Magnetic multipole redirector of moving plasmas
Crow, James T.; Mowrer, Gary R.
1999-01-01
A method and apparatus for redirecting moving plasma streams using a multiple array of magnetic field generators (e.g., permanent magnets or current bearing wires). Alternate rows of the array have opposite magnetic field directions. A fine wire mesh may be employed to focus as well as redirect the plasma.
Superconducting multipole corrector magnet
Kashikhin, Vladimir; /Fermilab
2004-10-01
A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.
NASA Astrophysics Data System (ADS)
Matsumoto, Kazunori; Motoki, Kentaro; Miyamoto, Masahiro; Uetani, Yasuhiro
1998-10-01
Effects of an improved multi-pole magnetic field on a plasma production generated by a polyphase ac glow discharge with multiple electrodes have been investigated. Conventional configuration of the multi-pole magnetic filed has been modified to suppress plasma losses at both ends of the chamber due to ExB drift motion. The modified multi-pole magnetic field has enabled us to produce a multiple magnetron-plasma at a considerably low pressure less than mTorr. The low temperature plasma has been widely used as the fine processing technology of a dry etching and as the thin film formation technology of a sputtering coating. Large-scale plasmas which can be generated at a low gas-pressure have been desired for more wider dry etching and greater sputter coating. The purpose of this study is to develop a large-scale and low-cost plasma generator by using a polyphase ac power source with the low frequency. In this session, we will present the experimental result as to a multiple magnetron-plasma generated in the modified twenty-four poles magnetic field by using the twenty-four-phase ac power source with the commercial electric power frequency of 60Hz. The ac power is supplied to twenty-four electrodes which are fixed to the water-cooled chamber-wall through sheet insulators so that the electrodes can be cooled indirectly.
Superconductivity in magnetic multipole states
NASA Astrophysics Data System (ADS)
Sumita, Shuntaro; Yanase, Youichi
2016-06-01
Stimulated by recent studies of superconductivity and magnetism with local and global broken inversion symmetry, we investigate the superconductivity in magnetic multipole states in locally noncentrosymmetric metals. We consider a one-dimensional zigzag chain with sublattice-dependent antisymmetric spin-orbit coupling and suppose three magnetic multipole orders: monopole order, dipole order, and quadrupole order. It is demonstrated that the Bardeen-Cooper-Schrieffer state, the pair-density wave (PDW) state, and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state are stabilized by these multipole orders, respectively. We show that the PDW state is a topological superconducting state specified by the nontrivial Z2 number and winding number. The origin of the FFLO state without macroscopic magnetic moment is attributed to the asymmetric band structure induced by the magnetic quadrupole order and spin-orbit coupling.
Permanent multipole magnets with adjustable strength
Halbach, K.
1983-03-01
Preceded by a short discussion of the motives for using permanent magnets in accelerators, a new type of permanent magnet for use in accelerators is presented. The basic design and most important properties of a quadrupole will be described that uses both steel and permanent magnet material. The field gradient produced by this magnet can be adjusted without changing any other aspect of the field produced by this quadrupole. The generalization of this concept to produce other multipole fields, or combination of multipole fields, will also be presented.
Closed expressions for the magnetic field of toroidal multipole configurations
Sheffield, G.V.
1983-04-01
Closed analytic expressions for the vector potential and the magnetic field for the lower order toroidal multipoles are presented. These expressions can be applied in the study of tokamak plasma cross section shaping. An example of such an application is included. These expressions also allow the vacuum fields required for plasma equilibrium to be specified in a general form independent of a particular coil configuration.
Multipole Analysis of Circular Cylindircal Magnetic Systems
J Selvaggi
2006-01-09
This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a ''Fourier series-like'' expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an alternative to the Elliptic integral formulation. In fact, anywhere that an Elliptic integral appears, one can replace it with its corresponding Q-function representation. A number of problems, using the toroidal expansion formulation, are analyzed and compared to existing known methods in order to validate the results. Also, the equivalent multipole distribution is found for most of the solved problems along with its corresponding physical interpretation. The main application is to characterize the external magnetic field due to a six-pole permanent magnet motor in terms of
Hierarchical Fast Multipole Simulation of Magnetic Colloids
NASA Astrophysics Data System (ADS)
Günal, Yüksel; Visscher, Pieter
1997-03-01
We have extended the well-known "fast multipole"footnote L. F. Greengard and V. Rokhlin, J. Comp. Phys. 73 p. 325, 1987. methods for molecular-dynamics simulation of large systems of point charges to continuum systems, such as magnetic films or particulate suspensions. (These methods reduce the computational labor from O(N^2) to O(N log N) or O(N), the number of particles). We apply the method to the particular case of a colloidal dispersion of magnetized cylindrical particles. Our method is fully hierarchical, both upward and downward from the particle size scale. The force on each particle is calculated by grouping distant particles into large clusters, nearer particles into smaller clusters, and dividing the nearest particles into segments. The fineness with which the particles are divided is controlled by an error tolerance parameter. The field of each cluster or segment is computed from a multipole expansion. Distant periodic images are also treated as multipoles - this is much faster than standard Fourier-transform or Ewald summation techniques.
Multipole expansion in plasmas: Effective interaction potentials between compound particles
NASA Astrophysics Data System (ADS)
Ramazanov, T. S.; Moldabekov, Zh. A.; Gabdullin, M. T.
2016-05-01
In this paper, the multipole expansion method is used to determine effective interaction potentials between particles in both classical dusty plasma and dense quantum plasma. In particular, formulas for interactions of dipole-dipole and charge-dipole pairs in a classical nondegenerate plasma as well as in degenerate quantum and semiclassical plasmas were derived. The potentials describe interactions between atoms, atoms and charged particles, dust particles in the complex plasma, atoms and electrons in the degenerate plasma, and metals. Correctness of the results obtained from the multipole expansion is confirmed by their agreement with the results based on other methods of statistical physics and dielectric response function. It is shown that the method of multipole expansion can be used to derive effective interaction potentials of compound particles, if the effect of the medium on the potential of individual particles comprising compound particles is known.
Design and characterization of combined function multipole magnet for accelerators
Sinha, Gautam; Singh, Gurnam
2008-12-15
This paper presents the design and analysis of a multipurpose combined function magnet for use in accelerators. This magnet consists of three corrector magnets: (i) skew quadrupole, (ii) horizontal dipole, and (iii) vertical dipole magnets, along with the main sextupole magnet. The strength of the corrector magnets is smaller than that of the main sextupole magnet. The strength of all the four magnets can be varied independently. The excitation strength required to produce skew quadrupole gradient and the presence of various multipole components in the magnet are estimated using first order perturbation theory. The experimental data for the variation of the sextupole strength and its higher order multipoles in the presence of skew quadrupole excitations are presented and compared to the theoretical predictions. Simulation using two-dimensional fine element code, Poisson, is also done. Results obtained from all the above three methods are found to be in good agreement with each other. The variations of skew quadrupole gradient for different sextupole excitations are also measured. The validity of this theory is also checked for various combinations of excitations including the case where magnet gets saturated. The excitation strengths required for producing the horizontal and vertical dipole fields are estimated analytically along with the presence of various multipoles. Theoretical predictions of permissible multipoles are compared to the results obtained from simulation.
Permanent-magnet multipole with adjustable strength
Halbach, K.
1982-09-20
Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling there between. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.
Permanent magnet multipole with adjustable strength
Halbach, Klaus
1985-01-01
Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling therebetween. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.
Extended multipole image of a nonideal permanent magnet rotor
NASA Astrophysics Data System (ADS)
Kildishev, Alexander V.; Nyenhuis, John A.; Zhilichev, Yuriy N.
2003-05-01
Reduction of the external magnetic field (magnetic signature) of large electric motors may be important in military and other applications. This article deals with critical issues in the design and manufacturing of permanent magnet (PM) motors that are responsible for increased magnetic signatures. Emphasis is on analysis of the nonidealities of PM rotors such as imbalances in the permanent magnet excitation system due to manufacturing tolerances and differences in material properties. Spatial harmonic analysis is used to describe the magnetic signature. The rotor simulation considers rectangular PM segments, and uses statistical characterization of possible nonidealities in dimensions, positioning, and magnetization. The approach focuses on lower degree magnetic multipole moments (dipolar, quadrupolar, and octupolar) in spheroidal and spherical domains, and is applied to PM inducing elements.
Experience with the SLC permanent magnet multipoles
Gross, G.; Spencer, J.
1994-06-01
Permanent magnets have been used in the SLC Damping Rings and their injection and extraction lines since 1985. Recent upgrades of the DR vacuum chambers provided an opportunity to check DR magnets prior to higher beam current operation. Several PM sextupoles downstream of the injection kickers in the electron ring had exceeded their thermal stabilization values of 80{degrees}C and some showed serious mechanical deformations and radiation >1 R at contact. We discuss our observations, measurements and a few inexpensive modifications that should improve these magnets under such conditions. A new, block matching algorithm allowed us to use magnet blocks that had been considered unusable because of very different remament field strengths and easy axis errors.
Tests of planar permanent magnet multipole focusing elements
Cobb, J.; Tatchyn, R.
1993-08-01
In recent work, planar configurations of permanent magnets were proposed as substitutes for conventional current-driven iron quadrupoles in applications limited by small aperture sizes and featuring small beam occupation diameters. Important examples include the configuring of focusing lattices in small-gap insertion devices, and the implementation of compact mini-beta sections on linear or circular machines. In subsequent analysis, this approach was extended to sextupoles and higher-order multipoles. In this paper we report on initial measurements conducted at the Stanford Linear Accelerator Center on recently fabricated planar permanent magnet quadrupoles and sextupoles configured out of SmCo and NdFe/B.
Analytical expressions for fringe fields in multipole magnets
NASA Astrophysics Data System (ADS)
Muratori, B. D.; Jones, J. K.; Wolski, A.
2015-06-01
Fringe fields in multipole magnets can have a variety of effects on the linear and nonlinear dynamics of particles moving along an accelerator beam line. An accurate model of an accelerator must include realistic models of the magnet fringe fields. Fringe fields for dipoles are well understood and can be modeled at an early stage of accelerator design in such codes as mad8, madx, gpt or elegant. Existing techniques for quadrupole and higher order multipoles rely either on the use of a numerical field map, or on a description of the field in the form of a series expansion about a chosen axis. Usually, it is not until the later stages of a design project that such descriptions (based on magnet modeling or measurement) become available. Furthermore, series expansions rely on the assumption that the beam travels more or less on axis throughout the beam line; but in some types of machines (for example, Fixed Field Alternating Gradients or FFAGs) this is not a good assumption. Furthermore, some tracking codes, such as gpt, use methods for including space charge effects that require fields to vary smoothly and continuously along a beam line: in such cases, realistic fringe field models are of significant importance. In this paper, a method for constructing analytical expressions for multipole fringe fields is presented. Such expressions allow fringe field effects to be included in beam dynamics simulations from the start of an accelerator design project, even before detailed magnet design work has been undertaken. The magnetostatic Maxwell equations are solved analytically and a solution that fits all orders of multipoles is derived. Quadrupole fringe fields are considered in detail as these are the ones that give the strongest effects. The analytic expressions for quadrupole fringe fields are compared with data obtained from numerical modeling codes in two cases: a magnet in the high luminosity upgrade of the Large Hadron Collider inner triplet, and a magnet in the
Object-Oriented Fast Multipole Simulation: Magnetic Colloids
NASA Astrophysics Data System (ADS)
Visscher, Pieter; Günal, Yüksel
1997-08-01
In simulating a system of N particles, if the interaction is long-ranged all pair interactions must be calculated, requiring CPU time of order N^2. Recently-developed ``fast multipole'' methods (FMM) can reduce this time to order N, at the cost of considerable programming complexity. We have developed an object-oriented approach which uses similar ideas but is conceptually much simpler. The system is represented by a hierarchical tree whose root is the entire system and whose lowest nodes are the particles. The entire calculation of the particle interactions consists of a single call to a recursive function CalculateInteractions(A,B) with A=B=root, which uses a simple opening-angle criterion to choose between multipole expansion and calling itself (subdividing A and B.) The resulting algorithm is essentially equivalent to the FMM, but the choice of when to subdivide (which is laboriously hard-wired in FMM) is made automatically. We will discuss the implementation of periodic BCs and the application of the method to continuum systems (cylindrical magnetic particles).
Magnetic assembly of colloidal superstructures with multipole symmetry.
Erb, Randall M; Son, Hui S; Samanta, Bappaditya; Rotello, Vincent M; Yellen, Benjamin B
2009-02-19
The assembly of complex structures out of simple colloidal building blocks is of practical interest for building materials with unique optical properties (for example photonic crystals and DNA biosensors) and is of fundamental importance in improving our understanding of self-assembly processes occurring on molecular to macroscopic length scales. Here we demonstrate a self-assembly principle that is capable of organizing a diverse set of colloidal particles into highly reproducible, rotationally symmetric arrangements. The structures are assembled using the magnetostatic interaction between effectively diamagnetic and paramagnetic particles within a magnetized ferrofluid. The resulting multipolar geometries resemble electrostatic charge configurations such as axial quadrupoles ('Saturn rings'), axial octupoles ('flowers'), linear quadrupoles (poles) and mixed multipole arrangements ('two tone'), which represent just a few examples of the type of structure that can be built using this technique. PMID:19225522
Prager, S C
1982-05-01
Multipoles are being employed as devices to study fusion issues and plasma phenomena at high values of beta (plasma pressure/magnetic pressure) in a controlled manner. Due to their large volume, low magnetic field (low synchrotron radiation) region, they are also under consideration as potential steady state advanced fuel (low neutron yield) reactors. Present experiments are investigating neoclassical (bootstrap and Pfirsch-Schlueter) currents and plasma stability at extremely high beta.
Neptune radio emission in dipole and multipole magnetic fields
NASA Technical Reports Server (NTRS)
Sawyer, C. B.; King, N. V.; Romig, J. H.; Warwick, J. W.
1995-01-01
We study Neptune's smooth radio emission in two ways: we simulate the observations and we then consider the radio effects of Neptune's magnetic multipoles. A procedure to deduce the characteristics of radio sources observed by the Planetary Radio Astronomy experiment minimizes limiting assumptions and maximizes use of the data, including quantitative measurement of circular polarization. Study of specific sources simulates time variation of intensity and apparent polarization of their integrated emission over an extended time period. The method is applied to Neptune smooth recurrent emission (SRE). Time series are modeled with both broad and beamed emission patterns, and at two frequencies which exhibit different time variation of polarization. These dipole-based results are overturned by consideration of more complex models of Neptune's magnetic field. Any smooth emission from the anticipated auroral radio source is weak and briefly observed. Dominant SRE originates complex fields at midlatitude. Possible SRE source locations overlap that of 'high-latitude' emission (HLE) between +(out) and -(in) quadrupoles. This is the first identification of multipolar magnetic structure with a major source of planetary radio emission.
Selected applications of planar permanent magnet multipoles in FEL insertion device design
Tatchyn, R.
1993-08-01
In recent work, a new class of magnetic multipoles based on planar configurations of permanent magnet (PM) material has been developed. These structures, in particular the quadrupole and sextupole, feature fully open horizontal apertures, and are comparable in effectiveness to conventional iron multipole structures. In this paper results of recent measurements of planar PM quadrupoles and sextupoles are reported and selected applications to FEL insertion device design are considered.
Antimatter plasmas in a multipole trap for antihydrogen.
Andresen, G; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y
2007-01-12
We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies. PMID:17358606
Magnetic multipole cylinders from mould-injection Nd2Fe14B plastic bonded magnets (abstract)
NASA Astrophysics Data System (ADS)
Nicolaides, G. K.; Niarchos, D.; Tsamakis, D.; Koubouros, I.; Mitsis, A.
1996-04-01
Mould injection Nd2Fe14B magnetic material of density ρ˜4 g/cc and of an energy product (BH)max˜4 MGOe, has been pressed into the form of cylindrical segments in order to investigate the possibility of preparing cylindrical magnetic multipoles which could be used as magnetic gears. The obtained cylindrical bonded magnet segments have a length of 3 cm and an angle width of φ=90° or φ=45°. These segments are easily magnetized along a radial direction at the angle φ/2, using a conventional electromagnet at a magnetic field of 2 T. Subsequently, the opposite magnetized segments are combined and bonded together with ultrasonic technique. The final result of the above procedure is the formation of a magnetic multipole cylinder which could be used as a magnetic gear. Here, except the preparation technique, we report the maximum torque applied versus the magnetization M of the poles and the distance between the gears. The dependence of the applied torque on the rotational frequency is also examined.
Global Aspects of Charged Particle Motion in Axially Symmetric Multipole Magnetic Fields
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2003-01-01
The motion of a single charged particle in the space outside of a compact region of steady currents is investigated. The charged particle is assumed to produce negligible electromagnetic radiation, so that its energy is conserved. The source of the magnetic field is represented as a point multipole. After a general description, attention is focused on magnetic fields with axial symmetry. Lagrangian dynamical theory is utilized to identify constants of the motion as well as the equations of motion themselves. The qualitative method of Stonner is used to examine charged particle motion in axisymmetric multipole fields of all orders. Although the equations of motion generally have no analytical solutions and must be integrated numerically to produce a specific orbit, a topological examination of dynamics is possible, and can be used, d la Stonner, to completely describe the global aspects of the motion of a single charged particle in a space with an axisymmetric multipole magnetic field.
Grooved multi-pole magnetic gratings for high-resolution positioning systems
NASA Astrophysics Data System (ADS)
Xu, Zhi-Hao; Tseng, Bin-Hui; Chang, Ching; Wang, Sheng-Ching; Chin, Tsung-Shune; Sung, Cheng-Kuo
2015-06-01
Magnetic encoders are much advantageous for precision positioning specifically under harsh environments. The finer the magnetic pole-pitches of the magnetic scale in a magnetic encoder the higher the resolution of the encoder. In this paper, a grooved multi-pole magnetic grating (MPMG) is substituted for conventional non-structured magnetic scale. A MPMG with pole-pitch of 200 µm was prepared by photo-lithography and electro-deposition. Simulation was first done to attain the relationship among magnetic flux density, magnetic properties of electrodeposited alloy layers, magnetizing directions and the grating dimensions. The MPMG can be fully magnetized for use by just a single pulse in a solenoid coil. Magnetic properties were investigated in which CoNiP layers were electrodeposited under various current densities. Measured magnetic flux densities versus grating heights, magnetizing directions and detection gaps on magnetized MPMG validate the applicability of ultra-fine pitched MPMG.
Two-species presheath measurements in a multipole plasma
Hala, A.M.; Hershkowitz, N.
1999-07-01
Emissive probe measurements of plasma presheath potential profiles were made in a DC hot filament multidipole plasma discharge. The measurements were done with Argon, Xenon and a combination of the two gases. The presheath plasma potential near a negatively biased plate was mapped in two dimensions. The inflection point method in the limit of zero emission was used. The presheath was found to be a region of constant electric field with characteristic length the order of the ion-neutral collision length. The results show contraction of the presheath in the direction perpendicular to the plate as the pressure increases (between 0.5 and 3 mtorr). Two competing processes affect the presheath. These are ionization and collisions with ionization becoming more important at lower pressures. Experimental results are compared to various presheath models.
Cyclic Variations of Near-Earth Conditions and Solar Magnetic Multipole Fields
NASA Astrophysics Data System (ADS)
Kim, B.; Lee, J.; Oh, S.; Yi, Y.
2014-12-01
We have investigated the cyclic variations of the magnetic multipole components of solar fields in comparison with various indices for the solar, interplanetary, and geomagnetic activities measured from 1976 to 2012 (from Solar Cycle 21 to the early phase of Cycle 24). The magnetic multipole components are calculated using the synoptic magnetic field data and the potential field source surface (PFSS) model of the Wilcox Solar Observatory (WSO). While most solar activity indices such as sunspot number, total solar irradiance, 10.7 cm radio flux, and solar flare occurrence rate are highly correlated with the flux of magnetic quadrupole component, the solar wind dynamic pressure and the geomagnetic activity index, AE, are rather correlated with the dipole and higher-order pole components, respectively. The cyclic variation of the dipole components is out of phase with the solar sunspot cycle and that of the quadrupole component is in phase. It is therefore argued that the temporal correlations of the activity indices with the individual multipole components as found in this study may clarify why some of the activity indices are seemingly out of phase with the sunspot cycle.
Field analysis and enhancement of multi-pole magnetic components fabricated on printed circuit board
NASA Astrophysics Data System (ADS)
Chiu, Kuo-Chi; Chen, Chin-Sen
2007-09-01
A multi-pole magnetic component magnetized with a fine magnetic pole pitch of less than 1 mm is very difficult to achieve by using traditional methods. Moreover, it requires a precise mechanical process and a complicated magnetization system. Different fine magnetic pole pitches of 300, 350 and 400 μm have been accomplished on 9-pole magnetic components through the printed circuit board (PCB) manufacturing technology. Additionally, another fine magnetic pole pitch of 500 μm was also fabricated on a dual-layered (DL) wire circuit structure to investigate the field enhancement. After measurements, a gain factor of 1.37 was obtained in the field strength. The field variations among different magnetic pole pitches were analyzed in this paper.
Oxidation of gallium arsenide in a plasma multipole device. Study of the MOS structures obtained
NASA Technical Reports Server (NTRS)
Gourrier, S.; Mircea, A.; Simondet, F.
1980-01-01
The oxygen plasma oxidation of GaAs was studied in order to obtain extremely high frequency responses with MOS devices. In the multipole system a homogeneous oxygen plasma of high density can easily be obtained in a large volume. This system is thus convenient for the study of plasma oxidation of GaAs. The electrical properties of the MOS diodes obtained in this way are controlled by interface states, located mostly in the upper half of the band gap where densities in the 10 to the 13th power/(sq cm) (eV) range can be estimated. Despite these interface states the possibility of fabricating MOSFET transistors working mostly in the depletion mode for a higher frequency cut-off still exists.
Bashful ballerina unveiled: Multipole analysis of the coronal magnetic field
NASA Astrophysics Data System (ADS)
Virtanen, I.; Mursula, K.
2012-12-01
Heliospheric current sheet (HCS) is the continuum of the coronal magnetic equator, dividing the heliospheric magnetic field (HMF) into two sectors (polarities). Because of its wavy structure, the HCS is often called the ballerina skirt. Several studies have proven that the HCS is southward shifted during about three years in the solar declining phase. This persistent phenomenon, called the bashful ballerina, has been verified by geomagnetic indices since 1930s, by OMNI data base since 1960s, by the WSO PFSS model since mid-1970s and by the Ulysses probe measurements during the fast latitude scans in 1994-1995 and 2007. We study here the Wilcox Solar Observatory measurements of the photospheric magnetic field and the PFSS extrapolation of the coronal magnetic field. We show that the quadrupole moment of the photospheric magnetic field, which is important for the HCS asymmetry (bashful ballerina), mainly arises from the difference between northern and southern polar field strengths. According to the WSO data the minimum time quadrupole is mainly due to the difference between the highest northern and southern latitude bins. Related studies imply that the southward shift of the HCS is related to the delayed development of southern coronal holes. We also discuss the suggested connection of the HCS asymmetry to sunspot hemispheric asymmetry.
