Science.gov

Sample records for magnetic moment measurement

  1. Measurement of magnetic moment via optical transmission

    NASA Astrophysics Data System (ADS)

    Heidsieck, Alexandra; Schmid, Daniel; Gleich, Bernhard

    2016-03-01

    The magnetic moment of nanoparticles is an important property for drug targeting and related applications as well as for the simulation thereof. However, the measurement of the magnetic moment of nanoparticles, nanoparticle-virus-complexes or microspheres in solution can be difficult and often yields unsatisfying or incomparable results. To measure the magnetic moment, we designed a custom measurement device including a magnetic set-up to observe nanoparticles indirectly via light transmission in solution. We present a simple, cheap device of manageable size, which can be used in any laboratory as well as a novel evaluation method to determine the magnetic moment of nanoparticles via the change of the optical density of the particle suspension in a well-defined magnetic gradient field. In contrast to many of the established measurement methods, we are able to observe and measure the nanoparticle complexes in their natural state in the respective medium. The nanoparticles move along the magnetic gradient and thereby away from the observation point. Due to this movement, the optical density of the fluid decreases and the transmission increases over time at the measurement location. By comparing the measurement with parametric simulations, we can deduce the magnetic moment from the observed behavior.

  2. Measurement of the Ω- magnetic moment

    NASA Astrophysics Data System (ADS)

    Diehl, H. T.; Teige, S.; Thomson, G. B.; Zou, Y.; James, C.; Luk, K. B.; Rameika, R.; Ho, P. M.; Longo, M. J.; Nguyen, A.; Duryea, J.; Guglielmo, G.; Johns, K.; Heller, K.; Thorne, K.

    1991-08-01

    A sample of 24 700 Ω- hyperons was produced by a prolarized neutral beam in a spin-transfer reaction. The Ω- polarizations are found to be -0.054+/-0.019 and -0.149+/-0.055 at mean Ω- momenta of 322 and 398 GeV/c, respectively. The directions of these polarizations give an Ω- magnetic moment of -(1.94+/-0.17+/-0.14)μN

  3. Photospheric Magnetic Diffusion by Measuring Moments of Active Regions

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Longcope, D.

    2013-07-01

    Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.

  4. Iodine magnetic moments measured by on-line nuclear orientation

    NASA Astrophysics Data System (ADS)

    Stone, N. J.; Rikovska, J.; Green, V. R.; Shaw, T. L.; Krane, K. S.; Walker, P. M.; Grant, I. S.

    1987-03-01

    On-Line measurements of magnetic dipole moments of117 122I are interpreted using coupling of the odd particles to a deformed core. The results show interesting effects of g7/2, d5/2 orbital admixtures in the odd-A isotopes, which are close to spherical. The odd-odd isotopes118, 120I show clear examples of shape co-existence.

  5. A highly automatic measurement system for three orthogonal magnetic moments of a permanent magnet block

    NASA Astrophysics Data System (ADS)

    Hwang, C. S.; Yeh, Shuting; Teng, P. K.; Uen, T. M.

    1996-05-01

    A highly automatic system with a three-angle rotation mechanism has been designed and constructed to measure several thousand permanent magnet blocks. The system's main features include its high speed, highly automatic measurement, and the ease with which the different size magnet blocks can be installed and removed. This system provides precise and accurate measurements of the three orthogonal magnetic moment components to accurately characterize each block, as deemed necessary to assess the field quality of undulators and wigglers. A three-angle in rotation mechanism, together with a simple mathematical algorithm is used to measure and analyze the magnetic moments of the magnet block. The system includes the Helmholtz coil pair, block holder, the three-degree rotation mechanism, and the control and data acquisition system. A power train system consists of one motor coupled with a nonmagnetic stainless steel for 360° rotation and two motors individually coupled with two groups of nonmagnetic time belts for rotation angles of 0°, 180°, 0°, and 90°. The control system uses a microcomputer together with a stepping motor control card and a digital fluxmeter connected by the general purpose interface bus. The measurement speed of this system is 40 blocks per h. One reference magnet was measured, with those results verifying the long term precision of the order of 0.04% for the easy component and 0.02° for two minor components. The coil-pair geometry factor is calibrated via the voltage-field reciprocity principle, indicating that the system absolute accuracy is around 0.43%.

  6. Enhanced magnetic moment of ultrathin Co films measured by in situ electrodeposition in a SQUID

    NASA Astrophysics Data System (ADS)

    Topolovec, Stefan; Krenn, Heinz; Würschum, Roland

    2016-01-01

    A special electrochemical cell enabling in situ electrodeposition in a SQUID magnetometer is applied to study the magnetic moment of ultrathin Co films during growth on an Au(111) substrate. The in situ electrodeposition approach allows a total elimination of the magnetic background signal of the substrate, thus the magnetic moment which arises exclusively from the deposited Co film could be measured with monolayer sensitivity. The average thickness of the deposited Co films dav as determined from the transferred charge can be adjusted easily by varying the parameters of the electrodeposition. Hence, the magnetic moment of Co thin films could be determined in absolute terms as a function of the film thickness dav. For the first few atomic layers an enhancement of the magnetic moment per Co atom compared to the bulk could be observed, which increases steadily with lowering dav, reaching up to 40%.

  7. Re-creating Gauss's method for non-electrical absolute measurements of magnetic fields and moments

    NASA Astrophysics Data System (ADS)

    Van Baak, D. A.

    2013-10-01

    In 1832, Gauss made the first absolute measurements of magnetic fields and of magnetic moments in experiments that are straightforward and instructive to replicate. We show, using rare-earth permanent magnets and a variation of Gauss's technique, that the horizontal component of the ambient geomagnetic field, as well as the size of the magnetic moments of such magnets, can be found. The method shows the connection between the SI and cgs emu unit systems for these quantities and permits an absolute realization of the Ampere with considerable precision.

  8. About the parametrizations utilized to perform magnetic moments measurements using the transient field technique

    NASA Astrophysics Data System (ADS)

    Gómez, A. M.; Torres, D. A.

    2016-07-01

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  9. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors.

    PubMed

    Egan, R; Philippe, M; Wera, L; Fagnard, J F; Vanderheyden, B; Dennis, A; Shi, Y; Cardwell, D A; Vanderbemden, P

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm(3)) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m(2) (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K). PMID:25725888

  10. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors

    NASA Astrophysics Data System (ADS)

    Egan, R.; Philippe, M.; Wera, L.; Fagnard, J. F.; Vanderheyden, B.; Dennis, A.; Shi, Y.; Cardwell, D. A.; Vanderbemden, P.

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm3) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m2 (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K).

  11. Constraining natural SUSY via the Higgs coupling and the muon anomalous magnetic moment measurements

    NASA Astrophysics Data System (ADS)

    Li, Tianjun; Raza, Shabbar; Wang, Kechen

    2016-03-01

    We use the Higgs coupling and the muon anomalous magnetic moment measurements to constrain the parameter space of the natural supersymmetry in the generalized minimal supergravity (GmSUGRA) model. We scan the parameter space of the GmSUGRA model with small electroweak fine-tuning measure (ΔEW≤100 ). The parameter space after applying various sparticle mass bounds; Higgs mass bounds; B-physics bounds; the muon magnetic moment constraint; and the Higgs coupling constraint from measurements at HL-LHC, ILC, and CEPC is shown in the planes of various interesting model parameters and sparticle masses. Our study indicates that the Higgs coupling and muon anomalous magnetic moment measurements can constrain the parameter space effectively. It is shown that ΔEW˜30 , consistent with all constraints, and having supersymmetric contributions to the muon anomalous magnetic moment within 1 σ can be achieved. The precision of kb and kτ measurements at CEPC can bound mA to be above 1.2 TeV and 1.1 TeV respectively. The combination of the Higgs coupling measurement and muon anomalous magnetic moment measurement constrain the e˜R mass to be in the range from 0.6 TeV to 2 TeV. The range of both e˜L and ν˜e masses is 0.4 TeV-1.2 TeV. In all cases, the χ˜10 mass needs to be small (mostly ≤400 GeV ). The comparison of bounds in the tan β -mA plane shows that the Higgs coupling measurement is complementary to the direct collider searches for heavy Higgs when constraining the natural SUSY. A few mass spectra in the typical region of parameter space after applying all constraints are shown as well.

  12. Neutrino magnetic moment

    SciTech Connect

    Chang, D. . Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL ); Senjanovic, G. . Dept. of Theoretical Physics)

    1990-01-01

    We review attempts to achieve a large neutrino magnetic moment ({mu}{sub {nu}} {le} 10{sup {minus}11}{mu}{sub B}), while keeping neutrino light or massless. The application to the solar neutrino puzzle is discussed. 24 refs.

  13. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    SciTech Connect

    Stone, N. J.

    2015-09-15

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of both tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.

  14. The measurement of the anomalous magnetic moment of the muon at Fermilab

    DOE PAGESBeta

    Logashenko, I.

    2015-06-17

    The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Furthermore, we discuss the details of the future measurement and its current status.

  15. The Measurement of the Anomalous Magnetic Moment of the Muon at Fermilab a)

    NASA Astrophysics Data System (ADS)

    Logashenko, I.; Grange, J.; Winter, P.; Carey, R. M.; Hazen, E.; Kinnaird, N.; Miller, J. P.; Mott, J.; Roberts, B. L.; Crnkovic, J.; Morse, W. M.; Sayed, H. Kamal; Tishchenko, V.; Druzhinin, V. P.; Shatunov, Y. M.; Bjorkquist, R.; Chapelain, A.; Eggert, N.; Frankenthal, A.; Gibbons, L.; Kim, S.; Mikhailichenko, A.; Orlov, Y.; Rider, N.; Rubin, D.; Sweigart, D.; Allspach, D.; Barzi, E.; Casey, B.; Convery, M. E.; Drendel, B.; Freidsam, H.; Johnstone, C.; Johnstone, J.; Kiburg, B.; Kourbanis, I.; Lyon, A. L.; Merritt, K. W.; Morgan, J. P.; Nguyen, H.; Ostiguy, J.-F.; Para, A.; Polly, C. C.; Popovic, M.; Ramberg, E.; Rominsky, M.; Soha, A. K.; Still, D.; Walton, T.; Yoshikawa, C.; Jungmann, K.; Onderwater, C. J. G.; Debevec, P.; Leo, S.; Pitts, K.; Schlesier, C.; Anastasi, A.; Babusci, D.; Corradi, G.; Hampai, D.; Palladino, A.; Venanzoni, G.; Dabagov, S.; Ferrari, C.; Fioretti, A.; Gabbanini, C.; Di Stefano, R.; Marignetti, S.; Iacovacci, M.; Mastroianni, S.; Di Sciascio, G.; Moricciani, D.; Cantatore, G.; Karuza, M.; Giovanetti, K.; Baranov, V.; Duginov, V.; Khomutov, N.; Krylov, V.; Kuchinskiy, N.; Volnykh, V.; Gaisser, M.; Haciomeroglu, S.; Kim, Y.; Lee, S.; Lee, M.; Semertzidis, Y. K.; Won, E.; Fatemi, R.; Gohn, W.; Gorringe, T.; Bowcock, T.; Carroll, J.; King, B.; Maxfield, S.; Smith, A.; Teubner, T.; Whitley, M.; Wormald, M.; Wolski, A.; Al-Kilani, S.; Chislett, R.; Lancaster, M.; Motuk, E.; Stuttard, T.; Warren, M.; Flay, D.; Kawall, D.; Meadows, Z.; Syphers, M.; Tarazona, D.; Chupp, T.; Tewlsey-Booth, A.; Quinn, B.; Eads, M.; Epps, A.; Luo, G.; McEvoy, M.; Pohlman, N.; Shenk, M.; de Gouvea, A.; Welty-Rieger, L.; Schellman, H.; Abi, B.; Azfar, F.; Henry, S.; Gray, F.; Fu, C.; Ji, X.; Li, L.; Yang, H.; Stockinger, D.; Cauz, D.; Pauletta, G.; Santi, L.; Baessler, S.; Frlez, E.; Pocanic, D.; Alonzi, L. P.; Fertl, M.; Fienberg, A.; Froemming, N.; Garcia, A.; Hertzog, D. W.; Kammel, P.; Kaspar, J.; Osofsky, R.; Smith, M.; Swanson, E.; Lynch, K.

    2015-09-01

    The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Here, we discuss the details of the future measurement and its current status.

  16. The Measurement of the Anomalous Magnetic Moment of the Muon at Fermilab

    SciTech Connect

    Logashenko, I.; et al.

    2015-06-17

    The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Here, we discuss the details of the future measurement and its current status.

  17. First result for the neutrino magnetic moment from measurements with the GEMMA spectrometer

    SciTech Connect

    Beda, A. G.; Brudanin, V. B.; Demidova, E. V.; Vylov, C.; Gavrilov, M. G.; Egorov, V. G.; Starostin, A. S.; Shirchenko, M. V.

    2007-11-15

    The first result obtained in the measurements of the neutrino magnetic moment at the Kalinin nuclear power plant with the GEMMA spectrometer is presented. A high-purity germanium detector of mass 1.5 kg placed at a distance of 13.9 m from the reactor core is used in the spectrometer. The antineutrino flux at the detector position is 2.73 x 10{sup 13{nu}}-bar/(cm{sup 2} s). The differential method is used to select events of electromagnetic antineutrino-electron scattering. The spectra taken in the reactor-on and reactor-off modes over 6200 and 2064 h, respectively, are compared. On the basis of a data analysis, an upper limit of 5.8 x 10{sup -11} {mu}B was set on the neutrino magnetic moment {mu}{sub {nu}}at a 90% C.L.

  18. Measurement of the magnetic moment of the 10{sup +} isomer in {sup 132}Ba

    SciTech Connect

    Harissopulos, S.; Gelberg, A.; Dewald, A.; Hass, M.; Weissman, L.; Broude, C.

    1995-10-01

    The magnetic moment of the 10{sup +} isomeric state of {sup 132}Ba at 3115 keV was measured as {ital g}={minus}0.156(11). A 60 MeV {sup 12}C beam from the Koffler Pelletron accelerator at the Weizmann Institute was used in the reaction {sup 124}Sn({sup 12}C,4{ital n}){sup 132}Ba. The measured {ital g} factor confirms the ({nu}{ital h}{sub 11/2}){sup {minus}2} configuration of the level. The result is compared with other {ital g} factors in neighboring {ital N}=76 isotones.

  19. Z = 50 core stability in 110Sn from magnetic-moment and lifetime measurements

    DOE PAGESBeta

    Kumbartzki, G. J.; Benczer-Koller, N.; Speidel, K. -H.; Torres, D. A.; Allmond, James M.; Fallon, P.; Abramovic, I.; L. A. Bernstein; Bevins, J. E.; Crawford, H. L.; et al

    2016-04-18

    In this study, the structure of the semimagic Sn50 isotopes were previously studied via measurements of B(E2;21+ → 01+) and g factors of 21+ states. The values of the B(E2;21+) in the isotopes below midshell at N = 66 show an enhancement in collectivity, contrary to predictions from shell-model calculations. This work presents the first measurement of the 21+ and 41+ states' magnetic moments in the unstable neutron-deficient 110Sn. The g factors provide complementary structure information to the interpretation of the observed B(E2) values.

  20. Magnetic Moments measurement and rare isotope beams: one example ^126Sn

    NASA Astrophysics Data System (ADS)

    Kumbartzki, Gerfried; Benczer-Koller, Noemie

    2012-10-01

    An assessment of the current state of measurements of magnetic moments of ps excited states with low intensity rare isotope beams will be given. ^126Sn was our last experiment before HRIBF/Oak Ridge ceased operation. Results of only a few experiments using the transient field technique and/or recoil in vacuum attenuation have been published. Each experiment posed special challenges and required specific modifications to the setup. The challenges and limitations learned and an outlook for future experiments will be presented.

  1. Measuring the muon's anomalous magnetic moment to 0.14 ppm

    NASA Astrophysics Data System (ADS)

    Gray, Frederick; New (g-2 Collaboration

    2011-09-01

    The anomalous magnetic moment (g-2) of the muon was measured with a precision of 0.54 ppm in Experiment 821 at Brookhaven National Laboratory. A difference of 3.2 standard deviations between this experimental value and the prediction of the Standard Model has persisted since 2004; in spite of considerable experimental and theoretical effort, there is no consistent explanation for this difference. This comparison hints at physics beyond the Standard Model, but it also imposes strong constraints on those possibilities, which include supersymmetry and extra dimensions. The collaboration is preparing to relocate the experiment to Fermilab to continue towards a proposed precision of 0.14 ppm. This will require 20 times more recorded decays than in the previous measurement, with corresponding improvements in the systematic uncertainties. We describe the theoretical developments and the experimental upgrades that provide a compelling motivation for the new measurement.

  2. Measurements of the lunar induced magnetic moment in the geomagnetic tail - Evidence for a lunar core

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Coleman, P. J., Jr.; Goldstein, B. E.

    1982-01-01

    Apollo 15 and 16 subsatellite fluxgate magnetometer data have been analyzed for all intervals in which the moon was in the lobes of the geomagnetic tail to obtain an improved estimate of the average magnitude of the induced dipole moment of the moon. The resulting set of estimates yields an induced magnetic moment of -4.23 x 10 to the 22nd Gauss-cu cm per Gauss of applied field, corresponding to a G-factor of -0.008 + or - 0.001. These measurements do not place strong constraints on the conductivity of the lunar core. The observed effects would be detected as long as the core conductivity was greater than about 10 mho/m. If the outer cool layers of the moon that are at temperatures below the effective Curie point contain little or no free iron, then these measurements are consistent with the presence of a conducting core whose radius is slightly larger than 400 km. If these outer layers of the moon contain significant amounts of free iron and hence exhibit the paramagnetism expected in such a situation the core size could be even greater.

  3. Status of Works on A-40-MCI-Activity Tritium Source for the Measurement of the Antineutrino Magnetic Moment

    SciTech Connect

    Yukhimchuk, A.A.; Vinogradov, Yu.I.; Golubkov, A.N.; Grishechkin, S.K.; Il'kaev, R.I.; Kuryakin, A.V.; Lebedev, B.L.; Lobanov, V.N.; Mikhailov, V.N.; Tumkin, D.P.; Bogdanova, L.N.

    2005-07-15

    For the experiment on the measurement of the electron antineutrino magnetic moment we suggest a new approach to the tritium source design, namely, a configuration of annular cells filled with TiT{sub 2} that are stacked into a hollow cylinder. Detectors are mounted in the hole inside.We present results of the optimization of geometrical and physical parameters of the source with respect to its experimental effectiveness and safety guaranty at all stages of its lifecycle. We discuss the choice of the construction materials and specify technological issues relevant to radiation purity of the source, being of the special concern in the experiment on the electron antineutrino magnetic moment measurement.

  4. Magnetic dipole moment measurements of picosecond states in even and odd heavy nuclei

    SciTech Connect

    Ballon, D.J.

    1985-01-01

    The perturbed angular correlation transient field technique is used to measure the precession of nuclear magnetic moments of low lying excited states in isotopes of silver, neodymium, samarium, and gadolinium. The precession measurements are used to explore three main areas of study. First, from the measurements made on /sup 150/Sm transversing gadolinium targets, the temperature dependence of the transient hyperfine field is deduced at /sup 150/Sm nuclei traveling at 2 < v/v/sub 0/ < 4. These are compared with similar measurements made using iron targets. Second, the deduced values of the g-factors of the 2/sub 1/ + states in even neodymium, samarium and gadolinium isotopes are discussed in connection with a possible proton shell closure at Z = 64. Third, the deduced values of the g-factors of the 3/2/sub 1/- and 5/2/sub 1/- states of /sup 107,109/Ag are compared to various theoretical predictions in order to explore any simple relationships that may exist between these states and the first 2/sub 1/+ states of neighboring even-even nuclei.

  5. Measuring the Nuclear Magnetic Octupole Moment of a Single Trapped Barium-137 Ion

    NASA Astrophysics Data System (ADS)

    Kleczewski, Adam; Fortson, Norval; Blinov, Boris

    2009-05-01

    Recent measurements of hyperfine structure in the cesium-133 atom resolved a nuclear magnetic octupole moment φ much larger than expected from the nuclear shell model[1]. To explore this issue further, we are undertaking an experiment to measure the hyperfine structure in the 5D manifold of a single trapped barium-137 ion which, together with reliable calculations in alkali-like Ba^+, should resolve φ with sensitivity better than the shell model value [2]. We use a TmHo:YLF laser tuned to 2051 nm and a fiber laser tuned to 1762 nm to drive the 6S1/2 to 5D3/2 and 6S1/2 to 5D5/2 electric quadrupole transitions. These lasers allow us to selectively populate any hyperfine sub-level in the 5D manifold. We will then perform RF spectroscopy on the 5D states to make a precision measurement of the hyperfine frequency intervals. We report on the development of the laser and RF spectroscopy systems. [1] V. Gerginov, A. Derevianko, and C. E. Tanner, Phys. Rev. Lett. 91, 072501 [2] K. Beloy, A. Derevianko, V. A. Dzuba, G. T. Howell, B. B. Blinov, E. N. Fortson, arXiv:0804.4317v1 [physics.atom-ph] 28 Apr 2008

  6. Z =50 core stability in 110Sn from magnetic-moment and lifetime measurements

    NASA Astrophysics Data System (ADS)

    Kumbartzki, G. J.; Benczer-Koller, N.; Speidel, K.-H.; Torres, D. A.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Gürdal, G.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Robinson, S. J. Q.; Sharon, Y. Y.; Wiens, A.

    2016-04-01

    Background: The structure of the semimagic 50Sn isotopes were previously studied via measurements of B (E 2 ;21+→01+ ) and g factors of 21+ states. The values of the B (E 2 ;21+ ) in the isotopes below midshell at N = 66 show an enhancement in collectivity, contrary to predictions from shell-model calculations. Purpose: This work presents the first measurement of the 2 1+ and 4 1+ states' magnetic moments in the unstable neutron-deficient 110Sn. The g factors provide complementary structure information to the interpretation of the observed B (E 2 ) values. Methods: The 110Sn nuclei have been produced in inverse kinematics in an α -particle transfer reaction from 12C to 106Cd projectiles at 390, 400, and 410 MeV. The g factors have been measured with the transient field technique. Lifetimes have been determined from line shapes using the Doppler-shift attenuation method. Results: The g factors of the 21+ and 41+ states in 110Sn are g (21+) = +0.29(11) and g (41+) = +0.05(14), respectively. In addition, the g (41+) = +0.27(6) in 106Cd has been measured for the first time. A line-shape analysis yielded τ (110Sn ; 21+) = 0.81(10) ps and a lifetime of τ (110Sn ; 31-) = 0.25(5) ps was calculated from the fully Doppler-shifted γ line. Conclusions: No evidence has been found in 110Sn that would require excitation of protons from the closed Z =50 core.

  7. A Comparison of Methods to Measure the Magnetic Moment of Magnetotactic Bacteria through Analysis of Their Trajectories in External Magnetic Fields

    PubMed Central

    Fradin, Cécile

    2013-01-01

    Magnetotactic bacteria possess organelles called magnetosomes that confer a magnetic moment on the cells, resulting in their partial alignment with external magnetic fields. Here we show that analysis of the trajectories of cells exposed to an external magnetic field can be used to measure the average magnetic dipole moment of a cell population in at least five different ways. We apply this analysis to movies of Magnetospirillum magneticum AMB-1 cells, and compare the values of the magnetic moment obtained in this way to that obtained by direct measurements of magnetosome dimension from electron micrographs. We find that methods relying on the viscous relaxation of the cell orientation give results comparable to that obtained by magnetosome measurements, whereas methods relying on statistical mechanics assumptions give systematically lower values of the magnetic moment. Since the observed distribution of magnetic moments in the population is not sufficient to explain this discrepancy, our results suggest that non-thermal random noise is present in the system, implying that a magnetotactic bacterial population should not be considered as similar to a paramagnetic material. PMID:24349185

  8. Magnetic moment and lifetime measurements of Coulomb-excited states in Cd106

    DOE PAGESBeta

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K. -H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; et al

    2016-09-06

    The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. As a result, the g factorsmore » of the 2+1 and 4+1 states in 106Cd were measured to be g(2+1) = +0.398(22) and g(4+1) = +0.23(5). A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ(106Cd; 2+1) = 7.0(3) ps and τ(106Cd; 4+1) = 2.5(2) ps. The mean life τ(106Cd; 2+2) = 0.28(2) ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ(106Cd; 4+3) = 1.1(1) ps and τ(106Cd; 3–1) = 0.16(1) ps were determined for the first time. In conclusion, the newly measured g(4+1) of 106Cd is found to be only 59% of the g(2+1). This difference cannot be explained by either shell-model or collective-model calculations.« less

  9. Measurement of a false electric dipole moment signal from 199Hg atoms exposed to an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Afach, S.; Baker, C. A.; Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Geltenbort, P.; Green, K.; van der Grinten, M. G. D.; Grujic, Z.; Harris, P. G.; Heil, W.; Hélaine, V.; Henneck, R.; Horras, M.; Iaydjiev, P.; Ivanov, S. N.; Kasprzak, M.; Kermaïdic, Y.; Kirch, K.; Knowles, P.; Koch, H.-C.; Komposch, S.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; Mtchedlishvili, A.; Naviliat-Cuncic, O.; Pendlebury, J. M.; Piegsa, F. M.; Pignol, G.; Prashant, P. N.; Quéméner, G.; Rebreyend, D.; Ries, D.; Roccia, S.; Schmidt-Wellenburg, P.; Severijns, N.; Weis, A.; Wursten, E.; Wyszynski, G.; Zejma, J.; Zenner, J.; Zsigmond, G.

    2015-10-01

    We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for 199Hg atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations.

  10. Moment free toroidal magnet

    DOEpatents

    Bonanos, Peter

    1983-01-01

    A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.

  11. Determination of the Neutron Magnetic Moment

    DOE R&D Accomplishments Database

    Greene, G. L.; Ramsey, N. F.; Mampe, W.; Pendlebury, J. M.; Smith, K.; Dress, W. B.; Miller, P. D.; Perrin, P.

    1981-06-01

    The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H{sub 2}O), we find ..mu..{sub n}/..mu..{sub p} = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units.

  12. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  13. Limit on the muon neutrino magnetic moment and a measurement of the CCPIP to CCQE cross section ratio

    SciTech Connect

    Ouedraogo, Serge Aristide

    2008-12-01

    A search for the muon neutrino magnetic moment was conducted using the Mini-BooNE low energy neutrino data. The analysis was performed by analyzing the elastic scattering interactions of muon neutrinos on electrons. The analysis looked for an excess of elastic scattering events above the Standard Model prediction from which a limit on the neutrino magnetic could be set. In this thesis, we report an excess of 15.3 ± 6.6(stat)±4.1(syst) vμe events above the expected background. At 90% C.L., we derived a limit on the muon neutrino magnetic moment of 12.7 x 10-10 μB. The other analysis reported in this thesis is a measurement of charged current single pion production (CCπ+) to charged current quasi elastic (CCQE) interactions cross sections ratio. This measurement was performed with two different fitting algorithms and the results from both fitters are consistent with each other.

  14. Orbital and spin moments of 5 to 11 nm Fe{sub 3}O{sub 4} nanoparticles measured via x-ray magnetic circular dichroism

    SciTech Connect

    Cai, Y. P.; Chesnel, K. Trevino, M.; Westover, A.; Turley, S.; Harrison, R. G.; Hancock, J. M.; Scherz, A.; Reid, A.; Wu, B.; Graves, C.; Wang, T.; Liu, T.; Dürr, H.

    2014-05-07

    The orbital and spin contributions to the magnetic moment of Fe in Fe{sub 3}O{sub 4} nanoparticles were measured using X-ray magnetic circular dichroism (XMCD). Nanoparticles of different sizes, ranging from 5 to 11 nm, were fabricated via organic methods and their magnetic behavior was characterized by vibrating sample magnetometry (VSM). An XMCD signal was measured for three different samples at 300 K and 80 K. The extracted values for the orbital and spin contributions to the magnetic moment showed a quenching of the orbital moment and a large spin moment. The calculated spin moments appear somewhat reduced compared to the value expected for bulk Fe{sub 3}O{sub 4}. The spin moments measured at 80 K are larger than at 300 K for all the samples, revealing significant thermal fluctuations effects in the nanoparticle assemblies. The measured spin moment is reduced for the smallest nanoparticles, suggesting that the magnetic properties of Fe{sub 3}O{sub 4} nanoparticles could be altered when their size reaches a few nanometers.

