Science.gov

Sample records for magnetic nanoparticles attached

  1. Examination of Cholesterol oxidase attachment to magnetic nanoparticles

    PubMed Central

    Kouassi, Gilles K; Irudayaraj, Joseph; McCarty, Gregory

    2005-01-01

    Magnetic nanoparticles (Fe3O4) were synthesized by thermal co-precipitation of ferric and ferrous chlorides. The sizes and structure of the particles were characterized using transmission electron microscopy (TEM). The size of the particles was in the range between 9.7 and 56.4 nm. Cholesterol oxidase (CHO) was successfully bound to the particles via carbodiimide activation. FTIR spectroscopy was used to confirm the binding of CHO to the particles. The binding efficiency was between 98 and 100% irrespective of the amount of particles used. Kinetic studies of the free and bound CHO revealed that the stability and activity of the enzyme were significantly improved upon binding to the nanoparticles. Furthermore, the bound enzyme exhibited a better tolerance to pH, temperature and substrate concentration. The activation energy for free and bound CHO was 13.6 and 9.3 kJ/mol, respectively. This indicated that the energy barrier of CHO activity was reduced upon binding onto Fe3O4 nanoparticles. The improvements observed in activity, stability, and functionality of CHO resulted from structural and conformational changes of the bound enzyme. The study indicates that the stability and activity of CHO could be enhanced via attachment to magnetic nanoparticles and subsequently will contribute to better uses of this enzyme in various biological and clinical applications. PMID:15661076

  2. Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase

    NASA Astrophysics Data System (ADS)

    Šulek, Franja; Drofenik, Miha; Habulin, Maja; Knez, Željko

    2010-01-01

    A systematic approach towards the fabrication of highly functionalized silica shell magnetic nanoparticles, presently used for enzyme immobilization, is herein fully presented. The synthesis of bare maghemite (γ-Fe 2O 3) nanoparticles was accomplished by thermal co-precipitation of iron ions in ammonia alkaline solution at harsh reaction conditions, respectively. Primary surface engineering of maghemite nanoparticles was successfully performed by the proper deposition of silica onto nanoparticles surface under strictly regulated reaction conditions. Next, the secondary surface functionalization of the particles was achieved by coating the particles with organosilane followed by glutaraldehyde activation in order to enhance protein immobilization. Covalent immobilization of cholesterol oxidase was attempted afterwards. The structural and magnetic properties of magnetic silica nanocomposites were characterized by TEM and vibrating sample magnetometer (VSM) instruments. X-ray diffraction measurements confirmed the spinel structure and average size of uncoated maghemite nanoparticles to be around 20 nm in diameter. SEM-EDS spectra indicated a strong signal for Si, implying the coating procedure of silica onto the particles surface to be successfully accomplished. Fourier transform infrared (FT-IR) spectra analysis confirmed the binding of amino silane molecules onto the surface of the maghemite nanoparticles mediated Si-O-Si chemical bonds. Compared to the free enzyme, the covalently bound cholesterol oxidase retained 50% of its activity. Binding of enzyme onto chemically modified magnetic nanoparticles via glutaraldehyde activation is a promising method for developing biosensing components in biomedicine.

  3. Platinum Attachments on Iron Oxide Nanoparticle Surfaces

    SciTech Connect

    Palchoudhury, Soubantika; Xu, Yaolin; An, Wei; Turner, C. H.; Bao, Yuping

    2010-04-30

    Platinum nanoparticles supported on metal oxide surfaces have shown great potential as heterogeneous catalysts to accelerate electrochemical processes, such as the oxygen reduction reaction in fuel cells. Recently, the use of magnetic supports has become a promising research topic for easy separation and recovery of catalysts using magnets, such as Pt nanoparticles supported on iron oxide nanoparticles. The attachment of Pt on iron oxide nanoparticles is limited by the wetting ability of the Pt (metal) on ceramic surfaces. A study of Pt nanoparticle attachment on iron oxide nanoparticle surfaces in an organic solvent is reported, which addresses the factors that promote or inhibit such attachment. It was discovered that the Pt attachment strongly depends on the capping molecules of the iron oxide seeds and the reaction temperature. For example, the attachment of Pt nanoparticles on oleic acid coated iron oxide nanoparticles was very challenging, because of the strong binding between the carboxylic groups and iron oxide surfaces. In contrast, when nanoparticles are coated with oleic acid/tri-n-octylphosphine oxide or oleic acid/oleylamine, a significant increase in Pt attachment was observed. Electronic structure calculations were then applied to estimate the binding energies between the capping molecules and iron ions, and the modeling results strongly support the experimental observations.

  4. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  5. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1994-01-01

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.

  6. Magnetic attachment mechanism

    NASA Technical Reports Server (NTRS)

    Harwell, William D. (Inventor); Wu, Mitchell B. (Inventor)

    1990-01-01

    A magnetic attachment mechanism adapted for interfacing with the manipulator arm (11) of a remote manipulator system and comprising a pair of permanent magnets (31,32) of rare earth material which are arranged in a stator-rotor relationship. The rotor magnet (32), is journalled for rotation about its longitudinal axis between pole plates (35,36) of the stator magnet (31), each of which includes an adhering surface (35a,36a). In a first rotary position corresponding to the ON condition, each of the poles of the rotor magnet (32) is closely adjacent a stator magnet pole plate of like polarity whereby the respective magnet fields are additive for producing a strong magnetic field emanating from the adhering surfaces (35a,36a) for attracting a ferrous magnetic plate 20, or the like, affixed to the payload (20 or 50). When the rotor magnet (32) is rotated to a second position corresponding to the OFF condition, each of the poles of the rotor magnet (31) is disposed closely adjacent a pole plate of unlike polarity whereby the magnetic fields of the magnets are in cancelling relationship at the adhering surfaces (35a,36a) which permits the release of a payload. An actuator (51 or 70) for selectively rotating the rotor magnet (32) between the ON and OFF positions is provided for interfacing and connecting the magnetic attachment mechanism with a manipulator arm. For effecting an optimal rigidized attachment the payload is provided with guides (91,92) cooperable with guides (96,16,17) on the housing of the mechanism for directing adhering surfaces (35a,36a) of the polar plates to the ferrous plate (20).

  7. The measurement of small magnetic signals from magnetic nanoparticles attached to the cell surface and surrounding living cells using a general-purpose SQUID magnetometer

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Oda, T.; Yamada, K.; Takagi, M.; Enomoto, T.; Ohkohchi, N.; Takagi, T.; Kanamori, T.; Ikeda, H.; Yanagihara, H.; Kita, E.; Tasaki, A.

    2009-04-01

    Magnetic nanoparticles have recently been widely applied in the bio-medical field. Responding to the demand for a simple and sensitive magnetic assay system for bio-liquid samples, we employed a general-purpose superconducting quantum interference device (SQUID) magnetometer. Strips of filter paper were used as a liquid-specimen sample holder possessing a very small magnetic background signal. An aqueous solution of superparamagnetic iron-oxide nanoparticles (Resovist®) was dropped in a tiny blot-like spot in the middle of the filter paper and the magnetization was measured. Magnetic moments of a dilution series of Resovist® solutions versus the number of particles provided a linear graph, revealing that the magnetic moment per Resovist® particle was 8.25 × 10-17 emu. 1 × 105 cancer cells were incubated with Resovist®, and the number of Resovist® particles attached to the cell surface and surrounding a living cell was calculated to be 1.02 ± 0.14 × 107 particles/cell. Our system using a commercial SQUID magnetometer should be more than enough to determine the number of magnetic nanoparticles biologically reacting with living cells, contributing to the application of magneto nanomaterials to the life-science field.

  8. Fluorescent sensing of pyrophosphate anion in synovial fluid based on DNA-attached magnetic nanoparticles.

    PubMed

    Tong, Li-Li; Chen, Zhen-zhen; Jiang, Zhong-yao; Sun, Miao-miao; Li, Lu; Liu, Ju; Tang, Bo

    2015-10-15

    In this work, a new fluorescent method for sensitive detection of pyrophosphate anion (P2O7(4-), PPi) in the synovial fluid was developed using fluorophore labeled single-stranded DNA-attached Fe3O4 NPs. The sensing approach is based on the strong affinity of PPi to Fe3O4 NPs and highly efficient fluorescent quenching ability of Fe3O4 NPs for fluorophore labeled single-stranded DNA. In the presence of PPi, the fluorescence would enhance dramatically due to desorption of fluorophore labeled single-stranded DNA from the surface of Fe3O4 NPs, which allowed the analysis of PPi in a very simple manner. The proposed sensing system allows for the sensitive determination of PPi in the range of 2.0 × 10(-7)-4 × 10(-6)M with a detection limit of 76 nM. Importantly, the protocol exhibits excellent selectivity for the determination of PPi over other phosphate-containing compounds. The method was successfully applied to the determination of PPi in the synovial fluid, which suggests our proposed method has great potential for diagnostic purposes. PMID:25957830

  9. Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses.

    PubMed

    Wolff, Annalena; Hetaba, Walid; Wißbrock, Marco; Löffler, Stefan; Mill, Nadine; Eckstädt, Katrin; Dreyer, Axel; Ennen, Inga; Sewald, Norbert; Schattschneider, Peter; Hütten, Andreas

    2014-01-01

    Oriented attachment has created a great debate about the description of crystal growth throughout the last decade. This aggregation-based model has successfully described biomineralization processes as well as forms of inorganic crystal growth, which could not be explained by classical crystal growth theory. Understanding the nanoparticle growth is essential since physical properties, such as the magnetic behavior, are highly dependent on the microstructure, morphology and composition of the inorganic crystals. In this work, the underlying nanoparticle growth of cobalt ferrite nanoparticles in a bioinspired synthesis was studied. Bioinspired syntheses have sparked great interest in recent years due to their ability to influence and alter inorganic crystal growth and therefore tailor properties of nanoparticles. In this synthesis, a short synthetic version of the protein MMS6, involved in nanoparticle formation within magnetotactic bacteria, was used to alter the growth of cobalt ferrite. We demonstrate that the bioinspired nanoparticle growth can be described by the oriented attachment model. The intermediate stages proposed in the theoretical model, including primary-building-block-like substructures as well as mesocrystal-like structures, were observed in HRTEM measurements. These structures display regions of substantial orientation and possess the same shape and size as the resulting discs. An increase in orientation with time was observed in electron diffraction measurements. The change of particle diameter with time agrees with the recently proposed kinetic model for oriented attachment. PMID:24605288

  10. Magnetic nanoparticles for "smart liposomes".

    PubMed

    Nakayama, Yoshitaka; Mustapić, Mislav; Ebrahimian, Haleh; Wagner, Pawel; Kim, Jung Ho; Hossain, Md Shahriar Al; Horvat, Joseph; Martinac, Boris

    2015-12-01

    Liposomal drug delivery systems (LDDSs) are promising tools used for the treatment of diseases where highly toxic pharmacological agents are administered. Currently, destabilising LDDSs by a specific stimulus at a target site remains a major challenge. The bacterial mechanosensitive channel of large conductance (MscL) presents an excellent candidate biomolecule that could be employed as a remotely controlled pore-forming nanovalve for triggered drug release from LDDSs. In this study, we developed superparamagnetic nanoparticles for activation of the MscL nanovalves by magnetic field. Synthesised CoFe2O4 nanoparticles with the radius less than 10 nm were labelled by SH groups for attachment to MscL. Activation of MscL by magnetic field with the nanoparticles attached was examined by the patch clamp technique showing that the number of activated channels under ramp pressure increased upon application of the magnetic field. In addition, we have not observed any cytotoxicity of the nanoparticles in human cultured cells. Our study suggests the possibility of using magnetic nanoparticles as a specific trigger for activation of MscL nanovalves for drug release in LDDSs. PMID:26184724

  11. Magnetically Attached Multifunction Maintenance Rover

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Joffe, Benjamin

    2005-01-01

    A versatile mobile telerobot, denoted the magnetically attached multifunction maintenance rover (MAGMER), has been proposed for use in the inspection and maintenance of the surfaces of ships, tanks containing petrochemicals, and other large ferromagnetic structures. As its name suggests, this robot would utilize magnetic attraction to adhere to a structure. As it moved along the surface of the structure, the MAGMER would perform tasks that could include close-up visual inspection by use of video cameras, various sensors, and/or removal of paint by water-jet blasting, laser heating, or induction heating. The water-jet nozzles would be mounted coaxially within compressed-air-powered venturi nozzles that would collect the paint debris dislodged by the jets. The MAGMER would be deployed, powered, and controlled from a truck, to which it would be connected by hoses for water, compressed air, and collection of debris and by cables for electric power and communication (see Figure 1). The operation of the MAGMER on a typical large structure would necessitate the use of long cables and hoses, which can be heavy. To reduce the load of the hoses and cables on the MAGMER and thereby ensure its ability to adhere to vertical and overhanging surfaces, the hoses and cables would be paid out through telescopic booms that would be parts of a MAGMER support system. The MAGMER would move by use of four motorized, steerable wheels, each of which would be mounted in an assembly that would include permanent magnets and four pole pieces (see Figure 2). The wheels would protrude from between the pole pieces by only about 3 mm, so that the gap between the pole pieces and the ferromagnetic surface would be just large enough to permit motion along the surface but not so large as to reduce the magnetic attraction excessively. In addition to the wheel assemblies, the MAGMER would include magnetic adherence enhancement fixtures, which would comprise arrays of permanent magnets and pole pieces

  12. [Mechanical studies on dental magnetic attachments].

    PubMed

    Ishikawa, S

    1993-03-01

    The purpose of this study is to investigate the force distribution when using magnetic attachments in removable partial denture. The experimental magnetic attachments used in this study consisted of Nd-Fe-B magnets covered with permendur yokes and permendur keepers. The magnetic parts were attached to the experimental plate which was made of a titanium plate and an acrylic resin base, while the keepers were attached to the abutment teeth. The retentive force was measured by pulling the experimental plate vertically and diagonally with a tensile testing machine. In addition, the three-dimensional stress distribution of the abutment was analyzed by the finite element method when the magnetic attachment was removed. The results were as follows: 1. The maximum retentive force of the plate was influenced by the total of the attractive force, while the minimum force was by the number and arrangement of the attachments. 2. In almost all cases, the magnetic attachments worked most effectively when their attractive force was the same for each other. 3. When the pulling force was vertically applied to the abutment, the maximum stress arose in the alveolar bone around the root tip, and, when the force was laterally applied, the maximum stress arose on the axis of the 1/3 upper portion of the root. PMID:8482913

  13. Magnetic Nanoparticle Sensors

    PubMed Central

    Koh, Isaac; Josephson, Lee

    2009-01-01

    Many types of biosensors employ magnetic nanoparticles (diameter = 5–300 nm) or magnetic particles (diameter = 300–5,000 nm) which have been surface functionalized to recognize specific molecular targets. Here we cover three types of biosensors that employ different biosensing principles, magnetic materials, and instrumentation. The first type consists of magnetic relaxation switch assay-sensors, which are based on the effects magnetic particles exert on water proton relaxation rates. The second type consists of magnetic particle relaxation sensors, which determine the relaxation of the magnetic moment within the magnetic particle. The third type is magnetoresistive sensors, which detect the presence of magnetic particles on the surface of electronic devices that are sensitive to changes in magnetic fields on their surface. Recent improvements in the design of magnetic nanoparticles (and magnetic particles), together with improvements in instrumentation, suggest that magnetic material-based biosensors may become widely used in the future. PMID:22408498

  14. Magnetic Carbon Nanotubes Tethered with Maghemite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Il Tae; Nunnery, Grady; Jacob, Karl; Schwartz, Justin; Liu, Xiaotao; Tannenbaum, Rina

    2011-03-01

    We describe a novel, facile method for the synthesis of magnetic carbon nanotubes (m-CNTs) decorated with monodisperse γ - Fe 2 O3 magnetic (maghemite) nanoparticles and their aligned feature in a magnetic field. The tethering of the nanoparticles was achieved by the initial activation of the surface of the CNTs with carboxylic acid groups, followed by the attachment of the γ - Fe 2 O3 nanoparticles via a modified sol-gel process. Sodium dodecylbenzene sulfonate (NaDDBS) was introduced into the suspension to prevent the formation of an iron oxide 3D network. Various characterization methods were used to confirm the formation of well-defined maghemite nanoparticles. The tethered nanoparticles imparted magnetic characteristics to the CNTs, which became superparamagnetic. The m-CNTs were oriented parallel to the direction of a magnetic field. This has the potential of enhancing various properties, e.g. mechanical and electrical properties, in composite materials.

  15. Structural characterization of copolymer embedded magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Nedelcu, G. G.; Nastro, A.; Filippelli, L.; Cazacu, M.; Iacob, M.; Rossi, C. Oliviero; Popa, A.; Toloman, D.; Dobromir, M.; Iacomi, F.

    2015-10-01

    Small magnetic nanoparticles (Fe3O4) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  16. Multifunctional biocompatible coatings on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bychkova, A. V.; Sorokina, O. N.; Rosenfeld, M. A.; Kovarski, A. L.

    2012-11-01

    Methods for coating formation on magnetic nanoparticles used in biology and medicine are considered. Key requirements to the coatings are formulated, namely, biocompatibility, stability, the possibility of attachment of pharmaceutical agents, and the absence of toxicity. The behaviour of nanoparticle/coating nanosystems in the body including penetration through cellular membranes and the excretion rates and routes is analyzed. Parameters characterizing the magnetic properties of these systems and their magnetic controllability are described. Factors limiting the applications of magnetically controlled nanosystems for targeted drug delivery are discussed. The bibliography includes 405 references.

  17. Magnetic nanoparticle temperature estimation

    SciTech Connect

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  18. Biotemplated magnetic nanoparticle arrays.

    PubMed

    Galloway, Johanna M; Bramble, Jonathan P; Rawlings, Andrea E; Burnell, Gavin; Evans, Stephen D; Staniland, Sarah S

    2012-01-23

    Immobilized biomineralizing protein Mms6 templates the formation of uniform magnetite nanoparticles in situ when selectively patterned onto a surface. Magnetic force microscopy shows that the stable magnetite particles maintain their magnetic orientation at room temperature, and may be exchange coupled. This precision-mixed biomimetic/soft-lithography methodology offers great potential for the future of nanodevice fabrication. PMID:22052737

  19. Magnetoacoustic Sensing of Magnetic Nanoparticles.

    PubMed

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-11

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications. PMID:27015511

  20. Magnetoacoustic Sensing of Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G.; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-01

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  1. DNA templated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kinsella, Joseph M.

    Recent discoveries in nanoscience are predicted to potentially revolutionize future technologies in an extensive number of fields. These developments are contingent upon discovering new and often unconventional methods to synthesize and control nanoscale components. Nature provides several examples of working nanotechnology such as the use of programmed self assembly to build and deconstruct complex molecular systems. We have adopted a method to control the one dimensional assembly of magnetic nanoparticles using DNA as a scaffold molecule. With this method we have demonstrated the ability to organize 5 nm particles into chains that stretch up to ˜20 mum in length. One advantage of using DNA compared is the ability of the molecule to interact with other biomolecules. After assembling particles onto DNA we have been able to cleave the molecule into smaller fragments using restriction enzymes. Using ligase enzymes we have re-connected these fragments, coated with either gold or iron oxide, to form long one-dimensional arrangements of the two different types of nanoparticles on a single molecular guide. We have also created a sensitive magnetic field sensor by incorporating magnetic nanoparticle coated DNA strands with microfabricated electrodes. The IV characteristics of the aligned nanoparticles are dependant on the magnitude of an externally applied magnetic field. This transport phenomenon known as tunneling magnetoresistance (TMR) shows room temperature resistance of our devices over 80% for cobalt ferrite coated DNA when a field of 20 kOe is applied. In comparison, studies using two dimensional nanoparticle films of irox oxides xii only exhibit a 35% MR effect. Confinement into one dimension using the DNA guide produces a TMR mechanism which produces significant increases in magnetoresistance. This property can be utilized for applications in magnetic field sensing, data storage, and logic elements.

  2. In vivo MRI of single-wall carbon nanohorns through magnetite nanoparticle attachment

    NASA Astrophysics Data System (ADS)

    Miyawaki, Jin; Yudasaka, Masako; Imai, Hideto; Yorimitsu, Hideki; Isobe, Hiroyuki; Nakamura, Eiichi; Iijima, Sumio

    2006-03-01

    Superparamagnetic magnetite (SPM) is used as a contrast agent in magnetic resonance imaging (MRI). Thus, the SPM-attachment to carbon nanotubes (CNTs) will enable to visualize motional behaviors of CNTs in the living body through MRI. We found that the strong attachment of the SPM nanoparticles (ca. 6 nm size) to one type of CNTs, single-wall carbon nanohorns (SWNHs), could be achieved through a deposition of iron acetate clusters on SWNHs in ethanol at room temperature, followed by heat-treatment in Ar. In vivo MRI visualized that the SWNHs attached with the SPM nanoparticles accumulated in several organs of mice when injected into mice via tail veins. This simple method for the SPM-attaching on CNTs would facilitate the toxicity assessment of CNTs and the applications of CNTs in bioscience and biotechnology.

  3. Functionalized magnetic nanoparticle analyte sensor

    DOEpatents

    Yantasee, Wassana; Warner, Maryin G; Warner, Cynthia L; Addleman, Raymond S; Fryxell, Glen E; Timchalk, Charles; Toloczko, Mychailo B

    2014-03-25

    A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.

  4. Magnetic Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Jing, Ying

    Nanotechnology is revolutionizing human's life. Synthesis and application of magnetic nanoparticles is a fast burgeoning field which has potential to bring significant advance in many fields, for example diagnosis and treatment in biomedical area. Novel nanoparticles to function efficiently and intelligently are in desire to improve the current technology. We used a magnetron-sputtering-based nanocluster deposition technique to synthesize magnetic nanoparticles in gas phase, and specifically engineered nanoparticles for different applications. Alternating magnetic field heating is emerging as a technique to assist cancer treatment or drug delivery. We proposed high-magnetic-moment Fe3Si particles with relatively large magnetic anisotropy energy should in principle provide superior performance. Such nanoparticles were experimentally synthesized and characterized. Their promising magnetic properties can contribute to heating performance under suitable alternating magnetic field conditions. When thermal energy is used for medical treatment, it is ideal to work in a designed temperature range. Biocompatible and "smart" magnetic nanoparticles with temperature self-regulation were designed from both materials science and biomedicine aspects. We chose Fe-Si material system to demonstrate the concept. Temperature dependent physical property was adjusted by tuning of exchange coupling between Fe atoms through incorporation of various amount of Si. The magnetic moment can still be kept in a promising range. The two elements are both biocompatible, which is favored by in-vivo medical applications. A combination of "smart" magnetic particles and thermo-sensitive polymer were demonstrated to potentially function as a platform for drug delivery. Highly sensitive diagnosis for point-of-care is in desire nowadays. We developed composition- and phase-controlled Fe-Co nanoparticles for bio-molecule detection. It has been demonstrated that Fe70Co30 nanoparticles and giant

  5. Attachment/detachment hysteresis of fiber-based magnetic grabbers.

    PubMed

    Gu, Yu; Kornev, Konstantin G

    2014-04-28

    We developed an experimental protocol to analyze the behaviour of a model fiber-based magnetic grabber. A fiber is vertically suspended and fixed to the substrate by its upper end. A magnetic droplet is attached to the free end of the fiber and when a permanent magnet approaches the droplet, the fiber is forced to bow and finally jumps to the magnet. It appears that one can flex the micro-fibers by very small micro or even nano-Newton forces. Using this setup, we discovered a hysteresis of fiber attachment/detachment: the pathway of the fiber jumping to and off the magnet depends on the distance between the magnet and the clamped end. This phenomenon was successfully explained by the Euler-Benoulli model of an elastic beam. The observed hysteresis of fiber attachment/detachment was attributed to the multiple equilibrium configurations of the fiber tip placed in a dipole-type magnetic field. PMID:24668160

  6. A Renewable Electrochemical Magnetic Immunosensor Based on Gold Nanoparticle Labels

    SciTech Connect

    Liu, Guodong; Lin, Yuehe

    2005-05-24

    A particle-based renewable electrochemical magnetic immunosensor was developed by using magnetic beads and a gold nanoparticle label. Anti-IgG antibody-modified magnetic beads were attached to a renewable carbon paste transducer surface by magnets that were fixed inside the sensor. A gold nanoparticle label was capsulated to the surface of magnetic beads by sandwich immunoassay. Highly sensitive electrochemical stripping analysis offers a simple and fast method to quantify the capatured gold nanoparticle tracer and avoid the use of an enzyme label and substrate. The stripping signal of gold nanoparticle is related to the concentration of target IgG in the sample solution. A transmission electron microscopy image shows that the gold nanoparticles were successfully capsulated to the surface of magnetic beads through sandwich immunoreaction events. The parameters of immunoassay, including the loading of magnetic beads, the amount of gold nanoparticle conjugate, and the immunoreaction time, were optimized. The detection limit of 0.02 μg ml-1of IgG was obtained under optimum experimental conditions. Such particle-based electrochemical magnetic immunosensors could be readily used for simultaneous parallel detection of multiple proteins by using multiple inorganic metal nanoparticle tracers and are expected to open new opportunities for disease diagnostics and biosecurity.

  7. Enzymatic synthesis of magnetic nanoparticles.

    PubMed

    Kolhatkar, Arati G; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S; Litvinov, Dmitri; Lee, T Randall; Willson, Richard C

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  8. Enzymatic Synthesis of Magnetic Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C.; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S.; Litvinov, Dmitri; Lee, T. Randall; Willson, Richard C.

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  9. Magnetic hyperthermia with hard-magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kashevsky, Bronislav E.; Kashevsky, Sergey B.; Korenkov, Victor S.; Istomin, Yuri P.; Terpinskaya, Tatyana I.; Ulashchik, Vladimir S.

    2015-04-01

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner-Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner-Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body.

  10. Technique to optimize magnetic response of gelatin coated magnetic nanoparticles.

    PubMed

    Parikh, Nidhi; Parekh, Kinnari

    2015-07-01

    The paper describes the results of optimization of magnetic response for highly stable bio-functionalize magnetic nanoparticles dispersion. Concentration of gelatin during in situ co-precipitation synthesis was varied from 8, 23 and 48 mg/mL to optimize magnetic properties. This variation results in a change in crystallite size from 10.3 to 7.8 ± 0.1 nm. TEM measurement of G3 sample shows highly crystalline spherical nanoparticles with a mean diameter of 7.2 ± 0.2 nm and diameter distribution (σ) of 0.27. FTIR spectra shows a shift of 22 cm(-1) at C=O stretching with absence of N-H stretching confirming the chemical binding of gelatin on magnetic nanoparticles. The concept of lone pair electron of the amide group explains the mechanism of binding. TGA shows 32.8-25.2% weight loss at 350 °C temperature substantiating decomposition of chemically bind gelatin. The magnetic response shows that for 8 mg/mL concentration of gelatin, the initial susceptibility and saturation magnetization is the maximum. The cytotoxicity of G3 sample was assessed in Normal Rat Kidney Epithelial Cells (NRK Line) by MTT assay. Results show an increase in viability for all concentrations, the indicative probability of a stimulating action of these particles in the nontoxic range. This shows the potential of this technique for biological applications as the coated particles are (i) superparamagnetic (ii) highly stable in physiological media (iii) possibility of attaching other drug with free functional group of gelatin and (iv) non-toxic. PMID:26152511

  11. Development of a Magnetic Attachment Method for Bionic Eye Applications.

    PubMed

    Fox, Kate; Meffin, Hamish; Burns, Owen; Abbott, Carla J; Allen, Penelope J; Opie, Nicholas L; McGowan, Ceara; Yeoh, Jonathan; Ahnood, Arman; Luu, Chi D; Cicione, Rosemary; Saunders, Alexia L; McPhedran, Michelle; Cardamone, Lisa; Villalobos, Joel; Garrett, David J; Nayagam, David A X; Apollo, Nicholas V; Ganesan, Kumaravelu; Shivdasani, Mohit N; Stacey, Alastair; Escudie, Mathilde; Lichter, Samantha; Shepherd, Robert K; Prawer, Steven

    2016-03-01

    Successful visual prostheses require stable, long-term attachment. Epiretinal prostheses, in particular, require attachment methods to fix the prosthesis onto the retina. The most common method is fixation with a retinal tack; however, tacks cause retinal trauma, and surgical proficiency is important to ensure optimal placement of the prosthesis near the macula. Accordingly, alternate attachment methods are required. In this study, we detail a novel method of magnetic attachment for an epiretinal prosthesis using two prostheses components positioned on opposing sides of the retina. The magnetic attachment technique was piloted in a feline animal model (chronic, nonrecovery implantation). We also detail a new method to reliably control the magnet coupling force using heat. It was found that the force exerted upon the tissue that separates the two components could be minimized as the measured force is proportionately smaller at the working distance. We thus detail, for the first time, a surgical method using customized magnets to position and affix an epiretinal prosthesis on the retina. The position of the epiretinal prosthesis is reliable, and its location on the retina is accurately controlled by the placement of a secondary magnet in the suprachoroidal location. The electrode position above the retina is less than 50 microns at the center of the device, although there were pressure points seen at the two edges due to curvature misalignment. The degree of retinal compression found in this study was unacceptably high; nevertheless, the normal structure of the retina remained intact under the electrodes. PMID:26416723

  12. Magnetism in nanoparticles: tuning properties with coatings.

    PubMed

    Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; Alonso, José María; Rivero, Guillermo; Yndurain, Félix; González-Calbet, José María; Hernando, Antonio

    2013-12-01

    This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications. PMID:24201075

  13. Magnetic Separation Dynamics of Colloidal Magnetic Nanoparticles

    SciTech Connect

    Kaur, M.; Huijin Zhang,; You Qiang,

    2013-01-01

    Surface functionalized magnetic nanoparticles (MNPs) are appealing candidates for analytical separation of heavy metal ions from waste water and separation of actinides from spent nuclear fuel. This work studies the separation dynamics and investigates the appropriate magnetic-field gradients. A dynamic study of colloidal MNPs was performed for steady-state flow. Measurements were conducted to record the separation time of particles as a function of magnetic field gradient. The drag and magnetic forces play a significant role on the separation time. A drop in saturation magnetization and variation of particle size occurs after surface functionalization of the MNPs; these are the primary factors that affect the separation time and velocity of the MNPs. The experimental results are correlated to a theoretical one-dimensional model.

  14. [Development and transition of magnetic attachments--a literature review].