Orientation Measurement Based on Magnetic Inductance by the Extended Distributed Multi-Pole Model
Wu, Fang; Moon, Seung Ki; Son, Hungsun
2014-01-01
This paper presents a novel method to calculate magnetic inductance with a fast-computing magnetic field model referred to as the extended distributed multi-pole (eDMP) model. The concept of mutual inductance has been widely applied for position/orientation tracking systems and applications, yet it is still challenging due to the high demands in robust modeling and efficient computation in real-time applications. Recently, numerical methods have been utilized in design and analysis of magnetic fields, but this often requires heavy computation and its accuracy relies on geometric modeling and meshing that limit its usage. On the other hand, an analytical method provides simple and fast-computing solutions but is also flawed due to its difficulties in handling realistic and complex geometries such as complicated designs and boundary conditions, etc. In this paper, the extended distributed multi-pole model (eDMP) is developed to characterize a time-varying magnetic field based on an existing DMP model analyzing static magnetic fields. The method has been further exploited to compute the mutual inductance between coils at arbitrary locations and orientations. Simulation and experimental results of various configurations of the coils are presented. Comparison with the previously published data shows not only good performance in accuracy, but also effectiveness in computation. PMID:24977389
NASA Astrophysics Data System (ADS)
Szmytkowski, Radosław; Łukasik, Grzegorz
2016-09-01
We present tabulated data for several families of static electric and magnetic multipole susceptibilities for hydrogenic atoms with nuclear charge numbers from the range 1 ⩽ Z ⩽ 137. Atomic nuclei are assumed to be point-like and spinless. The susceptibilities considered include the multipole electric polarizabilities α E L → E L and magnetizabilities (magnetic susceptibilities) χ M L → M L with 1 ⩽ L ⩽ 4 (i.e., the dipole, quadrupole, octupole and hexadecapole ones), the electric-to-magnetic cross-susceptibilities α E L → M(L - 1) with 2 ⩽ L ⩽ 5 and α E L → M(L + 1) with 1 ⩽ L ⩽ 4, the magnetic-to-electric cross-susceptibilities χ M L → E(L - 1) with 2 ⩽ L ⩽ 5 and χ M L → E(L + 1) with 1 ⩽ L ⩽ 4 (it holds that χ M L → E(L ∓ 1) =α E(L ∓ 1) → M L), and the electric-to-toroidal-magnetic cross-susceptibilities α E L → T L with 1 ⩽ L ⩽ 4. Numerical values are computed from general exact analytical formulas, derived by us elsewhere within the framework of the Dirac relativistic quantum mechanics, and involving generalized hypergeometric functions 3F2 of the unit argument.
A novel design of iron dominated superconducting multipole magnets with circular coils
Kashikhin, Vladimir; /Fermilab
2009-10-01
Linear accelerators based on superconducting magnet technology use a large number of relatively weak superconducting quadrupoles. In this case an iron dominated quadrupole is the most cost effective solution. The field quality in this magnet is defined by iron poles; the magnet air gap is minimal as are coil ampere-turns. Nevertheless, it has long racetrack type coils, which must be rigid and fixed by a mechanical structure to provide the needed mechanical stability. The novel concept of using circular superconducting coils in such a quadrupole type is described, with a discussion of quadrupole parameters, and results of 3D magnetic designs. Variants of short and long sectional quadrupoles and multipoles are presented.
NASA Astrophysics Data System (ADS)
Ayuel, K.; de Châtel, P. F.
2009-05-01
A formalism is presented that enables the calculation of atomic charge and current densities in Russel-Saunders states of free atoms and ions in terms of scalar and vector spherical harmonics. The electric and magnetic fields generated by the multipole components of charge and current distributions are easily calculated. They are found to have the same multipolarity as their generating sources and Maxwell's equations are satisfied component by component. Calculations of these fields for hydrogen-like atoms and specific transition-metal and rare-earth ions are presented using realistic analytic radial wave functions.
Ultracold neutron accumulation in a superfluid-helium converter with magnetic multipole reflector
NASA Astrophysics Data System (ADS)
Zimmer, O.; Golub, R.
2015-07-01
We analyze the accumulation of ultracold neutrons (UCNs) in a superfluid-helium converter vessel surrounded by a magnetic multipole reflector. We solved the spin-dependent rate equation, employing formulas valid for adiabatic spin transport of trapped UCNs in mechanical equilibrium. Results for saturation UCN densities are obtained in dependence of order and strength of the multipolar field. The addition of magnetic storage to neutron optical potentials can increase the density and energy of the low-field-seeking UCNs produced and serves to mitigate the effects of wall losses on the source performance. It also can provide a highly polarized sample of UCNs without need to polarize the neutron beam incident on the converter. This work was performed in preparation of the UCN source project SuperSUN at the Institut Laue-Langevin.
Poloidal OHMIC heating in a multipole
Holly, D.J.
1982-01-01
The feasibility of using poloidal currents to heat plasmas confined by a multipole field has been examined experimentaly in Tokapole II. The machine is operated as a toroidal octupole, with a time-varying toroidal magnetic field driving poloidal plasma currents I/sub plasma/ - 20 kA to give densities n/sub e/ - 10/sup 13/ cm/sup -3/ and temperatures T/sub e/ - 30 eV.
Low loss pole configuration for multi-pole homopolar magnetic bearings
NASA Technical Reports Server (NTRS)
Blumenstock, Kenneth A. (Inventor); Hakun, Claef F. (Inventor)
2001-01-01
A new pole configuration for multi-pole homopolar bearings proposed in this invention reduces rotational losses caused by eddy-currents generated when non-uniform flux distributions exist along the rotor surfaces. The new homopolar magnetic bearing includes a stator with reduced pole-to-pole and exhibits a much more uniform rotor flux than with large pole-to-pole gaps. A pole feature called a pole-link is incorporated into the low-loss poles to provide a uniform pole-to-pole gap and a controlled path for pole-to-pole flux. In order to implement the low-loss pole configuration of magnetic bearings with small pole-to-pole gaps, a new stator configuration was developed to facilitate installation of coil windings. The stator was divided into sector shaped pieces, as many pieces as there are poles. Each sector-shaped pole-piece can be wound on a standard coil winding machine, and it is practical to wind precision layer wound coils. To achieve maximum actuation efficiency, it is desirable to use all the available space for the coil formed by the natural geometric configuration. Then, the coils can be wound in a tapered shape. After winding, the sectored-pole-pieces are installed into and fastened by bonding or other means, to a ring of material which encloses the sectored-pole-pieces, forming a complete stator.
NASA Astrophysics Data System (ADS)
Bliss, Neil; Dawson, Cheryl
1997-05-01
An upgrade to the SRS is planned, which will provide high quality X-rays to upto four new experimental stations, on two new beamlines. These X-rays will originate in two new 2T multipole wiggler (MPW) insertion devices. The insertion devices are a hybrid design consisting of Neodymium-Iron-Boron permanent magnets and Vanadium Permendur pole pieces. In order to achieve the high on-axis field strength of the MPW and reduce the volume of permanent magnet material, a minimum amount of vacuum chamber material is required between the electron beam stay clear aperture and the poles of the MPW. Careful consideration has been given to the design, material selection and construction technique for the vacuum chamber to achieve a 1 mm wall thickness and 0.3 mm flatness tolerance over the nine pole face areas. Titanium alloy Ti-6Al-4V has been chosen in preference to more conventional ultra high vacuum chamber materials and a prototype has been constructed and tested.
NASA Astrophysics Data System (ADS)
Kim, Bogyeong; Lee, Jeongwoo; Yi, Yu; Oh, Suyeon
2015-01-01
In this study we compare the temporal variations of the solar, interplanetary, and geomagnetic (SIG) parameters with that of open solar magnetic flux from 1976 to 2012 (from Solar Cycle 21 to the early phase of Cycle 24) for a purpose of identifying their possible relationships. By the open flux, we mean the average magnetic field over the source surface (2.5 solar radii) times the source area as defined by the potential field source surface (PFSS) model of the Wilcox Solar Observatory (WSO). In our result, most SIG parameters except the solar wind dynamic pressure show rather poor correlations with the open solar magnetic field. Good correlations are recovered when the contributions from individual multipole components are counted separately. As expected, solar activity indices such as sunspot number, total solar irradiance, 10.7 cm radio flux, and solar flare occurrence are highly correlated with the flux of magnetic quadrupole component. The dynamic pressure of solar wind is strongly correlated with the dipole flux, which is in anti-phase with Solar Cycle (SC). The geomagnetic activity represented by the Ap index is correlated with higher order multipole components, which show relatively a slow time variation with SC. We also found that the unusually low geomagnetic activity during SC 23 is accompanied by the weak open solar fields compared with those in other SCs. It is argued that such dependences of the SIG parameters on the individual multipole components of the open solar magnetic flux may clarify why some SIG parameters vary in phase with SC and others show seemingly delayed responses to SC variation.
Plasma acceleration above martian magnetic anomalies.
Lundin, R; Winningham, D; Barabash, S; Frahm, R; Holmström, M; Sauvaud, J-A; Fedorov, A; Asamura, K; Coates, A J; Soobiah, Y; Hsieh, K C; Grande, M; Koskinen, H; Kallio, E; Kozyra, J; Woch, J; Fraenz, M; Brain, D; Luhmann, J; McKenna-Lawler, S; Orsini, R S; Brandt, P; Wurz, P
2006-02-17
Auroras are caused by accelerated charged particles precipitating along magnetic field lines into a planetary atmosphere, the auroral brightness being roughly proportional to the precipitating particle energy flux. The Analyzer of Space Plasma and Energetic Atoms experiment on the Mars Express spacecraft has made a detailed study of acceleration processes on the nightside of Mars. We observed accelerated electrons and ions in the deep nightside high-altitude region of Mars that map geographically to interface/cleft regions associated with martian crustal magnetization regions. By integrating electron and ion acceleration energy down to the upper atmosphere, we saw energy fluxes in the range of 1 to 50 milliwatts per square meter per second. These conditions are similar to those producing bright discrete auroras above Earth. Discrete auroras at Mars are therefore expected to be associated with plasma acceleration in diverging magnetic flux tubes above crustal magnetization regions, the auroras being distributed geographically in a complex pattern by the many multipole magnetic field lines extending into space. PMID:16484488
Lapke, M.; Mussenbrock, T.; Brinkmann, R. P.
2008-08-04
A diagnostic concept is presented which enables the simultaneous determination of plasma density, electron temperature, and collision rate in low-pressure gas discharges. The proposed method utilizes a radio-frequency driven probe of particular spherical design which is immersed in the plasma to excite a family of spatially bounded surface resonances. An analysis of the measured absorption spectrum S({omega}) of the probe provides information on the distribution of the plasma in its vicinity, from which the values of the plasma parameters can be inferred. In its simplest realization, the probe consists of two dielectrically shielded, conducting hemispheres, which are symmetrically driven by an radio-frequency source, and the excited resonances can be classified as multipole fields, which allows an analytical evaluation of the measured signal. The proposed method is robust, calibration free, economical, and can be used for ideal and reactive plasmas alike.
Cole, J.E. III
1996-04-01
Directional hydrophones provide the means to resolve bearing ambiguity in towed arrays and to reduce the effects of aliasing in undersampled arrays. A multipole hydrophone combines the output of multiple monopole elements spaced closely in terms of acoustic wavelengths to obtain its directionality. Issues related to multipole sensor implementation and performance include signal-to-noise performance, flow noise influence, and material selection. {copyright} {ital 1996 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Choi, Jang-Young; Jang, Seok-Myeong; Ko, Kyoung-Jin
2009-04-01
This paper deals with experimental verification and analytical approach to influence stator skew on electromagnetic performance of a permanent magnet generator (PMG) with multipole rotor. The analytical expressions for magnetic field distributions are due to permanent magnets and the two-dimensional permeance function considering skew effects are established. On the basis of these analytical solutions, the analytical solutions for cogging torque and back-emf considering skew effects are also derived. Then, by applying estimated electrical parameters to a simple equivalent circuit of one phase for the PMG, output performances of the PMG with/without a skewed stator are investigated. Finally, by confirming that all analytical results are validated extensively by nonlinear finite element calculations and measurements, the validity of analysis methods presented in this paper is verified, and the influence stator skew on cogging torque, back-emf, and output performances of the PMG is also clearly described.
Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim
2016-06-01
We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model. PMID:27370475
NASA Astrophysics Data System (ADS)
Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim
2016-06-01
We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model.
Performance of a magnetic multipole line-cusp argon ion thruster
NASA Technical Reports Server (NTRS)
Sovey, J. S.
1981-01-01
A 17 cm diameter line cusp ion thruster was evaluated with inert gases which are candidate propellants for on orbit and orbit transfer propulsion functions for Large Space Systems. A semiempirical relationship was generated to predict thruster beam current in terms of plasma parameters which would allow initial thruster optimization without ion extraction and the associated large vacuum facilities. The sensitivity of performance to changes in discharge electrode configurations and magnetic circuit was evaluated and is presented. After final optimization a propellant utilization efficiency of 0.9 at a discharge chamber power expenditure of about 260 w per beam ampere was obtained. These performance parameters are the highest yet achieved with argon propellant.
Multipole expansions and intense fields
NASA Astrophysics Data System (ADS)
Reiss, Howard R.
1984-02-01
In the context of two-body bound-state systems subjected to a plane-wave electromagnetic field, it is shown that high field intensity introduces a distinction between long-wavelength approximation and electric dipole approximation. This distinction is gauge dependent, since it is absent in Coulomb gauge, whereas in "completed" gauges of Göppert-Mayer type the presence of high field intensity makes electric quadrupole and magnetic dipole terms of importance equal to electric dipole at long wavelengths. Another consequence of high field intensity is that multipole expansions lose their utility in view of the equivalent importance of a number of low-order multipole terms and the appearance of large-magnitude terms which defy multipole categorization. This loss of the multipole expansion is gauge independent. Also gauge independent is another related consequence of high field intensity, which is the intimate coupling of center-of-mass and relative coordinate motions in a two-body system.
Magnetic expansion of cosmic plasmas
NASA Technical Reports Server (NTRS)
Yang, Wei-Hong
1995-01-01
Plasma expansion is common in many astrophysical phenomena. The understanding of the driving mechanism has usually been focused on the gas pressure that implies conversion of thermal energy into flow kinetic energy. However, 'cool' expansions have been indicated in stellar/solar winds and other expanding processes. Magnetic expansion may be the principal driving mechanism. Magnetic energy in the potential form can be converted into kinetic energy during global expansion of magnetized plasmas.
NASA Astrophysics Data System (ADS)
Mastrano, A.; Suvorov, A. G.; Melatos, A.
2015-03-01
A recipe is presented to construct an analytic, self-consistent model of a non-barotropic neutron star with a poloidal-toroidal field of arbitrary multipole order, whose toroidal component is confined in a torus around the neutral curve inside the star, as in numerical simulations of twisted tori. The recipe takes advantage of magnetic field aligned coordinates to ensure continuity of the mass density at the surface of the torus. The density perturbation and ellipticity of such a star are calculated in general and for the special case of a mixed dipole-quadrupole field as a worked example. The calculation generalizes previous work restricted to dipolar, poloidal-toroidal and multipolar, poloidal-only configurations. The results are applied, as an example, to magnetars whose observations (e.g. spectral features and pulse modulation) indicate that the internal magnetic fields may be at least one order of magnitude stronger than the external fields, as inferred from their spin-downs, and are not purely dipolar.
Measurements of passive correction of magnetization higher multipoles in one meter long dipoles
Green, M.A.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Gilbert, W.S.; Green, M.I.; Scanlan, R.M.; Taylor, C.E.
1990-09-01
The use of passive superconductor to correct the magnetization sextupole and decapole in SSC dipoles appears to be promising. This paper presents the results of a series of experiments of passive superconductor correctors in one meter long dipole magnets. Reduction of the magnetization sextupole by a factor of five to ten has been achieved using the passive superconductor correctors. The magnetization decapole was also reduced. The passive superconductor correctors reduced the sextupole temperature sensitivity by an order of magnitude. Flux creep decay was partially compensated for by the correctors. 13 refs., 7 figs.
Studies of plasma confinement in linear and RACETRACK mirror configurations
Kuthi, A.; Wong, A.Y.
1986-06-30
This report discusses research on the following magnetic mirror configurations: Racetrack; ECRH generated plasmas; RF generated plasmas; potential structures; surface multipole fields, and lamex; hot electron physics; axial loss processes; and RF induced effects.
NASA Astrophysics Data System (ADS)
Styrnoll, T.; Harhausen, J.; Lapke, M.; Storch, R.; Brinkmann, R. P.; Foest, R.; Ohl, A.; Awakowicz, P.
2013-08-01
The application of a multipole resonance probe (MRP) for diagnostic and monitoring purposes in a plasma ion-assisted deposition (PIAD) process is reported. Recently, the MRP was proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2011 Plasma Sources Sci. Technol. 20 042001). The major advantages of the MRP are its robustness against dielectric coating and its high sensitivity to measure the electron density. The PIAD process investigated is driven by the advanced plasma source (APS), which generates an ion beam in the deposition chamber for the production of high performance optical coatings. With a background neutral pressure of p0 ˜ 20 mPa the plasma expands from the source region into the recipient, leading to an inhomogeneous spatial distribution. Electron density and electron temperature vary over the distance from substrate (ne ˜ 109 cm-3 and Te,eff ˜ 2 eV) to the APS (ne ≳ 1012 cm-3 and Te,eff ˜ 20 eV) (Harhausen et al 2012 Plasma Sources Sci. Technol. 21 035012). This huge variation of the plasma parameters represents a big challenge for plasma diagnostics to operate precisely for all plasma conditions. The results obtained by the MRP are compared to those from a Langmuir probe chosen as reference diagnostics. It is demonstrated that the MRP is suited for the characterization of the PIAD plasma as well as for electron density monitoring. The latter aspect offers the possibility to develop new control schemes for complex industrial plasma environments.
Statistical analysis of multipole components in the magnetic field of the RHIC arc regions
Beebe-Wang,J.; Jain, A.
2009-05-04
The existence of multipolar components in the dipole and quadrupole magnets is one of the factors limiting the beam stability in the RHIC operations. Therefore, the statistical properties of the non-linear fields are crucial for understanding the beam behavior and for achieving the superior performance in RHIC. In an earlier work [1], the field quality analysis of the RHIC interaction regions (IR) was presented. Furthermore, a procedure for developing non-linear IR models constructed from measured multipolar data of RHIC IR magnets was described. However, the field quality in the regions outside of the RHIC IR had not yet been addressed. In this paper, we present the statistical analysis of multipolar components in the magnetic fields of the RHIC arc regions. The emphasis is on the lower order components, especially the sextupole in the arc dipole and the 12-pole in the quadrupole magnets, since they are shown to have the strongest effects on the beam stability. Finally, the inclusion of the measured multipolar components data of RHIC arc regions and their statistical properties into tracking models is discussed.
M. Spata, G.A. Krafft
2011-09-01
An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a technique for characterizing the nonlinear fields of the beam transport system. Two air-core dipole magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the electron beam. Fourier decomposition of beam position monitor data was then used to measure the amplitude of these frequencies at different positions along the beamline. For a purely linear transport system one expects to find solely the frequencies that were applied to the dipoles with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. The technique was calibrated using one of the sextupole magnets in a CEBAF beamline and then applied to a dipole to measure the sextupole and octupole strength of the magnet. A comparison is made between the beam-based measurements, results from TOSCA and data from our Magnet Measurement Facility.
Generation of a spin-polarized electron beam by multipole magnetic fields.
Karimi, Ebrahim; Grillo, Vincenzo; Boyd, Robert W; Santamato, Enrico
2014-03-01
The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin-magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. PMID:24440895
NASA Astrophysics Data System (ADS)
Torres-Díaz, Isaac; Rinaldi, Carlos
The flow of a ferrofluid in a stationary cylindrical container driven by a rotating magnetic field has received considerable attention since the inception of the field of ferrohydrodynamics. Much controversy has resulted regarding the existence, or lack thereof, of bulk flow under conditions of a rotating uniform magnetic field, which can be generated for example, using a two-pole stator winding. The original observations of flow at the interface showed counter-rotation of field and fluid, whereas recent observations of bulk flow using the ultrasound technique have shown co-rotation of field and fluid. Various theories have been advanced over the years to explain the observed phenomena, including the spin diffusion theory of Shliomis and the hypothesis that it is field non-uniformity, generated by non-ideal stator winding distributions, that actually drives the flow, as first proposed by Glazov. We have revisited this problem from an analytical perspective by solving the ferrohydrodynamic and magnetoquasistatic equations self-consistently for the case of ferrofluid in a cylindrical container, with and without an internal co-axial cylinder, and driven by the field generated by a multipole stator winding distribution. In such a winding increasing the number of poles results in increasingly non-uniform fields. It is shown that regardless of the number of poles in the stator winding the ferrohydrodynamic equations do not predict any flow in either geometry as long as the spin viscosity parameter is assumed to be zero. Velocity profiles are obtained for both geometries and arbitrary number of poles for the case of non-zero spin viscosity. It is shown that only for the case of a two-pole stator winding and ferrofluid constrained to the annular space between an inner and outer cylinder do the ferrohydrodynamic equations predict co-rotation of fluid and field close to the outer cylinder and counter-rotation of fluid and field close to the inner cylinder, in qualitative
Smooth Teeth: Why Multipoles Are Perfect Gears
NASA Astrophysics Data System (ADS)
Schönke, Johannes
2015-12-01
A type of gear is proposed based on the interaction of individual multipoles. The underlying principle relies on previously unknown continuous degenerate ground states for pairs of interacting multipoles which are free to rotate around specific axes. These special rotation axes, in turn, form a one-parameter family of possible configurations. This allows for the construction of magnetic bevel gears with any desired inclination angle between the in- and output axes. Further, the design of gear systems with more than two multipoles is possible and facilitates tailored applications. Ultimately, an analogy between multipoles and mechanical gears is revealed. In contrast to the mechanical case, the multipole "teeth" mesh smoothly. As an illustrative application, the example of a quadrupole-dipole interaction is then used to construct a 1 ∶2 gear ratio.
Andresen, G. B.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Joergensen, L. V.; Kerrigan, S. J.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Keller, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Fujiwara, M. C.; Gill, D. R.; Kurchaninov, L.
2009-10-15
In many antihydrogen trapping schemes, antiprotons held in a short-well Penning-Malmberg trap are released into a longer well. This process necessarily causes the bounce-averaged rotation frequency {omega}{sub r} of the antiprotons around the trap axis to pass through zero. In the presence of a transverse magnetic multipole, experiments and simulations show that many antiprotons (over 30% in some cases) can be lost to a hitherto unidentified bounce-resonant process when {omega}{sub r} is close to zero.
Kuthi, A.; Wong, A.Y.
1986-06-30
This report discusses research on the following magnetic mirror configurations: Racetrack; ECRH generated plasmas; RF generated plasmas; potential structures; surface multipole fields, and lamex; hot electron physics; axial loss processes; and RF induced effects.
15 cm multipole gas ion thruster
NASA Technical Reports Server (NTRS)
Isaacson, G. C.; Kaufman, H. R.
1976-01-01
A 15-cm multipole thruster was operated on argon and xenon. The multipole approach used has been shown capable of low discharge losses and flat ion beam profiles with a minimum of redesign. This approach employs low magnetic field strengths and flat or cylindrical sheet-metal parts, hence is suited to rapid optimization and scaling. Only refractory metal cathodes were used in this investigation.