  15. Large Orbital Magnetic Moment Measured in the [TpFe(III)(CN)3](-) Precursor of Photomagnetic Molecular Prussian Blue Analogues.

    PubMed

    Jafri, Sadaf Fatima; Koumousi, Evangelia S; Sainctavit, Philippe; Juhin, Amélie; Schuler, Vivien; Bun U, Oana; Mitcov, Dmitri; Dechambenoit, Pierre; Mathonière, Corine; Clérac, Rodolphe; Otero, Edwige; Ohresser, Philippe; Cartier Dit Moulin, Christophe; Arrio, Marie-Anne

    2016-07-18

    Photomagnetism in three-dimensional Co/Fe Prussian blue analogues is a complex phenomenon, whose detailed mechanism is not yet fully understood. Recently, researchers have been able to prepare molecular fragments of these networks using a building block synthetic approach from mononuclear precursors. The main objective in this strategy is to isolate the smallest units that show an intramolecular electron transfer to have a better understanding of the electronic processes. A prior requirement to the development of this kind of system is to understand to what extent electronic and magnetic properties are inherited from the corresponding precursors. In this work, we investigate the electronic and magnetic properties of the FeTp precursor (N(C4H9)4)[TpFe(III)(CN)3], (Tp being tris-pyrazolyl borate) of a recently reported binuclear cyanido-bridged Fe/Co complex. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements at the Fe L2,3 edges (2p → 3d) supported by ligand field multiplet calculations have allowed to determine the spin and orbit magnetic moments. Inaccuracy of the spin sum rule in the case of low-spin Fe(III) ion was demonstrated. An exceptionally large value of the orbital magnetic moment is found (0.9 μB at T = 2 K and B = 6.5 T) that is likely to play an important role in the magnetic and photomagnetic properties of molecular Fe/Co Prussian blue analogues. PMID:27385292

  16. Development of a Thin Film Magnetic Moment Reference Material

    PubMed Central

    Pappas, D. P.; Halloran, S. T.; Owings, R. R.; da Silva, F. C. S.

    2008-01-01

    In this paper we present the development of a magnetic moment reference material for low moment magnetic samples. We first conducted an inter-laboratory comparison to determine the most useful sample dimensions and magnetic properties for common instruments such as vibrating sample magnetometers (VSM), SQUIDs, and alternating gradient field magnetometers. The samples were fabricated and then measured using a vibrating sample magnetometer. Their magnetic moments were calibrated by tracing back to the NIST YIG sphere, SRM 2853. PMID:27096108

  17. Development of a Thin Film Magnetic Moment Reference Material.

    PubMed

    Pappas, D P; Halloran, S T; Owings, R R; da Silva, F C S

    2008-01-01

    In this paper we present the development of a magnetic moment reference material for low moment magnetic samples. We first conducted an inter-laboratory comparison to determine the most useful sample dimensions and magnetic properties for common instruments such as vibrating sample magnetometers (VSM), SQUIDs, and alternating gradient field magnetometers. The samples were fabricated and then measured using a vibrating sample magnetometer. Their magnetic moments were calibrated by tracing back to the NIST YIG sphere, SRM 2853. PMID:27096108

  18. Measurement of the magnetic moment of the positive muon by a stroboscopic muon-spin-rotation technique

    SciTech Connect

    Klempt, E.; Schulze, R.; Wolf, H.; Camani, M.; Gygax, F.N.; Rueegg, W.; Schenck, A.; Schilling, H.

    1982-02-01

    A new determination of the magnetic moment of the positive muon in units of the magnetic moment of the proton is presented. The Larmor precession of positive muons in liquid bromine was observed by a stroboscopic technique in a field of 0.75 T and combined with concomitant proton NMR measurements in the same chemical environment. The stroboscopic method allows use of the full muon stopping rate available at the Schweizerisches Institut fuer Nuklearforschung (SIN) muon channel. Moreover, it permits an intrinsically precise determination of muon Larmor frequency and proton NMR frequency measuring the magnetic field by comparison with the stable reference frequency of the SIN accelerator (..delta cap omega../..cap omega..roughly-equal10/sup -8/). Two different bromine targets were used which allowed an unambiguous determination of the chemical field shift experienced by the muons. One target contained pure and water-free liquid bromine (Br/sub 2/), where stopped muons form (..mu../sup +/e/sup -/)Br molecules. The other target was slightly contaminated with water; there a chemical reaction chain places the muons into (..mu../sup +/e/sup -/)HO molecules. The diamagnetic shielding of protons in the analogous molecules HBr and H/sub 2/O in liquid bromine was measured by high-resolution NMR. Values for the isotopic shift of the diamagnetic shielding, when protons are replaced by muons, are available from quantum chemical calculations. After application of the chemical-shift corrections, the results from the two different bromine targets are consistent. The final result is ..mu../sub ..mu..//..mu../sub p/ = 3.183 344 1(17) (or +- 0.53 ppm). This value agrees with other recent precision determinations of ..mu../sub ..mu..//..mu../sub p/. For the muon mass the present result implies m/sub ..mu..//m/sub e/ = 206.768 35(11) ( +- 0.53 ppm).

  19. Superconductivity from Emerging Magnetic Moments

    NASA Astrophysics Data System (ADS)

    Hoshino, Shintaro; Werner, Philipp

    2015-12-01

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds.

  20. Superconductivity from Emerging Magnetic Moments.

    PubMed

    Hoshino, Shintaro; Werner, Philipp

    2015-12-11

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds. PMID:26705649

  1. Measurement of the polarization and magnetic moment of Ξ¯+ antihyperons produced by 800-GeV/c protons

    NASA Astrophysics Data System (ADS)

    Ho, P. M.; Longo, M. J.; Nguyen, A.; Luk, K. B.; James, C.; Rameika, R.; Duryea, J.; Guglielmo, G.; Heller, K.; Johns, K.; Diehl, H. T.; Teige, S.; Thomson, G. B.; Zou, Y.

    1991-12-01

    The polarization of Ξ¯ + hyperons produced by 800-GeV/c protons in the inclusive reaction p+Be-->Ξ¯ ++X has been measured using a sample of 70 000 Ξ¯ + decays. The average polarization of the Ξ¯ +, at a mean xF=0.39 and pt=0.76 GeV/c, is -0.097+/-0.012+/-0.009, compared to -0.102+/-0.012+/-0.010 for the Ξ-. The large polarization found for the Ξ¯ + is not expected in any model for polarization of inclusively produced hyperons. The magnetic moment of the Ξ¯ + was measured to be 0.657+/-0.028+/-0.020 nuclear magnetons (μN), compared to (-0.674+/-0.021+/-0.020)μN for the Ξ-, in good agreement with CPT invariance.

  2. Magnetic Moments of States in 110Sn.

    NASA Astrophysics Data System (ADS)

    Kumbartzki, G. J.

    2016-06-01

    The semi-magic Sn isotopes with Z = 50 are the subject of extensive experimental and theoretical studies. The measured B(E2) values to the 21 + states for the neutron-deficient side of the isotope chain suggest enhanced collectivity when fewer particles are available if the proton shell is not broken. Magnetic moments which are sensitive to proton and neutron contributions to the wave functions of the states could provide critical and relevant information. Magnetic moments were previously measured only for the even stable and a few neutron-rich unstable Sn isotopes. A measurement of the g factors of excited states in 110Sn using the transient field technique was performed at the 88-Inch Cyclotron at the LBNL in Berkeley. The 110Sn nuclei were produced via an α-particle transfer to 106Cd.

  3. Measuring the Moment of Inertia

    ERIC Educational Resources Information Center

    Lehmberg, George L.

    1978-01-01

    Two physics experiments are described, One, involving a laboratory cart accelerated along a level surface, examines the concept of inertial mass in translation and the other, using a solid cylinder, measures the moment of inertia of a wheel. Equations and illustrations are included. (MA)

  4. Tensor charge and anomalous magnetic moment correlation

    SciTech Connect

    Mekhfi, Mustapha

    2005-12-01

    We propose a generalization of the upgraded Karl-Sehgal formula which relates baryon magnetic moments to the spin structure of constituent quarks, by adding anomalous magnetic moments of quarks. We first argue that the relativistic nature of quarks inside baryons requires the introduction of two kinds of magnetisms, one axial and the other tensorial. The first one is associated with integrated quark helicity distributions {delta}{sub i}-{delta}{sub i} (standard) and the second with integrated transversity distributions {delta}{sub i}-{delta}{sub i}. The weight of each contribution is controlled by the combination of two parameters, x{sub i} the ratio of the quark mass to the average kinetic energy and a{sub i} the quark anomalous magnetic moment. The quark anomalous magnetic moment is correlated to transversity, and both are necessary ingredients in describing relativistic quarks. The proposed formula, when confronted with baryon magnetic moments data with reasonable inputs, yields, besides quark magnetic densities, anomalous magnetic moments large enough not to be ignored.

  5. Magnetic Moment Distribution in Layered Materials

    NASA Astrophysics Data System (ADS)

    Nicholson, D. M. C.; Zhang, X.-G.; Wang, Y.; Shelton, W. A.; Butler, W. H.; Stocks, G. M.; MacLaren, J. M.

    1996-03-01

    Thin layers of magnetic material surrounded by non-magnetic layers display a reduced moment per atom relative to the bulk magnetic material. Plots of sturation magnetization versus magnetic layer thickness can be explained in terms of magnetically dead layers at interfaces. First principles calculations indicate a more complex distribution of magnetic moments. Moment distributions calculated in the local density approximation restricted to colinear spins and with unrestricted spin orientations will be presented for Cu/Ni/Cu, Cu/permalloy/Cu, and Mo/Ni/Mo structures. Work supported by Division of Materials Science, the Mathematical Information and Computational Science Division of the Office of Computational Technology Research, and by the Assistant Secretary of Defence Programs, Technology Management Group, Technology Transfer Initiative, US DOE under subcontract DEAC05-84OR21400 with Martin-Marietta Energy Systems, Inc.

  6. How to Introduce the Magnetic Dipole Moment

    ERIC Educational Resources Information Center

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…

  7. Lunar magnetic field - Permanent and induced dipole moments

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Coleman, P. J., Jr.; Schubert, G.

    1974-01-01

    Apollo 15 subsatellite magnetic field observations have been used to measure both the permanent and the induced lunar dipole moments. Although only an upper limit of 1.3 x 10 to the 18th gauss-cubic centimeters has been determined for the permanent dipole moment in the orbital plane, there is a significant induced dipole moment which opposes the applied field, indicating the existence of a weak lunar ionosphere.

  8. The New (g-2) Experiment: A proposal to measure the muon anomalous magnetic moment to +-0.14 ppm precision

    SciTech Connect

    Carey, R.M.; Lynch, K.R.; Miller, J.P.; Roberts, B.L.; Morse, W.M.; Semertzides, Y.K.; Druzhinin, V.P.; Khazin, B.I.; Koop, I.A.; Logashenko, I.; Redin, S.I.; /Boston U. /Brookhaven /Novosibirsk, IYF /Cornell U., CIHEP /Fermilab /Frascati /Illinois U., Urbana /James Madison U. /Groningen, KVI /KEK, Tsukuba /Kentucky U.

    2009-02-01

    We propose to measure the muon anomalous magnetic moment, a{sub {mu}}, to 0.14 ppm-a fourfold improvement over the 0.54 ppm precision obtained in the BNL experiment E821. The muon anomaly is a fundamental quantity and its precise determination will have lasting value. The current measurement was statistics limited, suggesting that greater precision can be obtained in a higher-rate, next-generation experiment. We outline a plan to use the unique FNAL complex of proton accelerators and rings to produce high-intensity bunches of muons, which will be directed into the relocated BNL muon storage ring. The physics goal of our experiment is a precision on the muon anomaly of 16 x 10{sup -11}, which will require 21 times the statistics of the BNL measurement, as well a factor of 3 reduction in the overall systematic error. Our goal is well matched to anticipated advances in the worldwide effort to determine the standard model (SM) value of the anomaly. The present comparison, {Delta}a{sub {mu}} (Expt: -SM) = (295 {+-} 81) x 10{sup -11}, is already suggestive of possible new physics contributions to the muon anomaly. Assuming that the current theory error of 51 x 10{sup -11} is reduced to 30 x 10{sup -11} on the time scale of the completion of our experiment, a future {Delta}a{sub {mu}} comparison would have a combined uncertainty of {approx} 34 x 10{sup -11}, which will be a sensitive and complementary benchmark for proposed standard model extensions. The experimental data will also be used to improve the muon EDM limit by up to a factor of 100 and make a higher-precision test of Lorentz and CPT violation. We describe in this Proposal why the FNAL complex provides a uniquely ideal facility for a next-generation (g-2) experiment. The experiment is compatible with the fixed-target neutrino program; indeed, it requires only the unused Booster batch cycles and can acquire the desired statistics in less than two years of running. The proton beam preparations are largely aligned

  9. Spacecraft Attitude Stabilization with Piecewise-Constant Magnetic Dipole Moment

    NASA Astrophysics Data System (ADS)

    Celani, Fabio

    2016-05-01

    In actual implementations of magnetic control laws for spacecraft attitude stabilization, the time in which Earth magnetic field is measured must be separated from the time in which magnetic dipole moment is generated. The latter separation translates into the constraint of being able to genere only piecewise-constant magnetic dipole moment. In this work we present attitude stabilization laws using only magnetic actuators that take into account of the latter aspect. Both a state feedback and an output feedback are presented, and it is shown that the proposed design allows for a systematic selection of the sampling period.

  10. Design of a compensated signal rod for low magnetic moment sample measurements with a vibrating sample magnetometer.

    PubMed

    Carignan, Louis-Philippe; Cochrane, Robert W; Ménard, David

    2008-03-01

    A zero-signal sample holder is proposed for the measurement of weak magnetic signals with vibrating sample magnetometers. With proper shape of the support rod, a nearly vanishing signal can be obtained as a function of the magnetic field and the temperature. In particular, it is shown that the addition of an extra part to a standard glass sample holder can reduce the diamagnetic signal by more than three orders of magnitude with no noise increase. The proposed method is applicable to field, temperature, and angular measurements; it is also ideally suited to direct measurement of nanometer thick magnetic layers deposited on much thicker diamagnetic substrates. PMID:18377045

  11. Magnetic dipole moment estimates for an ancient lunar dynamo

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1983-01-01

    The four measured planetary magnetic moments combined with a recent theoretical prediction for dynamo magnetic fields suggests that no dynamo exists in the moon's interior today. For the moon to have had a magnetic moment in the past of sufficient strength to account for at least some of the lunar rock magnetism, the rotation would have been about twenty times faster than it is today and the radius of the fluid, conducting core must have been about 750 km. The argument depends on the validity of the Busse solution to the validity of the MHD problem of planetary dynamos.

  12. The possibility to measure the magnetic moments of short-lived particles (charm and beauty baryons) at LHC and FCC energies using the phenomenon of spin rotation in crystals

    NASA Astrophysics Data System (ADS)

    Baryshevsky, V. G.

    2016-06-01

    The use of spin rotation effect in bent crystals for measuring the magnetic moment of short-lived particles in the range of LHC and FCC energies is considered. It is shown that the estimated number of produced baryons that are captured into a bent crystal grows as ∼γ 3 / 2 with increasing particle energy. Hence it may be concluded that the experimental measurement of magnetic moments of short-lived particles using the spin rotation effect is feasible at LHC and higher energies (for LHC energies, e.g., the running time required for measuring the magnetic moment of Λc+ is 2 ÷ 16 hours).

  13. The possibility to measure the magnetic moments of short-lived particles (charm and beauty baryons) at LHC and FCC energies using the phenomenon of spin rotation in crystals

    NASA Astrophysics Data System (ADS)

    Baryshevsky, V. G.

    2016-06-01

    The use of spin rotation effect in bent crystals for measuring the magnetic moment of short-lived particles in the range of LHC and FCC energies is considered. It is shown that the estimated number of produced baryons that are captured into a bent crystal grows as ∼γ 3 / 2 with increasing particle energy. Hence it may be concluded that the experimental measurement of magnetic moments of short-lived particles using the spin rotation effect is feasible at LHC and higher energies (for LHC energies, e.g., the running time required for measuring the magnetic moment of Λc+is 2 ÷ 16 hours).

  14. The photon magnetic moment problem revisited

    NASA Astrophysics Data System (ADS)

    Pérez Rojas, H.; Rodríguez Querts, E.

    2014-06-01

    The photon magnetic moment for radiation propagating in magnetized vacuum is defined as a pseudotensor quantity, proportional to the external electromagnetic field tensor. After expanding the eigenvalues of the polarization operator in powers of , we obtain approximate dispersion equations (cubic in ), and analytic solutions for the photon magnetic moment, valid for low momentum and/or large magnetic field. The paramagnetic photon experiences a redshift, with opposite sign to the gravitational one, which differs for parallel and perpendicular polarizations. It is due to the drain of photon transverse momentum and energy by the external field. By defining an effective transverse momentum, the constancy of the speed of light orthogonal to the field is guaranteed. We conclude that the propagation of the photon non-parallel to the magnetic direction behaves as if there is a quantum compression of the vacuum or a warp of space-time in an amount depending on its angle with regard to the field.

  15. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant: A First Application of a One-Electron Quantum Cyclotron

    ScienceCinema

    Gabrielse, Gerald [Harvard University, Cambridge, Massachusetts, United States

    2009-09-01

    Remarkably, the famous UW measurement of the electron magnetic moment has stood since 1987. With QED theory, this measurement has determined the accepted value of the fine structure constant. This colloquium is about a new Harvard measurement of these fundamental constants. The new measurement has an uncertainty that is about six times smaller, and it shifts the values by 1.7 standard deviations. One electron suspended in a Penning trap is used for the new measurement, like in the old measurement. What is different is that the lowest quantum levels of the spin and cyclotron motion are resolved, and the cyclotron as well as spin frequencies are determined using quantum jump spectroscopy. In addition, a 0.1 mK Penning trap that is also a cylindrical microwave cavity is used to control the radiation field, to suppress spontaneous emission by more than a factor of 100, to control cavity shifts, and to eliminate the blackbody photons that otherwise stimulate excitations from the cyclotron ground state. Finally, great signal-to-noise for one-quantum transitions is obtained using electronic feedback to realize the first one-particle self-excited oscillator. The new methods may also allow a million times improved measurement of the 500 times small antiproton magnetic moment.

  16. Rapid Characterization of Magnetic Moment of Cells for Magnetic Separation

    PubMed Central

    Ooi, Chinchun; Earhart, Christopher M.; Wilson, Robert J.; Wang, Shan X.

    2014-01-01

    NCI-H1650 lung cancer cell lines labeled with magnetic nanoparticles via the Epithelial Cell Adhesion Molecule (EpCAM) antigen were previously shown to be captured at high efficiencies by a microfabricated magnetic sifter. If fine control and optimization of the magnetic separation process is to be achieved, it is vital to be able to characterize the labeled cells’ magnetic moment rapidly. We have thus adapted a rapid prototyping method to obtain the saturation magnetic moment of these cells. This method utilizes a cross-correlation algorithm to analyze the cells’ motion in a simple fluidic channel to obtain their magnetophoretic velocity, and is effective even when the magnetic moments of cells are small. This rapid characterization is proven useful in optimizing our microfabricated magnetic sifter procedures for magnetic cell capture. PMID:24771946

  17. Rapid Characterization of Magnetic Moment of Cells for Magnetic Separation.

    PubMed

    Ooi, Chinchun; Earhart, Christopher M; Wilson, Robert J; Wang, Shan X

    2013-07-01

    NCI-H1650 lung cancer cell lines labeled with magnetic nanoparticles via the Epithelial Cell Adhesion Molecule (EpCAM) antigen were previously shown to be captured at high efficiencies by a microfabricated magnetic sifter. If fine control and optimization of the magnetic separation process is to be achieved, it is vital to be able to characterize the labeled cells' magnetic moment rapidly. We have thus adapted a rapid prototyping method to obtain the saturation magnetic moment of these cells. This method utilizes a cross-correlation algorithm to analyze the cells' motion in a simple fluidic channel to obtain their magnetophoretic velocity, and is effective even when the magnetic moments of cells are small. This rapid characterization is proven useful in optimizing our microfabricated magnetic sifter procedures for magnetic cell capture. PMID:24771946

  18. Can extra dimensions accessible to the SM explain the recent measurement of anomalous magnetic moment of the muon?*

    NASA Astrophysics Data System (ADS)

    Agashe, K.; Deshpande, N. G.; Wu, G.-H.

    2001-06-01

    We investigate whether models with flat extra dimensions in which SM fields propagate can give a significant contribution to the anomalous magnetic moment of the muon (MMM). In models with only SM gauge and Higgs fields in the bulk, the contribution to the MMM from Kaluza-Klein (KK) excitations of gauge bosons is very small. This is due to the constraint on the size of the extra dimensions from tree-level effects of KK excitations of gauge bosons on precision electroweak observables such as Fermi constant. If the quarks and leptons are also allowed to propagate in the (same) bulk (``universal'' extra dimensions), then there are no contributions to precision electroweak observables at tree-level. However, in this case, the constraint from one-loop contribution of KK excitations of (mainly) the top quark to /T parameter again implies that the contribution to the MMM is small. We show that in models with leptons, electroweak gauge and Higgs fields propagating in the (same) bulk, but with quarks and gluon propagating in a sub-space of this bulk, both the above constraints can be relaxed. However, with only one Higgs doublet, the constraint from the process /b-->sγ requires the contribution to the MMM to be smaller than the SM electroweak correction. This constraint can be relaxed in models with more than one Higgs doublet.

  19. Magnetic dipole moment determination by near-field analysis

    NASA Technical Reports Server (NTRS)

    Eichhorn, W. L.

    1972-01-01

    A method for determining the magnetic moment of a spacecraft from magnetic field data taken in a limited region of space close to the spacecraft. The spacecraft's magnetic field equations are derived from first principles. With measurements of this field restricted to certain points in space, the near-field equations for the spacecraft are derived. These equations are solved for the dipole moment by a least squares procedure. A method by which one can estimate the magnitude of the error in the calculations is also presented. This technique was thoroughly tested on a computer. The test program is described and evaluated, and partial results are presented.

  20. Status and perspectives of neutrino magnetic moments

    NASA Astrophysics Data System (ADS)

    Alexander, Studenikin

    2016-05-01

    Basic theoretical and experimental aspects of neutrino magnetic moments are reviewed, including the present best upper bounds from reactor experiments and astrophysics. An interesting effect of neutrino spin precession induced by the background matter transversal current or polarization is also discussed.

  1. The permanent and induced magnetic dipole moment of the moon

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Coleman, P. J., Jr.; Lichtenstein, B. R.; Schubert, G.

    1974-01-01

    Magnetic field observations with the Apollo 15 subsatellite have been used to deduce the components of both the permanent and induced lunar dipole moments in the orbital plane. The present permanent lunar magnetic dipole moment in the orbital plane is less than 1.3 times ten to the eighteenth power gauss-cu cm. Any uniformly magnetized near surface layer is therefore constrained to have a thickness-magnetization product less than 2.5 emu-cm per g. The induced moment opposes the external field, implying the existence of a substantial lunar ionosphere with a permeability between 0.63 and 0.85. Combining this with recent measures of the ratio of the relative field strength at the ALSEP and Explorer 35 magnetometers indicates that the global lunar permeability relative to the plasma in the geomagnetic tail lobes is between 1.008 and 1.03.

  2. Interpreting magnetic data by integral moments

    NASA Astrophysics Data System (ADS)

    Tontini, F. Caratori; Pedersen, L. B.

    2008-09-01

    The use of the integral moments for interpreting magnetic data is based on a very elegant property of potential fields, but in the past it has not been completely exploited due to problems concerning real data. We describe a new 3-D development of previous 2-D results aimed at determining the magnetization direction, extending the calculation to second-order moments to recover the centre of mass of the magnetization distribution. The method is enhanced to reduce the effects of the regional field that often alters the first-order solutions. Moreover, we introduce an iterative correction to properly assess the errors coming from finite-size surveys or interaction with neighbouring anomalies, which are the most important causes of the failing of the method for real data. We test the method on some synthetic examples, and finally, we show the results obtained by analysing the aeromagnetic anomaly of the Monte Vulture volcano in Southern Italy.

  3. Magnetic Moment of Proton Drip-Line Nucleus (9)C

    NASA Technical Reports Server (NTRS)

    Matsuta, K.; Fukuda, M.; Tanigaki, M.; Minamisono, T.; Nojiri, Y.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Harada, A.; Sasaki, M.

    1994-01-01

    The magnetic moment of the proton drip-line nucleus C-9(I(sup (pi)) = 3/2, T(sub 1/2) = 126 ms) has been measured for the first time, using the beta-NMR detection technique with polarized radioactive beams. The measure value for the magnetic moment is 1mu(C-9)! = 1.3914 +/- 0.0005 (mu)N. The deduced spin expectation value of 1.44 is unusually larger than any other ones of even-odd nuclei.

  4. Precise Determination of the Strangeness Magnetic Moment of the Nucleon

    SciTech Connect

    Leinweber, D.B.; Boinepalli, S.; Cloet, I.C.; Williams, A.G.; Young, R.D.; Zhang, J.B.; Thomas, A.W.; Zanotti, J.M.

    2005-06-03

    By combining the constraints of charge symmetry with new chiral extrapolation techniques and recent low mass quenched lattice-QCD simulations of the individual quark contributions to the magnetic moments of the nucleon octet, we obtain a precise determination of the strange magnetic moment of the proton. The result, namely, G{sub M}{sup s}=(-0.046{+-}0.019){mu}{sub N} is consistent with the latest experimental measurements but an order of magnitude more precise. This poses a tremendous challenge for future experiments.

  5. Precise Determination of the Strangeness Magnetic Moment of the Nucleon

    SciTech Connect

    Leinweber, D B; Boinepalli, S; Cloet, I C; Thomas, A W; Williams, A G; Young, R D; Zanotti, J M; Zhang, J B

    2005-06-01

    By combining the constraints of charge symmetry with new chiral extrapolation techniques and recent low mass lattice QCD simulations of the individual quark contributions to the magnetic moments of the nucleon octet, we obtain a precise determination of the strange magnetic moment of the proton. The result, namely G{sub M}{sup s} = -0.051 +/- 0.021 mu{sub N}, is consistent with the latest experimental measurements but an order of magnitude more precise. This poses a tremendous challenge for future experiments.

  6. A measurement of the magnetic dipole moment of the. delta. /sup + +/(1232) from the bremsstrahlung process. pi. p. -->. pi. p. gamma

    SciTech Connect

    Meyer, C.A.

    1987-06-01

    We have measured the cross section from the bremsstrahlung process ..pi../sup +/p ..-->.. ..pi../sup +/p..gamma.. for incident pions of energy 299 MeV. We detected the out going pion in the angular range from 55 to 95/sup 0/ in the lab, and photons were detected near 240/sup 0/ in the lab. We compare this measured cross-section to the MIT theory in order to extract a measurement of the magnetic dipole moment of the ..delta../sup + +/(1232), ..mu../sub ..delta../. In order to compare our results with the MIT theory, we have folded the MIT theory into the acceptance of our apparatus. We find that for pion angles between 55 and 75/sup 0/ the theory gives us a dipole moment of: 2.3..mu../sub p/ < ..mu../sub ..delta../ < 3.3..mu../sup p/ where the quoted error arises from an experimental uncertainty of +-0.25..mu../sub p/ and from theoretical uncertainties of +-0.25 ..mu../sub p/. However, for pion angles between 75 and 95/sup 0/ we find that the MIT theory predicts a cross-section which is larger than our measured cross-section, and makes it difficult to extract a value of ..mu../sub ..delta../. This over prediction is not understood, but consistent with a similar effect when the MIT theory is fit to previous data. 78 figs., 29 tabs.

  7. Effective particle magnetic moment of multi-core particles

    NASA Astrophysics Data System (ADS)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-04-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  8. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling.

