360 (average). Sensitivity is demonstrated with 11 fmol of substance P. A survey scan is taken to locate the m/z of the sample molecular ion. The segment that contains the sample can then be integrated for a longer time to produce a better signal-to-noise ratio. In addition to higher sensitivity and lower matrix interference, the advantage of MALD over FAB is the former's lower susceptibility to the presence of salts, and competition between hydrophobic and hydrophilic components of a mixture. This feature is demonstrated by the complete MALD spectrum of a crude partial tryptic digest of sperm-whale apomyoglobin, containing 24 peptides, representing the entire sequence of this protein. PMID:1373978

  14. Development of a magnetically suspended centrifugal pump as a cardiac assist device for long-term application.

    PubMed

    Nishimura, K; Park, C H; Akamatsu, T; Yamada, T; Ban, T

    1996-01-01

    To overcome problems with the shaft seal in conventional centrifugal pumps, the authors have been developing a magnetically suspended centrifugal pump (MSCP) that operates as a valveless, sealless, and bearingless pump. The prototype of the MSCP was modified with respect to size of the volute diffuser and impeller blade profiles. A hemolysis test in vitro using a new version of the MSCP was performed in comparison with a commercially available centrifugal pump. The test circuit for the hemolysis test comprised a blood reservoir, a pump, and polyvinyl tubes, and was filled with fresh heparinized bovine blood. The pumping conditions were a flow rate of 5 L/min and a pump head afterload of 100 mmHg. The index of hemolysis in the MSCP was significantly lower than that in the Biomedicus pump (0.0035 +/- 0.0025 versus 0.0097 +/- 0.0056 g/100 L, p < 0.05). Reduction in the platelet count during pumping also was lower in the MSCP compared with the Biomedicus pump at both 6 hrs and 12 hrs of pumping (p < 0.01). This MSCP may be advantageous for extended use of assist devices, not only from the theoretical point of view, but in a practical sense after the results of the current hemolysis test. PMID:8808462

  15. p -shell carrier assisted dynamic nuclear spin polarization in single quantum dots at zero external magnetic field

    NASA Astrophysics Data System (ADS)

    Fong, C. F.; Ota, Y.; Harbord, E.; Iwamoto, S.; Arakawa, Y.

    2016-03-01

    Repeated injection of spin-polarized carriers in a quantum dot (QD) leads to the polarization of nuclear spins, a process known as dynamic nuclear spin polarization (DNP). Here, we report the observation of p-shell carrier assisted DNP in single QDs at zero external magnetic field. The nuclear field—measured by using the Overhauser shift of the singly charged exciton state of the QDs—continues to increase, even after the carrier population in the s-shell saturates. This is also accompanied by an abrupt increase in nuclear spin buildup time as p-shell emission overtakes that of the s shell. We attribute the observation to p-shell electrons strongly altering the nuclear spin dynamics in the QD, supported by numerical simulation results based on a rate equation model of coupling between electron and nuclear spin system. Dynamic nuclear spin polarization with p-shell carriers could open up avenues for further control to increase the degree of nuclear spin polarization in QDs.

  16. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints

    PubMed Central

    2015-01-01

    Knowledge of RNA structure is necessary to determine structure–function relationships and to facilitate design of potential therapeutics. RNA secondary structure prediction can be improved by applying constraints from nuclear magnetic resonance (NMR) experiments to a dynamic programming algorithm. Imino proton walks from NOESY spectra reveal double-stranded regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs, UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to identify constraints for the 5′ to 3′ directionality of base pairs in helices. The 5′ to 3′ directionality constraints were incorporated into an NMR-assisted prediction of secondary structure (NAPSS-CS) program. When it was tested on 18 structures, including nine pseudoknots, the sensitivity and positive predictive value were improved relative to those of three unrestrained programs. The prediction accuracy for the pseudoknots improved the most. The program also facilitates assignment of chemical shifts to individual nucleotides, a necessary step for determining three-dimensional structure. PMID:26451676

  17. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics

    SciTech Connect

    Riveros, Raul E.; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3{+-}2.5nmrms to 5.7{+-}0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  18. Establishment of Magnetic Microparticles-Assisted Time-Resolved Fluoroimmunoassay for Determinating Biomarker Models in Human Serum

    PubMed Central

    Ren, Zhi-Qi; Liu, Tian-Cai; Zhuang, Si-Hui; Lin, Guan-Feng; Hou, Jing-Yuan; Wu, Ying-Song

    2015-01-01

    In order to early screen and detect suspected biomarkers from pathogens and the human body itself, tracers or reaction strategies that can act as signal enhancers have been proposed forth at purpose. In this paper, we discussed the applicability of magnetic microparticles-assisted time-resolved fluoroimmunoassay (MMPs-TRFIA) for sensitive determination of potential analytes. Hepatitis B e antigen, antibody to hepatitis B surface antigen and free triiodothyronine were used as biomarker models to explore the reliability of the method. By coupling with bioprobes, MMPs were used as immunoassay carriers to capture target molecules. Under optimal condition, assay performance, including accuracy, precision and specificity, was outstanding and demonstrated satisfactory. To further evaluate the performance of the MMPs-TRFIA in patients, a total of 728 serum samples from hospital were analyzed for three biomarkers in parallel with the proposed method and chemiluminescence immunoassay kit commercially available. Fairly good agreements are obtained between the two methods via data analysis. Not only that but the reliability of MMPs-TRFIA has also been illustrated by three different reaction models. It is confirmed that the novel method modified with MMPs has been established and showed great potential applications in both biological detection and clinical diagnosis, including big molecule protein and low molecular weight haptens. PMID:26103625

  19. Characterization of magnetic property depth profiles of surface-modified materials using a model-assisted swept frequency modulation field technique

    NASA Astrophysics Data System (ADS)

    Lo, C. C. H.

    2009-04-01

    This paper reports on a model-assisted approach to characterizing surface-modified materials whose magnetic properties vary continuously with depth. The technique involves measuring ac permeability profiles under a quasistatic biasing field superimposed with an ac modulation field of adjustable frequency and amplitude to control field penetration depth. A frequency dependent magnetic hysteresis model was used to model ac permeability profiles at different modulation field frequencies for direct comparison with measurement results. The approach was applied to characterize a series of surface hardened Fe-C samples. The depth dependence of the magnetic properties was determined by obtaining the best fits of the modeled ac permeability profiles to experimental data at multiple modulation frequencies. The midpoints of the inverted magnetic property profiles and the measured hardness profiles were found to be in agreement.

  20. eLaunch Hypersonics: An Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley

    2010-01-01

    This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.

  1. The Launch Systems Operations Cost Model

    NASA Technical Reports Server (NTRS)

    Prince, Frank A.; Hamaker, Joseph W. (Technical Monitor)

    2001-01-01

    One of NASA's primary missions is to reduce the cost of access to space while simultaneously increasing safety. A key component, and one of the least understood, is the recurring operations and support cost for reusable launch systems. In order to predict these costs, NASA, under the leadership of the Independent Program Assessment Office (IPAO), has commissioned the development of a Launch Systems Operations Cost Model (LSOCM). LSOCM is a tool to predict the operations & support (O&S) cost of new and modified reusable (and partially reusable) launch systems. The requirements are to predict the non-recurring cost for the ground infrastructure and the recurring cost of maintaining that infrastructure, performing vehicle logistics, and performing the O&S actions to return the vehicle to flight. In addition, the model must estimate the time required to cycle the vehicle through all of the ground processing activities. The current version of LSOCM is an amalgamation of existing tools, leveraging our understanding of shuttle operations cost with a means of predicting how the maintenance burden will change as the vehicle becomes more aircraft like. The use of the Conceptual Operations Manpower Estimating Tool/Operations Cost Model (COMET/OCM) provides a solid point of departure based on shuttle and expendable launch vehicle (ELV) experience. The incorporation of the Reliability and Maintainability Analysis Tool (RMAT) as expressed by a set of response surface model equations gives a method for estimating how changing launch system characteristics affects cost and cycle time as compared to today's shuttle system. Plans are being made to improve the model. The development team will be spending the next few months devising a structured methodology that will enable verified and validated algorithms to give accurate cost estimates. To assist in this endeavor the LSOCM team is part of an Agency wide effort to combine resources with other cost and operations professionals to

  2. LAUNCH_BLTMS.DLL

    Energy Science and Technology Software Center (ESTSC)

    2005-12-14

    Postprocessor for the integration of the BLT-MS (Breach Leach Transport-Multi Species) code with GoldSim{trademark}. The program is intended as a DLL for use with a GoldSim{trademark}. The program is intended as a DLL for use with a GoldSim{trademark} model file. The code executes BTLMS.EXE using a standard BLT-MS input file and allocated parameters to memory for subsequent input of BLTMS.EXE output dat to a GoldSim{trademark} model file. This DLL is used for performing Monte Carlomore » analyses. The software is used as part of a modeling package that consists of BLTMS.EXE, GoldSim{trademark}, Read_BLT.DLL and Launch_BLTMS.DLL. The modeling package is used to run Monte Crlo analyses for performance assessment of Low level Radioactive Waste Repositories.« less

  3. STS-112 Launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Space Shuttle Orbiter Atlantis hurdles toward space from Launch Pad 39B at Kennedy Space Center in Florida for the STS-112 mission. Liftoff occurred at 3:46pm EDT, October 7, 2002. Atlantis carried the Starboard-1 (S1) Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The S1 was the second truss structure installed on the International Space Station (ISS). It was attached to the S0 truss which was previously installed by the STS-110 mission. The CETA is the first of two human-powered carts that ride along the ISS railway, providing mobile work platforms for future space walking astronauts. The 11 day mission performed three space walks to attach the S1 truss.

  4. STS-92 Discovery Launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Viewed from across the waters of Banana Creek, clouds of smoke and steam are illuminated by the flames from Space Shuttle Discovery'''s perfect on-time launch at 7:17 p.m. EDT. Discovery carries a crew of seven on a construction flight to the International Space Station. Discovery also carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.

  5. Payload Launch Lock Mechanism

    NASA Technical Reports Server (NTRS)

    Young, Ken (Inventor); Hindle, Timothy (Inventor)

    2014-01-01

    A payload launch lock mechanism includes a base, a preload clamp, a fastener, and a shape memory alloy (SMA) actuator. The preload clamp is configured to releasibly restrain a payload. The fastener extends, along an axis, through the preload clamp and into the base, and supplies a force to the preload clamp sufficient to restrain the payload. The SMA actuator is disposed between the base and the clamp. The SMA actuator is adapted to receive electrical current and is configured, upon receipt of the electrical current, to supply a force that causes the fastener to elongate without fracturing. The preload clamp, in response to the fastener elongation, either rotates or pivots to thereby release the payload.

  6. STS-118 Launch

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Enroute to the International Space Station (ISS), Space Shuttle Endeavor and its seven member STS-118 crew, blasted off from the launch pad at Kennedy Space Center on August 8, 2007. Construction resumed on the ISS as STS-118 mission specialists and the Expedition 15 crew completed installation of the third Starboard 5 (S-5) truss segment, removed a faulty Control Moment Gyroscope (CMG-3), installed a new CMG into the Z1 truss, relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) to Port 1 (P1) truss, installed a new transponder on P1, retrieved the P6 transponder, and delivered roughly 5,000 pounds of equipment and supplies.

  7. STS-87 Columbia Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers.

  8. The Launch of an Atlas/Centaur Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  9. KSC Vertical Launch Site Evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, Lynne V.

    2007-01-01

    RS&H was tasked to evaluate the potential available launch sites for a combined two user launch pad. The Launch sites were to be contained entirely within current Kennedy Space Center property lines. The user launch vehicles to be used for evaluation are in the one million pounds of first stage thrust range. Additionally a second evaluation criterion was added early on in the study. A single user launch site was to be evaluated for a two million pound first stage thrust vehicle. Both scenarios were to be included in the report. To provide fidelity to the study criteria, a specific launch vehicle in the one million pound thrust range was chosen as a guide post or straw-man launch vehicle. The RpK K-1 vehicle is a current Commercial Orbital Transportation System (COTS), contract awardee along with the SpaceX Falcon 9 vehicle. SpaceX, at the time of writing, is planning to launch COTS and possibly other payloads from Cx-40 on Cape Canaveral Air Force Station property. RpK has yet to declare a specific launch site as their east coast US launch location. As such it was deemed appropriate that RpK's vehicle requirements be used as conceptual criteria. For the purposes of this study those criteria were marginally generalized to make them less specifiC.

  10. Implant-Assisted Intrathecal Magnetic Drug Targeting to Aid in Therapeutic Nanoparticle Localization for Potential Treatment of Central Nervous System Disorders.

    PubMed

    Lueshen, Eric; Venugopal, Indu; Soni, Tejen; Alaraj, Ali; Linninger, Andreas

    2015-02-01

    There is an ongoing struggle to develop efficient drug delivery and targeting methods within the central nervous system. One technique known as intrathecal drug delivery, involves direct drug infusion into the spinal canal and has become standard practice for treating many central nervous system diseases due to reduced systemic toxicity from the drug bypassing the blood-brain barrier. Although intrathecal drug delivery boasts the advantage of reduced systemic toxicity compared to oral and intravenous drug delivery techniques, current intrathecal delivery protocols lack a means of sufficient drug targeting at specific locations of interest within the central nervous system. We previously proposed the method of intrathecal magnetic drug targeting in order to overcome the limited targeting capabilities of standard intrathecal drug delivery protocols, while simultaneously reducing the systemic toxicity as well as the amount of drug required to produce a therapeutic effect. Building off of our previous work, this paper presents the concept of implant-assisted intrathecal magnetic drug targeting. Ferritic stainless steel implants were incorporated within the subarachnoid space of our in vitro human spine model, and the targeting magnet was placed at a physiological distance away from the model and implant to mimic the distance between the epidermis and spinal canal. Computer simulations were performed to optimize implant design for generating high gradient magnetic fields and to study how these fields may aid in therapeutic nanoparticle localization. Experiments aiming to determine the effects of different magnetically-susceptible implants placed within an external magnetic field on the targeting efficiency of gold-coated magnetite nanoparticles were then performed on our in vitro human spine model. Our results indicate that implant-assisted intrathecal magnetic drug targeting is an excellent supplementary technique to further enhance the targeting capabilities of our

  11. The launch of Lunar Prospector on Jan. 6!

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Lunar Prospector spacecraft launched successfully on its way to the moon from Launch Complex 46 (LC46) at Cape Canaveral Air Station on Jan. 6 at 9:28 p.m. EST. It was the inaugural launch of Lockheed Martin's Athena II launch vehicle and the first launch from LC46, operated by Spaceport Florida Authority. Lunar Prospector, built for the NASA Ames Research Center by Lockheed Martin, is a spin-stabilized spacecraft designed to provide NASA with the first global maps of the moon's surface and its gravitational magnetic fields, as well as look for the possible presence of ice near the lunar poles. It will orbit the Moon at an altitude of approximately 63 miles during a one-year mission.

  12. Ultrasound-assisted magnetic solid-phase extraction based ionic liquid-coated Fe3O4@graphene for the determination of nitrobenzene compounds in environmental water samples.

    PubMed

    Cao, Xiaoji; Shen, Lingxiao; Ye, Xuemin; Zhang, Feifei; Chen, Jiaoyu; Mo, Weimin

    2014-04-21

    An ultrasound-assisted magnetic solid-phase extraction procedure with the [C7MIM][PF6] ionic liquid-coated Fe3O4-grafted graphene nanocomposite as the magnetic adsorbent has been developed for the determination of five nitrobenzene compounds (NBs) in environmental water samples, in combination with high performance liquid chromatography-photodiode array detector (HPLC-PDA). Several significant factors that affect the extraction efficiency, such as the types of magnetic nanoparticle and ionic liquid, the volume of ionic liquid and the amount of magnetic nanoparticles, extraction time, ionic strength, and solution pH, were investigated. With the assistance of ultrasound, adsorbing nitrobenzene compounds by ionic liquid and self-aggregating ionic liquid onto the surface of the Fe3O4-grafted graphene proceeded synchronously, which made the extraction achieved the maximum within 20 min using only 144 μL [C7MIM][PF6] and 3 mg Fe3O4-grafted graphene. Under the optimized conditions, satisfactory linearities were obtained for all NBs with correlation coefficients larger than 0.9990. The mean recoveries at two spiked levels ranged from 80.35 to 102.77%. Attributed to the convenient magnetic separation, the Fe3O4-grafted graphene could be recycled many times. The proposed method was demonstrated to be feasible, simple, solvent-saving and easy to operate for the trace analysis of NBs in environmental water samples. PMID:24575420

  13. Highly Reusable Space Transportation System Concept Evaluation (The Argus Launch Vehicle)

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Bellini, Peter X.