NASA Astrophysics Data System (ADS)
Choi, Jang-Young; Jang, Seok-Myeong
2008-04-01
This paper deals with the experimental verification and analytical approach to cogging torque calculation and reduction of permanent magnet generators (PMGs) with multipole rotor for wind power applications. Using energy methods with Fourier series expansion, cogging torque is analytically determined with air-gap flux density due to permanent magnets (PMs) and two-dimensional permeance function. The analytical results are validated extensively by nonlinear finite element (FE) results for various values of pole arc ratio (αp) of PMs. It shows that there exists optimum αp which minimizes cogging torque. However, we confirm that measured value for cogging torque of the PMG with optimum αp is twice higher than predicted value. The reason for an error between measured and predicted cogging torques is discussed fully in terms of a shape of PMs and is proved experimentally. The influence of stator skew on cogging torque is also presented using analytical, nonlinear FE and experimental methods.
Fully magnetized plasma flow in a magnetic nozzle
NASA Astrophysics Data System (ADS)
Merino, Mario; Ahedo, Eduardo
2016-02-01
A model of the expansion of a plasma in a magnetic nozzle in the full magnetization limit is presented. The fully magnetized and the unmagnetized-ions limits are compared, recovering the whole range of variability in plasma properties, thrust, and plume efficiency, and revealing the differences in the physics of the two cases. The fully magnetized model is the natural limit of the general, 2D, two-fluid model of Ahedo and Merino [Phys. Plasmas 17, 073501 (2010)], and it is proposed as an analytical, conservative estimator of the propulsive figures of merit of partially magnetized plasma expansions in the near region of the magnetic nozzle.
Whistleron gas in magnetized plasmas
De Martino, Salvatore; Falanga, Mariarosaria; Tzenov, Stephan I.
2005-07-15
The nonlinear dynamics of whistler waves in magnetized plasmas is studied. Since the plasmas and beam-plasma systems considered here are assumed to be weakly collisional, the point of reference for the analysis performed in the present paper is the system of hydrodynamic and field equations. The renormalization group method is applied to obtain dynamical equations for the slowly varying amplitudes of whistler waves. Further, it has been shown that the amplitudes of eigenmodes satisfy an infinite system of coupled nonlinear Schroedinger equations. In this sense, the whistler eigenmodes form a sort of a gas of interacting quasiparticles, while the slowly varying amplitudes can be considered as dynamical variables heralding the relevant information about the system. An important feature of the approach is that whistler waves do not perturb the initial uniform density of plasma electrons. The plasma response to the induced whistler waves consists in velocity redistribution which follows exactly the behavior of the whistlers. In addition, selection rules governing the nonlinear mode coupling have been derived, which represent another interesting peculiarity of the description presented here.
Magnetized Plasma for Reconfigurable Subdiffraction Imaging
Zhang Shuang; Xiong Yi; Bartal, Guy; Yin Xiaobo; Zhang Xiang
2011-06-17
We show that magnetized plasma with appropriately designed parameters supports nearly diffractionless propagation of electromagnetic waves along the direction of the applied magnetic field, arising from their unbounded equifrequency contour in the magnetized plasma. Such a unique feature can be utilized to construct subdiffraction imaging devices, which is confirmed by detailed numerical investigations. Subdiffraction imaging devices based on magnetic plasma do not require microfabrication normally entailed by construction of metamaterials; more importantly, they can be dynamically reconfigured by tuning the applied magnetic field or the plasma density, and therefore they represent a facile and powerful route for imaging applications.
Magnetic Detachment and Plume Control in Escaping Magnetized Plasma
P. F. Schmit and N. J. Fisch
2008-11-05
The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment.
Two-Dimensional Turbulence in Magnetized Plasmas
ERIC Educational Resources Information Center
Kendl, A.
2008-01-01
In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…
Runaway tails in magnetized plasmas
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Vlahos, L.; Rowland, H. L.; Papadopoulos, K.
1985-01-01
The evolution of a runaway tail driven by a dc electric field in a magnetized plasma is analyzed. Depending on the strength of the electric field and the ratio of plasma to gyrofrequency, there are three different regimes in the evolution of the tail. The tail can be (1) stable with electrons accelerated to large parallel velocities, (2) unstable to Cerenkov resonance because of the depletion of the bulk and the formation of a positive slope, (3) unstable to the anomalous Doppler resonance instability driven by the large velocity anisotropy in the tail. Once an instability is triggered (Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution. The role of a convection type loss term is also discussed.
Plasma separation from magnetic field lines in a magnetic nozzle
NASA Technical Reports Server (NTRS)
Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.
1993-01-01
This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.
Plasma-Based Accelerator with Magnetic Compression
NASA Astrophysics Data System (ADS)
Schmit, P. F.; Fisch, N. J.
2012-12-01
Electron dephasing is a major gain-inhibiting effect in plasma-based accelerators. A novel method is proposed to overcome dephasing, in which the modulation of a modest [˜O(10kG)], axial, uniform magnetic field in the acceleration channel leads to densification of the plasma through magnetic compression, enabling direct, time-resolved control of the plasma wave properties. The methodology is broadly applicable and can be optimized to improve the leading acceleration approaches, including plasma beat wave, plasma wakefield, and laser wakefield acceleration. The advantages of magnetic compression are compared to other proposed techniques to overcome dephasing.
Plasma-based Accelerator with Magnetic Compression
Paul F. Schmit and Nathaniel J. Fisch
2012-06-28
Electron dephasing is a major gain-inhibiting effect in plasma-based accelerators. A novel method is proposed to overcome dephasing, in which the modulation of a modest (#24; O(10 kG)), axial, uniform magnetic field in the acceleration channel leads to densification of the plasma through magnetic compression, enabling direct, time-resolved control of the plasma wave properties. The methodology is broadly applicable and can be optimized to improve the leading acceleration approaches, including plasma beat-wave, plasma wakefield, and laser wakefield acceleration. The advantages of magnetic compression compared to other proposed schemes to overcome dephasing are identified.
Plasma-based accelerator with magnetic compression.
Schmit, P F; Fisch, N J
2012-12-21
Electron dephasing is a major gain-inhibiting effect in plasma-based accelerators. A novel method is proposed to overcome dephasing, in which the modulation of a modest [~O(10 kG)], axial, uniform magnetic field in the acceleration channel leads to densification of the plasma through magnetic compression, enabling direct, time-resolved control of the plasma wave properties. The methodology is broadly applicable and can be optimized to improve the leading acceleration approaches, including plasma beat wave, plasma wakefield, and laser wakefield acceleration. The advantages of magnetic compression are compared to other proposed techniques to overcome dephasing. PMID:23368475
Gaussian Multipole Model (GMM)
Elking, Dennis M.; Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.; Pedersen, Lee G.
2009-01-01
An electrostatic model based on charge density is proposed as a model for future force fields. The model is composed of a nucleus and a single Slater-type contracted Gaussian multipole charge density on each atom. The Gaussian multipoles are fit to the electrostatic potential (ESP) calculated at the B3LYP/6-31G* and HF/aug-cc-pVTZ levels of theory and tested by comparing electrostatic dimer energies, inter-molecular density overlap integrals, and permanent molecular multipole moments with their respective ab initio values. For the case of water, the atomic Gaussian multipole moments Qlm are shown to be a smooth function of internal geometry (bond length and bond angle), which can be approximated by a truncated linear Taylor series. In addition, results are given when the Gaussian multipole charge density is applied to a model for exchange-repulsion energy based on the inter-molecular density overlap. PMID:20209077
Magnetic field structure evolution in rotating magnetic field plasmas
Petrov, Yuri; Yang Xiaokang; Huang, T.-S.
2008-07-15
A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.
On plasma detachment in propulsive magnetic nozzles
Ahedo, Eduardo; Merino, Mario
2011-05-15
Three detachment mechanisms proposed in the literature (via resistivity, via electron inertia, and via induced magnetic field) are analyzed with an axisymmetric model of the expansion of a small-beta, weakly collisional, near-sonic plasma in a diverging magnetic nozzle. The model assumes cold, partially magnetized ions and hot, isothermal, fully magnetized electrons. Different conditions of the plasma beam at the nozzle throat are considered. A central feature is that a positive thrust gain in the nozzle of a plasma thruster is intimately related to the azimuthal current in the plasma being diamagnetic. Then, and contrary to existing expectations, the three aforementioned detachment mechanisms are divergent, that is, the plasma beam diverges outwards of the guide nozzle, further hindering its axial expansion and the thrust efficiency. The rate of divergent detachment is quantified for the small-parameter range of the three mechanisms. Alternative mechanisms for a convergent detachment of the plasma beam are suggested.
Enhanced betatron radiation in strongly magnetized plasma
NASA Astrophysics Data System (ADS)
Pan, K. Q.; Zheng, C. Y.; Cao, L. H.; Liu, Z. J.; He, X. T.
2016-04-01
Betatron radiation in strongly magnetized plasma is investigated by two dimensional (2D) particle-in-cell (PIC) simulations. The results show that the betatron radiation in magnetized plasmas is strongly enhanced and is more collimated compared to that in unmagnetized plasma. Single particle model analysis shows that the frequency and the amplitude of the electrons's betatron oscillation are strongly influenced by the axial external magnetic field and the axial self-generated magnetic field. And the 2D PIC simulation shows that the axial magnetic field is actually induced by the external magnetic field and tends to increase the betatron frequency. By disturbing the perturbation of the plasma density in the laser-produced channel, the hosing instability is also suppressed, which results in a better angular distribution and a better symmetry of the betatron radiation.
Efficient magnetic fields for supporting toroidal plasmas
NASA Astrophysics Data System (ADS)
Landreman, Matt; Boozer, Allen H.
2016-03-01
The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However, the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The efficiency of an externally generated magnetic field is a measure of the field's shaping component magnitude at the plasma compared to the magnitude near the coils; the efficiency of a plasma equilibrium can be measured using the efficiency of the required external shaping field. Counterintuitively, plasma shapes with low curvature and spectral width may have low efficiency, whereas plasma shapes with sharp edges may have high efficiency. Two precise measures of magnetic field efficiency, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix yields an efficiency ordered basis for the magnetic field distributions. Calculations are carried out for both tokamak and stellarator cases. For axisymmetric surfaces with circular cross-section, the SVD is calculated analytically, and the range of poloidal and toroidal mode numbers that can be controlled to a given desired level is determined. If formulated properly, these efficiency measures are independent of the coordinates used to parameterize the surfaces.
Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization
Doughty, Frank C.; Spencer, John E.
2000-12-19
In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.
Instability interplay in a magnetized streaming plasma
Pegoraro, F.; Califano, F.; Faganello, M.; Tenerani, A.
2010-06-16
The interplay between the Kelvin-Helmholtz, the Rayleigh-Taylor and the Magnetic Re-connection instabilities in a magnetized inhomogeneous plasma with a sheared velocity field is investigated within the framework of a two-dimensional, two fluid model. This magnetic configuration is of interest for the investigation of the mixing process between the solar wind plasma and the Earth's magnetospheric plasma at low latitudes at the magnetospheric flank.It is found that the combined role of the density inhomogeneity and of the in-plane magnetic field during the development of the Kelvin Helmholtz instability is multi faceted. It leads to small scale magnetic islands through the development of induced magnetic field line reconnection but at the same time the in-plane magnetic field preserves the global coherence of the vortex merging process (vortex pairing).
Magnetic Field Effects on Plasma Plumes
NASA Technical Reports Server (NTRS)
Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.
2012-01-01
Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results
The elliptical multipole wiggler project
Gluskin, E.; Frachon, D.; Ivanov, P.M.
1995-06-01
The elliptical multipole wiggler (EMW) has been designed, constructed, and installed in the X13 straight section of the NSLS X-ray Ring. The EMW generates circularly polarized photons in the energy range of 0.1-10 keV with AC modulation of polarization helicity. The vertical magnetic field of 0.8 T is produced by a hybrid permanent magnet structure with a period of 16 cm. The horizontal magnetic field of 0.22 T is generated by an electromagnet, the core of which is fabricated from laminated iron to operate with a switching frequency up to 100 Hz. There are dynamic compensation trim magnets at the wiggler ends to control the first and second field integrals with very high accuracy throughout the AC cycle. The residual closed orbit motion due to the electromagnet AC operation is discussed.
Directed Plasma Flow across Magnetic Field
NASA Astrophysics Data System (ADS)
Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.
2008-04-01
The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.
Magnetized Plasma Expansion and its Interaction with a Plasma Stream
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Saha, S.; Craven, P. D.; Gallagher, D.; Jones, J.
2003-01-01
Expansion of magnetized plasma in the magnetic field of a solenoid is studied by means of simulations using a 3-dimensional hybrid code. The plasma expands against a high- density and slow plasma stream (PS). The expansion causes inflation of the magnetic field; near the solenoid the magnetic field variation with increasing distance (r) remains as B(alpha)r(sup -3), but at farther distances B(alpha)r(sup -p), where the exponent p is found in the range 0.5 approx. less than p approx. less than 1.2 forming a plateau in the magnetic field distribution B(r). At the start of injection of plasma from the ends of the solenoid, the PS interacts with the solenoid magnetic field and creates a bow shock at a distance where the Larmor radius (r(sub il)) of the PS ions in the solenoid magnetic field nearly equals the scale length (L) of B(r), that is, r(sub il) approx. L = (B(sup -1)dB L /dr)(sup -1). As the injected plasma accumulates in the solenoid magnetic field, it expands inflating the magnetic field and the bow shock moves outward. The speed of the expansion front and the shock progressively decreases and eventually a stand-off occurs when the PS dynamic pressure is eventually balanced by the magnetic and kinetic pressures of the expanding plasma and the inflating magnetic field. The inflating field shows wave-like behavior, with considerable structures in the field and current distributions.
Magnetic circuit for hall effect plasma accelerator
NASA Technical Reports Server (NTRS)
Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Jankovsky, Robert S. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor)
2009-01-01
A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.
Magnetically Induced Plasma Rotation and the Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Witalis, E. A.
1983-09-01
Fusion for Fission fuel breeding and other incentives for unconventional magnetic fusion research are introductorily mentioned. The design, operation and peculiar characteristics of dense plasma foci are briefly described with attention to their remarkable ion acceleration and plasma heating capabilities. Attempts for interpretations are reviewed, and a brief account is given for an explanation based on the concept of magnetically induced plasma rotation, recently derived in detail in this journal. Basically an ion acceleration mechanism of betraton character it describes in combination with a dynamic, generalized Bennett relation focus plasma characteristics like the polarity dependence, the current channel disruption, the axial ion beam formation and the prerequisites for the ensuing turbulent plasma dissipative stage. Fundamental differences with respect to mainline fusion research are emphasized, and some conjectures and proposals are presented as to the further development of plasma focus nuclear fusion or fission energy production.
Curling probe measurement of large-volume pulsed plasma confined by surface magnetic field
NASA Astrophysics Data System (ADS)
Pandey, Anil; Sakakibara, Wataru; Matsuoka, Hiroyuki; Nakamura, Keiji; Sugai, Hideo; Chubu University Team; DOWA Thermotech Collaboration
2015-09-01
Curling probe (CP) has recently been developed which enables the local electron density measurement even in plasma for non-conducting film CVD. The electron density is obtained from a shift of resonance frequency of spiral antenna in discharge ON and OFF monitored by a network analyzer (NWA). In case of a pulsed glow discharge, synchronization of discharge pulse with frequency sweep of NWA must be established. In this paper, we report time and space-resolved CP measurement of electron density in a large volume plasma (80 cm diameter, 110 cm length) confined by surface magnetic field (multipole cusp field ~0.03 T). For plasma-aided modification of metal surface, the plasma is produced by 1 kV glow discharge at pulse frequency of 0.3 - 25 kHz with various duty ratio in gas (Ar, N2, C2H2) at pressure ~ 1 Pa. A radially movable CP revealed a remarkable effect of surface magnetic confinement: detach of plasma from the vessel wall and a fairly uniform plasma in the central region. In afterglow phase, the electron density was observed to decrease much faster in C2H2 discharge than in Ar discharge.
Forced Magnetic Reconnection In A Tokamak Plasma
NASA Astrophysics Data System (ADS)
Callen, J. D.; Hegna, C. C.
2015-11-01
The theory of forced magnetic field reconnection induced by an externally imposed resonant magnetic perturbation usually uses a sheared slab or cylindrical magnetic field model and often focuses on the potential time-asymptotic induced magnetic island state. However, tokamak plasmas have significant magnetic geometry and dynamical plasma toroidal rotation screening effects. Also, finite ion Larmor radius (FLR) and banana width (FBW) effects can damp and thus limit the width of a nascent magnetic island. A theory that is more applicable for tokamak plasmas is being developed. This new model of the dynamics of forced magnetic reconnection considers a single helicity magnetic perturbation in the tokamak magnetic field geometry, uses a kinetically-derived collisional parallel electron flow response, and employs a comprehensive dynamical equation for the plasma toroidal rotation frequency. It is being used to explore the dynamics of bifurcation into a magnetically reconnected state in the thin singular layer around the rational surface, evolution into a generalized Rutherford regime where the island width exceeds the singular layer width, and assess the island width limiting effects of FLR and FBW polarization currents. Support by DoE grants DE-FG02-86ER53218, DE-FG02-92ER54139.
NASA Astrophysics Data System (ADS)
Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; Qin, Jian; Karpeev, Dmitry; Hernandez-Ortiz, Juan; de Pablo, Juan J.; Heinonen, Olle
2016-08-01
Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O(N2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Method (FMM) to evaluate the integrals in O(N) operations, with O(N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. The results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.
Microwave Reflectometry for Magnetically Confined Plasmas
Mazzucato, E.
1998-02-01
This paper is about microwave reflectometry -- a radar technique for plasma density measurements using the reflection of electromagnetic waves by a plasma cutoff. Both the theoretical foundations of reflectometry and its practical application to the study of magnetically confined plasmas are reviewed in this paper. In particular, the role of short-scale density fluctuations is discussed at length, both as a unique diagnostic tool for turbulence studies in thermonuclear plasmas and for the deleterious effects that fluctuations may have on the measurement of the average plasma density with microwave reflectometry.
Magnetic Lens For Plasma Engine
NASA Technical Reports Server (NTRS)
Sercel, Joel C.
1992-01-01
Low-field electromagnet coils placed downstream of plasma engine, polarized oppositely to higher-field but smaller radius coil in nozzle of engine, reduces divergence of plasma jet, thereby increasing efficiency of engine. Concept tested by computer simulation based on simplified mathematical model of plasma, engine, and coils.
Parametric analysis of a magnetized cylindrical plasma
Ahedo, Eduardo
2009-11-15
The relevant macroscopic model, the spatial structure, and the parametric regimes of a low-pressure plasma confined by a cylinder and an axial magnetic field is discussed for the small-Debye length limit, making use of asymptotic techniques. The plasma response is fully characterized by three-dimensionless parameters, related to the electron gyroradius, and the electron and ion collision mean-free-paths. There are the unmagnetized regime, the main magnetized regime, and, for a low electron-collisionality plasma, an intermediate-magnetization regime. In the magnetized regimes, electron azimuthal inertia is shown to be a dominant phenomenon in part of the quasineutral plasma region and to set up before ion radial inertia. In the main magnetized regime, the plasma structure consists of a bulk diffusive region, a thin layer governed by electron inertia, a thinner sublayer controlled by ion inertia, and the non-neutral Debye sheath. The solution of the main inertial layer yields that the electron azimuthal energy near the wall is larger than the electron thermal energy, making electron resistivity effects non-negligible. The electron Boltzmann relation is satisfied only in the very vicinity of the Debye sheath edge. Ion collisionality effects are irrelevant in the magnetized regime. Simple scaling laws for plasma production and particle and energy fluxes to the wall are derived.
Relaxed States in Magnetized Pair Plasmas
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Mahajan, S. M.
2004-01-01
We discuss possibility of possible relaxed states in magnetized pair plasmas. It is shown that stationary relaxed states are described by the double curl Beltrami/Mahajan-Yoshida equation. We can thus have steady state tructures on the scale sizes of the order of the electron (ion) skin depth in an electron-positron (electron-positron-ion) plasma.
Magnetic Nozzle and Plasma Detachment Experiment
NASA Technical Reports Server (NTRS)
Chavers, Gregory; Dobson, Chris; Jones, Jonathan; Martin, Adam; Bengtson, Roger D.; Briezman, Boris; Arefiev, Alexey; Cassibry, Jason; Shuttpelz, Branwen; Deline, Christopher
2006-01-01
High power plasma propulsion can move large payloads for orbit transfer (such as the ISS), lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue of the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment was performed to test the theory regarding the Magneto-hydrodynamic (MHD) detachment scenario. Data from this experiment will be presented. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) being developed by the Ad Astra Rocket Company uses a magnetic nozzle as described above. The VASIMR is also a leading candidate for exploiting an electric propulsion test platform being considered for the ISS.
Magnetic Flux Compression Experiments Using Plasma Armatures
NASA Technical Reports Server (NTRS)
Turner, M. W.; Hawk, C. W.; Litchford, R. J.
2003-01-01
Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (R(sub m), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires R(sub m) less than 1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.
Oblique shock dynamics in nonextensive magnetized plasma
NASA Astrophysics Data System (ADS)
Bains, A. S.; Tribeche, M.
2014-05-01
A study is presented for the oblique propagation of low-frequency ion-acoustic ( IA) shock waves in a magnetized plasma having cold viscous ion fluid and nonextensively distributed electrons. A weakly nonlinear analysis is carried out to derive a Korteweg de-Vries-Burger like equation. Dependence of the shock wave characteristics (height, width and nature) on plasma parameters is then traced and studied in details. We hope that our results will aid to explain and interpret the nonlinear oscillations occurring in magnetized space plasmas.
Production of a large, quiescent, magnetized plasma
NASA Technical Reports Server (NTRS)
Landt, D. L.; Ajmera, R. C.
1976-01-01
An experimental device is described which produces a large homogeneous quiescent magnetized plasma. In this device, the plasma is created in an evacuated brass cylinder by ionizing collisions between electrons emitted from a large-diameter electron gun and argon atoms in the chamber. Typical experimentally measured values of the electron temperature and density are presented which were obtained with a glass-insulated planar Langmuir probe. It is noted that the present device facilitates the study of phenomena such as waves and diffusion in magnetized plasmas.
Anomalous Diffraction in Cold Magnetized Plasma.
Abelson, Z; Gad, R; Bar-Ad, S; Fisher, A
2015-10-01
Cold magnetized plasma possesses an anisotropic permittivity tensor with a unique dispersion relation that for adequate electron density and magnetic field results in anomalous diffraction of a right-hand circularly polarized beam. In this work, we demonstrate experimentally anomalous diffraction of a microwave beam in plasma. Additionally, decreasing the electron density enables observation of the transition of the material from a hyperbolic to a standard material. Manipulation of the control parameters will enable plasma to serve as a reconfigurable metamaterial-like medium. PMID:26551813
Anomalous Diffraction in Cold Magnetized Plasma
NASA Astrophysics Data System (ADS)
Abelson, Z.; Gad, R.; Bar-Ad, S.; Fisher, A.