    PubMed

    Hirata, M

    1997-12-01

    In the 1950 s, a new method of using magnets for the retainers of removable partial dentures (RPDs) was developed. It utilized magnetic attractive force instead of mechanical friction. However, the magnets used in those days were Alnico, Ferrite and/or Pt-Cobalt magnets and their retentive force was not strong enough to stabilize the dentures. Therefore, they gradually went out of use. In the middle of the 1970 s, Samarium Cobalt magnets, which have strong magnetic characteristics, were developed and introduced into dental field. In 1976, Sasaki first applied the samarium cobalt magnets to the retainers of PPDs. While in 1981, Mizutani, et al. first used well-fitted ferromagnetic alloy and the magnet for the purpose of stabilizing the RPD. Since then, many researchers have developed devices such as the magnetic retainer and the closed field magnetic attachment placed on the market in 1992. Now, as for the popular retainer of RPD, one can easily use a smaller yet stronger magnetic attachment which uses Neodium rather than Samarium Cobalt magnet. PMID:9483897

  15. Intravenous magnetic nanoparticle cancer hyperthermia

    PubMed Central

    Huang, Hui S; Hainfeld, James F

    2013-01-01

    Magnetic nanoparticles heated by an alternating magnetic field could be used to treat cancers, either alone or in combination with radiotherapy or chemotherapy. However, direct intratumoral injections suffer from tumor incongruence and invasiveness, typically leaving undertreated regions, which lead to cancer regrowth. Intravenous injection more faithfully loads tumors, but, so far, it has been difficult achieving the necessary concentration in tumors before systemic toxicity occurs. Here, we describe use of a magnetic nanoparticle that, with a well-tolerated intravenous dose, achieved a tumor concentration of 1.9 mg Fe/g tumor in a subcutaneous squamous cell carcinoma mouse model, with a tumor to non-tumor ratio > 16. With an applied field of 38 kA/m at 980 kHz, tumors could be heated to 60°C in 2 minutes, durably ablating them with millimeter (mm) precision, leaving surrounding tissue intact. PMID:23901270

  16. Activity of glucose oxidase functionalized onto magnetic nanoparticles

    PubMed Central

    Kouassi, Gilles K; Irudayaraj, Joseph; McCarty, Gregory

    2005-01-01

    Background Magnetic nanoparticles have been significantly used for coupling with biomolecules, due to their unique properties. Methods Magnetic nanoparticles were synthesized by thermal co-precipitation of ferric and ferrous chloride using two different base solutions. Glucose oxidase was bound to the particles by direct attachment via carbodiimide activation or by thiophene acetylation of magnetic nanoparticles. Transmission electron microscopy was used to characterize the size and structure of the particles while the binding of glucose oxidase to the particles was confirmed using Fourier transform infrared spectroscopy. Results The direct binding of glucose oxidase via carbodiimide activity was found to be more effective, resulting in bound enzyme efficiencies between 94–100% while thiophene acetylation was 66–72% efficient. Kinetic and stability studies showed that the enzyme activity was more preserved upon binding onto the nanoparticles when subjected to thermal and various pH conditions. The overall activity of glucose oxidase was improved when bound to magnetic nanoparticles Conclusion Binding of enzyme onto magnetic nanoparticles via carbodiimide activation is a very efficient method for developing bioconjugates for biological applications PMID:15762994

  17. Magnetic Nanoparticles in-vivo Detection of Transplant Rejection

    NASA Astrophysics Data System (ADS)

    Flynn, E. R.; Bryant, H. C.; Larson, R. S.; Sergatskov, D. A.

    2006-03-01

    Superparamagnetic nanoparticles are being used to develop methodology for the in-vivo detection and imaging of immune system attacks on transplanted organs. The signature for impending rejection of a transplant is enhanced presence of T-cells. Magnetic nanoparticles coated with specific antibodies (CD-2 and CD-3) will target and attach to these T-cells. Approximately 3 .10^5 nanoparticles can attach to each cell. When a pulsed external magnetic field is applied to the decorated cells for a fraction of a second, magnetic moments of the nanoparticles aligned with the field. After the pulse is switched off, the net magnetic moment decays over several seconds by the Nèel mechanism. The resulting magnetic remanence field (typically 10-11 T) is measured using a multi-channel SQUID array. We present the data from live T-cells placed in realistic kidney phantom. The detection sensitivity was ˜2.10^3 T-cells - a small fraction of the number actually invading the rejected transplant. The 7-channel SQUID array allows us to image the cell clusters with a few millimeters resolution.

  18. Magnetic nanoparticles for gene and drug delivery

    PubMed Central

    McBain, Stuart C; Yiu, Humphrey HP; Dobson, Jon

    2008-01-01

    Investigations of magnetic micro- and nanoparticles for targeted drug delivery began over 30 years ago. Since that time, major progress has been made in particle design and synthesis techniques, however, very few clinical trials have taken place. Here we review advances in magnetic nanoparticle design, in vitro and animal experiments with magnetic nanoparticle-based drug and gene delivery, and clinical trials of drug targeting. PMID:18686777

  19. Measurements of Individual Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, Wolfgang

    2002-03-01

    Studying the limits between classical and quantum physics has become a very attractive field of research which is known as 'mesoscopic' physics. New and fascinating mesoscopic effects are expected. Nanometer-sized magnetic particles are situated at the frontier between classical and quantum magnetism. In addition, their magnetic properties are technologically very challenging (permanent magnets, information storage, etc.). First, we review briefly our micro-SQUID technique (For a review, see W. Wernsdorfer, Adv. Chem. Phys., 118, 99 (2001) or http://xxx.lanl.gov/abs/cond-mat/0101104) which allows us to study single nanometer-sized magnetic particles containing less than 1000 atoms, crystals of molecular clusters, or quantum spin chains. Then, we discuss our recent results concerning the magnetization reversal of individual Co and Fe clusters (3 nm). (M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Melinon, and A. Perez, Phys. Rev. Lett 86, 4676 (2001).) Using a generalized Stoner-Wohlfarth model, (E. Bonet, W. Wernsdorfer, B. Barbara, A. Benoit, D. Mailly, and A. Thiaville Phys. Rev. Lett., 83, 4188 (1999)) we show that 3D measurements of the angular dependence of the magnetization reversal yields the effective magnetic anisotropy function. The latter is important for our studies of the influence of temperature on the magnetization reversal. A new method allows us to study the magnetization switching up to the blocking temperature which is typically below 30 K. We achieved a new insight in the dynamics of magnetization reversal using ns-field pulses and micro-wave radiations. We conclude by showing how one might give a definite proof of the quantum character of a nanoparticle (S > 1000) at low temperatures.

  20. Fighting cancer with magnetic nanoparticles and immunotherapy

    NASA Astrophysics Data System (ADS)

    Gutiérrez, L.; Mejías, R.; Barber, D. F.; Veintemillas-Verdaguer, S.; Serna, C. J.; Lázaro, F. J.; Morales, M. P.

    2012-03-01

    IFN-γ-adsorbed DMSA-coated magnetite nanoparticles can be used as an efficient in vivo drug delivery system for tumor immunotherapy. Magnetic nanoparticles, with adsorbed interferon-γ, were targeted to the tumor site by application of an external magnetic field. A relevant therapeutic dosage of interferon in the tumor was detected and led to a notable reduction in tumor size. In general, only 10% of the total injected nanoparticles after multiple exposures were found in tissues by AC susceptibility measurements of the corresponding resected tissues. Magnetic nanoparticle biodistribution is affected by the application of an external magnetic field.

  1. Magnetic Nanoparticles in Non-magnetic CNTs and Graphene

    NASA Astrophysics Data System (ADS)

    Kayondo, Moses; Seifu, Dereje

    Magnetic nanoparticles were embedded in non-magnetic CNTs and graphene matrix to incorporate all the advantages and the unique properties of CNTs and graphene. Composites of CNTs and graphene with magnetic nanoparticles may offer new opportunities for a wide variety of potential applications such as magnetic data storage, magnetic force microscopy tip, electromagnetic interference shields, thermally conductive films, reinforced polymer composites, transparent electrodes for displays, solar cells, gas sensors, magnetic nanofluids, and magnetically guided drug delivery systems. Magnetic nanoparticles coated CNTs can also be used as an electrode in lithium ion battery to replace graphite because of the higher theoretical capacity. Graphene nanocomposites, coated with magnetic sensitive nanoparticles, have demonstrated enhanced magnetic property. We would like to acknowledge support by NSF-MRI-DMR-1337339.

  2. Materials science: Magnetic nanoparticles line up

    NASA Astrophysics Data System (ADS)

    Faivre, Damien; Bennet, Mathieu

    2016-07-01

    Certain bacteria contain strings of magnetic nanoparticles and therefore align with magnetic fields. Inspired by these natural structures, researchers have now fabricated synthetic one-dimensional arrays of such particles.

  3. Non-Bleaching Photoluminescent Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zou, Lu; Kim, Chanjoong; Girgis, Emad; Khalil, Wagdy K. B.

    2013-03-01

    We report a new type of photoluminescent magnetic nanoparticles produced by a very simple process. The nanoparticle consists of an ordinary magnetic nanoparticle as core and a non-toxic polymer shell. The biocompatibility is evaluated using in-vivo tests on mice. They are non-bleaching photoluminescent without any addition of fluorophores, such as quantum dots or fluorescent dyes that can be toxic and easily photobleached, respectively. This work provides a low-cost, bio-safe, non-bleaching alternative of conventional fluoroscent magnetic nanoparticles which covers a wide range of applications, from bio-imaging to biomedical diagnostics and therapeutics, such as hyperthermia.

  4. Bioinspired synthesis of magnetic nanoparticles

    SciTech Connect

    David, Anand

    2009-01-01

    The synthesis of magnetic nanoparticles has long been an area of active research. Magnetic nanoparticles can be used in a wide variety of applications such as magnetic inks, magnetic memory devices, drug delivery, magnetic resonance imaging (MRI) contrast agents, and pathogen detection in foods. In applications such as MRI, particle uniformity is particularly crucial, as is the magnetic response of the particles. Uniform magnetic particles with good magnetic properties are therefore required. One particularly effective technique for synthesizing nanoparticles involves biomineralization, which is a naturally occurring process that can produce highly complex nanostructures. Also, the technique involves mild conditions (ambient temperature and close to neutral pH) that make this approach suitable for a wide variety of materials. The term 'bioinspired' is important because biomineralization research is inspired by the naturally occurring process, which occurs in certain microorganisms called 'magnetotactic bacteria'. Magnetotactic bacteria use biomineralization proteins to produce magnetite crystals having very good uniformity in size and morphology. The bacteria use these magnetic particles to navigate according to external magnetic fields. Because these bacteria synthesize high quality crystals, research has focused on imitating aspects of this biomineralization in vitro. In particular, a biomineralization iron-binding protein found in a certain species of magnetotactic bacteria, magnetospirillum magneticum, AMB-1, has been extracted and used for in vitro magnetite synthesis; Pluronic F127 gel was used to increase the viscosity of the reaction medium to better mimic the conditions in the bacteria. It was shown that the biomineralization protein mms6 was able to facilitate uniform magnetite synthesis. In addition, a similar biomineralization process using mms6 and a shorter version of this protein, C25, has been used to synthesize cobalt ferrite particles. The overall

  5. Magnetic resonance imaging of glioblastoma using aptamer conjugated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Bongjune; Yang, Jaemoon; Hwang, Myeonghwan; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2012-10-01

    Here we introduce a new class of smart imaging probes hybridizing polysorbate 80 coated-magnetic nanoparticles with vascular endothelial growth factor receptor 2 (VEGFR2)-targetable aptamer for specific magnetic resonance (MR) imaging of angiogenesis from glioblastoma.

  6. Dual immobilization and magnetic manipulation of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jian, Z. F.; Horng, H. E.; Hong, Chin-Yih; Yang, H. C.; Wu, C. C.; Lee, Y. H.

    By suitably bio-functionalizing the surfaces, magnetic nanoparticles are able to bind specific biomolecules, and may serve as vectors for delivering bio-entities to target tissues. In this work, the synthesis of bio-functionalized magnetic nanoparticles with two kinds of bio-probes is developed. Here, the stem cell is selected as a to-be-delivered bio-entity and infarcted myocardium is the target issue. Thus, cluster designation-34 (CD-34) on stem cell and creatine kinase-MB (CK-MB) (or troponin I) on infarcted myocardium are the specific biomolecules to be bound with bio-functionalized magnetic nanoparticles. In addition to demonstrating the co-coating of two kinds of bio-probes on a magnetic nanoparticle, the feasibility of manipulation on bio-functionalized magnetic nanoparticles by external magnetic fields is investigated.

  7. Recent patents and advances on applications of magnetic nanoparticles and thin films in cell manipulation.

    PubMed

    Abedini-Nassab, Roozbeh; Eslamian, Morteza

    2014-01-01

    Cell manipulation is instrumental in most biological applications. One of the most promising methods in handling cells and other biological particles is the magnetic manipulation technique. In this technique, magnetic nanoparticles are employed to magnetize cells. Such cells then can be manipulated, sorted, or separated by applying an external magnetic field. In this work, first recent works and patents on the synthesis methods used for producing magnetic nanoparticles are investigated. These methods include co-precipitation, solvothermal, electrical wire explosion, microemulsion, laser pyrolysis, spray pyrolysis and carbon reduction. Then recent patents and articles on surface modification and functionalization of magnetic nanoparticles using polymers, dithiocarbamate, superparamagnetic shells, antibodies, graphene shells, and fluorescent materials are reviewed. Finally, different techniques on magnetic cell manipulation, such as direct attaching of magnetic particles to cells, employing intercellular markers or extra support molecules, as well as magnetic thin films, microfluidic channels and magnetic beads, are studied. PMID:25336173

  8. Synthesis and characterization of functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Biswal, Dipti; Peeples, Brianna N.; Spence, Destiny D.; Peeples, Caryn; Bell, Crystal N.; Pradhan, A. K.

    2012-04-01

    Magnetic nanoparticles have been used in a wide array of industrial and biomedical applications due to their unique properties at the nanoscale level. They are extensively used in magnetic resonance imaging (MRI), magnetic hyperthermia treatment, drug delivery, and in assays for biological separations. Furthermore, superparamagnetic nanoparticles are of large interest for in vivo applications. However, these unmodified nanoparticles aggregate and consequently lose their superparamagnetic behaviors, due to high surface to volume ratio and strong dipole to dipole interaction. For these reasons, surface coating is necessary for the enhancement and effectiveness of magnetic nanoparticles to be used in various applications. In addition to providing increased stability to the nanoparticles in different solvents or media, stabilizers such as surfactants, organic/inorganic molecules, polymer and co-polymers are employed as surface coatings, which yield magnetically responsive systems. In this work we present the synthesis and magnetic characterization of Fe3O4 nanoparticles coated with 3-aminopropyltriethoxy silane (APS) and citric acid. The particles magnetic hysteresis was measured by a superconducting quantum interference device (SQUID) magnetometer with an in-plane magnetic field. The uncoated and coated magnetic nanoparticles were characterized by using fourier transform infrared (FTIR), UV-vis, X-ray diffraction, transmission electron microscopy, and thermo-gravimetric analysis.

  9. Direct attachment of nanoparticle cargo to Salmonella typhimurium membranes designed for combination bacteriotherapy against tumors.

    PubMed

    Kazmierczak, Robert; Choe, Elizabeth; Sinclair, Jared; Eisenstark, Abraham

    2015-01-01

    Nanoparticle technology is an emerging approach to resolve difficult-to-manage internal diseases. It is highly regarded, in particular, for medical use in treatment of cancer due to the innate ability of certain nanoparticles to accumulate in the porous environment of tumors and to be toxic to cancer cells. However, the therapeutic success of nanoparticles is limited by the technical difficulty of fully penetrating and thus attacking the tumor. Additionally, while nanoparticles possess seeming-specificity due to the unique physiological properties of tumors themselves, it is difficult to tailor the delivery of nanoparticles or drugs in other models, such as use in cardiac disease, to the specific target. Thus, a need for delivery systems that will accurately and precisely bring nanoparticles carrying drug payloads to their intended sites currently exists. Our solution to this engineering challenge is to load such nanoparticles onto a biological "mailman" (a novel, nontoxic, therapeutic strain of Salmonella typhimurium engineered to preferentially and precisely seek out, penetrate, and hinder prostate cancer cells as the biological delivery system) that will deliver the therapeutics to a target site. In this chapter, we describe two methods that establish proof-of-concept for our cargo loading and delivery system by attaching nanoparticles to the Salmonella membrane. The first method (Subheading 1.1) describes association of sucrose-conjugated gold nanoparticles to the surface of Salmonella bacteria. The second method (Subheading 1.2) biotinylates the native Salmonella membrane to attach streptavidin-conjugated fluorophores as example nanoparticle cargo, with an alternative method (expression of membrane bound biotin target sites using autodisplay plasmid vectors) that increases the concentration of biotin on the membrane surface for streptavidin-conjugated nanoparticle attachment. By directly attaching the fluorophores to our bacterial vector through biocompatible

  10. Magnetic Nanoparticles in Cancer Theranostics.

    PubMed

    Gobbo, Oliviero L; Sjaastad, Kristine; Radomski, Marek W; Volkov, Yuri; Prina-Mello, Adriele

    2015-01-01

    In a report from 2008, The International Agency for Research on Cancer predicted a tripled cancer incidence from 1975, projecting a possible 13-17 million cancer deaths worldwide by 2030. While new treatments are evolving and reaching approval for different cancer types, the main prevention of cancer mortality is through early diagnosis, detection and treatment of malignant cell growth. The last decades have seen a development of new imaging techniques now in widespread clinical use. The development of nano-imaging through fluorescent imaging and magnetic resonance imaging (MRI) has the potential to detect and diagnose cancer at an earlier stage than with current imaging methods. The characteristic properties of nanoparticles result in their theranostic potential allowing for simultaneous detection of and treatment of the disease. This review provides state of the art of the nanotechnological applications for cancer therapy. Furthermore, it advances a novel concept of personalized nanomedical theranostic therapy using iron oxide magnetic nanoparticles in conjunction with MRI imaging. Regulatory and industrial perspectives are also included to outline future perspectives in nanotechnological cancer research. PMID:26379790

  11. Magnetic Nanoparticles in Cancer Theranostics

    PubMed Central

    Gobbo, Oliviero L.; Sjaastad, Kristine; Radomski, Marek W.; Volkov, Yuri; Prina-Mello, Adriele

    2015-01-01

    In a report from 2008, The International Agency for Research on Cancer predicted a tripled cancer incidence from 1975, projecting a possible 13-17 million cancer deaths worldwide by 2030. While new treatments are evolving and reaching approval for different cancer types, the main prevention of cancer mortality is through early diagnosis, detection and treatment of malignant cell growth. The last decades have seen a development of new imaging techniques now in widespread clinical use. The development of nano-imaging through fluorescent imaging and magnetic resonance imaging (MRI) has the potential to detect and diagnose cancer at an earlier stage than with current imaging methods. The characteristic properties of nanoparticles result in their theranostic potential allowing for simultaneous detection of and treatment of the disease. This review provides state of the art of the nanotechnological applications for cancer therapy. Furthermore, it advances a novel concept of personalized nanomedical theranostic therapy using iron oxide magnetic nanoparticles in conjunction with MRI imaging. Regulatory and industrial perspectives are also included to outline future perspectives in nanotechnological cancer research. PMID:26379790

  12. Understanding the Role of Solvation Forces on the Preferential Attachment of Nanoparticles in Liquid.

    PubMed

    Welch, David A; Woehl, Taylor J; Park, Chiwoo; Faller, Roland; Evans, James E; Browning, Nigel D

    2016-01-26

    Optimization of colloidal nanoparticle synthesis techniques requires an understanding of underlying particle growth mechanisms. Nonclassical growth mechanisms are particularly important as they affect nanoparticle size and shape distributions, which in turn influence functional properties. For example, preferential attachment of nanoparticles is known to lead to the formation of mesocrystals, although the formation mechanism is currently not well-understood. Here we employ in situ liquid cell scanning transmission electron microscopy and steered molecular dynamics (SMD) simulations to demonstrate that the experimentally observed preference for end-to-end attachment of silver nanorods is a result of weaker solvation forces occurring at rod ends. SMD reveals that when the side of a nanorod approaches another rod, perturbation in the surface-bound water at the nanorod surface creates significant energy barriers to attachment. Additionally, rod morphology (i.e., facet shape) effects can explain the majority of the side attachment effects that are observed experimentally. PMID:26588243

  13. Understanding the Role of Solvation Forces on the Preferential Attachment of Nanoparticles in Liquid

    SciTech Connect

    Welch, David A.; Woehl, Taylor J.; Park, Chiwoo; Faller, Roland; Evans, James E.; Browning, Nigel D.

    2015-11-20

    We discuss optimization of colloidal nanoparticle synthesis techniques, which requires an understanding of underlying particle growth mechanisms. Nonclassical growth mechanisms are particularly important as they affect nanoparticle size and shape distributions, which in turn influence functional properties. For example, preferential attachment of nanoparticles is known to lead to the formation of mesocrystals, although the formation mechanism is currently not well-understood. Here we employ in situ liquid cell scanning transmission electron microscopy and steered molecular dynamics (SMD) simulations to demonstrate that the experimentally observed preference for end-to-end attachment of silver nanorods is a result of weaker solvation forces occurring at rod ends. In conclusion, SMD reveals that when the side of a nanorod approaches another rod, perturbation in the surface-bound water at the nanorod surface creates significant energy barriers to attachment. Additionally, rod morphology (i.e., facet shape) effects can explain the majority of the side attachment effects that are observed experimentally.

  14. Engineering biofunctional magnetic nanoparticles for biotechnological applications

    NASA Astrophysics Data System (ADS)

    Moros, Maria; Pelaz, Beatriz; López-Larrubia, Pilar; García-Martin, Maria L.; Grazú, Valeria; de La Fuente, Jesus M.

    2010-09-01

    Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology.Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the

  15. Platinum dendritic nanoparticles with magnetic behavior

    SciTech Connect

    Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang

    2014-07-21

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  16. Platinum dendritic nanoparticles with magnetic behavior

    NASA Astrophysics Data System (ADS)

    Li, Wenxian; Sun, Ziqi; Tian, Dongliang; Nevirkovets, Ivan P.; Dou, Shi-Xue

    2014-07-01

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ˜4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  17. Synthesis of magnetic rhenium sulfide composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tang, Naimei; Tu, Weixia

    2009-10-01

    Rhenium sulfide nanoparticles are associated with magnetic iron oxide through coprecipitation of iron salts with tetramethylammonium hydroxide. Sizes of the formed magnetic rhenium sulfide composite particles are in the range 5.5-12.5 nm. X-ray diffraction and energy-dispersive analysis of X-rays spectra demonstrate the coexistence of Fe 3O 4 and ReS 2 in the composite particle, which confirm the formation of the magnetic rhenium sulfide composite nanoparticles. The association of rhenium sulfide with iron oxide not only keeps electronic state and composition of the rhenium sulfide nanoparticles, but also introduces magnetism with the level of 24.1 emu g -1 at 14 kOe. Surface modification with monocarboxyl-terminated poly(ethylene glycol) (MPEG-COOH) has the role of deaggregating the composite nanoparticles to be with average hydrodynamic size of 27.3 nm and improving the dispersion and the stability of the composite nanoparticles in water.

  18. Magnetic iron oxide nanoparticles for biomedical applications.

    PubMed

    Laurent, Sophie; Bridot, Jean-Luc; Elst, Luce Vander; Muller, Robert N

    2010-03-01

    Due to their high magnetization, superparamagnetic iron oxide nanoparticles induce an important decrease in the transverse relaxation of water protons and are, therefore, very efficient negative MRI contrast agents. The knowledge and control of the chemical and physical characteristics of nanoparticles are of great importance. The choice of the synthesis method (microemulsions, sol-gel synthesis, laser pyrolysis, sonochemical synthesis or coprecipitation) determines the magnetic nanoparticle's size and shape, as well as its size distribution and surface chemistry. Nanoparticles can be used for numerous in vivo applications, such as MRI contrast enhancement and hyperthermia drug delivery. New developments focus on targeting through molecular imaging and cell tracking. PMID:21426176

  19. Magnetic nanoparticle-based cancer therapy

    NASA Astrophysics Data System (ADS)

    Yu, Jing; Huang, Dong-Yan; Muhammad Zubair, Yousaf; Hou, Yang-Long; Gao, Song

    2013-02-01

    Nanoparticles (NPs) with easily modified surfaces have been playing an important role in biomedicine. As cancer is one of the major causes of death, tremendous efforts have been devoted to advance the methods of cancer diagnosis and therapy. Recently, magnetic nanoparticles (MNPs) that are responsive to a magnetic field have shown great promise in cancer therapy. Compared with traditional cancer therapy, magnetic field triggered therapeutic approaches can treat cancer in an unconventional but more effective and safer way. In this review, we will discuss the recent progress in cancer therapies based on MNPs, mainly including magnetic hyperthermia, magnetic specific targeting, magnetically controlled drug delivery, magnetofection, and magnetic switches for controlling cell fate. Some recently developed strategies such as magnetic resonance imaging (MRI) monitoring cancer therapy and magnetic tissue engineering are also addressed.

  20. Improving magnetic properties of ultrasmall magnetic nanoparticles by biocompatible coatings

    NASA Astrophysics Data System (ADS)

    Costo, R.; Morales, M. P.; Veintemillas-Verdaguer, S.

    2015-02-01

    This paper deals with the effect of a biocompatible surface coating layer on the magnetic properties of ultrasmall iron oxide nanoparticles. Particles were synthesized by laser pyrolysis and fully oxidized to maghemite by acid treatment. The surface of the magnetic nanoparticles was systematically coated with either phosphonate (phosphonoacetic acid or pamidronic acid) or carboxylate-based (carboxymethyl dextran) molecules and the binding to the nanoparticle surface was analyzed. Magnetic properties at low temperature show a decrease in coercivity and an increase in magnetization after the coating process. Hysteresis loop displacement after field cooling is significantly reduced by the coating, in particular, for particles coated with pamidronic acid, which show a 10% reduction of the displacement of the loop. We conclude that the chemical coordination of carboxylates and phosphonates reduces the surface disorder and enhances the magnetic properties of ultrasmall maghemite nanoparticles.

  1. Terahertz magnetic modulator based on magnetically clustered nanoparticles

    NASA Astrophysics Data System (ADS)

    Shalaby, Mostafa; Peccianti, Marco; Ozturk, Yavuz; Al-Naib, Ibraheem; Hauri, Christoph P.; Morandotti, Roberto

    2014-10-01

    Random orientation of liquid-suspended magnetic nanoparticles (Ferrofluids) gives rise to a zero net magnetic orientation. An external magnetic field tends to align these nanoparticles into clusters, leading to a strong linear dichroism on a propagating wave. Using 10 nm-sized Fe3O4, we experimentally realize a polarization-sensitive magnetic modulator operating at terahertz wavelengths. We reached a modulation depth of 66% using a field as low as 35 mT. The proposed concept offers a solution towards fundamental terahertz magnetic modulators.

  2. Current methods for synthesis of magnetic nanoparticles.

    PubMed

    Majidi, Sima; Sehrig, Fatemeh Zeinali; Farkhani, Samad Mussa; Goloujeh, Mehdi Soleymani; Akbarzadeh, Abolfazl

    2016-01-01

    The synthesis of different kinds of magnetic nanoparticles (MNPs) has attracted much attention. During the last few years, a large portion of the articles published about MNPs have described efficient routes to attain shape-controlled and highly stable MNPs with narrow size distribution. In this review, we have reported several popular methods including co-precipitation, microemulsion, thermal decomposition, solvothermal, sonochemical, microwave-assisted, chemical vapor deposition, combustion, carbon arc, and laser pyrolysis, for the synthesis of magnetic nanoparticles. PMID:25435409

  3. Magnetic Nanoparticles for Local Drug Delivery Using Magnetic Implants

    NASA Astrophysics Data System (ADS)

    Fernández-Pacheco, Rodrigo; Valdivia, J. Gabriel; Ibarra, M. Ricardo

    This chapter is a brief description of the state of the art of the field of targeted drug delivery using magnetic implants. It describes the advantages and drawbacks of the use of internal magnets to concentrate magnetic nanoparticles near tumor locations, and the different approaches to this task performed in vitro and in vivo reviewed in literature are presented.

  4. Magnetic-Plasmonic Core-Shell Nanoparticles

    PubMed Central

    Levin, Carly S.; Hofmann, Cristina; Ali, Tamer A.; Kelly, Anna T.; Morosan, Emilia; Nordlander, Peter; Whitmire, Kenton H.; Halas, Naomi J.