    PubMed

    Shaniv, R; Akerman, N; Ozeri, R

    2016-04-01

    We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on m_{j}^{2}, where m_{j}^{2} is the angular momentum of level |j⟩ along the quantization axis, from large noisy shifts that are linear in m_{j}, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4D_{5/2} level in ^{88}Sr^{+} to be 2.973_{-0.033}^{+0.026}ea_{0}^{2}. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in ^{88}Sr^{+} based optical atomic clocks and verifies complicated many-body quantum calculations. PMID:27104691

  9. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling

    NASA Astrophysics Data System (ADS)

    Shaniv, R.; Akerman, N.; Ozeri, R.

    2016-04-01

    We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on mj2, where mj2 is the angular momentum of level |j ⟩ along the quantization axis, from large noisy shifts that are linear in mj, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4 D5 /2 level in 88Sr+ to be 2.97 3-0.033+0.026e a02 . Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in 88Sr+ based optical atomic clocks and verifies complicated many-body quantum calculations.

  10. Atomic electric dipole moment induced by the nuclear electric dipole moment: The magnetic moment effect

    SciTech Connect

    Porsev, S. G.; Ginges, J. S. M.; Flambaum, V. V.

    2011-04-15

    We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM d{sub N} with the hyperfine interaction, the ''magnetic moment effect''. We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms {sup 129}Xe, {sup 171}Yb, {sup 199}Hg, {sup 211}Rn, and {sup 225}Ra have been calculated numerically. From the experimental limits on the atomic EDMs of {sup 129}Xe and {sup 199}Hg we have placed the following constraints on the nuclear EDMs, |d{sub N}({sup 129}Xe)|<1.1x10{sup -21}|e|cm and |d{sub N}({sup 199}Hg)|<2.8x10{sup -24}|e|cm.

  11. EM induction experiment to determine the moment of a magnet

    NASA Astrophysics Data System (ADS)

    Najiya Maryam, K. M.

    2014-05-01

    If we drop a magnet through a coil, an emf is induced in the coil according to Faraday’s law of electromagnetic induction. Here, such an experiment is done using expEYES kit. The plot of emf versus time has a specific shape with two peaks. A theoretical analysis of this graph is discussed here for both short and long cylindrical magnets. Mathematical expressions are derived for both. Knowing this equation, experiments to calculate the moment of a magnet can be devised. If we use a long conducting tube instead of a simple coil in this experiment, it can even help in measuring the eddy current damping coefficient k.

  12. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  13. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. PMID:25700116

  14. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Kepler, S. O.; García-Berro, E.

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pi dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pi dot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μν lesssim 10-11 μB. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  15. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    SciTech Connect

    Córsico, A.H.; Althaus, L.G.; García-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  16. Layer-Resolved Magnetic Moments in Ni/Pt Multilayers

    NASA Astrophysics Data System (ADS)

    Wilhelm, F.; Poulopoulos, P.; Ceballos, G.; Wende, H.; Baberschke, K.; Srivastava, P.; Benea, D.; Ebert, H.; Angelakeris, M.; Flevaris, N. K.; Niarchos, D.; Rogalev, A.; Brookes, N. B.

    2000-07-01

    The magnetic moments in Ni/Pt multilayers are thoroughly studied by combining experimental and ab initio theoretical techniques. SQUID magnetometry probes the samples' magnetizations. X-ray magnetic circular dichroism separates the contribution of Ni and Pt and provides a layer-resolved magnetic moment profile for the whole system. The results are compared to band-structure calculations. Induced Pt magnetic moments localized mostly at the interface are revealed. No magnetically ``dead'' Ni layers are found. The magnetization per Ni volume is slightly enhanced compared to bulk NiPt alloys.

  17. Top Quark Amplitudes with an Anomolous Magnetic Moment

    SciTech Connect

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2011-06-23

    The anomalous magnetic moment of the top quark may be measured during the first run of the LHC at 7 TeV. For these measurements, it will be useful to have available tree amplitudes with t{bar t} and arbitrarily many photons and gluons, including both QED and color anomalous magnetic moments. In this paper, we present a method for computing these amplitudes using the Britto-Cachazo-Feng-Witten recursion formula. Because we deal with an effective theory with higher-dimension couplings, there are roadblocks to a direct computation with the Britto-Cachazo-Feng-Witten method. We evade these by using an auxiliary scalar theory to compute a subset of the amplitudes.

  18. Pinned orbital moments – A new contribution to magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Audehm, P.; Schmidt, M.; Brück, S.; Tietze, T.; Gräfe, J.; Macke, S.; Schütz, G.; Goering, E.

    2016-05-01

    Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy.

  19. Measurement of electric dipole moments at storage rings

    NASA Astrophysics Data System (ADS)

    Jörg Pretz JEDI Collaboration

    2015-11-01

    The electric dipole moment (EDM) is a fundamental property of a particle, like mass, charge and magnetic moment. What makes this property in particular interesting is the fact that a fundamental particle can only acquire an EDM via {P} and {T} violating processes. EDM measurements contribute to the understanding of the matter over anti-matter dominance in the universe, a question closely related to the violation of fundamental symmetries. Up to now measurements of EDMs have concentrated on neutral particles. Charged particle EDMs can be measured at storage ring. Plans at Forschungszentrum Jülich and results of first test measurements at the COoler SYnchrotron COSY will be presented.

  20. Absolute measurement of the ordered magnetic moment in holmium-rich (Er/sub 1-//sub x/Ho/sub x/)Rh/sub 4/B/sub 4/

    SciTech Connect

    Li, Q.; Lynn, J.W.; Gotaas, J.A.

    1987-04-01

    Powder neutron diffraction measurements have been performed on ferromagnetic (Er/sub 1-//sub x/Ho/sub x/)Rh/sub 4/B/sub 4/ for concentrations x = 1.0, 0.89, 0.84, and 0.75 to determine the ordered magnetic moment and form factor for holmium. The magnetic scattering intensities have been put on an absolute basis by comparison with pure copper-powder Bragg peaks in order to avoid systematic errors that might be associated with the evaluation of the nuclear structure factors of the samples themselves. For HoRh/sub 4/B/sub 4/ the saturated magnetic moment was determined to be <..mu../sup z/> = (8.61 +- 0.06)..mu../sub B/, which is in good agreement with our previous determination. The measurements on the alloys gave the same holmium moment within experimental error. This value is considerably smaller than the prediction of 10..mu../sub B/ based on a single-ion crystal-field model. The magnetic form factor for the pure holmium compound has also been determined as a function of sin(theta)/lambda, and is found to be in good agreement with the calculated form factor for Ho/sup 3+/. Thus any rhodium moment which contributes to the ferromagnetic component of the magnetization must be less than 0.07..mu../sub B/.

  1. Measurement of the Magnetic Moment of the First Excited State in 93Sr Using on-line TDPAC technique

    NASA Astrophysics Data System (ADS)

    Sasanuma, T.; Taniguchi, A.; Tanigaki, M.; Ohkubo, Y.; Kawase, Y.

    2004-12-01

    The g-factor of the first excited state of 93Sr ( E = 213 keV, T 1/2 = 4.6 ns) was measured by an on-line TDPAC technique with use of the strong hyperfine field in Fe metal. The Larmor frequency ω L = (2.60 ± 0.15) × 108 rad/s was obtained. The g-factor is derived as g = -0.227 ± 0.013 from g = - ℏω L/ B hf μ N. If the spin of the first excited state of 93Sr is assumed to be 3/2, the g-factor is predicted by a simple core-excitation model as g = -0.22, which is in good agreement with the present experimental result.

  2. Tensor Charges, Quark Anomalous Magnetic Moments And Baryons

    SciTech Connect

    Mekhfi, M.

    2007-06-13

    We propose an 'ultimate' upgrade of the Karl- Sehgal (KS) formula which relates baryon magnetic moments to the spin structure of constituent quarks, by adding anomalous magnetic moments of quarks. We first argue that relativistic nature of quarks inside baryons requires introduction of two kinds of magnetisms, one axial and the other tensoriel. The first one is associated with integrated quark helicity distributions {delta}i - {delta}i-bar (standard ) and the second with integrated transversity distributions {delta}i - {delta}i-bar. The weight of each contribution is controlled by the combination of two parameters, xi the ratio of the quark mass to the average kinetic energy and ai the quark anomalous magnetic moment. The quark anomalous magnetic moment is thus shown to be correlated to transversity. The proposed formula confirms, with reasonable inputs that anomalous magnetic moments of quarks are unavoidable intrinsic properties.

  3. Numerical modeling of higher order magnetic moments in UXO discrimination

    USGS Publications Warehouse

    Sanchez, V.; Yaoguo, L.; Nabighian, M.N.; Wright, D.L.

    2008-01-01

    The surface magnetic anomaly observed in unexploded ordnance (UXO) clearance is mainly dipolar, and consequently, the dipole is the only magnetic moment regularly recovered in UXO discrimination. The dipole moment contains information about the intensity of magnetization but lacks information about the shape of the target. In contrast, higher order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and to show its potential utility in UXO clearance, we present a numerical modeling study of UXO and related metallic objects. The tool for the modeling is a nonlinear integral equation describing magnetization within isolated compact objects of high susceptibility. A solution for magnetization distribution then allows us to compute the magnetic multipole moments of the object, analyze their relationships, and provide a depiction of the anomaly produced by different moments within the object. Our modeling results show the presence of significant higher order moments for more asymmetric objects, and the fields of these higher order moments are well above the noise level of magnetic gradient data. The contribution from higher order moments may provide a practical tool for improved UXO discrimination. ?? 2008 IEEE.

  4. Nuclear Magnetic Moment of the {sup 57}Cu Ground State

    SciTech Connect

    Minamisono, K.; Mertzimekis, T.J.; Pereira, J.; Mantica, P.F.; Pinter, J.S.; Stoker, J.B.; Tomlin, B.E.; Weerasiri, R.R.; Davies, A.D.; Hass, M.; Rogers, W.F.

    2006-03-17

    The nuclear magnetic moment of the ground state of {sup 57}Cu(I{sup {pi}}=3/2{sup -},T{sub 1/2}=196.3 ms) has been measured to be vertical bar {mu}({sup 57}Cu) vertical bar =(2.00{+-}0.05){mu}{sub N} using the {beta}-NMR technique. Together with the known magnetic moment of the mirror partner {sup 57}Ni, the spin expectation value was extracted as <{sigma}{sigma}{sub z}>=-0.78{+-}0.13. This is the heaviest isospin T=1/2 mirror pair above the {sup 40}Ca region for which both ground state magnetic moments have been determined. The discrepancy between the present results and shell-model calculations in the full fp shell giving {mu}({sup 57}Cu){approx}2.4{mu}{sub N} and <{sigma}{sigma}{sub z}>{approx}0.5 implies significant shell breaking at {sup 56}Ni with the neutron number N=28.

  5. Enhanced orbital magnetic moments in magnetic heterostructures with interface perpendicular magnetic anisotropy

    PubMed Central

    Ueno, Tetsuro; Sinha, Jaivardhan; Inami, Nobuhito; Takeichi, Yasuo; Mitani, Seiji; Ono, Kanta; Hayashi, Masamitsu

    2015-01-01

    We have studied the magnetic layer thickness dependence of the orbital magnetic moment in magnetic heterostructures to identify contributions from interfaces. Three different heterostructures, Ta/CoFeB/MgO, Pt/Co/AlOx and Pt/Co/Pt, which possess significant interface contribution to the perpendicular magnetic anisotropy, are studied as model systems. X-ray magnetic circular dichroism spectroscopy is used to evaluate the relative orbital moment, i.e. the ratio of the orbital to spin moments, of the magnetic elements constituting the heterostructures. We find that the relative orbital moment of Co in Pt/Co/Pt remains constant against its thickness whereas the moment increases with decreasing Co layer thickness for Pt/Co/AlOx, suggesting that a non-zero interface orbital moment exists for the latter system. For Ta/CoFeB/MgO, a non-zero interface orbital moment is found only for Fe. X-ray absorption spectra shows that a particular oxidized Co state in Pt/Co/AlOx, absent in other heterosturctures, may give rise to the interface orbital moment in this system. These results show element specific contributions to the interface orbital magnetic moments in ultrathin magnetic heterostructures. PMID:26456454

  6. Magnetic moment investigation by frequency mixing techniques.

    PubMed

    Teliban, I; Thede, C; Chemnitz, S; Bechtold, C; Quadakkers, W J; Schütze, M; Quandt, E

    2009-11-01

    Gas turbines and other large industrial equipment are subjected to high-temperature oxidation and corrosion. Research and development of efficient protective coatings is the main task in the field. Also, knowledge about the depletion state of the coating during the operation time is important. To date, practical nondestructive methods for the measurement of the depletion state do not exist. By integrating magnetic phases into the coating, the condition of the coating can be determined by measuring its magnetic properties. In this paper, a new technique using frequency mixing is proposed to investigate the thickness of the coatings based on their magnetic properties. A sensor system is designed and tested on specific magnetic coatings. New approaches are proposed to overcome the dependency of the measurement on the distance between coil and sample that all noncontact techniques face. The novelty is a low cost sensor with high sensibility and selectivity which can provide very high signal-to-noise ratios. Prospects and limitations are discussed for future use of the sensor in industrial applications. PMID:19947756

  7. Numerical modeling of magnetic moments for UXO applications

    USGS Publications Warehouse

    Sanchez, V.; Li, Y.; Nabighian, M.; Wright, D.

    2006-01-01

    The surface magnetic anomaly observed in UXO clearance is mainly dipolar and, consequently, the dipole is the only magnetic moment regularly recovered in UXO applications. The dipole moment contains information about intensity of magnetization but lacks information about shape. In contrast, higher-order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and its potential utility in UXO clearance, we present a 3D numerical modeling study for highly susceptible metallic objects. The basis for the modeling is the solution of a nonlinear integral equation describing magnetization within isolated objects. A solution for magnetization distribution then allows us to compute magnetic moments of the object, analyze their relationships, and provide a depiction of the surface anomaly produced by different moments within the object. Our modeling results show significant high-order moments for more asymmetric objects situated at depths typical of UXO burial, and suggest that the increased relative contribution to magnetic gradient data from these higher-order moments may provide a practical tool for improved UXO discrimination.

  8. Measurement of a weak transition moment using Coherent Control

    NASA Astrophysics Data System (ADS)

    Antypas, Dionysios

    We have developed a two-pathway Coherent Control technique for measurements of weak optical transition moments. We demonstrate this technique through a measurement of the transition moment of the highly-forbidden magnetic dipole transition between the 6s2S 1/21/2 and 7s2S 1/21/2 states in atomic Cesium. The experimental principle is based on a two-pathway excitation, using two phase-coherent laser fields, a fundamental field at 1079 nm and its second harmonic at 539.5 nm. The IR field induces a strong two-photon transition, while the 539.5 nm field drives a pair of weak one-photon transitions: a Stark-induced transition of controllable strength as well as the magnetic dipole transition. Observations of the interference between these transitions for different Stark-induced transition amplitudes, allow a measurement of the ratio of the magnetic dipole to the Stark-induced moment. The interference between the transitions is controlled by modulation of the phase-delay between the two optical fields. Our determination of the magnetic dipole moment is at the 0.4% level and in good agreement with previous measurements, and serves as a benchmark for our technique and apparatus. We anticipate that with further improvement of the apparatus detection sensitivity, the demonstrated scheme can be used for measurements of the very weak Parity Violation transition moment on the Cesium 6s2 S1/2→7s2 S1/2 transition.

  9. Magnetic moments of octet baryons and sea antiquark polarizations

    SciTech Connect

    Bartelski, Jan; Tatur, Stanislaw

    2005-01-01

    Using generalized Sehgal equations for magnetic moments of baryon octet and taking into account {sigma}{sup 0}-{lambda} mixing and two particle corrections to independent quark contributions we obtain very good fit using experimental values for errors of such moments. We present sum rules for quark magnetic moments ratios and for integrated spin densities ratios. Because of the SU(3) structure of our equations the results for magnetic moments of quarks and their densities depend on two additional parameters. Using information from deep inelastic scattering and baryon {beta}-decays we discuss the dependence of antiquark polarizations on introduced parameters. For some plausible values of these parameters we show that these polarizations are small if we neglect angular momenta of quarks. Our very good fit to magnetic moments of baryon octet can still be improved by using specific model for angular momentum of quarks.

  10. Relative importance of magnetic moments in UXO clearance applications

    USGS Publications Warehouse

    Sanchez, V.; Li, Y.; Nabighian, M.; Wright, D.

    2006-01-01

    Surface magnetic anomaly observed in UXO clearance is mainly dipolar and, as a result, the dipole is the only moment used regularly in UXO applications. The dipole moment contains intensity of magnetization information but lacks shape information. Unlike dipole, higher-order moments, such as quadrupole and octupole, encode asymmetry properties of magnetization distribution within buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and its potential utility in UXO clearance, we present results of a 3D numerical modeling study for highly susceptible metallic objects. The basis for modeling is the solution of a nonlinear integral equation, describing magnetization within isolated objects, allowing us to compute magnetic moments of the object, analyze their relationships, and provide a depiction of the surface anomaly produced by the different moments within the object. Our modeling results show significant high-order moments for more asymmetric objects situated at typical UXO burial depths, and suggest that the increased relative contribution to magnetic gradient data from these higher-order moments may provide a practical tool for improved UXO discrimination. ?? 2005 Society of Exploration Geophysicists.

  11. Estimation from moments measurements for amyloid depolymerisation.

    PubMed

    Armiento, Aurora; Doumic, Marie; Moireau, Philippe; Rezaei, H

    2016-05-21

    Estimating reaction rates and size distributions of protein polymers is an important step for understanding the mechanisms of protein misfolding and aggregation, a key feature for amyloid diseases. This study aims at setting this framework problem when the experimental measurements consist in the time-dynamics of a moment of the population (i.e. for instance the total polymerised mass, as in Thioflavin T measurements, or the second moment measured by Static Light Scattering). We propose a general methodology, and we solve the problem theoretically and numerically in the case of a depolymerising system. We then apply our method to experimental data of depolymerising oligomers, and conclude that smaller aggregates of ovPrP protein should be more stable than larger ones. This has an important biological implication, since it is commonly admitted that small oligomers constitute the most cytotoxic species during prion misfolding process. PMID:26953651

  12. Magnetic moments of light nuclei from lattice quantum chromodynamics

    DOE PAGESBeta

    Beane, S.  R.; Chang, E.; Cohen, S.; Detmold, W.; Lin, H.  W.; Orginos, K.; Parreño, A.; Savage, M.  J.; Tiburzi, B.  C.

    2014-12-16

    We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to mπ ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures itsmore » dominant structure. Similarly a shell-model-like moment is found for the triton, μ3H ~ μp. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.« less

  13. Duality and Electric Dipole Moment of Magnetic Monopole

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.

    After a few personal recollections on Professor Shoichi Sakata and thetheory group of Nagoya Univiersity, the electric dipole moment of magnetic monopoles is discussed. In the N = 2 supersymmetric gauge model, the explicit calculation shows that the fraction of the fermion contribution to the moment is given by a curious number.

  14. A Classical Calculation of the Leptonic Magnetic Moment

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca

    2016-02-01

    In this paper we will show that purely classical concepts based on a few heuristic considerations about extended field configurations are enough to compute the leptonic magnetic moment with corrections in α-power perturbative expansion.

  15. The Determination of the Muon Magnetic Moment from Cosmic Rays

    ERIC Educational Resources Information Center

    Amsler, C.

    1974-01-01

    Describes an experiment suited for use in an advanced laboratory course in particle physics. The magnetic moment of cosmic ray muons which have some polarization is determined with an error of about five percent. (Author/GS)

  16. Neutrino magnetic moment effects in neutrino nucleus reactions

    SciTech Connect

    Singh, S.K.; Athar, M.S.

    1995-10-01

    Some low energy neutrino nucleus reactions induced by neutrinos (antineutrinos) having a magnetic moment of the order of 10{sup {minus}9}{minus}10{sup {minus}10} Bohr magneton are studied. It is found that in the case of {sup 4}He, {sup 12}C, and {sup 16}O, the detection of very low energy scalar and isoscalar elastic and inelastic reactions induced by the isoscalar vector currents can provide a better limit on the neutrino magnetic moment.

  17. Rabi, the proton magnetic moment, and the ¡2-wire¢ magnet, 1931-34

    NASA Astrophysics Data System (ADS)

    Forman, Paul

    2001-04-01

    With the assistance of Gregory Breit, I.I. Rabi, at Columbia University, worked out in 1931 a method to determine the spin (not the magnetic moment) of atomic nuclei by deflecting an atomic beam of the isotope in question in a weak, but long, inhomogeneous magnetic field. Crucial to this method was that it required no exact knowledge of that field. When the sensational result: p = 2.5:_Bohr(m_e/m_p) from Otto Stern's deflection of a beam of hydrogen molecules in a strong magnetic field became known late in 1932, its confirmation by another laboratory, preferably by another method, seemed urgent. No one else had the refined technique to reproduce Stern's experiment. But because the hydrogen electronic wave function was known, the Breit Rabi technique was susceptible of extension in this case to the measurement of the magnetic moment of the proton but only with accurate knowledge of the magnetic field and field gradient traversed by the atomic hydrogen beam. To this end Rabi introduced the '2 wire' magnet, producing a weak field and uniform gradient that could be calculated rather than measured. This field configuration quickly came to be used in all magnetic deflection experiments in Rabi's laboratory, first as produced directly by electric currents, and subsequently as emulated in iron electromagnets in order to achieve the higher magnetic fields required by molecular beam magnetic resonance experiments from 1937 onward.

  18. Rabi, the proton magnetic moment, and the ‘2-wire' magnet, 1931-34

    NASA Astrophysics Data System (ADS)

    Forman, Paul

    2001-04-01

    With the assistance of Gregory Breit, I.I. Rabi, at Columbia University, worked out in 1931 a method to determine the spin (not the magnetic moment) of atomic nuclei by deflecting an atomic beam of the isotope in question in a weak, but long, inhomogeneous magnetic field. Crucial to this method was that it required no exact knowledge of that field. When the sensational result -- µp = 2.5µ_Bohr(m_e/m_p) -- from Otto Stern's deflection of a beam of hydrogen molecules in a strong magnetic field became known late in 1932, its confirmation by another laboratory, preferably by another method, seemed urgent. No one else had the refined technique to reproduce Stern's experiment. But because the hydrogen electronic wave function was known, the Breit-Rabi technique was susceptible of extension in this case to the measurement of the magnetic moment of the proton - - but only with accurate knowledge of the magnetic field and field gradient traversed by the atomic hydrogen beam. To this end Rabi introduced the '2-wire' magnet, producing a weak field and uniform gradient that could be calculated rather than measured. This field configuration quickly came to be used in all magnetic deflection experiments in Rabi's laboratory, first as produced directly by electric currents, and subsequently as emulated in iron electromagnets in order to achieve the higher magnetic fields required by molecular beam magnetic resonance experiments from 1937 onward.

  19. Pinned orbital moments - A new contribution to magnetic anisotropy.

    PubMed

    Audehm, P; Schmidt, M; Brück, S; Tietze, T; Gräfe, J; Macke, S; Schütz, G; Goering, E

    2016-01-01

    Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy. PMID:27151436

  20. Pinned orbital moments – A new contribution to magnetic anisotropy

    PubMed Central

    Audehm, P.; Schmidt, M.; Brück, S.; Tietze, T.; Gräfe, J.; Macke, S.; Schütz, G.; Goering, E.

    2016-01-01

    Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy. PMID:27151436

  1. Estimating the magnetic moment of microscopic magnetic sources from their magnetic field distribution in a layer of nitrogen-vacancy (NV) centres in diamond

    NASA Astrophysics Data System (ADS)

    Smits, Janis; Berzins, Andris; Gahbauer, Florian H.; Ferber, Ruvin; Erglis, Kaspars; Cebers, Andrejs; Prikulis, Juris

    2016-02-01

    We have used a synthetic diamond with a layer of nitrogen-vacancy (NV) centres to image the magnetic field distributions of magnetic particles on the surface of the diamond. Magnetic field distributions of 4 µm and 2 µm ferromagnetic and 500 nm diameter superparamagnetic particles were obtained by measuring the position of the optically detected magnetic resonance peak in the fluorescence emitted by the NV centres for each pixel. We fitted the results to a model in order to determine the magnetic moment of the particles from the magnetic field image and compared the results to the measured magnetic moment of the particles. The best-fit magnetic moment differed from the value expected based on measurements by a vibrating sample magnetometer, which implies that further work is necessary to understand the details of magnetic field measurements on the micro scale. However, the measurements of two different types of ferromagnetic particle gave internally consistent results.

  2. Electron Paramagnetic Resonance of Single Magnetic Moment on a Surface.

    PubMed

    Berggren, P; Fransson, J

    2016-01-01

    We address electron spin resonance of single magnetic moments in a tunnel junction using time-dependent electric fields and spin-polarized current. We show that the tunneling current directly depends on the local magnetic moment and that the frequency of the external electric field mixes with the characteristic Larmor frequency of the local spin. The importance of the spin-polarized current induced anisotropy fields acting on the local spin moment is, moreover, demonstrated. Our proposed model thus explains the absence of an electron spin resonance for a half integer spin, in contrast with the strong signal observed for an integer spin. PMID:27156935

  3. Electron Paramagnetic Resonance of Single Magnetic Moment on a Surface

    PubMed Central

    Berggren, P.; Fransson, J.

    2016-01-01

    We address electron spin resonance of single magnetic moments in a tunnel junction using time-dependent electric fields and spin-polarized current. We show that the tunneling current directly depends on the local magnetic moment and that the frequency of the external electric field mixes with the characteristic Larmor frequency of the local spin. The importance of the spin-polarized current induced anisotropy fields acting on the local spin moment is, moreover, demonstrated. Our proposed model thus explains the absence of an electron spin resonance for a half integer spin, in contrast with the strong signal observed for an integer spin. PMID:27156935

  4. Quantum tunneling of the magnetic moment in the S/F/S Josephson φ0 junction

    NASA Astrophysics Data System (ADS)

    Chudnovsky, Eugene M.

    2016-04-01

    We show that the S/F/S Josephson φ0 junction permits detection of macroscopic quantum tunneling and quantum oscillation of the magnetic moment by measuring the ac voltage across the junction. Exact expression for the tunnel splitting renormalized by the interaction with the superconducting order parameter is obtained. It is demonstrated that magnetic tunneling may become frozen at a sufficiently large φ0. The quality factor of quantum oscillations of the magnetic moment due to finite ohmic resistance of the junction is computed. It is shown that magnetic tunneling rate in the φ0 junction can be controlled by the bias current, with no need for the magnetic field.

  5. Right-handed neutrino magnetic moments

    SciTech Connect

    Aparici, Alberto; Santamaria, Arcadi; Kim, Kyungwook; Wudka, Jose

    2009-07-01

    We discuss the phenomenology of the most general effective Lagrangian, up to operators of dimension five, built with standard model fields and interactions including right-handed neutrinos. In particular, we find there is a dimension five electroweak moment operator of right-handed neutrinos, not discussed previously in the literature, which could have interesting phenomenological consequences.

  6. Magnetic Moment Enhancement for Mn7 Cluster on Graphene

    SciTech Connect

    Liu, Xiaojie; Wang, Cai-Zhuang; Lin, Hai-Qing; Ho, Kai-Ming

    2014-08-21

    Mn7 cluster on graphene with different structural motifs and magnetic orders are investigated systematically by first-principles calculations. The calculations show that Mn7 on graphene prefers a two-layer motif and exhibits a ferrimagnetic coupling. The magnetic moment of the Mn7 cluster increases from 5.0 μB at its free-standing state to about 6.0 μB upon adsorption on graphene. Mn7 cluster also induces about 0.3 μB of magnetic moment in the graphene layer, leading to an overall enhancement of 1.3 μB magnetic moment for Mn7 on graphene. Detail electron transfer and bonding analysis have been carried out to investigate the origin of the magnetic enhancement.

  7. Measurement of the electric quadrupole moment of CO

    NASA Astrophysics Data System (ADS)

    Chetty, Naven; Couling, Vincent W.