2015-10-01
Cold magnetized plasma possesses an anisotropic permittivity tensor with a unique dispersion relation that for adequate electron density and magnetic field results in anomalous diffraction of a right-hand circularly polarized beam. In this work, we demonstrate experimentally anomalous diffraction of a microwave beam in plasma. Additionally, decreasing the electron density enables observation of the transition of the material from a hyperbolic to a standard material. Manipulation of the control parameters will enable plasma to serve as a reconfigurable metamaterial-like medium.
Local thermodynamics of a magnetized, anisotropic plasma
Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.
2013-02-15
An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.
Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.
Asaji, Toyohisa; Kato, Yushi; Sato, Fuminobu; Iida, Toshiyuki; Saito, Junji
2006-11-15
An electron cyclotron resonance (ECR) plasma source for broad ion-beam processing has been upgraded by a cylindrically comb-shaped magnetic-field configuration and 11-13 GHz frequency microwaves. A pair of comb-shaped magnets surrounds a large-bore discharge chamber. The magnetic field well confines plasmas with suppressing diffusion toward the axial direction of the cylindrical chamber. The magnetic field is constructed with a multipole and two quasiring permanent magnets. The plasma density clearly increases as compared with that in a simple multipole magnetic-field configuration. The frequency of microwaves output from the traveling-wave tube amplifier can be easily changed with an input signal source. The plasma density for 13 GHz is higher than that for 11 GHz. The maximum plasma density has reached approximately 10{sup 18} m{sup -3} at a microwave power of only 350 W and a pressure of 1.0 Pa. The enhancement of plasma generation by second-harmonic resonance and microwave modes has been investigated. The plasma density and the electron temperature are raised around the second-harmonic resonance zone. And then, the ion saturation current is periodically increased with varying the position of the plate tuner. The distance between the peaks is nearly equal to half of the free-space wavelength of microwave. The efficiency of ECR has been improved by using the comb-shaped magnetic field and raising microwave frequency, and then the high-density plasma source has been accomplished at low microwave power.
Momentum transfer to rotating magnetized plasma from gun plasma injection
Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.
2006-11-15
Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented.
Momentum transfer to rotating magnetized plasma from gun plasma injection
NASA Astrophysics Data System (ADS)
Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.
2006-11-01
Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1-87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented.
Usefulness of Magnetic Neutral Loop Discharge Plasma in Plasma Processing
NASA Astrophysics Data System (ADS)
Tsuboi, Hideo; Itoh, Masahiro; Tanabe, Masafumi; Hayashi, Toshio; Uchida, Taijiro
1995-05-01
Usefulness in plasma processing is demonstrated for a plasma produced in a closed magnetic neutral loop, which consists of zero magnetic field points connected continuously. A preliminary experiment was carried out to show the advantage of magnetic neutral loop discharge (NLD) plasma in sputter etching processing of SiO2/Si wafer in the lower Ar gas pressure range. The experiment shows that a high-density plasma was obtained for Ar gas lower than 0.1 Pa and the sputter etching rate is 3 times higher than that for the usual inductively coupled plasma (ICP). In a large-loop case, the sputter etching profile obtained has a peak at a radius along the azimuthal direction. This implies that a uniform etching profile could be realized by controlling the radius of the neutral loop during process operation. The NLD plasma current induced with an rf primary one-turn antenna coil reaches up to one-third of that of the primary.
Integrity of the Plasma Magnetic Nozzle
NASA Technical Reports Server (NTRS)
Gerwin, Richard A.
2009-01-01
This report examines the physics governing certain aspects of plasma propellant flow through a magnetic nozzle, specifically the integrity of the interface between the plasma and the nozzle s magnetic field. The injection of 100s of eV plasma into a magnetic flux nozzle that converts thermal energy into directed thrust is fundamental to enabling 10 000s of seconds specific impulse and 10s of kW/kg specific power piloted interplanetary propulsion. An expression for the initial thickness of the interface is derived and found to be approx.10(exp -2) m. An algorithm is reviewed and applied to compare classical resistivity to gradient-driven microturbulent (anomalous) resistivity, in terms of the spatial rate and time integral of resistive interface broadening, which can then be related to the geometry of the nozzle. An algorithm characterizing plasma temperature, density, and velocity dependencies is derived and found to be comparable to classical resistivity at local plasma temperatures of approx. 200 eV. Macroscopic flute-mode instabilities in regions of "adverse magnetic curvature" are discussed; a growth rate formula is derived and found to be one to two e-foldings of the most unstable Rayleigh-Taylor (RT) mode. After establishing the necessity of incorporating the Hall effect into Ohm s law (allowing full Hall current to flow and concomitant plasma rotation), a critical nozzle length expression is derived in which the interface thickness is limited to about 1 ion gyroradius.
A model of magneto-electric multipoles.
Lovesey, S W; Balcar, E
2015-03-18
A long-known Hamiltonian of electrons with entangled spin and orbital degrees of freedom is re-examined as a model of magneto-electric multipoles (MEs). In the model, a magnetic charge and simple quantum rotator are tightly locked in action, some might say they are enslaved entities. It is shown that MEs almost perfectly accord with those inferred from an analysis of magnetic neutron diffraction data on a ceramic superconductor (YBCO) in the pseudo-gap phase. Nigh on perfection between Stone's model and inferred MEs is achieved by addition to the original model of a crystal-field potential appropriate for the magnetic space group used in the published data analysis. An impression of thermal properties of multipoles is sought from a molecular-field model. PMID:25705914
Heat flux viscosity in collisional magnetized plasmas
Liu, C.; Fox, W.; Bhattacharjee, A.
2015-05-15
Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.
Heat flux viscosity in collisional magnetized plasmas
NASA Astrophysics Data System (ADS)
Liu, C.; Fox, W.; Bhattacharjee, A.
2015-05-01
Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a "heat flux viscosity," is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.
Buoyancy instabilities in degenerate, collisional, magnetized plasmas
NASA Astrophysics Data System (ADS)
Chang, Philip; Quataert, Eliot
2010-03-01
In low-collisionality plasmas, anisotropic heat conduction due to a magnetic field leads to buoyancy instabilities for any non-zero temperature gradient. We study analogous instabilities in degenerate collisional plasmas, i.e. when the electron collision frequency is large compared to the electron cyclotron frequency. Although heat conduction is nearly isotropic in this limit, the small residual anisotropy ensures that collisional degenerate plasmas are also convectively unstable independent of the sign of the temperature gradient. We show that the range of wavelengths that are unstable is independent of the magnetic field strength, while the growth time increases with decreasing magnetic field strength. We discuss the application of these collisional buoyancy instabilities to white dwarfs and neutron stars. Magnetic tension and the low specific heat of a degenerate plasma significantly limit their effectiveness; the most promising venues for growth are in the liquid oceans of young, weakly magnetized neutron stars (B <~ 109 G) and in the cores of young, high magnetic field white dwarfs (B ~ 109 G).
Magnetic curvature effects on plasma interchange turbulence
NASA Astrophysics Data System (ADS)
Li, B.; Liao, X.; Sun, C. K.; Ou, W.; Liu, D.; Gui, G.; Wang, X. G.
2016-06-01
The magnetic curvature effects on plasma interchange turbulence and transport in the Z-pinch and dipole-like systems are explored with two-fluid global simulations. By comparing the transport levels in the systems with a different magnetic curvature, we show that the interchange-mode driven transport strongly depends on the magnetic geometry. For the system with large magnetic curvature, the pressure and density profiles are strongly peaked in a marginally stable state and the nonlinear evolution of interchange modes produces the global convective cells in the azimuthal direction, which lead to the low level of turbulent convective transport.
Momentum transfer to rotating magnetized plasma from gun plasma injection
NASA Astrophysics Data System (ADS)
Hassam, A. B.; Shamim, Imran; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.
2006-10-01
Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. The plasma gun would be located in the axial mid-plane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of order the initial momentum of the target plasma. Several numerical firings are done into cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that upto 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented.
Magnetic Nozzle and Plasma Detachment Scenario
NASA Astrophysics Data System (ADS)
Breizman, Boris
2007-11-01
Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically controlled plasma can detach from the spacecraft. This talk presents a magnetohydrodynamic detachment scenario in which the plasma stretches the magnetic field lines to infinity [1]. Such a scenario is of particular interest for high-power thrusters. As plasma flows along the magnetic field lines, the originally sub-Alfv'enic flow becomes super-Alfv'enic: this transition is similar to what occurs in the solar wind [2]. In order to describe the detachment quantitatively, the ideal MHD equations have been solved analytically for a plasma flow in a slowly diverging nozzle. The solution exhibits a well-behaved transition from sub- to super- Alfv'enic flow inside the nozzle and a rarefaction wave at the edge of the outgoing flow. The magnetic field in the detached plume is almost entirely due to the plasma currents. It is shown that efficient detachment is feasible if the nozzle is sufficiently long. In order to extend the detachment model beyond the idealizations of analytical theory, a Lagrangian fluid code has been developed to solve steady-stated MHD equations and to optimize nozzle efficiency by adjusting the magnetic coil configuration. This numerical tool enables broad parameter scan with modest computational requirements (single workstation). The code has been benchmarked against the idealized analytical picture of plasma detachment and then used to investigate more realistic nozzle configurations that are not analytically tractable. Most recently, the code has been used to interpret experimental data from the Detachment Demonstration Experiment (DDEX) [3] facility at NASA Marshall Space Flight Center. In collabotation with: M. Tushentsov, A. Arefiev, R. Bengtson, J.Meyers (University of Texas at Austin), D. Chavers, C. Dobson, J. Jones (Marshall Space Flight Center), B.Schuettpelz, (University of
High density plasma etching of magnetic devices
NASA Astrophysics Data System (ADS)
Jung, Kee Bum
Magnetic materials such as NiFe (permalloy) or NiFeCo are widely used in the data storage industry. Techniques for submicron patterning are required to develop next generation magnetic devices. The relative chemical inertness of most magnetic materials means they are hard to etch using conventional RIE (Reactive Ion Etching). Therefore ion milling has generally been used across the industry, but this has limitations for magnetic structures with submicron dimensions. In this dissertation, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma) for the etching of magnetic materials (NiFe, NiFeCo, CoFeB, CoSm, CoZr) and other related materials (TaN, CrSi, FeMn), which are employed for magnetic devices like magnetoresistive random access memories (MRAM), magnetic read/write heads, magnetic sensors and microactuators. This research examined the fundamental etch mechanisms occurring in high density plasma processing of magnetic materials by measuring etch rate, surface morphology and surface stoichiometry. However, one concern with using Cl2-based plasma chemistry is the effect of residual chlorine or chlorinated etch residues remaining on the sidewalls of etched features, leading to a degradation of the magnetic properties. To avoid this problem, we employed two different processing methods. The first one is applying several different cleaning procedures, including de-ionized water rinsing or in-situ exposure to H2, O2 or SF6 plasmas. Very stable magnetic properties were achieved over a period of ˜6 months except O2 plasma treated structures, with no evidence of corrosion, provided chlorinated etch residues were removed by post-etch cleaning. The second method is using non-corrosive gas chemistries such as CO/NH3 or CO2/NH3. There is a small chemical contribution to the etch mechanism (i.e. formation of metal carbonyls) as determined by a comparison with Ar and N2 physical sputtering. The discharge should be NH3
Transient Growth in a Magnetized Vlasov Plasma
NASA Astrophysics Data System (ADS)
Ratushnaya, Valeria; Samtaney, Ravi
2015-11-01
Collisionless plasmas, such as those encountered in tokamaks, exhibit a rich variety of instabilities. The physical origin, triggering mechanisms and fundamental understanding of many tokamak instabilities, however, is still an open problem. Aiming to gain a better insight into this question, we investigate the stability properties of a collisionless Vlasov plasma for the case of: (a) stationary homogeneous magnetic field, and (b) weakly non-stationary and non-homogeneous magnetic field. We narrow the scope of our investigation to the case of a Maxwellian plasma and examine its evolution with an electrostatic approximation. We show that the linearized Vlasov operator is non-normal, which leads to an algebraic growth of perturbations in a magnetized plasma followed by exponential decay, i.e., classical Landau damping behaviour. This is a so-called transient growth phenomenon, developed in the framework of non-modal stability theory in the context of hydrodynamics. In a homogeneous magnetic field the typical time scales of the transient growth are of the order of several plasma periods. The first-order distribution function and the corresponding electric field are calculated and the dependence on the initial conditions is studied. Supported by baseline research funds at KAUST.
A Proposed Magnetized Dusty Plasma User Facility
NASA Astrophysics Data System (ADS)
Thomas, E.; Merlino, R. L.; Rosenberg, M.
2009-11-01
As the experimental study of dusty (complex) plasmas has advanced over the last two decades, a great deal of new insight has been gained on the complex interaction between the background plasma and charged microparticles. Even through the charged dust grains in a typical experiment can acquire several thousand elementary charges, the large mass of the grains ensures that the charge-to-mass ratio is quite low. As a result, it has been considered experimentally challenging to design an experiment that can achieve full magnetization of ions, electrons, and the charged dust grains. However, with continuing improvements in magnet design and sub-micron particle imaging technologies, it is now possible to contemplate the development of a Magnetized Dusty Plasma Facility. This presentation discusses the design, experimental parameters, and scientific motivation for a flexible, superconducting, 4 Tesla magnetic field user facility for the study of magnetized dusty plasmas. This work is supported by NSF grant number PHY-0936470 (AU), DOE Grant No. DE-FG01-04ER54795 (UI) and DOE Grant No. DE-FG02-04ER54804 (UCSD)
Exact solutions to magnetized plasma flow
Wang, Zhehui; Barnes, Cris W.
2001-03-01
Exact analytic solutions for steady-state magnetized plasma flow (MPF) using ideal magnetohydrodynamics formalism are presented. Several cases are considered. When plasma flow is included, a finite plasma pressure gradient {nabla}p can be maintained in a force-free state JxB=0 by the velocity gradient. Both incompressible and compressible MPF examples are discussed for a Taylor-state spheromak B field. A new magnetized nozzle solution is given for compressible plasma when U{parallel}B. Transition from a magnetized nozzle to a magnetic nozzle is possible when the B field is strong enough. No physical nozzle would be needed in the magnetic nozzle case. Diverging-, drum- and nozzle-shaped MPF solutions when U{perpendicular}B are also given. The electric field is needed to balance the UxB term in Ohm's law. The electric field can be generated in the laboratory with the proposed conducting electrodes. If such electric fields also exist in stars and galaxies, such as through a dynamo process, then these solutions can be candidates to explain single and double jets.
Scaling laws in magnetized plasma turbulence
Boldyrev, Stanislav
2015-06-28
Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar
Plasma observations at the earth's magnetic equator
NASA Technical Reports Server (NTRS)
Olsen, R. C.; Shawhan, S. D.; Gallagher, D. L.; Chappell, C. R.; Green, J. L.
1987-01-01
New observations of particle and wave data from the magnetic equator from the DE 1 spacecraft are reported. The results demonstrate that the equatorial plasma population is predominantly hydrogen and that the enhanced ion fluxes observed at the equator occur without an increase in the total plasma density. Helium is occasionally found heated along with the protons, and forms about 10 percent of the equatorially trapped population at such times. The heated H(+) ions can be characterized by a bi-Maxwellian with kT(parallel) = 0.5-1.0 eV and kT = 5-50 eV, with a density of 10-100/cu cm. The total plasma density is relatively constant with latitude. First measurements of the equatorially trapped plasma and coincident UHR measurements show that the trapped plasma is found in conjunction with equatorial noise.
Dynamics of Exploding Plasma Within a Magnetized Plasma
Dimonte, G; Dipeso, G; Hewett, D
2002-02-01
This memo describes several possible laboratory experiments on the dynamics of an exploding plasma in a background magnetized plasma. These are interesting scientifically and the results are applicable to energetic explosions in the earth's ionosphere (DOE Campaign 7 at LLNL). These proposed experiments are difficult and can only be performed in the new LAPD device at UCLA. The purpose of these experiments would be to test numerical simulations, theory and reduced models for systems performance codes. The experiments are designed to investigate the affect of the background plasma on (1) the maximum diamagnetic bubble radius given by Eq. 9; and (2) the Alfven wave radiation efficiency produced by the induced current J{sub A} (Eqs. 10-12) These experiments involve measuring the bubble radius using a fast gated optical imager as in Ref [1] and the Alfven wave profile and intensity as in Ref [2] for different values of the exploding plasma energy, background plasma density and temperature, and background magnetic field. These experiments extend the previously successful experiments [2] on Alfven wave coupling. We anticipate that the proposed experiments would require 1-2 weeks of time on the LAPD. We would perform PIC simulations in support of these experiments in order to validate the codes. Once validated, the PIC simulations would then be able to be extended to realistic ionospheric conditions with various size explosions and altitudes. In addition to the Alfven wave coupling, we are interested in the magnetic containment and transport of the exploding ''debris'' plasma to see if the shorting of the radial electric field in the magnetic bubble would allow the ions to propagate further. This has important implications in an ionospheric explosion because it defines the satellite damage region. In these experiments, we would field fast gated optical cameras to obtain images of the plasma expansion, which could then be correlated with magnetic probe measurements. In
Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.
Multipole plasmonic lattice solitons
Kou Yao; Ye Fangwei; Chen Xianfeng
2011-09-15
We theoretically demonstrate a variety of multipole plasmonic lattice solitons, including dipoles, quadrupoles, and necklaces, in two-dimensional metallic nanowire arrays with Kerr-type nonlinearities. Such solitons feature complex internal structures with an ultracompact mode size approaching or smaller than one wavelength. Their mode sizes and the stability characteristics are studied in detail within the framework of coupled mode theory. The conditions to form and stabilize these highly confined solitons are within the experimentally achievable range.
Magnetic reconnection in collisionless plasmas - Prescribed fields
NASA Technical Reports Server (NTRS)
Burkhart, G. R.; Drake, J. F.; Chen, J.
1990-01-01
The structure of the dissipation region during magnetic reconnection in collisionless plasma is investigated by examining a prescribed two-dimensional magnetic x line configuration with an imposed inductive electric field E(y). The calculations represent an extension of recent MHD simulations of steady state reconnection (Biskamp, 1986; Lee and Fu, 1986) to the collisionless kinetic regime. It is shown that the structure of the x line reconnection configuration depends on only two parameters: a normalized inductive field and a parameter R which represents the opening angle of the magnetic x lines.
Gradient expansion, curvature perturbations, and magnetized plasmas
Giovannini, Massimo; Rezaei, Zahra
2011-04-15
The properties of magnetized plasmas are always investigated under the hypothesis that the relativistic inhomogeneities stemming from the fluid sources and from the geometry itself are sufficiently small to allow for a perturbative description prior to photon decoupling. The latter assumption is hereby relaxed and predecoupling plasmas are described within a suitable expansion where the inhomogeneities are treated to a given order in the spatial gradients. It is argued that the (general relativistic) gradient expansion shares the same features of the drift approximation, customarily employed in the description of cold plasmas, so that the two schemes are physically complementary in the large-scale limit and for the low-frequency branch of the spectrum of plasma modes. The two-fluid description, as well as the magnetohydrodynamical reduction, is derived and studied in the presence of the spatial gradients of the geometry. Various solutions of the coupled system of evolution equations in the anti-Newtonian regime and in the quasi-isotropic approximation are presented. The relation of this analysis to the so-called separate universe paradigm is outlined. The evolution of the magnetized curvature perturbations in the nonlinear regime is addressed for the magnetized adiabatic mode in the plasma frame.
Localized whistlers in magnetized spin quantum plasmas.
Misra, A P; Brodin, G; Marklund, M; Shukla, P K
2010-11-01
The nonlinear propagation of electromagnetic (EM) electron-cyclotron waves (whistlers) along an external magnetic field, and their modulation by electrostatic small but finite amplitude ion-acoustic density perturbations are investigated in a uniform quantum plasma with intrinsic spin of electrons. The effects of the quantum force associated with the Bohm potential and the combined effects of the classical as well as the spin-induced ponderomotive forces (CPF and SPF, respectively) are taken into consideration. The latter modify the local plasma density in a self-consistent manner. The coupled modes of wave propagation is shown to be governed by a modified set of nonlinear Schrödinger-Boussinesq-like equations which admit exact solutions in form of stationary localized envelopes. Numerical simulation reveals the existence of large-scale density fluctuations that are self-consistently created by the localized whistlers in a strongly magnetized high density plasma. The conditions for the modulational instability (MI) and the value of its growth rate are obtained. Possible applications of our results, e.g., in strongly magnetized dense plasmas and in the next generation laser-solid density plasma interaction experiments are discussed. PMID:21230601
Magnetic Diagnostics for Plasma Control on ET.
NASA Astrophysics Data System (ADS)
Gauvreau, J.-L.; Carter, T. A.; Gourdain, P. A.; Grossman, A.; Lafonteese, D. J.; Pace, D. C.; Schmitz, L. W.; Taylor, R. J.; Yates, T. F.
2003-10-01
In order to operate ET successfully in high beta regimes, the present Langmuir probe based feedback system on plasma position needs to be upgraded with a system based on magnetic measurements. The vertical and horizontal field coil currents as well as the elongation coil current will be controlled in real-time, based on the evaluation of the average plasma radius, plasma height and elongation factor respectively. For that effect, the poloidal fluxes and poloidal fields of ET are measured outside the vessel to define the shape and position of the last flux surface of the plasma. The present system has one array distributed in 6 poloidal locations. After calibration, this information will be compared with the outputs from our different MHD codes and also used for magnetic reconstruction. In addition, a compensated toroidal flux loop around the vessel is used to measure the plasma poloidal beta. Finally, magnetic fluctuations are monitored in several poloidal and toroidal locations in order to identify the n and m modes responsible for loss of confinement during the giant saw-teeth crashes. Results from these measurements will be presented.
Localized whistlers in magnetized spin quantum plasmas
NASA Astrophysics Data System (ADS)
Misra, A. P.; Brodin, G.; Marklund, M.; Shukla, P. K.
2010-11-01
The nonlinear propagation of electromagnetic (EM) electron-cyclotron waves (whistlers) along an external magnetic field, and their modulation by electrostatic small but finite amplitude ion-acoustic density perturbations are investigated in a uniform quantum plasma with intrinsic spin of electrons. The effects of the quantum force associated with the Bohm potential and the combined effects of the classical as well as the spin-induced ponderomotive forces (CPF and SPF, respectively) are taken into consideration. The latter modify the local plasma density in a self-consistent manner. The coupled modes of wave propagation is shown to be governed by a modified set of nonlinear Schrödinger-Boussinesq-like equations which admit exact solutions in form of stationary localized envelopes. Numerical simulation reveals the existence of large-scale density fluctuations that are self-consistently created by the localized whistlers in a strongly magnetized high density plasma. The conditions for the modulational instability (MI) and the value of its growth rate are obtained. Possible applications of our results, e.g., in strongly magnetized dense plasmas and in the next generation laser-solid density plasma interaction experiments are discussed.
Localized whistlers in magnetized spin quantum plasmas
Misra, A. P.; Brodin, G.; Marklund, M.; Shukla, P. K.