    2013-01-01

    Nanoparticles composed of magnetic cores with continuous Au shell layers simultaneously possess both magnetic and plasmonic properties. Faceted and tetracubic nanocrystals consisting of wüstite with magnetite-rich corners and edges retain magnetic properties when coated with an Au shell layer, with the composite nanostructures showing ferrimagnetic behavior. The plasmonic properties are profoundly influenced by the high dielectric constant of the mixed-iron-oxide nanocrystalline core. A comprehensive theoretical analysis that examines the geometric plasmon tunability over a range of core permittivities enables us to identify the dielectric properties of the mixed-oxide magnetic core directly from the plasmonic behavior of the core-shell nanoparticle. PMID:19441794

  5. Development of Novel Magnetic Nanoparticles for Hyperthermia Cancer Therapy

    PubMed Central

    Cassim, Shiraz M.; Giustini, Andrew J.; Baker, Ian; Hoopes, P. Jack

    2013-01-01

    Advances in magnetic nanoparticle hyperthermia are opening new doors in cancer therapy. As a standalone or adjuvant therapy this new modality has the opportunity significantly advance thermal medicine. Major advantages of using magnetic magnetite (Fe3O4) nanoparticles are their highly localized power deposition and the fact that the alternating magnetic fields (AMF) used to excite them can penetrate deeply into the body without harmful effect. One limitation, however, which hinders the technology, is the problem of inductive heating of normal tissue by the AMF if the frequency and fields strength are not appropriately matched to the tissue. Restricting AMF amplitude and frequency limits the heat dose which can be selectively applied to cancerous tissue via the magnetic nanoparticle, thus lowering therapeutic effect. In an effort to address this problem, particles with optimized magnetic properties must be developed. Using particles with higher saturation magnetizations and coercivity will enhance hysteresis heating increasing particle power density at milder AMF strengths and frequencies. In this study we used oil in water microemulsions to develop nanoparticles with zero-valent Fe cores and magnetite shells. The superior magnetic properties of zero-valent Fe give these particles the potential for improved SAR over pure magnetite particles. Silane and subsequently dextran have been attached to the particle surface in order to provide a biocompatible surfactant coating. The heating capability of the particles was tested in-vivo using a mouse tumor model. Although we determined that the final stage of synthesis, purification of the dextran coated particles, permits significant corrosion/oxidation of the iron core to hematite, the particles can effectively heat tumor tissue. Improving the purification procedure will allow the generation Fe/Fe3O4 with superior SAR values. PMID:24619487

  6. Development of Novel Magnetic Nanoparticles for Hyperthermia Cancer Therapy.

    PubMed

    Cassim, Shiraz M; Giustini, Andrew J; Baker, Ian; Hoopes, P Jack

    2011-02-23

    Advances in magnetic nanoparticle hyperthermia are opening new doors in cancer therapy. As a standalone or adjuvant therapy this new modality has the opportunity significantly advance thermal medicine. Major advantages of using magnetic magnetite (Fe3O4) nanoparticles are their highly localized power deposition and the fact that the alternating magnetic fields (AMF) used to excite them can penetrate deeply into the body without harmful effect. One limitation, however, which hinders the technology, is the problem of inductive heating of normal tissue by the AMF if the frequency and fields strength are not appropriately matched to the tissue. Restricting AMF amplitude and frequency limits the heat dose which can be selectively applied to cancerous tissue via the magnetic nanoparticle, thus lowering therapeutic effect. In an effort to address this problem, particles with optimized magnetic properties must be developed. Using particles with higher saturation magnetizations and coercivity will enhance hysteresis heating increasing particle power density at milder AMF strengths and frequencies. In this study we used oil in water microemulsions to develop nanoparticles with zero-valent Fe cores and magnetite shells. The superior magnetic properties of zero-valent Fe give these particles the potential for improved SAR over pure magnetite particles. Silane and subsequently dextran have been attached to the particle surface in order to provide a biocompatible surfactant coating. The heating capability of the particles was tested in-vivo using a mouse tumor model. Although we determined that the final stage of synthesis, purification of the dextran coated particles, permits significant corrosion/oxidation of the iron core to hematite, the particles can effectively heat tumor tissue. Improving the purification procedure will allow the generation Fe/Fe3O4 with superior SAR values. PMID:24619487

  7. Development of novel magnetic nanoparticles for hyperthermia cancer therapy

    NASA Astrophysics Data System (ADS)

    Cassim, Shiraz M.; Giustini, Andrew J.; Baker, Ian; Hoopes, P. Jack

    2011-03-01

    Advances in magnetic nanoparticle hyperthermia are opening new doors in cancer therapy. As a standalone or adjuvant therapy this new modality has the opportunity significantly advance thermal medicine. Major advantages of using magnetic magnetite (Fe3O4) nanoparticles are their highly localized power deposition and the fact that the alternating magnetic fields (AMF) used to excite them can penetrate deeply into the body without harmful effect. One limitation, however, which hinders the technology, is the problem of inductive heating of normal tissue by the AMF if the frequency and fields strength are not appropriately matched to the tissue. Restricting AMF amplitude and frequency limits the heat dose which can be selectively applied to cancerous tissue via the magnetic nanoparticle, thus lowering therapeutic effect. In an effort to address this problem, particles with optimized magnetic properties must be developed. Using particles with higher saturation magnetizations and coercivity will enhance hysteresis heating increasing particle power density at milder AMF strengths and frequencies. In this study we used oil in water microemulsions to develop nanoparticles with zero-valent Fe cores and magnetite shells. The superior magnetic properties of zero-valent Fe give these particles the potential for improved SAR over pure magnetite particles. Silane and subsequently dextran have been attached to the particle surface in order to provide a biocompatible surfactant coating. The heating capability of the particles was tested in-vivo using a mouse tumor model. Although we determined that the final stage of synthesis, purification of the dextran coated particles, permits significant corrosion/oxidation of the iron core to hematite, the particles can effectively heat tumor tissue. Improving the purification procedure will allow the generation Fe/Fe3O4 with superior SAR values.

  8. Heteroaggregation of microparticles with nanoparticles changes the chemical reversibility of the microparticles' attachment to planar surfaces.

    PubMed

    Shen, Chongyang; Wu, Lei; Zhang, Shiwen; Ye, Huichun; Li, Baoguo; Huang, Yuanfang

    2014-05-01

    This study theoretically investigated detachment of homoaggregates and heteroaggregates attached on the planar surfaces at primary minima during transients in solution chemistry. The homoaggregates were represented as small colloidal clusters with well-defined structures or as clusters generated by randomly packing spheres using Monte Carlo method. The heteroaggregates were modeled as microparticles coated with nanoparticles. Surface element integration technique was adopted to calculate Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies for the homoaggregates and heteroaggregates at different ionic strengths. Results show that attached homoaggregates on the planar surface at primary minima are irreversible to reduction in solution ionic strength whether the primary spheres of the homoaggregates are nano- or micro-sized. Heteroaggregation of nanoparticles with a microparticle can cause DLVO interaction energy to decrease monotonically with separation distance at low ionic strengths (e.g., ⩽0.01M), indicating that the heteroaggregates experience repulsive forces at all separation distances. Therefore, attachment of the heteroaggregates at primary minima can be detached upon reduction in ionic strength. Additionally, we showed that the adhesive forces and torques that the aforementioned heteroaggregates experience can be significantly smaller than those experienced by the microspheres without attaching nanoparticles, thus, the heteroaggregates are readily detached via hydrodynamic drag. Results of study provide plausible explanation for the observations in the literature that attached/aggregated particles can be detached/redispersed from primary minima upon reduction in ionic strength, which challenges the common belief that attachment/aggregation of particles in primary minima is chemically irreversible. PMID:24594038

  9. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    NASA Astrophysics Data System (ADS)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced

  10. Thermal potentiation of chemotherapy by magnetic nanoparticles

    PubMed Central

    Torres-Lugo, Madeline; Rinaldi, Carlos

    2014-01-01

    Clinical studies have demonstrated the effectiveness of hyperthermia as an adjuvant for chemotherapy and radiotherapy. However, significant clinical challenges have been encountered, such as a broader spectrum of toxicity, lack of patient tolerance, temperature control and significant invasiveness. Hyperthermia induced by magnetic nanoparticles in high-frequency oscillating magnetic fields, commonly termed magnetic fluid hyperthermia, is a promising form of heat delivery in which thermal energy is supplied at the nanoscale to the tumor. This review discusses the mechanisms of heat dissipation of iron oxide-based magnetic nanoparticles, current methods and challenges to deliver heat in the clinic, and the current work related to the use of magnetic nanoparticles for the thermal-chemopotentiation of therapeutic drugs. PMID:24074390

  11. Diffusion-limited attachment of nanoparticles to flexible membrane-immobilized receptors

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2016-04-01

    In biosystems, vesicles, virions, or metal particles of size ∼100 nm often diffuse in solution and interact with short (<10 nm) flexible receptors immobilized in a lipid membrane. The attachment kinetics of such nanoparticles can be limited by diffusion globally or locally. In the latter case, the calculation of the attachment rate is complicated by the dependence of the diffusion coefficient on the distance between a particle and membrane. The analysis, taking this factor into account, shows that the attachment rate constant is proportional to the receptor length and nearly independent of the particle radius.

  12. 3-T MRI safety assessments of magnetic dental attachments and castable magnetic alloys

    PubMed Central

    Miyata, K; Abe, Y; Ishii, T; Ishigami, T; Ohtani, K; Nagai, E; Ohyama, T; Umekawa, Y; Nakabayashi, S

    2015-01-01

    Objectives: To assess the safety of different magnetic dental attachments during 3-T MRI according to the American Society for Testing and Materials F2182-09 and F2052-06e1 standard testing methods and to develop a method to determine MRI compatibility by measuring magnetically induced torque. Methods: The temperature elevations, magnetically induced forces and torques of a ferromagnetic stainless steel keeper, a coping comprising a keeper and a cast magnetic alloy coping were measured on MRI systems. Results: The coping comprising a keeper demonstrated the maximum temperature increase (1.42 °C) for the whole-body-averaged specific absorption rate and was calculated as 2.1 W kg−1 with the saline phantom. All deflection angles exceeded 45°. The cast magnetic alloy coping had the greatest deflection force (0.33 N) during 3-T MRI and torque (1.015 mN m) during 0.3-T MRI. Conclusions: The tested devices showed minimal radiofrequency (RF)-induced heating in a 3-T MR environment, but the cast magnetic alloy coping showed a magnetically induced deflection force and torque approximately eight times that of the keepers. For safety, magnetic dental attachments should be inspected before and after MRI and large prostheses containing cast magnetic alloy should be removed. Although magnetic dental attachments may pose no great risk of RF-induced heating or magnetically induced torque during 3-T MRI, their magnetically induced deflection forces tended to exceed acceptable limits. Therefore, the inspection of such devices before and after MRI is important for patient safety. PMID:25785821

  13. Quantifying the complex permittivity and permeability of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, B. M.; Gui, Y. S.; Worden, M.; Hegmann, T.; Xing, M.; Chen, X. S.; Lu, W.; Wroczynskyj, Y.; van Lierop, J.; Hu, C.-M.

    2015-04-01

    The complex permittivity and permeability of superparamagnetic iron-oxide nanoparticles has been quantified using a circular waveguide assembly with a static magnetic field to align the nanoparticle's magnetization. The high sensitivity of the measurement provides the precise resonant feature of nanoparticles. The complex permeability in the vicinity of ferromagnetic resonance is in agreement with the nanoparticle's measured magnetization via conventional magnetometry. A rigorous and self-consistent measure of complex permittivities and permeabilities of nanoparticles is crucial to ascertain accurately the dielectric behaviour as well as the frequency response of nanoparticle magnetization, necessary ingredients when designing and optimizing magnetic nanoparticles for biomedical applications.

  14. Using magnetic nanoparticles to manipulate biological objects

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Gao, Yu; Xu, Chenjie

    2013-09-01

    The use of magnetic nanoparticles (MNPs) for the manipulation of biological objects, including proteins, genes, cellular organelles, bacteria, cells, and organs, are reviewed. MNPs are popular candidates for controlling and probing biological objects with a magnetic force. In the past decade, progress in the synthesis and surface engineering of MNPs has further enhanced this popularity.

  15. A study on the changes in attractive force of magnetic attachments for overdenture

    PubMed Central

    Lee, Jong-Hyuk; Choi, Yu-Sung

    2016-01-01

    PURPOSE Although magnetic attachment is used frequently for overdenture, it is reported that attractive force can be decreased by abrasion and corrosion. The purpose of this study was to establish the clinical basis about considerations and long term prognosis of overdenture using magnetic attachments by investigating the change in attractive force of magnetic attachment applied to the patients. MATERIALS AND METHODS Among the patients treated with overdenture using magnetic attachments in Dankook University Dental Hospital, attractive force records of 61 magnetic attachments of 20 subjects who re-visited from July 2013 to June 2014 were analyzed. Dental magnet tester (Aichi Micro Intelligent Co., Aichi, Japan) was used for measurement. The magnetic attachments used in this study were Magfit IP-B Flat, Magfit DX400, Magfit DX600 and Magfit DX800 (Aichi Steel Co., Aichi, Japan) filled with Neodymium (NdFeB), a rare-earth magnet. RESULTS Reduction ratio of attractive force had no significant correlation with conditional variables to which attachments were applied, and was higher when the maintenance period was longer (P<.05, r=.361). Reduction ratio of attractive force was significantly higher in the subject group in which attachments were used over 9 years than within 9 years (P<.05). Furthermore, 16.39% of total magnetic attachments showed detachment of keeper or assembly. CONCLUSION Attractive force of magnetic attachment is maintained regardless of conditional variables and reduction ratio increased as the maintenance period became longer. Further study on adhesive material, attachment method and design improvement to prevent detachment of magnetic attachment is needed. PMID:26949482

  16. MAGNETIC NANOPARTICLE HYPERTHERMIA IN CANCER TREATMENT

    PubMed Central

    Giustini, Andrew J.; Petryk, Alicia A.; Cassim, Shiraz M.; Tate, Jennifer A.; Baker, Ian; Hoopes, P. Jack

    2013-01-01

    The activation of magnetic nanoparticles (mNPs) by an alternating magnetic field (AMF) is currently being explored as technique for targeted therapeutic heating of tumors. Various types of superparamagnetic and ferromagnetic particles, with different coatings and targeting agents, allow for tumor site and type specificity. Magnetic nanoparticle hyperthermia is also being studied as an adjuvant to conventional chemotherapy and radiation therapy. This review provides an introduction to some of the relevant biology and materials science involved in the technical development and current and future use of mNP hyperthermia as clinical cancer therapy. PMID:24348868

  17. Approaches for modeling magnetic nanoparticle dynamics

    PubMed Central

    Reeves, Daniel B; Weaver, John B

    2014-01-01

    Magnetic nanoparticles are useful biological probes as well as therapeutic agents. There have been several approaches used to model nanoparticle magnetization dynamics for both Brownian as well as Néel rotation. The magnetizations are often of interest and can be compared with experimental results. Here we summarize these approaches including the Stoner-Wohlfarth approach, and stochastic approaches including thermal fluctuations. Non-equilibrium related temperature effects can be described by a distribution function approach (Fokker-Planck equation) or a stochastic differential equation (Langevin equation). Approximate models in several regimes can be derived from these general approaches to simplify implementation. PMID:25271360

  18. Biomedical Applications of Advanced Multifunctional Magnetic Nanoparticles.

    PubMed

    Long, Nguyen Viet; Yang, Yong; Teranishi, Toshiharu; Thi, Cao Minh; Cao, Yanqin; Nogami, Masayuki

    2015-12-01

    In this review, we have presented the latest results and highlights on biomedical applications of a class of noble metal nanoparticles, such as gold, silver and platinum, and a class of magnetic nanoparticles, such as cobalt, nickel and iron. Their most important related compounds are also discussed for biomedical applications for treating various diseases, typically as cancers. At present, both physical and chemical methods have been proved very successful to synthesize, shape, control, and produce metal- and oxide-based homogeneous particle systems, e.g., nanoparticles and microparticles. Therefore, we have mainly focused on functional magnetic nanoparticles for nanomedicine because of their high bioadaptability to the organs inside human body. Here, bioconjugation techniques are very crucial to link nanoparticles with conventional drugs, nanodrugs, biomolecules or polymers for biomedical applications. Biofunctionalization of engineered nanoparticles for biomedicine is shown respective to in vitro and in vivo analysis protocols that typically include drug delivery, hyperthermia therapy, magnetic resonance imaging (MRI), and recent outstanding progress in sweep imaging technique with Fourier transformation (SWIFT) MRI. The latter can be especially applied using magnetic nanoparticles, such as Co-, Fe-, Ni-based nanoparticles, α-Fe2O3, and Fe3O4 oxide nanoparticles for analysis and treatment of malignancies. Therefore, this review focuses on recent results of scientists, and related research on diagnosis and treatment methods of common and dangerous diseases by biomedical engineered nanoparticles. Importantly, nanosysems (nanoparticles) or microsystems (microparticles) or hybrid micronano systems are shortly introduced into nanomedicine. Here, Fe oxide nanoparticles ultimately enable potential and applicable technologies for tumor-targeted imaging and therapy. Finally, we have shown the latest aspects of the most important Fe-based particle systems, such as Fe,

  19. Targeting intracellular compartments by magnetic polymeric nanoparticles.

    PubMed

    Kocbek, Petra; Kralj, Slavko; Kreft, Mateja Erdani; Kristl, Julijana

    2013-09-27

    Superparamagnetic iron oxide nanoparticles (SPIONs) show a great promise for a wide specter of bioapplications, due to their characteristic magnetic properties exhibited only in the presence of magnetic field. Their advantages in the fields of magnetic drug targeting and imaging are well established and their safety is assumed, since iron oxide nanoparticles have already been approved for in vivo application, however, according to many literature reports the bare metal oxide nanoparticles may cause toxic effects on treated cells. Therefore, it is reasonable to prevent the direct interactions between metal oxide core and surrounding environment. In the current research ricinoleic acid coated maghemite nanoparticles were successfully synthesized, characterized and incorporated in the polymeric matrix, resulting in nanosized magnetic polymeric particles. The carrier system was shown to exhibit superparamagnetic properties and was therefore responsive towards external magnetic field. Bioevaluation using T47-D breast cancer cells confirmed internalization of magnetic polymeric nanoparticles (MNPs) and their intracellular localization in various subcellular compartments, depending on presence/absence of external magnetic field. However, the number of internalized MNPs observed by fluorescent and transmission electron microscopy was relatively low, making such way of targeting effective only for delivery of highly potent drugs. The scanning electron microscopy of treated cells revealed that MNPs influenced the cell adhesion, when external magnetic field was applied, and that treatment resulted in damaged apical plasma membrane right after exposure to the magnetic carrier. On the other hand, MNPs showed only reversibly reduced cellular metabolic activity in concentrations up to 200 μg/ml and, in the tested concentration the cell cycle distribution was within the normal range, indicating safety of the established magnetic carrier system for the treated cells. PMID:23603023

  20. Radiofrequency heating and magnetically induced displacement of dental magnetic attachments during 3.0 T MRI

    PubMed Central

    Miyata, K; Hasegawa, M; Abe, Y; Tabuchi, T; Namiki, T; Ishigami, T

    2012-01-01

    Objective The aim of this study was to estimate the risk of injury from dental magnetic attachments due to their radiofrequency (RF) heating and magnetically induced displacement during 3.0 T MRI. Methods To examine the magnetic attachments, we adopted the American Society for Testing and Materials F2182-02a and F2052-06 standards in two MRI systems (Achieva 3.0 T Nova Dual; Philips, Tokyo, Japan, and Signa HDxt 3.0 T; GE Healthcare, Milwaukee, WI). The temperature change was measured in a cylindrical keeper (GIGAUSS D600; GC, Tokyo, Japan) with coping of the casting alloy and a keeper with a dental implant at the maximum specific absorption rate (SAR) for 20 min. To measure the magnetically induced displacement force, three sizes of keepers (GIGAUSS D400, D600 and D1000) were used in deflection angle tests conducted at the point of the maximum magnetic field strength. Results Temperature elevations of both coping and implant were higher in the Signa system than in the Achieva system. The highest temperature changes in the keeper with implant and keeper with coping were 0.6 °C and 0.8 °C in the Signa system, respectively. The temperature increase did not exceed 1.0 °C at any location. The deflection angle (α) was not measurable because it exceeded 90°. GIGAUSS D400 required an extra 3.0 g load to constrain the deflection angle to less than 45°; GIGAUSS D600 and D1000 required 5.0 and 9.0 g loads, respectively. Conclusions Dental magnetic attachments pose no risk due to RF heating and magnetically induced displacement at 3.0 T MRI. However, it is necessary to confirm that these keepers are securely attached to the prosthesis before imaging. PMID:22499128

  1. High precision attachment of silver nanoparticles on AFM tips by dielectrophoresis.

    PubMed

    Leiterer, Christian; Wünsche, Erik; Singh, Prabha; Albert, Jens; Köhler, Johann M; Deckert, Volker; Fritzsche, Wolfgang

    2016-05-01

    AFM tips are modified with silver nanoparticles using an AC electrical field. The used technique works with sub-micron precision and also does not require chemical modification of the tip. Based on the electrical parameters applied in the process, particle density and particle position on the apex of the tip can be adjusted. The feasibility of the method is proven by subsequent tip-enhanced Raman spectroscopy (TERS) measurements using the fabricated tips as a measurement probe. Since this modification process itself does not require any lithographic processing, the technique can be easily adapted to modify AFM tips with a variety of nanostructures with pre-defined properties, while being parallelizable for a potential commercial application. Graphical abstract Silver nanoparticles attached to AFM tips using dielectrophoresis. Comparing nanoparticles attached using 1 kHz (left) to 1 MHz (right), SEM and optical (inset) images. PMID:26968565

  2. Biological cell manipulation by magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gertz, Frederick; Khitun, Alexander

    2016-02-01

    We report a manipulation of biological cells (erythrocytes) by magnetite (Fe3O4) nanoparticles in the presence of a magnetic field. The experiment was accomplished on the top of a micro-electromagnet consisting of two magnetic field generating contours. An electric current flowing through the contour(s) produces a non-uniform magnetic field, which is about 1.4 mT/μm in strength at 100 mA current in the vicinity of the current-carrying wire. In responses to the magnetic field, magnetic nanoparticles move towards the systems energy minima. In turn, magnetic nanoparticles drag biological cells in the same direction. We present experimental data showing cell manipulation through the control of electric current. This technique allows us to capture and move cells located in the vicinity (10-20 microns) of the current-carrying wires. One of the most interesting results shows a periodic motion of erythrocytes between the two conducting contours, whose frequency is controlled by an electric circuit. The obtained results demonstrate the feasibility of non-destructive cell manipulation by magnetic nanoparticles with micrometer-scale precision.

  3. Aptamer conjugated magnetic nanoparticles as nanosurgeons

    NASA Astrophysics Data System (ADS)

    Nair, Baiju G.; Nagaoka, Yutaka; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2010-11-01

    Magnetic nanoparticles have shown promise in the fields of targeted drug delivery, hyperthermia and magnetic resonance imaging (MRI) in cancer therapy. The ability of magnetic nanoparticles to undergo surface modification and the effect of external magnetic field in the dynamics of their movement make them an excellent nanoplatform for cancer destruction. Surgical removal of cancerous or unwanted cells selectively from the interior of an organ or tissue without any collateral damage is a serious problem due to the highly infiltrative nature of cancer. To address this problem in surgery, we have developed a nanosurgeon for the selective removal of target cells using aptamer conjugated magnetic nanoparticles controlled by an externally applied three-dimensional rotational magnetic field. With the help of the nanosurgeon, we were able to perform surgical actions on target cells in in vitro studies. LDH and intracellular calcium release assay confirmed the death of cancer cells due to the action of the nanosurgeon which in turn nullifies the possibility of proliferation by the removed cells. The nanosurgeon will be a useful tool in the medical field for selective surgery and cell manipulation studies. Additionally, this system could be upgraded for the selective removal of complex cancers from diverse tissues by incorporating various target specific ligands on magnetic nanoparticles.

  4. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Yuen, Clement

    2011-07-01

    The current gold standard method of Malaria diagnosis relies on the blood smears examination. The method is laborintensive, time consuming and requires the expertise for data interpretation. In contrast, Raman scattering from a metabolic byproduct of the malaria parasite (Hemozoin) shows the possibility of rapid and objective diagnosis of malaria. However, hemozoin concentration is usually extremely low especially at the early stage of malaria infection, rendering weak Raman signal. In this work, we propose the sensitive detection of enriched β-hematin, whose spectroscopic properties are equivalent to hemozoin, based on surface enhanced Raman spectroscopy (SERS) by using magnetic nanoparticles. A few orders of magnitude enhancement in the Raman signal of β-hematin can be achieved using magnetic nanoparticles. Furthermore, the effect of magnetic field on SERS enhancement is investigated. Our result demonstrates the potential of SERS using magnetic nanoparticles in the effective detection of hemozoin for malaria diagnosis.

  5. Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles.

    PubMed

    Jain, Nirmesh; Wang, Yanjun; Jones, Stephen K; Hawkett, Brian S; Warr, Gregory G

    2010-03-16

    The preparation and properties of an aqueous ferrofluid consisting of a concentrated (>65 wt %) dispersion of sterically stabilized superparamagnetic, iron oxide (maghemite) nanoparticles stable for several months at high ionic strength and over a broad pH range is described. The 6-8 nm diameter nanoparticles are individually coated with a short poly(acrylic acid)-b-poly(acrylamide) copolymer, designed to form the thinnest possible steric stabilizing layer while remaining strongly attached to the iron oxide surface over a wide range of nanoparticle concentrations. Thermogravimetric analysis yields an iron oxide content of 76 wt % in the dried particles, consistent with a dry polymer coating of approximately 1 nm in thickness, while the poly(acrylamide) chain length indicated by electrospray mass spectrometry is consistent with the 4-5 nm increase in the hydrodynamic radius observed by light scattering when the poly(acrylamide) stabilizing chains are solvated. Saturation magnetization experiments indicate nonmagnetic surface layers resulting from the strong chemical attachment of the poly(acrylic acid) block to the particle surface, also observed by Fourier transform infrared spectroscopy. PMID:19950943

  6. Functionalized magnetic nanoparticles: A novel heterogeneous catalyst support

    EPA Science Inventory

    Functionalized magnetic nanoparticles have emerged as viable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. Post-synthetic surface modification protocol for magnetic nanoparticles has been developed that imparts desirable che...

  7. RF susceptibility of magnetic nanoparticles and nanocomposites

    NASA Astrophysics Data System (ADS)

    Hariharan, Srikanth; Hajndl, Ranko; Sanders, Jeff; Carpenter, Everett; Sudarshan, T.

    2002-03-01

    Magnetic nanoparticles embedded in non-magnetic matrices like polymers or dielectric oxides are of great technological interest as the coating provides encapsulation and prevents grain growth and agglomeration. Moreover, in electromagnetic applications, the systems can be considered as nanocomposites with possible multi-functionality resulting from the magnetic and dielectric response. We have studied the static and dynamic magnetic properties of as-prepared nanoparticles (Fe, Co, γ-Fe_2O_3, MnFe_2O_4) and particles dispersed in a matrix (like polystyrene, SiO_2). The systems ranged from polymerized magnetic nanopowders synthesized using a microwave plasma method to highly monodisperse nanoparticles prepared by reverse-micelle techniques. The magnetic anisotropy and switching fields in these materials were systematically tracked over a wide range in temperatures and fields using a novel resonant RF method based on a tunnel-diode oscillator (TDO) operating at 10 MHz. This technique accurately probes the dynamic transverse susceptibility and has been validated in several nanoparticle systems. While the overall behavior of the transverse susceptibility can be described by standard Stoner-Wohlfarth formalism, there are subtle variations in the transverse susceptibility features including the approach to saturation that are different in the particles embedded in a dielectric matrix. A comparison between several systems and the role of matrix-mediated interactions will be discussed. HS acknowledges support from NSF through grant # NSF-ECS-0102622

  8. Tuning the Magnetic Properties of Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Jamison, Andrew C.; Litvinov, Dmitri; Willson, Richard C.; Lee, T. Randall

    2013-01-01

    The tremendous interest in magnetic nanoparticles (MNPs) is reflected in published research that ranges from novel methods of synthesis of unique nanoparticle shapes and composite structures to a large number of MNP characterization techniques, and finally to their use in many biomedical and nanotechnology-based applications. The knowledge gained from this vast body of research can be made more useful if we organize the associated results to correlate key magnetic properties with the parameters that influence them. Tuning these properties of MNPs will allow us to tailor nanoparticles for specific applications, thus increasing their effectiveness. The complex magnetic behavior exhibited by MNPs is governed by many factors; these factors can either improve or adversely affect the desired magnetic properties. In this report, we have outlined a matrix of parameters that can be varied to tune the magnetic properties of nanoparticles. For practical utility, this review focuses on the effect of size, shape, composition, and shell-core structure on saturation magnetization, coercivity, blocking temperature, and relaxation time. PMID:23912237

  9. Simulations of magnetic nanoparticle Brownian motion

    PubMed Central

    Reeves, Daniel B.; Weaver, John B.

    2012-01-01

    Magnetic nanoparticles are useful in many medical applications because they interact with biology on a cellular level thus allowing microenvironmental investigation. An enhanced understanding of the dynamics of magnetic particles may lead to advances in imaging directly in magnetic particle imaging or through enhanced MRI contrast and is essential for nanoparticle sensing as in magnetic spectroscopy of Brownian motion. Moreover, therapeutic techniques like hyperthermia require information about particle dynamics for effective, safe, and reliable use in the clinic. To that end, we have developed and validated a stochastic dynamical model of rotating Brownian nanoparticles from a Langevin equation approach. With no field, the relaxation time toward equilibrium matches Einstein's model of Brownian motion. In a static field, the equilibrium magnetization agrees with the Langevin function. For high frequency or low amplitude driving fields, behavior characteristic of the linearized Debye approximation is reproduced. In a higher field regime where magnetic saturation occurs, the magnetization and its harmonics compare well with the effective field model. On another level, the model has been benchmarked against experimental results, successfully demonstrating that harmonics of the magnetization carry enough information to infer environmental parameters like viscosity and temperature. PMID:23319830

  10. Microfluidic Biosensing Systems Using Magnetic Nanoparticles

    PubMed Central

    Giouroudi, Ioanna; Keplinger, Franz

    2013-01-01

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles. PMID:24022689

  11. Simulations of magnetic nanoparticle Brownian motion

    NASA Astrophysics Data System (ADS)

    Reeves, Daniel B.; Weaver, John B.

    2012-12-01

    Magnetic nanoparticles are useful in many medical applications because they interact with biology on a cellular level thus allowing microenvironmental investigation. An enhanced understanding of the dynamics of magnetic particles may lead to advances in imaging directly in magnetic particle imaging or through enhanced MRI contrast and is essential for nanoparticle sensing as in magnetic spectroscopy of Brownian motion. Moreover, therapeutic techniques like hyperthermia require information about particle dynamics for effective, safe, and reliable use in the clinic. To that end, we have developed and validated a stochastic dynamical model of rotating Brownian nanoparticles from a Langevin equation approach. With no field, the relaxation time toward equilibrium matches Einstein's model of Brownian motion. In a static field, the equilibrium magnetization agrees with the Langevin function. For high frequency or low amplitude driving fields, behavior characteristic of the linearized Debye approximation is reproduced. In a higher field regime where magnetic saturation occurs, the magnetization and its harmonics compare well with the effective field model. On another level, the model has been benchmarked against experimental results, successfully demonstrating that harmonics of the magnetization carry enough information to infer environmental parameters like viscosity and temperature.

  12. Understanding the Role of Solvation Forces on the Preferential Attachment of Nanoparticles in Liquid

    DOE PAGESBeta

    Welch, David A.; Woehl, Taylor J.; Park, Chiwoo; Faller, Roland; Evans, James E.; Browning, Nigel D.

    2015-11-20

    We discuss optimization of colloidal nanoparticle synthesis techniques, which requires an understanding of underlying particle growth mechanisms. Nonclassical growth mechanisms are particularly important as they affect nanoparticle size and shape distributions, which in turn influence functional properties. For example, preferential attachment of nanoparticles is known to lead to the formation of mesocrystals, although the formation mechanism is currently not well-understood. Here we employ in situ liquid cell scanning transmission electron microscopy and steered molecular dynamics (SMD) simulations to demonstrate that the experimentally observed preference for end-to-end attachment of silver nanorods is a result of weaker solvation forces occurring at rodmore » ends. In conclusion, SMD reveals that when the side of a nanorod approaches another rod, perturbation in the surface-bound water at the nanorod surface creates significant energy barriers to attachment. Additionally, rod morphology (i.e., facet shape) effects can explain the majority of the side attachment effects that are observed experimentally.« less

  13. Moving magnetic nanoparticles through soft-hard magnetic composite system

    NASA Astrophysics Data System (ADS)

    Subramanian, Hemachander; Han, Jong

    2007-03-01

    An important requirement during the design of a nano-electromechanical system is the ability to move a nanoparticle from one point to another in a predictable way. Through simulations, we demonstrate that soft-hard magnetic stuctures can help us move nanoparticles predictably. We simulated a 2-D system, in which the exchange-coupled soft-magnetic magnetization is frustrated with the boundary condition set by a hard magnetic array and rotating external field. We consider a geometry with three-fold degenerate magnetic local minima and show that the hysteretic transitions are manipulated by an external field. Due to the reduced interfacial energy from weak demagnetization energy in the composite magnets and magnetic hysteresis, the energy landscape can be manipulated in a well-defined and predictable manner. We apply this idea to control the movement of a magnetic particle placed on a non-magnetic layer on top of the structure. We are interested in extending this simple, preliminary study to include complex geometries. We expect that complex geometrical constraints would lead to interesting orbits of nanoparticles in these systems.