    2011-04-01

    Measurements of the temperature dependence of the Buckingham effect (electric-field-gradient-induced birefringence, EFGIB) for gaseous carbon monoxide are presented. The measurements span the temperature range 301.2-473.9 K, which allows for separation of the temperature-independent hyperpolarizability contribution from the temperature-dependent quadrupole contribution. It is demonstrated that in the case of carbon monoxide, quantization of the rotational motion of the molecules needs to be considered, the analysis yielding a quadrupole moment of Θ = (-8.77 ± 0.31) × 10-40 C m2 and a hyperpolarizability term of b' = (-0.1243 ± 0.0078) × 10-60 C3 m4 J-2. For dipolar molecules, the quadrupole moment is origin dependent, and the value reported here is referred to an origin called the effective quadrupole center. Comparison of this value with the center-of-mass quadrupole moment obtained from other experiments yields information about the dynamic dipole-quadrupole and dipole-magnetic dipole polarizabilities. The temperature-independent term, which contributes (7.0 ± 0.6)% to the EFGIB at room temperature, is by no means insignificant, and must necessarily be accounted for if the quadrupole moment is to be definitively established. The measured Θ and b' are compared with the best available ab initio calculated values.

  8. Preliminary studies for anapole moment measurements in rubidium and francium

    NASA Astrophysics Data System (ADS)

    Sheng, D.; Orozco, L. A.; Gomez, E.

    2010-04-01

    Preparations for the anapole measurement in Fr indicate the possibility of performing a similar measurement in a chain of Rb. The sensitivity analysis based on a single-nucleon model shows the potential for placing strong limits on the nucleon weak interaction parameters. There are values of the magnetic fields at much lower values than previously found that are insensitive to first-order changes in the field. The anapole moment effect in Rb corresponds to an equivalent electric field that is 80 times smaller than in Fr, but the stability of the isotopes and the current performance of the dipole trap in the apparatus presented here are encouraging for pursuing the measurement.

  9. Anomalous Temperature Dependence of Magnetic Moment in Monodisperse Antiferromagnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gillaspie, Dane; Gu, B.; Wang, W.; Shen, J.

    2005-03-01

    1 Condensed Matter Sciences Division, Oak Ridge National Laboratory*, TN 37831 2 Department of Physics and Astronomy, The University of Tennessee, TN 37996 3 Environmental Sciences Division, Oak Ridge National Laboratory*, TN 37831 Recent experiments [1] and theory [2] from AFM nanoparticles showed that they exhibit sizable net magnetization, which increases with increasing temperature. In order to further understand such peculiar temperature dependence, we have measured the magnetic properties of monodisperse hematite (α-Fe2O3) nanoparticles, grown using a microemulsion precipitation technique, which minimizes the impact of the particle moment distribution on the measured properties of the samples. Our measured results indicate that the net magnetization of these nanoparticles, when small, indeed increases linearly with increasing temperature. This is in sharp contrast to the bulk-like behavior of α-Fe2O3, which was observed in particles with size larger than 120 nm. [1] M. Seehra et al, Phys. Rev. B 61, 3513 (2000) [2] S. Mørup, C. Frandsen, Phys. Rev. Lett. 92, 217201 (2004) *Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725

  10. Magnetic moments induce strong phonon renormalization in FeSi

    PubMed Central

    Krannich, S.; Sidis, Y.; Lamago, D.; Heid, R.; Mignot, J.-M.; Löhneysen, H. v.; Ivanov, A.; Steffens, P.; Keller, T.; Wang, L.; Goering, E.; Weber, F.

    2015-01-01

    The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron–phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron–phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe–Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin–phonon coupling and multiple interaction paths. PMID:26611619

  11. Magnetic moments induce strong phonon renormalization in FeSi.

    PubMed

    Krannich, S; Sidis, Y; Lamago, D; Heid, R; Mignot, J-M; Löhneysen, H v; Ivanov, A; Steffens, P; Keller, T; Wang, L; Goering, E; Weber, F

    2015-01-01

    The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron-phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe-Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin-phonon coupling and multiple interaction paths. PMID:26611619

  12. Observation of the Nuclear Magnetic Octupole Moment of 137Ba+

    NASA Astrophysics Data System (ADS)

    Hoffman, Matthew

    Single trapped ions are ideal systems in which to test atomic physics at high precision, which can in turn be used for searches for violations of fundamental symmetries and physics beyond the standard model, in addition to quantum computation and a number of other applications. The ion is confined in ultra-high vacuum, is laser cooled to mK temperatures, and kept well isolated from the environment which allows these experimental efforts. In this thesis, a few diagnostic techniques will be discussed, covering a method to measure the linewidth of a narrowband laser in the presence of magnetic field noise, as well as a procedure to measure the ion's temperature using such a narrowband laser. This work has led to two precision experiments to measure atomic structure in 138Ba+, and 137Ba+ discussed here. First, employing laser and radio frequency spectroscopy techniques in 138Ba+, we measured the Lande- gJ factor of the 5D5/2 level at the part-per-million level, the highest precision to date. Later, the development of apparatus to efficiently trap and laser cool 137Ba+ has enabled a measurement of the hyperfine splittings of the 5D3/2 manifold, culminating in the observation of the nuclear magnetic octupole moment of 137Ba+.

  13. Measurement of the electric quadrupole moment of N2O

    NASA Astrophysics Data System (ADS)

    Chetty, Naven; Couling, Vincent W.

    2011-04-01

    Measurements of the temperature dependence of the Buckingham effect (electric-field-gradient-induced birefringence, EFGIB) for gaseous nitrous oxide are presented. Measurements span the temperature range 298.5-473.9 K, which allows for separation of the temperature-independent hyperpolarizability term from the temperature-dependent quadrupole term, yielding a quadrupole moment of Θ = (-11.03 ± 0.41) × 10-40 C m2, and a hyperpolarizability term of b = (-0.638 ± 0.063) × 10-60 C3 m4 J-2. For dipolar molecules, the quadrupole moment is origin dependent, and the value reported here is referred to an origin called the effective quadrupole center (EQC). Comparison of this value with the center of mass (CM) quadrupole moment obtained from MBER experiments yields information about the dynamic dipole-quadrupole and dipole-magnetic dipole polarizabilities. The temperature-independent term, previously assumed to contribute negligibly to the EFGIB, is found to contribute some (5.2 ± 0.6)% to the effect at room temperature and clearly needs to be accounted for if the quadrupole moment is to be definitively established.

  14. Entanglement, magnetic and quadrupole moments properties of the mixed spin Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Abgaryan, V. S.; Ananikian, N. S.; Ananikyan, L. N.; Hovhannisyan, V.

    2015-02-01

    Thermal entanglement, magnetic and quadrupole moments properties of the mixed spin-1/2 and spin-1 Ising-Heisenberg model on a diamond chain are considered. Magnetization and quadrupole moment plateaus are observed for the antiferromagnetic couplings. Thermal negativity as a measure of quantum entanglement of the mixed spin system is calculated. Different behavior for the negativity is obtained for the various values of Heisenberg dipolar and quadrupole couplings. The intermediate plateau of the negativity has been observed at the absence of the single-ion anisotropy and quadrupole interaction term. When dipolar and quadrupole couplings are equal there is a similar behavior of negativity and quadrupole moment.

  15. Temperature dependence of magnetic moments of nanoparticles and their dipole interaction in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Lebedev, A. V.

    2015-01-01

    Magnetic susceptibility measurements were carried out for magnetite-based fluids over a wide temperature range. The fluids were stabilized with commonly used surfactants (fatty acids) and new surfactants (polypropylene glycol and tallow acids). The coefficients of temperature dependence of the particle magnetic moments were determined by fitting of the measured and calculated values of magnetic susceptibility. The influence of the inter-particle dipole-dipole interaction on the susceptibility was taken into account in the framework of A.O. Ivanov's model. The corrections for thermal expansion were determined by density measurements of the carrier fluid. The obtained values of temperature coefficients correlate to the solidification temperature of the fluid samples. For fluids with a low solidification temperature the value of the temperature coefficient of particle magnetization coincides with its value for bulk magnetite.

  16. Magnetic moment of {sup 43m}S

    SciTech Connect

    Daugas, J. M.; Gaudefroy, L.; Meot, V.; Morel, P.; Rosse, B.; Hass, M.; Kumar, V.; Angelique, J. C.; Simpson, G. S.; Balabanski, D. L.; Fiori, E.; Georgiev, G.; Lozeva, R.; Force, C.; Grevy, S.; Stodel, Ch.; Thomas, J. C.; Kameda, D.; Matea, I.; Singh, B. S. Nara

    2008-11-11

    The gyromagnetic factor of the isomeric state of {sup 43}S has been measured using the Time Dependent Perturbed Angular Distribution (TDPAD) technique. The isomer was produced and spin aligned via the fragmentation of a 60 AMeV {sup 48}Ca beam at the GANIL facility. The deduced magnetic moment confirms the 7/2{sup -} spin/parity of the isomeric state and shows, for the first time, the intruder nature of the ground state. Comparison of the experimental values with Shell Model and mean-field based calculations were performed revealing a pronounced ground state deformation and a quasi-spherical isomeric state. A new isomeric state has been observed in the {sup 42}P.

  17. Variational master equation approach to dynamics of magnetic moments

    NASA Astrophysics Data System (ADS)

    Bogolubov, N. N.; Soldatov, A. V.

    2016-07-01

    Non-equilibrium properties of a model system comprised of a subsystem of magnetic moments strongly coupled to a selected Bose field mode and weakly coupled to a heat bath made of a plurality of Bose field modes was studied on the basis of non-equilibrium master equation approach combined with the approximating Hamiltonian method. A variational master equation derived within this approach is tractable numerically and can be readily used to derive a set of ordinary differential equations for various relevant physical variables belonging to the subsystem of magnetic moments. Upon further analysis of the thus obtained variational master equation, an influence of the macroscopic filling of the selected Bose field mode at low enough temperatures on the relaxation dynamics of magnetic moments was revealed.

  18. Fractional impurity moments in two-dimensional noncollinear magnets.

    PubMed

    Wollny, Alexander; Fritz, Lars; Vojta, Matthias

    2011-09-23

    We study dilute magnetic impurities and vacancies in two-dimensional frustrated magnets with noncollinear order. Taking the triangular-lattice Heisenberg model as an example, we use quasiclassical methods to determine the impurity contributions to the magnetization and susceptibility. Most importantly, each impurity moment is not quantized but receives nonuniversal screening corrections due to local relief of frustration. At finite temperatures, where bulk long-range order is absent, this implies an impurity-induced magnetic response of Curie form, with a prefactor corresponding to a fractional moment per impurity. We also discuss the behavior in an applied magnetic field, where we find a singular linear-response limit for overcompensated impurities. PMID:22026900

  19. Composite Higgs models, Technicolor and the muon anomalous magnetic moment

    NASA Astrophysics Data System (ADS)

    Doff, A.; Siqueira, Clarissa

    2016-03-01

    We revisit the muon magnetic moment (g - 2) in the context of Composite Higgs models and Technicolor, and provide general analytical expressions for computing the muon magnetic moment stemming from new fields such as, neutral gauge bosons, charged gauge bosons, neutral scalar, charged scalars, and exotic charged leptons type of particles. Under general assumptions we assess which particle content could address the g -2μ excess. Moreover, we take a conservative approach and derive stringent limits on the particle masses in case the anomaly is otherwise resolved and comment on electroweak and collider bounds. Lastly, for concreteness we apply our results to a particular Technicolor model.

  20. Photoproduction of the rho meson and its magnetic moments

    SciTech Connect

    Kaneko, Hiromi; Hosaka, Atsushi; Scholten, Olaf

    2011-10-21

    We study photoproduction of {rho} meson in a model of hidden local symmetry. We introduce the {rho} meson on a hidden gauge boson and phenomenological {rho} meson-nucleon Lagrangian is constructed respecting chiral symmetry. It turns out that the {sigma}-exchange interaction plays an important role in neutral {rho} meson photoproduction to reproduce the experimental cross sections. In charged {rho} meson photoproduction, the model takes into account the {rho} meson magnetic moments from the three-point vertex in the kinetic terms. We show that the magnetic moment of the charged {rho} meson has a significant effect on the total cross sections in proportion to the photon energies.

  1. Shell structure of potassium isotopes deduced from their magnetic moments

    NASA Astrophysics Data System (ADS)

    Papuga, J.; Bissell, M. L.; Kreim, K.; Barbieri, C.; Blaum, K.; De Rydt, M.; Duguet, T.; Garcia Ruiz, R. F.; Heylen, H.; Kowalska, M.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Rajabali, M. M.; Sánchez, R.; Smirnova, N.; Somà, V.; Yordanov, D. T.

    2014-09-01

    Background: Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. Purpose: Extend our knowledge about the evolution of the 1/2+ and 3/2+ states for K isotopes beyond the N =28 shell gap. Method: High-resolution collinear laser spectroscopy on bunched atomic beams. Results: From measured hyperfine structure spectra of K isotopes, nuclear spins, and magnetic moments of the ground states were obtained for isotopes from N =19 up to N =32. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton 1d3/2 and 2s1/2 in the shell model and ab initio framework is also presented. Conclusions: The dominant component of the wave function for the odd-A isotopes up to K45 is a π1d3/2-1 hole. For K47,49, the main component originates from a π2s1/2-1 hole configuration and it inverts back to the π1d3/2-1 in K51. For all even-A isotopes, the dominant configuration arises from a π1d3/2-1 hole coupled to a neutron in the ν1f7/2 or ν2p3/2 orbitals. Only for K48, a significant amount of mixing with π2s1/2-1⊗ν(pf) is observed leading to a Iπ=1- ground state. For K50, the ground-state spin-parity is 0- with leading configuration π1d3/2-1⊗ν2p3/2-1.

  2. Magnetic moments of light nuclei from lattice quantum chromodynamics

    SciTech Connect

    Beane, S.  R.; Chang, E.; Cohen, S.; Detmold, W.; Lin, H.  W.; Orginos, K.; Parreño, A.; Savage, M.  J.; Tiburzi, B.  C.

    2014-12-16

    We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to mπ ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for the triton, μ3H ~ μp. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.

  3. Measurements of the angular dependence of the nonlinear transverse magnetic moment of YBCO as a probe of the pairing-state symmetry

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anand

    The symmetry of the superconducting order parameter reflects the symmetries in the underlying mechanism of electron pairing, such as 's-wave ' symmetry for conventional BCS superconductors with a phonon mediated pairing mechanism. The High-Tc superconductors are widely believed to be unconventional, inasmuch the conventional BCS theory fails to describe their physical properties. Amongst the proposed theories for describing these novel superconductors, the leading candidate for the pairing state symmetry is dx2-y2 or 'd-wave'. This state has a lower symmetry than the underlying Fermi surface, has nodes where the order parameter changes sign and the gap goes to zero on the Fermi surface, with a finite density of states for the lowest lying excitations. In order to study the pairing symmetry, we have developed a technique that uses the nonlinear Meissner effect in the transverse magnetic moment (NLTM) as a probe of the low energy excitations, below 1 meV. The predictions for this effect are known from exact numerical calculations based on the ideas of Yip and Sauls. In this thesis, our experiment is motivated with a brief overview of the pairing state problem. Techniques for sample preparation as also the development of various instrumentation techniques to study the angular dependence of the NLTM are described, and the results of our experiments are presented. Our data on high quality single crystals of YBa2Cu3O6.95 support a minimum gap of 0.5--0.75 meV in the quasiparticle excitation spectrum at all points on the Fermi surface. This is contrary to pure ' d-wave' symmetry, but does not rule out gap functions with deep minima or 'quasinode'.

  4. Implication of magnetic moments for the spin structure of baryons

    SciTech Connect

    Bajpai, R.P.; Choudhary, J.K.

    1980-11-01

    It is shown that the magnetic moments of baryon multiplet suggest that SU(3) is a correct symmetry scheme but that its extension to SU(6) is not justified. The new spin distribution among the different valence quarks, satisfying the SU(3) constraint, and consistent with the models of deep-inelastic scattering is obtained.

  5. Neutrino transitional magnetic moment and non-Abelian discrete symmetry

    SciTech Connect

    Chang, D. Fermi National Laboratory, P.O. Box 500, Batavia, IL ); Keung, W. Fermi National Laboratory, P.O. Box 500, Batavia, IL ); Senjanovic, G. Bartol Research Institute, University of Delaware, Newark, DE )

    1990-09-01

    We propose a mechanism which naturally will give rise to a small mass but a large transitional magnetic moment for the neutrino such that the solar-neutrino deficit problem can be explained. The idea is a discrete version of Voloshin's SU(2) mechanism. An example of such a mechanism using the quaternion group is illustrated.

  6. Object representation and magnetic moments in thin alkali films

    NASA Astrophysics Data System (ADS)

    Garrett, Douglas C.

    2008-10-01

    impurities 1/taus and their magnetic cross section sigmas are calculated. We find that single V surface impurities are magnetic while single Mo and Co impurities are non-magnetic. Co surface clusters are magnetic. In chapter 7, thin films of Na, K, Rb and Cs are quench condensed, then covered with 1/100 of a mono-layer of Ti and finally covered with the original host. The magnetization of the films is measured by means of the anomalous Hall effect. An anomalous Hall resistance RAHE is observed for Ti on the surface of K, Rb and Cs and for Ti inside of Cs. Essentially the RAHE varies linearly with the magnetic field and is inversely proportional to the inverse temperature. A small non-linearity of RAHE suggests a Ti moment of about 1microB.

  7. Development of a simulation for measuring neutron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Katayama, Ryo; Mishima, Kenji; Yamashita, Satoru; Sakurai, Dai; Kitaguchi, Masaaki; Yoshioka, Tamaki; Seki, Yoshichika

    2014-07-01

    The neutron electric dipole moment (nEDM) is sensitive to new physics beyond the standard model and could prove to be a new source of CP violation. Several experiments are being planned worldwide for its high-precision measurement. The nEDM is measured as the ultracold neutron (UCN) spin precession in a storage bottle under homogeneous electric and magnetic fields. In nEDM measurement, the systematic uncertainties are due to the motion of the UCNs, the geometry of the measurement system, and inhomogeneous electric and magnetic fields. Therefore, it is essential to quantitatively understand these effects in order to reduce them. Geant4UCN is an ideal simulation framework because it can compute the UCN trajectory, evaluate the time evolution of the spin precession due to arbitrary electric and magnetic fields, and define the storage geometry flexibly. We checked how accurately Geant4UCN can calculate the spin precession. We found that because of rounding errors, it cannot simulate it accurately enough for nEDM experiments, assuming homogeneous electric and magnetic fields with strengths of 10 kV/cm and 1 μT, respectively, and 100 s of storage. In this paper, we report on its discrepancies and describe a solution.

  8. Enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 films

    NASA Astrophysics Data System (ADS)

    Moyer, J. A.; Vaz, C. A. F.; Kumah, D. P.; Arena, D. A.; Henrich, V. E.

    2012-11-01

    The effect of film thickness on the magnetic properties of ultrathin Fe-doped cobalt ferrite (Co1-xFe2+xO4) grown on MgO (001) substrates is investigated by superconducting quantum interference device magnetometry and x-ray magnetic linear dichroism, while the distribution of the Co2+ cations between the octahedral and tetrahedral lattice sites is studied with x-ray absorption spectroscopy. For films thinner than 10 nm, there is a large enhancement of the magnetic moment; conversely, the remanent magnetization and coercive fields both decrease, while the magnetic spin axes of all the cations become less aligned with the [001] crystal direction. In particular, at 300 K the coercive fields of the thinnest films vanish. The spectroscopy data show that no changes occur in the cation distribution as a function of film thickness, ruling this out as the origin of the enhanced magnetic moment. However, the magnetic measurements all support the possibility that these ultrathin Fe-doped CoFe2O4 films are transitioning into a superparamagnetic state, as has been seen in ultrathin Fe3O4. A weakening of the magnetic interactions at the antiphase boundaries, leading to magnetically independent domains within the film, could explain the enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 and the onset of superparamagnetism at room temperature.

  9. Neutrino magnetic moment, CP violation, and flavor oscillations in matter

    NASA Astrophysics Data System (ADS)

    Pehlivan, Y.; Balantekin, A. B.; Kajino, Toshitaka

    2014-09-01

    We consider collective oscillations of neutrinos, which are emergent nonlinear flavor evolution phenomena instigated by neutrino-neutrino interactions in astrophysical environments with sufficiently high neutrino densities. We investigate the symmetries of the problem in the full three-flavor mixing scheme and in the exact many-body formulation by including the effects of CP violation and the neutrino magnetic moment. We show that, similar to the two-flavor scheme, several dynamical symmetries exist for three flavors in the single-angle approximation if the net electron background in the environment and the effects of the neutrino magnetic moment are negligible. Moreover, we show that these dynamical symmetries are present even when the CP symmetry is violated in neutrino oscillations. We explicitly write down the constants of motion through which these dynamical symmetries manifest themselves in terms of the generators of the SU(3) flavor transformations. We also show that the effects due to the CP-violating Dirac phase factor out of the many-body evolution operator and evolve independently of nonlinear flavor transformations if neutrino electromagnetic interactions are ignored. In the presence of a strong magnetic field, CP-violating effects can still be considered independently provided that an effective definition for the neutrino magnetic moment is used.

  10. Nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field

    NASA Technical Reports Server (NTRS)

    Murakami, Sadayoshi; Sato, Tetsuya; Hasegawa, Akira

    1990-01-01

    This paper investigates the dynamic behavior of the magnetic moment of a particle confined in a magnetic dipole field in the presence of a low-frequency electrostatic wave. It is shown that there exist two kinds of resonances (the bounce-E x B drift resonance and the wave-drift resonance) by which the adiabaticity of the magnetic moment is broken. The unstable conditions obtained by theoretical considerations showed good agreement with the numerical results.

  11. Study of cation magnetic moment directions in Cr (Co) doped nickel ferrites

    NASA Astrophysics Data System (ADS)

    Lang, L. L.; Xu, J.; Qi, W. H.; Li, Z. Z.; Tang, G. D.; Shang, Z. F.; Zhang, X. Y.; Wu, L. Q.; Xue, L. C.

    2014-09-01

    Powder samples of the ferrites MxNi1-xFe2O4 (M = Cr, Co and 0.0 ≤ x ≤ 0.3) were prepared using a chemical co-precipitation method. X-ray diffraction analysis showed that the two series of samples had a single-phase cubic spinel structure. It was found that the magnetic moments (μexp) per formula of samples measured at 10 K decreased when Cr substituted for Ni, but increased when Co substituted for Ni, in spite of the fact that the magnetic moments of Cr2+ (4 μB) and Co2+ (3 μB) are higher than that of Ni2+ (2 μB). With the assumption that the magnetic moments of Cr2+ and Cr3+ lie antiparallel to those of the Fe, Co, and Ni cations in the same sublattices of spinel ferrites, the dependences on the Cr (Co) doping level of the sample magnetic moments at 10 K were fitted successfully, using the quantum-mechanical potential barrier model earlier proposed by our group. For the two series of samples, the fitted magnetic moments are close to the experimental results.

  12. Half-Life and Magnetic Moment of the First Excited State in ^132I

    NASA Astrophysics Data System (ADS)

    Izumi, S.; Tanigaki, M.; Ouchi, H.; Sasaki, A.; Hoshino, S.; Miyashita, Y.; Sato, N.; Shimada, K.; Wakui, T.; Shinozuka, T.; Ohkubo, Y.

    2009-10-01

    The half-life and the magnetic moment of the first excited state in ^132I are reported. There have been a long time confusion on the half-life measurements of the first excited state in ^132I. Several groups performed the lifetime measurements, but the reported values range from 1 ns to 7 ns. The only reported value of the magnetic moment for this state was measured by Singh, but their result should be treated as unreliable because the time-integral perturbed angular correlation technique (TIPAC), which requires the life time data of this state, was used in their measurement. From this point of view, the half-life and the magnetic moment of this state were measured. ^132I was obtained as the radioactive beam of ^132Te and ^132Sb from the newly developed RF-IGISOL (Radio Frequency IGISOL system) at Tohoku University. The half-life for this state was determined to be 1.120 ± 0.015 ns by a conventional coincidence technique with a pair of BaF2 detectors. The TDPAC measurement for the ^132I implanted kinematically into nickel was performed with the help of a strong hyperfine field at iodine site in nickel, and the magnetic moment of this state was determined to be μ=+ (2.06 ± 0.18)μN. The configuration of this state based on the present results will be discussed.

  13. Magnetic moment formation at a dilute 140Ce impurity in RCo2 compounds

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. L.; Chaves, C. M.; de Oliveira, N. A.; Troper, A.

    2010-05-01

    A great deal of experimental work using perturbed angular correlation has succeed in measuring hyperfine fields in Ce diluted in metallic systems, thus allowing the determination of the local impurity moment at low temperatures. Motivated by such experimental work on C140e placed on a R site of the rare earth (R =Gd,Tb,Dy,Ho,Er) in RCo2, we theoretically discuss, within a simple model, the local magnetic moments and, thereby, calculate the magnetic hyperfine fields. The results are in good agreement with the experimental data. For the sake of comparison we recall our previous results on Ta d-impurity embedded in the same hosts.

  14. General magnetic transition dipole moments for electron paramagnetic resonance.

    PubMed

    Nehrkorn, Joscha; Schnegg, Alexander; Holldack, Karsten; Stoll, Stefan

    2015-01-01

    We present general expressions for the magnetic transition rates in electron paramagnetic resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we determine the parities of ground and excited spin states of high-spin (S=5/2) Fe(III) in hemin from the polarization dependence of experimental EPR line intensities. PMID:25615456

  15. Magnetic moments and non-Fermi-liquid behavior in quasicrystals

    NASA Astrophysics Data System (ADS)

    Andrade, Eric

    Motivated by the intrinsic non-Fermi-liquid behavior observed in the heavy-fermion quasicrystal Au51Al34Yb15, we study the low-temperature behavior of dilute magnetic impurities placed in metallic quasicrystals. We find that a large fraction of the magnetic moments are not quenched down to very low temperatures, leading to a power-law distribution of Kondo temperatures, accompanied by a non-Fermi-liquid behavior, in a remarkable similarity to the Kondo-disorder scenario found in disordered heavy-fermion metals. This work was supported by FAPESP (Brazil) Grant No. 2013/00681-8.

  16. Progress towards an electron electric dipole moment measurement with laser-cooled atoms

    NASA Astrophysics Data System (ADS)

    Solmeyer, Neal

    This dissertation recounts the progress made towards a measurement of the electron electric dipole moment. The existence of a permanent electric dipole moment of any fundamental particle would imply that both time reversal and parity invariance are violated. If an electric dipole moment were measured within current experimental limits it would be the first direct evidence for physics beyond the standard model. For our measurement we use laser-cooled alkali atoms trapped in a pair of 1D optical lattices. The lattices run through three electric field plates so that the two groups of atoms see opposing electric fields. The measurement chamber is surrounded by a four layer mu-metal magnetic shield. Under electric field quantization, the atoms are prepared in a superposition of magnetic sublevels that is sensitive to the electron electric dipole moment in Ramsey-like spectroscopy. The experiment requires very large electric fields and very small magnetic fields. Engineering a system compatible with both of these goals simultaneously is not trivial. Searches for electric dipole moments using neutral atoms in optical lattices have much longer possible interaction times and potentially give more precise information about the inherent symmetry breaking than other methods. This comes at the cost of a higher sensitivity to magnetic fields and possible sources of error associated with the trapping light. If noise and systematic errors can be controlled to our design specifications our experiment will significantly improve the current experimental limit of the electron electric dipole moment.

  17. Magnetic relaxation and correlating effective magnetic moment with particle size distribution in maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Pisane, K. L.; Despeaux, E. C.; Seehra, M. S.