    1998-01-01

    This paper summarizes the results of a conceptual design study that was performed in support of NASA's recent Highly Reusable Space Transportation study. The Argus concept uses a Maglifter magnetic-levitation sled launch assist system to accelerate it to a takeoff ground speed of 800 fps on its way to delivering a payload of 20,000 lb. to low earth orbit. Main propulsion is provided by two supercharged ejector rocket engines. The vehicle is autonomous and is fully reusable. A conceptual design exercise determined the vehicle gross weight to be approximately 597,250 lb. and the dry weight to be 75,500 lb. Aggressive weight and operations cost assumptions were used throughout the design process consistent with a second-generation reusable system that might be deployed in 10-15 years. Drawings, geometry, and weight of the concept are included. Preliminary development, production, and operations costs along with a business scenario assuming a price-elastic payload market are also included. A fleet of three Argus launch vehicles flying a total of 149 flights per year is shown to have a financial internal rate of return of 28%. At $169/lb., the recurring cost of Argus is shown to meet the study goal of $100/lb.-$200/lb., but optimum market price results in only a factor of two to five reduction compared to today's launch systems.

  14. NASA to launch second business communications satellite

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The two stage Delta 3910 launch vehicle was chosen to place the second small business satellite (SBS-B) into a transfer orbit with an apogee of 36,619 kilometers and a perigee of 167 km, at an inclination of 27.7 degrees to Earth's equator. The firing and separation sequence and the inertial guidance system are described as well as the payload assist module. Facilities and services for tracking and control by NASA, COMSAT, Intelsat, and SBS are outlined and prelaunch operations are summarized.

  15. Launch of Russian reactor postponed

    SciTech Connect

    Not Available

    1993-02-05

    Astronomers and weapons scientists seemed heated on a collision course a few months ago over the military's plans to send a Russian nuclear reactor into space. But an agreement reached in late January has prevented a pile-up, at least for 6 months. The astronomers, led by Donald Lamb of the University of Chicago, were objecting to plans by the Strategic Defense Initiative Office (SDIO) to launch Topaz 2, an experimental Russian nuclear reactor, arguing that rogue particles from it might ruin sensitive gamma ray experiments. The reactor is designed to propel itself in space with a jet of xenon ions. One worry was that leaking gamma rays and positrons, which can travel in the earth's magnetic field and pop up in the darndest places, might cause false signals in gamma ray monitors (Science, 18 December 1992, p. 1878). The worry has abated now that SDI officials will postpone choosing a rocket and mission altitutde for Topaz 2 for 6 months, while experts study how its emissions at various altitudes might affect instruments aboard the Gamma Ray Observatory and other satellites. In effect, the SDIO has agreed to an environmental impact study for space, following an unusual meeting organized by former Russian space official Roald Sagdeev at the University of Maryland on 19 January. There the Russian designers of Topaz 2, its new owners at the SDIO, and critics in the astronomy community achieved common ground: that more study was needed.

  16. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Launch of an unguided suborbital launch vehicle. (a) Applicability. This section applies only to a launch operator conducting a launch of an unguided suborbital launch vehicle. (b) Need for flight safety system. A launch operator must launch an unguided suborbital launch vehicle with a flight safety system...

  17. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Launch of an unguided suborbital launch vehicle. (a) Applicability. This section applies only to a launch operator conducting a launch of an unguided suborbital launch vehicle. (b) Need for flight safety system. A launch operator must launch an unguided suborbital launch vehicle with a flight safety system...

  18. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Launch of an unguided suborbital launch vehicle. (a) Applicability. This section applies only to a launch operator conducting a launch of an unguided suborbital launch vehicle. (b) Need for flight safety system. A launch operator must launch an unguided suborbital launch vehicle with a flight safety system...

  19. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This wide lux image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station shows the base of the launch pad as well as the orbiter just clearing the gantry. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.

  20. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 35mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.

  1. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 70mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.

  2. Peer Review of Launch Environments

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.

    2011-01-01

    Catastrophic failures of launch vehicles during launch and ascent are currently modeled using equivalent trinitrotoluene (TNT) estimates. This approach tends to over-predict the blast effect with subsequent impact to launch vehicle and crew escape requirements. Bangham Engineering, located in Huntsville, Alabama, assembled a less-conservative model based on historical failure and test data coupled with physical models and estimates. This white paper summarizes NESC's peer review of the Bangham analytical work completed to date.

  3. Rocket Launch Trajectory Simulations Mechanism

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi; Caimi, Raoul E.; Hauss, Sharon; Voska, N. (Technical Monitor)

    2002-01-01

    The design and development of a Trajectory Simulation Mechanism (TSM) for the Launch Systems Testbed (LST) is outlined. In addition to being one-of-a-kind facility in the world, TSM serves as a platform to study the interaction of rocket launch-induced environments and subsequent dynamic effects on the equipment and structures in the close vicinity of the launch pad. For the first time, researchers and academicians alike will be able to perform tests in a laboratory environment and assess the impact of vibroacoustic behavior of structures in a moving rocket scenario on ground equipment, launch vehicle, and its valuable payload or spacecraft.

  4. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect

    Lutdka, G. M.; Chourey, A.

    2010-05-12

    As the original magnet designer and manufacturer of ORNL’s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL’s Materials Processing Group’s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  5. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch schedule. 415.121 Section...

  6. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Launch schedule. 415.121 Section...

  7. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Launch schedule. 415.121 Section...

  8. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch schedule. 415.121 Section...

  9. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.119 Launch plans. An applicant's safety review document must... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Launch plans. 415.119 Section...

  10. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.119 Launch plans. An applicant's safety review document must... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Launch plans. 415.119 Section...

  11. Spin-transfer-torque-assisted magnetization reversal in spin-valve strips using the spin-pumping effect

    NASA Astrophysics Data System (ADS)

    Takahashi, Mao; Nozaki, Yukio

    2016-06-01

    The modulation of a switching field by a spin-transfer torque generated by the spin-pumping effect is demonstrated in spin-valve strips. A spin current pumped into a spin valve prefers an antiparallel configuration of magnetization, so that the hysteresis loop of a soft magnetic layer is shifted by applying an alternating-current magnetic field with a frequency that matched the resonant condition of a hard magnetic layer. Furthermore, we confirmed that an alternating spin current generated by the spin pumping in the hard magnetic layer produces an orthogonal magnetic torque that can reduce the coercive field of the soft magnetic layer.

  12. 7. OVERALL VIEW OF LAUNCH PAD, SHOWING HELIPAD AT LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. OVERALL VIEW OF LAUNCH PAD, SHOWING HELIPAD AT LAUNCH AREA, WHEN VIEWED WITH NEGATIVE NO. CA-57-8(BELOW), LOOKING NORTH. BASKETBALL COURT IN BACKGROUND Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  13. Influence of cooling rate in planar thermally assisted magnetic random access memory: Improved writeability due to spin-transfer-torque influence

    SciTech Connect

    Chavent, A.; Ducruet, C.; Portemont, C.; Creuzet, C.; Alvarez-Hérault, J.; Vila, L.; Sousa, R. C.; Prejbeanu, I. L.; Dieny, B.

    2015-09-14

    This paper investigates the effect of a controlled cooling rate on magnetic field reversal assisted by spin transfer torque (STT) in thermally assisted magnetic random access memory. By using a gradual linear decrease of the voltage at the end of the write pulse, the STT decays more slowly or at least at the same rate as the temperature. This condition is necessary to make sure that the storage layer magnetization remains in the desired written direction during cooling of the cell. The influence of the write current pulse decay rate was investigated on two exchange biased synthetic ferrimagnet (SyF) electrodes. For a NiFe based electrode, a significant improvement in writing reproducibility was observed using a gradual linear voltage transition. The write error rate decreases by a factor of 10 when increasing the write pulse fall-time from ∼3 ns to 70 ns. For comparison, a second CoFe/NiFe based electrode was also reversed by magnetic field assisted by STT. In this case, no difference between sharp and linear write pulse fall shape was observed. We attribute this observation to the higher thermal stability of the CoFe/NiFe electrode during cooling. In real-time measurements of the magnetization reversal, it was found that Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling in the SyF electrode vanishes for the highest pulse voltages that were used due to the high temperature reached during write. As a result, during the cooling phase, the final state is reached through a spin-flop transition of the SyF storage layer.

  14. Influence of cooling rate in planar thermally assisted magnetic random access memory: Improved writeability due to spin-transfer-torque influence

    NASA Astrophysics Data System (ADS)

    Chavent, A.; Ducruet, C.; Portemont, C.; Creuzet, C.; Vila, L.; Alvarez-Hérault, J.; Sousa, R. C.; Prejbeanu, I. L.; Dieny, B.

    2015-09-01

    This paper investigates the effect of a controlled cooling rate on magnetic field reversal assisted by spin transfer torque (STT) in thermally assisted magnetic random access memory. By using a gradual linear decrease of the voltage at the end of the write pulse, the STT decays more slowly or at least at the same rate as the temperature. This condition is necessary to make sure that the storage layer magnetization remains in the desired written direction during cooling of the cell. The influence of the write current pulse decay rate was investigated on two exchange biased synthetic ferrimagnet (SyF) electrodes. For a NiFe based electrode, a significant improvement in writing reproducibility was observed using a gradual linear voltage transition. The write error rate decreases by a factor of 10 when increasing the write pulse fall-time from ˜3 ns to 70 ns. For comparison, a second CoFe/NiFe based electrode was also reversed by magnetic field assisted by STT. In this case, no difference between sharp and linear write pulse fall shape was observed. We attribute this observation to the higher thermal stability of the CoFe/NiFe electrode during cooling. In real-time measurements of the magnetization reversal, it was found that Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling in the SyF electrode vanishes for the highest pulse voltages that were used due to the high temperature reached during write. As a result, during the cooling phase, the final state is reached through a spin-flop transition of the SyF storage layer.

  15. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Meng, Yuying; Chen, Deyang; Sun, Yitao; Jiao, Dongling; Zeng, Dechang; Liu, Zhongwu

    2015-01-01

    Chitosan-modified Mn ferrite nanoparticles were synthesized by a one-step microwave-assisted hydrothermal method. These Mn ferrite magnetic composite nanoparticles were employed to absorb Cu2+ ions in water. XRD verified the spinel structure of the MnFe2O4 nanoparticles. Chitosan modification does not result in any phase change of MnFe2O4. FTIR and zeta potentials curves for all samples suggest that chitosan can be successfully coated on the Mn ferrites. TEM characterization showed that the modified MnFe2O4 nanoparticles have a cubic shape with a mean diameter of ∼100 nm. For adsorption behavior, the effects of experiment parameters such as solution pH value, contact time and initial Cu2+ ions concentration on the adsorption efficiency were systematically investigated. The results showed that increasing solution pH value and extending contact time are favorable for improving adsorption efficiency. Especially, adsorption efficiency can reach up to 100% and 96.7% after 500 min adsorption at pH 6.5 for the solutions with initial Cu2+ ions concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and 0.00189 g/mg/min for solutions with initial Cu2+ ions of 50 and 100 mg/L, respectively.

  16. STS-82 Discovery Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Discovery cuts a bright swath through the early-morning darkness as it lifts off from Launch Pad 39A on a scheduled 10-day flight to service the Hubble Space Telescope (HST). Liftoff of Mission STS-82 occurred on-time at 3:55:17 a.m. EST, Feb. 11, 1997. Leading the veteran crew is Mission Commander Kenneth D. Bowersox. Scott J. 'Doc' Horowitz is the pilot. Mark C. Lee is the payload commander. Rounding out the seven-member crew are Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. 'Joe' Tanner and Steven A. Hawley. Four of the astronauts will be divided into two teams to perform the scheduled four back-to-back extravehicular activities (EVAs) or spacewalks. Lee and Smith will team up for EVAs 1 and 3 on flight days 4 and 6; Harbaugh and Tanner will perform EVAs 2 and 4 on flight days 5 and 7. Among the tasks will be to replace two outdated scientific instruments with two new instruments the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). This is the second servicing mission for HST, which was originally deployed in 1990 and designed to be serviced on-orbit about every three years. Hubble was first serviced in 1993. STS-82 is the second of eight planned flights in 1997. It is the 22nd flight of Discovery and the 82nd Shuttle mission.

  17. STS-82 launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Discovery cuts a bright swath through the early-morning darkness as it lifts off from Launch Pad 39A on a scheduled 10-day flight to service the Hubble Space Telescope (HST). Liftoff of Mission STS-82 occurred on-time at 3:55:17 a.m. EST, Feb. 11, 1997. Leading the veteran crew is Mission Commander Kenneth D. Bowersox. Scott J. 'Doc' Horowitz is the pilot. Mark C. Lee is the payload commander. Rounding out the seven-member crew are Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. 'Joe' Tanner and Steven A. Hawley. Four of the astronauts will be divided into two teams to perform the scheduled four back-to-back extravehicular activities (EVAs) or spacewalks. Lee and Smith will team up for EVAs 1 and 3 on flight days 4 and 6; Harbaugh and Tanner will perform EVAs 2 and 4 on flight days 5 and 7. Among the tasks will be to replace two outdated scientific instruments with two new instruments - the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). This is the second servicing mission for HST, which was originally deployed in 1990 and designed to be serviced on-orbit about every three years. Hubble was first serviced in 1993. STS-82 is the second of eight planned flights in 1997. It is the 22nd flight of Discovery and the 82nd Shuttle mission.

  18. STS-85 Discovery Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earths atmosphere as a part of NASAs Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discoverys payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  19. Launch Support Video Site

    NASA Technical Reports Server (NTRS)

    OFarrell, Zachary L.

    2013-01-01

    The goal of this project is to create a website that displays video, countdown clock, and event times to customers during launches, without needing to be connected to the internal operations network. The requirements of this project are to also minimize the delay in the clock and events to be less than two seconds. The two parts of this are the webpage, which will display the data and videos to the user, and a server to send clock and event data to the webpage. The webpage is written in HTML with CSS and JavaScript. The JavaScript is responsible for connecting to the server, receiving new clock data, and updating the webpage. JavaScript is used for this because it can send custom HTTP requests from the webpage, and provides the ability to update parts of the webpage without having to refresh the entire page. The server application will act as a relay between the operations network, and the open internet. On the operations network side, the application receives multicast packets that contain countdown clock and events data. It will then parse the data into current countdown times and events, and create a packet with that information that can be sent to webpages. The other part will accept HTTP requests from the webpage, and respond to them with current data. The server is written in C# with some C++ files used to define the structure of data packets. The videos for the webpage will be shown in an embedded player from UStream.

  20. Launch Vehicle Assessment for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1998-01-01

    A recently completed study at Georgia Tech examined various launch vehicle options for deploying a future constellation of Space Solar Power satellites of the Suntower configuration. One of the motivations of the study was to determine whether the aggressive $400/kg launch price goal established for SSP package delivery would result in an attractive economic scenario for a future RLV developer. That is, would the potential revenue and traffic to be derived from a large scale SSP project be enough of an economic "carrot" to attract an RLV company into developing a new, low cost launch vehicle to address this market. Preliminary results presented in the attached charts show that there is enough economic reward for RLV developers, specifically in the case of the latest large GEO-based Suntower constellations (over 15,500 MT per year delivery for 30 years). For that SSP model, internal rates of return for the 30 year economic scenario exceed 22%. However, up-front government assistance to the RLV developer in terms of ground facilities, operations technologies, guaranteed low-interest rate loans, and partial offsets of some vehicle development expenses is necessary to achieve these positive results. This white paper is meant to serve as a companion to the data supplied in the accompanying charts. It's purpose is to provide more detail on the vehicles and design processes used, to highlight key decisions and issues, and to emphasize key results from each phase of the Georgia Tech study.

  1. Mission Specialist Grunsfeld gets help suiting up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist John M. Grunsfeld (Ph.D.) is assisted by a suit technician in donning his launch and entry suit during final launch preparations. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  2. Delta launch vehicle accident investigation

    NASA Astrophysics Data System (ADS)

    1986-03-01

    The text of the testimony given by several witnesses during the House hearings on the Delta launch vehicle accident of May 3, 1986 is given. Pre-launch procedures, failure analysis, the possibility of sabotage, and design and testing are among the topics discussed.

  3. Launch systems operations cost modeling

    NASA Astrophysics Data System (ADS)

    Jacobs, Mark K.

    1999-01-01

    This paper describes the launch systems operations modeling portion of a larger model development effort, NASA's Space Operations Cost Model (SOCM), led by NASA HQ. The SOCM study team, which includes cost and technical experts from each NASA Field Center and various contractors, has been tasked to model operations costs for all future NASA mission concepts including planetary and Earth orbiting science missions, space facilities, and launch systems. The launch systems operations modeling effort has near term significance for assessing affordability of our next generation launch vehicles and directing technology investments, although it provides only a part of the necessary inputs to assess life cycle costs for all elements that determine affordability for a launch system. Presented here is a methodology to estimate requirements associated with a launch facility infrastructure, or Spaceport, from start-up/initialization into steady-state operation. Included are descriptions of the reference data used, the unique estimating methodology that combines cost lookup tables, parametric relationships, and constructively-developed correlations of cost driver input values to collected reference data, and the output categories that can be used by economic and market models. Also, future plans to improve integration of launch vehicle development cost models, reliability and maintainability models, economic and market models, and this operations model to facilitate overall launch system life cycle performance simulations will be presented.