  14. Monodisperse Magnetic Nanoparticles for Theranostic Applications

    PubMed Central

    Ho, Don; Sun, Xiaolian; Sun, Shouheng

    2011-01-01

    Conspectus The development of highly effective medicine requires the on-time monitoring of the medical treatment process. This combination of monitoring and therapeutics allows a large degree of control on the treatment efficacy and is now commonly referred to as “theranostics”. Magnetic nanoparticles (NPs) provide a unique nano-platform for theranostic applications due to their comparable sizes with various functional biomolecules, their biocompatibility and their responses to the external magnetic field. Recent efforts in studying magnetic NPs for both imaging and therapeutic applications have led to great advances in NP fabrication with controls in dimension, surface functionalization and magnetic property. These magnetic NPs have been proven to be robust agents that can be target-specific for enhancing magnetic resonance imaging sensitivity and magnetic heating efficiency. These, plus the deep tissue penetration of magnetic field, make magnetic NPs the most promising candidates for successful theranostics in the future. In this Account, we review the recent advances in the synthesis of magnetic NPs of iron oxide, Fe, as well as FePt and FeCo NPs for imaging and therapeutic applications. We will first introduce briefly nanomagnetism, magnetic resonance imaging (MRI), and magnetic fluid hyperthermia (MFH). We will then focus on chemical synthesis of monodisperse magnetic NPs with controlled sizes, morphologies, and magnetic properties. Typical examples in using monodisperse magnetic NPs for MRI and MFH are highlighted. PMID:21661754

  15. Triggered self-assembly of magnetic nanoparticles.

    PubMed

    Ye, L; Pearson, T; Cordeau, Y; Mefford, O T; Crawford, T M

    2016-01-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufacturing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles. PMID:26975332

  16. Triggered self-assembly of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-03-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  17. Triggered self-assembly of magnetic nanoparticles

    PubMed Central

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-01-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles. PMID:26975332

  18. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields

    NASA Astrophysics Data System (ADS)

    Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Nave, S.; Zubarev, A.; Lomenech, C.; Bashtovoi, V.

    2014-03-01

    When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 μm) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces—the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter α ≥2), the Brownian motion seems not to affect the cloud behavior.

  19. Static magnetic properties of Maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Zulfiqar; Rahman, Muneeb Ur; Usman, M.; Hasanain, Syed Khurshid; Zia-ur-Rahman; Ullah, Amir; Kim, Ill Won

    2014-12-01

    We report the static magnetic properties of Maghemite (γ-Fe2O3) nanoparticles with an average crystallite size of 14 ± 1.8 nm synthesized via a co-precipitation method. The zero-field-cooled (ZFC) and the field-cooled (FC) magnetization measurements were performed using a physical properties measurements system (PPMS) at temperatures from 5 K to 300 K. The ZFC/FC measurements showed a typical superparamagnetic behavior with a narrow size distribution.

  20. EDITORIAL: Biomedical applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    O'Grady, K.

    2002-07-01

    Magnetic materials have been used with grain sizes down to the nanoscale for longer than any other type of material. This is because of a fundamental change in the magnetic structure of ferro- and ferrimagnetic materials when grain sizes are reduced. In these circumstances, the normal macroscopic domain structure transforms into a single domain state at a critical size which typically lies below 100 nm. Once this transformation occurs the mechanism of magnetisation reversal can only be via the rotation of the magnetisation vector from one magnetic easy axis to another via a magnetically hard direction. This change of reversal mechanism has led to a new class of magnetic materials whose properties and the basic underlying physical mechanism governing them were defined in a seminal work first published by E C Stoner and E P Wolhfarth in 1949. As a consequence of this rotation mechanism, magnetic nanoparticles exist having coercivities which are highly controllable and lie between soft materials and normal permanent magnet materials. This ability to control coercivity in such particles has led to a number of significant technological advances, particularly in the field of information storage. The high value of information storage technology has meant that since the 1950s an enormous research and development effort has gone into techniques for the preparation of magnetic particles and thin films having well defined properties. Hence, certainly since the 1960s, a wide range of techniques to produce both metallic and oxide magnetic nanoparticles with sizes ranging from 4-100 nm has been developed. The availability of this wide range of materials led to speculation from the 1960s onwards that they may have applications in biology and medicine. The fact that a magnetic field gradient can be used to either remotely position or selectively filter biological materials leads to a number of obvious applications. These applications fall broadly into two categories: those

  1. Activity estimation in radioimmunotherapy using magnetic nanoparticles

    PubMed Central

    Rajabi, Hossein; Johari Daha, Fariba

    2015-01-01

    Objective Estimation of activity accumulated in tumor and organs is very important in predicting the response of radiopharmaceuticals treatment. In this study, we synthesized 177Lutetium (177Lu)-trastuzumab-iron oxide nanoparticles as a double radiopharmaceutical agent for treatment and better estimation of organ activity in a new way by magnetic resonance imaging (MRI). Methods 177Lu-trastuzumab-iron oxide nanoparticles were synthesized and all the quality control tests such as labeling yield, nanoparticle size determination, stability in buffer and blood serum up to 4 d, immunoreactivity and biodistribution in normal mice were determined. In mice bearing breast tumor, liver and tumor activities were calculated with three methods: single photon emission computed tomography (SPECT), MRI and organ extraction, which were compared with each other. Results The good results of quality control tests (labeling yield: 61%±2%, mean nanoparticle hydrodynamic size: 41±15 nm, stability in buffer: 86%±5%, stability in blood serum: 80%±3%, immunoreactivity: 80%±2%) indicated that 177Lu-trastuzumab-iron oxide nanoparticles could be used as a double radiopharmaceutical agent in mice bearing tumor. Results showed that 177Lu-trastuzumab-iron oxide nanoparticles with MRI had the ability to measure organ activities more accurate than SPECT. Conclusions Co-conjugating radiopharmaceutical to MRI contrast agents such as iron oxide nanoparticles may be a good way for better dosimetry in nuclear medicine treatment. PMID:25937783

  2. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  3. In situ TEM investigations of mineral growth through oriented attachment of nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, D.; Nielsen, M.; Lee, J. R.; Frandsen, C.; Banfield, J. F.; Kisailus, D.; De Yoreo, J.

    2012-12-01

    The growth of crystals through aggregation and coalescence of nanoparticles is now recognized as a widespread phenomenon in biomineral, biomimetic and natural systems, and during synthetic production of nanoparticles and nanowires. The resulting crystals often exhibit complex forms ranging from quasi-one-dimensional chains to 3D hierarchical and self-similar superstructures. Yet the final structure typically diffracts as a single crystal, implying that the primary particles aligned during growth. When coalignment is accompanied by coalescence, this growth process is often referred to as oriented attachment (OA). OA is now recognized as an important mechanism of crystal growth in many materials in the environment. However, the pathway by which OA occurs has not been established. Although the preservation of primary particle morphology and formation of twins and stacking faults at particle-particle boundaries strongly suggest a sequence of whole particle alignment followed by interface elimination, atom-by-atom reorientation via dislocation and grain-boundary migration after attachment are another potential mechanism. If indeed the primary particles align before attachment, the dynamics of that process and the forces that drive it have yet to be revealed. To achieve this understanding we are investigating crystal nucleation and oriented attachment in a number of systems, such as iron oxides and oxyhydroxide as well as titanium dioxide, through in situ and ex situ TEM. We performed high-resolution TEM using a fluid cell to directly observe oriented attachment of iron oxyhydroxide nanoparticles. The particles undergo continuous rotation and interaction until they find a perfect lattice match. A sudden jump to contact then occurs over less than 1 nanometer, followed by lateral atom-by-atom addition initiated at the contact point. Interface elimination proceeds at a rate consistent with the curvature dependence of the Gibbs free energy. Measured translational and

  4. DLVO Approximation Methods for Predicting the Attachment of Silver Nanoparticles to Ceramic Membranes.

    PubMed

    Mikelonis, Anne M; Youn, Sungmin; Lawler, Desmond F

    2016-02-23

    This article examines the influence of three common stabilizing agents (citrate, poly(vinylpyrrolidone) (PVP), and branched poly(ethylenimine) (BPEI)) on the attachment affinity of silver nanoparticles to ceramic water filters. Citrate-stabilized silver nanoparticles were found to have the highest attachment affinity (under conditions in which the surface potential was of opposite sign to the filter). This work demonstrates that the interaction between the electrical double layers plays a critical role in the attachment of nanoparticles to flat surfaces and, in particular, that predictions of double-layer interactions are sensitive to boundary condition assumptions (constant charge vs constant potential). The experimental deposition results can be explained when using different boundary condition assumptions for different stabilizing molecules but not when the same assumption was assumed for all three types of particles. The integration of steric interactions can also explain the experimental deposition results. Particle size was demonstrated to have an effect on the predicted deposition for BPEI-stabilized particles but not for PVP. PMID:26797148

  5. Plasmonic-magnetic bifunctional nanoparticles.

    SciTech Connect

    Peng, S.; Lei, C.; Ren, Y.; Cook, R. E.; Sun, Y.

    2011-03-01

    An amorphous seed-mediated strategy has been developed for the synthesis of hybrid nanoparticles that are composed of silver (yellow) and iron oxide (blue) nanodomains and exhibit unique optical properties. These properties originate from both the strong surface plasmon resonance of the silver and the strong superparamagnetic responses of the iron oxide nanodomains.

  6. Magnetic manipulation of bacterial magnetic nanoparticle-loaded neurospheres.

    PubMed

    Shin, Jaeha; Lee, Kyung-Mee; Lee, Jae Hyup; Lee, Junghoon; Cha, Misun

    2014-05-01

    Specific targeting of cells to sites of tissue damage and delivery of high numbers of transplanted cells to lesion tissue in vivo are critical parameters for the success of cell-based therapies. Here, we report a promising in vitro model system for studying the homing of transplanted cells, which may eventually be applicable for targeted regeneration of damaged neurons in spinal cord injury. In this model system, neurospheres derived from human neuroblastoma SH-SY5Y cells labeled with bacterial magnetic nanoparticles were guided by a magnetic field and successfully accumulated near the focus site of the magnetic field. Our results demonstrate the effectiveness of using an in vitro model for testing bacterial magnetic nanoparticles to develop successful stem cell targeting strategies during fluid flow, which may ultimately be translated into in vivo targeted delivery of cells through circulation in various tissue-repair models. PMID:24638869

  7. Measuring and controlling the transport of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Stephens, Jason R.

    increases with pore diameter. We find that fluxes are faster in aqueous solutions than in hexane, which is attributed to the hydrophilic nature of the porous membranes and differences in wettability. The impact of an applied magnetic flux gradient, which induces magnetization and motion, on permeation is also examined. Surface chemistry plays an important role in determining flux through porous media such as in the environment. Diffusive flux of nanoparticles through alkylsilane modified porous alumina is measured as a model for understanding transport in porous media of differing surface chemistries. Experiments are performed as a function of particle size, pore diameter, attached hydrocarbon chain length and chain terminus, and solvent. Particle fluxes are monitored by the change in absorbance of the solution in the receiving side of a diffusion cell. In general, flux increases when the membranes are modified with alkylsilanes compared to untreated membranes, which is attributed to the hydrophobic nature of the porous membranes and differences in wettability. We find that flux decreases, in both hexane and aqueous solutions, when the hydrocarbon chain lining the interior pore wall increases in length. The rate and selectivity of transport across these membranes is related to the partition coefficient (Kp) and the diffusion coefficient (D) of the permeating species. By conducting experiments as a function of initial particle concentration, we find that KpD increases with increasing particle size, is greater in alkylsilane--modified pores, and larger in hexane solution than water. The impact of the alkylsilane terminus (--CH3, --Br, --NH2, --COOH) on permeation in water is also examined. In water, the highest KpD is observed when the membranes are modified with carboxylic acid terminated silanes and lowest with amine terminated silanes as a result of electrostatic effects during translocation. Finally, the manipulation of magnetic nanoparticles for the controlled formation

  8. Stabilization of D-amino acid oxidase from Rhodosporidium toruloides by immobilization onto magnetic nanoparticles.

    PubMed

    Hsieh, Hao-Chieh; Kuan, I-Ching; Lee, Shiow-Ling; Tien, Gee-Yeng; Wang, Yi-Jen; Yu, Chi-Yang

    2009-04-01

    D-amino acid oxidase from Rhodosporidium toruloides was immobilized onto glutaraldehyde-activated magnetic nanoparticles. Approximately four enzyme molecules were attached to one magnetic nanoparticle when the weight ratio of the enzyme to the support was 0.12. After immobilization, the T(m) was increased from 45 degrees C of the free form to 55 degrees C. In the presence of 20 mM H2O2, the immobilized form retained 93% of its activity after 5 h while the free form was completely inactivated after 3.5 h. PMID:19066733

  9. Arranging matter by magnetic nanoparticle assemblers

    PubMed Central

    Yellen, Benjamin B.; Hovorka, Ondrej; Friedman, Gary

    2005-01-01

    We introduce a method for transporting colloidal particles, large molecules, cells, and other materials across surfaces and for assembling them into highly regular patterns. In this method, nonmagnetic materials are manipulated by a fluid dispersion of magnetic nanoparticles. Manipulation of materials is guided by a program of magnetic information stored in a substrate. Dynamic control over the motion of nonmagnetic particles can be achieved by reprogramming the substrate magnetization on the fly. The unexpectedly large degree of control over particle motion can be used to manipulate large ensembles of particles in parallel, potentially with local control over particle trajectory. PMID:15956215

  10. Multi-vortex states in magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gan, W. L.; Chandra Sekhar, M.; Wong, D. W.; Purnama, I.; Chiam, S. Y.; Wong, L. M.; Lew, W. S.

    2014-10-01

    We demonstrate a fabrication technique to create cylindrical NiFe magnetic nanoparticles (MNPs) with controlled dimensions and composition. MNPs thicker than 200 nm can form a double vortex configuration, which consists of a pair of vortices with opposite chirality. When MNPs thicker than 300 nm are relaxed after saturation, it forms a frustrated triple vortex state which produces a higher net magnetization as verified by light transmissivity measurements. Therefore, a greater magnetic torque can be actuated on a MNP in the triple vortex state.

  11. Nonlinear simulations to optimize magnetic nanoparticle hyperthermia

    SciTech Connect

    Reeves, Daniel B. Weaver, John B.

    2014-03-10

    Magnetic nanoparticle hyperthermia is an attractive emerging cancer treatment, but the acting microscopic energy deposition mechanisms are not well understood and optimization suffers. We describe several approximate forms for the characteristic time of Néel rotations with varying properties and external influences. We then present stochastic simulations that show agreement between the approximate expressions and the micromagnetic model. The simulations show nonlinear imaginary responses and associated relaxational hysteresis due to the field and frequency dependencies of the magnetization. This suggests that efficient heating is possible by matching fields to particles instead of resorting to maximizing the power of the applied magnetic fields.

  12. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    PubMed Central

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  13. Tailoring magnetic nanoparticle for transformers application.

    PubMed

    Morais, P C; Silva, A S; Leite, E S; Garg, V K; Oliveira, A C; Viali, W R; Sartoratto, P P C

    2010-02-01

    In this study photoacoustic spectroscopy was used to investigate the effect of dilution of an oil-based magnetic fluid sample on the magnetic nanoparticle surface-coating. Changes of the photoacoustic signal intensity on the band-L region (640 to 830 nm) upon dilution of the stock magnetic fluid sample were discussed in terms of molecular surface desorption. The model proposed here assumes that the driving force taking the molecules out from the nanoparticle surface into the bulk solvent is the gradient of osmotic pressure. This gradient of osmotic pressure is established between the nanoparticle surface and the bulk suspension. It is further assumed that the photoacoustic signal intensity (area under the photoacoustic spectra) scales linearly with the number of coating molecules (surface grafting) at the nanoparticle surface. This model picture provides a non-linear analytical description for the reduction of the surface grafting coefficient upon dilution, which was successfully-used to curve-fit the photoacoustic experimental data. PMID:20352784

  14. Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Hemaunt; Srivastava, R. C.; Pal Singh, Jitendra; Negi, P.; Agrawal, H. M.; Das, D.; Hwa Chae, Keun

    2016-03-01

    The present work investigates the magnetic behavior of Dy3+ substituted cobalt ferrite nanoparticles. X-ray diffraction studies reveal presence of cubic spinel phases in these nanoparticles. Raman spectra of these nanoparticles show change in intensity of Raman bands, which reflects cation redistribution in cubic spinel lattice. Saturation magnetization and coercivity decrease with increase of Dy3+concentration in these nanoparticles. Room temperature Mössbauer measurements show the cation redistribution in these nanoparticles and corroborates the results obtained from Raman Spectroscopic measurements. Decrease in magnetization of Dy3+ substituted cobalt ferrite is attributed to the reduction in the magnetic interaction and cation redistribution.

  15. Electrochemical fabrication of nanocomposite films containing magnetic metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshiaki; Hashi, Shuichiro; Kura, Hiroaki; Yanai, Takeshi; Ogawa, Tomoyuki; Ishiyama, Kazushi; Nakano, Masaki; Fukunaga, Hirotoshi

    2015-07-01

    Controlling the structure composed of soft and hard magnetic phases at the nanoscale is the key to fabricating nanocomposite magnets with efficient exchange coupling. In our previous study, nanocomposite films containing ferrite nanoparticles were fabricated by a combination of electrophoretic deposition and electroplating to show one possibility of controlling the structure of nanocomposite magnets three-dimensionally by applying self-assembly of magnetic nanoparticles. To expand this combination method to the fabrication of nanocomposite magnets, the use of magnetic metal nanoparticles is desired. In this paper, we attempted to fabricate nanocomposite films composed of Fe-Co nanoparticles in a Fe-Pt matrix by this combination method. Through cross-sectional observation and XRD analysis, a nanostructure composed of Fe-Co nanoparticles embedded in a L10 Fe-Pt matrix was confirmed. These results indicate that this method is capable of producing composite materials containing metal magnetic nanoparticles.

  16. Temperature Dependence of Smectic Liquid Crystals Mixed With Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Taylor, Jefferson W.; Kurihara, Lynn K.; Martinez-Miranda, Luz J.

    2012-02-01

    We investigate the properties of bulk liquid crystal mixed with a magnetic nanoparticle (CoFe) as a function of temperature. We compare our results to those of a heat capacity measurement of Cordoyiannis et al.ootnotetextGeorge Cordoyiannis, Lynn K. Kurihara, Luz J. Martinez-Miranda, Christ Glorieux, and Jan Thoen, Phys. Rev. E 79, 011702 (2009) and compare the way the smectic as a function of temperature the way the nematic behaves. We study how the liquid crystal reorganizes in the presence of the functionalized nanoparticles as a function of temperature and compare it to how it behaves at room temperature.ootnotetextL. J. Mart'inez-Miranda, and Lynn Kurihara, J. Appl. Phys, 105, p. 084305 (2009). The X-rays give rise to three or four peaks whose evolution in temperature varies depending on their origin. In particular the second peak does not seem to vary much with temperature, and can be associated with the first several molecular layers attached to the nanoparticles.

  17. Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility.

    PubMed

    Jia, Hongfei; Zhu, Guangyu; Wang, Ping

    2003-11-20

    Nanoparticles provide an ideal remedy to the usually contradictory issues encountered in the optimization of immobilized enzymes: minimum diffusional limitation, maximum surface area per unit mass, and high effective enzyme loading. In addition to the promising performance features, the unique solution behaviors of the nanoparticles also point to a transitional region between the heterogeneous (with immobilized enzymes) and homogeneous (with soluble free enzymes) catalysis. The particle mobility, which is related to particle size and solution viscosity through Stokes-Einstein equation, may impact the reaction kinetics according to the collision theory. The mobility-activity relationship was examined through experimental studies and theoretical modeling in the present work. Polystyrene particles with diameters ranging from 110-1000 nm were prepared. A model enzyme, alpha-chymotrypsin, was covalently attached to the nanoparticles up to 6.6 wt%. The collision theory model was found feasible in correlating the catalytic activities of particles to particle size and solution viscosity. Changes in the size of particles and the viscosity of reaction media, which all affect the mobility of the enzyme catalyst, evidently altered the intrinsic activity of the particle-attached enzyme. Compared to K(M), k(cat) appeared to be less sensitive to particle size and viscosity. PMID:14574697

  18. Controlling the density and site of attachment of gold nanoparticles onto the surface of carbon nanotubes.

    PubMed

    Kumar, Suresh; Kaur, Inderpreet; Dharamvir, Keya; Bharadwaj, Lalit M

    2012-03-01

    A facile method for controlling the density and site of attachment of gold nanoparticles onto the surface of carbon nanotubes is demonstrated. Nitric acid based oxidation was carried out to create carboxylic groups exclusively at the ends of carbon nanotubes, whereas oxidation using a mixture of nitric and sulfuric acid with varied reaction time was carried out to control the population of carboxylic groups on the side walls of nanotubes. In turn, 4-aminothiophenol modified gold nanoparticles were covalently interfaced to these carboxylated multi-walled carbon nanotubes in the presence of a zero length cross-linker, 1-ethylene-3-(3-dimethylaminopropyl) carbodiimide. Raman spectroscopic results showed increase in height of disorder band with each of these successive steps, indicating the increase in degree of functionalization of the carbon nanotubes. Fourier transformed infrared spectroscopic analysis affirmed the functionalization of nanostructures and the formation of nanohybrid. Transmission electron and field emission scanning electron microscopic analysis ascertained the attachment of gold nanoparticles to the ends and side walls of the multi-walled carbon nanotubes. The new hybrid nanostructures may find applications in electronic, optoelectronic, and sensing devices. PMID:22218340

  19. The Effects of Magnetic Nanoparticles on Magnetic Fluid Hyperthermia

    NASA Astrophysics Data System (ADS)

    Liangruksa, Monrudee; Kappiyoor, Ravi; Ganguly, Ranjan; Puri, Ishwar

    2010-11-01

    Magnetic fluid hyperthermia (MFH) is a cancer treatment in which biocompatible magnetic nanoparticles are dispersed into a tumor and heated by an external AC magnetic field. Over a period of time, the tumor cells are locally heated, leading to hyperthermia which damages and kills the tumor cells with minimal damage to the surrounding normal tissue. The applied magnetic field must be high enough to induce hyperthermia for a specified magnetic particle concentration in the tumor but also lies within the safe limit for human exposure. Six materials, barium ferrite, cobalt ferrite, iron-cobalt, iron-platinum, magnetite and maghemite, are considered as candidates for MFH use. We find that fcc iron-platinum, magnetite and maghemite generate useful treatment temperatures and, when included in a ferrofluid, can produce sufficient and effective MFH for which optimal conditions are explored.

  20. Fabrication of an Implant-Supported Orbital Prosthesis with Bar-Magnetic Attachment: A Clinical Report

    PubMed Central

    Aalaei, Shima; Abolhassani, Abolhassan; Nematollahi, Fatemeh; Beyabanaki, Elaheh; Mangoli, Amir Ali

    2015-01-01

    Implant-supported craniofacial prostheses are made to restore defective areas in the face and cranium. This clinical report describes a technique for fabrication of an orbital prosthesis with three adjacent implants in the left lateral orbital rim of a 60-year-old woman. Selection of appropriate attachment system (individual magnetic abutments versus bar-clip attachment) for implant-supported orbital prostheses depends upon the position of implants. Bar-magnetic attachment has been selected as the retention mechanism in the present case. PMID:27559354

  1. Fabrication of an Implant-Supported Orbital Prosthesis with Bar-Magnetic Attachment: A Clinical Report.

    PubMed

    Aalaei, Shima; Abolhassani, Abolhassan; Nematollahi, Fatemeh; Beyabanaki, Elaheh; Mangoli, Amir Ali

    2015-12-01

    Implant-supported craniofacial prostheses are made to restore defective areas in the face and cranium. This clinical report describes a technique for fabrication of an orbital prosthesis with three adjacent implants in the left lateral orbital rim of a 60-year-old woman. Selection of appropriate attachment system (individual magnetic abutments versus bar-clip attachment) for implant-supported orbital prostheses depends upon the position of implants. Bar-magnetic attachment has been selected as the retention mechanism in the present case. PMID:27559354

  2. Reorientation Response of Magnetic Microspheres Attached to Gold Electrodes Under an Applied Magnetic Field

    NASA Astrophysics Data System (ADS)

    De Los Santos Valladares, L.; Dominguez, A. Bustamante; Aguiar, J. Albino; Reeve, R. M.; Mitrelias, T.; Langford, R. M.; Azuma, Y.; Barnes, C. H. W.; Majima, Y.

    2013-08-01

    In this work, we report the mechanical reorientation of thiolated ferromagnetic microspheres bridging a pair of gold electrodes under an external magnetic field. When an external magnetic field (7 kG) is applied during the measurement of the current-voltage characteristics of a carboxyl ferromagnetic microsphere (4 μm diameter) attached to two gold electrodes by self-assembled monolayers (SAMs) of octane dithiol (C8H18S2), the current signal is distorted. Rather than due to magnetoresistance, this effect is caused by a mechanical reorientation of the ferromagnetic sphere, which alters the number of SAMs between the sphere and the electrodes and therefore affects conduction. To study the physical reorientation of the ferromagnetic particles, we measure their hysteresis loops while suspended in a liquid solution.

  3. EDITORIAL: Biomedical applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    O'Grady, K.

    2002-07-01

    Magnetic materials have been used with grain sizes down to the nanoscale for longer than any other type of material. This is because of a fundamental change in the magnetic structure of ferro- and ferrimagnetic materials when grain sizes are reduced. In these circumstances, the normal macroscopic domain structure transforms into a single domain state at a critical size which typically lies below 100 nm. Once this transformation occurs the mechanism of magnetisation reversal can only be via the rotation of the magnetisation vector from one magnetic easy axis to another via a magnetically hard direction. This change of reversal mechanism has led to a new class of magnetic materials whose properties and the basic underlying physical mechanism governing them were defined in a seminal work first published by E C Stoner and E P Wolhfarth in 1949. As a consequence of this rotation mechanism, magnetic nanoparticles exist having coercivities which are highly controllable and lie between soft materials and normal permanent magnet materials. This ability to control coercivity in such particles has led to a number of significant technological advances, particularly in the field of information storage. The high value of information storage technology has meant that since the 1950s an enormous research and development effort has gone into techniques for the preparation of magnetic particles and thin films having well defined properties. Hence, certainly since the 1960s, a wide range of techniques to produce both metallic and oxide magnetic nanoparticles with sizes ranging from 4-100 nm has been developed. The availability of this wide range of materials led to speculation from the 1960s onwards that they may have applications in biology and medicine. The fact that a magnetic field gradient can be used to either remotely position or selectively filter biological materials leads to a number of obvious applications. These applications fall broadly into two categories: those

  4. Biomedical tools based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Saba, Anna R.; Castillo, Paula M.; Fantechi, Elvira; Sangregorio, Claudio; Lascialfari, Alessandro; Sbarbati, Andrea; Casu, Alberto; Falqui, Andrea; Casula, Maria F.

    2013-02-01

    Magnetic and superparamagnetic colloids represent a versatile platform for the design of functional nanostructures which may act as effective tools for biomedicine, being active in cancer therapy, tissue imaging and magnetic separation. The structural, morphological and hence magnetic features of the magnetic nanoparticles must be tuned for optimal perfomance in a given application. In this work, iron oxide nanocrystals have been prepared as prospective heat mediators in magnetic fluid hyperthermia therapy. A procedure based on the partial oxidation of iron (II) precursors in water based media has been adopted and the synthesis outcome has been investigated by X-Ray diffraction and Transmission electron microscopy. It was found that by adjusting the synthetic parameters (mainly the oxidation rate) magnetic iron oxide nanocrystals with cubic and cuboctahedral shape and average size 50 nm were obtained. The nanocrystals were tested as hyperthermic mediators through Specific Absorption Rate (SAR) measurements. The samples act as heat mediators, being able to increase the temperature from physiological temperature to the temperatures used for magnetic hyperthermia by short exposure to an alternative magnetic field and exhibit a reproducible temperature kinetic behavior.

  5. Iron Oxide Nanoparticles for Magnetically-Guided and Magnetically-Responsive Drug Delivery

    PubMed Central

    Estelrich, Joan; Escribano, Elvira; Queralt, Josep; Busquets, Maria Antònia

    2015-01-01

    In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release. PMID:25867479

  6. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery.

    PubMed

    Estelrich, Joan; Escribano, Elvira; Queralt, Josep; Busquets, Maria Antònia

    2015-01-01

    In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release. PMID:25867479

  7. Modular Fabrication of Polymer Brush Coated Magnetic Nanoparticles: Engineering the Interface for Targeted Cellular Imaging.