    2015-06-01

    The role of particle size distribution inherently present in magnetic nanoparticles (NPs) is examined in considerable detail in relation to the measured magnetic properties of oleic acid-coated maghemite (γ-Fe2O3) NPs. Transmission electron microscopy (TEM) of the sol-gel synthesized γ-Fe2O3 NPs showed a log-normal distribution of sizes with average diameter =7.04 nm and standard deviation σ=0.78 nm. Magnetization, M, vs. temperature (2-350 K) of the NPs was measured in an applied magnetic field H up to 90 kOe along with the temperature dependence of the ac susceptibilities, χ‧ and χ″, at various frequencies, fm, from 10 Hz to 10 kHz. From the shift of the blocking temperature from TB=35 K at 10 Hz to TB=48 K at 10 kHz, the absence of any significant interparticle interaction is inferred and the relaxation frequency fo=2.6×1010 Hz and anisotropy constant Ka=5.48×105 erg/cm3 are determined. For TTB, the data of M vs. H up to 90 kOe at several temperatures are analyzed two different ways: (i) in terms of the modified Langevin function yielding an average magnetic moment per particle μp=7300(500) μB; and (ii) in terms of log-normal distribution of moments yielding <μ>=6670 μB at 150 K decreasing to <μ>=6100 μB at 300 K with standard deviations σ≃<μ>/2. It is argued that the above two approaches yield consistent and physically meaningful results as long as the width parameter, s, of the log-normal distribution is less than 0.83.

  18. Calculated magnetic moments of Nd2Fe14B

    NASA Astrophysics Data System (ADS)

    Nordström, Lars; Johansson, Börje; Brooks, M. S. S.

    1991-04-01

    A self-consistent spin-polarized band-structure calculation has been performed for the technically important permanent magnet compound Nd2Fe14B. In contrast to earlier calculations, the localized 4f states on the Nd sites are treated in a consistent way. They are not allowed to contribute to the bonding, but they produce a local exchange field, felt by the valence electrons, which is calculated from first-principles local density theory. Assuming a Russel-Saunders coupled Nd 4f moment of 3.3μB/atom, the total magnetic moment is calculated to be 38.1μB/formula unit, to be compared with the experimental value 37.1μB/formula unit [Givord, Li, and Perrier de la Bathie, Solid State Commun. 51, 857 (1984)]. The calculated local Fe moments are quite different on the different crystallographic sites, varying from 2.1μB to 2.9μB/atom.

  19. Large transition magnetic moment of the neutrino from horizontal symmetry

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; Mohapatra, Rabindra N.

    1990-12-01

    The apparent anticorrelation of the solar-neutrino signal with the 11-yr sunspot cycle observed by Davis can be understood if the electron neutrino has a large magnetic moment. We discuss extensions of the standard model, where the existence of a leptonic SU(2)H-horizontal symmetry between the electron and muon generations provides a way to understand such a large magnetic moment, while keeping the neutrino mass naturally small. A global le-lμ symmetry (li=ith lepton number) is maintained even after spontaneous gauge symmetry breaking, so that the neutrino is of Zeldovich-Konopinski-Mahmoud type with m2νe-m2νμ=0. This condition automatically guarantees that the neutrino spin precession in the magnetic field of the Sun is not suppressed. Of the two extensions of the standard model that we discuss, the first one is a local SU(2)H model with the horizontal symmetry broken completely at a TeV scale. We show how a global U(1)le-lμ can be maintained although le-lμ is a subgroup of the gauged SU(2)H. The second example is the minimal supersymmetric extension of the standard model with R-parity-violating [but (le-lμ)-conserving] interactions. An approximate SU(2)H symmetry between the e-μ families is imposed in order to suppress the neutrino mass, but not its magnetic moment. We provide a detailed theoretical and phenomenological investigation of these two models and discuss their tests at the colliders as well as in low-energy experiments. The models generally predict mνe~=1-10 eV and the existence of charged scalar particles in the mass range of 100 GeV.

  20. The Permanent and Inductive Magnetic Moments of Ganymede

    NASA Technical Reports Server (NTRS)

    Kivelson, M. G.; Khurana, K. K.; Volwerk, M.

    2002-01-01

    Data acquired by the Galileo magnetometer on five passes by Ganymede have been used to characterize Ganymede's internal magnetic moments. Three of the five passes were useful for determination of the internal moments through quadrupole order. Models representing the internal field as the sum of dipole and quadrupole terms or as the sum of a permanent dipole field upon which is superimposed an induced magnetic dipole driven by the time varying component of the externally imposed magnetic field of Jupiter's magnetosphere give equally satisfactory fits to the data. The permanent dipole moment has an equatorial field magnitude 719 nT and is tilted by 176 degrees from the spin axis with the pole in the southern hemisphere rotated by 24 degrees from the Jupiter-facing meridian plane towards the trailing hemisphere. The data are consistent with an inductive response of a good electrical conductor of radius approximately 1 Ganymede radius. Although the data do not enable us to establish the presence of an inductive response beyond doubt, we favor the inductive response model because it gives a good fit to the data using only 4 parameters to describe the internal sources of fields, whereas the equally good dipole plus quadrupole fit requires 8 parameters. An inductive response is consistent with a buried conducting shell, probably liquid water with dissolved electrolytes, somewhere in the first few hundred km below Ganymede's surface. The depth at which the ocean is buried beneath the surface is somewhat uncertain, but our favored model suggests a depth of order 150 kilometers. As both temperature and pressure increase with depth and the melting temperature of pure ice decreases to a minimum at approximately 170 kilometer depth, it seems possible that near this location, a layer of water would be sandwiched between layers of ice.

  1. Magnetic moment of the 3/2 + state in 165Ho

    NASA Astrophysics Data System (ADS)

    Tanigaki, M.; Ohkubo, Y.; Taniguchi, A.; Izumi, S.; Shinozuka, T.

    2010-06-01

    The Larmor precession for the 362 keV state in 165Ho( I π = 3/2 + , T 1/2 = 1.512 μs) in Dy2O3 with an external magnetic field of 0.3 T was determined to be - 32.3 ± 0.6 MHz by use of the perturbed angular correlation technique, intending to determine the magnetic moment and apply it to the measurement of the hyperfine field at Ho in Fe. The magnetic moment for this state was tentatively deduced under the assumption that the paramagnetic correction factor for a free Ho3 + ion is applicable to the present case. The independent A 22 measurement for the 633 - 362 keV γ cascade for the sign assignment of the Larmor frequency is inconsistent with that from known multipolarities and mixing ratios for this cascade, implying that the mixing ratios may be different from the reported values.

  2. Tau anomalous magnetic moment in γγ colliders

    NASA Astrophysics Data System (ADS)

    Peressutti, Javier; Sampayo, Oscar A.

    2012-08-01

    We investigate the possibility of setting model independent limits for a nonstandard anomalous magnetic moment aτNP of the tau lepton, in future γγ colliders based on Compton backscattering. For a hypothetical collider we find that, at various levels of confidence, the limits for aτNP could be improved, compared to previous studies based on LEP1, LEP2 and SLD data. We show the results for a realistic range of the center of mass energy of the e+e- collider. As a more direct application, we also present the results of the simulation for the photon collider at the TESLA project.

  3. Bounds on the magnetic moment of the W boson

    SciTech Connect

    Samuel, M.A.; Li, G. ); Sinha, N.; Sinha, R.; Sundaresan, M.K. )

    1991-07-01

    Using the preliminary results for {ital p{bar p}}{r arrow}{ital W}{gamma}{ital X} from the Collider Detector at Fermilab, we obtain information on the magnetic moment of the {ital W} boson. At 90% C.L. we find the bound {minus}9.9{le}{kappa}{le}12.3, which is consistent with the standard model value {kappa}=1. We also consider the radiative decay {ital W}{r arrow}{ital e}{nu}{gamma}.

  4. A planar triangular Dy3 + Dy3 single-molecule magnet with a toroidal magnetic moment.

    PubMed

    Li, Xiao-Lei; Wu, Jianfeng; Tang, Jinkui; Le Guennic, Boris; Shi, Wei; Cheng, Peng

    2016-07-21

    A unique Dy6 complex with a planar Dy3 + Dy3 structure was assembled by delicately modifying the axial ligands. Single-molecule magnet behavior and meanwhile a toroidal magnetic moment in the ground state have been observed. PMID:27388113

  5. Measuring the Electron Electric Dipole Moment Using Ytterbium Fluoride Molecules

    NASA Astrophysics Data System (ADS)

    Smallman, I. J.; Devlin, J. A.; Kara, D. M.; Hudson, J. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.

    2013-06-01

    It is well known that the existence of an electron electric dipole moment (eEDM) would violate time reversal symmetry. The Standard Model predicts an eEDM less than 10^{-38}e.cm, however many popular extensions predict values in the range 10^{-29}-10^{-24}e.cm. Our experiment currently has the potential to measure eEDMs down to approximately 10^{-29}e.cm, making it a precise probe for T-violation and physics beyond the Standard Model. We measure the eEDM by performing a type of separated oscillating field interferometry on a pulsed beam of YbF. The molecules are prepared such that the molecular spin is oriented perpendicular to an applied strong (10kV/cm) electric field. The spin is then allowed to precess about the electric field axis over a 0.5ms interaction period. We measure this angle of rotation, which is directly proportional to the eEDM. In order to measure the eEDM precisely and without error we use a complex switching technique wherein certain parameters, including the applied electric and magnetic fields, are reversed between individual molecular pulses. I will present our current technique and our most recent world leading result.

  6. The structures and magnetic moments of Co-C clusters.

    PubMed

    Ma, Qing-Min; Liu, Ying; Xie, Zun; Wang, Jing

    2010-08-01

    The geometries, binding energies, and magnetic moments of small CoC(N) (N = 1-8) and CO2C(N) (N = 1-6) clusters are studied systematically using all-electron density functional theory (DFT) with the generalized gradient approximation (GGA). The results indicate that, for the CoC(N) (N = 1-8) and Co2C(N) (N = 1-6) clusters, the lowest-energy structures are predicted to be linear structures except for CoC2 and CoC7. The ground states of the CoC(N) (N = 1-8) clusters are linear geometries (C(v)) with Co atom at one end. The ground states of the Co2C(N) (N = 1-6) clusters are linear geometries (D(h)) with the two Co atoms located at the two ends. For all the clusters, analysis of the Mülliken population shows that charge transfers from the Co atom(s) to the C atoms. The magnetic moment lies primarily on the Co atom(s). PMID:21125925

  7. Magnetic moments of octet baryons, angular momenta of quarks, and sea antiquark polarizations

    SciTech Connect

    Bartelski, Jan; Tatur, Stanislaw

    2010-03-01

    One can determine antiquark polarizations in a proton using the information from deep inelastic scattering, {beta} decays of baryons, orbital angular momenta of quarks, as well as their integrated magnetic distributions. The last quantities were determined previously by us performing a fit to magnetic moments of a baryon octet. However, because of the SU(3) symmetry our results depend on two parameters. The quantity {Gamma}{sub V}, measured recently in a COMPASS experiment, gives the relation between these parameters. We can fix the last unknown parameter using the ratio of up and down quark magnetic moments which one can get from the fit to radiative vector meson decays. We calculate antiquark polarizations with the orbital momenta of valence quarks that follow from lattice calculations. The value of the difference of up and down antiquark polarizations obtained in our calculations is consistent with the result obtained in a HERMES experiment.

  8. Magnetic structure of Yb2Pt2Pb: Ising moments on the Shastry-Sutherland lattice

    DOE PAGESBeta

    Miiller, W.; Zaliznyak, I.; Wu, L. S.; Kim, M. S.; Orvis, T.; Simonson, J. W.; Gamza, M.; McNally, D. M.; Nelson, C. S.; Ehlers, G.; et al

    2016-03-22

    Neutron diffraction measurements were carried out on single crystals and powders of Yb2Pt2Pb, where Yb moments form two interpenetrating planar sublattices of orthogonal dimers, a geometry known as Shastry-Sutherland lattice, and are stacked along the c axis in a ladder geometry. Yb2Pt2Pb orders antiferromagnetically at TN=2.07K, and the magnetic structure determined from these measurements features the interleaving of two orthogonal sublattices into a 5×5×1 magnetic supercell that is based on stripes with moments perpendicular to the dimer bonds, which are along (110) and (–110). Magnetic fields applied along (110) or (–110) suppress the antiferromagnetic peaks from an individual sublattice, butmore » leave the orthogonal sublattice unaffected, evidence for the Ising character of the Yb moments in Yb2Pt2Pb that is supported by point charge calculations. Furthermore, specific heat, magnetic susceptibility, and electrical resistivity measurements concur with neutron elastic scattering results that the longitudinal critical fluctuations are gapped with ΔE≃0.07meV.« less

  9. Measurement of an atomic quadrupole moment using dynamic decoupling

    NASA Astrophysics Data System (ADS)

    Akerman, Nitzan; Shaniv, Ravid; Ozeri, Roee

    2016-05-01

    Some of the best clocks today are ion-based optical clocks. These clocks are referenced to a narrow optical transition in a trapped ion. An example for such a narrow transition is the electric quadrupole E 2 transition between states with identical parity. An important systematic shift of such a transition is the quadrupole shift resulting from the electric field gradient inherent to the ion trap. We present a new dynamic decoupling method that rejects magnetic field noise while measuring the small quadrupole shift of the optical clock transition. Using our sequence we measured the quadrupole moment of the 4D5/2 level in a trapped 88 Sr+ ion to be 2 .973-0 . 033 + 0 . 026 ea02 , where e is the electron charge and a0 is the Bohr radius. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in 88 Sr+ based optical atomic clocks and verifies complicated many-body quantum calculations.

  10. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE PAGESBeta

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  11. Nuclear Magnetic Moment of {sup 210}Fr: A Combined Theoretical and Experimental Approach

    SciTech Connect

    Gomez, E.; Aubin, S.; Sprouse, G. D.; Orozco, L. A.; Iskrenova-Tchoukova, E.; Safronova, M. S.

    2008-05-02

    We measure the hyperfine splitting of the 9S{sub 1/2} level of {sup 210}Fr, and find a magnetic dipole hyperfine constant A=622.25(36) MHz. The theoretical value, obtained using the relativistic all-order method from the electronic wave function at the nucleus, allows us to extract a nuclear magnetic moment of 4.38(5){mu}{sub N} for this isotope, which represents a factor of 2 improvement in precision over previous measurements. The same method can be applied to other rare isotopes and elements.

  12. High sensitivity detection of radio-frequency modulated magnetic moment in semiconductors.

    PubMed

    Guite, Chinkhanlun; Venkataraman, V

    2011-10-01

    An experimental setup has been realized to measure weak magnetic moments which can be modulated at radio frequencies (~1-5 MHz). Using an optimized radio-frequency (RF) pickup coil and lock-in amplifier, an experimental sensitivity of 10(-15) Am(2) corresponding to 10(-18) emu has been demonstrated with a 1 s time constant. The detection limit at room temperature is 9.3 × 10(-16) Am(2)/√Hz limited by Johnson noise of the coil. The setup has been used to directly measure the magnetic moment due to a small number (~7 × 10(8)) of spin polarized electrons generated by polarization modulated optical radiation in GaAs and Ge. PMID:22047310

  13. Instrument for measuring moment of inertia with high precision

    NASA Astrophysics Data System (ADS)

    Zheng, Yongjun; Lin, Min; Guo, Bin

    2010-08-01

    Accurate calculation of the moment of inertia of an irregular body is made difficult by the large number of quantities. A popular method is to use a trifilar suspension system to measure the period of oscillation of the body in the horizontal plane. In this paper, an instrument for measuring the moment of inertia based on trifilar pendulum is designed; some sources of error are discussed; three metal disks with known moments of inertia are used to calibrate the instrument, the other metal disks with known moments of inertia are used to test the accuracy of the instrument. The results are consistent when compared with calculated moment of inertia of the metal disks. In addition, the instrument could be used to measure the moment of inertia of other irregular objects. The period of oscillation is acquired by the capture mode of MSP430 microprocessor, the mass is obtained by the Electronic Balance and the data is transferred to the MSP430 via serial port.

  14. Magnetic dipole moments of {sup 57,58,59}Cu

    SciTech Connect

    Cocolios, T. E.; Andreyev, A. N.; Bastin, B.; Bree, N.; Buescher, J.; Elseviers, J.; Gentens, J.; Huyse, M.; Kudryavtsev, Yu.; Pauwels, D.; Bergh, P. Van den; Van Duppen, P.; Sonoda, T.

    2010-01-15

    In-gas-cell laser spectroscopy of the isotopes {sup 57,58,59,63,65}Cu has been performed at the LISOL facility using the 244.164-nm optical transition from the atomic ground state of copper. A detailed discussion on the hyperfine structure of {sup 63}Cu is presented. The magnetic dipole moments of the isotopes {sup 57,58,59,65}Cu are extracted based on that of {sup 63}Cu. The new value mu=+0.479(13)mu{sub N} is proposed for {sup 58}Cu, consistent with that of a pip{sub 3/2} x nup{sub 3/2} ground-state configuration. Spin assignments for the radioactive isotopes {sup 57,58,59}Cu are confirmed. The isotope shifts between the different isotopes are also given and discussed.

  15. Decoherence-governed magnetic-moment dynamics of supported atomic objects

    NASA Astrophysics Data System (ADS)

    Gauyacq, Jean-Pierre; Lorente, Nicolás

    2015-11-01

    Due to the quantum evolution of molecular magnetic moments, the magnetic state of nanomagnets can suffer spontaneous changes. This process can be completely quenched by environment-induced decoherence. However, we show that for typical small supported atomic objects, the substrate-induced decoherence does change the magnetic-moment evolution but does not quell it. To be specific and to compare with experiment, we analyze the spontaneous switching between two equivalent magnetization states of atomic structures formed by Fe on Cu2N/Cu (1 0 0), measured by Loth et al (2012 Science 335 196-9). Due to the substrate-induced decoherence, the Rabi oscillations proper to quantum tunneling between magnetic states are replaced by an irreversible decay of long characteristic times leading to the observed stochastic magnetization switching. We show that the corresponding switching rates are small, rapidly decreasing with system’s size, with a 1/T thermal behavior and in good agreement with experiments. Quantum tunneling is recovered as the switching mechanism at extremely low temperatures below the μK range for a six-Fe-atom system and exponentially lower for larger atomic systems. The unexpected conclusion of this work is that experiments could detect the switching of these supported atomic systems because their magnetization evolution is somewhere between complete decoherence-induced stability and unobservably fast quantum-tunneling switching.

  16. Decoherence-governed magnetic-moment dynamics of supported atomic objects.

    PubMed

    Gauyacq, Jean-Pierre; Lorente, Nicolás

    2015-11-18

    Due to the quantum evolution of molecular magnetic moments, the magnetic state of nanomagnets can suffer spontaneous changes. This process can be completely quenched by environment-induced decoherence. However, we show that for typical small supported atomic objects, the substrate-induced decoherence does change the magnetic-moment evolution but does not quell it. To be specific and to compare with experiment, we analyze the spontaneous switching between two equivalent magnetization states of atomic structures formed by Fe on Cu2N/Cu (1 0 0), measured by Loth et al (2012 Science 335 196-9). Due to the substrate-induced decoherence, the Rabi oscillations proper to quantum tunneling between magnetic states are replaced by an irreversible decay of long characteristic times leading to the observed stochastic magnetization switching. We show that the corresponding switching rates are small, rapidly decreasing with system's size, with a 1/T thermal behavior and in good agreement with experiments. Quantum tunneling is recovered as the switching mechanism at extremely low temperatures below the μK range for a six-Fe-atom system and exponentially lower for larger atomic systems. The unexpected conclusion of this work is that experiments could detect the switching of these supported atomic systems because their magnetization evolution is somewhere between complete decoherence-induced stability and unobservably fast quantum-tunneling switching. PMID:26471260

  17. Measurements of DSD Second Moment Based on Laser Extinction

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Jones, Linwood; Kasparis, Takis C.; Metzger, Philip

    2013-01-01

    Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through rain (or dust in the rocket case) yields an estimate of the 2nd moment of the particle cloud, and rainfall drop size distribution (DSD) in the terrestrial meteorological case. With the exception of disdrometers, instruments that measure rainfall make in direct measurements of the DSD. Most common of these instruments are the rainfall rate gauge measuring the 1 1/3 th moment, (when using a D(exp 2/3) dependency on terminal velocity). Instruments that scatter microwaves off of hydrometeors, such as the WSR-880, vertical wind profilers, and microwave disdrometers, measure the 6th moment of the DSD. By projecting a laser onto a target, changes in brightness of the laser spot against the target background during rain, yield a measurement of the DSD 2nd moment, using the Beer-Lambert law. In order to detect the laser attenuation within the 8-bit resolution of most camera image arrays, a minimum path length is required, depending on the intensity of the rainfall rate. For moderate to heavy rainfall, a laser path length of 100 m is sufficient to measure variations in optical extinction using a digital camera. A photo-detector could replace the camera, for automated installations. In order to spatially correlate the 2nd moment measurements to a collocated disdrometer or tipping bucket, the laser's beam path can be reflected multiple times using mirrors to restrict the spatial extent of the measurement. In cases where a disdrometer is not available, complete DSD estimates can be produced by parametric fitting of DSD model to the 2nd moment data in conjunction with tipping bucket data. In cases where a disdrometer is collocated, the laser extinction technique may yield a significant improvement to insitu disdrometer validation and calibration strategies

  18. Analyzing power in pion-proton bremsstrahlung, and the. Delta. sup ++ (1232) magnetic moment

    SciTech Connect

    Bosshard, A.; Amsler, C.; Doebeli, M.; Doser, M.; Schaad, M.; Riedlberger, J.; Truoel, P. ); Bistirlich, J.A.; Crowe, K.M.; Ljungfelt, S.; Meyer, C.A. ); van den Brandt, B.; Konter, J.A.; Mango, S.; Renker, D. ); Loude, J.F.; Perroud, J.P. ); Haddock, R.P. ); Sober, D.I. )

    1991-10-01

    We report on a first measurement of the polarized-target asymmetry of the pion-proton bremsstrahlung cross section ({pi}{sup +}{ital p}{r arrow}{pi}{sup {minus}}{ital p}{gamma}). As in previous cross section measurements the pion energy (298 MeV) and the detector geometry for this experiment was chosen to optimize the sensitivity to the radiation from the magnetic dipole moment of the {Delta}{sup ++}(1232) resonance {mu}{sub {Delta}}. Comparison to a recent isobar model for pion-nucleon bremsstrahlung yields {mu}{sub {Delta}}=(1.62{plus minus}0.18){mu}{sub {ital p}}, where {mu}{sub {ital p}} is the proton magnetic moment. Since the asymmetry depends less than the cross section on the choice of the other input parameters for the model, their uncertainties affect this analysis by less than the experimental error. However the theory fails to represent both the cross section and the asymmetry data at the highest photon energies. Hence further improvements in the calculations are needed before the model dependence of the magnetic moment analysis can be fully assessed. The present result agrees with bag-model corrections to the SU(6) prediction {mu}{sub {Delta}}=2{mu}{sub {ital p}}. As a by-product, the analyzing power for elastic {pi}{sup +}{ital p} scattering at 415 MeV/{ital c} was also measured. This second result is in good agreement with phase shift calculations.

  19. Probing the Pu4 + magnetic moment in PuF4 with 19F NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Capan, Cigdem; Dempsey, Richard J.; Sinkov, Sergey; McNamara, Bruce K.; Cho, Herman

    2016-06-01

    The magnetic fields produced by Pu4 + centers have been measured by 19F NMR spectroscopy to elucidate the Pu-F electronic interactions in polycrystalline PuF4. Spectra acquired at applied fields of 2.35 and 7.05 T reveal a linear scaling of the 19F line shape. A model is presented that treats the line broadening and shifts as due to dipolar fields produced by Pu valence electrons in localized noninteracting orbitals. Alternative explanations for the observed line shape involving covalent Pu-F bonding, superexchange interactions, and electronic configurations with enhanced magnetic moments are considered.

  20. Pion-proton bremsstrahlung calculation and the ``experimental'' magnetic moment of Δ++(1232)

    NASA Astrophysics Data System (ADS)

    Lin, Dahang; Liou, M. K.; Ding, Z. M.

    1991-11-01

    A bremsstrahlung amplitude in the special two-energy-two-angle (TETAS) approximation, which is relativistic, gauge invariant, and consistent with the soft-photon theorem, is derived for the pion-proton bremsstrahlung (π+pγ) process near the Δ++(1232) resonance. In order to take into account bremsstrahlung emission from an internal Δ++ line with both charge and the anomalous magnetic moment λΔ, we have applied a radiation decomposition identity to modify Low's standard prescription for constructing a soft-photon amplitude. This modified procedure is very general; it can be used to derive the TETAS amplitude for any bremsstrahlung process with resonance. The derived TETAS amplitude is applied to calculate all π+pγ cross sections which can be compared with the experimental data. Treating λΔ as a free parameter in these calculations, we extract the ``experimental'' magnetic moment of the Δ++, μΔ, from recent data. The extracted values of μΔ are (3.7-4.2)e/(2mp) from the University of California, Los Angeles data and (4.6-4.9)e/(2mp) from the Paul Scherrer Institute data. Here, mp is the proton mass. These values are smaller than the value 5.58e/(2mp), the ``bare'' magnetic moment predicted by the SU(6) model or the quark model, but they are close to the value 4.25e/(2mp) predicted by the modified SU(6) model of Beg and Pais and to the value (4.41-4.89)e/(2mp) predicted by the corrected bag-model of Brown, Rho, and Vento. Using the extracted μΔ as an input for calculating π+pγ cross sections, we show that the overall agreement between the theoretical predictions calculated with the extracted μΔ and the experimental measurements is excellent. This agreement demonstrates that the TETAS amplitude can be used to describe almost all the available π+pγ data. Finally, we also treat λΔ as a complex quantity, λΔ=λR+iλI, in order to estimate the contribution from the imaginary part λI. The best fit to the data gives λI~=0, independent of the choice

  1. W radiative decays and the determination of magnetic dipole and electric quadrupole moments of the W

    SciTech Connect

    Samuel, M.A. ); Sinha, N.; Sinha, R.; Sundaresan, M.K. )

    1991-10-01

    The magnetic dipole moment of the {ital W} boson is given by {mu}={ital e}(1+{kappa}+{lambda})/2{ital M}{sub {ital W}} and its electric quadrupole moment is given by {ital Q}={minus}{ital e}({kappa}{minus}{lambda})/{ital M}{sub {ital W}}{sup 2}. A nonstandard magnetic dipole moment and a nonstandard electric quadrupole moment lead to different differential decay distributions in the radiative decays of {ital W}{sup {plus minus}}, {ital W}{sup {minus}}{r arrow}{ital e}{bar {nu}}{gamma} and {ital W}{sup {minus}}{r arrow}{ital d{bar u}}{gamma}. While hard photons are characteristic signatures of {kappa}{ne}1 there is no such explicit signal for {lambda}{ne}0. We present a technique for the determination of the values of {kappa} and {lambda} by measuring the total number of events in two regions of phase space. This experiment could be done at the CERN {ital e}{sup +}{ital e{minus}} collider LEP II, where a clean source of {ital W} bosons will be available.

  2. Possible Itinerant Moment Contributions to the Magnetic Excitations in Gd, Studied by Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Granroth, G. E.; Aczel, A. A.; Fernandez-Baca, J. A.; Nagler, S. E.

    2013-03-01

    Many experimental features in magnetic superconductors are also present when these complex materials are in the normal state. Therefore studies of simpler itinerant magnets may help provide understanding of these phenomena. We chose to study Gd as it is has an ~ 0 . 6μB itinerant moment in addition to a ~ 7 . 0μB localized moment. The SEQUOIA spectrometer, at the Spallation Neutron Source at Oak Ridge National Laboratory, was used in fine resolution mode with Ei=50 meV neutrons, to measure the magnetic excitations in a 12 gm 160Gd single crystal. The crystal was mounted with the h 0 l plane horizontal and rotated around the vertical axis to map out the excitations. The measured magnetic structure factor for the acoustic modes in the hh 0 direction has an intensity step at h ~ 0 . 3 . Electronic band structure calculations (W. M. Temmerman and P. A. Sterne, J. Phys: Condes. Matter,2, 5529 (1990)) show this Q position to be near several band crossings of the Fermi surface. A detailed analysis, including instrumental resolution, is presented to clarify any relationship between the magnetic structure factor and the electronic band structure. This work was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  3. Progress on the measurement of the francium anapole moment

    NASA Astrophysics Data System (ADS)

    Sheng, Dong; Hood, Jonathan; Lynam, Steven; Orozco, Luis; Gomez, Eduardo; Aubin, Seth; Gwinner, Gerald; Behr, John; Pearson, Matthew; Jackson, Peter; Melconian, Dan; Flambaum, Victor; Sprouse, Gene

    2010-03-01

    We present the current status of the experimental effort towards the measurement of the anapole moment in francium. The anapole is a parity violating, time-reversal conserving nuclear moment that arises from the weak interaction among nucleons. The anapole moment is nuclear spin dependent (nsd) and sensitive to the configuration of nuclear structure. Our experimental scheme is to perform a direct measurement of the nsd parity violation, by driving a parity forbidden E1 transition between hyperfine ground states in a series of francium isotopes inside a blue detuned dipole trap at the electric anti-node of a microwave cavity. We explore theoretical aspects and experimental requirements on the possible tests using rubidium isotopes. The experiment will be at the ISAC radioactive beam facility of TRIUMF. Work supported by NSF and DOE USA, NSERC and NRC Canada, CONACYT Mexico.