  4. Thermoelectric Magnetohydrodynamic Flows and Their Induced Change of Solid-Liquid Interface Shape in Static Magnetic Field-Assisted Directional Solidification

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Fautrelle, Yves; Nguyen-Thi, Henri; Reinhart, Guillaume; Liao, Hanlin; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-03-01

    Applying static magnetic field can produce flows (thermoelectric magnetohydrodynamic flows, TEMHDF) in the melt by interacting with the thermoelectric currents (TEC) during solidification of metals. A physical model was proposed to interpret how these TEC appear at the solid-liquid interface and verified by a corresponding simulation. The influences of TEMHDF on solidification were investigated through both ex-situ experiments and n situ observations by means of synchrotron X-ray radiography. The 3D numerical simulations of TEMHDF were performed for these two cases, respectively, and suggested that both the change of interface shape with different transverse static magnetic fields demonstrated by the ex-situ experiments and the real time observed interface shape varying under a 0.08 T transverse static magnetic field could attribute to the TEMHDF advanced solid-liquid interface in the static magnetic field-assisted directional solidification. The TEMHDF produced by an axial static magnetic field were also computed along with the interface change predicted based on which is good in line with the published experimental results. This study of TEMHDF and their impacts on the solid-liquid interface shape provides a method to tailor the structure during directional solidification using static magnetic field.

  5. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D.; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-04-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase’s total volume and decrease of each column’s transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope.

  6. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy.

    PubMed

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-01-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase's total volume and decrease of each column's transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope. PMID:27091383

  7. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy

    PubMed Central

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D.; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-01-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase’s total volume and decrease of each column’s transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope. PMID:27091383

  8. Small Space Launch: Origins & Challenges

    NASA Astrophysics Data System (ADS)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket

  9. Pioneer Launch on Delta Vehicle

    NASA Technical Reports Server (NTRS)

    1969-01-01

    NASA launches the last in the series of interplanetary Pioneer spacecraft, Pioneer 10 from Cape Kennedy, Florida. The long-tank Delta launch vehicle placed the spacecraft in a solar orbit along the path of Earth's orbit. The spacecraft then passed inside and outside Earth's orbit, alternately speeding up and slowing down relative to Earth. The Delta launch vehicle family started development in 1959. The Delta was composed of parts from the Thor, an intermediate-range ballistic missile, as its first stage, and the Vanguard as its second. The first Delta was launched from Cape Canaveral on May 13, 1960 and was powerful enough to deliver a 100-pound spacecraft into geostationary transfer orbit. Delta has been used to launch civil, commercial, and military satellites into orbit. For more information about Delta, please see Chapter 3 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  10. No Launch Before Its Time

    NASA Technical Reports Server (NTRS)

    Townsend, Bill

    2004-01-01

    Aura is an Earth-observing satellite developed to help us study the quality of the air we breathe. It will look at the state of the ozone and the atmospheric composition in regards to the Earth's changing climate. I headed to California on July 5, 2004. The plan was that the satellite would launch on the tenth, but we had a few problems getting it off. This was the fifty-ninth launch of my career, and it was also a little different than most of my previous launches. Most of the time it's weather that postpones a launch; there aren't usually that many technical issues this late in the game. This time. however, we had several problems, equally split between the launch vehicle and the spacecraft. I remember a member of the crew asking me, 'Is this normal?' And in my experience, it wasn't.

  11. STS-51 Launch

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Shuttle Discovery takes off from Launch Pad 39B at the Kennedy Space Center, Florida, to begin Mission STS-51 on 12 September 1993. The 57th shuttle mission began at 7:45 a.m. EDT, and lasted 9 days, 20 hours, 11 minutes, 11 seconds, while traveling a total distance of 4,106,411 miles. The Advanced Communications Technology Satellite (ACTS) was one of the projects deployed. This satellite serves as a test bed for advanced experimental communications satellite concepts and technology. Another payload on this mission was the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) telescope mounted on the Shuttle Pallet Satellite (SPAS) payload carrier. ORFEUS was designed to investigate very hot and very cold matter in the universe. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into

  12. STS-29: Pre-Launch Preparations/Launch and Landing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Live footage shows the crewmembers of STS-29, Commander Michael L. Coats, Pilot John E. Blaha, and Mission Specialists James P. Bagian, James F. Buchli, and Robert C. Springer, seated in the White Room with the traditional cake. The crew is seen performing various pre-launch activities including suit-up, and walk out to the Astro-van. This early morning launch shows countdown, main engine start, liftoff, booster separation, and various isolated footage of the launch from different cameras. Also presented are footage of the approach, gear touchdown, rollout at Edwards Air Force Base, and various isolated views of the landing.

  13. Launch Order, Launch Separation, and Loiter in the Constellation 1 1/2-Launch Solution

    NASA Technical Reports Server (NTRS)

    Stromgren, Chel; Cates, Grant; Cirillo, William

    2009-01-01

    The NASA Constellation Program (CxP) is developing a two-element Earth-to-Orbit launch system to enable human exploration of the Moon. The first element, Ares I, is a human-rated system that consists of a first stage based on the Space Shuttle Program's solid rocket booster (SRB) and an upper stage that consists of a four-crew Orion capsule, a service module, and a Launch Escape System. The second element, Ares V, is a Saturn V-plus category launch system that consists of the core stage with a cluster of six RS-68B engines and augmented with two 5.5-segment SRBs, a Saturn-derived J-2X engine powering an Earth Departure Stage (EDS), and the lunar-lander vehicle payload, Altair. Initial plans called for the Ares V to be launched first, followed the next day by the Ares I. After the EDS performs the final portion of ascent and subsequent orbit circularization, the Orion spacecraft then performs a rendezvous and docks with the EDS and its Altair payload. Following checkout, the integrated stack loiters in low Earth orbit (LEO) until the appropriate Trans-Lunar Injection (TLI) window opportunity opens, at which time the EDS propels the integrated Orion Altair to the Moon. Successful completion of this 1 1/2-launch solution carries risks related to both the orbital lifetime of the assets and the probability of achieving the launch of the second vehicle within the orbital lifetime of the first. These risks, which are significant in terms of overall system design choices and probability of mission success, dictated a thorough reevaluation of the launch strategy, including the order of vehicle launch and the planned time period between launches. The goal of the effort described in this paper was to select a launch strategy that would result in the greatest possible expected system performance, while accounting for launch risks and the cost of increased orbital lifetime. Discrete Event Simulation (DES) model of the launch strategies was created to determine the probability

  14. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1996-01-01

    Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  15. STS Derived Exploration Launch Operations

    NASA Technical Reports Server (NTRS)

    Best, Joel; Sorge, L.; Siders, J.; Sias, Dave

    2004-01-01

    A key aspect of the new space exploration programs will be the approach to optimize launch operations. A STS Derived Launch Vehicle (SDLV) Program can provide a cost effective, low risk, and logical step to launch all of the elements of the exploration program. Many benefits can be gained by utilizing the synergy of a common launch site as an exploration spaceport as well as evolving the resources of the current Space Shuttle Program (SSP) to meet the challenges of the Vision for Space Exploration. In particular, the launch operation resources of the SSP can be transitioned to the exploration program and combined with the operations efficiencies of unmanned EELVs to obtain the best of both worlds, resulting in lean launch operations for crew and cargo missions of the exploration program. The SDLV Program would then not only capture the extensive human space flight launch operations knowledge, but also provide for the safe fly-out of the SSP through continuity of system critical skills, manufacturing infrastructure, and ability to maintain and attract critical skill personnel. Thus, a SDLV Program can smoothly transition resources from the SSP and meet the transportation needs to continue the voyage of discovery of the space exploration program.

  16. Astronaut Neil Armstrong in Launch Complex 16 trailer during suiting up

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Neil A. Armstrong, command pilot of the Gemini 8 space flight, sits in the Launch Complex 16 trailer during suiting up operations for the Gemini 8 mission. Suit technician Jim Garrepy assists.

  17. STS-86 Mission Specialists Chretien and Titov prepare to enter Atlantis for launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-86 Mission Specialist Jean-Loup J.M. Chretien, in orange launch and entry suit at right, and Mission Specialist Vladimir Georgievich Titov prepare to enter the Space Shuttle Atlantis at Launch Pad 39A, with the assistance of white room closeout crew members, including suit technician Valarie McNeal, at center.

  18. Mars Pathfinder Status at Launch

    NASA Technical Reports Server (NTRS)

    Spear, A. J.; Freeman, Delma C., Jr.; Braun, Robert D.

    1996-01-01

    The Mars Pathfinder Flight System is in final test, assembly and launch preparations at the Kennedy Space Center in Florida. Launch is scheduled for 2 Dec. 1996. The Flight System development, in particular the Entry, Descent, and Landing (EDL) system, was a major team effort involving JPL, other NASA centers and industry. This paper provides a summary Mars Pathfinder description and status at launch. In addition, a section by NASA's Langley Research Center, a key EDL contributor, is provided on their support to Mars Pathfinder. This section is included as an example of the work performed by Pathfinder team members outside JPL.

  19. Fabrication of Au nanoparticles supported on CoFe2O4 nanotubes by polyaniline assisted self-assembly strategy and their magnetically recoverable catalytic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Jiang, Yanzhou; Chi, Maoqiang; Yang, Zezhou; Nie, Guangdi; Lu, Xiaofeng; Wang, Ce

    2016-02-01

    This article reports the fabrication of magnetically responsive Au nanoparticles supported on CoFe2O4 nanotubes through polyaniline (PANI) assisted self-assembly strategy which can be used as an efficient magnetically recoverable nanocatalyst. The central magnetic CoFe2O4 nanotubes possess a strong magnetic response under an externally magnetic field, enabling an easy and efficient separation from the reaction system for reuse. The thorn-like PANI layer on the surface of CoFe2O4 nanotubes provides large surface area for supporting Au nanocatalysts due to the electrostatic interactions. The as-prepared CoFe2O4/PANI/Au nanotube assemblies exhibit a high catalytic activity for the hydrogenation of 4-nitrophenol by sodium borohydride (NaBH4) at room temperature, with an apparent kinetic rate constant (Kapp) of about 7.8 × 10-3 s-1. Furthermore, the composite nanocatalyst shows a good recoverable property during the catalytic process. This work affords a reliable way in developing multifunctional nanocomposite for catalysis and other potential applications in many fields.

  20. Local Magnetoelectric Effect in La-Doped BiFeO3 Multiferroic Thin Films Revealed by Magnetic-Field-Assisted Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Zhou, Ming-Xiu; Lu, Zeng-Xing; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-06-01

    Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems.

  1. Vertical La0.7Ca0.3MnO3 nanorods tailored by high magnetic field assisted pulsed laser deposition

    PubMed Central

    Zhang, Kejun; Dai, Jianming; Zhu, Xuebin; Zhu, Xiaoguang; Zuo, Xuzhong; Zhang, Peng; Hu, Ling; Lu, Wenjian; Song, Wenhai; Sheng, Zhigao; Wu, Wenbin; Sun, Yuping; Du, Youwei

    2016-01-01

    La0.7Ca0.3MnO3 (LCMO) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) [LSAT (001)] single crystal substrates have been prepared by high magnetic field assisted pulsed laser deposition (HMF-PLD) developed by ourselves. Uniformly sized and vertically aligned nanorod structures can be obtained under an applied high magnetic field above 5 T, and the dimension size of the nanorods can be manipulated by varying the applied magnetic field. It is found that the magnetic anisotropy is strongly correlated to the dimension size of the nanorods. A significantly enhanced low-field magnetoresistance (LFMR) of −36% under 0.5 T at 100 K can be obtained due to the enhanced carrier scattering at the vertical grain boundaries between the nanorods for the LCMO films. The growth mechanism of the nanorods has been also discussed, which can be attributed to the variation of deposition rate, adatom surface diffusion, and nucleation induced by the application of a high magnetic field in the film processing. The successful achievements of such vertical nanorod structures will provide an instructive route to investigate the physical nature of these nanostructures and achieve nanodevice manipulation. PMID:26778474

  2. Local Magnetoelectric Effect in La-Doped BiFeO3 Multiferroic Thin Films Revealed by Magnetic-Field-Assisted Scanning Probe Microscopy.

    PubMed

    Pan, Dan-Feng; Zhou, Ming-Xiu; Lu, Zeng-Xing; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-12-01

    Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems. PMID:27356565

  3. Vertical La0.7Ca0.3MnO3 nanorods tailored by high magnetic field assisted pulsed laser deposition.

    PubMed

    Zhang, Kejun; Dai, Jianming; Zhu, Xuebin; Zhu, Xiaoguang; Zuo, Xuzhong; Zhang, Peng; Hu, Ling; Lu, Wenjian; Song, Wenhai; Sheng, Zhigao; Wu, Wenbin; Sun, Yuping; Du, Youwei

    2016-01-01

    La0.7Ca0.3MnO3 (LCMO) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) [LSAT (001)] single crystal substrates have been prepared by high magnetic field assisted pulsed laser deposition (HMF-PLD) developed by ourselves. Uniformly sized and vertically aligned nanorod structures can be obtained under an applied high magnetic field above 5 T, and the dimension size of the nanorods can be manipulated by varying the applied magnetic field. It is found that the magnetic anisotropy is strongly correlated to the dimension size of the nanorods. A significantly enhanced low-field magnetoresistance (LFMR) of -36% under 0.5 T at 100 K can be obtained due to the enhanced carrier scattering at the vertical grain boundaries between the nanorods for the LCMO films. The growth mechanism of the nanorods has been also discussed, which can be attributed to the variation of deposition rate, adatom surface diffusion, and nucleation induced by the application of a high magnetic field in the film processing. The successful achievements of such vertical nanorod structures will provide an instructive route to investigate the physical nature of these nanostructures and achieve nanodevice manipulation. PMID:26778474

  4. Vertical La0.7Ca0.3MnO3 nanorods tailored by high magnetic field assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Kejun; Dai, Jianming; Zhu, Xuebin; Zhu, Xiaoguang; Zuo, Xuzhong; Zhang, Peng; Hu, Ling; Lu, Wenjian; Song, Wenhai; Sheng, Zhigao; Wu, Wenbin; Sun, Yuping; Du, Youwei

    2016-01-01

    La0.7Ca0.3MnO3 (LCMO) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) [LSAT (001)] single crystal substrates have been prepared by high magnetic field assisted pulsed laser deposition (HMF-PLD) developed by ourselves. Uniformly sized and vertically aligned nanorod structures can be obtained under an applied high magnetic field above 5 T, and the dimension size of the nanorods can be manipulated by varying the applied magnetic field. It is found that the magnetic anisotropy is strongly correlated to the dimension size of the nanorods. A significantly enhanced low-field magnetoresistance (LFMR) of -36% under 0.5 T at 100 K can be obtained due to the enhanced carrier scattering at the vertical grain boundaries between the nanorods for the LCMO films. The growth mechanism of the nanorods has been also discussed, which can be attributed to the variation of deposition rate, adatom surface diffusion, and nucleation induced by the application of a high magnetic field in the film processing. The successful achievements of such vertical nanorod structures will provide an instructive route to investigate the physical nature of these nanostructures and achieve nanodevice manipulation.

  5. Study on Alternative Cargo Launch Options from the Lunar Surface

    SciTech Connect

    Cheryl A. Blomberg; Zamir A. Zulkefli; Spencer W. Rich; Steven D. Howe

    2013-07-01

    In the future, there will be a need for constant cargo launches from Earth to Mars in order to build, and then sustain, a Martian base. Currently, chemical rockets are used for space launches. These are expensive and heavy due to the amount of necessary propellant. Nuclear thermal rockets (NTRs) are the next step in rocket design. Another alternative is to create a launcher on the lunar surface that uses magnetic levitation to launch cargo to Mars in order to minimize the amount of necessary propellant per mission. This paper investigates using nuclear power for six different cargo launching alternatives, as well as the orbital mechanics involved in launching cargo to a Martian base from the moon. Each alternative is compared to the other alternative launchers, as well as compared to using an NTR instead. This comparison is done on the basis of mass that must be shipped from Earth, the amount of necessary propellant, and the number of equivalent NTR launches. Of the options, a lunar coil launcher had a ship mass that is 12.7% less than the next best option and 17 NTR equivalent launches, making it the best of the presented six options.

  6. Delta/Wind Launch with Isolated Cameras from Continuous Recording

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Wind spacecraft represents one of NASA's contributions to the International Solar Terrestrial Program (ISTP), an international effort to quantify the effects of solar energy on the Earth's magnetic field. Wind will provide continuous measurement of the solar wind, particularly charged particles and magnetic field data. The specific objectives of Wind are to: (1) provide complete plasma, energetic particle, and magnetic field input for magnetospheric and ionospheric studies; (2) determine the magnetospheric output to interplanetary space in the upstream region; (3) investigate basic plasma processes occurring in the near-Earth solar wind; and (4) provide baseline ecliptic plane observations to be used in heliospheric studies. This videotape shows the pre-dawn launch of the Wind spacecraft aboard a Delta 7925 on November 1, 1994. After the countdown and launch, the tape shows the activity in the Telemetry Room at Kennedy Space Center, where people are following the progress of the spacecraft. Following the activity in the telemetry room, there are four different replays of the launch from different locations. After showing the replays of the launch, the video returns to the Telemetry Room when an important stage in the launch and flight is achieved.