    PubMed

    Oz, Yavuz; Arslan, Mehmet; Gevrek, Tugce N; Sanyal, Rana; Sanyal, Amitav

    2016-08-01

    Development of efficient and rapid protocols for diversification of functional magnetic nanoparticles (MNPs) would enable identification of promising candidates using high-throughput protocols for applications such as diagnostics and cure through early detection and localized delivery. Polymer brush coated magnetic nanoparticles find use in many such applications. A protocol that allows modular diversification of a pool of parent polymer coated nanoparticles will lead to a library of functional materials with improved uniformity. In the present study, polymer brush coated parent magnetic nanoparticles obtained using reversible addition-fragmentation chain transfer (RAFT) polymerization are modified to obtain nanoparticles with different "clickable" groups. In this design, trithiocarbonate group terminated polymer brushes are "grafted from" MNPs using a catechol group bearing initiator. A postpolymerization radical exchange reaction allows installation of "clickable" functional groups like azides and maleimides on the chain ends of the polymers. Thus, modified MNPs can be functionalized using alkyne-containing and thiol-containing moieties like peptides and dyes using the alkyne-azide cycloaddition and the thiol-ene conjugation, respectively. Using the approach outlined here, a cell surface receptor targeting cyclic peptide and a fluorescent dye are attached onto nanoparticle surface. This multifunctional construct allows selective recognition of cancer cells that overexpress integrin receptors. Furthermore, the approach outlined here is not limited to the installation of azide and maleimide functional groups but can be expanded to a variety of "clickable" groups to allow nanoparticle modification using a broad range of chemical conjugations. PMID:27406320

  8. In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, G Devanand; Ramasamy, S; Reddy, G Pramod; Kumar, J

    2013-08-01

    Targeted drug delivery using nanocrystalline materials delivers the drug at the diseased site. This increases the efficacy of the drug in killing the cancer cells. Surface modifications were done to target the drug to a particular receptor on the cell surface. This paper reports synthesis of hydroxyapatite and titanium dioxide nanoparticles and modification of their surface with polyethylene glycol (PEG) followed by folic acid (FA). Paclitaxel, an anticancer drug, is attached to functionalized hydroxyapatite and titanium dioxide nanoparticles. The pure and functionalised nanoparticles are characterised with XRD, TEM and UV spectroscopy. Anticancer analysis was carried out in DEN induced hepatocarcinoma animals. Biochemical, hematological and histopathological analysis show that the surface modified paclitaxel attached nanoparticles have an higher anticancer activity than the pure paclitaxel and surface modified nanoparticles without paclitaxel. This is due to the targeting of the drug to the folate receptor in the cancer cells. PMID:23615724

  9. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.

    PubMed

    Dmitriev, Pavel A; Baranov, Denis G; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2016-05-01

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions. PMID:27113352

  10. Optical detection of magnetic nanoparticles in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Gimenez, Alejandro J.; Ramirez-Wong, Diana G.; Favela-Camacho, Sarai E.; Sanchez, Isaac C.; Yáñez-Limón, J. M.; Luna-Bárcenas, Gabriel

    2016-03-01

    This study reports the change of light transmittance and light scattering dispersion by colloidal suspensions of magnetic nanoparticles. Optical changes were observed during the application of transversal magnetic fields to magnetic nanoparticles and nanowires at concentrations spanning from 20 μg/mL to 2 ng/mL. Results show that light scattering modulation is a simple, fast and inexpensive method for detection of magnetic nanoparticles at low concentrations. Frequency and time response of the optical modulation strongly depends on the geometry of the particles. In this regard, light transmittance and scattering measurements may prove useful in characterizing the morphology of suspended nanoparticles.

  11. Dynamic Hysteresis in Compacted Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chowdary, Krishna M.

    The frequency and temperature dependent magnetic response of a bulk soft magnetic nanocomposite made by compacting Fe10Co 90 nanoparticles was measured and modeled. Electron microscopy and x-ray diffraction were used to characterize the size, composition, and structure of the nanoparticles and nanocomposite. Polyol synthesis was used to produce 200 nm particles with average grain size 20 nm and large superparamagnetic fraction. The nanoparticles were consolidated to 90% theoretical density by plasma pressure compaction. The compacted nanoparticles retained the 20 nm average grain size and large superparamagnetic fraction. The nanocomposite resistivity was more than three times that of the bulk alloy. Vibrating sample and SQUID-MPMS magnetometers were used for low frequency magnetic measurements of the nanoparticles and nanocomposite. Compaction reduced the coercivity from 175 Oe to 8 Oe and the effective anisotropy from 124 x 10 3 ergs/cc to 7.9 x 103 ergs/cc. These reductions were caused by increased exchange coupling between surface nanograins, consistent with predictions from the Random Anisotropy model. Varying degrees of exchange coupling existed within the nanocomposite, contributing to a distribution of energy barriers. A permeameter was used for frequency dependent magnetic measurements on a toroid cut from the nanocomposite. Complex permeability, coercivity, and power loss were extracted from dynamic minor hysteresis loops measured over a range of temperatures (77 K - 873 K) and frequencies (0.1 kHz - 100 kHz). The real and imaginary parts of the complex permeability spectrum showed asymmetries consistent with a distribution of energy barriers and high damping. When the complex permeability, power loss, and coercivity were scaled relative to the peak frequency of the imaginary permeability, all fell on universal curves. Various microscopic and macroscopic models for the complex permeability were investigated. The complex permeability was successfully fit

  12. Exchange-coupled magnetic nanoparticles for efficient heat induction

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyun; Jang, Jung-Tak; Choi, Jin-Sil; Moon, Seung Ho; Noh, Seung-Hyun; Kim, Ji-Wook; Kim, Jin-Gyu; Kim, Il-Sun; Park, Kook In; Cheon, Jinwoo

    2011-07-01

    The conversion of electromagnetic energy into heat by nanoparticles has the potential to be a powerful, non-invasive technique for biotechnology applications such as drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this Letter, we demonstrate a significant increase in the efficiency of magnetic thermal induction by nanoparticles. We take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the nanoparticle and maximize the specific loss power, which is a gauge of the conversion efficiency. The optimized core-shell magnetic nanoparticles have specific loss power values that are an order of magnitude larger than conventional iron-oxide nanoparticles. We also perform an antitumour study in mice, and find that the therapeutic efficacy of these nanoparticles is superior to that of a common anticancer drug.

  13. Ac magnetic susceptibility study of in vivo nanoparticle biodistribution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, L.; Mejías, R.; Barber, D. F.; Veintemillas-Verdaguer, S.; Serna, C. J.; Lázaro, F. J.; Morales, M. P.

    2011-06-01

    We analysed magnetic nanoparticle biodistribution, before and after cytokine conjugation, in a mouse model by ac susceptibility measurements of the corresponding resected tissues. Mice received repeated intravenous injections of nanoparticle suspension for two weeks and they were euthanized 1 h after the last injection. In general, only 10% of the total injected nanoparticles after multiple exposures were found in tissues. The rest of the particles may probably be metabolized or excreted by the organism. Our findings indicate that the adsorption of interferon to DMSA-coated magnetic nanoparticles changes their biodistribution, reducing the presence of nanoparticles in lungs and therefore their possible toxicity. The specific targeting of the particles to tumour tissues by the use of an external magnetic field has also been studied. Magnetic nanoparticles were observed by transmission electron microscopy in the targeted tissue and quantified by ac magnetic susceptibility.

  14. Monodisperse magnetic nanoparticles for theranostic applications.

    PubMed

    Ho, Don; Sun, Xiaolian; Sun, Shouheng

    2011-10-18

    Effective medical care requires the concurrent monitoring of medical treatment. The combination of imaging and therapeutics allows a large degree of control over the treatment efficacy and is now commonly referred to as "theranostics". Magnetic nanoparticles (NPs) provide a unique nanoplatform for theranostic applications because of their biocompatibility, their responses to the external magnetic field, and their sizes which are comparable to that of functional biomolecules. Recent studies of magnetic NPs for both imaging and therapeutic applications have led to greater control over size, surface functionalization, magnetic properties, and specific binding capabilities of the NPs. The combination of the deep tissue penetration of the magnetic field and the ability of magnetic NPs to enhance magnetic resonance imaging sensitivity and magnetic heating efficiency makes magnetic NPs promising candidates for successful future theranostics. In this Account, we review recent advances in the synthesis of magnetic NPs for biomedical applications such as magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH). Our focus is on iron oxide (Fe(3)O(4)) NPs, gold-iron oxide (Au-Fe(3)O(4)) NPs, metallic iron (Fe) NPs, and Fe-based alloy NPs, such as iron-cobalt (FeCo) and iron-platinum (FePt) NPs. Because of the ease of fabrication and their approved clinical usage, Fe(3)O(4) NPs with controlled sizes and surface chemistry have been studied extensively for MRI and MFH applications. Porous hollow Fe(3)O(4) NPs are expected to have similar magnetic, chemical, and biological properties as the solid Fe(3)O(4) NPs, and their structures offer the additional opportunity to store and release drugs at a target. The Au-Fe(3)O(4) NPs combine both magnetically active Fe(3)O(4) and optically active Au within one nanostructure and are a promising NP platform for multimodal imaging and therapeutics. Metallic Fe and FeCo NPs offer the opportunity for probes with even higher

  15. Ultralow field magnetization reversal of two-body magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Fei; Lu, Jincheng; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.

    2016-08-01

    Field induced magnetization reversal was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value (on nanometer scale) in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The ultralow field switching phenomenon was missed in the parallel configuration where both the anisotropic axes are aligned along the separation line of the two particles. The micromagnetic results are consistent with the previous theoretical prediction [J. Appl. Phys. 109, 104303 (2011)] where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles might be implemented as a composite information bit.

  16. MRI contrast enhancement using Magnetic Carbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Kangasniemi, Kim; Takahashi, Masaya; Mohanty, Samarendra K.; Koymen, Ali R.; Department of Physics, University of Texas at Arlington Team; University of Texas Southwestern Medical Center Team

    2014-03-01

    In recent years, nanotechnology has become one of the most exciting forefront fields in cancer diagnosis and therapeutics such as drug delivery, thermal therapy and detection of cancer. Here, we report development of core (Fe)-shell (carbon) nanoparticles with enhanced magnetic properties for contrast enhancement in MRI imaging. These new classes of magnetic carbon nanoparticles (MCNPs) are synthesized using a bottom-up approach in various organic solvents, using the electric plasma discharge generated in the cavitation field of an ultrasonic horn. Gradient echo MRI images of well-dispersed MCNP-solutions (in tube) were acquired. For T2 measurements, a multi echo spin echo sequence was performed. From the slope of the 1/T2 versus concentration plot, the R2 value for different CMCNP-samples was measured. Since MCNPs were found to be extremely non-reactive, and highly absorbing in NIR regime, development of carbon-based MRI contrast enhancement will allow its simultaneous use in biomedical applications. We aim to localize the MCNPs in targeted tissue regions by external DC magnetic field, followed by MRI imaging and subsequent photothermal therapy.

  17. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    PubMed

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles. PMID:24205624

  18. Magnetoacoustic imaging of magnetic iron oxide nanoparticles embedded in biological tissues with microsecond magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hu, Gang; He, Bin

    2012-01-01

    We present an experimental study on magnetoacoustic imaging of superparamagnetic iron oxide (SPIO) nanoparticles embedded in biological tissues. In experiments, a large-current-carrying coil is used to deliver microsecond pulsed magnetic stimulation to samples. The ultrasound signals induced by magnetic forces on SPIO nanoparticles are measured by a rotating transducer. The distribution of nanoparticles is reconstructed by a back-projection imaging algorithm. The results demonstrated the feasibility to obtain cross-sectional image of magnetic nanoparticle targets with faithful dimensional and positional information, which suggests a promising tool for tomographic reconstruction of magnetic nanoparticle-labeled diseased tissues (e.g., cancerous tumor) in molecular or clinic imaging.

  19. Magnetic nanoparticles for applications in oscillating magnetic field

    SciTech Connect

    Peeraphatdit, Chorthip

    2009-01-01

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific

  20. Magnetic vectoring of magnetically responsive nanoparticles within the murine peritoneum

    NASA Astrophysics Data System (ADS)

    Klostergaard, Jim; Bankson, James; Auzenne, Edmond; Gibson, Don; Yuill, William; Seeney, Charles E.

    2007-04-01

    Magnetically responsive nanoparticles (MNPs) might be candidates for pro-drug formulations for intraperitoneal (i.p.) treatment of ovarian cancer. We conducted feasibility experiments in an i.p. human ovarian carcinoma xenograft model to determine whether MNPs can be effectively vectored within this environment. Our initial results based on magnetic resonance imaging (MRI) indicate that i.p.-injected ˜15 nm magnetite-based MNPs can in fact migrate toward NdFeB magnets externally juxtaposed to the peritoneal cavity above the xenografts growing in the anterior abdominal wall. MNP localization to the tumor/peri-tumoral environment occurs. Further development of this MNP pro-drug strategy is underway.

  1. Photo-Switching of Magnetization in Iron Nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Aqtash, Nabil; Hostetter, Alexander; Sabirianov, Renat

    2012-02-01

    We report the theoretical studies of light induced switching in core-shell nanoparticles. The core of the nanoparticle is made of Fe coated with the shell of azobenzene. The latter is a photochromic material with the reversible trans-cis photoisomerization upon irradiation by UV and visible light. The magnetization of nanoparticles can be reversibly switched by using specific wavelengths of light. trans-cis photoisomerization of azobenzene induces both the change in surface local magnetic moments and alters the exchange interactions on the surfaces of the nanoparticles. These two mechanisms can lead to induced magnetization switchable by light pulse. We study the effects of photoisomerization of azobenzene on iron (Fe) nanoparticle. Ab initio calculations using SIESTA code show that the ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction in Fe dimer increase by 40% due to photoisomerization of azobenzene. While an infinite flat Fe monolayer shows variation on the exchange interactions on the surfaces as result of photoisomerization. The local magnetic moments of Fe sheet increase by 6% due to photoisomerization. Using an ab initio parameterization of magnetic interactions, we propose statistical model based on competing exchange interactions for the investigation of Fe nanoparticle magnetization. We performed Monte Carlo simulations of magnetization of the core-shell nanoparticle as a function of temperature. The results show that Fe nanoparticles magnetization at room temperature can change by at least 40% due to photoisomerization of azobenzene.

  2. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response

    NASA Astrophysics Data System (ADS)

    Dmitriev, Pavel A.; Baranov, Denis G.; Milichko, Valentin A.; Makarov, Sergey V.; Mukhin, Ivan S.; Samusev, Anton K.; Krasnok, Alexander E.; Belov, Pavel A.; Kivshar, Yuri S.

    2016-05-01

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07965a

  3. A feasibility study of magnetic separation of magnetic nanoparticle for forward osmosis.

    PubMed

    Kim, Y C; Han, S; Hong, S

    2011-01-01

    It was recently reported that a UK company has developed a naturally non-toxic magnetoferritin to act as a draw solute for drawing water in forward osmosis process. The gist of this technology is the utilization of the magnetic nanoparticle and high-gradient magnetic separation for draw solute separation and reuse. However, any demonstration on this technology has not been reported yet. In this study, a feasibility test of magnetic separation using magnetic nanoparticle was therefore performed to investigate the possibility of magnetic separation in water treatment such as desalination. Basically, a magnetic separation system consisted of a column packed with a bed of magnetically susceptible wools placed between the poles of electromagnet and Fe3O4 magnetic nanoparticle was used as a model nanoparticle. The effect of nanoparticle size to applied magnetic field in separation column was experimentally investigated and the magnetic field distribution in a magnet gap and the magnetic field gradient around stainless steel wool wire were analyzed through numerical simulation. The amount of magnetic nanoparticle captured in the separator column increased as the magnetic field strength and particle size increased. As a result, if magnetic separation is intended to be used for draw solute separation and reuse, both novel nanoparticle and large-scale high performance magnetic separator must be developed. PMID:22097022

  4. 2D magnetic nanoparticle imaging using magnetization response second harmonic

    NASA Astrophysics Data System (ADS)

    Tanaka, Saburo; Murata, Hayaki; Oishi, Tomoya; Suzuki, Toshifumi; Zhang, Yi

    2015-06-01

    A detection method and an imaging technique for magnetic nanoparticles (MNPs) have been investigated. In MNP detection and in magnetic particle imaging (MPI), the most commonly employed method is the detection of the odd harmonics of the magnetization response. We examined the advantage of using the second harmonic response when applying an AC magnetic modulation field and a DC bias field. If the magnetization response is detected by a Cu-wound-coil detection system, the output voltage from the coil is proportional to the change in the flux, dϕ/dt. Thus, the dependence of the derivative of the magnetization, M, on an AC magnetic modulation field and a DC bias field were calculated and investigated. The calculations were in good agreement with the experimental results. We demonstrated that the use of the second harmonic response for the detection of MNPs has an advantage compared with the usage of the third harmonic response, when the Cu-wound-coil detection system is employed and the amplitude of the ratio of the AC modulation field and a knee field Hac/Hk is less than 2. We also constructed a 2D MPI scanner using a pair of permanent ring magnets with a bore of ϕ80 mm separated by 90 mm. The magnets generated a gradient of Gz=3.17 T/m transverse to the imaging bore and Gx=1.33 T/m along the longitudinal axis. An original concentrated 10 μl Resovist solution in a ϕ2×3 mm2 vessel was used as a sample, and it was imaged by the scanner. As a result, a 2D contour map image could be successfully generated using the method with a lock-in amplifier.

  5. Surface modification of magnetic nanoparticles in biomedicine

    NASA Astrophysics Data System (ADS)

    Chu, Xin; Yu, Jing; Hou, Yang-Long

    2015-01-01

    Progress in surface modification of magnetic nanoparticles (MNPs) is summarized with regard to organic molecules, macromolecules and inorganic materials. Many researchers are now devoted to synthesizing new types of multi-functional MNPs, which show great application potential in both diagnosis and treatment of disease. By employing an ever-greater variety of surface modification techniques, MNPs can satisfy more and more of the demands of medical practice in areas like magnetic resonance imaging (MRI), fluorescent marking, cell targeting, and drug delivery. Project supported by the National Natural Science Foundation of China (Grant Nos. 51125001 and 51172005), the Natural Science Foundation of Beijing,China (Grant No. 2122022), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 81421004), and the Doctoral Program of the Education Ministry of China (Grant No. 20120001110078).

  6. Polysaccharide-Coated Magnetic Nanoparticles for Imaging and Gene Therapy

    PubMed Central

    Uthaman, Saji; Cherukula, Kondareddy; Cho, Chong-Su; Park, In-Kyu

    2015-01-01

    Today, nanotechnology plays a vital role in biomedical applications, especially for the diagnosis and treatment of various diseases. Among the many different types of fabricated nanoparticles, magnetic metal oxide nanoparticles stand out as unique and useful tools for biomedical applications, because of their imaging characteristics and therapeutic properties such as drug and gene carriers. Polymer-coated magnetic particles are currently of particular interest to investigators in the fields of nanobiomedicine and fundamental biomaterials. Theranostic magnetic nanoparticles that are encapsulated or coated with polymers not only exhibit imaging properties in response to stimuli, but also can efficiently deliver various drugs and therapeutic genes. Even though a large number of polymer-coated magnetic nanoparticles have been fabricated over the last decade, most of these have only been used for imaging purposes. The focus of this review is on polysaccharide-coated magnetic nanoparticles used for imaging and gene delivery. PMID:26078971

  7. The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia

    NASA Astrophysics Data System (ADS)

    Kappiyoor, Ravi; Liangruksa, Monrudee; Ganguly, Ranjan; Puri, Ishwar K.

    2010-11-01

    Magnetic fluid hyperthermia (MFH) is a noninvasive treatment that destroys cancer cells by heating a ferrofluid-impregnated malignant tissue with an ac magnetic field while causing minimal damage to the surrounding healthy tissue. The strength of the magnetic field must be sufficient to induce hyperthermia but it is also limited by the human ability to safely withstand it. The ferrofluid material used for hyperthermia should be one that is readily produced and is nontoxic while providing sufficient heating. We examine six materials that have been considered as candidates for MFH use. Examining the heating produced by nanoparticles of these materials, barium-ferrite and cobalt-ferrite are unable to produce sufficient MFH heating, that from iron-cobalt occurs at a far too rapid rate to be safe, while fcc iron-platinum, magnetite, and maghemite are all capable of producing stable controlled heating. We simulate the heating of ferrofluid-loaded tumors containing nanoparticles of the latter three materials to determine their effects on tumor tissue. These materials are viable MFH candidates since they can produce significant heating at the tumor center yet maintain the surrounding healthy tissue interface at a relatively safe temperature.

  8. Influence Of Nanoparticles Diameter On Structural Properties Of Magnetic Fluid In Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kúdelčík, Jozef; Bury, Peter; Hardoň, Štefan; Kopčanský, Peter; Timko, Milan

    2015-07-01

    The properties of magnetic fluids depend on the nanoparticle diameter, their concentration and the carrier liquid. The structural changes in magnetic fluids with different nanoparticle diameter based on transformer oils TECHNOL and MOGUL under the effect of a magnetic field and temperature were studied by acoustic spectroscopy. At a linear and jump changes of the magnetic field at various temperatures a continuous change was observed of acoustic attenuation caused by aggregation of the magnetic nanoparticles to structures. From the anisotropy of acoustic attenuation and using the Taketomi theory the basic parameters of the structures are calculated and the impact of nanoparticle diameters on the size of structures is confirmed.

  9. Monitoring colloidal stability of polymer-coated magnetic nanoparticles using AC susceptibility measurements.

    PubMed

    Herrera, Adriana P; Barrera, Carola; Zayas, Yashira; Rinaldi, Carlos

    2010-02-15

    The application of the response of magnetic nanoparticles to oscillating magnetic fields to probe transitions in colloidal state and structure of polymer-coated nanoparticles is demonstrated. Cobalt ferrite nanoparticles with narrow size distribution were prepared and shown to respond to oscillating magnetic fields through a Brownian relaxation mechanism, which is dependent on the mechanical coupling between the particle dipoles and the surrounding matrix. These nanoparticles were coated with covalently-attached poly(N-isopropylacrylamide) (pNIPAM) or poly(N-isopropylmethacrylamide) (pNIPMAM) through free radical polymerization. The temperature induced transitions of colloidal suspensions of these nanoparticles were studied through a combination of differential scanning calorimetry (DSC), dynamic light scattering (DLS), and AC susceptibility measurements. In the pNIPAM coated nanoparticles excellent agreement was found for a transition temperature of approximately 30 degrees C by all three methods, although the AC susceptibility measurements indicated aggregation which was not evident from the DLS results. Small-angle neutron scattering (SANS) results obtained for pNIPAM coated nanoparticles confirmed that aggregation indeed occurs above the lower critical transition temperature of pNIPAM. For the pNIPMAM coated nanoparticles DLS and AC susceptibility measurements indicated aggregation at a temperature of approximately 33-35 degrees C, much lower than the transition temperature peak at 40 degrees C observed by DSC. However, the transition observed by DSC is very broad, hence it is possible that aggregation begins to occur at temperatures lower than the peak, as indicated by the AC susceptibility and DLS results. These experiments and observations demonstrate the possibility of using AC susceptibility measurements to probe transitions in colloidal suspensions induced by external stimuli. Because magnetic measurements do not require optical transparency, these

  10. Nonlinear Susceptibility Magnitude Imaging of Magnetic Nanoparticles

    PubMed Central

    Ficko, Bradley W.; Giacometti, Paolo; Diamond, Solomon G.

    2014-01-01

    This study demonstrates a method for improving the resolution of susceptibility magnitude imaging (SMI) using spatial information that arises from the nonlinear magnetization characteristics of magnetic nanoparticles (mNPs). In this proof-of-concept study of nonlinear SMI, a pair of drive coils and several permanent magnets generate applied magnetic fields and a coil is used as a magnetic field sensor. Sinusoidal alternating current (AC) in the drive coils results in linear mNP magnetization responses at primary frequencies, and nonlinear responses at harmonic frequencies and intermodulation frequencies. The spatial information content of the nonlinear responses is evaluated by reconstructing tomographic images with sequentially increasing voxel counts using the combined linear and nonlinear data. Using the linear data alone it is not possible to accurately reconstruct more than 2 voxels with a pair of drive coils and a single sensor. However, nonlinear SMI is found to accurately reconstruct 12 voxels (R2 = 0.99, CNR = 84.9) using the same physical configuration. Several time-multiplexing methods are then explored to determine if additional spatial information can be obtained by varying the amplitude, phase and frequency of the applied magnetic fields from the two drive coils. Asynchronous phase modulation, amplitude modulation, intermodulation phase modulation, and frequency modulation all resulted in accurate reconstruction of 6 voxels (R2 > 0.9) indicating that time multiplexing is a valid approach to further increase the resolution of nonlinear SMI. The spatial information content of nonlinear mNP responses and the potential for resolution enhancement with time multiplexing demonstrate the concept and advantages of nonlinear SMI. PMID:25505816

  11. Local Control of Ultrafast Dynamics of Magnetic Nanoparticles

    SciTech Connect

    Sukhov, A.; Berakdar, J.

    2009-02-06

    Using the local control theory we derive analytical expressions for magnetic field pulses that steer the magnetization of a monodomain magnetic nanoparticle to a predefined state. Finite-temperature full numerical simulations confirm the analytical results and show that a magnetization switching or freezing is achievable within few precessional periods and that the scheme is exploitable for fast thermal switching.

  12. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2016-04-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications.

  13. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.

    PubMed

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W T

    2016-12-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications. PMID:27067737

  14. Surface controlled magnetic properties of Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohapatra, Jeotikanta; Mitra, Arijit; Bahadur, D.; Aslam, M.

    2013-02-01

    To understand the influence of surface organic-inorganic interactions on the magnetic properties of magnetic nanoparticles, magnetite (Fe3O4) of mean size 4-16 nm (standard deviation σ ≤ 15 %) are synthesized by three different thermolysis techniques. The surface functionality is controlled through either amine or amine-acid both taking as surfactant for Fe3O4 nanoparticles synthesis. Magnetic investigations revealed that samples prepared using amine as a multifunctional agent (only one surfactant) shows superior magnetic properties than the nanoparticles produced by the approach utilizing oleic acid and oleylamine.

  15. Structural and magnetic properties of polymer coated iron based nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Srinivasan

    Magnetic nanoparticles have recently attracted much attention for potential biomedical applications such as targeted drug delivery, magnetic resonance imaging contrast agents and hyperthermia treatment of cancerous cells. Future research on biomedical applications also includes use of magnetic nanoparticles for cell and DNA separation. By functionalizing magnetic nanoparticles with cells or DNA selective biomolecules, the particles attach to the target and are removed from the sample upon passing through magnetic field gradients. The field gradients apply a force that attracts the particles given by the equation F = ∇(m · B), where m is the magnetization of the MNP, and B is the applied magnetic field. This type of magnetic manipulation is potential for in vivo applications such as targeted drug delivery, magnetic resonance imaging contrast enhancement and hyperthermia treatment of cancer. The magnitude of the field gradients of magnetic nanoparticles are significantly reduced due to the inverse square law dependence of magnetic field strength and subsequently the forces set up are reduced. Although the research in this field has focused primarily on iron oxide nanoparticles, these oxide nanoparticles have a low magnetization that renders them ineffective, at the distances required for in vivo applications, due to the reduced forces felt by the nanoparticles. Successful implementation of such magnetic nanoparticles based system in vivo may require higher magnetization. The aim of this proposal is to synthesize high magnetization Fe-based MNPs functionalized with artificial proteins. The research described in this dissertation focuses on synthesis, size control, structural and magnetic characterization and associated experimental studies to characterize their properties for application in magnetic fluid hyperthermia and magnetic resonance imaging applications. The method used for the synthesis of the Fe-based nanoparticles is the conventional borohydride

  16. Biomedical and environmental applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tran, Dai Lam; Le, Van Hong; Linh Pham, Hoai; Nhung Hoang, Thi My; Quy Nguyen, Thi; Luong, Thien Tai; Thu Ha, Phuong; Phuc Nguyen, Xuan

    2010-12-01

    This paper presents an overview of syntheses and applications of magnetic nanoparticles (MNPs) at the Institute of Materials Science, Vietnam Academy of Science and Technology. Three families of oxide MNPs, magnetite, manganite and spinel ferrite materials, were prepared in various ways: coprecipitation, sol–gel and high energy mechanical milling. Basic properties of MNPs were characterized by Vibrating Sample Magnetometer (VSM) and Physical Properties Measurement Systems (PPMS). As for biomedical application, the aim was to design a novel multifunctional, nanosized magnetofluorescent water-dispersible Fe3O4-curcumin conjugate, and its ability to label, target and treat tumor cells was described. The conjugate possesses a magnetic nano Fe3O4 core, chitosan (CS) or Oleic acid (OL) as an outer shell and entrapped curcumin (Cur), serving the dual function of naturally autofluorescent dye as well as antitumor model drug. Fe3O4-Cur conjugate exhibited a high loading cellular uptake with the help of a macrophage, which was clearly visualized dually by Fluorescence Microscope and Laser Scanning Confocal Microscope (LSCM), as well as by magnetization measurement (PPMS). A preliminary magnetic resonance imaging (MRI) study also showed a clear contrast enhancement by using the conjugate. As for the environmental aspect, the use of magnetite MNPs for the removal of heavy toxic metals, such as Arsenic (As) and Lead (Pb), from contaminated water was studied.

  17. Direct measurement of electrostatic fields using single Teflon nanoparticle attached to AFM tip

    PubMed Central

    2013-01-01

    Abstract A single 210-nm Teflon nanoparticle (sTNP) was attached to the vertex of a silicon nitride (Si3N4) atomic force microscope tip and charged via contact electrification. The charged sTNP can then be considered a point charge and used to measure the electrostatic field adjacent to a parallel plate condenser using 30-nm gold/20-nm titanium as electrodes. This technique can provide a measurement resolution of 250/100 nm along the X- and Z-axes, and the minimum electrostatic force can be measured within 50 pN. PACS 07.79.Lh, 81.16.-c, 84.37. + q PMID:24314111

  18. Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance.

    PubMed

    Wang, Feng; Guo, Chen; Yang, Liang-rong; Liu, Chun-Zhao

    2010-12-01

    Newly large-pore magnetic mesoporous silica nanoparticles (MMSNPs) with wormhole framework structures were synthesized for the first time by using tetraethyl orthosilicate as the silica source and amine-terminated Jeffamine surfactants as template. Iminodiacerate was attached on these MMSNPs through a silane-coupling agent and chelated with Cu(2+). The Cu(2+)-chelated MMSNPs (MMSNPs-CPTS-IDA-Cu(2+)) showed higher adsorption capacity of 98.1 mg g(-1)-particles and activity recovery of 92.5% for laccase via metal affinity adsorption in comparison with MMSNPs via physical adsorption. The Michaelis constant (K(m)) and catalytic constant (k(cat)) of laccase immobilized on the MMSNPs-CPTS-IDA-Cu(2+) were 3.28 mM and 155.4 min(-1), respectively. Storage stability and temperature endurance of the immobilized laccase on MMSNPs-CPTS-IDA-Cu(2+) increased significantly, and the immobilized laccase retained 86.6% of its initial activity after 10 successive batch reactions operated with magnetic separation. PMID:20655206

  19. Advanced magnetic anisotropy determination through isothermal remanent magnetization of nanoparticles

    NASA Astrophysics Data System (ADS)

    Hillion, A.; Tamion, A.; Tournus, F.; Gaier, O.; Bonet, E.; Albin, C.; Dupuis, V.