  4. New Experiment to Measure the Electron Electric Dipole Moment

    NASA Technical Reports Server (NTRS)

    Kittle, Melanie

    2003-01-01

    An electron can possess an electric dipole moment (edm) only if time reversal symmetry (T) is violated. No edm of any particle has yet been discovered. CP-violation, equivalent to T-violation by the CPT theorem, does occur in Kaon decays and can be accounted for by the standard model. However, this mechanism leads to an electron edm d(sub e) of the order of 10(exp -38) e cm, whereas the current experimental bound on d(sub e) is about 10(exp -27) e cm. However, well-motivated extensions of the standard model such as supersymmetric theories do predict that de could be as large as the current bound. In addition, CP violation in the early universe is required to explain the preponderance of matter over anti-matter, but the exact mechanism of this CP violation is unclear. For these reasons, we are undertaking a new experimental program to determine de to an improved accuracy of 10(exp -29) e cm. Our experiment will use laser-cooled, trapped Cesium atoms to measure the atomic edm d(sub Cs) that occurs if d(sub e) is not zero. In order to do this, we will measure the energy splitting between the atoms spin states in parallel electric and magnetic fields. The signature of an edm would be a linear dependence of the splitting on the electric field E due to the interaction - d(sub Cs) dot E. Our measurement will be much more sensitive than previous measurements because atoms can be stored in the trap for tens of seconds, allowing for much narrower Zeeman resonance linewidths. Also, our method eliminates the most important systematic errors, proportional to atomic velocity, which have limited previous experiments. In this presentation, we will describe the design of our new apparatus, which is presently under construction. An important feature of our experimental apparatus is that magnetic field noise will be suppressed to a very low value of the order of 1 fT/(Hz)1/2. This requires careful attention to the Johnson noise currents in the chamber, which have not been important

  5. Magnetic moment of the 4/sub 1//sup +/ state in /sup 20/Ne

    SciTech Connect

    Bright, T.; Ballon, D.; Saxena, R.J.; Niv, Y.; Benczer-Koller, a.N.

    1984-08-01

    The magnetic moment of the 4/sub 1//sup +/ state in /sup 20/Ne was measured by the transient field technique, and the transient field was calibrated in a simultaneous measurement on the 2/sub 1//sup +/ state. The resulting g(4/sub 1//sup +/) = 0.49 +- 0.34 is in agreement with the shell model description of /sup 20/Ne. The magnitude of the transient field measured in previous experiments on O, Ne, and Mg ions traversing iron foils was reexamined and appears to be in good agreement with the results of this experiment.

  6. The MOMENT Magnetic-Mapping Mission: A Nanosatellite for the Scientific Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Eagleson, S.; Mauthe, S.; Sarda, K.; Spencer, H.; Zee, R. E.; Arkani-Hammed, J.

    2008-08-01

    MOMENT (Magnetic Observations of Mars Enabled by Nanosatellite Technology) is a nanosatellite that will obtain high-resolution maps of remnant magnetic fields present in the southern highlands of Mars. A European-developed magnetometer accurate to bet- ter than 0.5 nT and employed in a highly elliptical orbit with a relatively low, 100 km night-side, periapsis will provide much greater spatial resolution and delineation of local magnetic anomalies than is available from the initial surveys performed by Mars Global Surveyor (MGS). During the aerobraking phase of the MGS mission, low-altitude measurements were corrupted by solar wind because they were acquired under sunlit conditions where solar winds interacted with the crustal magnetic fields. During the mapping phase of the mission, spatial resolution was limited to about 400 km. Both of these issues will be overcome by MOMENT's low-altitude, night-side, observing strategy. The resulting magnetic-field maps, for the key areas of interest, will allow detailed studies of regional tectonics and the history of the planet's now- inactive core dynamo. MOMENT's design is based on the Space Flight Laboratory's Generic Nanosatellite Bus (GNB), which is also being developed for the BRITE space-astronomy and CanX-4&5 formation- flight missions. Nominally a 30 x 30 x 30 cm cube on the order of 10 kg mass, MOMENT uses as much GNB technology as possible to provide a rapid and cost-effective mission. The implementation of the mission requires payload space on a larger carrier spacecraft and the use of existing and future Martian communication relays for the transfer of information to and from Earth, necessitating a high level of international co-operation. MOMENT is otherwise fully independent and autonomous, even during scientific operations. This paper describes the conceptual (Canadian Space Agency funded) MOMENT mission and presents a strong case for the use of nanosatellite technology as a relatively simple and cost

  7. Leptophilic dark matter and the anomalous magnetic moment of the muon

    DOE PAGESBeta

    Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.

    2014-08-26

    We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between themore » standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.« less

  8. Leptophilic dark matter and the anomalous magnetic moment of the muon

    SciTech Connect

    Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.

    2014-08-26

    We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between the standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.

  9. Forced and Moment Measurements with Pressure-Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Bell, James H.

    1999-01-01

    The potential of pressure-sensitive paint (PSP) to provide aerodynamic loads measurements has been a driving force behind the development of this measurement technique. To demonstrate the suitability of PSP for this purpose, it is necessary to show that PSP-derived pressures can be accurately integrated over the model surface. This cannot be done simply by demonstrating the accuracy of PSP as compared to pressure taps. PSP errors due to misregistration or temperature sensitivity may be high near model edges, where they will have a strong effect on moment measurements, but where pressure taps are rarely installed. A more suitable technique is to compare integrated PSP data over the entire model surface with balance and/or CFD results. This paper presents results from three experiments in which integrated PSP data is compared with balance and/or CFD data. This allows the usefulness of PSP for force and moment measurements, and by implication for loads measurements, to be assessed.

  10. Experimental determination of the magnetic dipole moment of candidate magnetoreceptor cells in trout

    NASA Astrophysics Data System (ADS)

    Winklhofer, M.; Eder, S.; Cadioiu, H.; McNaughton, P. A.; Kirschvink, J. L.

    2011-12-01

    Based on histological, physiological, and physical evidence, Walker et al (1997) and Diebel et al (2000) have identified distinctive cells in the olfactory epithelium of the rainbow trout (Onchorynchus mykiss) that contain magnetite and are closely associated with neurons that respond to changes in magnetic field. To put biophysical constraints on the possible transduction mechanism of magnetic signals, and in particular, to find out if the intracellular magnet is free to rotate or rather firmly anchored within the cell body, we have studied the magneto-mechanical response of isolated candidate receptor cells in suspension using a light microscope equipped with two pairs of Helmholtz coils. From the characteristic re-orientation time of suspended cells after a change in magnetic field direction, we have determined the magnitude of the magnetic dipole moment of the cells in function of the external field strength (0.4 mT to 3.2 mT) in order to find out whether or not the natural magnetic moment is remanence-based or induced (i.e., single-domain vs. superparamagnetic/multi-domain). Results: 1) The mechanical response of isolated cells to a change in magnetic field direction was always immediate, irrespective of the direction of change, which implies that the intracellular magnet is not free to rotate in the cell, but rather rigidly attached, probably to the plasma membrane, which is also suggested by our confocal fluorescence-microscope studies. 2) The cellular dipole moment turned out to be independent of the external field strength. Thus, the natural magnetic dipole moment is based on magnetic remanence, which points to single-domain particles and corroborates the results by Diebel et al (2000), who obtained switching fields consistent with single-domain magnetite. 3). The magnetic dipole moment is found to be of the order of several tens of fAm2, which greatly exceeds previous estimates (0.5 fAm2), and thus is similar to values reported for the most strongly

  11. NiPt/Rh(111): A stable surface alloy with enhanced magnetic moments

    NASA Astrophysics Data System (ADS)

    Imam, Mighfar; Marathe, Madhura; Narasimhan, Shobhana

    2009-04-01

    We have performed ab initio density functional theory calculations to investigate the miscibility and magnetic properties of pseudomorphically grown monolayers of Ni xPt 1- x surface alloys on a Rh(111) substrate. We find that the formation of this alloy is energetically favored over phase-segregated forms, and its magnetic moment is also enhanced. A significant contribution to this enhanced magnetic moment is found to come from the induced moments on the otherwise non-magnetic elements Pt and Rh. A low concentration of Ni gives rise to a high magnetic moment per Ni atom. We find that a low effective coordination and a high non-spin-polarized density of states at the Fermi level are responsible for these enhanced moments.

  12. Determination of the Magnetic Structure of Yb3Pt4:a k=0 Local-moment Antiferromagnet

    SciTech Connect

    Janssen, T.; Kim, M.S.; Park, K.S.; Wu, L.; Marques, C.; Bennett, M.C.; Chen, Y.; Li, J.; Huang, Q.; Lynn, J.W.; Aronson, M.C.

    2010-02-01

    We have used neutron-diffraction measurements to study the zero-field magnetic structure of the intermetallic compound Yb{sub 3}Pt{sub 4}, which was earlier found to order antiferromagnetically at the Neel temperature T{sub N} = 2.4 K, and displays a field-driven quantum-critical point at 1.6 T. In Yb{sub 3}Pt{sub 4}, the Yb moments sit on a single low-symmetry site in the rhombohedral lattice with space group R{bar 3}. The Yb ions form octahedra with edges that are twisted with respect to the hexagonal unit cell, a twisting that results in every Yb ion having exactly one Yb nearest neighbor. Below T{sub N}, we found new diffracted intensity due to a k=0 magnetic structure. This magnetic structure was compared to all symmetry-allowed magnetic structures and was subsequently refined. The best-fitting magnetic-structure model is antiferromagnetic and involves pairs of Yb nearest neighbors on which the moments point almost exactly toward each other. This structure has moment components within the ab plane as well as parallel to the c axis although the easy magnetization direction lies in the ab plane. Our magnetization results suggest that besides the crystal-electric-field anisotropy, anisotropic exchange favoring alignment along the c axis is responsible for the overall direction of the ordered moments. The magnitude of the ordered Yb moments in Yb{sub 3}Pt{sub 4} is 0.81 {mu}{sub B}/Yb at 1.4 K. The analysis of the bulk properties, the size of the ordered moment, and the observation of well-defined crystal-field levels argue that the Yb moments are spatially localized in zero field.

  13. Cavity-mediated coherent coupling of magnetic moments

    NASA Astrophysics Data System (ADS)

    Lambert, N. J.; Haigh, J. A.; Langenfeld, S.; Doherty, A. C.; Ferguson, A. J.

    2016-02-01

    We demonstrate the long-range strong coupling of magnetostatic modes in spatially separated ferromagnets mediated by a microwave frequency cavity. Two spheres of yttrium iron garnet are embedded in the cavity and their magnetostatic modes probed using a dispersive measurement technique. We find they are strongly coupled to each other even when detuned from the cavity modes, and investigate the dependence of the magnet-magnet coupling on the cavity detuning. Dark states of the coupled magnetostatic modes of the system are observed, and ascribed to mismatches between the symmetries of the modes and the drive field.

  14. Anomalous magnetic moments in Co/Nb multilayers

    NASA Astrophysics Data System (ADS)

    Chuang, T. M.; Lee, S. F.; Huang, S. Y.; Yao, Y. D.; Cheng, W. C.; Huang, G. R.

    2002-02-01

    Response of Co/Nb multilayers to external field near the superconducting transition temperature ( TC) was studied. The average moment of Co was suppressed with decreasing Co thickness. At 10 K, for Co thickness larger than 0.5 nm, the multilayers showed hysteresis and ferromagnetism. Some samples showed anomalous field-cooled paramagnetic moments, similar to Paramagnetic Meissner Effect (PME). This is attributed not to the Co moment but to the suppressed surface TC causing PME.

  15. Cumulants and the moment algebra: Tools for analyzing weak measurements

    SciTech Connect

    Aaberg, Johan; Mitchison, Graeme

    2009-04-15

    Recently it has been shown that cumulants significantly simplify the analysis of multipartite weak measurements. Here we consider the mathematical structure that underlies this and find that it can be formulated in terms of what we call the moment algebra. Apart from resulting in simpler proofs, the flexibility of this structure allows generalizations of the original results to a number of weak measurement scenarios, including one where the weakly interacting pointers reach thermal equilibrium with the probed system.

  16. Meson exchange current effects on magnetic dipole moments of p -shell nuclei

    SciTech Connect

    Booten, J.G.L.; van Hees, A.G.M.; Glaudemans, P.W.M. ); Wervelman, R. )

    1991-01-01

    It is shown that addition of a two-body magnetic dipole operator arising from the exchange of the isovector pion and rho meson to the well-known one-body operator can give important corrections to the magnetic dipole moments of the {ital A}=4--16 nuclei. We performed shell-model calculations in complete 0{h bar}{omega} and (0+2){h bar}{omega} model spaces, thus investigating simultaneously the effects of extension of the model space and meson exchange currents on the magnetic moments. In the enlarged model space a significant improvement on the description of the magnetic moments is obtained by including exchange currents.

  17. Weak hybridization and isolated localized magnetic moments in the compounds CeT2Cd20 (T = Ni, Pd)

    NASA Astrophysics Data System (ADS)

    White, B. D.; Yazici, D.; Ho, P.-C.; Kanchanavatee, N.; Pouse, N.; Fang, Y.; Breindel, A. J.; Friedman, A. J.; Maple, M. B.

    2015-08-01

    We report the physical properties of single crystals of the compounds CeT2Cd20 (T = Ni, Pd) that were grown in a molten Cd flux. Large separations of  ˜6.7-6.8 Å between Ce ions favor the localized magnetic moments that are observed in measurements of the magnetization. The strength of the Ruderman-Kittel-Kasuya-Yosida magnetic exchange interaction between the localized moments is severely limited by the large Ce-Ce separations and by weak hybridization between localized Ce 4 f and itinerant electron states. Measurements of electrical resistivity performed down to 0.138 K were unable to observe evidence for the emergence of magnetic order; however, magnetically-ordered ground states with very low transition temperatures are still expected in these compounds despite the isolated nature of the localized magnetic moments. Such a fragile magnetic order could be highly susceptible to tuning via applied pressure, but evidence for the emergence of magnetic order has not been observed so far in our measurements up to 2.5 GPa.

  18. Weak hybridization and isolated localized magnetic moments in the compounds CeT2Cd20 (T = Ni, Pd)

    DOE PAGESBeta

    White, B. D.; Yazici, D.; Ho, P. -C.; Kanchanavatee, N.; Pouse, N.; Fang, Y.; Breindel, A. J.; Friedman, A. J.; Maple, M. B.

    2015-07-20

    Here, we report the physical properties of single crystals of the compounds CeT2Cd20 (T = Ni, Pd) that were grown in a molten Cd flux. Large separations of ~6.7- 6.8 Å between Ce ions favor the localized magnetic moments that are observed in measurements of the magnetization. The strength of the Ruderman-Kittel-Kasuya- Yosida magnetic exchange interaction between the localized moments is severely limited by the large Ce-Ce separations and by weak hybridization between localized Ce 4f and itinerant electron states. Measurements of electrical resistivity performed down to 0.138 K were unable to observe evidence for the emergence of magnetic order;more » however, magnetically-ordered ground states with very low transition temperatures are still expected in these compounds despite the isolated nature of the localized magnetic moments. Such a fragile magnetic order could be highly susceptible to tuning via applied pressure, but evidence for the emergence of magnetic order has not been observed so far in our measurements up to 2.5 GPa.« less

  19. Weak hybridization and isolated localized magnetic moments in the compounds CeT₂Cd₂₀ (T = Ni, Pd).

    PubMed

    White, B D; Yazici, D; Ho, P-C; Kanchanavatee, N; Pouse, N; Fang, Y; Breindel, A J; Friedman, A J; Maple, M B

    2015-08-12

    We report the physical properties of single crystals of the compounds CeT2Cd20 (T = Ni, Pd) that were grown in a molten Cd flux. Large separations of  ∼6.7-6.8 Å between Ce ions favor the localized magnetic moments that are observed in measurements of the magnetization. The strength of the Ruderman-Kittel-Kasuya-Yosida magnetic exchange interaction between the localized moments is severely limited by the large Ce-Ce separations and by weak hybridization between localized Ce 4 f and itinerant electron states. Measurements of electrical resistivity performed down to 0.138 K were unable to observe evidence for the emergence of magnetic order; however, magnetically-ordered ground states with very low transition temperatures are still expected in these compounds despite the isolated nature of the localized magnetic moments. Such a fragile magnetic order could be highly susceptible to tuning via applied pressure, but evidence for the emergence of magnetic order has not been observed so far in our measurements up to 2.5 GPa. PMID:26189502

  20. Mechanism of the formation of an uncompensated magnetic moment in bacterial ferrihydrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Dubrovskii, A. A.; Krasikov, A. A.; Stolyar, S. V.; Iskhakov, R. S.; Ladygina, V. P.; Khilazheva, E. D.

    2013-10-01

    The magnetic properties of antiferromagnetic nanoparticles of FeOOH · nH2O with sizes of 3-7 nm, which are products of vital functions of Klebsiella oxytoca bacteria, have been studied. Particles exhibit a superparamagnetic behavior. The characteristic blocking temperature is 23 K. Analysis of the magnetization curves shows that the mechanism of the formation of the uncompensated magnetic moment of particles is the random decompensation of magnetic moments of Fe3+ ions both on the surface and in the bulk of the antiferromagnetic particle. In this mechanism, the exchange coupling between the uncompensated magnetic moment of the particle and its antiferromagnetic "core" is implemented. It has been found that the temperature dependence of the uncompensated magnetic moment has the form 1 — const T 2.

  1. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.

    2015-12-01

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM |dn| < 5.5 × 10-26 e cm at the 90% confidence level.

  2. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    SciTech Connect

    Serebrov, A. P. Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.

    2015-12-15

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM vertical bar d{sub n} vertical bar < 5.5 × 10{sup –26}e cm at the 90% confidence level.

  3. Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface.

    PubMed

    Zhong, Shudan; Moore, Joel E; Souza, Ivo

    2016-02-19

    The current density j^{B} induced in a clean metal by a slowly-varying magnetic field B is formulated as the low-frequency limit of natural optical activity, or natural gyrotropy. Working with a multiband Pauli Hamiltonian, we obtain from the Kubo formula a simple expression for α_{ij}^{GME}=j_{i}^{B}/B_{j} in terms of the intrinsic magnetic moment (orbital plus spin) of the Bloch electrons on the Fermi surface. An alternate semiclassical derivation provides an intuitive picture of the effect, and takes into account the influence of scattering processes in dirty metals. This "gyrotropic magnetic effect" is fundamentally different from the chiral magnetic effect driven by the chiral anomaly and governed by the Berry curvature on the Fermi surface, and the two effects are compared for a minimal model of a Weyl semimetal. Like the Berry curvature, the intrinsic magnetic moment should be regarded as a basic ingredient in the Fermi-liquid description of transport in broken-symmetry metals. PMID:26943554

  4. Fast inversion of Zeeman line profiles using central moments. II. Stokes V moments and determination of vector magnetic fields

    NASA Astrophysics Data System (ADS)

    Mein, P.; Uitenbroek, H.; Mein, N.; Bommier, V.; Faurobert, M.

    2016-06-01

    Context. In the case of unresolved solar structures or stray light contamination, inversion techniques using four Stokes parameters of Zeeman profiles cannot disentangle the combined contributions of magnetic and nonmagnetic areas to the observed Stokes I. Aims: In the framework of a two-component model atmosphere with filling factor f, we propose an inversion method restricting input data to Q , U, and V profiles, thus overcoming ambiguities from stray light and spatial mixing. Methods: The V-moments inversion (VMI) method uses shifts SV derived from moments of V-profiles and integrals of Q2, U2, and V2 to determine the strength B and inclination ψ of a magnetic field vector through least-squares polynomial fits and with very few iterations. Moment calculations are optimized to reduce data noise effects. To specify the model atmosphere of the magnetic component, an additional parameter δ, deduced from the shape of V-profiles, is used to interpolate between expansions corresponding to two basic models. Results: We perform inversions of HINODE SOT/SP data for inclination ranges 0 <ψ< 60° and 120 <ψ< 180° for the 630.2 nm Fe i line. A damping coefficient is fitted to take instrumental line broadening into account. We estimate errors from data noise. Magnetic field strengths and inclinations deduced from VMI inversion are compared with results from the inversion codes UNNOFIT and MERLIN. Conclusions: The VMI inversion method is insensitive to the dependence of Stokes I profiles on the thermodynamic structure in nonmagnetic areas. In the range of Bf products larger than 200 G, mean field strengths exceed 1000 G and there is not a very significant departure from the UNNOFIT results because of differences between magnetic and nonmagnetic model atmospheres. Further improvements might include additional parameters deduced from the shape of Stokes V profiles and from large sets of 3D-MHD simulations, especially for unresolved magnetic flux tubes.

  5. Magnetic permeability measurements and a lunar core

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Phillips, R. J.; Russell, C. T.

    1976-01-01

    Measurements of the magnetic field induced in the moon while it is in the geomagnetic tail lobes have been interpreted in terms of lunar magnetic permeability due to free iron content; such studies ignored the possibility that a highly conducting lunar core (Fe or FeS) would exclude magnetic fields with an apparent diamagnetic effect. Using lunar chemical and thermal models to determine plausible limits of magnetic permeability, we interpret measurements of the induced moment. The maximum likely radius of a lunar core is 580 km. Subsatellite and ALSEP measurements of the induced field are in disagreement. Resolving the differences is critical to determining whether a core could or does exist.

  6. Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon Anomalous Magnetic Moment

    NASA Astrophysics Data System (ADS)

    Blum, T.; Boyle, P. A.; Izubuchi, T.; Jin, L.; Jüttner, A.; Lehner, C.; Maltman, K.; Marinkovic, M.; Portelli, A.; Spraggs, M.; Rbc; Ukqcd Collaborations

    2016-06-01

    We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 483×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization aμHVP (LO )disc=-9.6 (3.3 )(2.3 )×10-10 , where the first error is statistical and the second systematic.

  7. Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon Anomalous Magnetic Moment.

    PubMed

    Blum, T; Boyle, P A; Izubuchi, T; Jin, L; Jüttner, A; Lehner, C; Maltman, K; Marinkovic, M; Portelli, A; Spraggs, M

    2016-06-10

    We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 48^{3}×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization a_{μ}^{HVP(LO)disc}=-9.6(3.3)(2.3)×10^{-10}, where the first error is statistical and the second systematic. PMID:27341226

  8. Probing the magnetic moment of FePt micromagnets prepared by focused ion beam milling

    SciTech Connect

    Overweg, H. C.; Haan, A. M. J. den; Eerkens, H. J.; Bossoni, L.; Oosterkamp, T. H.; Alkemade, P. F. A.; La Rooij, A. L.; Spreeuw, R. J. C.

    2015-08-17

    We investigate the degradation of the magnetic moment of a 300 nm thick FePt film induced by Focused Ion Beam (FIB) milling. A 1 μm × 8 μm rod is milled out of a film by a FIB process and is attached to a cantilever by electron beam induced deposition. Its magnetic moment is determined by frequency-shift cantilever magnetometry. We find that the magnetic moment of the rod is μ = 1.1 ± 0.1 × 10{sup −12} Am{sup 2}, which implies that 70% of the magnetic moment is preserved during the FIB milling process. This result has important implications for atom trapping and magnetic resonance force microscopy, which are addressed in this paper.

  9. Probing the magnetic moment of FePt micromagnets prepared by focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Overweg, H. C.; den Haan, A. M. J.; Eerkens, H. J.; Alkemade, P. F. A.; La Rooij, A. L.; Spreeuw, R. J. C.; Bossoni, L.; Oosterkamp, T. H.

    2015-08-01

    We investigate the degradation of the magnetic moment of a 300 nm thick FePt film induced by Focused Ion Beam (FIB) milling. A 1 μm × 8 μm rod is milled out of a film by a FIB process and is attached to a cantilever by electron beam induced deposition. Its magnetic moment is determined by frequency-shift cantilever magnetometry. We find that the magnetic moment of the rod is μ = 1.1 ± 0.1 × 10-12 Am2, which implies that 70% of the magnetic moment is preserved during the FIB milling process. This result has important implications for atom trapping and magnetic resonance force microscopy, which are addressed in this paper.

  10. Extracting Nucleon Magnetic Moments and Electric Polarizabilities from Lattice QCD in Background Electric Fields

    SciTech Connect

    William Detmold; Tiburzi, Brian C.; Walker-Loud, Andre

    2010-03-01

    Nucleon properties are investigated in background electric fields. As the magnetic moments of baryons affect their relativistic propagation in constant electric fields, electric polarizabilities cannot be determined without knowledge of magnetic moments. We devise combinations of baryon two-point functions in external electric fields to isolate both observables. Using an ensemble of anisotropic gauge configurations with dynamical clover fermions, we demonstrate how magnetic moments and electric polarizabilities can be determined from lattice QCD simulations in background electric fields. We obtain results for both the neutron and proton. Our study is currently limited to electrically neutral sea quarks.

  11. X-ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu.

    PubMed

    Kukreja, R; Bonetti, S; Chen, Z; Backes, D; Acremann, Y; Katine, J A; Kent, A D; Dürr, H A; Ohldag, H; Stöhr, J

    2015-08-28

    We have used a MHz lock-in x-ray spectromicroscopy technique to directly detect changes in magnetic moment of Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3×10^{-5}μ_{B} on Cu atoms within the bulk of the 28 nm thick Cu film due to spin accumulation. The moment value is compared to predictions by Mott's two current model. We also observe that the hybridization induced existing magnetic moments at the Cu interface atoms are transiently increased by about 10% or 4×10^{-3}μ_{B} per atom. This reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow. PMID:26371670

  12. X-ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu

    NASA Astrophysics Data System (ADS)

    Kukreja, R.; Bonetti, S.; Chen, Z.; Backes, D.; Acremann, Y.; Katine, J. A.; Kent, A. D.; Dürr, H. A.; Ohldag, H.; Stöhr, J.

    2015-08-01

    We have used a MHz lock-in x-ray spectromicroscopy technique to directly detect changes in magnetic moment of Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3 ×10-5μB on Cu atoms within the bulk of the 28 nm thick Cu film due to spin accumulation. The moment value is compared to predictions by Mott's two current model. We also observe that the hybridization induced existing magnetic moments at the Cu interface atoms are transiently increased by about 10% or 4 ×10-3μB per atom. This reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow.

  13. X-ray detection of transient magnetic moments induced by a spin current in Cu

    SciTech Connect

    Kukreja, R.; Bonetti, S.; Chen, Z.; Backes, D.; Acremann, Y.; Katine, J.; Kent, A. D.; Durr, H. A.; Ohldag, H.; Stohr, J.

    2015-08-24

    We have used a MHz lock-in x-ray spectromicroscopy technique to directly detect changes in magnetic moment of Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3×10–5μB on Cu atoms within the bulk of the 28 nm thick Cu film due to spin accumulation. The moment value is compared to predictions by Mott’s two current model. We also observe that the hybridization induced existing magnetic moments at the Cu interface atoms are transiently increased by about 10% or 4×10–3μB per atom. As a result, this reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow.