  7. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Launch plans. 415.119 Section 415.119 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site §...

  8. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Launch schedule. 415.121 Section 415.121 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site §...

  9. Magnetoelectric assisted 180° magnetization switching for electric field addressable writing in magnetoresistive random-access memory.

    PubMed

    Wang, Zhiguang; Zhang, Yue; Wang, Yaojin; Li, Yanxi; Luo, Haosu; Li, Jiefang; Viehland, Dwight

    2014-08-26

    Magnetization-based memories, e.g., hard drive and magnetoresistive random-access memory (MRAM), use bistable magnetic domains in patterned nanomagnets for information recording. Electric field (E) tunable magnetic anisotropy can lower the energy barrier between two distinct magnetic states, promising reduced power consumption and increased recording density. However, integration of magnetoelectric heterostructure into MRAM is a highly challenging task owing to the particular architecture requirements of each component. Here, we show an epitaxial growth of self-assembled CoFe2O4 nanostripes with bistable in-plane magnetizations on Pb(Mg,Nb)O3-PbTiO3 (PMN-PT) substrates, where the magnetic switching can be triggered by E-induced elastic strain effect. An unprecedented magnetic coercive field change of up to 600 Oe was observed with increasing E. A near 180° magnetization rotation can be activated by E in the vicinity of the magnetic coercive field. These findings might help to solve the 1/2-selection problem in traditional MRAM by providing reduced magnetic coercive field in E field selected memory cells. PMID:25093903

  10. Advanced Launch Development Program status

    NASA Technical Reports Server (NTRS)

    Colgrove, Roger

    1990-01-01

    The Advanced Launch System is a joint NASA - Air Force program originally directed to define the concept for a modular family of launch vehicles, to continue development programs and preliminary design activities focused primarily on low cost to orbit, and to offer maturing technologies to existing systems. The program was restructed in the spring of 1990 as a result of funding reductions and renamed the Advanced Launch Development Program. This paper addresses the program's status following that restructuring and as NASA and the Air Force commence a period of deliberation over future space launch needs and the budgetary resources available to meet those needs. The program is currently poised to protect a full-scale development decision in the mid-1990's through the appropriate application of program resources. These resources are concentrated upon maintaining the phase II system contractor teams, continuing the Space Transportation Engine development activity, and refocusing the Advanced Development Program demonstrated activities.

  11. STS-135 Fused Launch Video

    NASA Video Gallery

    Imaging experts funded by the Space Shuttle Program and located at NASA's Ames Research Center prepared this video of the STS-135 launch by merging images taken by a set of six cameras capturing fi...

  12. Environmentally-Preferable Launch Coatings

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA Kennedy Space Center (KSC), Florida, has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of NASA and the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion protecting coatings for launch facilities and ground support equipment (GSE). The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. The project compares coating performance of the selected alternatives to existing coating systems or standards.

  13. Nanosatellite Launch Adapter System (NLAS)

    NASA Technical Reports Server (NTRS)

    Yost, Bruce D.; Hines, John W.; Agasid, Elwood F.; Buckley, Steven J.

    2010-01-01

    The utility of small spacecraft based on the University cubesat standard is becoming evident as more and more agencies and organizations are launching or planning to include nanosatellites in their mission portfolios. Cubesats are typically launched as secondary spacecraft in enclosed, containerized deployers such as the CalPoly Poly Picosat Orbital Deployer (P-POD) system. The P-POD allows for ease of integration and significantly reduces the risk exposure to the primary spacecraft and mission. NASA/ARC and the Operationally Responsive Space office are collaborating to develop a Nanosatellite Launch Adapter System (NLAS), which can accommodate multiple cubesat or cubesat-derived spacecraft on a single launch vehicle. NLAS is composed of the adapter structure, P-POD or similar spacecraft dispensers, and a sequencer/deployer system. This paper describes the NLAS system and it s future capabilities, and also provides status on the system s development and potential first use in space.

  14. Re-entry Experiment Launch

    NASA Video Gallery

    On August 10, 2009, NASA successfully launched the Inflatable Re-entry Vehicle Experiment (IRVE) and proved that spacecraft can use inflatable heat shields to reduce speed and provide protection du...

  15. Robonaut 2 Readied for Launch

    NASA Video Gallery

    Robonaut 2 is being prepared for its history making launch to the International Space Station on STS-133. The robot, known as R2, will be the first humanoid machine to work in orbit. With a upper t...

  16. Launch Abort System Pathfinder Arrival

    NASA Video Gallery

    The Orion Launch Abort System, or LAS, pathfinder returned home to NASA Langley on Oct. 18 on its way to NASA's Kennedy Space Center. The hardware was built at Langley and was used in preparation f...

  17. Space Launch System: Future Frontier

    NASA Video Gallery

    Featuring NASA Marshall’s Foundations of Influence, Relationships, Success & Teamwork (FIRST) employees and student interns, "Future Frontier" discusses the new Space Launch System (SLS) heavy-li...

  18. Lighting the Sky: ATREX Launches

    NASA Video Gallery

    NASA successfully launched five suborbital sounding rockets early March 27, 2012 from its Wallops Flight Facility in Virginia as part of a study of the upper level jet stream. The first rocket was ...

  19. BARREL Team Launching 20 Balloons

    NASA Video Gallery

    A movie made by the NASA-Funded Balloon Array for Radiation belt Relativistic Electron Losses, or BARREL, team on their work launching 20 balloons in Antarctica during the Dec. 2013/Jan. 2014 campa...

  20. Launch Commit Criteria Monitoring Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.

  1. Japan launches mission to Venus

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2010-06-01

    The Japanese space agency JAXA has launched its first mission to Venus. The Akatsuki craft, which means "dawn" in Japanese, took off last month from the Tanegashima Space Center on the island of Kagoshima, south-west of mainland Japan.

  2. New Horizons Launch Contingency Effort

    NASA Astrophysics Data System (ADS)

    Chang, Yale; Lear, Matthew H.; McGrath, Brian E.; Heyler, Gene A.; Takashima, Naruhisa; Owings, W. Donald

    2007-01-01

    On 19 January 2006 at 2:00 PM EST, the NASA New Horizons spacecraft (SC) was launched from the Cape Canaveral Air Force Station (CCAFS), FL, onboard an Atlas V 551/Centaur/STAR™ 48B launch vehicle (LV) on a mission to explore the Pluto Charon planetary system and possibly other Kuiper Belt Objects. It carried a single Radioisotope Thermoelectric Generator (RTG). As part of the joint NASA/US Department of Energy (DOE) safety effort, contingency plans were prepared to address the unlikely events of launch accidents leading to a near-pad impact, a suborbital reentry, an orbital reentry, or a heliocentric orbit. As the implementing organization. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had expanded roles in the New Horizons launch contingency effort over those for the Cassini mission and Mars Exploration Rovers missions. The expanded tasks included participation in the Radiological Control Center (RADCC) at the Kennedy Space Center (KSC), preparation of contingency plans, coordination of space tracking assets, improved aerodynamics characterization of the RTG's 18 General Purpose Heat Source (GPHS) modules, and development of spacecraft and RTG reentry breakup analysis tools. Other JHU/APL tasks were prediction of the Earth impact footprints (ElFs) for the GPHS modules released during the atmospheric reentry (for purposes of notification and recovery), prediction of the time of SC reentry from a potential orbital decay, pre-launch dissemination of ballistic coefficients of various possible reentry configurations, and launch support of an Emergency Operations Center (EOC) on the JHU/APL campus. For the New Horizons launch, JHU/APL personnel at the RADCC and at the EOC were ready to implement any real-time launch contingency activities. A successful New Horizons launch and interplanetary injection precluded any further contingency actions. The New Horizons launch contingency was an interagency effort by several organizations. This paper

  3. CubeSat Launch Initiative

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  4. STS-53 Launch and Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Footage of various stages of the STS-53 Discovery launch is shown, including shots of the crew at breakfast, getting suited up, and departing to board the Orbiter. The launch is seen from many vantage points, as is the landing. On-orbit activities show the crew performing several medical experiments, such as taking a picture of the retina and measuring the pressure on the eyeball. One crewmember demonstrates how to use the rowing machine in an antigravity environment.

  5. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 35mm camera was used to expose this close-up image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.

  6. Mercury-Atlas Test Launch

    NASA Technical Reports Server (NTRS)

    1961-01-01

    A NASA Project Mercury spacecraft was test launched at 11:15 AM EST on April 25, 1961 from Cape Canaveral, Florida, in a test designed to qualify the Mercury Spacecraft and all systems, which must function during orbit and reentry from orbit. The Mercury-Atlas vehicle was destroyed by Range Safety Officer about 40 seconds after liftoff. The spacecraft was recovered and appeared to be in good condition. Atlas was designed to launch payloads into low Earth orbit, geosynchronous transfer orbit or geosynchronous orbit. NASA first launched Atlas as a space launch vehicle in 1958. Project SCORE, the first communications satellite that transmitted President Eisenhower's pre-recorded Christmas speech around the world, was launched on an Atlas. For all three robotic lunar exploration programs, Atlas was used. Atlas/ Centaur vehicles launched both Mariner and Pioneer planetary probes. The current operational Atlas II family has a 100% mission success rating. For more information about Atlas, please see Chapter 2 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  7. SLI Artist `s Launch Concept

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during launch. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  8. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  9. Reusable launch vehicle technology program

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Austin, R. Eugene

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  10. Micromagnetic model analysis of integrated single-pole-type head with tilted spin-torque oscillator for high-frequency microwave-assisted magnetic recording

    SciTech Connect

    Katayama, Takuto; Kanai, Yasushi; Yoshida, Kazuetsu; Greaves, Simon; Muraoka, Hiroaki

    2015-05-07

    The spin-torque oscillator (STO) is the most important component in microwave-assisted magnetic recording. Some requirements for the STO are: large amplitude and stable oscillation, small injected current, and oscillation at a frequency that excites resonance in a recording medium. It is also necessary for the STO oscillation to closely follow the head coil current. In this paper, STOs were integrated into write heads and micromagnetic analyses carried out to obtain a write head structure with stable STO oscillation that could follow a high-frequency head coil current.

  11. Spark-plasma-sintering magnetic field assisted compaction of Co{sub 80}Ni{sub 20} nanowires for anisotropic ferromagnetic bulk materials

    SciTech Connect

    Ouar, Nassima; Schoenstein, Frédéric; Mercone, Silvana; Farhat, Samir; Jouini, Noureddine; Villeroy, Benjamin; Leridon, Brigitte

    2013-10-28

    We developed a two-step process showing the way for sintering anisotropic nanostructured bulk ferromagnetic materials. A new reactor has been optimized allowing the synthesis of several grams per batch of nanopowders via a polyol soft chemistry route. The feasibility of the scale-up has been successfully demonstrated for Co{sub 80}Ni{sub 20} nanowires and a massic yield of ∼97% was obtained. The thus obtained nanowires show an average diameter of ∼6 nm and a length of ∼270 nm. A new bottom-up strategy allowed us to compact the powder into a bulk nanostructured system. We used a spark-plasma-sintering technique under uniaxial compression and low temperature assisted by a permanent magnetic field of 1 T. A macroscopic pellet of partially aligned nanowire arrays has been easily obtained. This showed optimized coercive properties along the direction of the magnetic field applied during compaction (i.e., the nanowires' direction)

  12. Structural and magnetic studies of tin doped α-Fe2O3 (α-SnxFe2-xO3) nanoparticles prepared by microwave assisted synthesis

    NASA Astrophysics Data System (ADS)

    K., Bindu; Chowdhury, P.; Ajith K., M.; Nagaraja, H. S.

    2016-05-01

    Hematite (α-Fe2O3) doped with tetravalent ions have potential applications in various fields such as gas sensors, memories, energy storage devices because of their electrical and magnetic properties. Microwave assisted synthesis was used to prepare Tin doped α-Fe2O3 [α-SnxFe2-xO3]. The structural and morphological studies were investigated using X-ray diffraction (XRD) and Scanning electron microscopy (SEM). XRD patterns revealed that α-Fe2O3 and α-SnxFe2-xO3 were having rhombohedral structure. The compositional study was done by Energy dispersive X-ray Spectroscopy (EDS). The magnetic properties were studied by Vibrating Sample Magnetometry (VSM). Results shows that the prepared samples were found to be antiferromagnetic in nature and the results are discussed in detail.

  13. NASA's Space Launch System: Momentum Builds Towards First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd; Lyles, Garry

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum programmatically and technically toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. Its first mission will be the launch of the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back. SLS will also launch the first Orion crewed flight in 2021. SLS can evolve to a 130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Managed by NASA's Marshall Space Flight Center, the SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. At KDP-C, the Agency Planning Management Council determines the readiness of a program to go to the next life-cycle phase and makes technical, cost, and schedule commitments to its external stakeholders. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015, and a launch readiness date of November 2018. Every SLS element is currently in testing or test preparations. The Program shipped its first flight hardware in 2014 in preparation for Orion's Exploration Flight Test-1 (EFT-1) launch on a Delta IV Heavy rocket in December, a significant first step toward human journeys into deep space. Accomplishments during 2014 included manufacture of Core Stage test articles and preparations for qualification testing the Solid Rocket Boosters and the RS-25 Core Stage engines. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment

  14. Spitzer Pre Launch Mission Operations System - The Road to Launch

    NASA Technical Reports Server (NTRS)

    Scott, Charles P.; Wilson, Robert K.

    2006-01-01

    Spitzer Space Telescope was launched on 25 August 2003 into an Earth-trailing solar orbit to acquire infrared observations from space. Development of the Mission Operations System (MOS) portion prior to launch was very different from planetary missions from the stand point that the MOS teams and Ground Data System had to be ready to support all aspects of the mission at launch (i.e., no cruise period for finalizing the implementation). For Spitzer, all mission-critical events post launch happen in hours or days rather than months or years, as is traditional with deep space missions. At the end of 2000 the Project was dealt a major blow when the Mission Operations System (MOS) had an unsuccessful Critical Design Review (CDR). The project made major changes at the beginning of 2001 in an effort to get the MOS (and Project) back on track. The result for the Spitzer Space Telescope was a successful launch of the observatory followed by an extremely successful In Orbit Checkout (IOC) and operations phase. This paper describes how the project was able to recover the MOS to a successful Delta (CDR) by mid 2001, and what changes in philosophies, experiences, and lessons learned followed. It describes how projects must invest early or else invest heavily later in the development phase to achieve a successful operations phase.

  15. Magnetic field-assisted synthesis of wire-like Co{sub 3}O{sub 4} nanostructures: Electrochemical and photocatalytic studies

    SciTech Connect

    Zhao, Xiubin; Pang, Zhanwen; Wu, Mingzai; Liu, Xiansong; Zhang, Hui; Ma, Yongqing; Sun, Zhaoqi; Zhang, Lide; Chen, Xiaoshuang

    2013-01-15

    Graphical abstract: Schematic illustration for the magnetic field-assisted growth of wire-like Co{sub 3}O{sub 4} nanostructure. Display Omitted Highlights: ► Co{sub 3}O{sub 4} nanowires are prepared by magnetic field hydrothermal reduction and annealing. ► These Co{sub 3}O{sub 4} nanowires possess enhanced capacitance. ► The Co{sub 3}O{sub 4} nanowires have a good photocatalytic activity for methyl orange. -- Abstract: Wire-like Co{sub 3}O{sub 4} nanostructures were prepared by the combination of magnetic field-assisted hydrothermal reduction of cobalt ions and the subsequent ambient annealing at 500 °C. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphological evolution of the products. The results show that the wire-like nanostructures possess diameters about 250 nm and lengths over 10 μm. The possible formation mechanism of the wire-like Co{sub 3}O{sub 4} nanostructures is also proposed based on the SEM results. Galvanostatic methods were used to characterize the electrochemical properties. The measurements indicate that the wire-like Co{sub 3}O{sub 4} nanostructures show larger discharge and charge capacities than that of spherical Co{sub 3}O{sub 4} nanoparticles prepared in the absence of magnetic field. In addition, the photocatalytic activity of the products was investigated by measuring the photodegradation of methyl orange solution under ultraviolet radiation, which shows that both the wire-like and spherical products have a good photocatalytic activity.

  16. Role of the substrate on the magnetic anisotropy of magnetite thin films grown by ion-assisted deposition

    NASA Astrophysics Data System (ADS)

    Prieto, Pilar; Prieto, José Emilio; Gargallo-Caballero, Raquel; Marco, José Francisco; de la Figuera, Juan

    2015-12-01

    Magnetite (Fe3O4) thin films were deposited on MgO (0 0 1), SrTiO3 (0 0 1), LaAlO3 (0 0 1) single crystal substrates as well on as silicon and amorphous glass in order to study the effect of the substrate on their magnetic properties, mainly the magnetic anisotropy. We have performed a structural, morphological and compositional characterization by X-ray diffraction, atomic force microscopy and Rutherford backscattering ion channeling in oxygen resonance mode. The magnetic anisotropy has been investigated by vectorial magneto-optical Kerr effect. The results indicate that the magnetic anisotropy is especially influenced by the substrate-induced microstructure. In-plane isotropy and uniaxial anisotropy behavior have been observed on silicon and glass substrates, respectively. The transition between both behaviors depends on grain size. For LaAlO3 substrates, in which the lattice mismatch between the Fe3O4 films and the substrate is significant, a weak in-plane fourfold magnetic anisotropy is induced. However when magnetite is deposited on MgO (0 0 1) and SrTiO3 (0 0 1) substrates, a well-defined fourfold in-plane magnetic anisotropy is observed with easy axes along [1 0 0] and [0 1 0] directions. The magnetic properties on these two latter substrates are similar in terms of magnetic anisotropy and coercive fields.