    2013-09-01

    We propose a theoretical framework enabling the simulation of isothermal remanence magnetization (IRM) curves, based on the Stoner-Wohlfarth model combined with the Néel macrospin relaxation time description. We show how low temperature IRM curves, which have many advantages compared to hysteresis loops, can be efficiently computed for realistic assemblies of magnetic particles with both a size and anisotropy constant distribution, and a biaxial anisotropy. The IRM curves, which probe the irreversible switching provoked by an applied field, are shown to be complementary to other usual measurements (in particular low-field susceptibility curves where a thermal switching is involved). As an application, the experimental IRM curve of Co clusters embedded in a carbon matrix is analyzed. We demonstrate how powerful such an analysis can be, which in the present case allows us to put into evidence an anisotropy constant dispersion among the Co nanoparticles.

  20. Peptide-functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Hauser, Anastasia Kruse

    Lung cancer is one of the leading causes of cancer deaths in the United States. Radiation and chemotherapy are conventional treatments, but they result in serious side effects and the probability of tumor recurrence remains high. Therefore, there is an increasing need to enhance the efficacy of conventional treatments. Magnetic nanoparticles have been previously studied for a variety of applications such as magnetic resonance imaging contrast agents, anemia treatment, magnetic cell sorting and magnetically mediated hyperthermia (MMH). In this work, dextran coated iron oxide nanoparticles were developed and functionalized with peptides to target the nanoparticles to either the extracellular matrix (ECM) of tumor tissue or to localize the nanoparticles in subcellular regions after cell uptake. The magnetic nanoparticles were utilized for a variety of applications. First, heating properties of the nanoparticles were utilized to administer hyperthermia treatments combined with chemotherapy. The nanoparticles were functionalized with peptides to target fibrinogen in the ECM and extensively characterized for their physicochemical properties, and MMH combined with chemotherapy was able to enhance the toxicity of chemotherapy. The second application of the nanoparticles was magnetically mediated energy delivery. This treatment does not result in a bulk temperature rise upon actuation of the nanoparticles by an alternating magnetic field (AMF) but rather results in intracellular damage via friction from Brownian rotation or nanoscale heating effects from Neel relaxations. The nanoparticles were functionalized with a cell penetrating peptide to facilitate cell uptake and lysosomal escape. The intracellular effects of the internalized nanoparticles alone and with activation by an AMF were evaluated. Iron concentrations in vivo are highly regulated as excess iron can catalyze the formation of the hydroxyl radical through Fenton chemistry. Although often a concern of using iron

  1. Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia.

    PubMed

    Attaluri, Anilchandra; Ma, Ronghui; Qiu, Yun; Li, Wei; Zhu, Liang

    2011-01-01

    Among a variety of hyperthermia methods, magnetic nanoparticle hyperthermia is a highly promising approach for its confined heating within the tumour. In this study we perform in vivo animal experiments on implanted prostatic tumours in mice to measure temperature distribution in the tumour during magnetic nanoparticle hyperthermia. Temperature elevations are induced by a commercially available ferrofluid injected via a single injection to the centre of the tumour, when the tumour is subject to an alternating magnetic field. Temperature mapping in the tumours during magnetic nanoparticle hyperthermia has demonstrated the feasibility of elevating tumour temperatures higher than 50°C using only 0.1 cm(3) ferrofluid injected in the tumour under a relatively low magnetic field (3 kA/m). Detailed 3-D nanoparticle concentration distribution is quantified using a high-resolution microCT imaging system. The calculated nanoparticle distribution volume based on the microCT scans is useful to analyse nanoparticle deposition in the tumours. Slower ferrofluid infusion rates result in smaller nanoparticle distribution volumes in the tumours. Nanoparticles are more confined in the vicinity of the injection site with slower infusion rates, causing higher temperature elevations in the tumours. The increase in the nanoparticle distribution volume in the tumour group after the heating from that in the tumour group without heating suggests possible nanoparticle re-distribution in the tumours during the heating. PMID:21756046

  2. Navigation with magnetic nanoparticles: magnetotactic bacteria and magnetic micro-robots

    NASA Astrophysics Data System (ADS)

    Klumpp, Stefan; Kiani, Bahareh; Vach, Peter; Faivre, Damien

    2015-10-01

    Magnetotactic bacteria navigate in the magnetic field of the Earth by aligning and swimming along field lines with the help of special magnetic organelles called magnetosomes. These organelles contain magnetic nanoparticles and are organized into chain structures in cells. Here we review recent work on the formation of these chains and provide some estimates of the magnetic interaction energies and the corresponding forces involved in this process. In addition, we briefly discuss the propulsion of synthetic micro- or nanopropellers based on magnetic nanoparticles.

  3. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage

    PubMed Central

    Frey, Natalie A.; Peng, Sheng; Cheng, Kai; Sun, Shouheng

    2009-01-01

    This tutorial review summarizes the recent advances in the chemical synthesis and potential applications of monodisperse magnetic nanoparticles. After a brief introduction to nanomagnetism, the review focuses on recent developments in solution phase syntheses of monodisperse MFe2O4, Co, Fe, CoFe, FePt and SmCo5 nanoparticles. The review further outlines the surface, structural, and magnetic properties of these nanoparticles for biomedicine and magnetic energy storage applications. PMID:19690734

  4. Dual-responsive magnetic core-shell nanoparticles for nonviral gene delivery and cell separation.

    PubMed

    Majewski, Alexander P; Schallon, Anja; Jérôme, Valérie; Freitag, Ruth; Müller, Axel H E; Schmalz, Holger

    2012-03-12

    We present the synthesis of dual-responsive (pH and temperature) magnetic core-shell nanoparticles utilizing the grafting-from approach. First, oleic acid stabilized superparamagnetic maghemite (γ-Fe(2)O(3)) nanoparticles (NPs), prepared by thermal decomposition of iron pentacarbonyl, were surface-functionalized with ATRP initiating sites bearing a dopamine anchor group via ligand exchange. Subsequently, 2-(dimethylamino)ethyl methacrylate (DMAEMA) was polymerized from the surface by ATRP, yielding dual-responsive magnetic core-shell NPs (γ-Fe(2)O(3)@PDMAEMA). The attachment of the dopamine anchor group on the nanoparticle's surface is shown to be reversible to a certain extent, resulting in a grafting density of 0.15 chains per nm(2) after purification. Nevertheless, the grafted NPs show excellent long-term stability in water over a wide pH range and exhibit a pH- and temperature-dependent reversible agglomeration, as revealed by turbidimetry. The efficiency of γ-Fe(2)O(3)@PDMAEMA hybrid nanoparticles as a potential transfection agent was explored under standard conditions in CHO-K1 cells. Remarkably, γ-Fe(2)O(3)@PDMAEMA led to a 2-fold increase in the transfection efficiency without increasing the cytotoxicity, as compared to polyethyleneimine (PEI), and yielded on average more than 50% transfected cells. Moreover, after transfection with the hybrid nanoparticles, the cells acquired magnetic properties that could be used for selective isolation of transfected cells. PMID:22296556

  5. Hollow magnetic microspheres obtained by nanoparticle adsorption on surfactant stabilized microbubbles.

    PubMed

    Kovalenko, Artem; Jouhannaud, Julien; Polavarapu, Prasad; Krafft, Marie Pierre; Waton, Gilles; Pourroy, Geneviève

    2014-07-28

    We report on the stabilization of nanoparticle-decorated microbubbles for long periods of time using a synergism between a soluble surfactant and nanoparticles. The soluble surfactant is the perfluoroalkyl phosphate C8F17(CH2)2OP(O)(OH)2 (labeled F8H2Phos) and the nanoparticles (NPs) are 20-25 nm cobalt ferrite (CoFe2O4). The NP-F8H2Phos system has been studied by dynamic light scattering, dynamic magnetic susceptibility measurements and thermal gravimetric analysis. Microbubbles with diameters in the 1-20 μm range have been stabilized in 0.1 M NaCl brine. Its presence is crucial for the long-term stabilization. The surfactant adsorbs rapidly on bubbles and slows down the bubble shrinkage. Thus, the NPs can attach to the bubble and form a hollow sphere with a rigid shell. The charge screening by NaCl favors the attachment of NPs to the bubble surface. The coverage of the bubbles by the CoFe2O4 nanoparticle layer is confirmed by thermally induced inflation-deflation experiments and the control of bubbles with a magnetic field. PMID:24909785

  6. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  7. Size control of magnetic carbon nanoparticles for drug delivery.

    PubMed

    Oh, W-K; Yoon, H; Jang, J

    2010-02-01

    Carbonized polypyrrole nanoparticles with controlled diameters were readily fabricated by the pyrolysis of polypyrrole nanoparticles. The carbonized polypyrrole nanoparticles showed narrow size distribution, large micropore volume, and high surface area. Magnetic phases were introduced into the carbon nanoparticles during the pyrolysis without sophisticated process, which resulted in useful magnetic properties for selective nanoparticle separation. Field emission scanning electron microscopy, Raman spectrometer, N(2) adsorption/desorption, X-ray diffraction, and superconducting interference device were employed for characterizing the carbonized polypyrrole nanoparticles. Hydrophobic guest molecules were incorporated into the carbonized polypyrrole nanoparticles by surface adsorption, pore filling, and surface covalent coupling. The carbonized polypyrrole nanoparticles exhibited embedding capability using pyrene as a typical hydrophobic fluorescent molecule. In addition, ibuprofen was incorporated into the carbon nanoparticles, and drug-loaded carbon nanoparticles sustained release property. In addition, the carbonized polypyrrole nanoparticles revealed low toxicity at concentrations below 100 microg mL(-1) via cell viability test and were uptaken inside the cells. These results suggest a new platform for the drug delivery using carbonized polypyrrole nanoparticles. PMID:19878989

  8. Synthesis of reduced graphene oxide and enhancement of its electrical and optical properties by attaching Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Khan, Sunny; Ali, Javid; Harsh; Husain, M.; Zulfequar, M.

    2016-07-01

    Graphene has attracted the attention of the scientists and researchers because of its peculiar properties. Because of various unique properties, graphene can be used in sensing device applications, solar cells and liquid crystal display devices etc. In this research paper, we present a chemical route towards bulk production of r-GO (reduced graphene oxide). We have employed a modified method to achieve better results which is often termed as modified Hummer's and Offeman method. It is modified in terms of filtration technique. We have also attached silver nanoparticles (Ag-NP) to as synthesised r-GO. After successful growth, silver nanoparticles have been attached to r-GO by suitable treatment with AgNO3 (aq.) N/50 solution. The as grown samples were characterised by FESEM, Raman Spectroscopy and EDS to make sure that r-GO and r-GO-Ag-NP have been successfully synthesised. The electrical and optical studies of the as grown samples were performed by dc conductivity measurements and UV visible spectroscopy. The conductivity was found to have increased with attachment of Ag-NP. The optical transmittance also improved to 90% as against 70% before Ag-NP attachment. The reduced graphene oxide attached with silver nanoparticles could find promising applications in synthesis of transparent electrode materials and optoelectronic devices.

  9. Sequential repetitive chemical reduction technique to study size-property relationships of graphene attached Ag nanoparticle

    NASA Astrophysics Data System (ADS)

    Haider, M. Salman; Badejo, Abimbola Comfort; Shao, Godlisten N.; Imran, S. M.; Abbas, Nadir; Chai, Young Gyu; Hussain, Manwar; Kim, Hee Taik

    2015-06-01

    The present study demonstrates a novel, systematic and application route synthesis approach to develop size-property relationship and control the growth of silver nanoparticles (AgNPs) embedded on reduced graphene oxide (rGO). A sequential repetitive chemical reduction technique to observe the growth of silver nanoparticles (AgNPs) attached to rGO, was performed on a single solution of graphene oxide (GO) and silver nitrate solution (7 runs, R1-R7) in order to manipulate the growth and size of the AgNPs. The physical-chemical properties of the samples were examined by RAMAN, XPS, XRD, SEM-EDAX, and HRTEM analyses. It was confirmed that AgNPs with diameter varying from 4 nm in first run (R1) to 50 nm in seventh run (R7) can be obtained using this technique. A major correlation between particle size and activities was also observed. Antibacterial activities of the samples were carried out to investigate the disinfection performance of the samples on the Gram negative bacteria (Escherichia coli). It was suggested that the sample obtained in the third run (R3) exhibited the highest antibacterial activity as compared to other samples, toward disinfection of bacteria due to its superior properties. This study provides a unique and novel application route to synthesize and control size of AgNPs embedded on graphene for various applications.

  10. Magnetic nanoparticle assembly arrays prepared by hierarchical self-assembly on a patterned surface.

    PubMed

    Wen, Tianlong; Zhang, Dainan; Wen, Qiye; Zhang, Huaiwu; Liao, Yulong; Li, Qiang; Yang, Qinghui; Bai, Feiming; Zhong, Zhiyong

    2015-03-21

    Inverted pyramid hole arrays were fabricated by photolithography and used as templates to direct the growth of colloidal nanoparticle assemblies. Cobalt ferrite nanoparticles deposit in the holes to yield high quality pyramid magnetic nanoparticle assembly arrays by carefully controlling the evaporation of the carrier fluid. Magnetic measurements indicate that the pyramid magnetic nanoparticle assembly arrays preferentially magnetize perpendicular to the substrate. PMID:25712606

  11. Attempt to remove peanut allergens from peanut extracts, using IgE-attached magnetic beads.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunoglobulin E (IgE) antibodies from sera of peanut-allergic individuals are known to bind specifically to major peanut allergens, Ara h 1 and Ara h 2. The objective of this study was to determine the efficiency of magnetic beads (Dynabeads) attached with IgE antibodies in the removal of major pea...

  12. Magnetic nanoparticle-based drug delivery for cancer therapy.

    PubMed

    Tietze, Rainer; Zaloga, Jan; Unterweger, Harald; Lyer, Stefan; Friedrich, Ralf P; Janko, Christina; Pöttler, Marina; Dürr, Stephan; Alexiou, Christoph

    2015-12-18

    Nanoparticles have belonged to various fields of biomedical research for quite some time. A promising site-directed application in the field of nanomedicine is drug targeting using magnetic nanoparticles which are directed at the target tissue by means of an external magnetic field. Materials most commonly used for magnetic drug delivery contain metal or metal oxide nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs consist of an iron oxide core, often coated with organic materials such as fatty acids, polysaccharides or polymers to improve colloidal stability and to prevent separation into particles and carrier medium [1]. In general, magnetite and maghemite particles are those most commonly used in medicine and are, as a rule, well-tolerated. The magnetic properties of SPIONs allow the remote control of their accumulation by means of an external magnetic field. Conjugation of SPIONs with drugs, in combination with an external magnetic field to target the nanoparticles (so-called "magnetic drug targeting", MDT), has additionally emerged as a promising strategy of drug delivery. Magnetic nanoparticle-based drug delivery is a sophisticated overall concept and a multitude of magnetic delivery vehicles have been developed. Targeting mechanism-exploiting, tumor-specific attributes are becoming more and more sophisticated. The same is true for controlled-release strategies for the diseased site. As it is nearly impossible to record every magnetic nanoparticle system developed so far, this review summarizes interesting approaches which have recently emerged in the field of targeted drug delivery for cancer therapy based on magnetic nanoparticles. PMID:26271592

  13. Gold-coated iron oxide nanoparticles as a T2 contrast agent in magnetic resonance imaging.

    PubMed

    Ahmad, Tanveer; Bae, Hongsub; Rhee, Ilsu; Chang, Yongmin; Jin, Seong-Uk; Hong, Sungwook

    2012-07-01

    Gold-coated iron oxide (Fe3O4) nanoparticles were synthesized for use as a T2 contrast agent in magnetic resonance imaging (MRI). The coated nanoparticles were spherical in shape with an average diameter of 20 nm. The gold shell was about 2 nm thick. The bonding status of the gold on the nanoparticle surfaces was checked using a Fourier transform infrared spectrometer (FTIR). The FTIR spectra confirmed the attachment of homocysteine, in the form of thiolates, to the Au shell of the Au-Fe3O4 nanoparticles. The relaxivity ratio, R2/R1, for the coated nanoparticles was 3-fold higher than that of a commercial contrast agent, Resovist, which showed the potential for their use as a T2 contrast agent with high efficacy. In animal experiments, the presence of the nanoparticles in rat liver resulted in a 71% decrease in signal intensity in T2-weighted MR images, indicating that our gold-coated iron oxide nanoparticles are suitable for use as a T2 contrast agent in MRI. PMID:22966533

  14. Switching the Magnetic Vortex Core in a Single Nanoparticle.

    PubMed

    Pinilla-Cienfuegos, Elena; Mañas-Valero, Samuel; Forment-Aliaga, Alicia; Coronado, Eugenio

    2016-02-23

    Imaging and manipulating the spin structure of nano- and mesoscale magnetic systems is a challenging topic in magnetism, yielding a wide range of spin phenomena such as skyrmions, hedgehog-like spin structures, or vortices. A key example has been provided by the vortex spin texture, which can be addressed in four independent states of magnetization, enabling the development of multibit magnetic storage media. Most of the works devoted to the study of the magnetization reversal mechanisms of the magnetic vortices have been focused on micrometer-size magnetic platelets. Here we report the experimental observation of the vortex state formation and annihilation in individual 25 nm molecular-based magnetic nanoparticles measured by low-temperature variable-field magnetic force microscopy. Interestingly, in these nanoparticles the switching of the vortex core can be induced with very small values of the applied static magnetic field. PMID:26745548

  15. Measurement of Nanoparticle Magnetic Hyperthermia Using Fluorescent Microthermal Imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaowan; van Keuren, Edward

    Nanoparticle magnetic hyperthermia uses the application of an AC magnetic field to ferromagnetic nanoparticles to elevate the temperature of cancer cells. The principle of hyperthermia as a true cell-specific therapy is that tumor cells are more sensitive to high temperature, so it is of great importance to control the locality and magnitude of the temperature differences. One technique to measure temperature variations on microscopic length scales is fluorescent microthermal imaging (FMI). Since it is the local temperature that is measured in FMI, effects such as heating due to nearby field coils can be accounted for. A dye, the rare earth chelate europium thenoyltrifluoroacetonate (Eu:TTA), with a strong temperature-dependent fluorescence emission has been incorporated into magnetic nanoparticles dispersed in a polymer films. FMI experiments were carried out on these samples under an applied high frequency magnetic field. Preliminary results show that FMI is a promising technique for characterizing the local generation of heat in nanoparticle magnetic hyperthermia.

  16. Proteins and Patients — Magnetic Nanoparticles as Analytic Markers

    NASA Astrophysics Data System (ADS)

    Schilling, Meinhard; Ludwig, Frank

    Exciting new applications of low noise magnetic sensors in biotechnology, medical diagnosis and therapy are at hand for magnetic nanoparticles (MNP), which are already used in the clinical routine. The relaxation of magnetic nanoparticles is a fascinating method which can be employed for the characterization of ferrofluids and is further developed as analytical tool for biochemistry. In this article the basics and methods of the characterization of diluted ferrofluids by magnetore-laxometry (MRX) are described. We start with the properties of the ferrofluid which consists of magnetic nanoparticles. The time schedule for relaxation measurements is discussed. The details of our fluxgate based experimental set-up are presented. To achieve high sensitivity even at low concentrations of magnetic nanoparticles we optimize fluxgate sensors for low intrinsic noise, high sensitivity and large bandwidth.

  17. Pulsed Laser Synthesized Magnetic Cobalt Oxide Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Bhatta, Hari; Gupta, Ram; Ghosh, Kartik; Kahol, Pawan; Delong, Robert; Wanekawa, Adam

    2011-03-01

    Nanomaterials research has become a major attraction in the field of advanced materials research in the area of Physics, Chemistry, and Materials Science. Biocompatible and chemically stable magnetic metal oxide nanoparticles have biomedical applications that includes drug delivery, cell and DNA separation, gene cloning, magnetic resonance imaging (MRI). This research is aimed at the fabrication of magnetic cobalt oxide nanoparticles using a safe, cost effective, and easy to handle technique that is capable of producing nanoparticles free of any contamination. Cobalt oxide nanoparticles have been synthesized at room temperature using cobalt foil by pulsed laser ablation technique. These cobalt oxide nanoparticles were characterized using UV-Visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and dynamic laser light scattering (DLLS). The magnetic cobalt oxides nanoparticles were stabilized in glucose solutions of various concentrations in deionized water. The presence of UV-Vis absorption peak at 270 nm validates the nature of cobalt oxide nanoparticles. The DLLS size distributions of nanoparticles are in the range of 110 to 300 nm, which further confirms the presence nanoparticles. This work is partially supported by National Science Foundation (DMR- 0907037).

  18. Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity

    PubMed Central

    Giustini, Andrew. J.; Gottesman, Rachel E.; Petryk, A.A.; Rauwerdink, A.M.; Hoopes, P. Jack.

    2013-01-01

    Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro. PMID:24382988

  19. Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Gottesman, Rachel E.; Petryk, A. A.; Rauwerdink, A. M.; Hoopes, P. Jack

    2011-03-01

    Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro.

  20. The role of cobalt ferrite magnetic nanoparticles in medical science.

    PubMed

    Amiri, S; Shokrollahi, H

    2013-01-01

    The nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nano-electronics, environmental remediation and medical healthcare. In this area, cobalt ferrite nanoparticles have been regarded as one of the competitive candidates because of their suitable physical, chemical and magnetic properties like the high anisotropy constant, high coercivity and high Curie temperature, moderate saturation magnetization and ease of synthesis. This paper introduces the magnetic properties, synthesis methods and some medical applications, including the hyperthermia, magnetic resonance imaging (MRI), magnetic separation and drug delivery of cobalt ferrite nanoparticles. PMID:25428034

  1. Functionalization of polydopamine coated magnetic nanoparticles with biological entities

    NASA Astrophysics Data System (ADS)

    Mǎgeruşan, Lidia; Mrówczyński, Radosław; Turcu, Rodica

    2015-12-01

    New hybrid materials, obtained through introduction of cysteine, lysine and folic acid as biological entities into polydopamine-coated magnetite nanoparticles, are reported. The syntheses are straight forward and various methods were applied for structural and morphological characterization of the resulting nanoparticles. XPS proved a very powerful tool for surface chemical analysis and it evidences the functionalization of polydopamine coated magnetite nanoparticles. The superparamagnetic behavior and the high values of saturation magnetization recommend all products for further application where magnetism is important for targeting, separation, or heating by alternative magnetic fields.

  2. Dynamic magnetic hysteresis and nonlinear susceptibility of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Ouari, Bachir; Titov, Serguey V.

    2016-08-01

    The nonlinear ac stationary response of antiferromagnetic nanoparticles subjected to both external ac and dc fields of arbitrary strength and orientation is investigated using Brown's continuous diffusion model. The nonlinear complex susceptibility and dynamic magnetic hysteresis (DMH) loops of an individual antiferromagnetic nanoparticle are evaluated and compared with the linear regime for extensive ranges of the anisotropy, the ac and dc magnetic fields, damping, and the specific antiferromagnetic parameter. It is shown that the shape and area of the DMH loops of antiferromagnetic particles are substantially altered by applying a dc field that permits tuning of the specific magnetic power loss in the nanoparticles.

  3. Inhalable Magnetic Nanoparticles for Targeted Hyperthermia in Lung Cancer Therapy

    PubMed Central

    Sadhukha, Tanmoy; Wiedmann, Timothy Scott; Panyam, Jayanth

    2015-01-01

    Lung cancer (specifically, non-small cell lung cancer; NSCLC) is the leading cause of cancer-related deaths in the United States. Poor response rates and survival with current treatments clearly indicate the urgent need for developing an effective means to treat NSCLC. Magnetic hyperthermia is a non-invasive approach for tumor ablation, and is based on heat generation by magnetic materials, such as superparamagnetic iron oxide (SPIO) nanoparticles, when subjected to an alternating magnetic field. However, inadequate delivery of magnetic nanoparticles to tumor cells can result in sub-lethal temperature change and induce resistance while non-targeted delivery of these particles to the healthy tissues can result in toxicity. In our studies, we evaluated the effectiveness of tumor-targeted SPIO nanoparticles for magnetic hyperthermia of lung cancer. EGFR-targeted, inhalable SPIO nanoparticles were synthesized and characterized for targeting lung tumor cells as well as for magnetic hyperthermia-mediated antitumor efficacy in a mouse orthotopic model of NSCLC. Our results show that EGFR targeting enhances tumor retention of SPIO nanoparticles. Further, magnetic hyperthermia treatment using targeted SPIO nanoparticles resulted in significant inhibition of in vivo lung tumor growth. Overall, this work demonstrates the potential for developing an effective anticancer treatment modality for the treatment of NSCLC based on targeted magnetic hyperthermia. PMID:23591395

  4. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

    PubMed

    Céspedes, Eva; Byrne, James M; Farrow, Neil; Moise, Sandhya; Coker, Victoria S; Bencsik, Martin; Lloyd, Jonathan R; Telling, Neil D

    2014-11-01

    Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy. PMID:25232657

  5. Immobilization of bovine catalase onto magnetic nanoparticles.

    PubMed

    Doğaç, Yasemin İspirli; Teke, Mustafa

    2013-01-01

    The scope of this study is to achieve carrier-bound immobilization of catalase onto magnetic particles (Fe₃O₄ and Fe₂O₃NiO₂ · H₂O) to specify the optimum conditions of immobilization. Removal of H2O2 and the properties of immobilized sets were also investigated. To that end, adsorption and then cross-linking methods onto magnetic particles were performed. The optimum immobilization conditions were found for catalase: immobilization time (15 min for Fe₃O₄; 10 min for Fe2O₃NiO₂ · H₂O), the initial enzyme concentration (1 mg/mL), amount of magnetic particles (25 mg), and glutaraldehyde concentration (3%). The activity reaction conditions (optimum temperature, optimum pH, pH stability, thermal stability, operational stability, and reusability) were characterized. Also kinetic parameters were calculated by Lineweaver-Burk plots. The optimum pH values were found to be 7.0, 7.0, and 8.0 for free enzyme, Fe₃O₄-immobilized catalases, and Fe₂O₃NiO₂ · H₂O-immobilized catalases, respectively. All immobilized catalase systems displayed the optimum temperature between 25 and 35°C. Reusability studies showed that Fe₃O₄-immobilized catalase can be used 11 times with 50% loss in original activity, while Fe2O₃NiO₂ · H₂O-immobilized catalase lost 67% of activity after the same number of uses. Furthermore, immobilized catalase systems exhibited improved thermal and pH stability. The results transparently indicate that it is possible to have binding between enzyme and magnetic nanoparticles. PMID:23876136

  6. Magnetic nanoparticles for bio-analytical applications

    NASA Astrophysics Data System (ADS)

    Yedlapalli, Sri Lakshmi

    Magnetic nanoparticles are widely being used in various fields of medicine, biology and separations. This dissertation focuses on the synthesis and use of magnetic nanoparticles for targeted drug delivery and analytical separations. The goals of this research include synthesis of biocompatible surface modified monodisperse superparamagnetic iron oxide nanoparticles (SPIONs) by novel techniques for targeted drug delivery and use of SPIONs as analytical sensing tools. Surface modification of SPIONs was performed with two different co-polymers: tri block co-polymer Pluronics and octylamine modified polyacrylic acid. Samples of SPIONs were subsequently modified with 4 different commercially available, FDA approved tri-block copolymers (Pluronics), covering a wide range of molecular weights (5.75-14.6 kDa). A novel, technically simpler and faster phase transfer approach was developed to surface modify the SPIONs with Pluronics for drug delivery and other biomedical applications. The hydrodynamic diameter and aggregation properties of the Pluronic modified SPIONs were studied by dynamic light scattering (DLS). The coverage of SPIONs with Pluronics was supported with IR Spectroscopy and characterized by Thermo gravimetric Analysis (TGA). The drug entrapment capacity of SPIONs was studied by UV-VIS spectroscopy using a hydrophobic carbocyanine dye, which serves as a model for hydrophobic drugs. These studies resulted in a comparison of physical properties and their implications for drug loading capacities of the four types of Pluronic coated SPIONs for drug delivery assessment. These drug delivery systems could be used for passive drug targeting. However, Pluronics lack the functional group necessary for bioconjugation and hence cannot achieve active targeting. SPIONs were functionalized with octylamine modified polyacrylic acid-based copolymer, providing water solubility and facile biomolecular conjugation. Epirubicin was loaded onto SPIONs and the drug entrapment was

  7. Mass production of magnetic nickel nanoparticle in thermal plasma reactor

    NASA Astrophysics Data System (ADS)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Bhoraskar, S. V.; Das, A. K.; Mathe, V. L.

    2014-04-01

    We report the mass production of Ni metal nanoparticles using dc transferred arc thermal plasma reactor by homogeneous gas phase condensation process. To increase the evaporation rate and purity of Ni nanoparticles small amount of hydrogen added along with argon in the plasma. Crystal structure analysis was done by using X-ray diffraction technique. The morphology of as synthesized nanoparticles was carried out using FESEM images. The magnetic properties were measured by using vibrating sample magnetometer at room temperature.

  8. Magnetic Properties of FePd Nanoparticles Prepared by Sonoelectrodeposition

    NASA Astrophysics Data System (ADS)

    Luong, Nguyen Hoang; Trung, Truong Thanh; Loan, Tran Phuong; Kien, Luu Manh; Hong, Tran Thi; Nam, Nguyen Hoang

    2016-05-01

    Fe60Pd40 nanoparticles were prepared by sonoelectrodeposition. After annealing at various temperatures from 450°C to 700°C, the nanoparticles were found to have an ordered L10 structure and to show hard magnetic properties. Among the samples investigated, the nanoparticles annealed at 600°C exhibited the highest coercivity which amounts to 2.31 kOe at 2 K and 1.83 kOe at 300 K.

  9. Mass production of magnetic nickel nanoparticle in thermal plasma reactor

    SciTech Connect

    Kanhe, Nilesh S.; Nawale, Ashok B.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-04-24

    We report the mass production of Ni metal nanoparticles using dc transferred arc thermal plasma reactor by homogeneous gas phase condensation process. To increase the evaporation rate and purity of Ni nanoparticles small amount of hydrogen added along with argon in the plasma. Crystal structure analysis was done by using X-ray diffraction technique. The morphology of as synthesized nanoparticles was carried out using FESEM images. The magnetic properties were measured by using vibrating sample magnetometer at room temperature.

  10. Magnetic Properties of FePd Nanoparticles Prepared by Sonoelectrodeposition

    NASA Astrophysics Data System (ADS)

    Luong, Nguyen Hoang; Trung, Truong Thanh; Loan, Tran Phuong; Kien, Luu Manh; Hong, Tran Thi; Nam, Nguyen Hoang

    2016-08-01

    Fe60Pd40 nanoparticles were prepared by sonoelectrodeposition. After annealing at various temperatures from 450°C to 700°C, the nanoparticles were found to have an ordered L10 structure and to show hard magnetic properties. Among the samples investigated, the nanoparticles annealed at 600°C exhibited the highest coercivity which amounts to 2.31 kOe at 2 K and 1.83 kOe at 300 K.