  14. Current status of the measurement of the anapole moment

    NASA Astrophysics Data System (ADS)

    Sheng, Dong; Perez Galvan, Adrian; Hood, Jonathan; Orozco, Luis

    2009-05-01

    We present the current status of the experimental effort towards the measurement of the anapole moment in different isotopes of francium. The anapole is a parity-violating, time-reversal conserving nuclear moment that arises from the weak interaction among nucleons. Due to the electromagnetic interaction between electrons and nucleons, atomic physics gives the unique possibility to probe the weak interaction in the low energy regime. Our experimental scheme involves driving a parity forbidden E1 transition between hyperfine ground states in a series of francium isotopes inside a blue detuned dipole trap at the electric antinode of a microwave cavity. The experiment will make use of the ISAC radioactive beam facility at TRIUMF. The system is currently being tested with rubidium.

  15. Time-reversal symmetry violation in molecules induced by nuclear magnetic quadrupole moments.

    PubMed

    Flambaum, V V; DeMille, D; Kozlov, M G

    2014-09-01

    Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out that nuclear T, P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T, P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T, P-odd effects in the molecules TaN, ThO, ThF+, HfF+, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T, P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T, P-odd nuclear forces, on the proton, neutron, and quark EDMs, on quark chromo-EDMs, and on the QCD θ term and CP-violating quark interactions. PMID:25238355

  16. (83)Kr nuclear magnetic moment in terms of that of (3)He.

    PubMed

    Makulski, Włodzimierz

    2014-08-01

    High resolution NMR spectroscopy was applied to precisely determine the (83)Kr nuclear magnetic dipole moment on the basis of new results available for nuclear magnetic shielding in krypton and helium-3 atoms. Small amounts of (3)He as the solutes and (83)Kr as the buffer gas were observed in (3)He and (83)Kr NMR spectra at the constant external field, B0 = 11.7578 T. In each case, the resonance frequencies (ν(He) and ν(Kr)) were linearly dependent on the density of gaseous solvent. The extrapolation of experimental points to the zero density of gaseous krypton allowed for the evaluation of both resonance frequencies free from intermolecular interactions. By combining these measurements with the recommended (83)Kr chemical shielding value, the nuclear magnetic moment could be determined with much better precision than ever before, μ((83)Kr) = -0.9707297(32)μN, with the improvement due to the greater accuracy of the spectral data. PMID:24842240

  17. Interlaboratory Comparison of Magnetic Thin Film Measurements.

    PubMed

    da Silva, F C S; Wang, C M; Pappas, D P

    2003-01-01

    A potential low magnetic moment standard reference material (SRM) was studied in an interlaboratory comparison. The mean and the standard deviation of the saturation moment m s, the remanent moment m r, and the intrinsic coercivity H c of nine samples were extracted from hysteresis-loop measurements. Samples were measured by thirteen laboratories using inductive-field loopers, vibrating-sample magnetometers, alternating-gradient force magnetometers, and superconducting quantum-interference-device magnetometers. NiFe films on Si substrates had saturation moment measurements reproduced within 5 % variation among the laboratories. The results show that a good candidate for an SRM must have a highly square hysteresis loop (m r/m s > 90 %), H c ≈ 400 A·m(-1) (5 Oe), and m s ≈ 2 × 10(-7) A·m(2) (2 × 10(-4) emu). PMID:27413599

  18. Interlaboratory Comparison of Magnetic Thin Film Measurements

    PubMed Central

    da Silva, F. C. S.; Wang, C. M.; Pappas, D. P.

    2003-01-01

    A potential low magnetic moment standard reference material (SRM) was studied in an interlaboratory comparison. The mean and the standard deviation of the saturation moment ms, the remanent moment mr, and the intrinsic coercivity Hc of nine samples were extracted from hysteresis-loop measurements. Samples were measured by thirteen laboratories using inductive-field loopers, vibrating-sample magnetometers, alternating-gradient force magnetometers, and superconducting quantum-interference-device magnetometers. NiFe films on Si substrates had saturation moment measurements reproduced within 5 % variation among the laboratories. The results show that a good candidate for an SRM must have a highly square hysteresis loop (mr/ms > 90 %), Hc ≈ 400 A·m−1 (5 Oe), and ms ≈ 2 × 10−7 A·m2 (2 × 10−4 emu). PMID:27413599

  19. Magnetic moment generation from non-minimal couplings in a scenario with Lorentz-symmetry violation

    NASA Astrophysics Data System (ADS)

    Belich, H.; Colatto, L. P.; Costa-Soares, T.; Helayël-Neto, J. A.; Orlando, M. T. D.

    2009-07-01

    This paper deals with situations that illustrate how the violation of Lorentz symmetry in the gauge sector may contribute to magnetic moment generation of massive neutral particles with spin- frac {1}{2} and spin-1. The procedure we adopt here is based on Relativistic Quantum Mechanics. We work out the non-relativistic regime that follows from the wave equation corresponding to a certain particle coupled to an external electromagnetic field and a background that accounts for the Lorentz-symmetry violation, and we thereby read off the magnetic dipole moment operator for the particle under consideration. We keep track of the parameters that govern the non-minimal electromagnetic coupling and the breaking of Lorentz symmetry in the expressions we get for the magnetic moments in the different cases we contemplate. Our claim is that the tiny magnetic dipole moment of truly-elementary neutral particles might signal Lorentz-symmetry violation.

  20. Transition magnetic moment of {Lambda}{yields}{Sigma}{sup 0} in QCD sum rules

    SciTech Connect

    Lee, Frank X.; Wang Lai

    2011-05-01

    The {Lambda}{yields}{Sigma}{sup 0} transition magnetic moment is computed in the QCD sum rules approach. Three independent tensor structures are derived in the external-field method using generalized interpolating fields. They are analyzed together with the {Lambda} and {Sigma}{sup 0} mass sum rules using a Monte-Carlo-based analysis, with attention to operator product expansion convergence, ground-state dominance, and the role of the transitions in the intermediate states. Relations between sum rules for magnetic moments of {Lambda} and {Sigma}{sup 0} and sum rules for transition magnetic moment of {Lambda}{yields}{Sigma}{sup 0} are also examined. Our best prediction for the transition magnetic moment is {mu}{sub {Sigma}}{sup 0}{sub {Lambda}=}1.60{+-}0.07{mu}{sub N}. A comparison is made with other calculations in the literature.

  1. Can the patellar tendon moment arm be predicted from anthropometric measurements?

    PubMed

    Tsaopoulos, Dimitrios E; Maganaris, Constantinos N; Baltzopoulos, Vasilios

    2007-01-01

    The purpose of this study was to examine the relations between patellar tendon moment arm length and several relevant anthropometric characteristics of 22 healthy men. The patellar tendon moment arm length was measured using magnetic resonance imaging with two different methods: (1) measurement of patellar tendon moment arm length (d(PT)) with respect to the tibiofemoral contact point (d(PTCP)) and (2) measurement of d(PT) with respect to the intersection point of the anterior and posterior cruciate ligament (d(PTIP)). Pearson correlation coefficients and a stepwise linear regression analysis were used to examine the relationships between the d(PT) and anthropometric measurements taken. Furthermore, a Student's t-test was used to determine differences between the d(PTCP) and d(PTIP) values. Only knee circumference was a significant d(PTCP) predictor (P < 0.05) but with a very low R2 (0.139). None of the anthropometric parameters examined was found to be a significant d(PTIP) predictor. The correlation coefficients ranged from -0.04 to 0.42. The d(PTIP) values were significantly higher (by 0.84-1.89 cm) than the d(PTCP) values (P < 0.05). These results are in disagreement with previous in vitro findings that d(PT) variance may be explained by knee joint size differences. Hence, existing imaging-based methodologies remain necessary for accurate quantification of the patellar tendon moment arm. PMID:16542664

  2. Electron magnetic moment from geonium spectra: Early experiments and background concepts

    NASA Astrophysics Data System (ADS)

    van Dyck, Robert S., Jr.; Schwinberg, Paul B.; Dehmelt, Hans G.

    1986-08-01

    The magnetic moment of a free electron has been measured by observing both its low-energy spin and cyclotron resonances (at νs=ωs/2π and νc=ωc/2π, respectively) by means of a sensitive frequency-shift technique. Using radiation and tuned-circuit damping of a single electron, isolated in a special anharmonicity-compensated Penning trap, also cooled to 4 K, the electron's motion is brought nearly to rest, thus preparing it in a cold quasipermanent state of the geonium ``atom.'' The magnetic-coupling scheme, described as a continuous Stern-Gerlach effect, is made possible through a weak Lawrence magnetic bottle which causes the very narrow axial resonance, at νz=ωz/2π for the harmonically bound electron, to change in frequency by a small fixed amount δ per unit change in magnetic quantum number. Spin flips are indirectly induced by a scheme which weakly drives the axial motion at the νa=ωa/2π spin-cyclotron difference frequency within the inhomogeneous magnetic field, thus yielding a measure of ωa≡ωs-ωc. The magnetic moment μs in terms of the Bohr magneton μB equals (1/2) the spin's g factor, which in turn is described by ωs and ωc: g=2μs/μB=2ωs/ωc. In a Penning trap, however, these resonance frequencies are obtained from the observed cyclotron frequency at ω'c=ωc-δe and the observed anomaly frequency at ω'a=ωs-ω'c, which are related by the small electric shift δe computed using the measured axial frequency and 2δeω'c=ωz 2. This last expression, derived for a perfectly axially symmetric trap, happens to be practically invariant against small imperfections in the electric quadrupole field (error in ωc<10-16). The magnetic-bottle-determined line shapes are analyzed and found to have sharp low-frequency edge features which correspond to the electron being temporarily at the trap center and at the bottom of the magnetic well. Relativistic shifts are considered and found to be <10-11. Our result at the time of submission, g/2=1.001 159

  3. CP-violating effect of the Th nuclear magnetic quadrupole moment: accurate many-body study of ThO.

    PubMed

    Skripnikov, L V; Petrov, A N; Titov, A V; Flambaum, V V

    2014-12-31

    Investigations of CP violation in the hadron sector may be done using measurements in the ThO molecule. Recent measurements in this molecule improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Another time-reversal (T) and parity (P)-violating effect in 229ThO is induced by the nuclear magnetic quadrupole moment. We perform nuclear and molecular calculations to express this effect in terms of the strength constants of T, P-odd nuclear forces, neutron EDM, QCD vacuum angle θ, quark EDM, and chromo-EDM. PMID:25615324

  4. About a peculiar extra U(1): Z{sup '} discovery limit, muon anomalous magnetic moment, and electron electric dipole moment

    SciTech Connect

    Heo, Jae Ho

    2009-08-01

    The model (Lagrangian) with a peculiar extra U(1)[S. M. Barr and I. Dorsner, Phys. Rev. D 72, 015011 (2005); S. M. Barr and A. Khan, Phys. Rev. D 74, 085023 (2006)] is clearly presented. The assigned extra U(1) gauge charges give a strong constraint to build Lagrangians. The Z{sup '} discovery limits are estimated and predicted at the Tevatron and the LHC. The new contributions of the muon anomalous magnetic moment are investigated at one and two loops, and we predict that the deviation from the standard model may be explained. The electron electric dipole moment could also be generated because of the explicit CP-violation effect in the Higgs sector, and a sizable contribution is expected for a moderately sized CP phase [argument of the CP-odd Higgs], 0.1{<=}sin{delta}{<=}1[6 deg. {<=}arg(A){<=}90 deg.].

  5. High-Precision Microwave Spectroscopy of Muonium for Determination of Muonic Magnetic Moment

    NASA Astrophysics Data System (ADS)

    Torii, H. A.; Higashi, Y.; Higuchi, T.; Matsuda, Y.; Mizutani, T.; Tajima, M.; Tanaka, K. S.; Ueno, Y.; Fukao, Y.; Iinuma, H.; Ikedo, Y.; Kadono, R.; Kawamura, N.; Koda, A.; Kojima, K. M.; Mibe, T.; Miyake, Y.; Nagamine, K.; Nishiyama, K.; Ogitsu, T.; Okubo, R.; Saito, N.; Sasaki, K.; Shimomura, K.; Strasser, P.; Sugano, M.; Toyoda, A.; Ueno, K.; Yamamoto, A.; Yoshida, M.; Ishida, K.; Iwasaki, M.; Kamigaito, O.; Tomono, D.; Kanda, S.; Kubo, K.; Aoki, M.; Torikai, E.; Kawall, D.

    2016-02-01

    The muonium atom is a system suitable for precision measurements for determination of muon’s fundamental properties as well as for the test of quantum electrodynamics (QED). A microwave spectroscopy experiment of this exotic atom is being prepared at J-PARC, jointly operated by KEK and JAEA in Japan, aiming at an improved relative precision at a level of 10‑8 in determination of the muonic magnetic moment. A major improvement of statistical uncertainty is expected with the higher muon intensity of the pulsed beam at J-PARC, while reduction of various sources of systematic uncertainties are being studied: those arising from microwave power fluctuations, magnetic field inhomogeneity, muon stopping distribution and atomic collisional shift of resonance frequencies. Experimental strategy and methods are presented in this paper, with an emphasis on our recent development of apparatuses and evaluation of systematic uncertainties.

  6. Dynamics of the magnetic moments for chain of dipoles in domain wall

    NASA Astrophysics Data System (ADS)

    Shutyıˇ, Anatoliy M.; Sementsov, Dmitriy I.

    2016-03-01

    We report on the dynamics of the magnetic moment numerically simulated for a chain of the magnetic nanodots coupled through the dipole-dipole interaction and in the presence of the magnetic anisotropy of various types. It is shown that a static field applied to the system causes specific fluctuations of the transverse components of the magnetic moment leading to a sequence of the oscillation trains observed in the domain wall. Various oscillation modes governed by the external alternating field are revealed. The influence of the unidirectional and uniaxial anisotropy ("easy-plane" and "easy axis" anisotropy) on the system behavior is described.

  7. Status and Prospects of Electric Dipole Moment Measurements

    NASA Astrophysics Data System (ADS)

    Cianciolo, Vince

    2015-10-01

    Precision electric dipole moment (EDM) measurements are extremely sensitive to non-Standard Model sources of charge/parity violation required for generation of the observed matter/anti-matter asymmetry in the universe. Many experiments in many systems are underway. In a half-hour talk it is difficult to do more than scratch the surface, but I will attempt to give a high-level overview on the various ongoing efforts. Research sponsored by the Office of Nuclear Physics, US Department of Energy.

  8. Anomalous thermal hysteresis in the high-field magnetic moments of magnetic nanoparticles embedded in multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Wang, Jun; Ren, Yang; Beeli, Pieder

    2012-02-01

    We report high-temperature (300-1120 K) magnetic properties of Fe and Fe3O4 nanoparticles embedded in multi-walled carbon nanotubes. We unambiguously show that the magnetic moments of Fe and Fe3O4 nanoparticles are seemingly enhanced by a factor of about 3 compared with what they would be expected to have for free (unembedded) magnetic nanoparticles. What is more intriguing is that the enhanced moments were completely lost when the sample was heated up to 1120 K and the lost moments at 1120 K were completely recovered through several thermal cycles below 1020 K. The anomalous thermal hysteresis of the high-field magnetic moments is unlikely to be explained by existing physical models except for the high-field paramagnetic Meissner effect due to the existence of ultrahigh temperature superconductivity in the multi-walled carbon nanotubes.

  9. Neutron electric dipole moment measurement with a buffer gas comagnetometer

    NASA Astrophysics Data System (ADS)

    Masuda, Yasuhiro; Asahi, Koichiro; Hatanaka, Kichiji; Jeong, Sun-Chan; Kawasaki, Shinsuke; Matsumiya, Ryohei; Matsuta, Kensaku; Mihara, Mototsugu; Watanabe, Yutaka

    2012-03-01

    A neutron EDM measurement with a comagnetometer is discussed. For magnetometry, polarized xenon atoms are injected into a cylindrical cell where a cylindrically symmetric magnetic field and an electric field are applied for the EDM measurement. The geometric phase effect (GPE), which originates from particle motion in a magnetic field gradient, is analyzed in terms of the Dyson series. The motion of the xenon atom is largely suppressed because of a small mean free path. The field gradient is controlled by means of NMR measurements, where the false effect of Earth's rotation is removed. As a result, the GPE is reduced below 10-28e cm.

  10. Emergence of local magnetic moments in doped graphene-related materials

    NASA Astrophysics Data System (ADS)

    Venezuela, P.; Muniz, R. B.; Costa, A. T.; Edwards, D. M.; Power, S. R.; Ferreira, M. S.

    2009-12-01

    Motivated by recent studies reporting the formation of localized magnetic moments in doped graphene, we investigate the energetic cost for spin polarizing isolated impurities embedded in this material. When a well-known criterion for the formation of local magnetic moments in metals is applied to graphene we are able to predict the existence of magnetic moments in cases that are in clear contrast to previously reported density-functional theory (DFT) results. When generalized to periodically repeated impurities, a geometry so commonly used in most DFT calculations, this criterion shows that the energy balance involved in such calculations contains unavoidable contributions from the long-ranged pairwise magnetic interactions between all impurities. This proves the fundamental inadequacy of the DFT assumption of independent unit cells in the case of magnetically doped low-dimensional graphene-based materials. We show that this can be circumvented if more than one impurity per unit cell is considered, in which case the DFT results agree perfectly well with the criterion-based predictions for the onset of localized magnetic moments in graphene. Furthermore, the existence of such a criterion determining whether or not a magnetic moment is likely to arise within graphene will be instrumental for predicting the ideal materials for future carbon-based spintronic applications.

  11. Kapitza problem for the magnetic moments of synthetic antiferromagnetic systems

    SciTech Connect

    Dzhezherya, Yu. I.; Demishev, K. O.; Korenivskii, V. N.

    2012-08-15

    The dynamics of magnetization in synthetic antiferromagnetic systems with the magnetic dipole coupling in a rapidly oscillating field has been examined. It has been revealed that the system can behave similar to the Kapitza pendulum. It has been shown that an alternating magnetic field can be efficiently used to control the magnetic state of a cell of a synthetic antiferromagnet. Analytical relations have been obtained between the parameters of such an antiferromagnet and an external magnetic field at which certain quasistationary states are implemented.

  12. Classical Magnetic Dipole Moments for the Simulation of Vibrational Circular Dichroism by ab Initio Molecular Dynamics.

    PubMed

    Thomas, Martin; Kirchner, Barbara

    2016-02-01

    We present a new approach for calculating vibrational circular dichroism spectra by ab initio molecular dynamics. In the context of molecular dynamics, these spectra are given by the Fourier transform of the cross-correlation function of magnetic dipole moment and electric dipole moment. We obtain the magnetic dipole moment from the electric current density according to the classical definition. The electric current density is computed by solving a partial differential equation derived from the continuity equation and the condition that eddy currents should be absent. In combination with a radical Voronoi tessellation, this yields an individual magnetic dipole moment for each molecule in a bulk phase simulation. Using the chiral alcohol 2-butanol as an example, we show that experimental spectra are reproduced very well. Our approach requires knowing only the electron density in each simulation step, and it is not restricted to any particular electronic structure method. PMID:26771403

  13. Magnetization reversal of uncompensated Fe moments in exchangebiased Ni/FeF2 bilayers

    SciTech Connect

    Arenholz, Elke; Liu, Kai; Li, Zhipan; Schuller, Ivan K.

    2006-01-01

    The magnetization reversal of uncompensated Fe moments in exchange biased Ni/FeF{sub 2} bilayers was determined using soft x-ray magnetic circular and linear dichroism. The hysteresis loops resulting from the Fe moments are almost identical to those of the ferromagnetic Ni layer. However, a vertical loop shift indicates that some Fe moments are pinned in the antiferromagnetically ordered FeF{sub 2}. The pinned moments are oriented antiparallel to small cooling fields leading to negative exchange bias, but parallel to large cooling fields resulting in positive exchange bias. No indication for the formation of a parallel antiferromagnetic domain wall in the FeF{sub 2} layer upon magnetization reversal in the Ni layer was found.

  14. Constraining Neutrino Magnetic Moments with Solar and Reactor Neutrino Data

    NASA Astrophysics Data System (ADS)

    Tórtola, M. A.

    We use the latest solar neutrino data, combined with the results of the reactor experiment KamLAND, to derive stringent bounds on Majorana neutrino transition moments (TMs). Furthermore, we show how the inclusion of data from the reactor experiments Rovno, MUNU and TEXONO in our analysis improves significantly the current constraints on TMs. Finally, we perform a simulation of the future Borexino experiment and show that it will improve the bounds from today's data by one order of magnitude.

  15. The magnetic moments of vanadium impurities in alkali hosts and induced spin current in alkali films

    NASA Astrophysics Data System (ADS)

    Song, Funing

    Thin quench-condensed films of Na, K, Rb, and Cs are covered with 1/100 of a monolayer of Vanadium. Then the V impurities are covered with several atomic layers of the host. The magnetization of the sandwiches is measured by means of the anomalous Hall effect. For V impurities on the surface of Na and K, a magnetic moment of 7 Bohr magnetons is observed. After coverage with the host, the V moment became 6.5muB for the Na host. These results contradict the favored atomic model (predicting 0.6muB) and the resonance model. The V moment on the surface and in the bulk of Rb and Cs is about 4muB and considerably smaller than the measured moments of V in Na. Furthermore, the sign of the anomalous Hall resistance changes from negative for the Na host to positive for the Cs host. This indicates a change of the electronic structure of the impurity (plus host environment) when going from Na to Cs hosts. Sandwiches of FeK and FeCs are prepared at helium temperature and under ultra-high vacuum. The mean free path within these sandwiches can exceed the film thickness by a factor of five. This implies almost perfect specular reflection of the electrons at the interfaces. Therefore, the mean free path of the film is strongly dependent on the degree of the specular reflection. Furthermore, the experiments suggest that the specular reflections for spin-up and spin-down electrons are different at the Fe interface, resulting in a spin current in the alkali films. In order to detect this current, dilute Pb impurities are condensed on top of the free surface of the alkali films. Strong spin-orbit scatterers, such as Pb, introduce an anomalous Hall effect in the presence of a spin current, which can be detected through straightforward Hall measurements. The results of the AHE experiments clearly indicate the existence of a local spin current.

  16. Magnetic measurements at Lawrence Berkeley Laboratory. Revision

    SciTech Connect

    Green, M.I.; Barale, P.; Callapp, L.; Case-Fortier, M.; Lerner, D.; Nelson, D.; Schermer, R.; Skipper, G.; Van Dyke, D.; Cork, C.; Halbach, K.; Hassenzahl, W.; Hoyer, E.; Marks, S.; Harten, T.; Luchini, K.; Milburn, J.; Tanabe, J.; Zucca, F.; Keller, R.; Selph, F.; Gilbert, W.; Green, M.A.; O`Neil, J.; Schafer, R.; Taylor, C.; Greiman, W.; Hall, D.; MacFarlane, J.

    1991-08-01

    Recent magnetic measurement activities at LBL have been concentrated in two separate areas, electro-magnets and permanent magnets for the Advanced Light Source (ALS), and superconducting magnets for the Superconducting Super Collider Laboratory (SSCL). A survey of the many different measurement systems is presented. These include: AC magnetic measurements of an ALS booster dipole engineering model magnet, dipole moment measurements of permanent magnet blocks for ALS wigglers and undulators, permeability measurements of samples destined for wiggler and undulator poles, harmonic error analysis of SSC one meter model dipoles and quadrupoles and five meter long SSC prototype quadrupoles, harmonic error analysis of ALS dipoles, quadrupoles, and sextupoles, precision Hall probe mapping of ALS storage ring combined function magnets, and the design of the ALS insertion device magnets mapping system. We also describe a new UNIX based data acquisition system that is being developed for the SSC. Probes used for magnetic measurements include Helmholtz coils, integral coils, point coils, and bucking harmonic analysis coils, several different types of Hall probes, and nuclear magnetic resonance magnetometers. Both analog and digital integrators are used with the coils. Some problems that occurred and their rectification is described. The mechanisms used include rotating systems with optical encoders, X-Y mapping systems with optical encoders and a laser position measuring device. 10 refs., 3 figs., 1 tab.

  17. Magnetic measurements at Lawrence Berkeley Laboratory

    SciTech Connect

    Green, M.I.; Barale, P.; Callapp, L.; Case-Fortier, M.; Lerner, D.; Nelson, D.; Schermer, R.; Skipper, G.; Van Dyke, D.; Cork, C.; Halbach, K.; Hassenzahl, W.; Hoyer, E.; Marks, S.; Harten, T.; Luchini, K.; Milburn, J.; Tanabe, J.; Zucca, F.; Keller, R.; Selph, F.; Gilbert, W.; Green, M.A.; O'Neil, J.; Schafer, R.; Taylor, C.; Greiman, W.; Hall, D.; MacFarlane, J.

    1991-08-01

    Recent magnetic measurement activities at LBL have been concentrated in two separate areas, electro-magnets and permanent magnets for the Advanced Light Source (ALS), and superconducting magnets for the Superconducting Super Collider Laboratory (SSCL). A survey of the many different measurement systems is presented. These include: AC magnetic measurements of an ALS booster dipole engineering model magnet, dipole moment measurements of permanent magnet blocks for ALS wigglers and undulators, permeability measurements of samples destined for wiggler and undulator poles, harmonic error analysis of SSC one meter model dipoles and quadrupoles and five meter long SSC prototype quadrupoles, harmonic error analysis of ALS dipoles, quadrupoles, and sextupoles, precision Hall probe mapping of ALS storage ring combined function magnets, and the design of the ALS insertion device magnets mapping system. We also describe a new UNIX based data acquisition system that is being developed for the SSC. Probes used for magnetic measurements include Helmholtz coils, integral coils, point coils, and bucking harmonic analysis coils, several different types of Hall probes, and nuclear magnetic resonance magnetometers. Both analog and digital integrators are used with the coils. Some problems that occurred and their rectification is described. The mechanisms used include rotating systems with optical encoders, X-Y mapping systems with optical encoders and a laser position measuring device. 10 refs., 3 figs., 1 tab.

  18. Characterization of the magnetic moment distribution in low-concentration solutions of iron oxide nanoparticles by a high-T{sub c} superconducting quantum interference device magnetometer

    SciTech Connect

    Saari, M. M. Sakai, K.; Kiwa, T.; Tsukada, K.; Sasayama, T.; Yoshida, T.

    2015-05-07

    We developed a highly sensitive AC/DC magnetometer using a high-temperature superconductor superconducting quantum interference device for the evaluation of magnetic nanoparticles in solutions. Using the developed system, we investigated the distribution of magnetic moments of iron oxide multi-core particles of 100 nm at various iron concentrations that are lower than 96 μg/ml by analyzing the measured magnetization curves. Singular value decomposition and non-regularized non-negative least-squares methods were used during the reconstruction of the distribution. Similar distributions were obtained for all concentrations, and the iron concentration could be determined from the measured magnetization curves. The measured harmonics upon the excitation of AC and DC magnetic fields curves agreed well with the harmonics simulated based on the reconstructed magnetization curves, implying that the magnetization curves of magnetic nanoparticles were successfully obtained as we will show in the article. We compared the magnetization curves between multi-core particles of 100 nm and 130 nm, composed of 12-nm iron oxide nanoparticles. A distinctive magnetic property between the 100 nm and 130 nm particles in low-concentration solutions was successfully characterized. The distribution characteristic of magnetic moments suggests that the net magnetic moment in a multi-core particle is affected by the size of the magnetic cores and their degree of aggregation. Exploration of magnetic properties with high sensitivity can be expected using the developed system.

  19. Using magnetic moments to study the nuclear structure of I{>=} 2 states

    SciTech Connect

    Torres, D. A.

    2013-05-06

    The experimental study of magnetic moments for nuclear states near the ground state, I{>=} 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions have been utilized to study low spin states, mostly I= 2. The use of alternative reaction channels, such as {alpha} transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I{>=} 2, using Coulomb excitation and {alpha}-transfer reactions. Recent examples of experimental results near the N= 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.

  20. Finite Volume Study of the Delta Magnetic Moments Using Dynamical Clover Fermions

    SciTech Connect

    Aubin, Christopher; Orginos, Konstantinos; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2009-01-01

    We calculate the magnetic dipole moment of the $\\Delta$ baryon using a background magnetic field on 2+1-flavors of clover fermions on anisotropic lattices. We focus on the finite volume effects that can be significant in background field studies, and thus we use two different spatial volumes in addition to several quark masses.