2010-11-15
The nonlinear propagation of electromagnetic (EM) electron-cyclotron waves (whistlers) along an external magnetic field, and their modulation by electrostatic small but finite amplitude ion-acoustic density perturbations are investigated in a uniform quantum plasma with intrinsic spin of electrons. The effects of the quantum force associated with the Bohm potential and the combined effects of the classical as well as the spin-induced ponderomotive forces (CPF and SPF, respectively) are taken into consideration. The latter modify the local plasma density in a self-consistent manner. The coupled modes of wave propagation is shown to be governed by a modified set of nonlinear Schroedinger-Boussinesq-like equations which admit exact solutions in form of stationary localized envelopes. Numerical simulation reveals the existence of large-scale density fluctuations that are self-consistently created by the localized whistlers in a strongly magnetized high density plasma. The conditions for the modulational instability (MI) and the value of its growth rate are obtained. Possible applications of our results, e.g., in strongly magnetized dense plasmas and in the next generation laser-solid density plasma interaction experiments are discussed.
Temperature Diffusion Waves in Magnetized Plasmas
NASA Astrophysics Data System (ADS)
Reynolds, M. A.; Morales, G. J.; Maggs, J. E.
2002-11-01
Fluctuations of localized heat sources manifest themselves as temperature diffusion waves throughout the plasma surrounding the source, with anisotropic propagation characteristics due to the anisotropic nature of the thermal conductivity. In fact, fluctuations in electron temperature have been observed experimentally in studies of heat transport in magnetized temperature filaments (Burke et al., Phys. Plasmas, 7, 1397, 2000) where the anisotropic nature was of paramount interest. Here, the theory of temperature diffusion waves in a magnetized plasma is presented, and the properties of these waves are investigated both analytically and numerically. Results from the one-dimensional (parallel), linear theory of diffusion waves are used to shed light on the results obtained by a two-dimensional (parallel and perpendicular) transport code. Features that are investigated include the spatial structure of wave amplitude and phase, the effect that the size of the source region has on the spatial structure (i.e., radial localization), and the strongly nonlinear (large amplitude source fluctuations) limit.
Plasma magnetosphere of deformed magnetized neutron star
NASA Astrophysics Data System (ADS)
Rayimbaev, J. R.; Ahmedov, B. J.; Juraeva, N. B.; Rakhmatov, A. S.
2015-04-01
The plasma magnetosphere surrounding a rotating magnetized neutron star described by non-Kerr spacetime metric in slow rotation approximation has been studied. First we have studied the vacuum solutions of the Maxwell equations in spacetime of slowly rotating magnetized non-Kerr star with dipolar magnetic configuration. Then for the magnetospheric model we have derived second-order differential equation for electrostatic potential from the system of Maxwell equations in spacetime of slowly rotating magnetized non-Kerr star. Analytical solutions of Goldreich-Julian (GJ) charge density along open field lines of slowly rotating magnetized non-Kerr neutron star have been obtained which indicate the modification of an accelerating electric field, charge density along the open field lines and radiating losses of energy of the neutron star by the deformation parameter.
Transparency of Magnetized Plasma at Cyclotron Frequency
G. Shvets; J.S. Wurtele
2002-03-14
Electromagnetic radiation is strongly absorbed by a magnetized plasma if the radiation frequency equals the cyclotron frequency of plasma electrons. It is demonstrated that absorption can be completely canceled in the presence of a magnetostatic field of an undulator or a second radiation beam, resulting in plasma transparency at the cyclotron frequency. This effect is reminiscent of the electromagnetically induced transparency (EIT) of the three-level atomic systems, except that it occurs in a completely classical plasma. Unlike the atomic systems, where all the excited levels required for EIT exist in each atom, this classical EIT requires the excitation of the nonlocal plasma oscillation. The complexity of the plasma system results in an index of refraction at the cyclotron frequency that differs from unity. Lagrangian description was used to elucidate the physics and enable numerical simulation of the plasma transparency and control of group and phase velocity. This control naturally leads to applications for electromagnetic pulse compression in the plasma and electron/ion acceleration.
Ion response in a magnetized flowing plasma
NASA Astrophysics Data System (ADS)
Kählert, Hanno; Joost, Jan-Philip; Ludwig, Patrick; Bonitz, Michael
2014-10-01
We investigate the influence of an external magnetic field on streaming ions in a dusty plasma. The magnetic field is chosen parallel to an external electric field, which accelerates the ions and gives rise to a non-Maxwellian distribution function. The ion susceptibility is derived from a kinetic equation, where ion-neutral collisions are taken into account via a Bhatnagar-Gross-Krook collision term. The properties of the response function and the angular dependence in the anisotropic plasma are discussed. The modified ion response significantly changes the effective interaction between the dust particles. Here, we use the response function to study the influence of magnetized flowing ions on the dispersion of dust density waves and compare the screened dust potential with calculations based on a shifted Maxwellian distribution. We acknowledge financial support from the DFG via SFB-TR24, projects A7 and A9.
Raman Scattering in the Magnetized Semiconductor Plasma
NASA Astrophysics Data System (ADS)
Jankauskas, Zigmantas; Kvedaras, Vygaudas; Balevičius, Saulius
2005-04-01
Radio frequency (RF) magnetoplasmic waves known as helicons will propagate in solid-state plasmas when a strong magnetic field is applied. In our device the helicons were excited by RFs (the range 100-2000 MHz) much higher than the helicon generation frequency (the main peak at 20 MHz). The excitation of helicons in this case may be described by the effect similar to the Combination Scattering (Raman effect) when a part of the high RF wave energy that passes through the active material is absorbed and re-emitted by the magnetized solid-state plasma. It is expedient to call this experimental device a Helicon Maser (HRM) and the higher frequency e/m field - a pumping field. In full analogy with the usual Raman maser (or laser) the magnetized semiconductor sample plays the role of active material and the connecting cable - the role of high quality external resonator.
Raman Scattering in the Magnetized Semiconductor Plasma
NASA Astrophysics Data System (ADS)
Jankauskas, Zigmantas; Kvedaras, Vygaudas; Balevičius, Saulius
Radio frequency (RF) magnetoplasmic waves known as helicons will propagate in solid-state plasmas when a strong magnetic field is applied. In our device the helicons were excited by RFs (the range 100-2000 MHz) much higher than the helicon generation frequency (the main peak at 20 MHz). The excitation of helicons in this case may be described by the effect similar to the Combination Scattering (Raman effect) when a part of the high RF wave energy that passes through the active material is absorbed and re-emitted by the magnetized solid-state plasma. It is expedient to call this experimental device a Helicon Maser (HRM) and the higher frequency e/m field - a pumping field. In full analogy with the usual Raman maser (or laser) the magnetized semiconductor sample plays the role of active material and the connecting cable - the role of high quality external resonator.
Relativistic laser pulse compression in magnetized plasmas
Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song
2015-07-15
The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.
HPAM: Hirshfeld Partitioned Atomic Multipoles
Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.
2011-01-01
An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. PMID:22140274
Laboratory study of avalanches in magnetized plasmas.
Van Compernolle, B; Morales, G J; Maggs, J E; Sydora, R D
2015-03-01
It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfvén waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented. PMID:25871044
Equation of state for magnetized Coulomb plasmas
NASA Astrophysics Data System (ADS)
Potekhin, A. Y.; Chabrier, G.
2013-02-01
We have developed an analytical equation of state (EOS) for magnetized fully-ionized plasmas that cover a wide range of temperatures and densities, from low-density classical plasmas to relativistic, quantum plasma conditions. This EOS directly applies to calculations of structure and evolution of strongly magnetized white dwarfs and neutron stars. We review available analytical and numerical results for thermodynamic functions of the nonmagnetized and magnetized Coulomb gases, liquids, and solids. We propose a new analytical expression for the free energy of solid Coulomb mixtures. Based on recent numerical results, we have constructed analytical approximations for the thermodynamic functions of harmonic Coulomb crystals in quantizing magnetic fields. The analytical description ensures a consistent evaluation of all astrophysically important thermodynamic functions based on the first, second, and mixed derivatives of the free energy. Our numerical code for calculation of thermodynamic functions based on these approximations has been made publicly available. Using this code, we calculate and discuss the effects of electron screening and magnetic quantization on the position of the melting point in a range of densities and magnetic fields relevant to white dwarfs and outer envelopes of neutron stars. We consider also the thermal and mechanical structure of a magnetar envelope and argue that it can have a frozen surface which covers the liquid ocean above the solid crust. The Fortran code that realizes the analytical approximations described in this paper is available at http://www.ioffe.ru/astro/EIP/ and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A43
Directional spherical multipole wavelets
Hayn, Michael; Holschneider, Matthias
2009-07-15
We construct a family of admissible analysis reconstruction pairs of wavelet families on the sphere. The construction is an extension of the isotropic Poisson wavelets. Similar to those, the directional wavelets allow a finite expansion in terms of off-center multipoles. Unlike the isotropic case, the directional wavelets are not a tight frame. However, at small scales, they almost behave like a tight frame. We give an explicit formula for the pseudodifferential operator given by the combination analysis-synthesis with respect to these wavelets. The Euclidean limit is shown to exist and an explicit formula is given. This allows us to quantify the asymptotic angular resolution of the wavelets.
Magnetic geometry, plasma profiles, and stability
Connor, J. W.
2006-07-15
The history of the stability of short wavelength modes, such as MHD instabilities and drift waves, has been a long and tortuous one as increasingly realistic representations of the equilibrium magnetic geometry have been introduced. Early work began with simple slab or cylindrical models where plasma profiles and magnetic shear were seen to play key roles. Then the effects of toroidal geometry, in particular the constraints imposed by periodicity in the presence of magnetic shear, provided a challenge for theory, which was met by the ballooning transformation. More recently the limitations on the conventional ballooning theory arising from effects such as toroidal rotation shear, low magnetic shear, and the presence of the plasma edge have been recognized. These have led in turn to modifications and extensions of this theory. These developments have produced a continuously changing view of the stability of the 'universal' drift wave, for example. After a survey of this background, we describe more recent work of relevance to currently important topics, such as transport barriers characterized by the presence of strong rotation shear and low magnetic shear and the edge localized modes that occur in H-mode.
Laser plasma in a magnetic field
Kondo,K.; Kanesue, T.; Tamura, J.; Dabrowski, R.; Okamura, M.
2009-09-20
Laser Ion Source (LIS) is a candidate among various heavy ion sources. A high density plasma produced by Nd:YAG laser with drift velocity realizes high current and high charge state ion beams. In order to obtain higher charged particle ions, we had test experiments of LIS with a magnetic field by which a connement effect can make higher charged beams. We measured total current by Faraday Cup (FC) and analyzed charge distribution by Electrostatic Ion Analyzer (EIA). It is shown that the ion beam charge state is higher by a permanent magnet.
Multipole Structure and Coordinate Systems
ERIC Educational Resources Information Center
Burko, Lior M.
2007-01-01
Multipole expansions depend on the coordinate system, so that coefficients of multipole moments can be set equal to zero by an appropriate choice of coordinates. Therefore, it is meaningless to say that a physical system has a nonvanishing quadrupole moment, say, without specifying which coordinate system is used. (Except if this moment is the…
Magnetic equilibria for X-Diverted plasmas
NASA Astrophysics Data System (ADS)
Pekker, M.; Valanju, P.; Kotschenreuther, M.; Wiley, J.; Mahajan, S.
2006-10-01
The X-divertor has been proposed to solve heat exhaust problems for reactors beyond ITER. By generating an extra X-point downstream from the main X-point, the X-divertor greatly expands magnetic flux at the divertor plates. As a result, the heat is distributed over a larger area and the line length is greatly increased. We have developed coil sets for X-diverted magnetic equilibria for many devices (NSTX, PEGASUS, EAST, HL-2A, CREST, and a CTF). These demonstrate that the XD configuration can be created for highly shaped plasmas using moderate coil currents. For reactors, all coils can be placed behind 1 m of shielding. We have also shown that XD configurations are robust to modest plasma perturbations and VDEs; this is in contrast to the sensitivity of highly tilted divertor plates.
Nishimura, Seiya
2014-12-15
Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.
Landau Fluid Models for Magnetized Plasmas
Sulem, P. L.; Passot, T.; Marradi, L.
2008-10-15
A Landau fluid model for a magnetized plasma, that retains a linear description of low-frequency kinetic effects involving transverse scales significantly smaller than the ion Larmor radius, is discussed and validated in the context of nonlinear wave dynamics. Preliminary simulations of the turbulent regime are presented in one space dimension, as a first step towards more realistic three-dimensional computations, aimed to analyze the combined effect of dispersion and collisionless dissipation on the energy cascade.
Toroidal dust motion in magnetized plasmas
Reichstein, Torben; Pilch, Iris; Piel, Alexander
2010-09-15
In a magnetized anodic plasma, dust particles can be confined in a torus-shaped cloud with a distinct dust-free region (void) in its center. The formation of these clouds and their dynamical behavior are experimentally studied with a new observation geometry. The particles rotate about the major axis of the torus. A refined model for the description of the particle dynamics is presented that accounts for inertia and many-body effects.
Magnetic reconnection in a weakly ionized plasma
Leake, James E.; Lukin, Vyacheslav S.; Linton, Mark G.
2013-06-15
Magnetic reconnection in partially ionized plasmas is a ubiquitous phenomenon spanning the range from laboratory to intergalactic scales, yet it remains poorly understood and relatively little studied. Here, we present results from a self-consistent multi-fluid simulation of magnetic reconnection in a weakly ionized reacting plasma with a particular focus on the parameter regime of the solar chromosphere. The numerical model includes collisional transport, interaction and reactions between the species, and optically thin radiative losses. This model improves upon our previous work in Leake et al.[“Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” Astrophys. J. 760, 109 (2012)] by considering realistic chromospheric transport coefficients, and by solving a generalized Ohm's law that accounts for finite ion-inertia and electron-neutral drag. We find that during the two dimensional reconnection of a Harris current sheet with an initial width larger than the neutral-ion collisional coupling scale, the current sheet thins until its width becomes less than this coupling scale, and the neutral and ion fluids decouple upstream from the reconnection site. During this process of decoupling, we observe reconnection faster than the single-fluid Sweet-Parker prediction, with recombination and plasma outflow both playing a role in determining the reconnection rate. As the current sheet thins further and elongates, it becomes unstable to the secondary tearing instability, and plasmoids are seen. The reconnection rate, outflows, and plasmoids observed in this simulation provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.
Turbulent magnetized plasmas from ionizing shock waves
NASA Astrophysics Data System (ADS)
Liang, Zuohua
Turbulent argon plasmas produced behind hypersonic shock waves (10 less than M less than 60) are studied in the presence of weak magnetic fields at various strengths between 0 and 600 gauss, parallel and antiparallel to the shock tube's axis. The experiment is performed in a cylindrical arc discharge shock tube of 5 cm diameter and 210 cm overall length. Laser induced fluorescence and an electric probe are used as diagnostics of the ion density. Turbulent fluctuations behind the shock front are observed which persist for a time in the order of 10 msec. Using standard turbulent and chaotic analytical procedures, the influence of the magnetic field on the characterizing parameters is determined under circumstances of changing Mach number and pressure. These parameters include spectral index, correlation time scales, turbulent intensity and chaotic dimensionality. The parameters of turbulence obtained from the two diagnostics are quite consistent. Fluctuation power spectra follow a P approx. f(sup -n) behavior with 1.3 less than n less than 2.8; this agrees with theoretical predictions as well as the results of other investigators. An increasing magnetic field increases the characterizing correlation time, the turbulent intensity, and the chaotic dimension but decreases the small correlation time. Therefore the magnetic field decreases the order (increases the dimensionality) in the turbulent plasma, independent of the direction of the field parallel or antiparallel to the direction of the shock wave. A turbulent velocity-field-coupling model is proposed. A dispersion relation shows that, in the presence of an external magnetic field, varieties of new modes in a turbulent plasma are generated. The model predicts an increasing complexity of the turbulent system with increasing strength of the field and is in very good qualitative agreement with our experiment results.
Turbulent magnetized plasmas from ionizing shock waves
Liang, Zuohua.
1992-01-01
Turbulent argon plasmas produced behind hypersonic shock waves (10 less than M less than 60) are studied in the presence of weak magnetic fields at various strengths between 0 and 600 gauss, parallel and antiparallel to the shock tube's axis. The experiment is performed in a cylindrical arc discharge shock tube of 5 cm diameter and 210 cm overall length. Laser induced fluorescence and an electric probe are used as diagnostics of the ion density. Turbulent fluctuations behind the shock front are observed which persist for a time in the order of 10 msec. Using standard turbulent and chaotic analytical procedures, the influence of the magnetic field on the characterizing parameters is determined under circumstances of changing Mach number and pressure. These parameters include spectral index, correlation time scales, turbulent intensity and chaotic dimensionality. The parameters of turbulence obtained from the two diagnostics are quite consistent. Fluctuation power spectra follow a P approx. f(sup -n) behavior with 1.3 less than n less than 2.8; this agrees with theoretical predictions as well as the results of other investigators. An increasing magnetic field increases the characterizing correlation time, the turbulent intensity, and the chaotic dimension but decreases the small correlation time. Therefore the magnetic field decreases the order (increases the dimensionality) in the turbulent plasma, independent of the direction of the field parallel or antiparallel to the direction of the shock wave. A turbulent velocity-field-coupling model is proposed. A dispersion relation shows that, in the presence of an external magnetic field, varieties of new modes in a turbulent plasma are generated. The model predicts an increasing complexity of the turbulent system with increasing strength of the field and is in very good qualitative agreement with our experiment results.
Temperature relaxation in a magnetized plasma
Dong, Chao; Ren, Haijun; Cai, Huishan; Li, Ding
2013-10-15
A magnetic field greatly affects the relaxation phenomena in a plasma when the particles’ thermal gyro-radii are smaller than the Debye length. Its influence on the temperature relaxation (TR) is investigated through consideration of binary collisions between charged particles in the presence of a uniform magnetic field within a perturbation theory. The relaxation times are calculated. It is shown that the electron-electron (e-e) and ion-ion (i-i) TR rates first increase and then decrease as the magnetic field grows, and the doubly logarithmic term contained in the electron-ion (e-i) TR rate results from the exchange between the electron parallel and the ion perpendicular kinetic energies.
NEUTRON SOURCE USING MAGNETIC COMPRESSION OF PLASMA
Quinn, W.E.; Elmore, W.C.; Little, E.M.; Boyer, K.; Tuck, J.L.
1961-10-31
A fusion reactor is described that utilizes compression and heating of an ionized thermonuclear fuel by an externally applied magnetic field, thus avoiding reliance on the pinch effect and its associated instability problems. The device consists of a gas-confining ceramic container surrounded by a single circumferential coil having a shape such as to produce a magnetic mirror geometry. A sinusoidally-oscillating, exponentially-damped current is passed circumferentially around the container, through the coil, inducing a circumferential current in the gas. Maximum compression and plasma temperature are obtained at the peak of the current oscillations, coinciding with maximum magnetic field intensity. Enhanced temperatures are obtained in the second and succeeding half cycles because the thermal energy accumulates from one half cycle to the next. (AEC)
Magnetized, radiative shocks in aluminum plasma flows
NASA Astrophysics Data System (ADS)
Greenly, John; Seyler, Charles; Zhao, Xuan
2012-10-01
Arrays of aluminum wires driven by the 1 MA, 200 ns COBRA generator are used to produce uniform sheet flows of several cm scale size, consisting of multiply ionized aluminum plasma with velocity up to 400 km/s, density ˜10^18/cm^3 and variable magnetic field of several Tesla. Shocks are produced by obstacles placed in the flow. The shock structures radiate strongly in the XUV, as shown by imaging diagnostics. Laser shadowgraphy and interferometry are also used, and sub-mm size magnetic probes are used to measure the fields associated with the shocks. Unstable shock structures are also observed at the leading edge of the flow when no physical obstacles are used; this structure is formed by the collision of the flow with the low-density cold background gas in the experimental chamber. The experimental results will be compared with simulations using the XMHD code PERSEUS, which shows characteristic magnetic signatures of these structures.
Modulation instability of laser pulse in magnetized plasma
Jha, Pallavi; Kumar, Punit; Raj, Gaurav; Upadhyaya, Ajay K.
2005-12-15
Modulation instability of a laser pulse propagating through transversely magnetized underdense plasma is studied. It is observed that interaction of laser radiation with plasma in the presence of uniform magnetic field results in an additional perturbed transverse plasma current density along with the relativistic and ponderomotive nonlinear current densities, thus affecting the modulational interaction. In the plane wave limit it is observed that modulational interaction is more stable for magnetized plasma as compared to the unmagnetized case. The analysis shows that there is a significant reduction in the growth rate of modulation instability over a given range of unstable wave numbers due to magnetization of plasma.
Axisymmetric plasma equilibrium in gravitational and magnetic fields
Krasheninnikov, S. I.; Catto, P. J.
2015-12-15
Plasma equilibria in gravitational and open-ended magnetic fields are considered for the case of topologically disconnected regions of the magnetic flux surfaces where plasma occupies just one of these regions. Special dependences of the plasma temperature and density on the magnetic flux are used which allow the solution of the Grad–Shafranov equation in a separable form permitting analytic treatment. It is found that plasma pressure tends to play the dominant role in the setting the shape of magnetic field equilibrium, while a strong gravitational force localizes the plasma density to a thin disc centered at the equatorial plane.
Novel multipole Wien filter as three-dimensional spin manipulator
Yasue, T. Suzuki, M.; Koshikawa, T.; Tsuno, K.; Goto, S.; Arai, Y.
2014-04-15
Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.
Collisionless Magnetic Reconnection in Space Plasmas
NASA Astrophysics Data System (ADS)
Treumann, Rudolf A.; Baumjohann, Wolfgang
2013-12-01
Magnetic reconnection, the merging of oppositely directed magnetic fields that leads to field reconfiguration, plasma heating, jetting and acceleration, is one of the most celebrated processes in collisionless plasmas. It requires the violation of the frozen-in condition which ties gyrating charged particles to the magnetic field inhibiting diffusion. Ongoing reconnection has been identified in near-Earth space as being responsible for the excitation of substorms, magnetic storms, generation of field aligned currents and their consequences, the wealth of auroral phenomena. Its theoretical understanding is now on the verge of being completed. Reconnection takes place in thin current sheets. Analytical concepts proceeded gradually down to the microscopic scale, the scale of the electron skin depth or inertial length, recognizing that current layers that thin do preferentially undergo spontaneous reconnection. Thick current layers start reconnecting when being forced by plasma inflow to thin. For almost half a century the physical mechanism of reconnection has remained a mystery. Spacecraft in situ observations in combination with sophisticated numerical simulations in two and three dimensions recently clarified the mist, finding that reconnection produces a specific structure of the current layer inside the electron inertial (also called electron diffusion) region around the reconnection site, the X line. Onset of reconnection is attributed to pseudo-viscous contributions of the electron pressure tensor aided by electron inertia and drag, creating a complicated structured electron current sheet, electric fields, and an electron exhaust extended along the current layer. We review the general background theory and recent developments in numerical simulation on collisionless reconnection. It is impossible to cover the entire field of reconnection in a short space-limited review. The presentation necessarily remains cursory, determined by our taste, preferences, and kn
ECR Plasma CVD in Different Magnetic Field Configurations
NASA Astrophysics Data System (ADS)
Murata, Masayoshi; Uchida, Satoshi; Kishimoto, Kengo; Tanaka, Masayoshi; Komori, Akio; Kawai, Yoshinobu
1992-05-01
An electron cyclotron resonance (ECR) plasma is produced with a slotted Lisitano coil, and the axial distribution of the plasma parameters is measured in detail for different magnetic field configurations. It is found that the plasma density in uniform magnetic fields axially decreases more slowly than that in divergent magnetic fields. Furthermore, carbon films are formed by ECR plasma chemical vapor deposition (CVD), and the deposition rate obtained in the uniform magnetic fields is found to be larger than that obtained in the divergent magnetic fields.