  11. Magnetic order of Au nanoparticle with clean surface

    NASA Astrophysics Data System (ADS)

    Sato, Ryuju; Ishikawa, Soichiro; Sato, Hiroyuki; Sato, Tetsuya

    2015-11-01

    Au nanoparticles, which are kept in vacuum after the preparation by gas evaporation method, show ferromagnetism even in 1.7 nm in diameter. The intrinsic magnetism is examined by detecting the disappearance of spontaneous magnetization in Au bulk prepared by heating the nanoparticles without exposure to the air. The temperature dependence of spontaneous magnetization is not monotonic and the increase in magnetization is observed after Au nanoparticles are exposed to the air. The magnetic behavior can be interpreted by the ferrimagnetic-like core-shell structure with shell thickness of 0.16±0.01 nm and magnetic moment of (1.5±0.1)×10-2 μB/Au atom, respectively.

  12. Magnetic Nanoparticles for Multi-Imaging and Drug Delivery

    PubMed Central

    Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo

    2013-01-01

    Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed. PMID:23579479

  13. Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Semen ejaculates contain heterogeneous sperm populations that can jeopardize male fertility. Recent development of nanotechnology in physiological systems may have applications in reproductive biology. Here, we used magnetic nanoparticles as a novel strategy for sperm purification to imp...

  14. Magnetic nanoparticle-supported glutathione: a conceptually sustainable organocatalyst

    EPA Science Inventory

    A conceptually novel nanoparticle-supported and magnetically recoverable organocatalyst has been developed, which is readily prepared from inexpensive starting materials in a truly sustainable manner; which catalyzes Paal-Knorr reaction with high yield in pure aqueous medium that...

  15. Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times

    NASA Astrophysics Data System (ADS)

    Perreard, I. M.; Reeves, D. B.; Zhang, X.; Kuehlert, E.; Forauer, E. R.; Weaver, J. B.

    2014-03-01

    Accurate temperature measurements are essential to safe and effective thermal therapies for cancer and other diseases. However, conventional thermometry is challenging so using the heating agents themselves as probes allows for ideal local measurements. Here, we present a new noninvasive method for measuring the temperature of the microenvironment surrounding magnetic nanoparticles from the Brownian relaxation time of nanoparticles. Experimentally, the relaxation time can be determined from the nanoparticle magnetization induced by an alternating magnetic field at various applied frequencies. A previously described method for nanoparticle temperature estimation used a low frequency Langevin function description of magnetic dipoles and varied the excitation field amplitude to estimate the energy state distribution and the corresponding temperature. We show that the new method is more accurate than the previous method at higher applied field frequencies that push the system farther from equilibrium.

  16. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    NASA Astrophysics Data System (ADS)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  17. Synthesis and application of magnetic chitosan nanoparticles in oilfield

    NASA Astrophysics Data System (ADS)

    Lian, Qi; Zheng, Xuefang

    2016-01-01

    The novel magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticles has the advantage of excellent biodegradation and a high level of controllability. The Co0.5Mn0.5Fe2O4-chitosan nanoparticles was prepared successfully. The size of the Co0.5Mn0.5Fe2O4-chitosan nanoparticles were all below 100 nm. The saturated magnetization of the Co0.5Mn0.5Fe2O4-chitosan nanoparticles could reach 80 emu/g and showed the characteristics of superparamagnetism at the same time. The image of TEM and SEM electron microscopy showed that the cubic-shape magnetic Co0.5Mn0.5Fe2O4 particles were encapsulated by the spherical chitosan nanoparticles. The evaluation on the interfacial properties of the product showed that the interfacial tension between crude oil and water could be reduce to ultra-low values as low as 10-3 mN/m when the magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticle was used in several blocks in Shengli Oilfield without other additives. Meanwhile, the magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticles possessed good salt-resisting capacity.

  18. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Céspedes, Eva; Byrne, James M.; Farrow, Neil; Moise, Sandhya; Coker, Victoria S.; Bencsik, Martin; Lloyd, Jonathan R.; Telling, Neil D.

    2014-10-01

    Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are

  19. Tailored Magnetic Nanoparticles for Optimizing Magnetic Fluid Hyperthermia

    PubMed Central

    Khandhar, Amit; Ferguson, R. Matthew; Simon, Julian A.; Krishnan, Kannan M.

    2011-01-01

    Magnetic Fluid Hyperthermia (MFH) is a promising approach towards adjuvant cancer therapy that is based on the localized heating of tumors using the relaxation losses of iron oxide magnetic nanoparticles (MNPs) in alternating magnetic fields (AMF). In this study, we demonstrate optimization of MFH by tailoring MNP size to an applied AMF frequency. Unlike conventional aqueous synthesis routes, we use organic synthesis routes that offer precise control over MNP size (diameter ~ 10–25 nm), size distribution and phase purity. Furthermore, the particles are successfully transferred to the aqueous phase using a biocompatible amphiphilic polymer, and demonstrate long-term shelf life. A rigorous characterization protocol ensures that the water-stable MNPs meet all the critical requirements: (1) uniform shape and monodispersity, (2) phase purity, (3) stable magnetic properties approaching that of the bulk, (4) colloidal stability, (5) substantial shelf life and (6) pose no significant in vitro toxicity. Using a dedicated hyperthermia system, we then identified that 16 nm monodisperse MNPs (σ ~ 0.175) respond optimally to our chosen AMF conditions (f = 373 kHz, Ho = 14 kA/m); however, with a broader size distribution (σ ~ 0.284) the Specific Loss Power (SLP) decreases by 30%. Finally, we show that these tailored MNPs demonstrate maximum hyperthermia efficiency by reducing viability of Jurkat cells in vitro, suggesting our optimization translates truthfully to cell populations. In summary, we present a way to intrinsically optimize MFH by tailoring the MNPs to any applied AMF, a required precursor to optimize dose and time of treatment. PMID:22213652

  20. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia.

    PubMed

    Khandhar, Amit P; Ferguson, R Matthew; Simon, Julian A; Krishnan, Kannan M

    2012-03-01

    Magnetic Fluid Hyperthermia (MFH) is a promising approach towards adjuvant cancer therapy that is based on the localized heating of tumors using the relaxation losses of iron oxide magnetic nanoparticles (MNPs) in alternating magnetic fields (AMF). In this study, we demonstrate optimization of MFH by tailoring MNP size to an applied AMF frequency. Unlike conventional aqueous synthesis routes, we use organic synthesis routes that offer precise control over MNP size (diameter ∼10 to 25 nm), size distribution, and phase purity. Furthermore, the particles are successfully transferred to the aqueous phase using a biocompatible amphiphilic polymer, and demonstrate long-term shelf life. A rigorous characterization protocol ensures that the water-stable MNPs meet all the critical requirements: (1) uniform shape and monodispersity, (2) phase purity, (3) stable magnetic properties approaching that of the bulk, (4) colloidal stability, (5) substantial shelf life, and (6) pose no significant in vitro toxicity. Using a dedicated hyperthermia system, we then identified that 16 nm monodisperse MNPs (σ-0.175) respond optimally to our chosen AMF conditions (f = 373 kHz, H₀ = 14 kA/m); however, with a broader size distribution (σ-0.284) the Specific Loss Power (SLP) decreases by 30%. Finally, we show that these tailored MNPs demonstrate maximum hyperthermia efficiency by reducing viability of Jurkat cells in vitro, suggesting our optimization translates truthfully to cell populations. In summary, we present a way to intrinsically optimize MFH by tailoring the MNPs to any applied AMF, a required precursor to optimize dose and time of treatment. PMID:22213652

  1. Magnetic Iron Oxide Nanoparticle Seeded Growth of Nucleotide Coordinated Polymers.

    PubMed

    Liang, Hao; Liu, Biwu; Yuan, Qipeng; Liu, Juewen

    2016-06-22

    The introduction of functional molecules to the surface of magnetic iron oxide nanoparticles (NPs) is of critical importance. Most previously reported methods were focused on surface ligand attachment either by physisorption or covalent conjugation, resulting in limited ligand loading capacity. In this work, we report the seeded growth of a nucleotide coordinated polymer shell, which can be considered as a special form of adsorption by forming a complete shell. Among all of the tested metal ions, Fe(3+) is the most efficient for this seeded growth. A diverse range of guest molecules, including small organic dyes, proteins, DNA, and gold NPs, can be encapsulated in the shell. All of these molecules were loaded at a much higher capacity compared to that on the naked iron oxide NP core, confirming the advantage of the coordination polymer (CP) shell. In addition, the CP shell provides better guest protein stability compared to that of simple physisorption while retaining guest activity as confirmed by the entrapped glucose oxidase assay. Use of this system as a peroxidase nanozyme and glucose biosensor was demonstrated, detecting glucose as low as 1.4 μM with excellent stability. This work describes a new way to functionalize inorganic materials with a biocompatible shell. PMID:27248668

  2. Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules

    NASA Astrophysics Data System (ADS)

    Golovin, Yu. I.; Gribanovskii, S. L.; Golovin, D. Yu.; Klyachko, N. L.; Kabanov, A. V.

    2014-07-01

    The forces, deformations, and stresses generated in macromolecules attached to single-domain magnetic nanoparticles under the influence of a low-frequency (nonheating) magnetic field have been analyzed analytically and numerically. It has been shown that, in bioactive macromolecules, an alternating magnetic field with an induction of 0.1-1.0 T and a circular frequency of ≲104 s-1 can induce forces up to several hundred piconewtons, absolute deformations up to a few tens of nanometers, as well as compressive and shear stresses exceeding 107 Pa. These mechanical stimuli are sufficient for a significant change of interatomic distances in active centers, conformation of macromolecules, and even a breaking of some bonds, which makes it possible to develop a new technological platform for targeted delivery of drugs, remote control of their activity, and cancer-cell destruction.

  3. Application of magnetic nanoparticles in smart enzyme immobilization.

    PubMed

    Vaghari, Hamideh; Jafarizadeh-Malmiri, Hoda; Mohammadlou, Mojgan; Berenjian, Aydin; Anarjan, Navideh; Jafari, Nahideh; Nasiri, Shahin

    2016-02-01

    Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research. PMID:26472272

  4. A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Wingo, J.; Devkota, J.; Mai, T. T. T.; Nguyen, X. P.; Mukherjee, P.; Srikanth, H.; Phan, M. H.; Vietnam Academy of Science and Technology Collaboration; University of South Florida Team

    2014-03-01

    A precise detection of low concentrations of biomolecules attached to magnetic nanoparticles in complex biological systems is a challenging task and requires biosensors with improved sensitivity. Here, we present a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to Fe3O4 nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the functionalized Fe3O4 nanoparticles. A high capacity of the MX-based biosensor in quantitative analysis of the nanoparticles was achieved in the range of 0 - 50 ng/ml, beyond which the detection sensitivity (η) remained unchanged. The η of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems. This work was supported by was supported by the Florida Cluster for Advanced Smart Sensor Technologies, USAMRMC (Grant # W81XWH-07-1-0708), and the NSF-funded REU program at the USF.

  5. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  6. Bare magnetic nanoparticles as fluorescence quenchers for detection of thrombin.

    PubMed

    Yu, Jiemiao; Yang, Liangrong; Liang, Xiangfeng; Dong, Tingting; Liu, Huizhou

    2015-06-21

    Rapid and sensitive detection of thrombin has very important significance in clinical diagnosis. In this work, bare magnetic iron oxide nanoparticles (magnetic nanoparticles) without any modification were used as fluorescence quenchers. In the absence of thrombin, a fluorescent dye (CY3) labeled thrombin aptamer (named CY3-aptamer) was adsorbed on the surface of magnetic nanoparticles through interaction between a phosphate backbone of the CY3-aptamer and hydroxyl groups on the bare magnetic nanoparticles in binding solution, leading to fluorescence quenching. Once thrombin was introduced, the CY3-aptamer formed a G-quartet structure and combined with thrombin, which resulted in the CY3-aptamer being separated from the magnetic nanoparticles and restoration of fluorescence. This proposed assay took advantage of binding affinity between the CY3-aptamer and thrombin for specificity, and bare magnetic nanoparticles for fluorescence quenching. The fluorescence signal had a good linear relationship with thrombin concentration in the range of 1-60 nM, and the limit of detection for thrombin was estimated as low as 0.5 nM. Furthermore, this method could be applied for other target detection using the corresponding fluorescence labeled aptamer. PMID:25894923

  7. Gold coated ferric oxide nanoparticles based disposable magnetic genosensors for the detection of DNA hybridization processes.

    PubMed

    Loaiza, Óscar A; Jubete, Elena; Ochoteco, Estibalitz; Cabañero, German; Grande, Hans; Rodríguez, Javier

    2011-01-15

    In this article, a disposable magnetic DNA sensor using an enzymatic amplification strategy for the detection of specific hybridization processes, based on the coupling of streptavidin-peroxidase to biotinylated target sequences, has been developed. A thiolated 19-mer capture probe was attached to gold coated ferric oxide nanoparticles and hybridization with the biotinylated target was allowed to proceed. Then, a streptavidin-peroxide was attached to the biotinylated target and the resulting modified gold coated ferric oxide nanoparticles were captured by a magnetic field on the surface of a home-made carbon screen printed electrode (SPE). Using hydroquinone as a mediator, a square wave voltammetric procedure was chosen to detect the hybridization process after the addition of hydrogen peroxide. Different aspects concerning the assay protocol and nanoparticles fabrication were optimized in order to improve the sensitivity of the developed methodology. A low detection limit (31 pM) with good stability (RSD=7.04%, n=10) was obtained without the need of polymerase chain reaction (PCR) amplification. PMID:20951565

  8. Neural correlates of attachment trauma in borderline personality disorder: a functional magnetic resonance imaging study.

    PubMed

    Buchheim, Anna; Erk, Susanne; George, Carol; Kächele, Horst; Kircher, Tilo; Martius, Philipp; Pokorny, Dan; Ruchsow, Martin; Spitzer, Manfred; Walter, Henrik

    2008-08-30

    Functional imaging studies have shown that individuals with borderline personality disorder (BPD) display prefrontal and amygdala dysfunction while viewing or listening to emotional or traumatic stimuli. The study examined for the first time the functional neuroanatomy of attachment trauma in BPD patients using functional magnetic resonance imaging (fMRI) during the telling of individual stories. A group of 11 female BPD patients and 17 healthy female controls, matched for age and education, told stories in response to a validated set of seven attachment pictures while being scanned. Group differences in narrative and neural responses to "monadic" pictures (characters facing attachment threats alone) and "dyadic" pictures (interaction between characters in an attachment context) were analyzed. Behavioral narrative data showed that monadic pictures were significantly more traumatic for BPD patients than for controls. As hypothesized BPD patients showed significantly more anterior midcingulate cortex activation in response to monadic pictures than controls. In response to dyadic pictures patients showed more activation of the right superior temporal sulcus and less activation of the right parahippocampal gyrus compared to controls. Our results suggest evidence for potential neural mechanisms of attachment trauma underlying interpersonal symptoms of BPD, i.e. fearful and painful intolerance of aloneness, hypersensitivity to social environment, and reduced positive memories of dyadic interactions. PMID:18635342

  9. Design and Application of Magnetic-based Theranostic Nanoparticle Systems

    PubMed Central

    Wadajkar, Aniket S.; Menon, Jyothi U.; Kadapure, Tejaswi; Tran, Richard T.; Yang, Jian; Nguyen, Kytai T.

    2013-01-01

    Recently, magnetic-based theranostic nanoparticle (MBTN) systems have been studied, researched, and applied extensively to detect and treat various diseases including cancer. Theranostic nanoparticles are advantageous in that the diagnosis and treatment of a disease can be performed in a single setting using combinational strategies of targeting, imaging, and/or therapy. Of these theranostic strategies, magnetic-based systems containing magnetic nanoparticles (MNPs) have gained popularity because of their unique ability to be used in magnetic resonance imaging, magnetic targeting, hyperthermia, and controlled drug release. To increase their effectiveness, MNPs have been decorated with a wide variety of materials to improve their biocompatibility, carry therapeutic payloads, encapsulate/bind imaging agents, and provide functional groups for conjugation of biomolecules that provide receptor-mediated targeting of the disease. This review summarizes recent patents involving various polymer coatings, imaging agents, therapeutic agents, targeting mechanisms, and applications along with the major requirements and challenges faced in using MBTN for disease management. PMID:23795343

  10. Design of Superparamagnetic Nanoparticles for Magnetic Particle Imaging (MPI)

    PubMed Central

    Du, Yimeng; Lai, Pui To; Leung, Cheung Hoi; Pong, Philip W. T.

    2013-01-01

    Magnetic particle imaging (MPI) is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles) without interference from the anatomical background of the imaging objects (either phantoms or lab animals). Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity. In practice, the quality of the MPI images hinges on both the applied magnetic field and the properties of the tracer nanoparticles. Langevin theory can model the performance of superparamagnetic nanoparticles and predict the crucial influence of nanoparticle core size on the MPI signal. In addition, the core size distribution, anisotropy of the magnetic core and surface modification of the superparamagnetic nanoparticles also determine the spatial resolution and sensitivity of the MPI images. As a result, through rational design of superparamagnetic nanoparticles, the performance of MPI could be effectively optimized. In this review, the performance of superparamagnetic nanoparticles in MPI is investigated. Rational synthesis and modification of superparamagnetic nanoparticles are discussed and summarized. The potential medical application areas for MPI, including cardiovascular system, oncology, stem cell tracking and immune related imaging are also analyzed and forecasted. PMID:24030719

  11. Incorporation of functionalized gold nanoparticles into nanofibers for enhanced attachment and differentiation of mammalian cells

    PubMed Central

    2012-01-01

    Background Electrospun nanofibers have been widely used as substrata for mammalian cell culture owing to their structural similarity to natural extracellular matrices. Structurally consistent electrospun nanofibers can be produced with synthetic polymers but require chemical modification to graft cell-adhesive molecules to make the nanofibers functional. Development of a facile method of grafting functional molecules on the nanofibers will contribute to the production of diverse cell type-specific nanofiber substrata. Results Small molecules, peptides, and functionalized gold nanoparticles were successfully incorporated with polymethylglutarimide (PMGI) nanofibers through electrospinning. The PMGI nanofibers functionalized by the grafted AuNPs, which were labeled with cell-adhesive peptides, enhanced HeLa cell attachment and potentiated cardiomyocyte differentiation of human pluripotent stem cells. Conclusions PMGI nanofibers can be functionalized simply by co-electrospinning with the grafting materials. In addition, grafting functionalized AuNPs enable high-density localization of the cell-adhesive peptides on the nanofiber. The results of the present study suggest that more cell type-specific synthetic substrata can be fabricated with molecule-doped nanofibers, in which diverse functional molecules are grafted alone or in combination with other molecules at different concentrations. PMID:22686683

  12. Noninvasive assessment of magnetic nanoparticle-cancer cell interactions

    PubMed Central

    Giustini, Andrew J.; Perreard, Irina; Rauwerdink, Adam M.; Hoopes, P. Jack; Weaver, John B.

    2012-01-01

    The success of magnetic nanoparticle (mNP)-based diagnostic and therapeutic techniques is dependent upon how the mNP are distributed in vivo. The potential efficacy and timing of a given magnetic nanoparticle treatment or diagnostic test is largely determined by the number of nanoparticles in each tissue and microscopic compartment: e.g., in the intravascular and extravascular spaces, in the interstitial space, cell surface and in cell cytoplasm. Techniques for monitoring these cell-level interactions generally require the harvesting and destruction of tissues or cells at each time point of interest. We present a method (magnetic spectroscopy of Brownian motion, MSB) for longitudinally monitoring nanoparticle binding to cell surface proteins and uptake by cancer cells in vitro using the harmonics of the magnetization produced by the nanoparticles. These harmonics can be measured rapidly and noninvasively without the need for nanoparticle modifications and without damaging the cells. We demonstrate sensitivity of this harmonic signal to the nanoparticles’ microenvironment and use this technique to monitor the nanoparticle binding activities of different cell lines. PMID:22945022

  13. Applications of Magnetic Micro- and Nanoparticles in Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Dobson, J.

    2005-12-01

    Magnetic nanoparticles were first proposed for biomedical applications in the 1970s - primarily as targeted drug delivery vehicles and MRI contrast agents. Since that time, such particles have found application in a variety of biomedical techniques. In addition to drug delivery, magnetic nanoparticles are now used routinely as MRI contrast agents as well as for magneto-immunoassay and cell sorting. More recently, magnetic micro- and nanoparticles have been used to investigate and manipulate cellular processes both in vitro and in vivo. In addition, biogenic magnetic nanoparticles are also produced in the human body. The iron storage protein, ferritin, consists of a superparamagnetic ferrihydrite core and biogenic magnetite (a ferrimagnet) has also been found in the brain and other organs. Though the role of ferritin and several other magnetic iron oxides in the body is well understood, the origin and role of biogenic magnetite is only now coming to light - and this may have profound implications for our understanding of neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases. This talk will review applications related to magnetic particle-mediated activation of cellular processes for tissue engineering applications and novel methods of magnetofection which have the potential to provide enhanced transfection for non-viral therapeutic gene delivery. It will also briefly highlight new techniques recently developed for the mapping and characterization of magnetic iron compounds related to neurodegenerative diseases and how rock magnetic techniques have been adapted to study magnetic iron compounds in the brain and other organs.

  14. Taking the Temperature of the Interiors of Magnetically Heated Nanoparticles

    PubMed Central

    2015-01-01

    The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb3+, Er3+. A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications. PMID:24779552

  15. Taking the temperature of the interiors of magnetically heated nanoparticles.

    PubMed

    Dong, Juyao; Zink, Jeffrey I

    2014-05-27

    The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb(3+), Er(3+). A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications. PMID:24779552

  16. Facile synthesis of gold nanoworms with a tunable length and aspect ratio through oriented attachment of nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Waqqar; Glass, Christian; van Ruitenbeek, Jan M.

    2014-10-01

    We report a seedless protocol based on the oriented attachment of nanoparticles for the synthesis of Au nanoworms (NWs). NWs are grown by reducing HAuCl4 with ascorbic acid (AA) in high pH reaction medium and in the presence of growth directional agents, cetyltrimethylammonium bromide (CTAB) and AgNO3. Although we have used the same reducing and growth directional agents as typically used for the synthesis of Au nanorods, the growth mechanism of NWs is markedly different from that of nanorods. Instead of the anisotropic growth of seed particles, the NWs grow through oriented attachment of nanoparticles. By varying different reaction parameters we have seen that the length of NWs can be controlled from tens of nanometers to a micrometer. Furthermore, the aspect ratio (AR) can be tuned from 2 to 30. This is almost the whole range of AR and length for Au nanorods so far achieved with seed-mediated multiple step synthesis protocols.

  17. Magnetic nanoparticles for medical applications: Progress and challenges

    SciTech Connect

    Doaga, A.; Cojocariu, A. M.; Constantin, C. P.; Caltun, O. F.; Hempelmann, R.

    2013-11-13

    Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignant or benign tumors. For this purpose Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.

  18. Magnetic nanoparticles for medical applications: Progress and challenges

    NASA Astrophysics Data System (ADS)

    Doaga, A.; Cojocariu, A. M.; Constantin, C. P.; Hempelmann, R.; Caltun, O. F.

    2013-11-01

    Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignant or benign tumors. For this purpose ZnxCo1-xFe2O4 ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.

  19. Magnetic Properties of Bio-Synthesized Magnetite Nanoparticles

    SciTech Connect

    Rawn, Claudia J; Yeary, Lucas W; Moon, Ji Won; Love, Lonnie J; Thompson, James R; Phelps, Tommy Joe

    2005-01-01

    Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39 was incubated under anaerobic conditions at 65 C for two weeks in aqueous solution containing Fe ions from a magnetite precursor (akaganeite). Magnetite particles formed outside of bacterial cells. We verified particle size and morphology by using dynamic light scattering, X-ray diffraction, and transmission electron microscopy. Average crystallite size was 45 nm. We characterized the magnetic properties by using a superconducting quantum interference device magnetometer; a saturation magnetization of 77 emu/g was observed at 5 K. These results are comparable to those for chemically synthesized magnetite nanoparticles.

  20. Magnetic Composite Thin Films of Fe xO y Nanoparticles and Photocrosslinked Dextran Hydrogels

    NASA Astrophysics Data System (ADS)

    Brunsen, Annette; Utech, Stefanie; Maskos, Michael; Knoll, Wolfgang; Jonas, Ulrich

    2012-04-01

    Magnetic hydrogel composites are promising candidates for a broad field of applications from medicine to mechanical engineering. Here, surface-attached composite films of magnetic nanoparticles (MNP) and a polymeric hydrogel (HG) were prepared from magnetic iron oxide nanoparticles and a carboxymethylated dextran with photoreactive benzophenone substituents. A blend of the MNP and the dextran polymer was prepared by mixing in solution, and after spin-coating and drying the blend film was converted into a stable MNP-HG composite by photocrosslinking through irradiation with UV light. The bulk composite material shows strong mobility in a magnetic field, imparted by the MNPs. By utilizing a surface layer of a photoreactive adhesion promoter on the substrates, the MNP-HG films were covalently immobilized during photocrosslinking. The high stability of the composite was documented by rinsing experiments with UV-Vis spectroscopy, while surface plasmon resonance and optical waveguide mode spectroscopy was employed to investigate the swelling behavior in dependence of the nanoparticle concentration, the particle type, and salt concentration.

  1. Photodegradation of Eosin Y Using Silver-Doped Magnetic Nanoparticles

    PubMed Central

    Alzahrani, Eman

    2015-01-01

    The purification of industrial wastewater from dyes is becoming increasingly important since they are toxic or carcinogenic to human beings. Nanomaterials have been receiving significant attention due to their unique physical and chemical properties compared with their larger-size counterparts. The aim of the present investigation was to fabricate magnetic nanoparticles (MNPs) using a coprecipitation method, followed by coating with silver (Ag) in order to enhance the photocatalytic activity of the MNPs by loading metal onto them. The fabricated magnetic nanoparticles coated with Ag were characterised using different instruments such as a scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDAX) spectroscopy, and X-ray diffraction (XRD) analysis. The average size of the magnetic nanoparticles had a mean diameter of about 48 nm, and the average particle size changed to 55 nm after doping. The fabricated Ag-doped magnetic nanoparticles were used for the degradation of eosin Y under UV-lamp irradiation. The experimental results revealed that the use of fabricated magnetic nanoparticles coated with Ag can be considered as reliable methods for the removal of eosin Y since the slope of evaluation of pseudo-first-order rate constant from the slope of the plot between ln⁡(Co/C) and the irradiation time was found to be linear. Ag-Fe3O4 nanoparticles would be considered an efficient photocatalyst to degrade textile dyes avoiding the tedious filtration step. PMID:26617638

  2. Photodegradation of Eosin Y Using Silver-Doped Magnetic Nanoparticles.

    PubMed

    Alzahrani, Eman

    2015-01-01

    The purification of industrial wastewater from dyes is becoming increasingly important since they are toxic or carcinogenic to human beings. Nanomaterials have been receiving significant attention due to their unique physical and chemical properties compared with their larger-size counterparts. The aim of the present investigation was to fabricate magnetic nanoparticles (MNPs) using a coprecipitation method, followed by coating with silver (Ag) in order to enhance the photocatalytic activity of the MNPs by loading metal onto them. The fabricated magnetic nanoparticles coated with Ag were characterised using different instruments such as a scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDAX) spectroscopy, and X-ray diffraction (XRD) analysis. The average size of the magnetic nanoparticles had a mean diameter of about 48 nm, and the average particle size changed to 55 nm after doping. The fabricated Ag-doped magnetic nanoparticles were used for the degradation of eosin Y under UV-lamp irradiation. The experimental results revealed that the use of fabricated magnetic nanoparticles coated with Ag can be considered as reliable methods for the removal of eosin Y since the slope of evaluation of pseudo-first-order rate constant from the slope of the plot between ln⁡(C o /C) and the irradiation time was found to be linear. Ag-Fe3O4 nanoparticles would be considered an efficient photocatalyst to degrade textile dyes avoiding the tedious filtration step. PMID:26617638

  3. Structural origin of low temperature glassy relaxation in magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Laha, Suvra; Regmi, Rajesh; Lawes, Gavin

    2013-03-01

    Magnetic nanoparticles often exhibit glass-like relaxation features at low temperatures. Here we discuss the effects of doping boron, cobalt, gadolinium and lanthanum on the low temperature magnetic properties of Fe3O4 nanoparticles. We investigated the structure of the nanoparticles using both X-ray diffraction and Raman studies, and find evidence for secondary phase formation in certain samples. We acquired Transmission Electron Microscopic images to give direct information on the morphology and microstructure of these doped nanoparticles. We measured the ac out-of-phase susceptibility (χ//) vs temperature (T) to parameterize the low temperature glassy magnetic relaxation. All samples show low temperature magnetic relaxation, but the amplitude of the signal increases dramatically for certain dopants. We attribute these low temperature frequency-dependent magnetic relaxation features to structural defects, which are enhanced in some of the doped Fe3O4 nanoparticles. These studies also confirm that the low temperature relaxation in nanoparticles arises from single particle effects and are not associated with interparticle interactions.

  4. Thermoseeds for interstitial magnetic hyperthermia: from bioceramics to nanoparticles

    NASA Astrophysics Data System (ADS)

    Baeza, A.; Arcos, D.; Vallet-Regí, M.

    2013-12-01

    The development of magnetic materials for interstitial hyperthermia treatment of cancer is an ever evolving research field which provides new alternatives to antitumoral therapies. The development of biocompatible magnetic materials has resulted in new biomaterials with multifunctional properties, which are able to adapt to the complex scenario of tumoral processes. Once implanted or injected in the body, magnetic materials can behave as thermoseeds under the effect of AC magnetic fields. Magnetic bioceramics aimed to treat bone tumors and magnetic nanoparticles are among the most studied thermoseeds, and supply different solutions for the different scenarios in cancerous processes. This paper reviews some of the biomaterials used for bone cancer treatment and skeletal reinforcing, as well as the more complex topic of magnetic nanoparticles for intracellular targeting and hyperthermia.

  5. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media.