  17. Launch site integration for mixed fleet operations

    NASA Technical Reports Server (NTRS)

    Scott, L. P.

    1990-01-01

    Launch site impacts and integration planning issues are presented to support launch operations for a mixed vehicle fleet (manned and cargo). Proposed ground systems and launch site configurations are described. Prelaunch processing scenarios and schedules are developed for candidate launch vehicles. Earth-to-orbit (ETO) vehicle architectures are presented to meet future launch requirements, including the Space Exploration Initiative (SEI). Flight vehicle design recommendations to enhance launch processing are discussed. The significance of operational designs for future launch vehicles is shown to be a critical factor in planning for mixed fleet launch site operations.

  18. Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Farrokhi, H.; Gruzdev, V.; Zheng, H. Y.; Rawat, R. S.; Zhou, W.

    2016-06-01

    A constant magnetic field can significantly improve the quality and speed of ablation by nanosecond laser pulses. These improvements are usually attributed to the confinement of laser-produced plasma by the magnetic field and specific propagation effects in the magnetized plasma. Here we report a strong influence of constant axial magnetic field on the ablation of silicon by 20-ns laser pulses at wavelength 355 nm, which results in an increase of ablation depth by a factor of 1.3 to 69 depending on laser parameters and magnitude of the magnetic field. The traditional plasma effects do not explain this result, and magneto-absorption of silicon is proposed as one of the major mechanisms of the significant enhancement of ablation.

  19. Magnetic properties and coercivity mechanism of Sm1-xPrxCo5 (x=0-0.6) nanoflakes prepared by surfactant-assisted ball milling

    NASA Astrophysics Data System (ADS)

    Xu, M. L.; Yue, M.; Wu, Q.; Li, Y. Q.; Lu, Q. M.

    2016-05-01

    Sm1-xPrxCo5 (x=0-0.6) nanoflakes with CaCu5 structure were successfully prepared by surfactant-assisted high-energy ball milling (SAHEBM). The crystal structure and magnetic properties of Sm1-xPrxCo5 (x=0-0.6) nanoflakes were studied by X-ray diffraction and vibrating sample magnetometer. Effects of Pr addition on the structure, magnetic properties and coercivity mechanism of Sm1-xPrxCo5 nanoflakes were systematically investigated. XRD results show that all the nanoflakes have a hexagonal CaCu5-type (Sm, Pr)1Co5 main phase and the (Sm, Pr)2Co7 impurity phase, and all of the samples exhibit a strong (00l) texture after magnetic alignment. As the Pr content increases, remanence firstly increases, then slightly reduced, while anisotropy field (HA) and Hci of decrease monotonically. Maximum energy product [(BH)max] of the flakes increases first, peaks at 24.4 MGOe with Pr content of x = 0.4, then drops again. Magnetization behavior analysis indicate that the coercivity mechanism is mainly controlled by inhomogeneous domain wall pinning, and the pinning strength weakens with the increased Pr content, suggesting the great influence of HA on the coercivity of flakes.

  20. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect

    Rosko, Robert J.; Loughin, Stephen

    1997-01-10

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed.

  1. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    NASA Astrophysics Data System (ADS)

    Rosko, Robert J.; Loughin, Stephen

    1997-01-01

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed.

  2. Apollo 11 Facts Project [Pre-Launch Activities and Launch

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The crewmembers of Apollo 11, Commander Neil A. Armstrong, Command Module Pilot Michael Collins, and Lunar Module Pilot Edwin E. Aldrin, Jr., are seen during various stages of preparation for the launch of Apollo 11, including suitup, breakfast, and boarding the spacecraft. They are also seen during mission training, including preparation for extravehicular activity on the surface of the Moon. The launch of Apollo 11 is shown. The ground support crew is also seen as they wait for the spacecraft to approach the Moon.

  3. The commercial Aquila Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Flittie, Kirk J.; McFarlane, Scott

    1991-06-01

    The American Rocket Company's (AMROC) Aquila Launch Vehicle is a ground-launched, four-stage, all-hybrid propulsion, inertially-guided commercial space booster designed to deliver 2000 pound payloads into low earth orbit. By using AMROC's low-cost hybrid propulsion, the Aquila launch service will provide quick, on-demand, routine access to space; high accuracy orbital placement; and an unprecedented degree of production, ground and flight safety. The first launch of the Aquila will be in early 1995. Aquila utilizes AMROc's unique hybrid propulsion systems consisting of an inert solid polybutadiene fuel and either liquid oxygen or nitrous oxide as oxidizer. A hybrid propulsion system is distinct from all other rocket propulsion systems in that hybrids cannot explode; hybrids offer safe handling, operation and launch pad abort; and hybrids offer start/stop and full throttling capability for trajectory optimization and precise payload placement on orbit. In addition, the exhaust products do not contain hydrogen chlorides which are environmentally degrading.

  4. ESA to launch six scientific satellites

    NASA Astrophysics Data System (ADS)

    1995-09-01

    The Infrared Space Observatory, ISO, will lead the trio into space. It will be launched on an Ariane 4 rocket in early November from the European launch site at Kourou, French Guiana. It will be followed in mid-December by SOHO, the Solar and Heliospheric Observatory, which will be launched by an Atlas IIAS rocket from Cape Canaveral, USA. Finally, in mid-January the four Cluster probes will be carried into space on the inaugural flight of Ariane 5. ISO is the world's only orbiting infrared observatory and is the most sophisticated ever. Its sensitive detectors will be cooled to below -270 degrees C, allowing it to observe cool objects in space, invisible through ordinary telescopes. ISO's many scientific goals include studying newly formed stars and planets, investigating the aging process of galaxies and search for the universe's elusive 'dark matter' that is believed to outweigh visible stars and galaxies. The SOHO observatory will provide scientists with a comprehensive study of the sun, the nuclear powerhouse in the centre of our solar system. Its twelve experiments, developed by scientists from Europe and the United States, will investigate the sun from its core outwards -from the very inner workings of the star, to the solar wind which blows through the solar system. The four identical Cluster spacecraft will focus on studying the interaction of the sun with plasmas of the Earth and the magnetic field in a region known as the magnetosphere. The four probes, flying in formation, will allow scientists to build up a three-dimensional picture of the battle between the sun's streams of wind and the Earth's protective magnetic field. These missions represent years of work by scientists across Europe and around the world. The data they gather will provide us with a greater understanding of our own solar neighbourhood and deep space. SPACECRAFT STATUS AS AT 1 SEPTEMBER 95 ISO The ISO satellite, together with all the associated equipment, was transported in June by

  5. Launch Pad in a Box

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Tamasy, G. J.; Mueller, R. P.; Townsend, I. I.; Sampson, J. W.; Lane, M. A.

    2016-01-01

    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests

  6. STS-120 on Launch Pad

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A photographer used a fisheye lens attached to an electronic still camera to record a series of photos of the Space Shuttle Discovery at the launch pad while the STS-120 crew was at Kennedy Space Center for the Terminal Countdown Demonstration Test in October 2007. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007. The crew included Scott E. Parazynski, Douglas H. Wheelock, Stephanie D. Wilson, all mission specialists; George D. Zamka, pilot; Pamela A. Melroy, commander; Daniel M. Tani, Expedition 16 flight engineer; and Paolo A. Nespoli, mission specialist representing the European Space Agency (ESA). Major objectives included the installation of the P6 solar array of the port truss and delivery and installment of Harmony, the Italian-built U.S. Node 2 on the International Space Station (ISS).

  7. Nanosatellite Launch Adapter System (NLAS)

    NASA Technical Reports Server (NTRS)

    Chartres, James; Cappuccio, Gelsomina

    2015-01-01

    The Nanosatellite Launch Adapter System (NLAS) was developed to increase access to space while simplifying the integration process of miniature satellites, called nanosats or CubeSats, onto launch vehicles. A standard CubeSat measures about 10 cm square, and is referred to as a 1-unit (1U) CubeSat. A single NLAS provides the capability to deploy 24U of CubeSats. The system is designed to accommodate satellites measuring 1U, 1.5U, 2U, 3U and 6U sizes for deployment into orbit. The NLAS may be configured for use on different launch vehicles. The system also enables flight demonstrations of new technologies in the space environment.

  8. A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling.

    PubMed

    Yan, Zhongdan; Gan, Ning; Li, Tianhua; Cao, Yuting; Chen, Yinji

    2016-04-15

    A multiplex electrochemical aptasensor was developed for simultaneous detection of two antibiotics such as chloramphenicol (CAP) and oxytetracycline (OTC), and high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted target recycling was used to improve sensitivity. The cascade amplification process consists of the exonuclease-assisted target recycling amplification and metal ions encoded magnetic hollow porous nanoparticles (MHPs) to produce voltammetry signals. Upon the specific recognition of aptamers to targets (CAP and OTC), exonuclease I (Exo I) selectively digested the aptamers which were bound with CAP and OTC, then the released CAP and OTC participated new cycling to produce more single DNA, which can act as trigger strands to hybrid with nanotracers to generate further signal amplification. MHPs were used as carriers to load more amounts of metal ions and coupling with Exo I assisted cascade target recycling can amplify the signal for about 12 folds compared with silica based nanotracers. Owing to the dual signal amplification, the linear range between signals and the concentrations of CAP and OTC were obtained in the range of 0.0005-50 ng mL(-1). The detection limits of CAP and OTC were 0.15 and 0.10 ng mL(-1) (S/N=3) which is more than 2 orders lower than commercial enzyme-linked immunosorbent immunoassay (ELISA) method, respectively. The proposed method was successfully applied to simultaneously detection of CAP and OTC in milk samples. Besides, this aptasensor can be applied to other antibiotics detection by changing the corresponding aptamer. The whole scheme is facile, selective and sensitive enough for antibiotics screening in food safety. PMID:26594886

  9. Thermo-induced modifications and selective accumulation of glucose-conjugated magnetic nanoparticles in vivo in rats - increasing the effectiveness of magnetic-assisted therapy - pilot study.

    PubMed

    Traikov, L; Antonov, I; Gerou, A; Vesselinova, L; Hadjiolova, R; Raynov, J

    2015-09-01

    Ferro-Magnetic nanoparticles (Fe-MNP) have gained a lot of attention in biomedical and industrial applications due to their biocompatibility, ease of surface modification and paramagnetic properties. The basic idea of our study is whether it is possible to use glucose-conjugate Fe-MNP (Glc-Fe-MNP) for targeting and more accurate focusing in order to increase the effect of high-frequency electromagnetic fields induced hyperthermia in solid tumors. Tumors demonstrate high metabolic activity for glucose in comparison with other somatic cells.Increasing of accumulation of glucose conjugated (Glc)-Fe-MNP on tumor site and precision of radio frequency electro-magnetic field (RF-EMF) energy absorption in solid tumors, precede RF-EMF induced hyperthermia. Rat model for monitoring the early development of breast cancer. Twenty female Wistar rats (MU-line-6171) were divided into two groups of 10 rats that were either treated with N-methyl-N-nitrosourea to induce breast cancer and 10 with carrageenan to induce inflammation (control). Glc-Fe-MNP can offer a solution to increase hyperthermia effect to the desired areas in the body by accumulation and increasing local concentration due to high tissue metabolic assimilation. In this condition, it is considered that the magnetization of the nanoparticles is a single-giant magnetic moment, the sum of all the individual magnetic moments and is proportional to the concentration of Glc-Fe-MNP. PMID:26444197

  10. Personnel Launch System (PLS) study

    NASA Technical Reports Server (NTRS)

    Ehrlich, Carl F., Jr.

    1991-01-01

    NASA is currently studying a personnel launch system (PLS) approach to help satisfy the crew rotation requirements for the Space Station Freedom. Several concepts from low L/D capsules to lifting body vehicles are being examined in a series of studies as a potential augmentation to the Space Shuttle launch system. Rockwell International Corporation, under contract to NASA, analyzed a lifting body concept to determine whether the lifting body class of vehicles is appropriate for the PLS function. The results of the study are given.

  11. The Scout Launch Vehicle program

    NASA Technical Reports Server (NTRS)

    Foster, L. R., Jr.; Urash, R. G.

    1981-01-01

    The Scout Launch Vehicle Program to utilize solid propellant rockets by the DOD and to provide a reliable, low cost vehicle for scientific and applications aircraft is discussed. The program's history is reviewed and a vehicle description is given. The Vandenberg Air Force Base and the San Marco launch sites are described, and capabilities such as payload weight, orbital inclinations, payload volume and mission integration time spans are discussed. Current and future plans for improvement, including larger heat shields and individual rocket motors are also reviewed.

  12. Reusable Reentry Satellite (RRS): Launch tradeoff study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A goal of the Phase B study is to define the launch system interfaces for the reusable reentry satellite (RRS) program. The focus of the launch tradeoff study, documented in this report, is to determine which expendable launch vehicles (ELV's) are best suited for the RRS application by understanding the impact of all viable launch systems on RRS design and operation.

  13. Intelsat communications satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1983-01-01

    To be placed into a highly elliptical transfer orbit by the Atlas Centaur (AC-61) launch vehicle, the INTELSAT V-F satellite has 12,000 voice circuits and 2 color television channels and incorporates a maritime communication system for ship to shore communications. The stages of the launch vehicle and the launch operations are described. A table shows the launch sequence.

  14. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance.

    PubMed

    Vogtt, K; Winter, R

    2005-08-01

    COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80 degrees C) and under high pressure conditions at low temperature (3.75 kbar, -13 degrees C). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors. PMID:16082458

  15. Performance assessment of planetary missions as launched from an orbiting space station

    NASA Technical Reports Server (NTRS)

    Friedlander, A.

    1982-01-01

    Results presented are intended to assist planners and the mission analysis community in assessing the performance impact (pro or con) of launching planetary missions from an orbiting space station as compared to the usual, ground-based Shuttle launch of such missions. The analyses comprising this assessment include: (1) a basic understanding and description of the space station launch problem; (2) examination of alternative injection strategies and selection of the most appropriate strategy for minimizing performance penalties; and (3) quantitative comparison of station-launched and Shuttle-launched performance over a wide energy/mass range of planetary mission opportunities. Data for each mission covers a full 360 deg of possible nodal location of the space station orbit. The main results are that planetary missions can be launched from a space station within acceptable penalty bounds, and that the station serving as a staging base/propellant depot can benefit some missions requiring large payload mass or high injection energy.

  16. Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording.

    PubMed

    Miao, Lingyun; Stoddart, Paul R; Hsiang, Thomas Y

    2014-07-25

    Heat-assisted magnetic recording (HAMR) has attracted increasing attention as one of the most promising future techniques for ultra-high-density magnetic recording beyond the current limit of 1 Tb in(-2). Localized surface plasmon resonance plays an important role in HAMR by providing a highly focused optical spot for heating the recording medium within a small volume. In this work, we report an aluminum near-field transducer (NFT) based on a novel bow-tie design. At an operating wavelength of 450 nm, the proposed transducer can generate a 35 nm spot size inside the magnetic recording medium, corresponding to a recording density of up to 2 Tb in(-2). A highly integrated micro-nano-optics design is also proposed to ensure process compatibility and corrosion-resistance of the aluminum NFT. Our work has demonstrated the feasibility of using aluminum as a plasmonic material for HAMR, with advantages of reduced cost and improved efficiency compared to traditional noble metals. PMID:24981413

  17. Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology.

    PubMed

    Yang, Miyi; Wu, Xiaoling; Jia, Yuhan; Xi, Xuefei; Yang, Xiaoling; Lu, Runhua; Zhang, Sanbing; Gao, Haixiang; Zhou, Wenfeng

    2016-02-01

    In this work, a novel effervescence-assisted microextraction technique was proposed for the detection of four fungicides. This method combines ionic liquid-based dispersive liquid-liquid microextraction with the magnetic retrieval of the extractant. A magnetic effervescent tablet composed of Fe3O4 magnetic nanoparticles, sodium carbonate, sodium dihydrogen phosphate and 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonimide) was used for extractant dispersion and retrieval. The main factors affecting the extraction efficiency were screened by a Plackett-Burman design and optimized by a central composite design. Under the optimum conditions, good linearity was obtained for all analytes in pure water model and real water samples. Just for the pure water, the recoveries were between 84.6% and 112.8%, the limits of detection were between 0.02 and 0.10 μg L(-1) and the intra-day precision and inter-day precision both are lower than 4.9%. This optimized method was successfully applied in the analysis of four fungicides (azoxystrobin, triazolone, cyprodinil, trifloxystrobin) in environmental water samples and the recoveries ranged between 70.7% and 105%. The procedure promising to be a time-saving, environmentally friendly, and efficient field sampling technique. PMID:26772131

  18. Crystallographic alignment evolution and magnetic properties of anisotropic Sm0.6Pr0.4Co5 nanoflakes prepared by surfactant-assisted ball milling

    NASA Astrophysics Data System (ADS)

    Xu, M. L.; Wu, Q.; Li, Y. Q.; Liu, W. Q.; Lu, Q. M.; Yue, M.