Low-frequency fluctuations in plasma magnetic fields
Cable, S.; Tajima, T.
1992-02-01
It is shown that even a non-magnetized plasma with temperature T sustains zero-frequency magnetic fluctuations in thermal equilibrium. Fluctuations in electric and magnetic fields, as well as in densities, are computed. Four cases are studied: a cold, gaseous, isotropic, non-magnetized plasma; a cold, gaseous plasma in a uniform magnetic field; a warm, gaseous plasma described by kinetic theory; and a degenerate electron plasma. For the simple gaseous plasma, the fluctuation strength of the magnetic field as a function of frequency and wavenumber is calculated with the aid of the fluctuation-dissipation theorem. This calculation is done for both collisional and collisionless plasmas. The magnetic field fluctuation spectrum of each plasma has a large zero-frequency peak. The peak is a Dirac {delta}-function in the collisionless plasma; it is broadened into a Lorentzian curve in the collisional plasma. The plasma causes a low frequency cutoff in the typical black-body radiation spectrum, and the energy under the discovered peak approximates the energy lost in this cutoff. When the imposed magnetic field is weak, the magnetic field were vector fluctuation spectra of the two lowest modes are independent of the strength of the imposed field. Further, these modes contain finite energy even when the imposed field is zero. It is the energy of these modes which forms the non-magnetized zero-frequency peak of the isotropic plasma. In deriving these results, a simple relationship between the dispersion relation and the fluctuation power spectrum of electromagnetic waves if found. The warm plasma is shown, by kinetic theory, to exhibit a zero-frequency peak in its magnetic field fluctuation spectrum as well. For the degenerate plasma, we find that electric field fluctuations and number density fluctuations vanish at zero frequency; however, the magnetic field power spectrum diverges at zero frequency.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration
2013-10-01
A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.
Plasma sweeper to control the coupling of RF power to a magnetically confined plasma
Motley, Robert W.; Glanz, James
1985-01-01
A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.
Plasma sweeper to control the coupling of RF power to a magnetically confined plasma
Motley, R.W.; Glanz, J.
1985-04-16
A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.
Magnetic field distribution in the plasma flow generated by a plasma focus discharge
Mitrofanov, K. N.; Krauz, V. I. Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V.
2014-11-15
The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.
Intense Magnetized Plasma-Wall Interaction
Bauer, Bruno S.; Fuelling, Stephan
2013-11-30
This research project studied wall-plasma interactions relevant to fusion science. Such interactions are a critical aspect of Magneto-Inertial Fusion (MIF) because flux compression by a pusher material, in particular the metal for the liner approach to MIF, involves strong eddy current heating on the surface of the pusher, and probably interactions and mixing of the pusher with the interior fuel during the time when fusion fuel is being burned. When the pusher material is a metal liner, high-energy-density conditions result in fascinating behavior. For example, "warm dense matter" is produced, for which material properties such as resistivity and opacity are not well known. In this project, the transformation into plasma of metal walls subjected to pulsed megagauss magnetic fields was studied with an experiment driven by the UNR 1 MA Zebra generator. The experiment was numerically simulated with using the MHRDR code. This simple, fundamental high-energy-density physics experiment, in a regime appropriate to MIF, has stimulated an important and fascinating comparison of numerical modeling codes and tables with experiment. In addition, we participated in developing the FRCHX experiment to compress a field-reversed-configuration (FRC) plasma with a liner, in collaboration with researchers from Air Force Research Laboratory and Los Alamos National Lab, and we helped develop diagnostics for the Plasma Liner Experiment (PLX) at LANL. Last, but not least, this project served to train students in high-energy-density physics.
Simple model of plasma acceleration in a magnetic nozzle
NASA Technical Reports Server (NTRS)
Sercel, Joel C.
1990-01-01
A collisionless, steady-state, cold-plasma model is used to calculate the three-dimensional trajectory of a plasma as it is accelerated through a diverging magnetic field. The magnetic field is assumed to be axisymmetric with nonzero radial and axial components and zero azimuthal component. Although random thermal motion of plasma species is neglected in the cold plasma approximation, an important effect of plasma thermal energy is accounted for in the model as the kinetic energy of electrons in their Larmor motion about magnetic field lines. Calculations based on this model confirm previous studies which suggested that plasma separation from the field of a magnetic nozzle can take place even in the absence of collisional diffusion. It is shown that plasma divergence in a magnetic nozzle can be controlled by tailoring the field geometry.
Magnetized laboratory plasma jets: Experiment and simulation
NASA Astrophysics Data System (ADS)
Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce
2015-01-01
Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.
Magnetized laboratory plasma jets: experiment and simulation.
Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce
2015-01-01
Experiments involving radial foils on a 1 MA, 100 ns current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μm Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ∼1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μs current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics. PMID:25679726
Dynamical plasma response during driven magnetic reconnection.
Egedal, J; Fasoli, A; Nazemi, J
2003-04-01
Direct measurements of a collisionless current channel during driven magnetic reconnection are obtained for the first time on the Versatile Toroidal Facility. The size of the diffusion region is found to scale with the electron drift orbit width, independent of the ion mass and plasma density. Based on experimental observations, analytic expressions governing the dynamical evolution of the current profile and the formation of the electrostatic potential that develops in response to the externally imposed reconnection drive are established. This time response is closely linked to the presence of ion polarization currents. PMID:12689297
METHOD FOR EXCHANGING ENERGY WITH A PLASMA BY MAGNETIC PUMPING
Hall, L.S.
1963-12-31
A method of heating a plasma confined by a static magnetic field is presented. A time-varying magnetic field having a rise time to a predetermined value substantially less than its fall time is applied to a portion of the plasma. Because of the much shorter rise time, the plasma is reversibly heated. This cycle is repeated until the desired plasma temperature is reached. (AEC)
Magnetized plasma jets in experiment and simulation
NASA Astrophysics Data System (ADS)
Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce
2013-10-01
This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.
Sheared Plasma Rotation in Partially Stochastic Magnetic Fields
Wingen, A.; Spatschek, K. H.
2009-05-08
It is shown that resonant magnetic perturbations generate sheared flow velocities in magnetized plasmas. Stochastic magnetic fields in incomplete chaos influence the drift motion of electrons and ions differently. Using a fast mapping technique, it is demonstrated that a radial electric field is generated due to the different behavior of passing particles (electrons and ions) in tokamak geometry; magnetic trapping of ions is neglected. Radial profiles of the polodial velocity resulting from the force balance in the presence of a strong toroidal magnetic field are obtained. Scaling laws for plasma losses and the forms of sheared plasma rotation profiles are discussed.
Magnetic stochasticity in gyrokinetic simulations of plasma microturbulence
Nevins, W M; Wang, E; Candy, J
2010-02-12
Analysis of the magnetic field structure from electromagnetic simulations of tokamak ion temperature gradient turbulence demonstrates that the magnetic field can be stochastic even at very low plasma pressure. The degree of magnetic stochasticity is quantified by evaluating the magnetic diffusion coefficient. We find that the magnetic stochasticity fails to produce a dramatic increase in the electron heat conductivity because the magnetic diffusion coefficient remains small.
Singular waves in a magnetized pair-ion plasma
Samanta, Sukanta; Misra, Amar P.
2009-07-15
The existence of singular waves along the boundary of a magnetized pair-ion plasma is proved for both plasma-metal and plasma-vacuum interfaces. Such waves are shown to propagate at the points of intersection of the complex-zone boundary and the surface wave dispersion curve in a weakly magnetized plasma. The results could be relevant for negative ion plasmas in the laboratory and space as well as for the modeling of a plasma sustained by a traveling surface wave.
Magnetized plasma flow through a small orifice
NASA Astrophysics Data System (ADS)
Gunn, J. P.
2001-03-01
Deuterium plasma flow through a circular hole in a flat conducting plate is simulated by the two-dimensional object-oriented particle-in-cell code (XOOPIC) [J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, Comp. Phys. Comm. 87, 199 (1995)]. A constant magnetic field is oriented perpendicular to the plate surface, and parallel to the cylindrical axis of the hole. Charge neutralization on the interior surface of the hole leads to attenuation of the ion current throughput. The attenuation is stronger than would be expected from a finite Larmor radius model, due to acceleration of ions by the self-consistent radial electric field. The current attenuation has been measured by comparing two Langmuir probes that were operated simultaneously under a wide range of plasma conditions in Tore Supra [Equipe Tore Supra, IAEA-CN-64/02-2, International Atomic Energy Agency, Vienna, p. I-41 (1996)]. One probe was exposed directly to the plasma and the other was hidden behind a graphite shield pierced with either 3 or 4 mm diameter holes. Both the ion current attenuation and the floating potential drop are in reasonable agreement with the simulation results.
Status of Magnetic Nozzle and Plasma Detachment Experiment
Chavers, D. Gregory; Dobson, Chris; Jones, Jonathan; Lee, Michael; Martin, Adam; Gregory, Judith; Cecil, Jim; Bengtson, Roger D.; Breizman, Boris; Arefiev, Alexey; Chang-Diaz, Franklin; Squire, Jared; Glover, Tim; McCaskill, Greg; Cassibry, Jason; Li Zhongmin
2006-01-20
High power plasma propulsion can move large payloads for orbit transfer, lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue if the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment is being performed to test the theory regarding the MHD detachment scenario. The status of that experiment will be discussed in this paper.
Analysis of magnetic field plasma interactions using microparticles as probes
NASA Astrophysics Data System (ADS)
Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin S.; Hyde, Truell W.
2015-08-01
The interaction between a magnetic field and plasma close to a nonconductive surface is of interest for both science and technology. In space, crustal magnetic fields on celestial bodies without atmosphere can interact with the solar wind. In advanced technologies such as those used in fusion or spaceflight, magnetic fields can be used to either control a plasma or protect surfaces exposed to the high heat loads produced by plasma. In this paper, a method will be discussed for investigating magnetic field plasma interactions close to a nonconductive surface inside a Gaseous Electronics Conference reference cell employing dust particles as probes. To accomplish this, a magnet covered by a glass plate was exposed to a low power argon plasma. The magnetic field was strong enough to magnetize the electrons, while not directly impacting the dynamics of the ions or the dust particles used for diagnostics. In order to investigate the interaction of the plasma with the magnetic field and the nonconductive surface, micron-sized dust particles were introduced into the plasma and their trajectories were recorded with a high-speed camera. Based on the resulting particle trajectories, the accelerations of the dust particles were determined and acceleration maps over the field of view were generated which are representative of the forces acting on the particles. The results show that the magnetic field is responsible for the development of strong electric fields in the plasma, in both horizontal and vertical directions, leading to complex motion of the dust particles.
Analysis of magnetic field plasma interactions using microparticles as probes.
Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin S; Hyde, Truell W
2015-08-01
The interaction between a magnetic field and plasma close to a nonconductive surface is of interest for both science and technology. In space, crustal magnetic fields on celestial bodies without atmosphere can interact with the solar wind. In advanced technologies such as those used in fusion or spaceflight, magnetic fields can be used to either control a plasma or protect surfaces exposed to the high heat loads produced by plasma. In this paper, a method will be discussed for investigating magnetic field plasma interactions close to a nonconductive surface inside a Gaseous Electronics Conference reference cell employing dust particles as probes. To accomplish this, a magnet covered by a glass plate was exposed to a low power argon plasma. The magnetic field was strong enough to magnetize the electrons, while not directly impacting the dynamics of the ions or the dust particles used for diagnostics. In order to investigate the interaction of the plasma with the magnetic field and the nonconductive surface, micron-sized dust particles were introduced into the plasma and their trajectories were recorded with a high-speed camera. Based on the resulting particle trajectories, the accelerations of the dust particles were determined and acceleration maps over the field of view were generated which are representative of the forces acting on the particles. The results show that the magnetic field is responsible for the development of strong electric fields in the plasma, in both horizontal and vertical directions, leading to complex motion of the dust particles. PMID:26382535
Magnetic reconnection in space and laboratory plasmas
NASA Astrophysics Data System (ADS)
Hones, E. W., Jr.
1984-04-01
AGU is publishing Magnetic Reconnection in Space and Laboratory Plasmas, as volume 30 of the Geophysical Monograph Series (members $23.10; nonmembers $33.00). This volume is based on the Chapman Conference on Magnetic Reconnection, which was held at the Los Alamos National Laboratory in October 1983. Organization of that conference was first considered in early 1981, at a time when the body of evidence for the occurrence and importance of magnetic reconnection in earth's magnetosphere had already become impressive and was continuing to increase rapidly. There had not been a major conference on the subject since 1977, and the intervening years had seen important new strides being made. Initial plans called for holding the conference in October 1982, but conflicts with other conferences forced its postponement for 1 year. The 1-year postponement turned out to be a blessing in disguise because it permitted major new magnetospheric observations, made during that year by the ISEE 3 satellite, to be reported at the conference.
Magnetic Field Generation in Galactic Plasmas
NASA Astrophysics Data System (ADS)
Opher, Merav; Cowley, Steve; Maron, Jason; McWilliams, James
2000-10-01
The origin of the magnetic field in the universe is one of the great problems in astrophysics. The observed magnetic fields in spiral galaxies, for example, are of the order of microgauss and are coherent over galactic scales. It is usually assumed that turbulent fluid motions will enhance a seed field. In the present work we investigate the growth of the magnetic field in plasmas with high magnetic Prandtl number (the ratio of viscosity to resistivity). This growth occurs initially at scales below the viscous scale [1]. Kinney et al. [2] showed that in 2D the field saturates at an amplitude independent of the mean scale of the field. We discuss the initial growth in the three dimensional case where the dynamics of the field are on scales less than the viscosity scale [3]. At low initial field, the field grows and the scale decreases until the resistive scale is reached. The field then grows at a reduced rate until it reaches an equilibrium with the mean scale at a resistive scale. At higher initial amplitude, the field saturates before the mean scale has decreased to the resistive scale. The subsequent evolution is a slow decrease of the scale to the resistive scale, at which point it reaches equilibrium and stops evolving. To explain the large scale coherence of galactic fields, an inverse cascade is necessary. There is no evidence of an inverse cascade. We will present results for extended physics models including tensor viscosity and ambipular diffusion. [1] R. Kulsrud, and S. Anderson, Astrophys. J., 396, 606 (1992); A. Gruzinov, S. Cowley, and R. Sudan, Phys.Rev.Lett., 77, 4342 (1996). [2] R. M. Kinney, B. Chandran, S. Cowley, J. C. McWilliams, Astrophys. J., accepted to publication (2000). [3] M. Opher, S. Cowley, R. M. Kinney, B. Chandran, J. Maron and J.C. McWilliams, in preparation (2000).
Magnetic Field Generation in Galactic Plasmas
NASA Astrophysics Data System (ADS)
Opher, M.; Cowley, S.; Schekochihin, A.; Kinney, R. M.; Chandran, B.; Maron, J.; McWilliams, J. C.
2001-05-01
The origin of the magnetic field in the universe is one of the great problems in astrophysics. The observed magnetic fields in spiral galaxies, for example, are of the order of microgauss and are coherent over galactic scales. Its is usually assumed that turbulent fluid motions will enhance a seed field. In the present work we invetigate the growth of the magnetic field in plasmas with high magnetic Prandtl number (the ratio of viscosity to resistivity). This growth occur initially at scales below the viscous scale [1]. Kinney et al. [2] showed that in 2D the field saturates at an amplitude independent of the mean scale of the field. We discuss the initial growth in the three dimensional case where the dynamics of the field on scales less than the viscosity scale [3]. At low initial field, the field grows and the scale decreases until the resistive scale is reached. The field then grows at a reduced rate until it reaches an equilibrium with the mean scale at a resistive scale. At higher initial amplitude, the field saturates before the mean scale has decreased to the resistive scale. The subsequent evolution is a slow decrease of the scale to the resistive scale, at which point it reaches equilibrium and stops evolving. To explain the large scale coherence of galactic fields, an inverse cascade is necessary. There is no evidence of an inverse cascade. We will present results for extended physics models including tensor viscosity and ambipular diffusion. [1] R. Kulsrud, and S. Anderson, Astrophys. J., 396, 606 (1992); A. Gruzinov, S. Cowley, and R. Sudan, Phys.Rev.Lett., 77, 4342 (1996). [2] R. M. Kinney, B. Chandran, S. Cowley, J. C. McWilliams, Astrophys. J., accepted to publication (2000). [3] M. Opher, S. Cowley, A. Schekochihin, R. M. Kinney, B. Chandran, J. Maron and J.C. McWilliams, in preparation (2001).
The multipole resonance probe: characterization of a prototype
NASA Astrophysics Data System (ADS)
Lapke, Martin; Oberrath, Jens; Schulz, Christian; Storch, Robert; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Brinkmann, Ralf Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona
2011-08-01
The multipole resonance probe (MRP) was recently proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2008 Appl. Phys. Lett. 93 051502). This communication reports the experimental characterization of a first MRP prototype in an inductively coupled argon/nitrogen plasma at 10 Pa. The behavior of the device follows the predictions of both an analytical model and a numerical simulation. The obtained electron densities are in excellent agreement with the results of Langmuir probe measurements.
The Physics of Ion Decoupling in Magnetized Plasma Explosions
Hewett, D; Larson, D; Brecht, S
2011-02-08
When a finite pulse of plasma expands into a magnetized background plasma, MHD predicts the pulse expel background plasma and its B-field - i.e. cause a magnetic 'bubble'. The expanding plasma is confined within the bubble, later to escape down the B-field lines. MHD suggests that the debris energy goes to expelling the B-field from the bubble volume and kinetic energy of the displaced background. For HANEs, this is far from the complete story. For many realistic HANE regimes, the long mean-free-path for collisions necessitates a Kinetic Ion Simulation Model (KISM). The most obvious effect is that the debris plasma can decouple and slip through the background plasma. The implications are: (1) the magnetic bubble is not as large as expected and (2) the debris is no longer confined within the magnetic bubble.
A Guide to Electronic Multipoles in Photon Scattering and Absorption
NASA Astrophysics Data System (ADS)
Lovesey, Stephen William; Balcar, Ewald
2013-02-01
The practice of replacing matrix elements in atomic calculations by those of convenient operators with strong physical appeal has a long history, and in condensed matter physics it is perhaps best known through use of operator equivalents in electron resonance by Elliott and Stevens. Likewise, electronic multipoles, created with irreducible spherical-tensors, to represent charge-like and magnetic-like quantities are widespread in modern physics. Examples in recent headlines include a magnetic charge (a monopole), an anapole (a dipole) and a triakontadipole (a magnetic-like atomic multipole of rank 5). In this communication, we aim to guide the reader through use of atomic, spherical multipoles in photon scattering, and resonant Bragg diffraction and dichroic signals in particular. Applications to copper oxide CuO and neptunium dioxide (NpO2) are described. In keeping with it being a simple guide, there is sparse use in the communication of algebra and expressions are gathered from the published literature and not derived, even when central to the exposition. An exception is a thorough grounding, contained in an Appendix, for an appropriate version of the photon scattering length based on quantum electrodynamics. A theme of the guide is application of symmetry in scattering, in particular constraints imposed on results by symmetry in crystals. To this end, a second Appendix catalogues constraints on multipoles imposed by symmetry in crystal point-groups.
Theory of electromagnetic fluctuations for magnetized multi-species plasmas
Navarro, Roberto E. Muñoz, Víctor; Araneda, Jaime; Moya, Pablo S.; Viñas, Adolfo F.; Valdivia, Juan A.
2014-09-15
Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.
Laboratory Studies of Supersonic Magnetized Plasma Jets and Radiative Shocks
NASA Astrophysics Data System (ADS)
Lebedev, Sergey
2013-06-01
In this talk I will focus on laboratory plasma experiments producing magnetically driven supersonic plasma jets and on the interaction of these jets with ambient media. The experiments are scalable to astrophysical flows in that the critical dimensionless numbers such as the plasma collisionality, the plasma beta, the Reynolds number and the magnetic Reynolds number are all in the astrophysically appropriate ranges. The experimental results will be compared with computer simulations performed with laboratory plasma codes and with astrophysical codes. In the experiments the jets are driven and collimated by the toroidal magnetic fields and it is found that the level of MHD instabilities in the jets strongly depends on the strength of the field represented by the ratio of the thermal to magnetic field pressures (plasma beta). The experiments show the possibility of formation of episodic outflows, with periodic ejections of magnetic bubbles naturally evolving into a heterogeneous jet propagating inside a channel made of self-collimated magnetic cavities [1,2]. We also found that it is possible to form quasi-laminar jets which are “indirectly” collimated by the toroidal magnetic fields, but this requires the presence of the lower density halo plasma surrounding the central jet [3]. Studies of the radiative shocks formed in the interaction of the supersonic magnetized plasma flows with ambient plasma will be also presented, and the development of cooling instabilities in the post-shock plasma will be discussed. This research was sponsored by EPSRC Grant No. EP/G001324/1 and by the OFES DOE under DOE Cooperative Agreement No. DE-SC-0001063. References 1. A. Ciardi, S.V. Lebedev, A. Frank et al., The Astrophysical Journal, 691: L147-L150 (2009) 2. F.A. Suzuki-Vidal, S.V. Lebedev, S.N. Bland et al., Physics of Plasmas, 17, 112708 (2010). 3. F.A. Suzuki-Vidal, M. Bocchi, S.V. Lebedev et al., Physics of Plasmas, 19, 022708 (2012).
Dual-function magnetic structure for toroidal plasma devices
Brown, Robert L.
1978-01-01
This invention relates to a support system wherein the iron core and yoke of the plasma current system of a tokamak plasma containment device is redesigned to support the forces of the magnet coils. The containment rings, which occupy very valuable space around the magnet coils, are utilized to serve as yokes for the core such that the conventional yoke is eliminated. The overall result is an improved aspect ratio, reduction in structure, smaller overall size, and improved access to the plasma ring.
Photonic Weyl degeneracies in magnetized plasma.