    PubMed

    Köber, Mariana; Moros, Maria; Grazú, Valeria; de la Fuente, Jesus M; Luna, Mónica; Briones, Fernando

    2012-04-20

    The increasing use of biofunctionalized magnetic nanoparticles in biomedical applications calls for further development of characterization tools that allow for determining the interactions of the nanoparticles with the biological medium in situ. In cell-incubating conditions, for example, nanoparticles may aggregate and serum proteins adsorb on the particles, altering the nanoparticles' performance and their interaction with cell membranes. In this work we show that the aggregation of spherical magnetite nanoparticles can be detected with high sensitivity in dense, highly light scattering media by making use of magnetically induced birefringence. Moreover, the hydrodynamic particle diameter distribution of anisometric nanoparticle aggregates can be determined directly in these media by monitoring the relaxation time of the magnetically induced birefringence. As a proof of concept, we performed measurements on nanoparticles included in an agarose gel, which scatters light in a similar way as a more complex biological medium but where particle-matrix interactions are weak. Magnetite nanoparticles were separated by agarose gel electrophoresis and the hydrodynamic diameter distribution was determined in situ. For the different particle functionalizations and agarose concentrations tested, we could show that gel electrophoresis did not yield a complete separation of monomers and small aggregates, and that the electrophoretic mobility of the aggregates decreased linearly with the hydrodynamic diameter. Furthermore, the rotational particle diffusion was not clearly affected by nanoparticle-gel interactions. The possibility to detect nanoparticle aggregates and their hydrodynamic diameters in complex scattering media like cell tissue makes transient magnetic birefringence an interesting technique for biological applications. PMID:22456180

  6. Synthesis and properties of magnetic ceramic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sorescu, Monica

    2012-02-01

    Magnetic ceramic nanoparticles of the type xIn2O3-(1-x)alpha-Fe2O3, xV2O5-(1-x)alpha-Fe2O3 and xZnO-(1-x)alpha-Fe2O3 (x=0.1-0.7) were synthesized from the mixed oxides using mechanochemical activation for 0-12 hours. X-ray diffraction was used to derive the phase content, lattice constants and particle size information as function of ball milling time. Mossbauer spectroscopy results correlated with In3+, V5+ and Zn2+ substitution of Fe3+ in the hematite lattice. SEM/EDS measurements revealed that the mechanochemical activation by ball milling produced systems with a wide range of particle size distribution, from nanometer particles to micrometer agglomerates, but with a uniform distribution of the elements. Simultaneous DSC-TGA investigations up to 800 degrees C provided information on the heat flow, weight loss and the enthalpy of transformation in the systems under investigation. This study demonstrates the formation of a nanostructured solid solution for the indium oxide, an iron vanadate (FeVO4) for the vanadium oxide, and of the zinc ferrite (ZnFe2O4) for the zinc oxide. The transformation pathway for each case can be related to the oxidation state of the metallic specie of the oxide used in connection with hematite.

  7. Magnetic Nanoparticles for Imaging Dendritic Cells

    PubMed Central

    Kobukai, Saho; Baheza, Richard; Cobb, Jared G.; Virostko, Jack; Xie, Jingping; Gillman, Amelie; Koktysh, Dmitry; Kerns, Denny; Does, Mark; Gore, John C.; Pham, Wellington

    2015-01-01

    We report the development of superparamagnetic iron oxide (SPIOs) nanoparticles and investigate the migration of SPIO-labeled dendritic cells (DCs) in a syngeneic mouse model using magnetic resonance (MR) imaging. The size of the dextran-coated SPIO is roughly 30 nm, and the DCs are capable of independent uptake of these particles, although not at levels comparable to particle uptake in the presence of a transfecting reagent. On average, with the assistance of polylysine, the particles were efficiently delivered inside DCs within one hour of incubation. The SPIO particles occupy approximately 0.35% of cell surface and are equivalent to 34.6 pg of iron per cell. In vivo imaging demonstrated that the labeled cells migrated from the injection site in the footpad to the corresponding popliteal lymph node. The homing of labeled cells in the lymph nodes resulted in a signal drop of up to 79%. Furthermore, labeling DCs with SPIO particles did not compromise cell function, we demonstrated that SPIO-enhanced MR imaging can be used to track the migration of DCs effectively in vivo. Magn Reson Med 63:1383–1390, 2010. PMID:20432309

  8. Assembly and magnetic properties of nickel nanoparticles on silicon nanowires

    SciTech Connect

    Picraux, Samuel T; Manandhar, Pradeep; Nazaretski, E; Thompson, J

    2009-01-01

    The directed assembly of magnetic Ni nanoparticles at the tips of silicon nanowires is reported. Using electrodeposition Ni shells of thickness from 10 to 100 nm were selectively deposited on Au catalytic seeds at the ends of nanowires. Magnetic characterization confirms a low coercivity ({approx}115 Oe) ferromagnetic behavior at 300 K. This approach to multifunctional magnetic-semiconducting nanostructure assembly could be extended to electrodeposition of other materials on the nanowire ends, opening up novel ways of device integration. Such magnetically functionalized nanowires offer a new approach to developing novel highly localized magnetic probes for high resolution magnetic resonance force microscopy.

  9. Enhanced Intracellular Hyperthermia Efficiency by Magnetic Nanoparticles Modified with Nucleus and Mitochondria Targeting Peptides.

    PubMed

    Wang, Xiaowen; Zhou, Jumei; Chen, Benke; Tang, Zhenghai; Zhang, Jieying; Li, Liya; Tang, Jintian

    2016-06-01

    In order to investigate whether cell organelle targeting peptide can transport magnetic nanoparticles (MNPs) into specific cell organelle, peptides bearing nuclear localization signal (NLS) or mitochondria targeting sequences were coagulated to MNPs. In vitro cytotoxicity study on the human liver cancer cells (HepG2) was tested by using MTT assay. Sub-cellular location of each peptide modified MNP (PEP-MNPs) was observed by transmission electron microscopy (TEM). The uptake of HepG2 cells growing in PEP-MNPs was measured by using ICP-OES. Magnetic induction heating efficacies of PEP-MNPs were analyzed by exposing the PEP-MNPs containing cells in an alternating magnetic field (AMF). It was demonstrated that PEP-MNPs were efficient agents for cancer nanothermotherapy with satisfactory biocompatibility. TEM showed that the fate of MNPs inside the cells depended on the peptide sequence attached to the particle surface. The uptake improvement was observed both in PEP-MNPs bearing NLS peptides and in PEP-MNPs bearing mitochondria targeting sequences. Virus original endocytosis sequence can enhance the uptake. MNP bearing mitochondria targeting sequence exerted a better magnetic induction hyperthermia performance comparing to that of NLS. Our investigation provides a strategy for fabrication cell organelle targeting magnetic nanoparticles. For instance, mitochondria targeting peptide conjugated MNPs for highly-efficiency magnetic nanothermotherapy and nuclear targeting peptides conjugated MNPs for gene magnetofection. PMID:27427753

  10. Magnetic Nanoparticle Quantitation with Low Frequency Magnetic Fields: Compensating for Relaxation Effects

    PubMed Central

    Weaver, John B.; Zhang, Xiaojuan; Kuehlert, Esra; Toraya-Brown, Seiko; Reeves, Daniel B.; Perreard, Irina M.; Fiering, Steven N.

    2013-01-01

    Quantifying the number of nanoparticles present in tissue is central to many in vivo and in vitro applications. Magnetic nanoparticles can be detected with high sensitivity both in vivo and in vitro using the harmonics of their magnetization produced in a sinusoidal magnetic field. However, relaxation effects damp the magnetic harmonics rendering them of limited use in quantitation. We show that an accurate measure of the number of nanoparticles can be made by correcting for relaxation effects. Correction for relaxation reduced errors of 50% for larger nanoparticles in high relaxation environments to 2%. The result is a method of nanoparticle quantitation capable of in vivo and in vitro applications including histopathology assays, quantitative imaging, drug delivery and thermal therapy preparation. PMID:23867287

  11. Magnetic properties of heat treated bacterial ferrihydrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Krasikov, A. A.; Dubrovskiy, A. A.; Popkov, S. I.; Stolyar, S. V.; Bayukov, O. A.; Iskhakov, R. S.; Ladygina, V. P.; Yaroslavtsev, R. N.

    2016-07-01

    The magnetic properties of ferrihydrite nanoparticles, which are products of vital functions of Klebsiella oxitoca bacteria, have been studied. The initial powder containing the nanoparticles in an organic shell was subjected to low-temperature (T=160 °C) heat treatment for up to 240 h. The bacterial ferrihydrite particles exhibit a superparamagnetic behavior. Their characteristic blocking temperature increases from 26 to 80 K with the heat treatment. Analysis of the magnetization curves with regard to the magnetic moment distribution function and antiferromagnetic contribution shows that the low-temperature heat treatment enhances the average magnetic moment of a particle; i.e., the nanoparticles coarsen, probably due to their partial agglomeration during heat treatment. It was established that the blocking temperature nonlinearly depends on the particle volume. Therefore, a model was proposed that takes into account both the bulk and surface magnetic anisotropy. Using this model, the bulk and surface magnetic anisotropy constants KV≈1.7×105 erg/cm3 and KS≈0.055 erg/cm2 have been determined. The effect of the surface magnetic anisotropy of ferrihydrite nanoparticles on the observed magnetic hysteresis loops is discussed.

  12. Lanthanide doped nanoparticles as remote sensors for magnetic fields.

    PubMed

    Chen, Ping; Zhang, Junpei; Xu, Beibei; Sang, Xiangwen; Chen, Weibo; Liu, Xiaofeng; Han, Junbo; Qiu, Jianrong

    2014-10-01

    We report the effect of magnetic fields (MFs) on emission Eu-doped NaYF4 nanoparticles. A notable shift in the position of emission bands and the suppressed emission intensity are observed with the MF. These magnetic-optical interactions are explained in terms of the Zeeman effect, enhanced cross-relaxation rate and change of site symmetry. PMID:25123099

  13. Synthesis and Magnetic Properties of CoPt Nanoparticles

    NASA Astrophysics Data System (ADS)

    Trung, Truong Thanh; Nhung, Do Thi; Nam, Nguyen Hoang; Luong, Nguyen Hoang

    2016-07-01

    Magnetic nanoparticles CoPt were prepared by the chemical reduction of cobalt (II) chloride and chloroplatinic acid, then the samples were ultrasonicated for 2 h. After annealing at various temperatures from 400°C to 700°C for 1 h, the samples showed hard magnetic properties with coercivity up to 1.15 kOe at room temperature.

  14. Physics of heat generation using magnetic nanoparticles for hyperthermia.

    PubMed

    Dennis, Cindi L; Ivkov, Robert

    2013-12-01

    Magnetic nanoparticle hyperthermia and thermal ablation have been actively studied experimentally and theoretically. In this review, we provide a summary of the literature describing the properties of nanometer-scale magnetic materials suspended in biocompatible fluids and their interactions with external magnetic fields. Summarised are the properties and mechanisms understood to be responsible for magnetic heating, and the models developed to understand the behaviour of single-domain magnets exposed to alternating magnetic fields. Linear response theory and its assumptions have provided a useful beginning point; however, its limitations are apparent when nanoparticle heating is measured over a wide range of magnetic fields. Well-developed models (e.g. for magnetisation reversal mechanisms and pseudo-single domain formation) available from other fields of research are explored. Some of the methods described include effects of moment relaxation, anisotropy, nanoparticle and moment rotation mechanisms, interactions and collective behaviour, which have been experimentally identified to be important. Here, we will discuss the implicit assumptions underlying these analytical models and their relevance to experiments. Numerical simulations will be discussed as an alternative to these simple analytical models, including their applicability to experimental data. Finally, guidelines for the design of optimal magnetic nanoparticles will be presented. PMID:24131317

  15. Magnetic nanoparticles coated with polyaniline to stabilize immobilized trypsin

    NASA Astrophysics Data System (ADS)

    Maciel, J. C.; D. Mercês, A. A.; Cabrera, M.; Shigeyosi, W. T.; de Souza, S. D.; Olzon-Dionysio, M.; Fabris, J. D.; Cardoso, C. A.; Neri, D. F. M.; C. Silva, M. P.; Carvalho, L. B.

    2016-12-01

    It is reported the synthesis of magnetic nanoparticles via the chemical co-precipitation of Fe 3+ ions and their preparation by coating them with polyaniline. The electronic micrograph analysis showed that the mean diameter for the nanoparticles is ˜15 nm. FTIR, powder X-ray diffraction and Mössbauer spectroscopy were used to understand the chemical, crystallographic and 57Fe hyperfine structures for the two samples. The nanoparticles, which exhibited magnetic behavior with relatively high spontaneous magnetization at room temperature, were identified as being mainly formed by maghemite ( γFe2O3). The coated magnetic nanoparticles (sample labeled "mPANI") presented a real ability to bind biological molecules such as trypsin, forming the magnetic enzyme derivative (sample "mPANIG-Trypsin"). The amount of protein and specific activity of the immobilized trypsin were found to be 13±5 μg of protein/mg of mPANI (49.3 % of immobilized protein) and 24.1±0.7 U/mg of immobilized protein, respectively. After 48 days of storage at 4 ∘C, the activity of the immobilized trypsin was found to be 89 % of its initial activity. This simple, fast and low-cost procedure was revealed to be a promising way to prepare mPANI nanoparticles if technological applications addressed to covalently link biomolecules are envisaged. This route yields chemically stable derivatives, which can be easily recovered from the reaction mixture with a magnetic field and recyclable reused.

  16. A magnonic gas sensor based on magnetic nanoparticles.

    PubMed

    Matatagui, D; Kolokoltsev, O V; Qureshi, N; Mejía-Uriarte, E V; Saniger, J M

    2015-06-01

    In this paper, we propose an innovative, simple and inexpensive gas sensor based on the variation in the magnetic properties of nanoparticles due to their interaction with gases. To measure the nanoparticle response a magnetostatic spin wave (MSW) tunable oscillator has been developed using an yttrium iron garnet (YIG) epitaxial thin film as a delay line (DL). The sensor has been prepared by coating a uniform layer of CuFe2O4 nanoparticles on the YIG film. The unperturbed frequency of the oscillator is determined by a bias magnetic field, which is applied parallel to the YIG film and perpendicularly to the wave propagation direction. In this device, the total bias magnetic field is the superposition of the field of a permanent magnet and the field associated with the layer of magnetic nanoparticles. The perturbation produced in the magnetic properties of the nanoparticle layer due to its interaction with gases induces a frequency shift in the oscillator, allowing the detection of low concentrations of gases. In order to demonstrate the ability of the sensor to detect gases, it has been tested with organic volatile compounds (VOCs) which have harmful effects on human health, such as dimethylformamide, isopropanol and ethanol, or the aromatic hydrocarbons like benzene, toluene and xylene more commonly known by its abbreviation (BTX). All of these were detected with high sensitivity, short response time, and good reproducibility. PMID:25952501

  17. A magnonic gas sensor based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Matatagui, D.; Kolokoltsev, O. V.; Qureshi, N.; Mejía-Uriarte, E. V.; Saniger, J. M.

    2015-05-01

    In this paper, we propose an innovative, simple and inexpensive gas sensor based on the variation in the magnetic properties of nanoparticles due to their interaction with gases. To measure the nanoparticle response a magnetostatic spin wave (MSW) tunable oscillator has been developed using an yttrium iron garnet (YIG) epitaxial thin film as a delay line (DL). The sensor has been prepared by coating a uniform layer of CuFe2O4 nanoparticles on the YIG film. The unperturbed frequency of the oscillator is determined by a bias magnetic field, which is applied parallel to the YIG film and perpendicularly to the wave propagation direction. In this device, the total bias magnetic field is the superposition of the field of a permanent magnet and the field associated with the layer of magnetic nanoparticles. The perturbation produced in the magnetic properties of the nanoparticle layer due to its interaction with gases induces a frequency shift in the oscillator, allowing the detection of low concentrations of gases. In order to demonstrate the ability of the sensor to detect gases, it has been tested with organic volatile compounds (VOCs) which have harmful effects on human health, such as dimethylformamide, isopropanol and ethanol, or the aromatic hydrocarbons like benzene, toluene and xylene more commonly known by its abbreviation (BTX). All of these were detected with high sensitivity, short response time, and good reproducibility.

  18. Microfluidic separation of magnetic nanoparticles on an ordered array of magnetized micropillars

    NASA Astrophysics Data System (ADS)

    Orlandi, G.; Kuzhir, P.; Izmaylov, Y.; Alves Marins, J.; Ezzaier, H.; Robert, L.; Doutre, F.; Noblin, X.; Lomenech, C.; Bossis, G.; Meunier, A.; Sandoz, G.; Zubarev, A.

    2016-06-01

    Microfluidic separation of magnetic particles is based on their capture by magnetized microcollectors while the suspending fluid flows past the microcollectors inside a microchannel. Separation of nanoparticles is often challenging because of strong Brownian motion. Low capture efficiency of nanoparticles limits their applications in bioanalysis. However, at some conditions, magnetic nanoparticles may undergo field-induced aggregation that amplifies the magnetic attractive force proportionally to the aggregate volume and considerably increases nanoparticle capture efficiency. In this paper, we have demonstrated the role of such aggregation on an efficient capture of magnetic nanoparticles (about 80 nm in diameter) in a microfluidic channel equipped with a nickel micropillar array. This array was magnetized by an external uniform magnetic field, of intensity as low as 6-10 kA/m, and experiments were carried out at flow rates ranging between 0.3 and 30 μ L /min . Nanoparticle capture is shown to be mostly governed by the Mason number Ma, while the dipolar coupling parameter α does not exhibit a clear effect in the studied range, 1.4 < α < 4.5. The capture efficiency Λ shows a strongly decreasing Mason number behavior, Λ ∝M a-1.78 within the range 32 ≤ Ma ≤ 3250. We have proposed a simple theoretical model which considers destructible nanoparticle chains and gives the scaling behavior, Λ ∝M a-1.7 , close to the experimental findings.

  19. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    SciTech Connect

    Xu, Jianlong; Xie, Dan E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling E-mail: RenTL@mail.tsinghua.edu.cn; Zeng, Min; Gao, Xingsen; Zhao, Yonggang

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  20. Synthesis and Characterization of Polymer-Templated Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamakloe, Beatrice

    This research reports on the investigation into the synthesis and stabilization of iron oxide nanoparticles for theranostic applications using amine-epoxide polymers. Although theranostic agents such as magnetic nanoparticles have been designed and developed for a few decades, there is still more work that needs to be done with the type of materials that can be used to stabilize or functionalize these particles if they are to be used for applications such as drug delivery, imaging and hyperthermia. For in-vivo applications, it is crucial that organic coatings enclose the nanoparticles in order to prevent aggregation and facilitate efficient removal from the body as well as protect the body from toxic material. The objective of this thesis is to design polymer coated magnetite nanoparticles with polymers that are biocompatible and can stabilize the iron oxide nanoparticle to help create mono-dispersed particles in solution. It is desirable to also have these nanoparticles possess high magnetic susceptibility in response to an applied magnetic field. The co-precipitation method was selected because it is probably the simplest and most efficient chemical pathway to obtain magnetic nanoparticles. In literature, cationic polymers such as Polyethylenimine (PEI), which is the industry standard, have been used to stabilize IONPs because they can be used in magnetofections to deliver DNA or RNA. PEI however is known to interact very strongly with proteins and is cytotoxic, so as mentioned previously the Iron Oxide nanoparticles (IONPs) synthesized in this study were stabilized with amine-epoxide polymers because of the limitations of PEI. Four different amine-epoxide polymers which have good water solubility, biodegradability and less toxic than PEI were synthesized and used in the synthesis and stabilization of the magnetic nanoparticles and compared to PEI templated IONPs. These polymer-templated magnetic nanoparticles were also characterized by size, surface charge, Iron

  1. Biocompatible core-shell magnetic nanoparticles for cancer treatment

    SciTech Connect

    Sharma, Amit M.; Qiang, You; Meyer, Daniel R.; Souza, Ryan; Mcconnaughoy, Alan; Muldoon, Leslie; Baer, Donald R.

    2008-04-01

    Non-toxic magnetic nanoparticles (MNPs) have expanded the treatment delivery options in the medical world. With a size range from 2 to 200 nm MNPs can be compiled with most of the small cells and tissues in living body. Monodispersive iron-iron oxide core shell nanoparticles were prepared in our novel cluster deposition system. This unique method of preparing the core shell MNPs gives nanoparticles very high magnetic moment. We tested the nontoxicity and uptake of MNPs coated with/without dextrin by incubating them with rat LX-1 small cell lung cancer cells (SCLC). Since core iron enhances the heating effect [7] the rate of oxidation of iron nanoparticles was tested in deionized water at certain time interval. Both coated and noncoated MNPs were successfully uptaken by the cells, indicating that the nanoparticles were not toxic. The stability of MNPs was verified by X-ray diffraction (XRD) scan after 0, 24, 48, 96, 204 hours. Due to the high magnetic moment offered by MNPs produced in our lab, we predict that even in low applied external alternating field desired temperature can be reached in cancer cells in comparison to the commercially available nanoparticles. Moreover, our MNPs do not require additional anti-coagulating agents and provide a cost effective means of treatment with significantly lower dosage in the body in comparison to commercially available nanoparticles.

  2. Measuring Cytokine Concentrations Using Magnetic Spectroscopy of Nanoparticle Brownian Relaxation

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa; Shi, Yipeng; Weaver, John

    The magnetic particle spectroscopy is a newly developed non-invasive technique for obtaining information about the nanoparticles' micro environment. In this technique the nanoparticles' magnetization, induced by an alternating magnetic field at various applied frequencies, is processed to analyze rotational freedom of nanoparticles. By analyzing average rotational freedom, it is possible to measure the nanoparticle's relaxation time, and hence get an estimate of the temperature and viscosity of the medium. In molecular concentration sensing, the rotational freedom indicates the number of nanoparticles that are bound by a selected analyte. We have developed microscopic nanoparticles probes to measure the concentration of selected molecules. The nanoparticles are targeted to bind the selected molecule and the resulting reduction in rotational freedom can be quantified remotely. Previously, sensitivity measurements has been reported to be of the factor of 200. However, with our newer perpendicular field setup (US Patent Application Serial No 61/721,378), it possible to sense cytokine concentrations as low as 5 Pico-Molar in-vitro. The excellent sensitivity of this apparatus is due to isolation of the drive field from the signal so the output can be amplified to a higher level. Dartmouth College.

  3. Nonequilibrium Magnetic Response of Anisotropic Superparamagnetic Nanoparticles and Possible Artifacts in Magnetic Particle Imaging

    PubMed Central

    Mamiya, Hiroaki; Jeyadevan, Balachandran

    2015-01-01

    Magnetic responses of superparamagnetic nanoparticles to high-frequency AC magnetic fields with sufficiently large amplitudes are numerically simulated to exactly clarify the phenomena occurring in magnetic particle imaging. When the magnetic anisotropy energy inevitable in actual nanoparticles is taken into account in considering the magnetic potential, larger nanoparticles exhibit a delayed response to alternations of the magnetic fields. This kind of delay is rather remarkable in the lower-amplitude range of the field, where the assistance by the Zeeman energy to thermally activated magnetization reversal is insufficient. In some cases, a sign inversion of the third-order harmonic response was found to occur at some specific amplitude, despite the lack in DC bias magnetic field strength. Considering the attenuation of the AC magnetic field generated in the human body, it is possible that the phases of the signals from nanoparticles deep inside the body and those near the body surface are completely different. This may lead to artifacts in the reconstructed image. Furthermore, when the magnetic/thermal torque-driven rotation of the anisotropic nanoparticles as well as the magnetic anisotropy energy are taken into account, the simulated results show that, once the easy axes are aligned toward the direction of the DC bias magnetic field, it takes time to randomize them at the field-free point. During this relaxation, the third-order harmonic response depends highly upon the history of the magnetic field. This is because non-linearity of the anhysteretic magnetization curve for the superparamagnetic nanoparticles varies with the orientations of the easy axes. This history dependence may also lead to another artifact in magnetic particle imaging, when the scanning of the field-free point is faster than the Brownian relaxations. PMID:25775017

  4. Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field

    NASA Astrophysics Data System (ADS)

    Sharma, Shashi; Katiyar, V. K.; Singh, Uaday

    2015-04-01

    A mathematical model is developed to describe the trajectories of a cluster of magnetic nanoparticles in a blood vessel for the application of magnetic drug targeting (MDT). The magnetic nanoparticles are injected into a blood vessel upstream from a malignant tissue and are captured at the tumour site with help of an applied magnetic field. The applied field is produced by a rare earth cylindrical magnet positioned outside the body. All forces expected to significantly affect the transport of nanoparticles were incorporated, including magnetization force, drag force and buoyancy force. The results show that particles are slow down and captured under the influence of magnetic force, which is responsible to attract the magnetic particles towards the magnet. It is optimized that all particles are captured either before or at the centre of the magnet (z≤0) when blood vessel is very close proximity to the magnet (d=2.5 cm). However, as the distance between blood vessel and magnet (d) increases (above 4.5 cm), the magnetic nanoparticles particles become free and they flow away down the blood vessel. Further, the present model results are validated by the simulations performed using the finite element based COMSOL software.

  5. Magnetic domains and surface effects in hollow maghemite nanoparticles

    SciTech Connect

    Cabot, Andreu; Alivisatos, A. Paul; Puntes, Victor; Balcells, Lluis; Iglesias, Oscar; Labarta, Amilcar

    2008-09-30

    In the present work, we investigate the magnetic properties of ferrimagnetic and non-interacting maghemite hollow nanoparticles obtained by the Kirkendall effect. From the experimental characterization of their magnetic behavior, we find that polycrystalline hollow maghemite nanoparticles exhibit low blocked-to-superparamagnetic transition temperatures, small magnetic moments, significant coercivities and irreversibility fields, and no magnetic saturation on external magnetic fields up to 5 T. These results are interpreted in terms of the microstructural parameters characterizing the maghemite shells by means of atomistic Monte Carlo simulations of an individual spherical shell. The model comprises strongly interacting crystallographic domains arranged in a spherical shell with random orientations and anisotropy axis. The Monte Carlo simulation allows discernment between the influence of the polycrystalline structure and its hollow geometry, while revealing the magnetic domain arranggement in the different temperataure regimes.

  6. Binding of biological effectors on magnetic nanoparticles measured by a magnetically induced transient birefringence experiment

    NASA Astrophysics Data System (ADS)

    Wilhelm, C.; Gazeau, F.; Roger, J.; Pons, J. N.; Salis, M. F.; Perzynski, R.; Bacri, J. C.

    2002-03-01

    We have investigated the relaxation of the magnetically induced birefringence in a suspension of magnetic nanoparticles in order to detect the binding reaction of polyclonal antibodies on the particle surface. The birefringence relaxation is driven by the rotational diffusion of the complex formed by the magnetic nanoparticles bound to the antibody and thus is directly related to the hydrodynamic size of this complex. Birefringence relaxations are well described by stretched exponential laws revealing a polydisperse distribution of hydrodynamic diameters. Comparing the size distribution of samples with different initial ratios of immunoglobuline added per magnetic nanoparticles, we evidence the graft of an antibody on particle and eventually the onset of particles agregation. Measurements on samples separated in size by gel filtration demonstrate the robustness of our experiment for the determination of size distribution and its modification due to the adsorption of a macromolecule. The immunoglobuline binding assay is performed comparatively for ionic magnetic nanoparticles with different coatings.

  7. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media

    NASA Astrophysics Data System (ADS)

    Köber, Mariana; Moros, Maria; Grazú, Valeria; de la Fuente, Jesus M.; Luna, Mónica; Briones, Fernando

    2012-04-01

    The increasing use of biofunctionalized magnetic nanoparticles in biomedical applications calls for further development of characterization tools that allow for determining the interactions of the nanoparticles with the biological medium in situ. In cell-incubating conditions, for example, nanoparticles may aggregate and serum proteins adsorb on the particles, altering the nanoparticles’ performance and their interaction with cell membranes. In this work we show that the aggregation of spherical magnetite nanoparticles can be detected with high sensitivity in dense, highly light scattering media by making use of magnetically induced birefringence. Moreover, the hydrodynamic particle diameter distribution of anisometric nanoparticle aggregates can be determined directly in these media by monitoring the relaxation time of the magnetically induced birefringence. As a proof of concept, we performed measurements on nanoparticles included in an agarose gel, which scatters light in a similar way as a more complex biological medium but where particle-matrix interactions are weak. Magnetite nanoparticles were separated by agarose gel electrophoresis and the hydrodynamic diameter distribution was determined in situ. For the different particle functionalizations and agarose concentrations tested, we could show that gel electrophoresis did not yield a complete separation of monomers and small aggregates, and that the electrophoretic mobility of the aggregates decreased linearly with the hydrodynamic diameter. Furthermore, the rotational particle diffusion was not clearly affected by nanoparticle-gel interactions. The possibility to detect nanoparticle aggregates and their hydrodynamic diameters in complex scattering media like cell tissue makes transient magnetic birefringence an interesting technique for biological applications.

  8. Biodegradation of magnetic nanoparticles evaluated from Mössbauer and magnetization measurements

    NASA Astrophysics Data System (ADS)

    Mischenko, I.; Chuev, M.; Cherepanov, V.; Polikarpov, M.; Panchenko, V.

    2013-04-01

    In order to extract a quantitative information about characteristics of the magnetic nanoparticles injected into a living organism it is necessary to define a model of the magnetic dynamics for fitting self-consistently the whole set of the experimental data, specifically, the evolution of Mössbauer spectral shape with temperature and external magnetic field as well as the magnetization curves. We have developed such a model and performed such an analysis of the temperature- and magnetic field-dependent spectra and magnetization curves of nanoparticles injected into mice. This allowed us to reliably evaluate changes in the characteristics of the residual particles and their chemical transformation to paramagnetic ferritin-like forms in different mouse organs as a function of time. Actually, the approach makes it possible to quantitatively characterize biodegradation and biotransformation of magnetic nanoparticles delivered in a body.

  9. Size and polydispersity effect on the magnetization of densely packed magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Russier, Vincent; de Montferrand, Caroline; Lalatonne, Yoann; Motte, Laurence

    2012-10-01

    The magnetic properties of densely packed magnetic nanoparticles (MNP) assemblies are investigated from Monte Carlo simulations. The case of iron oxide nanoparticles is considered as a typical example of MNP. The main focus is put on particle size, and size polydispersity influences on the magnetization curve. The particles are modeled as uniformly magnetized spheres isolated one from each other by a non magnetic layer representing the organic coating. A comparison with recent experimental results on γ -Fe2O3 powder samples differing by their size is given.

  10. Rationalisation of distribution functions for models of nanoparticle magnetism

    NASA Astrophysics Data System (ADS)

    El-Hilo, M.; Chantrell, R. W.

    2012-08-01

    A formalism is presented which reconciles the use of different distribution functions of particle diameter in analytical models of the magnetic properties of nanoparticle systems. For the lognormal distribution a transformation is derived which shows that a distribution of volume fraction transforms into a lognormal distribution of particle number albeit with a modified median diameter. This transformation resolves an apparent discrepancy reported in Tournus and Tamion [Journal of Magnetism and Magnetic Materials 323 (2011) 1118].