  1. Quantum aspects of a moving magnetic quadrupole moment interacting with an electric field

    SciTech Connect

    Fonseca, I. C.; Bakke, K.

    2015-06-15

    The quantum dynamics of a moving particle with a magnetic quadrupole moment that interacts with electric and magnetic fields is introduced. By dealing with the interaction between an electric field and the magnetic quadrupole moment, it is shown that an analogue of the Coulomb potential can be generated and bound state solutions can be obtained. Besides, the influence of the Coulomb-type potential on the harmonic oscillator is investigated, where bound state solutions to both repulsive and attractive Coulomb-type potentials are achieved and the arising of a quantum effect characterized by the dependence of the harmonic oscillator frequency on the quantum numbers of the system is discussed.

  2. Majorana neutrino magnetic moment and neutrino decoupling in big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Vassh, N.; Grohs, E.; Balantekin, A. B.; Fuller, G. M.

    2015-12-01

    We examine the physics of the early universe when Majorana neutrinos (νe, νμ, ντ) possess transition magnetic moments. These extra couplings beyond the usual weak interaction couplings alter the way neutrinos decouple from the plasma of electrons/positrons and photons. We calculate how transition magnetic moment couplings modify neutrino decoupling temperatures, and then use a full weak, strong, and electromagnetic reaction network to compute corresponding changes in big bang nucleosynthesis abundance yields. We find that light element abundances and other cosmological parameters are sensitive to magnetic couplings on the order of 1 0-10μB. Given the recent analysis of sub-MeV Borexino data which constrains Majorana moments to the order of 1 0-11μB or less, we find that changes in cosmological parameters from magnetic contributions to neutrino decoupling temperatures are below the level of upcoming precision observations.

  3. Phase formation, thermal stability and magnetic moment of cobalt nitride thin films

    SciTech Connect

    Gupta, Rachana; Pandey, Nidhi; Tayal, Akhil; Gupta, Mukul E-mail: dr.mukul.gupta@gmail.com

    2015-09-15

    Cobalt nitride (Co-N) thin films prepared using a reactive magnetron sputtering process are studied in this work. During the thin film deposition process, the relative nitrogen gas flow (R{sub N{sub 2}}) was varied. As R{sub N{sub 2}} increases, Co(N), Co{sub 4}N, Co{sub 3}N and CoN phases are formed. An incremental increase in R{sub N{sub 2}}, after emergence of Co{sub 4}N phase at R{sub N{sub 2}} = 10%, results in a linear increase of the lattice constant (a) of Co{sub 4}N. For R{sub N{sub 2}} = 30%, a maximizes and becomes comparable to its theoretical value. An expansion in a of Co{sub 4}N, results in an enhancement of the magnetic moment, to the extent that it becomes even larger than pure Co. Such larger than pure metal magnetic moment for tetra-metal nitrides (M{sub 4}N) have been theoretically predicted. Incorporation of N atoms in M{sub 4}N configuration results in an expansion of a (relative to pure metal) and enhances the itinerary of conduction band electrons leading to larger than pure metal magnetic moment for M{sub 4}N compounds. Though a higher (than pure Fe) magnetic moment for Fe{sub 4}N thin films has been evidenced experimentally, higher (than pure Co) magnetic moment is evidenced in this work.

  4. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  5. Microwave Cavity for Anapole Moment Measurement in Francium

    NASA Astrophysics Data System (ADS)

    Zhang, Jiehang; Sheng, Dong; Orozco, Luis

    2011-05-01

    We present a study of the Polka-Dot microwave plano-spherical mirror for a Fabry-Perot resonator. The microwave resonator is an essential element of the apparatus to measure the anapole moment in francium. A crucial requirement for the cavity is the mode-matching into the fundamental Gaussian TEM00 mode. We investigate new coupling mechanisms of the radiation into the cavity to suppress unwanted higher order modes. We are exploring the method of printing two dimensional array of holes and feeding in through horn antennas. According to a HFSS simulation, this method should improve significantly the mode purity in contrast to conventional antenna. We fabricate the mirrors on standard optical blank using standard film deposition techniques with lithographic method to print the pattern. Preliminary tests show resonances, with potential improvements of the Q factors. Work supported by DOE and NSF

  6. Prospects for electric-dipole-moment measurements in radon

    NASA Astrophysics Data System (ADS)

    Chupp, Timothy

    2014-09-01

    A permanent electric dipole moment (EDM) of a particle or system would arise due to breaking of time-reversal, or equivalently CP symmetry. Experiments to date on the neutron, atoms and molecules have only set upper limits on EDMs. New techniques and systems in which the effects of CP violation would be greatly enhanced are driving the field forward. Systems that may be favorable for significant advances include 221,223Rn, where the combination of octupole collectivity and relatively closely spaced opposite parity levels would increase the nuclear Schiff moment by one or more orders of magnitude compared to other diamagnetic atoms, i.e. 199Hg. We have developed and tested at TRIUMF-ISAC an on-line EDM experiment that will collect and make measurements on the short-lived species (T1 / 2 ~ 25 m) featuring high-efficiency collection and spin-exchange polarization of noble-gas isotopes. Nuclear-structure issues include determining the octupole collectivity as well as the spacing of opposite parity levels. Experiments are underway at ISOLDE, NSCL and ISAC to study the nuclear structure of isotopes in this mass region. I will report on progress and comment on how we learn about the basic physical parameters of CP violation from EDM measurements. A permanent electric dipole moment (EDM) of a particle or system would arise due to breaking of time-reversal, or equivalently CP symmetry. Experiments to date on the neutron, atoms and molecules have only set upper limits on EDMs. New techniques and systems in which the effects of CP violation would be greatly enhanced are driving the field forward. Systems that may be favorable for significant advances include 221,223Rn, where the combination of octupole collectivity and relatively closely spaced opposite parity levels would increase the nuclear Schiff moment by one or more orders of magnitude compared to other diamagnetic atoms, i.e. 199Hg. We have developed and tested at TRIUMF-ISAC an on-line EDM experiment that will collect

  7. EM Induction Experiment to Determine the Moment of a Magnet

    ERIC Educational Resources Information Center

    Najiya Maryam, K. M.

    2014-01-01

    If we drop a magnet through a coil, an emf is induced in the coil according to Faraday's law of electromagnetic induction. Here, such an experiment is done using expEYES kit. The plot of emf versus time has a specific shape with two peaks. A theoretical analysis of this graph is discussed here for both short and long cylindrical magnets.…

  8. Vacuum effects in magnetic field with with account for fermion anomalous magnetic moment and axial-vector interaction

    NASA Astrophysics Data System (ADS)

    Bubnov, Andrey; Gubina, Nadezda; Zhukovsky, Vladimir

    2016-05-01

    We study vacuum polarization effects in the model of Dirac fermions with additional interaction of an anomalous magnetic moment with an external magnetic field and fermion interaction with an axial-vector condensate. The proper time method is used to calculate the one-loop vacuum corrections with consideration for different configurations of the characteristic parameters of these interactions.

  9. Excitation of local magnetic moments by tunneling electrons

    NASA Astrophysics Data System (ADS)

    Gauyacq, Jean-Pierre; Lorente, Nicolás; Novaes, Frederico Dutilh

    2012-05-01

    The advent of milli-kelvin scanning tunneling microscopes (STM) with inbuilt magnetic fields has opened access to the study of magnetic phenomena with atomic resolution at surfaces. In the case of single atoms adsorbed on a surface, the existence of different magnetic energy levels localized on the adsorbate is due to the breaking of the rotational invariance of the adsorbate spin by the interaction with its environment, leading to energy terms in the meV range. These structures were revealed by STM experiments in IBM Almaden in the early 2000s for atomic adsorbates on CuN surfaces. The experiments consisted in the study of the changes in conductance caused by inelastic tunneling of electrons (IETS, inelastic electron tunneling spectroscopy). Manganese and Iron adatoms were shown to have different magnetic anisotropies induced by the substrate. More experiments by other groups followed up, showing that magnetic excitations could be detected in a variety of systems: e.g. complex organic molecules showed that their magnetic anisotropy was dependent on the molecular environment, piles of magnetic molecules showed that they interact via intermolecular exchange interaction, spin waves were excited on ferromagnetic surfaces and in Mn chains, and magnetic impurities have been analyzed on semiconductors. These experiments brought up some intriguing questions: the efficiency of magnetic excitations was very high, the excitations could or could not involve spin flip of the exciting electron and singular-like behavior was sometimes found at the excitation thresholds. These facts called for extended theoretical analysis; perturbation theories, sudden-approximation approaches and a strong coupling scheme successfully explained most of the magnetic inelastic processes. In addition, many-body approaches were also used to decipher the interplay between inelastic processes and the Kondo effect. Spin torque transfer has been shown to be effective in changing spin orientations of an

  10. Estimation of magnetic moment and anisotropy energy of magnetic markers for biosensing application

    NASA Astrophysics Data System (ADS)

    Enpuku, K.; Sasayama, T.; Yoshida, T.

    2016-05-01

    We present a method to evaluate the magnetic moment (m) and the anisotropy energy (E) of magnetic markers, which are the key parameters employed in biosensing applications. The distributions of the m and E values in the marker are evaluated by analyzing the static magnetization (M-H) curve of the suspended markers and the frequency dependence of the AC susceptibility of the immobilized markers, respectively. Then, we obtain the relationship between m and E. In the experiment, four markers made of multicore and single core nanoparticles are examined. We obtain distributions of the m and E values, which show the particular characteristics of each marker. Although the m and E values are widely distributed in the marker, a clear relationship is obtained between the values. Therefore, the obtained m-E curve, as well as the distribution of the m and E values, provides a framework to discuss the dynamic behavior of the immobilized markers. The difference in the estimated m-E curves between the markers is also discussed.

  11. Neutrino transition magnetic moments within the non-standard neutrino-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Papoulias, D. K.; Kosmas, T. S.

    2015-07-01

    Tensorial non-standard neutrino interactions are studied through a combined analysis of nuclear structure calculations and a sensitivity χ2-type of neutrino events expected to be measured at the COHERENT experiment, recently planned to operate at the Spallation Neutron Source (Oak Ridge). Potential sizeable predictions on transition neutrino magnetic moments and other electromagnetic parameters, such as neutrino milli-charges, are also addressed. The non-standard neutrino-nucleus processes, explored from nuclear physics perspectives within the context of quasi-particle random phase approximation, are exploited in order to estimate the expected number of events originating from vector and tensor exotic interactions for the case of reactor neutrinos, studied with TEXONO and GEMMA neutrino detectors.

  12. Neutral current induced {pi}{sup 0} production and neutrino magnetic moment

    SciTech Connect

    Athar, M. Sajjad; Chauhan, S.; Singh, S. K.

    2008-08-01

    We have studied the total cross section, Q{sup 2}, momentum and angular distributions for pions in the {nu}({nu}) induced {pi}{sup 0} production from nucleons. The calculations have been done for the weak production induced by the neutral current in the standard model and the electromagnetic production induced by neutrino magnetic moment. It has been found that with the present experimental limits on the muon neutrino magnetic moment {mu}{sub {nu}{sub {mu}}}, the electromagnetic contribution to the cross section for the {pi}{sup 0} production is small. The neutrino induced neutral current production of {pi}{sup 0}, while giving an alternative method to study the magnetic moment of neutrino {mu}{sub {nu}{sub {mu}}}, does not provide any improvement over the present experimental limit on {mu}{sub {nu}{sub {mu}}} from the observation of this process in future experiments at T2K and NO{nu}A.

  13. Addendum to "Updating neutrino magnetic moment constraints" [Phys. Lett. B 753 (2016) 191-198

    NASA Astrophysics Data System (ADS)

    Cañas, B. C.; Miranda, O. G.; Parada, A.; Tórtola, M.; Valle, J. W. F.

    2016-06-01

    After the publication of this work we noticed that the uncertainties in the considered backgrounds in Borexino may affect our reported limit on the neutrino magnetic moment from Borexino data. Indeed, we have found that a more precise treatment of the uncertainties in the total normalization of these backgrounds results in a weaker sensitivity on the neutrino magnetic moment. This point will be hopefully improved in the near future thanks to the purification processes carried out in the second phase of the Borexino experiment. Meanwhile, however, we think it would be more reliable to adopt the bound on the neutrino magnetic moment reported by Borexino: μν < 5.4 ×10-11μB[1].

  14. Induced magnetic moment of Eu3+ ions in GaN

    PubMed Central

    Kachkanov, V.; Wallace, M. J.; van der Laan, G.; Dhesi, S. S.; Cavill, S. A.; Fujiwara, Y.; O'Donnell, K. P.

    2012-01-01

    Magnetic semiconductors with coupled magnetic and electronic properties are of high technological and fundamental importance. Rare-earth elements can be used to introduce magnetic moments associated with the uncompensated spin of 4f-electrons into the semiconductor hosts. The luminescence produced by rare-earth doped semiconductors also attracts considerable interest due to the possibility of electrical excitation of characteristic sharp emission lines from intra 4f-shell transitions. Recently, electroluminescence of Eu-doped GaN in current-injection mode was demonstrated in p-n junction diode structures grown by organometallic vapour phase epitaxy. Unlike most other trivalent rare-earth ions, Eu3+ ions possess no magnetic moment in the ground state. Here we report the detection of an induced magnetic moment of Eu3+ ions in GaN which is associated with the 7F2 final state of 5D0→7F2 optical transitions emitting at 622 nm. The prospect of controlling magnetic moments electrically or optically will lead to the development of novel magneto-optic devices. PMID:23236589

  15. Magnetic moment interactions in the e -- e + system

    NASA Astrophysics Data System (ADS)

    Geiger, K.; Reinhardt, J.; Müller, B.; Greiner, W.

    1988-03-01

    We have studied the possible existence of quasibound states of an electron-positron pair due to their magnetic interaction in the framework of the equations suggested by Barut et al. [5]. We derive radial equations for all angular quantum numbers of the e -- e + system and show, in detail, that Barut's equations doe not give a consistent, physically satisfactory description of positronium, except in the non-relativistic approximation (up to terms of order m α2). Moreover, we do not find evidence that the effective potentials occurring in the radial equations support magnetic resonances of the e-- e + system at short particle distances (“micropositronium”).

  16. Production polarization and magnetic moment of Ξ¯+ antihyperons produced by 800-GeV/c protons

    NASA Astrophysics Data System (ADS)

    Ho, P. M.; Longo, M. J.; Nguyen, A.; Luk, K. B.; James, C.; Rameika, R.; Duryea, J.; Guglielmo, G.; Heller, K.; Johns, K.; Diehl, H. T.; Teige, S.; Thomson, G. B.; Zou, Y.

    1990-10-01

    The polarization of Ξ¯ + hyperons produced by 800-GeV/c protons in the inclusive reaction p+Be-->Ξ¯ ++X has been measured. The average polarization of the Ξ¯ +, at a mean xF=0.39 and pt=0.76 GeV/c, is -0.097+/-0.012+/-0.009. The magnetic moment of the Ξ¯ + is 0.657+/-0.028+/-0.020 nuclear magneton.

  17. Covariant Spectator Theory of np scattering: Deuteron magnetic moment and form factors

    SciTech Connect

    Gross, Franz L.

    2014-06-01

    The deuteron magnetic moment is calculated using two model wave functions obtained from 2007 high precision fits to $np$ scattering data. Included in the calculation are a new class of isoscalar $np$ interaction currents which are automatically generated by the nuclear force model used in these fits. After normalizing the wave functions, nearly identical predictions are obtained: model WJC-1, with larger relativistic P-state components, gives 0.863(2), while model WJC-2 with very small $P$-state components gives 0.864(2) These are about 1\\% larger than the measured value of the moment, 0.857 n.m., giving a new prediction for the size of the $\\rho\\pi\\gamma$ exchange, and other purely transverse interaction currents that are largely unconstrained by the nuclear dynamics. The physical significance of these results is discussed, and general formulae for the deuteron form factors, expressed in terms of deuteron wave functions and a new class of interaction current wave functions, are given.

  18. Effect of permanent-magnet irregularities in levitation force measurements.

    SciTech Connect

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  19. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  20. Octet baryon magnetic moments in the chiral quark model with configuration mixing

    SciTech Connect

    Linde, J.; Ohlsson, T.; Snellman, H.

    1998-01-01

    The Coleman{endash}Glashow sum-rule for magnetic moments is always fulfilled in the chiral quark model, independently of SU(3) symmetry breaking. This is due to the structure of the wave functions, coming from the non-relativistic quark model. Experimentally, the Coleman{endash}Glashow sum-rule is violated by about ten standard deviations. To overcome this problem, two models of wave functions with configuration mixing are studied. One of these models violates the Coleman{endash}Glashow sum-rule to the right degree and also reproduces the octet baryon magnetic moments rather accurately. {copyright} {ital 1997} {ital The American Physical Society}

  1. Magnetic moment formation due to arsenic vacancies in LaFeAsO-derived superconductors

    PubMed Central

    Kikoin, Konstantin; Drechsler, Stefan-Ludwig; Koepernik, Klaus; Málek, Jiři; van den Brink, Jeroen

    2015-01-01

    Arsenic vacancies in LaFeAsO-derived superconductors are nominally non-magnetic defects. However, we find from a microscopic theory in terms of an appropriately modified Anderson-Wolff model that in their vicinity local magnetic moments form. They can arise because removing an arsenic atom breaks four strong, covalent bonds with the neighboring iron atoms. The moments emerging around an arsenic vacancy orient ferromagnetically and cause a substantial enhancement of the paramagnetic susceptibility in both the normal and superconducting state. The qualitative model description is supported by first principles band structure calculations of the As-vacancy related defect spectrum within a larger supercell. PMID:26169486

  2. Shedding light on dark matter: A Faraday rotation experiment to limit a dark magnetic moment

    SciTech Connect

    Gardner, Susan

    2009-03-01

    A Faraday rotation experiment can set limits on the magnetic moment of a electrically-neutral, dark-matter particle, and the limits increase in stringency as the candidate-particle mass decreases. Consequently, if we assume the dark-matter particle to be a thermal relic, our most stringent constraints emerge at the keV mass scale. We discuss how such an experiment could be realized and determine the limits on the magnetic moment as a function of mass which follow given demonstrated experimental capacities.

  3. Prediction of magnetic moment collapse in ZrFe{sub 2} under hydrostatic pressure

    SciTech Connect

    Zhang, Wenxu; Zhang, Wanli

    2015-04-28

    Electronic structure and magnetic properties of ZrFe{sub 2} in the cubic Laves phase are investigated by calculations based on density functional theory. The magnetic moment decreases with the increase of the hydrostatic pressure in an unusual way: Two-step magnetic collapse is predicted. The first one is a continuous change from 1.53 μ{sub B}/Fe to 0.63 μ{sub B}/Fe at about 3.6 GPa, and the other is from 0.25 μ{sub B}/Fe to the nonmagnetic state at about 15 GPa in a first order manner under the local spin density approximation of the exchange correlation potential. A metastable state with intermediate spin moment about 0.15 μ{sub B}/Fe may exist before that. We understand this process by the changes of density of states during it. The magnetic moment decreases under the pressure in the vicinity of the experimental lattice constant with dlnm/dp=−0.038 GPa{sup −1}. The spontaneous volume magnetostriction is 3.6%, which is huge enough to find potential applications in magnetostriction actuators and sensors. We suggest that the Invar effect of this compound may be understood when considering the magnetic moment variation according to the magnetostrictive model of Invar.

  4. Ionospheric plasma escape by high-altitude electric fields: Magnetic moment ''pumping''

    SciTech Connect

    Lundin, R.; Hultqvist, B.

    1989-06-01

    Measurements of electric fields and the composition of upward flowing ionospheric ions by the Viking spacecraft have provided further insight into the mass dependent plasma escape process taking place in the upper ionosphere. The Viking results of the temperature and mass-composition of individual ion beams suggest that upward flowing ion beams can be generated by a magnetic moment ''pumping'' mechanism caused by low-frequency transverse electric field fluctuations, in addition to a field aligned ''quasi-electrostatic'' acceleration process. Magnetic moment ''pumping'' within transverse electric field gradients can be described as a conversion of electric drift velocity to cyclotron velocity by the inertial drift in time-dependent electric field. This gives an equal cyclotron velocity gain for all plasma species, irrespective of mass. Oxygen ions thus gain 16 times as much transverse energy as protons. In addition to a transverse energy gain above the escape energy, a field-aligned quasi-electrostatic acceleration is considered primarily responsible for the collimated upward flow of ions. The field-aligned acceleration adds a constant parallel energy to escaping ionospheric ions. Thus, ion beams at high altitudes can be explained by a bimodal acceleration from both a transverse (equal velocity) and a parallel (equal energy) acceleration process. The Viking observations also show that the thermal energy of ion beams, and the ion beam width are mass dependent. The average O/sup +//H/sup +/ ''temperature ratio has been found to be 4.0 from the Viking observations. This is less than the factor of 16 anticipated from a coherent transverse electric field acceleration but greater than the factor of 1 (or even less than 1) expected from a turbulent acceleration process. /copyright/ American Geophysical Union 1989

  5. Search for high moment soft magnetic materials: FeZrN (abstract)

    SciTech Connect

    Chakraborty, A.; Bellesis, G.H.; Mountfield, K.R.; Lambeth, D.N.; Kryder, M.H.

    1996-04-01

    FeN materials exhibiting high moment, low coercivity and small magnetostriction have previously been reported. Zr has been known to reduce the magnetostriction in other Fe alloys. The criteria for an ideal recording head pole material as well as shields for magnetroresistive sensors include high moment, low coercivity, high permeability, and zero magnetostriction. We present here the properties of half micrometer thick rf sputtered FeZrN films on glass coupons. The films were deposited at a pressure of 3 mTorr using a Perkin{endash}Elmer sputtering system. The target was composed of Fe with Zr chips covering approximately 2{percent} of the surface area. The properties were measured as a function of the N{sub 2} partial pressure. The saturation magnetization of the as-sputtered films was approximately 20 kG. The easy axis and the hard axis coercivities show minima at approximately 7{percent}{endash}10{percent} N{sub 2} partial pressure of approximately 1.8 and 0.6 G, respectively. The magnetic anisotropy is approximately 5 G yielding a dc permeability of approximately 4000 along the hard axis. X-ray data reveal a systematic change in the ratio of {alpha}-Fe and {gamma}-Fe{sub 4}N; the amount of the {gamma}-Fe{sub 4}N phase increases with increasing N{sub 2} flow rate. The magnetostriction increases with increasing N{sub 2} content crossing zero at approximately 6{percent}. The grain size as probed by atomic force microscopy is an increasing function of the N{sub 2} partial pressure, from a few nm for a N{sub 2} partial pressure of 5{percent} to as large as 50 nm for a N{sub 2} partial pressure of 15{percent}. {copyright} {ital 1996 American Institute of Physics.}

  6. Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal.

    PubMed

    Frietsch, B; Bowlan, J; Carley, R; Teichmann, M; Wienholdt, S; Hinzke, D; Nowak, U; Carva, K; Oppeneer, P M; Weinelt, M

    2015-01-01

    The Heisenberg-Dirac intra-atomic exchange coupling is responsible for the formation of the atomic spin moment and thus the strongest interaction in magnetism. Therefore, it is generally assumed that intra-atomic exchange leads to a quasi-instantaneous aligning process in the magnetic moment dynamics of spins in separate, on-site atomic orbitals. Following ultrashort optical excitation of gadolinium metal, we concurrently record in photoemission the 4f magnetic linear dichroism and 5d exchange splitting. Their dynamics differ by one order of magnitude, with decay constants of 14 versus 0.8 ps, respectively. Spin dynamics simulations based on an orbital-resolved Heisenberg Hamiltonian combined with first-principles calculations explain the particular dynamics of 5d and 4f spin moments well, and corroborate that the 5d exchange splitting traces closely the 5d spin-moment dynamics. Thus gadolinium shows disparate dynamics of the localized 4f and the itinerant 5d spin moments, demonstrating a breakdown of their intra-atomic exchange alignment on a picosecond timescale. PMID:26355196

  7. Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal

    PubMed Central

    Frietsch, B.; Bowlan, J.; Carley, R.; Teichmann, M.; Wienholdt, S.; Hinzke, D.; Nowak, U.; Carva, K.; Oppeneer, P. M.; Weinelt, M.

    2015-01-01

    The Heisenberg–Dirac intra-atomic exchange coupling is responsible for the formation of the atomic spin moment and thus the strongest interaction in magnetism. Therefore, it is generally assumed that intra-atomic exchange leads to a quasi-instantaneous aligning process in the magnetic moment dynamics of spins in separate, on-site atomic orbitals. Following ultrashort optical excitation of gadolinium metal, we concurrently record in photoemission the 4f magnetic linear dichroism and 5d exchange splitting. Their dynamics differ by one order of magnitude, with decay constants of 14 versus 0.8 ps, respectively. Spin dynamics simulations based on an orbital-resolved Heisenberg Hamiltonian combined with first-principles calculations explain the particular dynamics of 5d and 4f spin moments well, and corroborate that the 5d exchange splitting traces closely the 5d spin-moment dynamics. Thus gadolinium shows disparate dynamics of the localized 4f and the itinerant 5d spin moments, demonstrating a breakdown of their intra-atomic exchange alignment on a picosecond timescale. PMID:26355196

  8. Ultrafast dynamics of localized magnetic moments in the unconventional Mott insulator Sr2IrO4.

    PubMed

    Krupin, O; Dakovski, G L; Kim, B J; Kim, J W; Kim, Jungho; Mishra, S; Chuang, Yi-De; Serrao, C R; Lee, W-S; Schlotter, W F; Minitti, M P; Zhu, D; Fritz, D; Chollet, M; Ramesh, R; Molodtsov, S L; Turner, J J

    2016-08-17

    We report a time-resolved study of the ultrafast dynamics of the magnetic moments formed by the [Formula: see text] states in Sr2IrO4 by directly probing the localized iridium 5d magnetic state through resonant x-ray diffraction. Using optical pump-hard x-ray probe measurements, two relaxation time scales were determined: a fast fluence-independent relaxation is found to take place on a time scale of 1.5 ps, followed by a slower relaxation on a time scale of 500 ps-1.5 ns. PMID:27310659

  9. Ultrafast dynamics of localized magnetic moments in the unconventional Mott insulator Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Krupin, O.; Dakovski, G. L.; Kim, B. J.; Kim, J. W.; Kim, Jungho; Mishra, S.; Chuang, Yi-De; Serrao, C. R.; Lee, W.-S.; Schlotter, W. F.; Minitti, M. P.; Zhu, D.; Fritz, D.; Chollet, M.; Ramesh, R.; Molodtsov, S. L.; Turner, J. J.

    2016-08-01

    We report a time-resolved study of the ultrafast dynamics of the magnetic moments formed by the {{J}\\text{eff}}=1/2 states in Sr2IrO4 by directly probing the localized iridium 5d magnetic state through resonant x-ray diffraction. Using optical pump–hard x-ray probe measurements, two relaxation time scales were determined: a fast fluence-independent relaxation is found to take place on a time scale of 1.5 ps, followed by a slower relaxation on a time scale of 500 ps–1.5 ns.

  10. Multi-moment advection scheme in three dimension for Vlasov simulations of magnetized plasma

    SciTech Connect

    Minoshima, Takashi; Matsumoto, Yosuke; Amano, Takanobu

    2013-03-01

    We present an extension of the multi-moment advection scheme [T. Minoshima, Y. Matsumoto, T. Amano, Multi-moment advection scheme for Vlasov simulations, Journal of Computational Physics 230 (2011) 6800–6823] to the three-dimensional case, for full electromagnetic Vlasov simulations of magnetized plasma. The scheme treats not only point values of a profile but also its zeroth to second order piecewise moments as dependent variables, and advances them on the basis of their governing equations. Similar to the two-dimensional scheme, the three-dimensional scheme can accurately solve the solid body rotation problem of a gaussian profile with little numerical dispersion or diffusion. This is a very important property for Vlasov simulations of magnetized plasma. We apply the scheme to electromagnetic Vlasov simulations. Propagation of linear waves and nonlinear evolution of the electron temperature anisotropy instability are successfully simulated with a good accuracy of the energy conservation.