Gao, Wenlong; Yang, Biao; Lawrence, Mark; Fang, Fengzhou; Béri, Benjamin; Zhang, Shuang
2016-01-01
Weyl particles are elusive relativistic fermionic particles with vanishing mass. While not having been found as an elementary particle, they are found to emerge in solid-state materials where three-dimensional bands develop a topologically protected point-like crossing, a so-called Weyl point. Photonic Weyl points have been recently realised in three-dimensional photonic crystals with complex structures. Here we report the presence of a novel type of plasmonic Weyl points in a naturally existing medium-magnetized plasma, in which Weyl points arise as crossings between purely longitudinal plasma modes and transverse helical propagating modes. These photonic Weyl points are right at the critical transition between a Weyl point with the traditional closed finite equifrequency surfaces and the newly proposed 'type II' Weyl points with open equifrequency surfaces. Striking observable features of plasmon Weyl points include a half k-plane chirality manifested in electromagnetic reflection. Our study introduces Weyl physics into homogeneous photonic media, which could pave way for realizing new topological photonic devices. PMID:27506514
Photonic Weyl degeneracies in magnetized plasma
Gao, Wenlong; Yang, Biao; Lawrence, Mark; Fang, Fengzhou; Béri, Benjamin; Zhang, Shuang
2016-01-01
Weyl particles are elusive relativistic fermionic particles with vanishing mass. While not having been found as an elementary particle, they are found to emerge in solid-state materials where three-dimensional bands develop a topologically protected point-like crossing, a so-called Weyl point. Photonic Weyl points have been recently realised in three-dimensional photonic crystals with complex structures. Here we report the presence of a novel type of plasmonic Weyl points in a naturally existing medium—magnetized plasma, in which Weyl points arise as crossings between purely longitudinal plasma modes and transverse helical propagating modes. These photonic Weyl points are right at the critical transition between a Weyl point with the traditional closed finite equifrequency surfaces and the newly proposed ‘type II' Weyl points with open equifrequency surfaces. Striking observable features of plasmon Weyl points include a half k-plane chirality manifested in electromagnetic reflection. Our study introduces Weyl physics into homogeneous photonic media, which could pave way for realizing new topological photonic devices. PMID:27506514
Photonic Weyl degeneracies in magnetized plasma
NASA Astrophysics Data System (ADS)
Gao, Wenlong; Yang, Biao; Lawrence, Mark; Fang, Fengzhou; Béri, Benjamin; Zhang, Shuang
2016-08-01
Weyl particles are elusive relativistic fermionic particles with vanishing mass. While not having been found as an elementary particle, they are found to emerge in solid-state materials where three-dimensional bands develop a topologically protected point-like crossing, a so-called Weyl point. Photonic Weyl points have been recently realised in three-dimensional photonic crystals with complex structures. Here we report the presence of a novel type of plasmonic Weyl points in a naturally existing medium--magnetized plasma, in which Weyl points arise as crossings between purely longitudinal plasma modes and transverse helical propagating modes. These photonic Weyl points are right at the critical transition between a Weyl point with the traditional closed finite equifrequency surfaces and the newly proposed `type II' Weyl points with open equifrequency surfaces. Striking observable features of plasmon Weyl points include a half k-plane chirality manifested in electromagnetic reflection. Our study introduces Weyl physics into homogeneous photonic media, which could pave way for realizing new topological photonic devices.
Dynamics of runaway electrons in magnetized plasmas
Moghaddam-Taaheri, E.
1986-01-01
The evolution of a runaway electron tail driven by a subcritical dc electric field in a magnetized plasma is studied numerically using a quasi-linear numerical code (2-D in v- and k-space) based on the Ritz-Galerkin method and finite elements. Three different regimes in the evolution of the runaway tail depending on the strength of the dc electric field and the ratio of plasma to gyrofrequency, were found. The tail can be (a) stable and the electrons are accelerated to large parallel velocities, (b) unstable to the Cerenkov resonance due to the formation of a positive slope on the runaway tail, (c) unstable to the anomalous Doppler resonance instability driven by the large velocity anisotropy in the tail. Once an instability is triggered (Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution resulting in less acceleration. The synchrotron emission of the runaway electrons shows large enhancement in the radiation level at the high-frequency end of the spectrum during the pitch-angle scattering of the fast particles. The results are relevant to recent experimental data from the Princeton Large Torus (PLT) during current-drive experiments and to the microwave bursts observed during solar flares.
A plasma generator utilizing the high intensity ASTROMAG magnets
NASA Technical Reports Server (NTRS)
Sullivan, James D.; Post, R. S.; Lane, B. G.; Tarrh, J. M.
1986-01-01
The magnet configuration for the proposed particle astrophysics magnet facility (ASTROMAG) on the space station includes a cusp magnetic field with an intensity of a few tesla. With these large magnets (or others) located in the outer ionosphere, many quite interesting and unique plasma physics experiments become possible. First there are studies utilizing the magnet alone to examine the supersonic, sub-Alfvenic interaction with the ambient medium; the scale length for the magnet perturbation is approx. 20 m. The magnetic field geometry when combined with the Earth's and their relative motion will give rise to a host of plasma phenomena: ring nulls, x-points, ion-acoustic and lower-hybrid shocks, electron heating (possible shuttle glow without a surface) launching of Alfvenwaves, etc. Second, active experiments are possible for a controlled study of fundamental plasma phenomena. A controlled variable species plasma can be made by using an RF ion source; use of two soft iron rings placed about the line cusp would give an adequate resonance zone (ECH or ICH) and a confining volume suitable for gas efficiency. The emanating plasma can be used to study free expansion of plasma along and across field lines (polar wind), plasma flows around the space platform, turbulent mixing in the wake region, long wavelength spectrum of convecting modes, plasma-dust interactions, etc.
Radiation reaction of multipole moments
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2007-08-01
A Poincaré-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.
Magnetic tearing of plasma discharges due to nonuniform resistivity
NASA Technical Reports Server (NTRS)
Hassam, A. B.
1988-01-01
The rearrangement of current in a plasma discharge in response to resistivity nonuniformities within a magnetic surface is studied. It is shown that macroscopic magnetic islands develop about those surfaces where the nonuniformity is aligned with the magnetic field. If the nonuniformity and the field are not aligned anywhere, there is no current rearrangement; instead, relatively large plasma flows are set up. Such resistivity inhomogeneities can obtain in solar coronal loops and, in some circumstances, in tokamak discharges.
Initial Results from the Magnetized Dusty Plasma Experiment (MDPX)
NASA Astrophysics Data System (ADS)
Thomas, Edward; Konopka, Uwe; Lynch, Brian; Adams, Stephen; Leblanc, Spencer; Artis, Darrick; Dubois, Ami; Merlino, Robert; Rosenberg, Marlene
2014-10-01
The MDPX device is envisioned as a flexible, multi-user, research instrument that can perform a wide range of studies in fundamental and applied plasma physics. The MDPX device consists of two main components. The first is a four-coil, open bore, superconducting magnet system that is designed to produce uniform magnetic fields of up to 4 Tesla and non-uniform magnetic fields with gradients up to up to 2 T/m configurations. Within the warm bore of the magnet is placed an octagonal vacuum chamber that has a 46 cm outer diameter and is 22 cm tall. The primary missions of the MDPX device are to: (1) investigate the structural, thermal, charging, and collective properties of a plasma as the electrons, ions, and finally charged microparticles become magnetized; (2) study the evolution of a dusty plasma containing magnetic particles (paramagnetic, super-paramagnetic, or ferromagnetic particles) in the presence of uniform and non-uniform magnetic fields; and, (3) explore the fundamental properties of strongly magnetized plasmas (``i.e., dust-free'' plasmas). This presentation will summarize the initial characterization of the magnetic field structure, initial plasma parameter measurements, and the development of in-situ and optical diagnostics. This work is supported by funding from the NSF and the DOE.
Solitary and shock waves in magnetized electron-positron plasma
Lu, Ding; Li, Zi-Liang; Abdukerim, Nuriman; Xie, Bai-Song
2014-02-15
An Ohm's law for electron-positron (EP) plasma is obtained. In the framework of EP magnetohydrodynamics, we investigate nonrelativistic nonlinear waves' solutions in a magnetized EP plasma. In the collisionless limit, quasistationary propagating solitary wave structures for the magnetic field and the plasma density are obtained. It is found that the wave amplitude increases with the Mach number and the Alfvén speed. However, the dependence on the plasma temperature is just the opposite. Moreover, for a cold EP plasma, the existence range of the solitary waves depends only on the Alfvén speed. For a hot EP plasma, the existence range depends on the Alfvén speed as well as the plasma temperature. In the presence of collision, the electromagnetic fields and the plasma density can appear as oscillatory shock structures because of the dissipation caused by the collisions. As the collision frequency increases, the oscillatory shock structure becomes more and more monotonic.
Multipole expansion method for supernova neutrino oscillations
Duan, Huaiyu; Shalgar, Shashank E-mail: shashankshalgar@unm.edu
2014-10-01
We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.
The magnetic pumping of plasmas with sawtooth waveforms
NASA Technical Reports Server (NTRS)
Borovsky, Joseph E.; Hansen, Paul J.
1990-01-01
The pumping of plasmas by sawtooth-waveform magnetic induction variations is studied theoretically and by means of computer simulations. A sawtooth is a cycle waveform that is characterized by a slow increase in the magnetic induction followed by a rapid drop in the induction. Two types of sawtooth pumping are analyzed, and the types classified as to whether or not the first adiabatic invariants of the plasma particles are conserved during the rapid drops in the magnetic induction. When the invariants are conserved, the sawtooth waveforms are found to be less efficient than square waves for pumping plasmas. When the adiabatic invariations are not conserved, the pumping efficiency is found to be a slight improvement over square waves. Both types of pumping are applied to a hypothetical tokamak plasma and it is concluded that neither type of sawtooth pumping is practical for heating magnetically confined fusion plasmas.
Multi-Scale Investigation of Sheared Flows In Magnetized Plasmas
Edward, Jr., Thomas
2014-09-19
Flows parallel and perpendicular to magnetic fields in a plasma are important phenomena in many areas of plasma science research. The presence of these spatially inhomogeneous flows is often associated with the stability of the plasma. In fusion plasmas, these sheared flows can be stabilizing while in space plasmas, these sheared flows can be destabilizing. Because of this, there is broad interest in understanding the coupling between plasma stability and plasma flows. This research project has engaged in a study of the plasma response to spatially inhomogeneous plasma flows using three different experimental devices: the Auburn Linear Experiment for Instability Studies (ALEXIS) and the Compact Toroidal Hybrid (CTH) stellarator devices at Auburn University, and the Space Plasma Simulation Chamber (SPSC) at the Naval Research Laboratory. This work has shown that there is a commonality of the plasma response to sheared flows across a wide range of plasma parameters and magnetic field geometries. The goal of this multi-device, multi-scale project is to understand how sheared flows established by the same underlying physical mechanisms lead to different plasma responses in fusion, laboratory, and space plasmas.
Progress In Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).
Studies of Magnetic Reconnection in Colliding Laser-Produced Plasmas
NASA Astrophysics Data System (ADS)
Rosenberg, Michael
2013-10-01
Novel images of magnetic fields and measurements of electron and ion temperatures have been obtained in the magnetic reconnection region of high- β, laser-produced plasmas. Experiments using laser-irradiated foils produce expanding, hemispherical plasma plumes carrying MG Biermann-battery magnetic fields, which can be driven to interact and reconnect. Thomson-scattering measurements of electron and ion temperatures in the interaction region of two colliding, magnetized plasmas show no thermal enhancement due to reconnection, as expected for β ~ 8 plasmas. Two different proton radiography techniques used to image the magnetic field structures show deformation, pileup, and annihilation of magnetic flux. High-resolution images reveal unambiguously reconnection-induced jets emerging from the interaction region and show instabilities in the expanding plasma plumes and supersonic, hydrodynamic jets due to the plasma collision. Quantitative magnetic flux data show that reconnection in experiments with asymmetry in the scale size, density, temperature, and plasma flow across the reconnection region occurs less efficiently than in similar, symmetric experiments. This result is attributed to disruption of the Hall mechanism mediating collisionless reconnection. The collision of plasmas carrying parallel magnetic fields has also been probed, illustrating the deformation of magnetic field structures in high-energy-density plasmas in the absence of reconnection. These experiments are particularly relevant to high- β reconnection environments, such as the magnetopause. This work was performed in collaboration with C. Li, F. Séguin, A. Zylstra, H. Rinderknecht, H. Sio, J. Frenje, and R. Petrasso (MIT), I. Igumenshchev, V. Glebov, C. Stoeckl, and D. Froula (LLE), J. Ross and R. Town (LLNL), W. Fox (UNH), and A. Nikroo (GA), and was supported in part by the NLUF, FSC/UR, U.S. DOE, LLNL, and LLE.
Kim, Kimin; Ahn, J-W; Scotti, F.; Park, J-K; Menard, J. E.
2015-09-03
Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n = 3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifies the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n = 3. Amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n = 1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.
Kim, Kimin; Ahn, J. -W.; Scotti, F.; Park, J. -K.; Menard, J. E.
2015-09-03
Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n = 3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifies the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n = 3. Furthermore, amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n = 1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.
Oblique Propagation of Ion Acoustic Solitons in Magnetized Superthermal Plasmas
NASA Astrophysics Data System (ADS)
Devanandhan, S.; Sreeraj, T.; Singh, S.; Lakhina, G. S.
2015-12-01
Small amplitude ion-acoustic solitons are studied in a magnetized plasma consisting of protons, doubly charged helium ions and superthermal electrons. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) is derived to examine the properties of ion acoustic solitary structures observed in space plasmas. Our model is applicable for weakly magnetized plasmas. The results will be applied to the satellite observations in the solar wind at 1 AU where magnetized ion acoustic waves with superthermal electrons can exist. The effects of superthermality, temperature and densities on these solitary structures will be discussed.
Relativistic nonlinear plasma waves in a magnetic field
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Pellat, R.
1975-01-01
Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.
Zhang Haifeng; Liu Shaobin; Kong Xiangkun
2012-12-15
In this paper, the properties of photonic band gaps and dispersion relations of one-dimensional magnetized plasma photonic crystals composed of dielectric and magnetized plasma layers with arbitrary magnetic declination are theoretically investigated for TM polarized wave based on transfer matrix method. As TM wave propagates in one-dimensional magnetized plasma photonic crystals, the electromagnetic wave can be divided into two modes due to the influence of Lorentz force. The equations for effective dielectric functions of such two modes are theoretically deduced, and the transfer matrix equation and dispersion relations for TM wave are calculated. The influences of relative dielectric constant, plasma collision frequency, incidence angle, plasma filling factor, the angle between external magnetic field and +z axis, external magnetic field and plasma frequency on transmission, and dispersion relation are investigated, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that plasma collision frequency cannot change the locations of photonic band gaps for both modes, and also does not affect the reflection and transmission magnitudes. The characteristics of photonic band gaps for both modes can be obviously tuned by relative dielectric constant, incidence angle, plasma filling factor, the angle between external magnetic field and +z axis, external magnetic field and plasma frequency, respectively. These results would provide theoretical instructions for designing filters, microcavities, and fibers, etc.
Rayleigh-Taylor instability in quantum magnetized viscous plasma
Hoshoudy, G. A.
2011-09-15
Quantum effects on Rayleigh-Taylor instability of stratified viscous plasmas layer under the influence of vertical magnetic field are investigated. By linearly solving the viscous QMHD equations into normal mode, a forth-order ordinary differential equation is obtained to describe the velocity perturbation. Then the growth rate is derived for the case where a plasma with exponential density distribution is confined between two rigid planes. The results show that, the presence of vertical magnetic field beside the quantum effect will bring about more stability on the growth rate of unstable configuration for viscous plasma, which is greater than that of inviscous plasma.
Multicentimeter long high density magnetic plasmas for optical guiding.
Pollock, B B; Froula, D H; Tynan, G R; Divol, L; Price, D; Costa, R; Yepiz, F; Fulkerson, S; Mangini, F; Glenzer, S H
2008-10-01
We present a platform for producing long plasma channels suitable for guiding lasers over several centimeters by applying magnetic fields to limit the radial heat flux from a preforming laser beam. The resulting density gradient will be used as an optical plasma waveguide. The plasma conditions have been chosen to be consistent with the requirements for laser wakefield acceleration where multi-GeV electrons are predicted. A detailed description of the system used to produce the high (5 T) magnetic fields and initial results that show a 5 cm long plasma column are discussed. PMID:19044692
Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns
NASA Technical Reports Server (NTRS)
Griffin, Steven T.
2003-01-01
To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.
Improved Magnetic Field Generation Efficiency and Higher Temperature Spheromak Plasmas
Wood, R D; Hill, D N; McLean, H S; Hooper, E B; Hudson, B F; Moller, J M; Romero-Talamas, C A
2008-09-15
New understanding of the mechanisms governing the observed magnetic field generation limits on the sustained spheromak physics experiment has been obtained. Extending the duration of magnetic helicity injection during the formation of a spheromak and optimizing the ratio of injected current to bias flux produce higher magnetic field plasmas with record spheromak electron temperatures. To explore magnetic field buildup efficiency limits, the confinement region geometry was varied resulting in improved field buildup efficiencies.
High Magnetic field generation for laser-plasma experiments
Pollock, B B; Froula, D H; Davis, P F; Ross, J S; Fulkerson, S; Bower, J; Satariano, J; Price, D; Glenzer, S H
2006-05-01
An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system suppling 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented.
Teodorescu, C.; Young, W. C.; Swan, G. W. S.; Ellis, R. F.; Hassam, A. B.; Romero-Talamas, C. A.
2010-08-20
Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic ExB rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.
Improvement of uniformity in a weakly magnetized inductively coupled plasma
NASA Astrophysics Data System (ADS)
Lee, W. H.; Cheong, H. W.; Kim, J. W.; Whang, K. W.
2015-12-01
Magnetic fields are applied to inductively coupled plasma (ICP) to achieve high plasma densities using electromagnets. If the magnetic fields are set up such that the magnitude of magnetic flux density on the substrate decreases with both radial and axial distances from the substrate’s center (here after referred to as M-ICP-A), the plasma density increases by 237% compared with that for ICP although the non-uniformity of the plasma density for M-ICP-A (11.1%) is higher than that for ICP (10.9%). As the rate of decrease in the magnitude of magnetic flux density on the substrate increases both radially and axially, the non-uniformity in the plasma density increases further. The increase in the non-uniformity for M-ICP-A was confirmed to arise from the flute instability. To suppress the flute instability, we arranged the magnitude of magnetic flux density on the substrate to increase with increasing distance from the substrate center both radially and axially (here after referred to as M-ICP-V). In this configuration, plasma fluctuations were not observed, hence the plasma density non-uniformity was lowered to 8.1%, although the measured plasma density was higher than that for M-ICP-A. The oxide etch-rate non-uniformity in M-ICP-V (2.5%) was also lower than that for ICP (5.2%) or that for M-ICP-A (21.4%).
Understanding of Edge Plasmas in Magnetic Fusion Energy Devices
Rognlien, T
2004-11-01
A limited overview is given of the theoretical understanding of edge plasmas in fusion devices. This plasma occupies the thin region between the hot core plasma and material walls in magnetically confinement configurations. The region is often formed by a change in magnetic topology from close magnetic field lines (i.e., the core region) and open field lines that contact material surfaces (i.e., the scrape-off layer [SOL]), with the most common example being magnetically diverted tokamaks. The physics of this region is determined by the interaction of plasma with neutral gas in the presence of plasma turbulence, with impurity radiation being an important component. Recent advances in modeling strong, intermittent micro-turbulent edge-plasma transport is given, and the closely coupled self-consistent evolution of the edge-plasma profiles in tokamaks. In addition, selected new results are given for the characterization of edge-plasmas behavior in the areas of edge-pedestal relaxation and SOL transport via Edge-Localize Modes (ELMs), impurity formation including dust, and magnetic field-line stochasticity in tokamaks.
Magnetic topology change induced by reconnection events in RFP plasmas
NASA Astrophysics Data System (ADS)
Momo, Barbara; Martines, Emilio; Innocente, Paolo; Lorenzini, Rita; Rea, Cristina; Zanca, Paolo; Zuin, Matteo
2014-10-01
Magnetic reconnection is a phenomena observed in various plasmas across the Universe, where a conversion of magnetic to kinetic energy of plasma particles is consequent to a change in the global magnetic topology. In laboratory plasmas magnetic reconnections are associated to relaxation processes, like sawtooth crashes in Tokamak dynamics and the so-called dynamo effect in Reversed Filed Pinches (RFPs). In this work we propose the study of magnetic crashes in RFP dynamics, where the recursive transition from a more ordered helical state to a chaotic one is associated with rapid magnetic reconnection events. More into details, we propose to analyse RFX-mod discharges reconstructing the magnetic topology in the whole plasma volume at fixed time snapshots. Times are chosen in a window around the crashes, and the magnetic topology is reconstructed by using the solutions of a Newcomb-type equation, solved consistently with experimental boundary conditions. New boundary conditions are given by internal magnetic measurements coming from the ISIS probe system, in order to detect high frequency dynamics. Poincaré plots are used as a tool for the visualization of magnetic topology changes.
Numerical Investigation of Plasma Flows in Magnetic Nozzles
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2009-01-01
Magnetic nozzles are used in many laboratory experiments in which plasma flows are to be confined, cooled, accelerated, or directed. At present, however, there is no generally accepted theoretical description that explains the phenomena of plasma expansion in and detachment from an externally-imposed magnetic field. The latter is an especially important problem in the field of plasma propulsion, where the ionized gas must detach from the applied, solenoidal magnetic field to realize thrust production. In this paper we simulate a plasma flowing in the presence of an applied magnetic field using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The new tool employs the same formulation of the governing equation set, but retains the axial and radial components of magnetic field and the azimuthal component of velocity that were neglected. We aim to compare the computational results with the various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver, and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. 4 A schematic showing the setup used in those experiments is shown. We model this geometry because there is a substantial amount of experimental data that can be compared to our computations, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input
Electron energy distributions in a magnetized inductively coupled plasma
Song, Sang-Heon E-mail: Sang-Heon.Song@us.tel.com; Yang, Yang; Kushner, Mark J.
2014-09-15
Optimizing and controlling electron energy distributions (EEDs) is a continuing goal in plasma materials processing as EEDs determine the rate coefficients for electron impact processes. There are many strategies to customize EEDs in low pressure inductively coupled plasmas (ICPs), for example, pulsing and choice of frequency, to produce the desired plasma properties. Recent experiments have shown that EEDs in low pressure ICPs can be manipulated through the use of static magnetic fields of sufficient magnitudes to magnetize the electrons and confine them to the electromagnetic skin depth. The EED is then a function of the local magnetic field as opposed to having non-local properties in the absence of the magnetic field. In this paper, EEDs in a magnetized inductively coupled plasma (mICP) sustained in Ar are discussed with results from a two-dimensional plasma hydrodynamics model. Results are compared with experimental measurements. We found that the character of the EED transitions from non-local to local with application of the static magnetic field. The reduction in cross-field mobility increases local electron heating in the skin depth and decreases the transport of these hot electrons to larger radii. The tail of the EED is therefore enhanced in the skin depth and depressed at large radii. Plasmas densities are non-monotonic with increasing pressure with the external magnetic field due to transitions between local and non-local kinetics.
Design and Fabrication of a Magnetic System to Investigate Magnetized Dusty Plasmas
NASA Astrophysics Data System (ADS)
Bates, Evan M.; Romero-Talamas, Carlos A.
2013-10-01
The interest in researching the dynamics and equilibrium of magnetized dusty plasma crystallization has led to the design and fabrication of a novel experimental setup at UMBC. The proposed magnets will be an important subsystem of this setup, and will produce a uniform magnetic field of several tesla for a duration of several seconds. The magnets will be arranged in the Helmholtz configuration and will have a cooling system for temperature compensation of the coils, as well as the ability to adjust the orientation of the magnetic field with respect to gravity. Planned experiments include propagation of magnetized waves in dusty plasma crystals under various boundary conditions.