    2015-08-01

    The microstructure, crystal structure and magnetic properties were studied for Sm0.6Pr0.4Co5 nanoflakes prepared by surfactant-assisted high-energy ball milling (SAHEBM). Effect of ball-milling time on the c-axis crystallographic alignment, morphology and magnetic properties of Sm0.6Pr0.4Co5 nanoflakes was systematically investigated. With increasing milling time from 1 h to 7 h, the intensity ratio between (002) and (111) reflection peaks indicating degree of c-axis crystal texture of the (Sm, Pr)Co5 phase increases first, peaks at 3 h, then drops again, revealing that the strongest c-axis crystal texture was obtained in the nanoflakes milled for 3 h. On the other hand, the coercivity (Hci) of the flakes increases gradually from 1.71 to 14.65 kOe with the increase of ball milling time. As a result, an optimal magnetic properties of Mr of 10.23 kGs, Hci of 11.45 kOe and (BH)max of 24.40 MGOe was obtained in Sm0.6Pr0.4Co5 nanoflakes milled for 3 h, which also displayed a high aspect ratio, small in-plane size, pronounced (001) out-of-plane texture.

  19. Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: Proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals.

    PubMed

    Chatzimitakos, Theodoros; Binellas, Charalampos; Maidatsi, Katerina; Stalikas, Constantine

    2016-03-01

    The use of magnetic ionic liquids (MILs) is in constant growth due to their switchable properties in the presence of an external magnetic field along with the outstanding properties of ionic liquids. In this study, a novel stirring-assisted drop-breakup microextraction (SADBME) approach is put forward, based on the synthesis and utilization of methyltrioctylammonium tetrachloroferrate (N8 8,8,1[FeCl4]), as a MIL. The proposed procedure complies with the principles of the green chemistry, since it uses low volumes of easily synthesized ILs-based magnetic extracting phases avoiding the use of toxic solvents. To demonstrate its applicability, the proposed microextraction procedure is studied in conjunction with HPLC for the determination of selected phenols and acidic pharmaceuticals in aqueous matrices, taking into account the main experimental variables involved. The results obtained are accurate and highly reproducible, thus making it a good alternative approach for routine analysis of phenols and acidic pharmaceuticals. The low-cost approach is straightforward, environmentally safe and exhibits high enrichment factors and absolute extraction percentages and satisfactory recoveries. To the best of our knowledge, this is the first time that a MIL is used for analytical purposes in a practical, efficient and environmentally friendly drop-breakup microextraction approach for small molecules. PMID:26873468

  20. Interstitial laser phototherapy assisted by magnetic resonance imaging: A new technique for monitoring laser-tissue interaction

    SciTech Connect

    Castro, D.J.; Saxton, R.E.; Layfield, L.J.; Fetterman, H.R.; Castro, D.J.; Tartell, P.B.; Robinson, J.D.; To, S.Y.; Nishimura, E.; Lufkin, R.B. )

    1990-05-01

    The rapid technological advances of magnetic resonance imaging, laser fiberoptics, and compatible probes may allow treatment of deep and sometimes surgically unreachable tumors of the head and neck with minimal morbidity through interstitial laser phototherapy. In this study, a new application of magnetic resonance imaging was developed to monitor and quantify laser-induced tissue damages. Pig skin was exposed to increased levels of argon laser (514.5 nm) at energy densities between 62.5 and 375 J/cm2 as determined by an accurate and reproducible method of dosimetry. Thermal profiles were recorded using an infrared sensor and T1- and T2-weighted magnetic resonance images were taken; afterward, biopsies were performed to quantitate the level of tissue damage. Our results demonstrate that above a certain threshold of laser energy, the magnetic resonance imaging findings are temperature dependent. Appropriate development of a scale matching laser energies, temperature profiles, T1- and T2-weighted magnetic resonance images, and histological quantitation of tissue destruction will allow us to optimize the three-dimensional control and monitoring of laser-tissue interactions.

  1. STS-1 Pre-Launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A timed exposure of the Space Shuttle, STS-1, at Launch Pad A, Complex 39, turns the space vehicle and support facilities into a night- time fantasy of light. Structures to the left of the Shuttle are the fixed and the rotating service structure.

  2. VEGA, a small launch vehicle

    NASA Astrophysics Data System (ADS)

    Duret, François; Fabrizi, Antonio

    1999-09-01

    Several studies have been performed in Europe aiming to promote the full development of a small launch vehicle to put into orbit one ton class spacecrafts. But during the last ten years, the european workforce was mainly oriented towards the qualification of the heavy class ARIANE 5 launch vehicle.Then, due also to lack of visibility on this reduced segment of market, when comparing with the geosatcom market, no proposal was sufficiently attractive to get from the potentially interrested authorities a clear go-ahead, i.e. a financial committment. The situation is now rapidly evolving. Several european states, among them ITALY and FRANCE, are now convinced of the necessity of the availability of such a transportation system, an important argument to promote small missions, using small satellites. Application market will be mainly scientific experiments and earth observation; some telecommunications applications may be also envisaged such as placement of little LEO constellation satellites, or replacement after failure of big LEO constellation satellites. FIAT AVIO and AEROSPATIALE have proposed to their national agencies the development of such a small launch vehicle, named VEGA. The paper presents the story of the industrial proposal, and the present status of the project: Mission spectrum, technical definition, launch service and performance, target development plan and target recurring costs, as well as the industrial organisation for development, procurement, marketing and operations.

  3. Skylab Components in Launch Configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This cutaway drawing illustrates major Skylab components in launch configuration on top of the Saturn V. In an early effort to extend the use of Apollo for further applications, NASA established the Apollo Applications Program (AAP) in August of 1965. The AAP was to include long duration Earth orbital missions during which astronauts would carry out scientific, technological, and engineering experiments in space by utilizing modified Saturn launch vehicles and the Apollo spacecraft. Established in 1970, the Skylab Program was the forerurner of the AAP. The goals of the Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. The Skylab also conducted 19 selected experiments submitted by high school students. Skylab's 3 different 3-man crews spent up to 84 days in Earth orbit. The Marshall Space Flight Center (MSFC) had responsibility for developing and integrating most of the major components of the Skylab: the Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Payload Shroud (PS), and most of the experiments. MSFC was also responsible for providing the Saturn IB launch vehicles for three Apollo spacecraft and crews and a Saturn V launch vehicle for the Skylab.

  4. Deep Impact on Launch Pad

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Deep Impact awaits launch from Cape Canaveral Air Force Station, Fla. on Jan. 12, 2005.

    The spacecraft will travel to comet Tempel 1 and release an impactor, creating a crater on the surface of the comet. Scientists believe the exposed materials may give clues to the formation of our solar system.

  5. Electromagnetic launch of lunar material

    NASA Technical Reports Server (NTRS)

    Snow, William R.; Kolm, Henry H.

    1992-01-01

    Lunar soil can become a source of relatively inexpensive oxygen propellant for vehicles going from low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) and beyond. This lunar oxygen could replace the oxygen propellant that, in current plans for these missions, is launched from the Earth's surface and amounts to approximately 75 percent of the total mass. The reason for considering the use of oxygen produced on the Moon is that the cost for the energy needed to transport things from the lunar surface to LEO is approximately 5 percent the cost from the surface of the Earth to LEO. Electromagnetic launchers, in particular the superconducting quenchgun, provide a method of getting this lunar oxygen off the lunar surface at minimal cost. This cost savings comes from the fact that the superconducting quenchgun gets its launch energy from locally supplied, solar- or nuclear-generated electrical power. We present a preliminary design to show the main features and components of a lunar-based superconducting quenchgun for use in launching 1-ton containers of liquid oxygen, one every 2 hours. At this rate, nearly 4400 tons of liquid oxygen would be launched into low lunar orbit in a year.

  6. Space Shuttle Launch: STS-129

    NASA Video Gallery

    STS-129. Space shuttle Atlantis and its six-member crew began an 11-day delivery flight to the International Space Station on Monday, Nov 16, 2009, with a 2:28 p.m. EST launch from NASA's Kennedy S...

  7. NASA's Space Launch System: Momentum Builds Toward First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches

  8. Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles

    PubMed Central

    Lotnyk, A

    2014-01-01

    Summary Magnetically anisotropic as well as magnetic core–shell nanoparticles (CS-NPs) with controllable properties are highly desirable in a broad range of applications. With this background, a setup for the synthesis of heterostructured magnetic core–shell nanoparticles, which relies on (optionally pulsed) DC plasma gas condensation has been developed. We demonstrate the synthesis of elemental nickel nanoparticles with highly tunable sizes and shapes and Ni@Cu CS-NPs with an average shell thickness of 10 nm as determined with scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. An analytical model that relies on classical kinetic gas theory is used to describe the deposition of Cu shell atoms on top of existing Ni cores. Its predictive power and possible implications for the growth of heterostructured NP in gas condensation processes are discussed. PMID:24778973

  9. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; Deweese, Keith; Vess, Missie; Welter, Gary; O'Donnell, James R., Jr.

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation and Control (GNC) analysis team encountered four main on orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo-induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GNC engineers identified and tracked down the root causes. Flight data and GNC on board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  10. Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation.

    PubMed

    Tang, Bing; Yuan, Liangjun; Shi, Taihong; Yu, Linfeng; Zhu, Youchun

    2009-04-30

    The aim of this study is to develop a new method for the preparation of high-value, environmentally friendly products from spent pickling liquors. An ultrasound treatment was introduced into a chemical co-precipitation process to control the size of the particles produced. The particles were characterized by X-ray powder diffraction and transmission electron microscopy. The magnetic parameter was measured with a magnetic property measurement system. The product consisted of ferrous ferrite (Fe(3)O(4)) nano-sized cubic particles with a high level of crystallinity that exhibited super-paramagnetism. PMID:18762377

  11. Inductive Sustainment of Oblate FRCs with the Assistance of Magnetic Diffusion, Shaping and Finite-Lamor Radius Stabilization

    SciTech Connect

    Gerhardt, S.; Belova, E. V.; Yamada, M.; Ji, H.; Inomoto, M.; Jacobson, C. M.; Maqueda, R.; McGeehan, B.; Y., Ren

    2008-07-31

    Oblate field-reversed configurations FRCs have been sustained for >300 µs, or >15 magnetic diffusion times, through the use of an inductive solenoid. These argon FRCs can have their poloidal flux sustained or increased, depending on the timing and strength of the induction. An inward pinch is observed during sustainment, leading to a peaking of the pressure profile and maintenance of the FRC equilibrium. The good stability observed in argon (and krypton) does not transfer to lighter gases, which develop terminal co-interchange instabilities. The stability in argon and krypton is attributed to a combination of external field shaping, magnetic diffusion, and finite-Larmor radius effects.

  12. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the debris dispersion radius of the largest launch vehicle type and weight class proposed for the launch point. (b) For a launch site supporting any expendable launch vehicle, an applicant shall use the largest distance provided by table 2 for the type and weight class of any launch vehicle proposed for...

  13. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the debris dispersion radius of the largest launch vehicle type and weight class proposed for the launch point. (b) For a launch site supporting any expendable launch vehicle, an applicant shall use the largest distance provided by table 2 for the type and weight class of any launch vehicle proposed for...

  14. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the debris dispersion radius of the largest launch vehicle type and weight class proposed for the launch point. (b) For a launch site supporting any expendable launch vehicle, an applicant shall use the largest distance provided by table 2 for the type and weight class of any launch vehicle proposed for...

  15. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch site location review for unproven launch vehicles. 420.29 Section 420.29 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION,...

  16. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Launch site location review for unproven launch vehicles. 420.29 Section 420.29 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION,...

  17. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Launch site location review for unproven launch vehicles. 420.29 Section 420.29 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION,...

  18. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the debris dispersion radius of the largest launch vehicle type and weight class proposed for the launch point. (b) For a launch site supporting any expendable launch vehicle, an applicant shall use the largest distance provided by table 2 for the type and weight class of any launch vehicle proposed for...

  19. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch site location review for unproven launch vehicles. 420.29 Section 420.29 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION,...

  20. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Launch of an unguided suborbital launch vehicle. 417.125 Section 417.125 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.125 Launch of an unguided...

  1. Evaluation Report, St. Louis Magnet/Pilot Programs, Emergency School Assistance Act, Title VII, 1976-1977.

    ERIC Educational Resources Information Center

    Brooks, Thomas E.; And Others

    The St. Louis, Missouri, magnet schools program supported eight grade schools and two high schools. Programs in law and consumer education and ethnic heritage were also undertaken. Staff development and community involvement projects were initiated. Outcomes common to all components and outcomes of specific programs were assessed. Program…

  2. Granular L1(0) IronPlatinum:X (001) Thin Films for Heat Assisted Magnetic Recording

    NASA Astrophysics Data System (ADS)

    Granz, Steven

    The objective of this research is to study granular L10 FePt:X nanocomposite thin films to determine methods to control the microstructure and magnetic properties so that small grain size films with uniform magnetic properties may be achieved for HAMR media. The goal of this thesis is to obtain a comprehensive understanding of the major factors controlling the ordering and magnetic properties of L10 FePt:X (001) nanocomposite thin films in order to provide insights that can be used for designing new media for HAMR. This research investigates the role of segregants, which are materials added into the FePt in order to isolate the FePt grains from each other, and order additions, which are materials added to reduce the temperature at which L10 FePt forms. The majority of this study is spent on the dependence of the microstructure and magnetic properties of the FePt thin films on various segregants, ordering additions, seed layers and exchange coupling in the FePt thin films.

  3. Technical analyses and related planning assistance in support of DOE's superconducting magnetic energy storage program. Final report

    SciTech Connect

    Hoenig, M.; Graneau, P.

    1983-03-15

    Various problems are assessed that will be encountered in the design of large superconducting magnetic energy storage (SMES) systems. Then a scoping study on design requirements for a 10,000 MWh SMES system is reported. Basic system requirements are defined, followed by a comparison of two basic coil concepts. (LEW)

  4. Smart Magnetically Responsive Hydrogel Nanoparticles Prepared by a Novel Aerosol-Assisted Method for Biomedical and Drug Delivery Applications

    PubMed Central

    El-Sherbiny, Ibrahim M.; Smyth, Hugh D. C.

    2011-01-01

    We have developed a novel spray gelation-based method to synthesize a new series of magnetically responsive hydrogel nanoparticles for biomedical and drug delivery applications. The method is based on the production of hydrogel nanoparticles from sprayed polymeric microdroplets obtained by an air-jet nebulization process that is immediately followed by gelation in a crosslinking fluid. Oligoguluronate (G-blocks) was prepared through the partial acid hydrolysis of sodium alginate. PEG-grafted chitosan was also synthesized and characterized (FTIR, EA, and DSC). Then, magnetically responsive hydrogel nanoparticles based on alginate and alginate/G-blocks were synthesized via aerosolization followed by either ionotropic gelation or both ionotropic and polyelectrolyte complexation using CaCl2 or PEG-g-chitosan/CaCl2 as crosslinking agents, respectively. Particle size and dynamic swelling were determined using dynamic light scattering (DLS) and microscopy. Surface morphology of the nanoparticles was examined using SEM. The distribution of magnetic cores within the hydrogels nanoparticles was also examined using TEM. In addition, the iron and calcium contents of the particles were estimated using EDS. Spherical magnetic hydrogel nanoparticles with average particle size of 811 ± 162 to 941 ± 2 nm were obtained. This study showed that the developed method is promising for the manufacture of hydrogel nanoparticles, and it represents a relatively simple and potential low-cost system. PMID:21808638

  5. Large Diameter Shuttle Launched-AEM (LDSL-AEM) study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A technical description of a Large Diameter Shuttle Launched-AEM (LDSL-AEM), an AEM base module adapted to carry 5 ft diameter payloads in the shuttle with propulsion for carrying payloads to higher altitude orbits from a 150 NM shuttle orbit, is described. The AEM is designed for launch on the scout launch vehicle. Onboard equipment provides capability to despin, acquire the earth, and control the vehicle in an earth pointing mode using reaction wheels for torque with magnets for all attitude acquisition, wheel desaturation, and nutation damping. Earth sensors in the wheels provide pitch and roll attitude. This system provides autonomous control capability to 1 degree in pitch and roll and 2 degrees in yaw. The attitude can be determined to .5 degrees in pitch and roll and 2 degrees in yaw.

  6. SIMULATING PROTOSTELLAR JETS SIMULTANEOUSLY AT LAUNCHING AND OBSERVATIONAL SCALES

    SciTech Connect

    Ramsey, Jon P.; Clarke, David A.