The Marshall Magnetic Mirror Beam-Plasma Experiment
NASA Technical Reports Server (NTRS)
Schneider, Todd A.; Carruth, M. R., Jr.; Vaughn, Jason A.; Edwards, David L.; Munafo, Paul (Technical Monitor)
2001-01-01
Plasma propulsion is an advanced propulsion concept with the potential to realize very high specific impulse. Present designs for plasma propulsion devices share a common feature, the incorporation of a magnetic mirror. A magnetic mirror is a plasma confinement scheme whereby charged particles are trapped (or reflected) between two regions of high magnetic field strength. A cylindrical geometry is most often employed to create a magnetic mirror, which is a natural geometry for propulsion devices. To utilize the magnetic mirror configuration in a plasma propulsion device, however, will require efficient coupling of power into the system. With the development of compact and efficient electron sources, such as hollow cathode sources, coupling power into a magnetic mirror using electron beams may be an attractive approach. A system, the Marshall Magnetic Mirror (M3), has been constructed to study the coupling of an electron beam into a magnetic mirror. A description of the M3 device will be provided as well as data from initial beam-plasma coupling experiments.
Effect of applied magnetic field on a microwave plasma thruster
Yang Juan; Xu Yingqiao; Meng Zhiqiang; Yang Tielian
2008-02-15
Theoretical analysis and calculation show that applying a magnetic field in a microwave plasma thruster operating at 2.45 GHz can improve the thruster performance, whereby an electron cyclotron resonant layer at thruster startup state contributes to the increase of microwave energy dissipated in plasma, and a strong magnetic field up to 0.5 T can increase the peak temperature of inside plasma when the thruster operates in steady state. Experimental measurements of the thruster with applied field and operating on argon gas show high coupling efficiency. Plasma plume diagnostics deduce a high degree of gas ionization in the thruster cavity. This shows the feasibility of operating a microwave plasma thruster with an applied magnetic field.
Anomalous skin effects in a weakly magnetized degenerate electron plasma
NASA Astrophysics Data System (ADS)
Abbas, G.; Sarfraz, M.; Shah, H. A.
2014-09-01
Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].
Surface electromagnetic wave equations in a warm magnetized quantum plasma
Li, Chunhua; Yang, Weihong; Wu, Zhengwei; Chu, Paul K.
2014-07-15
Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.
Anomalous skin effects in a weakly magnetized degenerate electron plasma
Abbas, G. Sarfraz, M.; Shah, H. A.
2014-09-15
Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].
Magnetic Bubble Expansion Experimental Investigation Using a Compact Coaxial Magnetized Plasma Gun
NASA Astrophysics Data System (ADS)
Zhang, Yue; Lynn, Alan; Hsu, Scott; Li, Hui; Liu, Wei; Gilmore, Mark; Watts, Christopher
2009-11-01
The poster will first discuss the construction and improved design of a compact coaxial magnetized plasma gun. The plasma gun is used for experimental studies of magnetic bubble expansion into a lower pressure background plasma, which as a model for extragalactic radio lobes and solar coronal mass ejections. In this experiment, the plasma bubble's density, electron temperature, and propagation speed are measured by using a multiple-tipped langmuir probe. Also a three axis B-dot probe array is used to measure the magnetic field in three dimensions during the expansion process. In this poster experiment setup and data will be provided. Finally the comparison with the simulation result will be made.
Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle
Arefiev, Alexey V.; Breizman, Boris N.
2005-04-15
Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically confined plasma can detach from the spacecraft. This work presents a magnetohydrodynamic (MHD) detachment scenario in which the plasma flow stretches the magnetic field lines to infinity. Detachment takes place after the energy density of the expanding magnetic field drops below the kinetic energy density of the plasma. As plasma flows along the magnetic field lines, the originally sub-Alfvenic flow becomes super-Alfvenic; this transition is similar to what occurs in the solar wind. In order to describe the detachment quantitatively, the ideal MHD equations have been solved for a cold plasma flow in a slowly diverging nozzle. The solution exhibits a well-behaved transition from sub- to super-Alfvenic flow inside the nozzle and a rarefaction wave at the edge of the outgoing flow. It is shown that efficient detachment is feasible if the nozzle is sufficiently long.
MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES
Post, R.F.
1963-08-20
More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)
Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2008-01-01
At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.
Effect of bias application to plasma density in weakly magnetized inductively coupled plasma
Kim, Hyuk; Lee, Woohyun; Park, Wanjae; Whang, Ki-Woong
2013-07-15
Independent control of the ion flux and energy can be achieved in a dual frequency inductively coupled plasma (ICP) system. Typically, the plasma density is controlled by the high-frequency antenna radio-frequency (RF) power and the ion energy is controlled by the low-frequency bias RF power. Increasing the bias power has been known to cause a decrease in the plasma density in capacitively coupled discharge systems as well as in ICP systems. However, an applied axial magnetic field was found to sustain or increase the plasma density as bias power is increased. Measurements show higher electron temperatures but lower plasma densities are obtained in ordinary ICP systems than in magnetized ICP systems under the same neutral gas pressure and RF power levels. Explanations for the difference in the behavior of plasma density with increasing bias power are given in terms of the difference in the heating mechanism in ordinary unmagnetized and magnetized ICP systems.
Charge separation in a magnetized plasma-sheath-lens
NASA Astrophysics Data System (ADS)
Stamate, Eugen
2009-10-01
Most of plasma processing technologies are based on radical-assisted ion-induced surface-modification where ions accumulate energy in the sheath, and then strike the surface modifying its properties in a desirable way. Plasma-sheath-lens is a three-dimensional potential distribution of customized shape, formed by the space charge surrounding a biased electrode-insulator interface. The discrete and modal focusing effects have been reveled for this type of electrostatic structures formed in plasma [1] and several applications including sheath thickness evaluation, negative ion detection and extraction of positive or negative ion beams have been developed. A non-magnetized plasma-sheath-lens act as a kinetic energy separator, but it is not mass sensitive. However, a magnetized plasma-sheath-lens exhibits mass separation, so that ions of different mass will impact the electrode at different locations on the biased electrode surface. The mass spectrum can be measured as the radial distribution of the ion current density over the plasma-sheath-lens's electrode. Relevant fluid and particles simulations of the magnetized plasma-sheath-lens structures and ion trajectories within them are presented for different plasma parameters and magnetic filed configurations. Practical aspects linked to the development of a new type of mass spectrometers are also investigated.[0pt] [1] E. Stamate and H. Sugai, Phys. Rev. Lett. (2005) 94, 125004
Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics
Johnson, Jeffrey N.
2009-01-01
The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.
Ablation plasma transport using multicusp magnetic field for laser ion source
NASA Astrophysics Data System (ADS)
Takahashi, K.; Umezawa, M.; Uchino, T.; Ikegami, K.; Sasaki, T.; Kikuchi, T.; Harada, N.
2016-05-01
We propose a plasma guiding method using multicusp magnetic field to transport the ablation plasma keeping the density for developing laser ion sources. To investigate the effect of guiding using the magnetic field on the ablation plasma, we demonstrated the transport of the laser ablation plasma in the multicusp magnetic field. The magnetic field was formed with eight permanent magnets and arranged to limit the plasma expansion in the radial direction. We investigated the variation of the plasma ion current density and charge distribution during transport in the magnetic field. The results indicate that the plasma is confined in the radial direction during the transport in the multicusp magnetic field.
Imposed, ordered dust structures and other plasma features in a strongly magnetized plasma
NASA Astrophysics Data System (ADS)
Thomas, Edward; Leblanc, Spencer; Lynch, Brian; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene
2015-11-01
The Magnetized Dusty Plasma Experiment (MDPX) device has been in operation for just over one year. In that time, the MDPX device has been operating using a uniform magnetic field configuration up to 3.0 Tesla and has successfully produced plasmas and dusty plasmas at high magnetic fields. In these experimental studies, we have made observations of a new type of imposed, ordered structure in a dusty plasma at magnetic fields above 1 T. These dusty plasma structures are shown to scale inversely with neutral pressure and are shown to reflect the spatial structure of a wire mesh placed in the plasma. Additionally, recent measurements have been made that give insights into the effective potential that establishes the ordered structures in the plasma. In this presentation, we report on details of the imposed, ordered dusty plasma structure as well as filamentary features that also appear in the plasma and modify the confinement of the dusty plasma. This work is supported with funding from the NSF and Department of Energy.
Preliminary Experimental Result of Magnetic Reconnection in Laboratory Plasma
NASA Astrophysics Data System (ADS)
Zhang, S. B.; Xie, J. L.; Hu, G. H.; Li, H.; Huang, G. L.; Liu, W. D.
2011-05-01
Magnetic reconnection is one of the most important physical processes in astrophysical plasmas. Lots of theoretical works, numerical simulations and observations have been done. Some experimental programs have been activated to investigate the basic mechanisms of magnetic reconnection. In order to investigate the electron dynamic near the electron diffusion region in magnetic reconnection process, an upgrade is accomplished in the LMP (Linear magnetic plasmas) device at University of Science and Technology of China. The magnetic field of reconnection is produced by passing two identical currents axially through two copper plates. Magnetic field and parallel electric field are measured by magnetic probes and emissive probes, respectively. The existence of a large electric field related to the reconnection process is verified. The plasma is driven by electric field and magnetic field, so the magnetic reconnection appears. The magnitude of axial current is found to scale with the number of passing particles. In the configuration of current bars, passing particles are even more and our measured axial current is about 10 A. Magnetic flux doesn't pile up because of the parameter region in our case, which is consistent with the result of numerical simulation.
Strongly Driven Magnetic Reconnection in a Magnetized High-Energy-Density Plasma
NASA Astrophysics Data System (ADS)
Fiksel, G.; Barnak, D. H.; Chang, P.-Y.; Haberberger, D.; Hu, S. X.; Ivancic, S.; Nilson, P. M.; Fox, W.; Deng, W.; Bhattacharjee, A.; Germaschewski, K.
2014-10-01
Magnetic reconnection in a magnetized high-energy-density plasma is characterized by measuring the dynamics of the plasma density and magnetic field between two counter-propagating and colliding plasma flows. The density and magnetic field were profiled using the 4 ω angular filter refractometry and fast proton deflectometry diagnostics, respectively. The plasma flows are created by irradiating oppositely placed plastic targets with 1.8-kJ, 2-ns laser beams on the OMEGA EP Laser System. The two plumes are magnetized by an externally controlled magnetic field with an x-type null point geometry with B = 0 at the midplane and B = 8 T at the targets. The interaction region is pre-filled with a low-density background plasma. The counterflowing super-Alfvénic plasma plumes sweep up and compress the magnetic field and the background plasma into a pair of magnetized ribbons, which collide, stagnate, and reconnect at the midplane, allowing for the first detailed observation of a stretched current sheet in laser-driven reconnection experiments. The measurements are in good agreement with first-principles particle-in-cell simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and NLUF Grant DE-SC0008655.
Nonlinear dynamics of large amplitude modes in a magnetized plasma
Brodin, G.; Stenflo, L.
2014-12-15
We derive two equations describing the coupling between electromagnetic and electrostatic oscillations in one-dimensional geometry in a magnetized cold and non-relativistic plasma. The nonlinear interaction between the wave modes is studied numerically. The effects of the external magnetic field strength and the initial electromagnetic polarization are of particular interest here. New results can, thus, be identified.
Dust-Plasma Sheath in an Oblique Magnetic Field
Foroutan, G.; Mehdipour, H.
2008-09-07
Using numerical simulations of the multi fluid equations the structure of the magnetized sheath near a plasma boundary is studied in the presence of charged dust particles. The dependence of the electron, ion, and dust densities as well as the electrostatic potential, dust charge, and ion normal velocity, on the magnetic field strength and the edge dust number density is investigated.
Performance improvement of a permanent magnet helicon plasma thruster
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira
2013-09-01
The performance of a permanent magnet helicon plasma thruster (PM-HPT) is improved by modifying the magnetic field configuration and increasing the magnetic field strength for operating source conditions of 13.56 MHz radiofrequency power up to 2 kW and 24 sccm of argon (pressure of ˜0.8 mTorr). A convergent-divergent magnetic nozzle giving a maximum field strength of ˜300 G is provided by arrays of permanent magnets, giving a higher plasma density downstream of the thruster exit (hence a larger Lorentz force within the magnetic nozzle) compared with that measured in the previous PM-HPT experiments (Takahashi et al 2011 Appl.Phys. Lett. 98 141503; Takahashi et al 2011 Phys. Rev. Lett. 107 235001). The directly measured thrust and specific impulse are about 15 mN and 2000 s, respectively, for a thrust efficiency of 7.5%.
Chirality-induced negative refraction in magnetized plasma
Guo, B.
2013-09-15
Characteristic equations in magnetized plasma with chirality are derived in simple formulations and the dispersion relations for propagation parallel and perpendicular to the external magnetic field are studied in detail. With the help of the dispersion relations of each eigenwave, the author explores chirality-induced negative refraction in magnetized plasma and investigates the effects of parameters (i.e., chirality degree, external magnetic field, etc.) on the negative refraction. The results show that the chirality is the necessary and only one factor which leads to negative refraction without manipulating electrical permittivity and magnetic permeability. Both increasing the degree of chirality and reducing the external magnetic field can result in greater range negative refraction. Parameter dependence of the effects is calculated and discussed.
Propagation of intense laser pulses in strongly magnetized plasmas
Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.
2015-06-01
Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.
Magnetic field-aligned coupling effects on ionospheric plasma structure
NASA Technical Reports Server (NTRS)
Heelis, R. A.; Vickrey, J. F.
1990-01-01
This paper presents a mathematical description of the electrical coupling and dynamics of plasma structure in the E and F regions. The scale size dependence of the electric field coupling along the magnetic field is examined for a realistic background ionosphere and atmosphere. It is shown that, while normalized potentials map reciprocally between two altitudes, the potential disturbance caused by a fixed amplitude plasma density perturbation does not. The magnitude of electrostatic potential created by structured ionization is also shown to be strongly dependent on the altitude of the structure. The role of diffusion parallel to the magnetic field in the redistribution and decay of plasma structure is illustrated.
Relativistic soliton formation in laser magnetized plasma interactions
NASA Astrophysics Data System (ADS)
Feng, W.; Li, J. Q.; Kishimoto, Y.
2016-05-01
The laser plasma interactions in the presence of strong magnetic field are studied by employing particle-in-cell simulations. Simulations show that the energy absorption of strong laser pulse is mainly characterized by the electron cyclotron resonance heating (ECRH) when the magnetic field is large enough. However, it is found that for a weaker magnetic field, a standing or moving soliton can be generated in some moderate laser intensity regions, greatly enhancing the laser absorption. The laser intensity for the soliton heating decreases as the magnetic field increases. Furthermore, the soliton position moves towards the front boundary when the laser intensity or magnetic field strength increases.
Magnetic field and plasma wave observations in a plasma cloud at Venus
NASA Technical Reports Server (NTRS)
Russell, C. T.; Luhmann, J. G.; Elphic, R. C.; Scarf, F. L.; Brace, L. H.
1982-01-01
Pioneer Venus magnetic field and plasma wave data are examined in a particularly clear example of a plasma cloud above the Venus ionosphere. The magnetic configuration is suggestive of acceleration of the plasma cloud by magnetic tension. If the plasma is at rest at the subsolar point, it could be accelerated to approximately 90 km/sec by the observed stress at the location of the measurement. This far exceeds the escape velocity and suggests that plasma clouds do form a significant loss mechanism for the Venus ionosphere but does not necessarily indicate that the plasma cloud is detached from the ionosphere proper. The plasma cloud is accompanied by strong plasma wave activity and is significantly hotter than the ionospheric plasma encountered later on the same pass. A loss rate of the order of 2 x 10 to the 25th ions/sec is estimated during this event. The geometry suggested by these observations is one of a ridge of dense cold plasma starting in the subsolar regions and flowing over the poles of the planet. Thus, these plasma clouds may be the planetary analog of cometary tail rays.
Transport processes in magnetically confined plasmas
Callen, J.D.
1991-12-01
Intensified studies of plasma transport in toroidal plasmas over the past three to five years have progressed through increased understanding in some areas and changed perceptions about the most important issues in other areas. Recent developments are reviewed for six selected topics: edge fluctuations and transport; L-H mode transition; core fluctuations; modern plasma turbulence theory; transient transport; and global scaling. Some of the developments that are highlighted include: the role of a strongly sheared poloidal flow in edge plasma turbulence, transport and the L-H transition; change of focus from {kappa}{perpendicular}{rho}s {approximately} 1 to {kappa}{perpendicular}{rho}s {much_lt} 1 fluctuations in tokamak plasmas; modern Direct-Interaction-Approximation plasma turbulence and hybrid fluid/kinetic theoretical models; and transient transport experiments that are raising fundamental questions about our conceptions of local transport processes in tokamaks. 104 refs., 6 figs.
Transport processes in magnetically confined plasmas
Callen, J.D.
1991-12-01
Intensified studies of plasma transport in toroidal plasmas over the past three to five years have progressed through increased understanding in some areas and changed perceptions about the most important issues in other areas. Recent developments are reviewed for six selected topics: edge fluctuations and transport; L-H mode transition; core fluctuations; modern plasma turbulence theory; transient transport; and global scaling. Some of the developments that are highlighted include: the role of a strongly sheared poloidal flow in edge plasma turbulence, transport and the L-H transition; change of focus from {kappa}{perpendicular}{rho}s {approximately} 1 to {kappa}{perpendicular}{rho}s {much lt} 1 fluctuations in tokamak plasmas; modern Direct-Interaction-Approximation plasma turbulence and hybrid fluid/kinetic theoretical models; and transient transport experiments that are raising fundamental questions about our conceptions of local transport processes in tokamaks. 104 refs., 6 figs.
A hybrid simulation study of magnetic reconnection in anisotropic plasmas
NASA Astrophysics Data System (ADS)
Guo, Jun; Li, Yi; Lu, Quan-ming; Wang, Shui
2003-10-01
The process of magnetic reconnection in anisotropic plasmas is studied numerically using a 2-dimensional, 3-component hybrid simulation. The results of the calculation show that, when the plasma pressure in the direction perpendicular to magnetic field is larger than that in the parallel direction (e.g. P ⊥/P ‖ = 1.5 ), instability may greatly increase, speeding up the rate of reconnection. When P⊥ is smaller than P‖, (e.g., when P ⊥/P ‖ = 0.6 ), fire hose instability appears, which will restrain the tearing mode instability and the process of magnetic reconnection.
Evolution of magnetically rotating arc into large area arc plasma
NASA Astrophysics Data System (ADS)
Wang, Cheng; Li, Wan-Wan; Zhang, Xiao-Ning; Zha, Jun; Xia, Wei-Dong
2015-06-01
An arc channel tends to shrink due to its conductivity increasing with the increase of temperature. In this study, to generate large area arc plasma, we construct a magnetically rotating arc plasma generator, which mainly consists of a lanthanide tungsten cathode (13 mm in diameter), a concentric cylindrical graphite anode chamber (60 mm in diameter) and a solenoid coil for producing an axial magnet field. By controlling the cold gas flow, the magnetically rotating arc evolves from constricted mode to diffuse mode, which almost fills the whole arc chamber cross section. Results show that the diffuse arc plasma has better uniformity and stability. The formation mechanism of large area arc plasma is discussed in this paper. Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005, 11475174, and 50876101) and the Science Instrument Foundation of the Chinese Academy of Sciences (Grant No. Y201162).
Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas
Jardin, S C
2010-09-28
Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.
Plasma (Accretion) Disks with High Magnetic Energy Densities
NASA Astrophysics Data System (ADS)
Rousseau, F.; Coppi, B.
2006-04-01
``Corrugated'' plasma disks can form in the dominant gravity of a central object when the peak plasma pressure in the disk is of the same order as that of the pressure of the ``external'' magnetic field, while the magnetic field resulting from internal plasma currents is of the same order as the external field. The corrugation refers to a periodic variation of the plasma density in a region around the equatorial plane. The considered structure represents a transition between a ``classical'' accretion disk and a ``rings sequence'' configuration^2. The common feature of the ``corrugated'' and the ``rings sequence'' configurations is the ``crystal'' structure of the magnetic surfaces that consist of a sequence of pairs of oppositely directed toroidal current density filaments. The connection between the characteristics of these configurations and those of the marginally stable ballooning modes that can be found in a model accretion disk is pointed out and analyzed.
Magnetically confined plasma solar collector. [satellite based system in space
NASA Technical Reports Server (NTRS)
Walters, C. T.; Wolken, G., Jr.; Purvis, G. D., III
1978-01-01
The possibility of using a plasma medium for collecting solar energy in space is examined on the basis of a concept involving an orbiting magnetic bottle in which a solar-energy-absorbing plasma is confined. A basic system uses monatomic cesium as working fluid. Cesium evaporates from a source and flows into the useful volume of a magnetic bottle where it is photoionized by solar radiation. Ions and electrons lost through the loss cones are processed by a recovery system, which might be a combination of electromagnetic devices and heat engines. This study concentrates on the plasma production processes and size requirements, estimates of the magnetic field required to confine the plasma, and an estimate of the system parameters for a 10 GW solar collector using cesium.
Collimation of laser-produced plasmas using axial magnetic field
Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.; Endo, Akira; Mocek, Tomas; Hassanein, A.
2015-06-01
We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presence of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.
MHD Simulations of the Plasma Flow in the Magnetic Nozzle
NASA Technical Reports Server (NTRS)
Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.
2013-01-01
The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the
Plasma Compression in Magnetic Reconnection Regions in the Solar Corona
NASA Astrophysics Data System (ADS)
Provornikova, E.; Laming, J. M.; Lukin, V. S.
2016-07-01
It has been proposed that particles bouncing between magnetized flows converging in a reconnection region can be accelerated by the first-order Fermi mechanism. Analytical considerations of this mechanism have shown that the spectral index of accelerated particles is related to the total plasma compression within the reconnection region, similarly to the case of the diffusive shock acceleration mechanism. As a first step to investigate the efficiency of Fermi acceleration in reconnection regions in producing hard energy spectra of particles in the solar corona, we explore the degree of plasma compression that can be achieved at reconnection sites. In particular, we aim to determine the conditions for the strong compressions to form. Using a two-dimensional resistive MHD numerical model, we consider a set of magnetic field configurations where magnetic reconnection can occur, including a Harris current sheet, a force-free current sheet, and two merging flux ropes. Plasma parameters are taken to be characteristic of the solar corona. Numerical simulations show that strong plasma compressions (≥4) in the reconnection regions can form when the plasma heating due to reconnection is efficiently removed by fast thermal conduction or the radiative cooling process. The radiative cooling process that is negligible in the typical 1 MK corona can play an important role in the low corona/transition region. It is found that plasma compression is expected to be strongest in low-beta plasma β ˜ 0.01–0.07 at reconnection magnetic nulls.
Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas
Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.
2007-07-18
Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.
Sustenance of inhomogeneous electron temperature in a magnetized plasma column
Karkari, S. K. Mishra, S. K.; Kaw, P. K.
2015-09-15
This paper presents the equilibrium properties of a magnetized plasma column sustained by direct-current (dc) operated hollow cathode discharge in conjunction with a conducting end-plate, acting as the anode. The survey of radial plasma characteristics, performed in argon plasma, shows hotter plasma in the periphery as compared to the central plasma region; whereas the plasma density peaks at the center. The off-centered peak in radial temperature is attributed due to inhomogeneous power deposition in the discharge volume in conjunction with short-circuiting effect by the conducting end plate. A theoretical model based on particle flux and energy balance is given to explain the observed characteristics of the plasma column.