    2011-02-10

    We present the first 2.5-dimensional magnetohydrodynamic (MHD) simulations of protostellar jets that include both the region in which the jet is launched magnetocentrifugally at scale lengths <0.1 AU and where the propagating jet is observed at scale lengths >10{sup 3} AU. These simulations, performed with the new adaptive mesh refinement MHD code AZEuS, reveal interesting relationships between conditions at the disk surface, such as the magnetic field strength, and direct observables such as proper motion, jet rotation, jet radius, and mass flux. By comparing these quantities with observed values, we present direct numerical evidence that the magnetocentrifugal launching mechanism is capable, by itself, of launching realistic protostellar jets.

  7. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect

    Rosko, R.J.; Loughin, S.

    1997-01-01

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  8. Granular L10 FePt:X (X = Ag, B, C, SiOx, TaOx) thin films for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Granz, Steven D.; Barmak, Katayun; Kryder, Mark H.

    2013-03-01

    Ordered L10 FePt thin films are of interest as potential Heat Assisted Magnetic Recording media. In order to achieve the microstructure and magnetic properties to support recording at densities beyond 1 Tbit/in2, it is necessary to add segregants into the FePt films. In this work, the effects of a number of segregants, X, on the microstructure and magnetic properties of FePt:X (X = Ag, B, C, SiO x , TaO x ) thin films, deposited by RF sputtering with various volume content (0-50%), various in-situ heating temperatures (450-600 °C), various Ar pressures (10-40 mtorr) and various sputtering powers (25-200 W) onto 1'' Si substrates with a MgO texture (002) underlayer (20 nm), were investigated. It was observed that introducing segregants (B, C, SiO x , and TaO x ) into the FePt reduced ordering and grain size of the FePt:X thin films. Ag was found to offset the reduction of ordering in the FePt:X films. The B, SiO x and TaO x promoted columnar growth whereas C promoted a secondary nucleation layer but produced the least reduction of ordering. By varying the volume content of the segregants, the grain size of the FePt:X can be controllably reduced throughout the 2.5-10 nm range. It was found that TaO x produced the best exchange decoupling, thermal durability, grain isolation and hindered grain coalescence as compared with the films deposited with B, C or SiO x . With the FePt:C:Ag films sputtered at 450 °C, a perpendicular coercivity measured at room temperature as high as 25 kOe was achieved; whereas with B, SiO x , and TaO x , perpendicular coercivities as high as 11 kOe were obtained. These FePt:X thin films with small grain size, columnar microstructure and high coercivity are believed to be favorable for application in Heat Assisted Magnetic Recording. The role of surface energies of FePt and the segregant in columnar growth of FePt grains is discussed.

  9. Space Launch System Development Status

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  10. Dynamic Tow Maneuver Orbital Launch Technique

    NASA Technical Reports Server (NTRS)

    Rutan, Elbert L. (Inventor)

    2014-01-01

    An orbital launch system and its method of operation use a maneuver to improve the launch condition of a booster rocket and payload. A towed launch aircraft, to which the booster rocket is mounted, is towed to a predetermined elevation and airspeed. The towed launch aircraft begins the maneuver by increasing its lift, thereby increasing the flight path angle, which increases the tension on the towline connecting the towed launch aircraft to a towing aircraft. The increased tension accelerates the towed launch aircraft and booster rocket, while decreasing the speed (and thus the kinetic energy) of the towing aircraft, while increasing kinetic energy of the towed launch aircraft and booster rocket by transferring energy from the towing aircraft. The potential energy of the towed launch aircraft and booster rocket is also increased, due to the increased lift. The booster rocket is released and ignited, completing the launch.

  11. Magnetic properties of Mn{sub x}Ti{sub 1-x}N thin films grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Wu, S. X.; Xia, Y. Q.; Yu, X. L.; Liu, Y. J.; Li, S. W.

    2007-09-15

    High-quality Mn{sub x}Ti{sub 1-x}N thin films were grown on MgO(001) substrates using plasma-assisted molecular beam epitaxy. Magnetic measurements evidence the presence of ferromagnetism with Curie temperature exceeding 380 K. X-ray photoelectron spectroscopy indicates that the Mn ions are in a divalent state and uniformly substitute on Ti cation sites, consistent with the ferromagnetism that correlates with Mn substitution on Ti sites. The origin of the ferromagnetism might be attributed to itinerant-carrier mediated Rudermann-Kittel-Kasuya-Yosida (RKKY)-type long-range coupling which allows for arbitrary itinerant-carrier spin polarization and dynamic correlations.

  12. The temperature and electromagnetic field distributions of heat-assisted magnetic recording for bit-patterned media at ultrahigh areal density

    NASA Astrophysics Data System (ADS)

    Pituso, K.; Kaewrawang, A.; Buatong, P.; Siritaratiwat, A.; Kruesubthaworn, A.

    2015-05-01

    In this paper, the temperature and electromagnetic field distributions for bit-patterned media (BPM) with heat-assisted writing technology at areal density of 6.54-17.92 Tb/in2 are investigated by the finite integral technique method. We have found that the BPM can confine temperature better than continuous media. The temperature ratio of neighbor bits to heating bit of BPM at areal density of 6.54-7.69 Tb/in2 is lower than 65% and increases with increasing areal density. The electric field direction is toward the bit and the magnetic field circulates around the heating bit. In addition, the electric field of BPM is the same pattern as continuous media at areal density of 13.17 Tb/in2 or above.

  13. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Designed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown via an upgrade approach that will provide building blocks for future space exploration. NASA is working to deliver this new capability in an austere economic climate, a fact that has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the 2 years since the Agency formally announced its architecture in September 2011, the path it is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after 2021. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen that combines the use and enhancement of legacy systems and technology with strategic new developments that will evolve the launch vehicle's capabilities. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved 130 t Block 2 vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware, to life

  14. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. NASA is working to develop this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS program has made in the 2 years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen which combines the use and enhancement of legacy systems and technology with strategic new development projects that will evolve the capabilities of the launch vehicle. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved version of the vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight

  15. The ground processing simulator - A tool for mission model analysis and planning from a launch site perspective

    NASA Technical Reports Server (NTRS)

    Ralph, J. A.

    1979-01-01

    The Ground Processing Simulator (GPS) is a computer-assisted planning tool designed and developed for Space Shuttle launch site application. Utilizing two programming languages, General Purpose Simulation System and FORTRAN, GPS provides the capability to analyze proposed Shuttle mission models via computer simulation. NASA-developed mission models which specify Shuttle launch rates, mission durations, cargo elements, and designated launch site are tested for feasibility by the simulator. GPS produces facility utilization schedules (including the identification of conflicts), launch data options, cargo element requirement dates, ground support equipment inventory requirements, and other data necessary to assess both the programmatic and launch site resources required to support proposed mission models. The purpose of this computer-assisted analysis is to determine methods which will permit the launching of the maximum number of cargoes per year on schedule, and in the sequence desired, with the minimum expenditure of resources.

  16. [G3T]5/Tb(3+) based DNA biosensor with target DNA-triggered autocatalytic multi-cycle-amplification and magnetic nanoparticles assisted-background-lowered.

    PubMed

    Jiang, Hong; Zhang, Xiaojun; Wang, Guangfeng

    2015-12-15

    Due to terbium's unique photophysical properties, nucleic-acid-sensitized terbium (DNA/Tb(3+)) bioluminescent system becomes a potential candidate for the fabrication of DNA biosensors. However, the low sensitivity of DNA/Tb(3+) bioluminescent system limits its development. In this paper, a strategy combining autocatalytic multi-cycle-amplification (including exonuclease III (exo III)-aided and Zn(2+)-requiring DNAzyme-assisted target recycling amplifications) and magnetic nanoparticles assisted-background-lowering to improve the sensitivity of DNA/Tb(3+) bioluminescent system is presented for sensitive detection of target DNA (tDNA). The DNA/Tb(3+) bioluminescent system was investigated by ultraviolet-visible (UV-vis) absorption and luminescence spectra. The possible conjugation mechanism and mode of DNA with Tb(3+) were discussed. The autocatalytic multi-cycle-amplification effect was investigated by the comparison of the luminescence. The carboxylation-functionalized Fe3O4-magnetic nanoparticles (MNPs) were characterized and its role in background lowering was proved. As a result, with the designed protocol, the detection limit for the tDNA detection reached a low level to aM, which is especially exciting for the DNA/Tb(3+) bioluminescent system. In the process, due to the separation effect of MNPs, the assay solution was purified to avoid the nonspecific luminescence of DNA/Tb(3+), not only lowering the background signal greatly (about five times lower than that without the use of MNPs but also improving the reproducibility and stability. We hope that our attempt in this field will not only extend the application of DNA/Tb(3+) luminescent system in biosensing areas but also open the road to adaptation of the protocols to other related analytes. PMID:26257185

  17. A triple-amplification colorimetric assay for antibiotics based on magnetic aptamer-enzyme co-immobilized platinum nanoprobes and exonuclease-assisted target recycling.

    PubMed

    Miao, Yangbao; Gan, Ning; Ren, Hong-Xia; Li, Tianhua; Cao, Yuting; Hu, Futao; Yan, Zhongdan; Chen, Yinji

    2015-11-21

    Herein, an ultrasensitive and selective colorimetric assay for antibiotics, using chloramphenicol (CAP) as the model analyte, was developed based on magnetic aptamer-HRP-platinum composite probes and exonuclease-assisted target recycling. The composite probes were prepared through immunoreactions between the double stranded DNA antibody (anti-DNA) labeled on core-shell Fe3O4@Au nanoparticles (AuMNP-anti-DNA) as the capture probe, and the double stranded aptamer (aptamer hybrid with its complementary oligonucleotides) labeled on Pt@HRP nanoparticles as the nanotracer (ds-Apt-HRP-PtNPs). When the CAP samples were incubated with the probes for 30 min at room temperature, they could be captured by the aptamer to form a nanotracer-CAP complex, which was then released into the supernatant after magnetic separation. This is because the anti-DNA on the capture probes cannot recognize the single strand aptamer-CAP complex. The exonuclease I (Exo I) added into the supernatant can further digest the aptamer-CAP from the 3'-end of the aptamer and the CAP in the aptamer-CAP complex can be released again, which can further participate in a new cycling process to react with the probes. Pt and HRP in the nanotracer could both catalyze and dual amplify the absorbance at 650 nm ascribed to the 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 system. Moreover, Exo I can assist the target recycling, which can further amplify the signal. Thus, the triple amplified signal can be quantified by ultraviolet-visible spectroscopy. The experimental results showed that the CAP detection possessed a linear range of 0.001-10 ng mL(-1) and a detection limit of 0.0003 ng mL(-1) (S/N = 3). The assay was successfully employed to detect CAP in milk, which is much more facile, time saving, and sensitive than the commercial ELISA kits. PMID:26442572

  18. Aqua 10 Years After Launch

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2013-01-01

    A little over ten years ago, in the early morning hours of May 4, 2002, crowds of spectators stood anxiously watching as the Delta II rocket carrying NASA's Aqua spacecraft lifted off from its launch pad at Vandenberg Air Force Base in California at 2:55 a.m. The rocket quickly went through a low-lying cloud cover, after which the main portion of the rocket fell to the waters below and the rockets second stage proceeded to carry Aqua south across the Pacific, onward over Antarctica, and north to Africa, where the spacecraft separated from the rocket 59.5 minutes after launch. Then, 12.5 minutes later, the solar array unfurled over Europe, and Aqua was on its way in the first of what by now have become over 50,000 successful orbits of the Earth.

  19. TDRS is ready for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the early morning hours on Launch Pad 36A, Cape Canaveral Air Force Station, the tower rolls back from NASA's Tracking and Data Relay Satellite (TDRS-H) before liftoff atop an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot- diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system's existing S- and Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit.

  20. Russian Soyuz Moves to Launch Pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  1. The launch of MCBEND 10.

    PubMed

    Cowan, P; Shuttleworth, E; Bird, A; Cooper, A

    2005-01-01

    MCBEND 10 is the latest release of the general radiation transport Monte Carlo code from the ANSWERS Software Service of Serco Assurance. MCBEND is developed within a Nuclear Code Development (NCD) partnership between Serco Assurance and BNFL. The ANSWERS vision is 'to provide easy-to-use software that meets the current and emerging needs of the user community'. In the case of MCBEND, this vision focuses on the key areas of accuracy, understanding of uncertainties, efficiency and user-friendliness. MCBEND 10 is a major launch of the code with many new and enhanced features. New developments in MCBEND 10 include automatic splitting mesh generation, point energy adjoint for neutrons, calculation of uncertainty in the results due to material cross section uncertainties and a unified source facility. Enhanced features include improved temperature treatment, extended scoring of sensitivity to geometry perturbations, geometry improvements, extensions to formulae and improved user guide image. The user-friendliness of the MCBEND code has been further enhanced by recent developments to the visualisation tools, VISAGE and VISTA-RAY. Developments have been made to the three-dimensional visualisation tool, VISTA-RAY, to simplify the detailed checking of a model, with the option to use a mouse-pointer to select regions of interest for further detail and to visually highlight incorrectly defined areas. A further development to VISTA-RAY is the inclusion of the capability to overlay a representation of a user-designated set of results from a MCBEND analysis on the model. Improvements have also been made to the graphical user interface LaunchPad for submitting and controlling calculation submission, with a common user-image across all the systems. Recent enhancements to LaunchPad include a job-scheduler to simplify processing multiple tasks. A selection of the new developments in MCBEND 10, VISTA-RAY and LaunchPad will be described in this paper. PMID:16381755

  2. Minuteman 2 launched small satellite

    NASA Technical Reports Server (NTRS)

    Chan, Sunny; Hinders, Kriss; Martin, Trent; Mcmillian, Shandy; Sharp, Brad; Vajdos, Greg

    1994-01-01

    The goal of LEOSat Industries' Spring 1994 project was to design a small satellite that has a strong technology demonstration or scientific justification and incorporates a high level of student involvement. The satellite is to be launched into low earth orbit by the converted Minuteman 2 satellite launcher designed by Minotaur Designs, Inc. in 1993. The launch vehicle shroud was modified to a height of 90 inches, a diameter of 48 inches at the bottom and 35 inches at the top for a total volume of 85 cubic feet. The maximum allowable mass of the payload is about 1100 lb., depending on the launch site, orbit altitude, and inclination. The satellite designed by LEOSat Industries is TerraSat, a remote-sensing satellite that will provide information for use in space-based earth studies. It will consist of infrared and ultraviolet/visible sensors similar to the SDI-developed sensors being tested on Clementine. The sensors will be mounted on the Defense Systems, Inc. Standard Satellite-1 spacecraft bus. LEOSat has planned for two satellites orbiting the Earth with trajectories similar to that of LANDSAT 5. The semi-major axis is 7080 kilometers, the eccentricity is 0, and the inclination is 98.2 degrees. The estimated mass of TerraSat is 145 kilograms and the estimated volume is 1.8 cubic meters. The estimated cost of TerraSat is $13.7 million. The projected length of time from assembly of the sensors to launch of the spacecraft is 13 months.

  3. Pulsed power for electromagnetic launching

    SciTech Connect

    Cowan, M

    1980-12-01

    There are system advantages to producing power for electromagnetic propulsion by real-time generation rather than by a sequence of generation-storage-switching. The best type of generator for this purpose is the flux compression generator. Different types of flux compression generator which have been developed at Sandia National Laboratories are reviewed and their applications to electric launching are discussed. New experimental facilities for producing more powerful generators are described and cost comparisons are made.

  4. Pulsed power for electromagnetic launching

    NASA Astrophysics Data System (ADS)

    Cowan, M.

    1980-12-01

    There are system advantages to producing power for electromagnetic propulsion by real-time generation rather than by a sequence of generation-storage-switching. The best type of generator for this purpose is the flux compression generator which have been developed at Sandia National Laboratories are reviewed and their applications to electric launching are discussed. New experimental facilities for producing more powerful generators are described and cost comparisons are made.

  5. Pulsed power for electromagnetic launching

    NASA Astrophysics Data System (ADS)

    Cowan, M.

    1982-01-01

    There are system advantages to producing power for electromagnetic propulsion by real time generation rather than by a sequence of generation-storage-switching. The best type of generator for this purpose is the flux compression generator. Different types of flux compression generator which have been developed at Sandia National Laboratories are reviewed and their applications to electric launching are discussed. New experimental facilities for producing more powerful generators are described and cost comparisons are made.

  6. Atmosphere Explorer set for launch

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Atmosphere Explorer-D (Explorer-54) is described which will explore in detail an area of the earth's outer atmosphere where important energy transfer, atomic and molecular processes, and chemical reactions occur that are critical to the heat balance of the atmosphere. Data are presented on the mission facts, launch vehicle operations, AE-D/Delta flight events, spacecraft description, scientific instruments, tracking, and data acquisition.

  7. Hermes rescue strategies during launch

    NASA Astrophysics Data System (ADS)

    Cledassou, Rodelphe

    Safety and rescue strategies during the launch of Hermes space plane by Ariane 5 are discussed. Before solid booster separation, the pilots must be ejected by seats which are later recovered. After solid booster separation it becomes possible to extract the plane, which can perform a reentry leading to an available landing site or to sea recovery. When there is no useful landing site, the plane can be injected on a downgraded orbit.

  8. Interfacial spin-filter assisted spin transfer torque effect in Co/BeO/Co magnetic tunnel junction

    SciTech Connect

    Tang, Y.-H. Chu, F.-C.

    2015-03-07

    The first-principles calculation is employed to demonstrate the spin-selective transport properties and the non-collinear spin-transfer torque (STT) effect in the newly proposed Co/BeO/Co magnetic tunnel junction. The subtle spin-polarized charge transfer solely at O/Co interface gives rise to the interfacial spin-filter (ISF) effect, which can be simulated within the tight binding model to verify the general expression of STT. This allows us to predict the asymmetric bias behavior of non-collinear STT directly via the interplay between the first-principles calculated spin current densities in collinear magnetic configurations. We believe that the ISF effect, introduced by the combination between wurtzite-BeO barrier and the fcc-Co electrode, may open a new and promising route in semiconductor-based spintronics applications.

  9. Switching time in laser pulse heat-assisted magnetic recording using L1{sub 0}-FePt nanoparticles

    SciTech Connect

    Lyberatos, A.; Weller, D.; Parker, G. J.

    2015-04-07

    Atomistic spin model simulations using Langevin dynamics are performed to study the factors that determine the thermomagnetic recording time window in FePt media. The onset of thermomagnetic writing occurs at a temperature T{sub o} larger than the Curie temperature T{sub c} as a result of the finite time of relaxation of the magnetization by the linear reversal mode. The Bloch relaxation rate of magnetization growth during cooling below T{sub c} is independent on the write field, provided the field is stronger than some threshold value. Application of a strong write field reduces switching time through better spin alignment in the paramagnetic regime. Finite size effects on the probability distribution of freezing temperatures T{sub f} and the free energy provide insight on the thermomagnetic reversal mechanism. Constraints on the “pulse-mode” of recording when the head field reverses direction during cooling are also considered.

  10. [X-33 Launch and Landing Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Sverdrup is responsible for the design, construction and activation of the X-33 Flight Operations Center at Edwards Air Force Base and for providing assistance in activating the X-33 Landing Sites. The past year has seen the completion of the construction of the X-33 Flight Operations Center. Construction was completed in December of 1998, with systems checkout and testing continuing into early 1999. Integration of the site with LMCMS and other partner-supplied systems began in December and will continue through rollout of the X-33 vehicle. The construction of the X-33 Launch Complex has been performed within the Edwards AFB and Air Force Research Laboratory (AFRL) systems with no substantial interference to either parties. A high level of cooperation exists between Sverdrup, Edwards AFB, and the Air Force Research Laboratory in the areas of access, training, security, and operations. There have been no conflicts between programs that have not been accommodated. Development of the landing sites is progressing with many of the modifications necessary underway. GSE commitments are in place. The personnel training program developed by Sverdrup for persons entering the launch site construction areas, was modified by Lockheed for use in training and access control to the Center during flight operations to maximize safety and minimize intrusion upon the environment. Close cooperation between Sverdrup, the construction workers, and the environmental biologist permitted construction to proceed in a timely fashion without harm to the wildlife, in particular, the Desert Tortoise. Although the entire X-33 site encompasses approximately 50 acres including a new access road, only the areas directly impacted by the construction were cleared to minimize the impact on the environment. A total of about 30 acres was actually disturbed.

  11. Voice command weapons launching system

    NASA Astrophysics Data System (ADS)

    Brown, H. E.

    1984-09-01

    This abstract discloses a voice-controlled weapons launching system for use by a pilot of an aircraft against a plurality of simultaneously appearing (i.e., existing) targets, such as two or more aggressor aircraft (or tanks, or the like) attacking more aggressor aircraft. The system includes, in combination, a voice controlled input device linked to and controlling a computer; apparatus (such as a television camera, receiver, and display), linked to and actuated by the computer by a voice command from the pilot, for acquiring and displaying an image of the multi-target area; a laser, linked to and actuated by the computer by a voice command from the pilot to point to (and to lock on to) any one of the plurality of targets, with the laser emitting a beam toward the designated (i.e., selected) target; and a plurality of laser beam-rider missiles, with a different missile being launched toward and attacking each different designated target by riding the laser beam to that target. Unlike the prior art, the system allows the pilot to use his hands full-time to fly and to control the aircraft, while also permitting him to launch each different missile in rapid sequence by giving a two-word spoken command after he has visually selected each target of the plurality of targets, thereby making it possible for the pilot of a single defender aircraft to prevail against the plurality of simultaneously attacking aircraft, or tanks, or the like.

  12. Modelling the Effect of SPION Size in a Stent Assisted Magnetic Drug Targeting System with Interparticle Interactions

    PubMed Central

    Mardinoglu, Adil; Cregg, P. J.

    2015-01-01

    Cancer is a leading cause of death worldwide and it is caused by the interaction of genomic, environmental, and lifestyle factors. Although chemotherapy is one way of treating cancers, it also damages healthy cells and may cause severe side effects. Therefore, it is beneficial in drug delivery in the human body to increase the proportion of the drugs at the target site while limiting its exposure at the rest of body through Magnetic Drug Targeting (MDT). Superparamagnetic iron oxide nanoparticles (SPIONs) are derived from polyol methods and coated with oleic acid and can be used as magnetic drug carrier particles (MDCPs) in an MDT system. Here, we develop a mathematical model for studying the interactions between the MDCPs enriched with three different diameters of SPIONs (6.6, 11.6, and 17.8 nm) in the MDT system with an implanted magnetizable stent using different magnetic field strengths and blood velocities. Our computational analysis allows for the optimal design of the SPIONs enriched MDCPs to be used in clinical applications. PMID:25815370

  13. Morphology and magnetic properties of Fe3O 4 nanodot arrays using template-assisted epitaxial growth.

    PubMed

    Guan, Xiao-Fen; Chen, Dan; Quan, Zhi-Yong; Jiang, Feng-Xian; Deng, Chen-Hua; Gehring, Gillian Anne; Xu, Xiao-Hong

    2015-12-01

    Arrays of epitaxial Fe3O4 nanodots were prepared using laser molecular beam epitaxy (LMBE), with the aid of ultrathin porous anodized aluminum templates. An Fe3O4 film was also prepared using LMBE. Atomic force microscopy and scanning electron microscopy images showed that the Fe3O4 nanodots existed over large areas of well-ordered hexagonal arrays with dot diameters (D) of 40, 70, and 140 nm; height of approximately 20 nm; and inter-dot distances (D int) of 67, 110, and 160 nm. The calculated nanodot density was as high as 0.18 Tb in.(-2) when D = 40 nm. X-ray diffraction patterns indicated that the as-grown Fe3O4 nanodots and the film had good textures of (004) orientation. Both the film and the nanodot arrays exhibited magnetic anisotropy; the anisotropy of the nanoarray weakened with decreasing dot size. The Verwey transition temperature of the film and nanodot arrays with D ≥ 70 nm was observed at around 120 K, similar to that of the Fe3O4 bulk; however, no clear transition was observed from the small nanodot array with D = 40 nm. Results showed that magnetic properties could be tailored through the morphology of nanodots. Therefore, Fe3O4 nanodot arrays may be applied in high-density magnetic storage and spintronic devices. PMID:26055471

  14. Magnetic multi-walled carbon nanotubes assisted dispersive solid phase extraction of nerve agents and their markers from muddy water.

    PubMed

    Pardasani, Deepak; Kanaujia, Pankaj K; Purohit, Ajay K; Shrivastava, Anchal Roy; Dubey, D K

    2011-10-30

    The multi-walled carbon nano-tubes (MWCNT) were magnetized with iron oxide nanoparticles and were characterized by SEM and EDX analyses. These magnetized MWCNT (Mag-CNT) were used as sorbent in dispersive solid phase extraction (DSPE) mode to extract nerve agents and their markers. Mag-CNT were dispersed in water and collected with the help of an external magnet. From Mag-CNT, the adsorbed analytes were eluted and analyzed by GC-FPD in phosphorus mode. DSPE was found to be advantageous over conventional solid phase extraction (SPE) in terms of operational simplicity, speed, handling of large sample volume and recoveries. Extraction parameters such as eluting solvent, sorbent amount, pH and salinity of aqueous samples were optimized. Optimized extraction conditions included 40 mg of Mag-CNT as sorbent, chloroform as eluent, pH 3-11 and salinity 20%. Under the optimized conditions, recoveries from distilled water ranged from 60 to 96% and were comparable in tap and muddy water. Limits of quantification and limits of detection of 0.15 ng/ml and 0.05 ng/ml, respectively, were achieved. Superiority of Mag-CNT over conventional C(18) SPE was also established. PMID:22063538

  15. Preparation and characterization of magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) nanocomposite for vortex assisted magnetic solid phase extraction of some metal ions.

    PubMed

    Khan, Mansoor; Yilmaz, Erkan; Sevinc, Basak; Sahmetlioglu, Ertugrul; Shah, Jasmin; Jan, Muhammad Rasul; Soylak, Mustafa

    2016-01-01

    Magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) (MGO-DVB-VA) was synthesized and used for magnetic solid phase extraction of Pb(II), Cd(II), Cu(II), Ni(II) and Co(II) prior to their determination by flame atomic absorption spectroscopy. The adsorbent surface functional group was characterized by using FT-IR and Raman spectroscopy. XRD pattern was used to determine the layers of GO. Surface morphology and elemental composition of the adsorbent were evaluated by using SEM and EDX analysis. Various parameters, effecting adsorption efficiency like initial solution pH, adsorbent dose, type and volume of eluent, volume of sample and diverse ions effects were optimized. The preconcentration factor (PF) is 40 for all the metals and the limits of detection for Pb, Cd, Cu, Ni and Co are in the range of 0.37-2.39 µg L(-1) and relative standard deviation below 3.1%. The method was validated by using the method for certified reference materials (Tobacco Leaves (INCT-OBTL-5), Tomato Leaves (1573a), Certified Water (SPS-ww2) and Certified Water (TMDA 64-2)). The method was successfully applied for natural water and food samples. PMID:26695244

  16. Ultrasound-assisted magnetic solid-phase extraction for the determination of some transition metals in Orujo spirit samples by capillary electrophoresis.

    PubMed

    Peña Crecente, Rosa M; Lovera, Carlha Gutiérrez; García, Julia Barciela; Latorre, Carlos Herrero; Martín, Sagrario García

    2016-01-01

    Ultrasound-assisted magnetic solid-phase extraction coupled to capillary electrophoresis was optimized for the preconcentration and determination of Zn(II), Cu(II), Mn(II) and Cd(II) as their complexes with 1,10-phenanthroline (Phen). Both pre- and on-capillary complexations were employed to obtain stable metal-Phen complexes. The parameters that have an influence on the electrophoretic separation and the MSPE process were studied and optimized using different experimental designs. Metals were extracted from 10 mL of sample at pH 5 using 3mg of magnetic particles functionalized with carboxylic groups. The metals were eluted as metal-Phen complexes and analyzed by capillary electrophoresis. The method showed low limits of detection for metals 0.49-2.19 μg L(-1), and high preconcentration factors, 39-44, The efficiencies of the extraction method were in the range 77.1-87.5% and the precision (RSD < 10%) and accuracy were between 98.2% and 101.6%. The method was applied to the determination of the aforementioned metals in Galician Orujo spirit samples. PMID:26212969

  17. Ultrasonication-assisted one-step self-assembly preparation of biocompatible fluorescent-magnetic nanobeads for rare cancer cell detection.

    PubMed

    Guo, Shan; Chen, Yu-Qi; Lu, Ning-Ning; Wang, Xue-Ying; Xie, Min; Sui, Wei-Ping

    2014-12-19

    Multifunctional nanomaterials simultaneously possessing attractive properties, such as strong fluorescent intensity, excellent superparamagnetic behavior, easy modification and good biocompatibility, are always desired in a wide range of applications. In this work, we present a facile ultrasonication-assisted one-step self-assembly strategy for the fabrication of smart fluorescent-magnetic nanobeads (FMNBs) without using a matrix. Via one-step ultrasonication, organic-soluble superparamagnetic nanoparticles (MNPs) and quantum dots (QDs) were automatically encapsulated by amphiphilic (2-hydroxyl-3-dodecanoxyl) propylcarboxymethylchitosans (HDP-CMCHSs) through hydrophobic interaction to form hydrophilic FMNBs, presenting a good QD fluorescent property and a strong MNP magnetic response. The outer surface of the FMNBs was derived from natural biopolymer chitosans, enabling FMNBs with good biocompatibility and convenience for biological modification. As-prepared FMNBs can be easily modified with streptavidin, facilitating bioconjugation with biotin-labeled human epidermal growth factor (hEGF). hEGF-functionalized FMNBs are able to specifically recognize and capture rare target cells spiked in white blood cells, and the recovered cells can be further cultured for a long time. All of these excellent properties make nanobeads promising for circulating tumor cell (CTC) detection. PMID:25426596

  18. Ultrasonication-assisted one-step self-assembly preparation of biocompatible fluorescent-magnetic nanobeads for rare cancer cell detection

    NASA Astrophysics Data System (ADS)

    Guo, Shan; Chen, Yu-Qi; Lu, Ning-Ning; Wang, Xue-Ying; Xie, Min; Sui, Wei-Ping

    2014-12-01

    Multifunctional nanomaterials simultaneously possessing attractive properties, such as strong fluorescent intensity, excellent superparamagnetic behavior, easy modification and good biocompatibility, are always desired in a wide range of applications. In this work, we present a facile ultrasonication-assisted one-step self-assembly strategy for the fabrication of smart fluorescent-magnetic nanobeads (FMNBs) without using a matrix. Via one-step ultrasonication, organic-soluble superparamagnetic nanoparticles (MNPs) and quantum dots (QDs) were automatically encapsulated by amphiphilic (2-hydroxyl-3-dodecanoxyl) propylcarboxymethylchitosans (HDP-CMCHSs) through hydrophobic interaction to form hydrophilic FMNBs, presenting a good QD fluorescent property and a strong MNP magnetic response. The outer surface of the FMNBs was derived from natural biopolymer chitosans, enabling FMNBs with good biocompatibility and convenience for biological modification. As-prepared FMNBs can be easily modified with streptavidin, facilitating bioconjugation with biotin-labeled human epidermal growth factor (hEGF). hEGF-functionalized FMNBs are able to specifically recognize and capture rare target cells spiked in white blood cells, and the recovered cells can be further cultured for a long time. All of these excellent properties make nanobeads promising for circulating tumor cell (CTC) detection.

  19. Growth and magnetic property of {zeta}-phase Mn{sub 2}N{sub 1{+-}x} thin films by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Liu Yajing; Xu Lingmin; Hu Ping; Li Shuwei; Li Xinyu

    2010-05-15

    {zeta}-phase manganese nitride films were directly grown on sapphire substrates using plasma-assisted molecular beam epitaxy. Mn{sub 2}N{sub 1.06}, Mn{sub 2}N{sub 0.98}, and Mn{sub 2}N{sub 0.86} films were synthesized by controlling the temperature of the effusion cell filled with highly pure manganese powder. The composition, structure, and morphology of the films were identified by x-ray photoelectron spectroscopy, x-ray diffraction and atomic force microscopy, and the magnetic properties of the films were characterized by a superconducting quantum interference device magnetometer at 5 and 300 K. The magnetic measurements reveal that Mn{sub 2}N{sub 1{+-}x} exhibits weak ferromagnetism at 5 K, which is mainly ascribed to the weak interaction among the Mn cations induced by the nitrogen vacancies. Furthermore, the Mn{sub 2}N{sub 0.86} single-crystalline films are found to have room-temperature ferromagnetism, which is attributed to the strain of the Mn{sub 2}N{sub 0.86} films raised from lattice mismatch between the Mn{sub 2}N{sub 0.86} films and the substrates.

  20. Quantitative transmission electron microscopy analysis of multi-variant grains in present L1{sub 0}-FePt based heat assisted magnetic recording media

    SciTech Connect

    Ho, Hoan; Zhu, Jingxi; Kulovits, Andreas; Laughlin, David E.; Zhu, Jian-Gang

    2014-11-21

    We present a study on atomic ordering within individual grains in granular L1{sub 0}-FePt thin films using transmission electron microscopy techniques. The film, used as a medium for heat assisted magnetic recording, consists of a single layer of FePt grains separated by non-magnetic grain boundaries and is grown on an MgO underlayer. Using convergent-beam techniques, diffraction patterns of individual grains are obtained for a large number of crystallites. The study found that although the majority of grains are ordered in the perpendicular direction, more than 15% of them are multi-variant, or of in-plane c-axis orientation, or disordered fcc. It was also found that these multi-variant and in-plane grains have always grown across MgO grain boundaries separating two or more MgO grains of the underlayer. The in-plane ordered portion within a multi-variant L1{sub 0}-FePt grain always lacks atomic coherence with the MgO directly underneath it, whereas, the perpendicularly ordered portion is always coherent with the underlying MgO grain. Since the existence of multi-variant and in-plane ordered grains are severely detrimental to high density data storage capability, the understanding of their formation mechanism obtained here should make a significant impact on the future development of hard disk drive technology.